1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 73798 2018-08-21 06:38:18Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * Implements 'VMCALL'.
|
---|
21 | */
|
---|
22 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
23 | {
|
---|
24 | /** @todo NSTVMX: intercept. */
|
---|
25 |
|
---|
26 | /* Join forces with vmmcall. */
|
---|
27 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
28 | }
|
---|
29 |
|
---|
30 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
34 | * relative offsets.
|
---|
35 | */
|
---|
36 | # ifdef IEM_WITH_CODE_TLB
|
---|
37 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
38 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
39 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
40 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
41 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
42 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
43 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
44 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
45 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
46 | # else /* !IEM_WITH_CODE_TLB */
|
---|
47 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
48 | do \
|
---|
49 | { \
|
---|
50 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
51 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
52 | } while (0)
|
---|
53 |
|
---|
54 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
55 |
|
---|
56 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
57 | do \
|
---|
58 | { \
|
---|
59 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
60 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
61 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
62 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
63 | } while (0)
|
---|
64 |
|
---|
65 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
66 | do \
|
---|
67 | { \
|
---|
68 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
69 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
70 | } while (0)
|
---|
71 |
|
---|
72 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
73 | do \
|
---|
74 | { \
|
---|
75 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
76 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
77 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
78 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
79 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
80 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
81 | } while (0)
|
---|
82 |
|
---|
83 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
84 | do \
|
---|
85 | { \
|
---|
86 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
87 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
88 | } while (0)
|
---|
89 |
|
---|
90 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
91 | do \
|
---|
92 | { \
|
---|
93 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
94 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
95 | } while (0)
|
---|
96 |
|
---|
97 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
98 | do \
|
---|
99 | { \
|
---|
100 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
101 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
102 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
103 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
104 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
105 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
106 | } while (0)
|
---|
107 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
108 |
|
---|
109 |
|
---|
110 | #if 0 /* Disabled static fn until we use it with VMREAD/VMWRITE instruction implementation. */
|
---|
111 | /**
|
---|
112 | * Returns whether the given VMCS field is valid and supported by our emulation.
|
---|
113 | *
|
---|
114 | * @param pVCpu The cross context virtual CPU structure.
|
---|
115 | * @param encField The VMCS field encoding.
|
---|
116 | *
|
---|
117 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
118 | */
|
---|
119 | IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, VMXVMCSFIELDENC encField)
|
---|
120 | {
|
---|
121 | PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
|
---|
122 | switch (encField.u)
|
---|
123 | {
|
---|
124 | /*
|
---|
125 | * 16-bit fields.
|
---|
126 | */
|
---|
127 | /* Control fields. */
|
---|
128 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
129 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
130 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
131 |
|
---|
132 | /* Guest-state fields. */
|
---|
133 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
134 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
135 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
136 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
137 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
138 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
139 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
140 | case VMX_VMCS16_GUEST_TR_SEL:
|
---|
141 | case VMX_VMCS16_GUEST_INTR_STATUS: return true;
|
---|
142 | case VMX_VMCS16_GUEST_PML_INDEX: return false;
|
---|
143 |
|
---|
144 | /* Host-state fields. */
|
---|
145 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
146 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
147 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
148 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
149 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
150 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
151 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
152 |
|
---|
153 | /*
|
---|
154 | * 64-bit fields.
|
---|
155 | */
|
---|
156 | /* Control fields. */
|
---|
157 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
158 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
159 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
160 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
161 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
162 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
163 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
164 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
165 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
166 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
167 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
168 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
169 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
170 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
171 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
172 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return false;
|
---|
173 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
174 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
175 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
176 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
177 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
178 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
179 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
180 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
181 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
182 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
183 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
184 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
185 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
186 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
187 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
188 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
189 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
190 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
191 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
192 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
193 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
194 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
195 | {
|
---|
196 | uint64_t const uVmFuncMsr = CPUMGetGuestIa32VmxVmFunc(pVCpu);
|
---|
197 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
198 | }
|
---|
199 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
200 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
201 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
202 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
203 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
|
---|
204 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
205 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
206 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
207 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
|
---|
208 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
|
---|
209 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
210 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
211 |
|
---|
212 | /* Read-only data fields. */
|
---|
213 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
214 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
215 |
|
---|
216 | /* Guest-state fields. */
|
---|
217 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
218 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
219 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
220 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
221 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
222 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
223 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
224 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
225 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
226 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
227 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
228 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
229 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
230 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
231 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
232 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
233 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
234 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
235 | case VMX_VMCS64_GUEST_BNDCFGS_FULL:
|
---|
236 | case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
|
---|
237 |
|
---|
238 | /* Host-state fields. */
|
---|
239 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
240 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
241 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
242 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
243 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
244 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
245 |
|
---|
246 | /*
|
---|
247 | * 32-bit fields.
