1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 74114 2018-09-06 12:10:09Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * Implements 'VMCALL'.
|
---|
21 | */
|
---|
22 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
23 | {
|
---|
24 | /** @todo NSTVMX: intercept. */
|
---|
25 |
|
---|
26 | /* Join forces with vmmcall. */
|
---|
27 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
28 | }
|
---|
29 |
|
---|
30 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
31 | /**
|
---|
32 | * Map of VMCS field encodings to their virtual-VMCS structure offsets.
|
---|
33 | *
|
---|
34 | * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
|
---|
35 | * second dimension is the Index, see VMXVMCSFIELDENC.
|
---|
36 | */
|
---|
37 | uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
|
---|
38 | {
|
---|
39 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
40 | {
|
---|
41 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u16Vpid),
|
---|
42 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
|
---|
43 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u16EptpIndex),
|
---|
44 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
45 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
46 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
47 | },
|
---|
48 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
49 | {
|
---|
50 | /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
51 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
52 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
53 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
54 | },
|
---|
55 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
56 | {
|
---|
57 | /* 0 */ RT_OFFSETOF(VMXVVMCS, GuestEs),
|
---|
58 | /* 1 */ RT_OFFSETOF(VMXVVMCS, GuestCs),
|
---|
59 | /* 2 */ RT_OFFSETOF(VMXVVMCS, GuestSs),
|
---|
60 | /* 3 */ RT_OFFSETOF(VMXVVMCS, GuestDs),
|
---|
61 | /* 4 */ RT_OFFSETOF(VMXVVMCS, GuestFs),
|
---|
62 | /* 5 */ RT_OFFSETOF(VMXVVMCS, GuestGs),
|
---|
63 | /* 6 */ RT_OFFSETOF(VMXVVMCS, GuestLdtr),
|
---|
64 | /* 7 */ RT_OFFSETOF(VMXVVMCS, GuestTr),
|
---|
65 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u16GuestIntStatus),
|
---|
66 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u16PmlIndex),
|
---|
67 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
68 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
69 | },
|
---|
70 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
71 | {
|
---|
72 | /* 0 */ RT_OFFSETOF(VMXVVMCS, HostEs),
|
---|
73 | /* 1 */ RT_OFFSETOF(VMXVVMCS, HostCs),
|
---|
74 | /* 2 */ RT_OFFSETOF(VMXVVMCS, HostSs),
|
---|
75 | /* 3 */ RT_OFFSETOF(VMXVVMCS, HostDs),
|
---|
76 | /* 4 */ RT_OFFSETOF(VMXVVMCS, HostFs),
|
---|
77 | /* 5 */ RT_OFFSETOF(VMXVVMCS, HostGs),
|
---|
78 | /* 6 */ RT_OFFSETOF(VMXVVMCS, HostTr),
|
---|
79 | /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
80 | /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
81 | /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
82 | },
|
---|
83 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
84 | {
|
---|
85 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
|
---|
86 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
|
---|
87 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
|
---|
88 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
|
---|
89 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
|
---|
90 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
|
---|
91 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
|
---|
92 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64AddrPml),
|
---|
93 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64TscOffset),
|
---|
94 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64AddrVirtApic),
|
---|
95 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64AddrApicAccess),
|
---|
96 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
|
---|
97 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64VmFuncCtls),
|
---|
98 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64EptpPtr),
|
---|
99 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
|
---|
100 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
|
---|
101 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
|
---|
102 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
|
---|
103 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64AddrEptpList),
|
---|
104 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
|
---|
105 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
|
---|
106 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
|
---|
107 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u64AddrXssBitmap),
|
---|
108 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u64AddrEnclsBitmap),
|
---|
109 | /* 24 */ UINT16_MAX,
|
---|
110 | /* 25 */ RT_OFFSETOF(VMXVVMCS, u64TscMultiplier)
|
---|
111 | },
|
---|
112 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
113 | {
|
---|
114 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64GuestPhysAddr),
|
---|
115 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
116 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
117 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
118 | /* 25 */ UINT16_MAX
|
---|
119 | },
|
---|
120 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
121 | {
|
---|
122 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
|
---|
123 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
|
---|
124 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestPatMsr),
|
---|
125 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEferMsr),
|
---|
126 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
|
---|
127 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte0),
|
---|
128 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte1),
|
---|
129 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte2),
|
---|
130 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte3),
|
---|
131 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
|
---|
132 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
133 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
134 | },
|
---|
135 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
136 | {
|
---|
137 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostPatMsr),
|
---|
138 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostEferMsr),
|
---|
139 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
|
---|
140 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
141 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
142 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
143 | },
|
---|
144 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
145 | {
|
---|
146 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32PinCtls),
|
---|
147 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls),
|
---|
148 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32XcptBitmap),
|
---|
149 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMask),
|
---|
150 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMatch),
|
---|
151 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32Cr3TargetCount),
|
---|
152 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32ExitCtls),
|
---|
153 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
|
---|
154 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
|
---|
155 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32EntryCtls),
|
---|
156 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
|
---|
157 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32EntryIntInfo),
|
---|
158 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
|
---|
159 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32EntryInstrLen),
|
---|
160 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32TprThreshold),
|
---|