|
---|
248 | */
|
---|
249 | /* Control fields. */
|
---|
250 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
251 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
252 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
253 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
254 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
255 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
256 | case VMX_VMCS32_CTRL_EXIT:
|
---|
257 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
258 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
259 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
260 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
261 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
262 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
263 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
264 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
265 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
266 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
267 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
268 |
|
---|
269 | /* Read-only data fields. */
|
---|
270 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
271 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
272 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
273 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
274 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
275 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
276 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
277 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
278 |
|
---|
279 | /* Guest-state fields. */
|
---|
280 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
281 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
282 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
283 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
284 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
285 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
286 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
287 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
288 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
289 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
290 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
291 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
292 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
293 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
294 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
295 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
296 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
297 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
298 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
299 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
300 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
301 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
302 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
303 |
|
---|
304 | /* Host-state fields. */
|
---|
305 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
306 |
|
---|
307 | /*
|
---|
308 | * Natural-width fields.
|
---|
309 | */
|
---|
310 | /* Control fields. */
|
---|
311 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
312 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
313 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
314 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
315 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
316 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
317 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
318 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
319 |
|
---|
320 | /* Read-only data fields. */
|
---|
321 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
322 | case VMX_VMCS_RO_IO_RCX:
|
---|
323 | case VMX_VMCS_RO_IO_RSX:
|
---|
324 | case VMX_VMCS_RO_IO_RDI:
|
---|
325 | case VMX_VMCS_RO_IO_RIP:
|
---|
326 | case VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR: return true;
|
---|
327 |
|
---|
328 | /* Guest-state fields. */
|
---|
329 | case VMX_VMCS_GUEST_CR0:
|
---|
330 | case VMX_VMCS_GUEST_CR3:
|
---|
331 | case VMX_VMCS_GUEST_CR4:
|
---|
332 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
333 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
334 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
335 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
336 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
337 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
338 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
339 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
340 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
341 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
342 | case VMX_VMCS_GUEST_DR7:
|
---|
343 | case VMX_VMCS_GUEST_RSP:
|
---|
344 | case VMX_VMCS_GUEST_RIP:
|
---|
345 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
346 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
347 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
348 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
349 |
|
---|
350 | /* Host-state fields. */
|
---|
351 | case VMX_VMCS_HOST_CR0:
|
---|
352 | case VMX_VMCS_HOST_CR3:
|
---|
353 | case VMX_VMCS_HOST_CR4:
|
---|
354 | case VMX_VMCS_HOST_FS_BASE:
|
---|
355 | case VMX_VMCS_HOST_GS_BASE:
|
---|
356 | case VMX_VMCS_HOST_TR_BASE:
|
---|
357 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
358 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
359 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
360 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
361 | case VMX_VMCS_HOST_RSP:
|
---|
362 | case VMX_VMCS_HOST_RIP: return true;
|
---|
363 | }
|
---|
364 |
|
---|
365 | return false;
|
---|
366 | }
|
---|
367 | #endif
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * Gets VM-exit instruction information along with any displacement for an
|
---|
371 | * instruction VM-exit.
|
---|
372 | *
|
---|
373 | * @returns The VM-exit instruction information.
|
---|
374 | * @param pVCpu The cross context virtual CPU structure.
|
---|
375 | * @param uExitReason The VM-exit reason.
|
---|
376 | * @param InstrId The VM-exit instruction identity (VMX_INSTR_ID_XXX) if
|
---|
377 | * any. Pass VMX_INSTR_ID_NONE otherwise.
|
---|
378 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
379 | * NULL.
|
---|
380 | */
|
---|
381 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID InstrId, PRTGCPTR pGCPtrDisp)
|
---|
382 | {
|
---|
383 | RTGCPTR GCPtrDisp;
|
---|
384 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
385 | ExitInstrInfo.u = 0;
|
---|
386 |
|
---|
387 | /*
|
---|
388 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
389 | */
|
---|
390 | uint8_t bRm;
|
---|
391 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
392 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
393 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
394 | {
|
---|
395 | /*
|
---|
396 | * ModR/M indicates register addressing.