161 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls2),
|
---|
162 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32PleGap),
|
---|
163 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32PleWindow),
|
---|
164 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
165 | },
|
---|
166 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
167 | {
|
---|
168 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32RoVmInstrError),
|
---|
169 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32RoExitReason),
|
---|
170 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32RoExitIntInfo),
|
---|
171 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32RoExitErrCode),
|
---|
172 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
|
---|
173 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
|
---|
174 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32RoExitInstrLen),
|
---|
175 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
|
---|
176 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
177 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
178 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
179 | },
|
---|
180 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
181 | {
|
---|
182 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
183 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsLimit),
|
---|
184 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsLimit),
|
---|
185 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsLimit),
|
---|
186 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
187 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsLimit),
|
---|
188 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsLimit),
|
---|
189 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
|
---|
190 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrLimit),
|
---|
191 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
|
---|
192 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
|
---|
193 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsAttr),
|
---|
194 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsAttr),
|
---|
195 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsAttr),
|
---|
196 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsAttr),
|
---|
197 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsAttr),
|
---|
198 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsAttr),
|
---|
199 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
|
---|
200 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrAttr),
|
---|
201 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u32GuestIntrState),
|
---|
202 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u32GuestActivityState),
|
---|
203 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u32GuestSmBase),
|
---|
204 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u32GuestSysenterCS),
|
---|
205 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u32PreemptTimer),
|
---|
206 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
207 | },
|
---|
208 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
209 | {
|
---|
210 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32HostSysenterCs),
|
---|
211 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
212 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
213 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
214 | /* 25 */ UINT16_MAX
|
---|
215 | },
|
---|
216 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
217 | {
|
---|
218 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64Cr0Mask),
|
---|
219 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64Cr4Mask),
|
---|
220 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
|
---|
221 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
|
---|
222 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target0),
|
---|
223 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target1),
|
---|
224 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target2),
|
---|
225 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target3),
|
---|
226 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
227 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
228 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
229 | },
|
---|
230 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
231 | {
|
---|
232 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64ExitQual),
|
---|
233 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64IoRcx),
|
---|
234 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64IoRsi),
|
---|
235 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64IoRdi),
|
---|
236 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64IoRip),
|
---|
237 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestLinearAddr),
|
---|
238 | /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
239 | /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
240 | /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
241 | },
|
---|
242 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
243 | {
|
---|
244 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr0),
|
---|
245 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr3),
|
---|
246 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr4),
|
---|
247 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEsBase),
|
---|
248 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestCsBase),
|
---|
249 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestSsBase),
|
---|
250 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestDsBase),
|
---|
251 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestFsBase),
|
---|
252 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestGsBase),
|
---|
253 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestLdtrBase),
|
---|
254 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64GuestTrBase),
|
---|
255 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64GuestGdtrBase),
|
---|
256 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64GuestIdtrBase),
|
---|
257 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64GuestDr7),
|
---|
258 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64GuestRsp),
|
---|
259 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64GuestRip),
|
---|
260 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64GuestRFlags),
|
---|
261 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt),
|
---|
262 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
|
---|
263 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEip),
|
---|
264 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
265 | },
|
---|
266 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
267 | {
|
---|
268 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostCr0),
|
---|
269 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostCr3),
|
---|
270 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostCr4),
|
---|
271 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64HostFsBase),
|
---|
272 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64HostGsBase),
|
---|
273 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64HostTrBase),
|
---|
274 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64HostGdtrBase),
|
---|
275 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64HostIdtrBase),
|
---|
276 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEsp),
|
---|
277 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEip),
|
---|
278 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64HostRsp),
|
---|
279 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64HostRip),
|
---|
280 | /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
281 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
282 | }
|
---|
283 | };
|
---|
284 |
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
288 | * relative offsets.