|
---|
397 | */
|
---|
398 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
399 | ExitInstrInfo.All.iReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
400 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
401 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
402 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
403 | ExitInstrInfo.All.iSegReg = 0;
|
---|
404 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
405 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
406 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
407 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
408 | ExitInstrInfo.All.iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
409 |
|
---|
410 | /* Displacement not applicable for register addressing. */
|
---|
411 | GCPtrDisp = 0;
|
---|
412 | }
|
---|
413 | else
|
---|
414 | {
|
---|
415 | /*
|
---|
416 | * ModR/M indicates memory addressing.
|
---|
417 | */
|
---|
418 | uint8_t uScale = 0;
|
---|
419 | bool fBaseRegValid = false;
|
---|
420 | bool fIdxRegValid = false;
|
---|
421 | uint8_t iBaseReg = 0;
|
---|
422 | uint8_t iIdxReg = 0;
|
---|
423 | uint8_t iReg2 = 0;
|
---|
424 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
425 | {
|
---|
426 | /*
|
---|
427 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
428 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
429 | */
|
---|
430 | uint16_t u16Disp = 0;
|
---|
431 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
432 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
433 | {
|
---|
434 | /* Displacement without any registers. */
|
---|
435 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
436 | }
|
---|
437 | else
|
---|
438 | {
|
---|
439 | /* Register (index and base). */
|
---|
440 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
441 | {
|
---|
442 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
443 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
444 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
445 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
446 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
447 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
448 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
449 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
450 | }
|
---|
451 |
|
---|
452 | /* Register + displacement. */
|
---|
453 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
454 | {
|
---|
455 | case 0: break;
|
---|
456 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
457 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
458 | default:
|
---|
459 | {
|
---|
460 | /* Register addressing, handled at the beginning. */
|
---|
461 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
462 | break;
|
---|
463 | }
|
---|
464 | }
|
---|
465 | }
|
---|
466 |
|
---|
467 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
468 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
469 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
470 | }
|
---|
471 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
472 | {
|
---|
473 | /*
|
---|
474 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
475 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
476 | */
|
---|
477 | uint32_t u32Disp = 0;
|
---|
478 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
479 | {
|
---|
480 | /* Displacement without any registers. */
|
---|
481 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
482 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
483 | }
|
---|
484 | else
|
---|
485 | {
|
---|
486 | /* Register (and perhaps scale, index and base). */
|
---|
487 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
488 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
489 | if (iBaseReg == 4)
|
---|
490 | {
|
---|
491 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
492 | uint8_t bSib;
|
---|
493 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
494 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
495 |
|
---|
496 | /* A displacement may follow SIB, update its offset. */
|
---|
497 | offDisp += sizeof(bSib);
|
---|
498 |
|
---|
499 | /* Get the scale. */
|
---|
500 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
501 |
|
---|
502 | /* Get the index register. */
|
---|
503 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
504 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
505 |
|
---|
506 | /* Get the base register. */
|
---|
507 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
508 | fBaseRegValid = true;
|
---|
509 | if (iBaseReg == 5)
|
---|
510 | {
|
---|
511 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
512 | {
|
---|
513 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
514 | fBaseRegValid = false;
|
---|
515 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
516 | }
|
---|
517 | else
|
---|
518 | {
|
---|
519 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
520 | iBaseReg = X86_GREG_xBP;
|
---|
521 | }
|
---|
522 | }
|
---|
523 | }
|
---|
524 |
|
---|
525 | /* Register + displacement. */
|
---|
526 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
527 | {
|
---|
528 | case 0: /* Handled above */ break;
|
---|
529 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
530 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
531 | default:
|
---|
532 | {
|
---|
533 | /* Register addressing, handled at the beginning. */
|
---|
534 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
535 | break;
|
---|
536 | }
|
---|
537 | }
|
---|
538 | }
|
---|
539 |
|
---|
540 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
541 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
|
---|
542 | }
|
---|
543 | else
|
---|
544 | {
|
---|
545 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
546 |
|
---|
547 | /*
|
---|
548 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
549 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
550 | */
|
---|
551 | uint64_t u64Disp = 0;
|
---|
552 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
553 | if (fRipRelativeAddr)
|
---|
554 | {
|
---|
555 | /*
|
---|
556 | * RIP-relative addressing mode.