|
---|
289 | */
|
---|
290 | # ifdef IEM_WITH_CODE_TLB
|
---|
291 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
292 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
293 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
294 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
295 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
296 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
297 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
298 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
299 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
300 | # else /* !IEM_WITH_CODE_TLB */
|
---|
301 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
302 | do \
|
---|
303 | { \
|
---|
304 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
305 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
306 | } while (0)
|
---|
307 |
|
---|
308 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
309 |
|
---|
310 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
311 | do \
|
---|
312 | { \
|
---|
313 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
314 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
315 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
316 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
317 | } while (0)
|
---|
318 |
|
---|
319 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
320 | do \
|
---|
321 | { \
|
---|
322 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
323 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
324 | } while (0)
|
---|
325 |
|
---|
326 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
327 | do \
|
---|
328 | { \
|
---|
329 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
330 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
331 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
332 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
333 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
334 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
335 | } while (0)
|
---|
336 |
|
---|
337 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
338 | do \
|
---|
339 | { \
|
---|
340 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
341 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
342 | } while (0)
|
---|
343 |
|
---|
344 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
345 | do \
|
---|
346 | { \
|
---|
347 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
348 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
349 | } while (0)
|
---|
350 |
|
---|
351 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
352 | do \
|
---|
353 | { \
|
---|
354 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
355 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
356 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
357 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
358 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
359 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
360 | } while (0)
|
---|
361 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
362 |
|
---|
363 | /** The maximum physical address width in bits. */
|
---|
364 | #define IEM_VMX_MAX_PHYSADDR_WIDTH(a_pVCpu) (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
365 |
|
---|
366 | /** Whether a shadow VMCS is present for the given VCPU. */
|
---|
367 | #define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
368 |
|
---|
369 | /** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
|
---|
370 | #define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u64VmcsLinkPtr.u)
|
---|
371 |
|
---|
372 | /** Whether a current VMCS is present for the given VCPU. */
|
---|
373 | #define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
374 |
|
---|
375 | /** Gets the guest-physical address of the current VMCS for the given VCPU. */
|
---|
376 | #define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
|
---|
377 |
|
---|
378 | /** Assigns the guest-physical address of the current VMCS for the given VCPU. */
|
---|
379 | #define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
|
---|
380 | do \
|
---|
381 | { \
|
---|
382 | Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
|
---|
383 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
|
---|
384 | } while (0)
|
---|
385 |
|
---|
386 | /** Clears any current VMCS for the given VCPU. */
|
---|
387 | #define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
|
---|
388 | do \
|
---|
389 | { \
|
---|
390 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
|
---|
391 | } while (0)
|
---|
392 |
|
---|
393 | /** Check the common VMX instruction preconditions.
|
---|
394 | * @note Any changes here, also check if IEMOP_HLP_VMX_INSTR needs updating.