|
---|
557 | *
|
---|
558 | * The displacment is 32-bit signed implying an offset range of +/-2G.
|
---|
559 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
560 | */
|
---|
561 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
562 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
563 | }
|
---|
564 | else
|
---|
565 | {
|
---|
566 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
567 |
|
---|
568 | /*
|
---|
569 | * Register (and perhaps scale, index and base).
|
---|
570 | *
|
---|
571 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
572 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
573 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
574 | *
|
---|
575 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
576 | */
|
---|
577 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
578 | if (iBaseReg == 4)
|
---|
579 | {
|
---|
580 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
581 | uint8_t bSib;
|
---|
582 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
583 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
584 |
|
---|
585 | /* Displacement may follow SIB, update its offset. */
|
---|
586 | offDisp += sizeof(bSib);
|
---|
587 |
|
---|
588 | /* Get the scale. */
|
---|
589 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
590 |
|
---|
591 | /* Get the index. */
|
---|
592 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
593 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
594 |
|
---|
595 | /* Get the base. */
|
---|
596 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
597 | fBaseRegValid = true;
|
---|
598 | if (iBaseReg == 5)
|
---|
599 | {
|
---|
600 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
601 | {
|
---|
602 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
603 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
604 | }
|
---|
605 | else
|
---|
606 | {
|
---|
607 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
608 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
609 | }
|
---|
610 | }
|
---|
611 | }
|
---|
612 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
613 |
|
---|
614 | /* Register + displacement. */
|
---|
615 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
616 | {
|
---|
617 | case 0: /* Handled above */ break;
|
---|
618 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
619 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
620 | default:
|
---|
621 | {
|
---|
622 | /* Register addressing, handled at the beginning. */
|
---|
623 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
624 | break;
|
---|
625 | }
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
630 | iReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
631 | }
|
---|
632 |
|
---|
633 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
634 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory instructions. */
|
---|
635 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
636 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
637 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
638 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
639 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
640 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
641 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
642 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
643 | ExitInstrInfo.All.iReg2 = iReg2;
|
---|
644 | }
|
---|
645 |
|
---|
646 | /*
|
---|
647 | * Handle exceptions for certain instructions.
|
---|
648 | * (e.g. some instructions convey an instruction identity).
|
---|
649 | */
|
---|
650 | switch (uExitReason)
|
---|
651 | {
|
---|
652 | case VMX_EXIT_XDTR_ACCESS:
|
---|
653 | {
|
---|
654 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
655 | ExitInstrInfo.GdtIdt.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
656 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
657 | break;
|
---|
658 | }
|
---|
659 |
|
---|
660 | case VMX_EXIT_TR_ACCESS:
|
---|
661 | {
|
---|
662 | Assert(VMX_INSTR_ID_IS_VALID(InstrId));
|
---|
663 | ExitInstrInfo.LdtTr.u2InstrId = VMX_INSTR_ID_GET_ID(InstrId);
|
---|
664 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
665 | break;
|
---|
666 | }
|
---|
667 |
|
---|
668 | case VMX_EXIT_RDRAND:
|
---|
669 | case VMX_EXIT_RDSEED:
|
---|
670 | {
|
---|
671 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
672 | break;
|
---|
673 | }
|
---|
674 | }
|
---|
675 |
|
---|
676 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
677 | if (pGCPtrDisp)
|
---|
678 | *pGCPtrDisp = GCPtrDisp;
|
---|
679 | return ExitInstrInfo.u;
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | /**
|
---|
684 | * Implements VMSucceed for VMX instruction success.
|
---|
685 | *
|
---|
686 | * @param pVCpu The cross context virtual CPU structure.
|
---|
687 | */
|
---|
688 | DECLINLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
|
---|
689 | {
|
---|
690 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
691 | }
|
---|
692 |
|
---|
693 |
|
---|
694 | /**
|
---|
695 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
696 | *
|
---|
697 | * @param pVCpu The cross context virtual CPU structure.
|
---|
698 | */
|
---|
699 | DECLINLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
|
---|
700 | {
|
---|
701 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
702 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
|
---|
703 | }
|
---|
704 |
|
---|
705 |
|
---|
706 | /**
|
---|
707 | * Implements VMFailValid for VMX instruction failure.
|
---|
708 | *
|
---|
709 | * @param pVCpu The cross context virtual CPU structure.
|
---|
710 | * @param enmInsErr The VM instruction error.
|
---|
711 | */
|
---|
712 | DECLINLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
713 | {
|
---|
714 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs != NIL_RTGCPHYS)
|
---|
715 | {
|
---|
716 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
717 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
|
---|
718 | /** @todo NSTVMX: VMWrite enmInsErr to VM-instruction error field. */
|
---|
719 | RT_NOREF(enmInsErr);
|
---|
720 | }
|
---|
721 | }
|
---|
722 |
|
---|
723 |
|
---|
724 | /**
|
---|
725 | * Implements VMFail for VMX instruction failure.
|
---|
726 | *
|
---|
727 | * @param pVCpu The cross context virtual CPU structure.
|
---|
728 | * @param enmInsErr The VM instruction error.
|
---|
729 | */
|
---|
730 | DECLINLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
731 | {
|
---|
732 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs != NIL_RTGCPHYS)
|
---|
733 | {
|
---|
734 | iemVmxVmFailValid(pVCpu, enmInsErr);
|
---|
735 | /** @todo Set VM-instruction error field in the current virtual-VMCS. */
|
---|
736 | }
|
---|
737 | else
|
---|
738 | iemVmxVmFailInvalid(pVCpu);
|
---|
739 | }
|
---|
740 |
|
---|
741 |
|
---|
742 | /**
|
---|
743 | * VMCLEAR instruction execution worker.
|
---|
744 | *
|
---|
745 | * @param pVCpu The cross context virtual CPU structure.
|
---|
746 | * @param cbInstr The instruction length.
|
---|
747 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
748 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
749 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
750 | *
|
---|
751 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
752 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
753 | */
|
---|
754 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
755 | RTGCPTR GCPtrDisp)
|
---|
756 | {
|
---|
757 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
758 | {
|
---|
759 | RT_NOREF(GCPtrDisp);
|
---|
760 | /** @todo NSTVMX: intercept. */
|
---|
761 | }
|
---|
762 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
763 |
|
---|
764 | /* CPL. */
|
---|
765 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
766 | {
|
---|
767 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
768 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Cpl;
|
---|
769 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
770 | }
|
---|
771 |
|
---|
772 | /** @todo NSTVMX: VMCLEAR impl. */
|
---|
773 | RT_NOREF(GCPtrVmcs); RT_NOREF(pExitInstrInfo); RT_NOREF(cbInstr);
|
---|
774 | return VINF_SUCCESS;
|
---|
775 | }
|
---|
776 |
|
---|
777 |
|
---|
778 | /**
|
---|
779 | * VMPTRST instruction execution worker.
|
---|
780 | *
|
---|
781 | * @param pVCpu The cross context virtual CPU structure.
|
---|
782 | * @param cbInstr The instruction length.
|
---|
783 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
784 | * pointer.
|
---|
785 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
786 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
787 | *
|
---|
788 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
789 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
790 | */
|
---|
791 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
792 | RTGCPTR GCPtrDisp)
|
---|
793 | {
|
---|
794 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
795 | {
|
---|
796 | RT_NOREF(GCPtrDisp);
|
---|
797 | /** @todo NSTVMX: intercept. */
|
---|
798 | }
|
---|
799 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
800 |
|
---|
801 | /* CPL. */
|
---|
802 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
803 | {
|
---|
804 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
805 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Cpl;
|
---|
806 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
807 | }
|
---|
808 |
|
---|
809 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
810 | Assert(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
811 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs,
|
---|
812 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs);
|
---|
813 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
814 | {
|
---|
815 | iemVmxVmSucceed(pVCpu);
|
---|
816 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
817 | return rcStrict;
|
---|
818 | }
|
---|
819 |
|
---|
820 | Log(("vmptrld: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
821 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_PtrMap;
|
---|
822 | return rcStrict;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /**
|
---|
827 | * VMPTRLD instruction execution worker.
|
---|
828 | *
|
---|
829 | * @param pVCpu The cross context virtual CPU structure.
|
---|
830 | * @param cbInstr The instruction length.
|
---|
831 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
832 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
833 | * @param GCPtrDisp The displacement field for @a GCPtrVmcs if any.