|
---|
395 | */
|
---|
396 | #define IEM_VMX_INSTR_CHECKS(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
|
---|
397 | do { \
|
---|
398 | if ( !IEM_IS_REAL_OR_V86_MODE(a_pVCpu) \
|
---|
399 | && ( !IEM_IS_LONG_MODE(a_pVCpu) \
|
---|
400 | || IEM_IS_64BIT_CODE(a_pVCpu))) \
|
---|
401 | { /* likely */ } \
|
---|
402 | else \
|
---|
403 | { \
|
---|
404 | if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \
|
---|
405 | { \
|
---|
406 | Log((a_szInstr ": Real or v8086 mode -> #UD\n")); \
|
---|
407 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = a_InsDiagPrefix##_RealOrV86Mode; \
|
---|
408 | return iemRaiseUndefinedOpcode(a_pVCpu); \
|
---|
409 | } \
|
---|
410 | if (IEM_IS_LONG_MODE(a_pVCpu) && !IEM_IS_64BIT_CODE(a_pVCpu)) \
|
---|
411 | { \
|
---|
412 | Log((a_szInstr ": Long mode without 64-bit code segment -> #UD\n")); \
|
---|
413 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = a_InsDiagPrefix##_LongModeCS; \
|
---|
414 | return iemRaiseUndefinedOpcode(a_pVCpu); \
|
---|
415 | } \
|
---|
416 | } \
|
---|
417 | } while (0)
|
---|
418 |
|
---|
419 | /** Check for VMX instructions requiring to be in VMX operation.
|
---|
420 | * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs udpating. */
|
---|
421 | #define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
|
---|
422 | do \
|
---|
423 | { \
|
---|
424 | if (IEM_IS_VMX_ROOT_MODE(a_pVCpu)) \
|
---|
425 | { /* likely */ } \
|
---|
426 | else \
|
---|
427 | { \
|
---|
428 | Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
|
---|
429 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = a_InsDiagPrefix##_VmxRoot; \
|
---|
430 | return iemRaiseUndefinedOpcode(a_pVCpu); \
|
---|
431 | } \
|
---|
432 | } while (0)
|
---|
433 |
|
---|
434 |
|
---|
435 | /**
|
---|
436 | * Returns whether the given VMCS field is valid and supported by our emulation.
|
---|
437 | *
|
---|
438 | * @param pVCpu The cross context virtual CPU structure.
|
---|
439 | * @param u64FieldEnc The VMCS field encoding.
|
---|
440 | *
|
---|
441 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
442 | */
|
---|
443 | IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint64_t u64FieldEnc)
|
---|
444 | {
|
---|
445 | uint32_t const uFieldEncHi = RT_HI_U32(u64FieldEnc);
|
---|
446 | uint32_t const uFieldEncLo = RT_LO_U32(u64FieldEnc);
|
---|
447 | if (!uFieldEncHi)
|
---|
448 | { /* likely */ }
|
---|
449 | else
|
---|
450 | return false;
|
---|
451 |
|
---|
452 | PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
|
---|
453 | switch (uFieldEncLo)
|
---|
454 | {
|
---|
455 | /*
|
---|
456 | * 16-bit fields.
|
---|
457 | */
|
---|
458 | /* Control fields. */
|
---|
459 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
460 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
461 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
462 |
|
---|
463 | /* Guest-state fields. */
|
---|
464 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
465 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
466 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
467 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
468 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
469 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
470 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
471 | case VMX_VMCS16_GUEST_TR_SEL:
|
---|
472 | case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
|
---|
473 | case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
|
---|
474 |
|
---|
475 | /* Host-state fields. */
|
---|
476 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
477 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
478 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
479 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
480 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
481 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
482 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
483 |
|
---|
484 | /*
|
---|
485 | * 64-bit fields.