|
---|
834 | *
|
---|
835 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
836 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
837 | */
|
---|
838 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmcs, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
839 | RTGCPTR GCPtrDisp)
|
---|
840 | {
|
---|
841 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
842 | {
|
---|
843 | RT_NOREF(GCPtrDisp);
|
---|
844 | /** @todo NSTVMX: intercept. */
|
---|
845 | }
|
---|
846 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
847 |
|
---|
848 | /* CPL. */
|
---|
849 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
850 | {
|
---|
851 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
852 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Cpl;
|
---|
853 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
854 | }
|
---|
855 |
|
---|
856 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
857 | RTGCPHYS GCPhysVmcs;
|
---|
858 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmcs);
|
---|
859 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
860 | {
|
---|
861 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
862 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrMap;
|
---|
863 | return rcStrict;
|
---|
864 | }
|
---|
865 |
|
---|
866 | /* VMCS pointer alignment. */
|
---|
867 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
868 | {
|
---|
869 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
870 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAlign;
|
---|
871 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
872 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
873 | return VINF_SUCCESS;
|
---|
874 | }
|
---|
875 |
|
---|
876 | /* VMCS physical-address width limits. */
|
---|
877 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
878 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
879 | {
|
---|
880 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
881 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrWidth;
|
---|
882 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
883 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
884 | return VINF_SUCCESS;
|
---|
885 | }
|
---|
886 |
|
---|
887 | /* VMCS is not the VMXON region. */
|
---|
888 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
889 | {
|
---|
890 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
891 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrVmxon;
|
---|
892 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
893 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
894 | return VINF_SUCCESS;
|
---|
895 | }
|
---|
896 |
|
---|
897 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
898 | restriction imposed by our implementation. */
|
---|
899 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
900 | {
|
---|
901 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
902 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAbnormal;
|
---|
903 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
904 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
905 | return VINF_SUCCESS;
|
---|
906 | }
|
---|
907 |
|
---|
908 | /* Read the VMCS revision ID from the VMCS. */
|
---|
909 | VMXVMCSREVID VmcsRevId;
|
---|
910 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
911 | if (RT_FAILURE(rc))
|
---|
912 | {
|
---|
913 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
914 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrReadPhys;
|
---|
915 | return rc;
|
---|
916 | }
|
---|
917 |
|
---|
918 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest,
|
---|
919 | also check VMCS shadowing feature. */
|
---|
920 | if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
|
---|
921 | || ( VmcsRevId.n.fIsShadowVmcs
|
---|
922 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
923 | {
|
---|
924 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
925 | {
|
---|
926 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFail()\n", VMX_V_VMCS_REVISION_ID,
|
---|
927 | VmcsRevId.n.u31RevisionId));
|
---|
928 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_VmcsRevId;
|
---|
929 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
930 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
931 | return VINF_SUCCESS;
|
---|
932 | }
|
---|
933 |
|
---|
934 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
935 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_ShadowVmcs;
|
---|
936 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
937 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
938 | return VINF_SUCCESS;
|
---|
939 | }
|
---|
940 |
|
---|
941 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = GCPhysVmcs;
|
---|
942 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Success;
|
---|
943 | iemVmxVmSucceed(pVCpu);
|
---|
944 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
945 | return VINF_SUCCESS;
|
---|
946 | }
|
---|
947 |
|
---|
948 |
|
---|
949 | /**
|
---|
950 | * VMXON instruction execution worker.
|
---|
951 | *
|
---|
952 | * @param pVCpu The cross context virtual CPU structure.
|
---|
953 | * @param cbInstr The instruction length.
|
---|
954 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
955 | * @param pExitInstrInfo Pointer to the VM-exit instruction information field.
|
---|
956 | * @param GCPtrDisp The displacement field for @a GCPtrVmxon if any.
|
---|
957 | *
|
---|
958 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
959 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
960 | */
|
---|
961 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, RTGCPHYS GCPtrVmxon, PCVMXEXITINSTRINFO pExitInstrInfo,
|
---|
962 | RTGCPTR GCPtrDisp)
|
---|
963 | {
|
---|
964 | #if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
965 | RT_NOREF5(pVCpu, cbInstr, GCPtrVmxon, pExitInstrInfo, GCPtrDisp);
|
---|
966 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
967 | #else
|
---|
968 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
969 | {
|
---|
970 | /* CPL. */
|
---|
971 | if (pVCpu->iem.s.uCpl > 0)
|
---|
972 | {
|
---|
973 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
974 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cpl;
|
---|
975 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
976 | }
|
---|
977 |
|
---|
978 | /* A20M (A20 Masked) mode. */
|
---|
979 | if (!PGMPhysIsA20Enabled(pVCpu))
|
---|
980 | {
|
---|
981 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
982 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_A20M;
|
---|
983 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
984 | }
|
---|
985 |
|
---|
986 | /* CR0 fixed bits. */
|
---|
987 | bool const fUnrestrictedGuest = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxUnrestrictedGuest;
|
---|
988 | uint64_t const uCr0Fixed0 = fUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
|
---|
989 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
|
---|
990 | {
|
---|
991 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
992 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr0Fixed0;
|
---|
993 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
994 | }
|
---|
995 |
|
---|
996 | /* CR4 fixed bits. */
|
---|
997 | if ((pVCpu->cpum.GstCtx.cr4 & VMX_V_CR4_FIXED0) != VMX_V_CR4_FIXED0)
|
---|
998 | {
|
---|
999 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
1000 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr4Fixed0;
|
---|
1001 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
1005 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatureControl(pVCpu);
|
---|
1006 | if (!(uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)))
|
---|
1007 | {
|
---|
1008 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
1009 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_MsrFeatCtl;
|
---|
1010 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
1014 | RTGCPHYS GCPhysVmxon;
|
---|
1015 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, pExitInstrInfo->VmxXsave.iSegReg, GCPtrVmxon);
|
---|
1016 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1017 | {
|
---|
1018 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1019 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrMap;
|
---|
1020 | return rcStrict;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /* VMXON region pointer alignment. */
|
---|
1024 | if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
|
---|
1025 | {
|
---|
1026 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
1027 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAlign;
|
---|
1028 | iemVmxVmFailInvalid(pVCpu);
|
---|
1029 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1030 | return VINF_SUCCESS;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | /* VMXON physical-address width limits. */
|
---|
1034 | Assert(!VMX_V_VMCS_PHYSADDR_4G_LIMIT);
|
---|
1035 | if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth)
|
---|
1036 | {
|
---|
1037 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
1038 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrWidth;
|
---|
1039 | iemVmxVmFailInvalid(pVCpu);
|
---|
1040 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1041 | return VINF_SUCCESS;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1045 | restriction imposed by our implementation. */
|
---|
1046 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
1047 | {
|
---|
1048 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
1049 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAbnormal;
|
---|
1050 | iemVmxVmFailInvalid(pVCpu);
|
---|
1051 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1052 | return VINF_SUCCESS;
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
1056 | VMXVMCSREVID VmcsRevId;
|
---|
1057 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
1058 | if (RT_FAILURE(rc))
|
---|
1059 | {
|
---|
1060 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
1061 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrReadPhys;
|
---|
1062 | return rc;
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
1066 | if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
|
---|
1067 | {
|
---|
1068 | /* Revision ID mismatch. */
|
---|
1069 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
1070 | {
|
---|
1071 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
1072 | VmcsRevId.n.u31RevisionId));
|
---|
1073 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmcsRevId;
|
---|
1074 | iemVmxVmFailInvalid(pVCpu);
|
---|
1075 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1076 | return VINF_SUCCESS;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | /* Shadow VMCS disallowed. */
|
---|
1080 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
1081 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_ShadowVmcs;
|
---|
1082 | iemVmxVmFailInvalid(pVCpu);
|
---|
1083 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1084 | return VINF_SUCCESS;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | /*
|
---|
1088 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
1089 | */
|
---|
1090 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
1091 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
|
---|
1092 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
1093 | /** @todo NSTVMX: clear address-range monitoring. */
|
---|
1094 | /** @todo NSTVMX: Intel PT. */
|
---|
1095 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Success;
|
---|
1096 | iemVmxVmSucceed(pVCpu);
|
---|
1097 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1098 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
1099 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
1100 | # else
|
---|
1101 | return VINF_SUCCESS;
|
---|
1102 | # endif
|
---|
1103 | }
|
---|
1104 | else if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1105 | {
|
---|
1106 | RT_NOREF(GCPtrDisp);
|
---|
1107 | /** @todo NSTVMX: intercept. */
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1111 |
|
---|
1112 | /* CPL. */
|
---|
1113 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1114 | {
|
---|
1115 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1116 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRootCpl;
|
---|
1117 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | /* VMXON when already in VMX root mode. */
|
---|
1121 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
1122 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRoot;
|
---|
1123 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1124 | return VINF_SUCCESS;
|
---|
1125 | #endif
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 |
|
---|
1129 | /**
|
---|
1130 | * Implements 'VMXON'.