|
---|
486 | */
|
---|
487 | /* Control fields. */
|
---|
488 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
489 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
490 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
491 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
492 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
493 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
494 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
495 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
496 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
497 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
498 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
499 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
500 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
501 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
502 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
503 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
|
---|
504 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
505 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
506 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
507 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
508 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
509 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
510 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
511 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
512 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
513 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
514 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
515 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
516 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
517 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
518 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
519 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
520 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
521 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
522 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
523 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
524 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
525 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
526 | {
|
---|
527 | uint64_t const uVmFuncMsr = CPUMGetGuestIa32VmxVmFunc(pVCpu);
|
---|
528 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
529 | }
|
---|
530 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
531 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
532 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
533 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
534 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
|
---|
535 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
536 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
537 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
538 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
|
---|
539 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
|
---|
540 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
541 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
542 |
|
---|
543 | /* Read-only data fields. */
|
---|
544 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
545 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
546 |
|
---|
547 | /* Guest-state fields. */
|
---|
548 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
549 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
550 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
551 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
552 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
553 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
554 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
555 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
556 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
557 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
558 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
559 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
560 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
561 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
562 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
563 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
564 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
565 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
566 | case VMX_VMCS64_GUEST_BNDCFGS_FULL:
|
---|
567 | case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
|
---|
568 |
|
---|
569 | /* Host-state fields. */
|
---|
570 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
571 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
572 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
573 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
574 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
575 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
576 |
|
---|
577 | /*
|
---|
578 | * 32-bit fields.
|
---|
579 | */
|
---|
580 | /* Control fields. */
|
---|
581 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
582 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
583 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
584 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
585 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
586 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
587 | case VMX_VMCS32_CTRL_EXIT:
|
---|
588 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
589 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
590 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
591 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
592 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
593 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
594 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
595 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
596 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
597 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
598 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
599 |
|
---|
600 | /* Read-only data fields. */
|
---|
601 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
602 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
603 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
604 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
605 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
606 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
607 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
608 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
609 |
|
---|
610 | /* Guest-state fields. */
|
---|
611 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
612 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
613 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
614 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
615 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
616 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
617 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
618 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
619 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
620 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
621 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
622 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
623 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
624 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
625 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
626 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
627 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
628 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
629 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
630 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
631 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
632 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
633 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
634 |
|
---|
635 | /* Host-state fields. */
|
---|
636 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
637 |
|
---|
638 | /*
|
---|
639 | * Natural-width fields.
|
---|
640 | */
|
---|
641 | /* Control fields. */
|
---|
642 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
643 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
644 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
645 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
646 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
647 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
648 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
649 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
650 |
|
---|
651 | /* Read-only data fields. */
|
---|
652 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
653 | case VMX_VMCS_RO_IO_RCX:
|
---|
654 | case VMX_VMCS_RO_IO_RSX:
|
---|
655 | case VMX_VMCS_RO_IO_RDI:
|
---|
656 | case VMX_VMCS_RO_IO_RIP:
|
---|
657 | case VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR: return true;
|
---|
658 |
|
---|
659 | /* Guest-state fields. */
|
---|
660 | case VMX_VMCS_GUEST_CR0:
|
---|
661 | case VMX_VMCS_GUEST_CR3:
|
---|
662 | case VMX_VMCS_GUEST_CR4:
|
---|
663 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
664 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
665 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
666 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
667 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
668 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
669 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
670 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
671 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
672 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
673 | case VMX_VMCS_GUEST_DR7:
|
---|
674 | case VMX_VMCS_GUEST_RSP:
|
---|
675 | case VMX_VMCS_GUEST_RIP:
|
---|
676 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
677 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
678 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
679 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
680 |
|
---|
681 | /* Host-state fields. */
|
---|
682 | case VMX_VMCS_HOST_CR0:
|
---|
683 | case VMX_VMCS_HOST_CR3:
|
---|
684 | case VMX_VMCS_HOST_CR4:
|
---|
685 | case VMX_VMCS_HOST_FS_BASE:
|
---|
686 | case VMX_VMCS_HOST_GS_BASE:
|
---|
687 | case VMX_VMCS_HOST_TR_BASE:
|
---|
688 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
689 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
690 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
691 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
692 | case VMX_VMCS_HOST_RSP:
|
---|
693 | case VMX_VMCS_HOST_RIP: return true;
|
---|
694 | }
|
---|
695 |
|
---|
696 | return false;
|
---|
697 | }
|
---|
698 |
|
---|
699 |
|
---|
700 | /**
|
---|
701 | * Gets VM-exit instruction information along with any displacement for an
|
---|
702 | * instruction VM-exit.