|
---|
1131 | */
|
---|
1132 | IEM_CIMPL_DEF_1(iemCImpl_vmxon, RTGCPTR, GCPtrVmxon)
|
---|
1133 | {
|
---|
1134 | RTGCPTR GCPtrDisp;
|
---|
1135 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1136 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMXON, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1137 | return iemVmxVmxon(pVCpu, cbInstr, GCPtrVmxon, &ExitInstrInfo, GCPtrDisp);
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 |
|
---|
1141 | /**
|
---|
1142 | * Implements 'VMXOFF'.
|
---|
1143 | */
|
---|
1144 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
1145 | {
|
---|
1146 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
1147 | RT_NOREF2(pVCpu, cbInstr);
|
---|
1148 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
1149 | # else
|
---|
1150 | IEM_VMX_INSTR_COMMON_CHECKS(pVCpu, "vmxoff", kVmxVInstrDiag_Vmxoff);
|
---|
1151 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
1152 | {
|
---|
1153 | Log(("vmxoff: Not in VMX root mode -> #GP(0)\n"));
|
---|
1154 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_VmxRoot;
|
---|
1155 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1159 | {
|
---|
1160 | /** @todo NSTVMX: intercept. */
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | /* CPL. */
|
---|
1164 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1165 | {
|
---|
1166 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1167 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Cpl;
|
---|
1168 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
1172 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
1173 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
|
---|
1174 | {
|
---|
1175 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
1176 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1177 | return VINF_SUCCESS;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | /*
|
---|
1181 | * Record that we're no longer in VMX root operation, block INIT, block and disable A20M.
|
---|
1182 | */
|
---|
1183 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
1184 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
1185 |
|
---|
1186 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
1187 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
1188 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
1189 | /** @todo NSTVMX: Clear address-range monitoring. */
|
---|
1190 |
|
---|
1191 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Success;
|
---|
1192 | iemVmxVmSucceed(pVCpu);
|
---|
1193 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1194 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
1195 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
1196 | # else
|
---|
1197 | return VINF_SUCCESS;
|
---|
1198 | # endif
|
---|
1199 | # endif
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 |
|
---|
1203 | /**
|
---|
1204 | * Implements 'VMPTRLD'.
|
---|
1205 | */
|
---|
1206 | IEM_CIMPL_DEF_1(iemCImpl_vmptrld, RTGCPTR, GCPtrVmcs)
|
---|
1207 | {
|
---|
1208 | RTGCPTR GCPtrDisp;
|
---|
1209 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1210 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRLD, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1211 | return iemVmxVmptrld(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 |
|
---|
1215 | /**
|
---|
1216 | * Implements 'VMPTRST'.
|
---|
1217 | */
|
---|
1218 | IEM_CIMPL_DEF_1(iemCImpl_vmptrst, RTGCPTR, GCPtrVmcs)
|
---|
1219 | {
|
---|
1220 | RTGCPTR GCPtrDisp;
|
---|
1221 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1222 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMPTRST, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1223 | return iemVmxVmptrst(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 |
|
---|
1227 | /**
|
---|
1228 | * Implements 'VMCLEAR'.
|
---|
1229 | */
|
---|
1230 | IEM_CIMPL_DEF_1(iemCImpl_vmclear, RTGCPTR, GCPtrVmcs)
|
---|
1231 | {
|
---|
1232 | RTGCPTR GCPtrDisp;
|
---|
1233 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
1234 | ExitInstrInfo.u = iemVmxGetExitInstrInfo(pVCpu, VMX_EXIT_VMCLEAR, VMX_INSTR_ID_NONE, &GCPtrDisp);
|
---|
1235 | return iemVmxVmclear(pVCpu, cbInstr, GCPtrVmcs, &ExitInstrInfo, GCPtrDisp);
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 | #endif
|
---|
1239 |
|
---|