|
---|
703 | *
|
---|
704 | * @returns The VM-exit instruction information.
|
---|
705 | * @param pVCpu The cross context virtual CPU structure.
|
---|
706 | * @param uExitReason The VM-exit reason.
|
---|
707 | * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX) if
|
---|
708 | * any. Pass VMXINSTRID_NONE otherwise.
|
---|
709 | * @param fPrimaryOpRead If the primary operand of the ModR/M byte (bits 0:3) is
|
---|
710 | * a read or write.
|
---|
711 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
712 | * NULL.
|
---|
713 | */
|
---|
714 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, bool fPrimaryOpRead,
|
---|
715 | PRTGCPTR pGCPtrDisp)
|
---|
716 | {
|
---|
717 | RTGCPTR GCPtrDisp;
|
---|
718 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
719 | ExitInstrInfo.u = 0;
|
---|
720 |
|
---|
721 | /*
|
---|
722 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
723 | */
|
---|
724 | uint8_t bRm;
|
---|
725 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
726 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
727 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
728 | {
|
---|
729 | /*
|
---|
730 | * ModR/M indicates register addressing.
|
---|
731 | *
|
---|
732 | * The primary/secondary register operands are reported in the iReg1 or iReg2
|
---|
733 | * fields depending on whether it is a read/write form.
|
---|
734 | */
|
---|
735 | uint8_t idxReg1;
|
---|
736 | uint8_t idxReg2;
|
---|
737 | if (fPrimaryOpRead)
|
---|
738 | {
|
---|
739 | idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
740 | idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
741 | }
|
---|
742 | else
|
---|
743 | {
|
---|
744 | idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
745 | idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
746 | }
|
---|
747 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
748 | ExitInstrInfo.All.iReg1 = idxReg1;
|
---|
749 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
750 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
751 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
752 | ExitInstrInfo.All.iSegReg = 0;
|
---|
753 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
754 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
755 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
756 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
757 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
758 |
|
---|
759 | /* Displacement not applicable for register addressing. */
|
---|
760 | GCPtrDisp = 0;
|
---|
761 | }
|
---|
762 | else
|
---|
763 | {
|
---|
764 | /*
|
---|
765 | * ModR/M indicates memory addressing.
|
---|
766 | */
|
---|
767 | uint8_t uScale = 0;
|
---|
768 | bool fBaseRegValid = false;
|
---|
769 | bool fIdxRegValid = false;
|
---|
770 | uint8_t iBaseReg = 0;
|
---|
771 | uint8_t iIdxReg = 0;
|
---|
772 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
773 | {
|
---|
774 | /*
|
---|
775 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
776 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
777 | */
|
---|
778 | uint16_t u16Disp = 0;
|
---|
779 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
780 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
781 | {
|
---|
782 | /* Displacement without any registers. */
|
---|
783 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
784 | }
|
---|
785 | else
|
---|
786 | {
|
---|
787 | /* Register (index and base). */
|
---|
788 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
789 | {
|
---|
790 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
791 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
792 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
793 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
794 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
795 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
796 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
797 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
798 | }
|
---|
799 |
|
---|
800 | /* Register + displacement. */
|
---|
801 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
802 | {
|
---|
803 | case 0: break;
|
---|
804 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
805 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
806 | default:
|
---|
807 | {
|
---|
808 | /* Register addressing, handled at the beginning. */
|
---|
809 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
810 | break;
|
---|
811 | }
|
---|
812 | }
|
---|
813 | }
|
---|
814 |
|
---|
815 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
816 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
817 | }
|
---|
818 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
819 | {
|
---|
820 | /*
|
---|
821 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
822 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
823 | */
|
---|
824 | uint32_t u32Disp = 0;
|
---|
825 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
826 | {
|
---|
827 | /* Displacement without any registers. */
|
---|
828 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
829 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
830 | }
|
---|
831 | else
|
---|
832 | {
|
---|
833 | /* Register (and perhaps scale, index and base). */
|
---|
834 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
835 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
836 | if (iBaseReg == 4)
|
---|
837 | {
|
---|
838 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
839 | uint8_t bSib;
|
---|
840 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
841 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
842 |
|
---|
843 | /* A displacement may follow SIB, update its offset. */
|
---|
844 | offDisp += sizeof(bSib);
|
---|
845 |
|
---|
846 | /* Get the scale. */
|
---|
847 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
848 |
|
---|
849 | /* Get the index register. */
|
---|
850 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
851 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
852 |
|
---|
853 | /* Get the base register. */
|
---|
854 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
855 | fBaseRegValid = true;
|
---|
856 | if (iBaseReg == 5)
|
---|
857 | {
|
---|
858 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
859 | {
|
---|
860 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
861 | fBaseRegValid = false;
|
---|
862 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
863 | }
|
---|
864 | else
|
---|
865 | {
|
---|
866 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
867 | iBaseReg = X86_GREG_xBP;
|
---|
868 | }
|
---|
869 | }
|
---|
870 | }
|
---|
871 |
|
---|
872 | /* Register + displacement. */
|
---|
873 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
874 | {
|
---|
875 | case 0: /* Handled above */ break;
|
---|
876 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
877 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
878 | default:
|
---|
879 | {
|
---|
880 | /* Register addressing, handled at the beginning. */
|
---|
881 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
882 | break;
|
---|
883 | }
|
---|
884 | }
|
---|
885 | }
|
---|
886 |
|
---|
887 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
888 | }
|
---|
889 | else
|
---|
890 | {
|
---|
891 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
892 |
|
---|
893 | /*
|
---|
894 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
895 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
896 | */
|
---|
897 | uint64_t u64Disp = 0;
|
---|
898 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
899 | if (fRipRelativeAddr)
|
---|
900 | {
|
---|
901 | /*
|
---|
902 | * RIP-relative addressing mode.
|
---|
903 | *
|
---|
904 | * The displacment is 32-bit signed implying an offset range of +/-2G.
|
---|
905 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
906 | */
|
---|
907 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
908 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
909 | }
|
---|
910 | else
|
---|
911 | {
|
---|
912 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
913 |
|
---|
914 | /*
|
---|
915 | * Register (and perhaps scale, index and base).
|
---|
916 | *
|
---|
917 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
918 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
919 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
920 | *
|
---|
921 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
922 | */
|
---|
923 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
924 | if (iBaseReg == 4)
|
---|
925 | {
|
---|
926 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
927 | uint8_t bSib;
|
---|
928 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
929 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
930 |
|
---|
931 | /* Displacement may follow SIB, update its offset. */
|
---|
932 | offDisp += sizeof(bSib);
|
---|
933 |
|
---|
934 | /* Get the scale. */
|
---|
935 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
936 |
|
---|
937 | /* Get the index. */
|
---|
938 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
939 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
940 |
|
---|
941 | /* Get the base. */
|
---|
942 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
943 | fBaseRegValid = true;
|
---|
944 | if (iBaseReg == 5)
|
---|
945 | {
|
---|
946 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
947 | {
|
---|
948 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
949 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
950 | }
|
---|
951 | else
|
---|
952 | {
|
---|
953 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
954 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
955 | }
|
---|
956 | }
|
---|
957 | }
|
---|
958 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
959 |
|
---|
960 | /* Register + displacement. */
|
---|
961 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
962 | {
|
---|
963 | case 0: /* Handled above */ break;
|
---|
964 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
965 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
966 | default:
|
---|
967 | {
|
---|
968 | /* Register addressing, handled at the beginning. */
|
---|
969 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
970 | break;
|
---|
971 | }
|
---|
972 | }
|
---|
973 | }
|
---|
974 |
|
---|
975 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
976 | }
|
---|
977 |
|
---|
978 | /*
|
---|
979 | * The primary or secondary register operand is reported in iReg2 depending
|
---|
980 | * on whether the primary operand is in read/write form.
|
---|
981 | */
|
---|
982 | uint8_t idxReg2;
|
---|
983 | if (fPrimaryOpRead)
|
---|
984 | {
|
---|
985 | idxReg2 = bRm & X86_MODRM_RM_MASK;
|
---|
986 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
987 | idxReg2 |= pVCpu->iem.s.uRexB;
|
---|
988 | }
|
---|
989 | else
|
---|
990 | {
|
---|
991 | idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
|
---|
992 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
993 | idxReg2 |= pVCpu->iem.s.uRexReg;
|
---|
994 | }
|
---|
995 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
996 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
|
---|
997 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
998 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
999 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
1000 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
1001 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
1002 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
1003 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
1004 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
1005 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | /*
|
---|
1009 | * Handle exceptions to the norm for certain instructions.
|
---|
1010 | * (e.g. some instructions convey an instruction identity in place of iReg2).
|
---|
1011 | */
|
---|
1012 | switch (uExitReason)
|
---|
1013 | {
|
---|
1014 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
1015 | {
|
---|
1016 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
1017 | ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
1018 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
1019 | break;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
1023 | {
|
---|
1024 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
1025 | ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
1026 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
1027 | break;
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | case VMX_EXIT_RDRAND:
|
---|
1031 | case VMX_EXIT_RDSEED:
|
---|
1032 | {
|
---|
1033 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
1034 | break;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
1039 | if (pGCPtrDisp)
|
---|
1040 | *pGCPtrDisp = GCPtrDisp;
|
---|
1041 | return ExitInstrInfo.u;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 |
|
---|
1045 | /**
|
---|
1046 | * Implements VMSucceed for VMX instruction success.
|
---|
1047 | *
|
---|
1048 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1049 | */
|
---|
1050 | DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
|
---|
1051 | {
|
---|
1052 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 |
|
---|
1056 | /**
|
---|
1057 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
1058 | *
|
---|
1059 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1060 | */
|
---|
1061 | DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
|
---|
1062 | {
|
---|
1063 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1064 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 |
|
---|
1068 | /**
|
---|
1069 | * Implements VMFailValid for VMX instruction failure.
|
---|
1070 | *
|
---|
1071 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1072 | * @param enmInsErr The VM instruction error.
|
---|
1073 | */
|
---|
1074 | DECL_FORCE_INLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1075 | {
|
---|
1076 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1077 | {
|
---|
1078 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1079 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
|
---|
1080 | /** @todo NSTVMX: VMWrite enmInsErr to VM-instruction error field. */
|
---|
1081 | RT_NOREF(enmInsErr);
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 |
|
---|
1086 | /**
|
---|
1087 | * Implements VMFail for VMX instruction failure.
|
---|
1088 | *
|
---|
1089 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1090 | * @param enmInsErr The VM instruction error.
|
---|
1091 | */
|
---|
1092 | DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1093 | {
|
---|
1094 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1095 | {
|
---|
1096 | iemVmxVmFailValid(pVCpu, enmInsErr);
|
---|
1097 | /** @todo Set VM-instruction error field in the current virtual-VMCS. */
|
---|
1098 | }
|
---|
1099 | else
|
---|
1100 | iemVmxVmFailInvalid(pVCpu);
|
---|
1101 | }
|
---|
1102 |
|
---|
1103 |
|
---|
1104 | /**
|
---|
1105 | * Flushes the current VMCS contents back to guest memory.
|
---|
1106 | *
|
---|
1107 | * @returns VBox status code.
|
---|
1108 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1109 | */
|
---|
1110 | DECL_FORCE_INLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu)
|
---|
1111 | {
|
---|
1112 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
1113 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
|
---|
1114 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
|
---|
1115 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
1116 | return rc;
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 |
|
---|
1120 | /**
|
---|
1121 | * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
|
---|
1122 | *
|
---|
1123 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1124 | */
|
---|
1125 | DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
1126 | {
|
---|
1127 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_Success;
|
---|
1128 | iemVmxVmSucceed(pVCpu);
|
---|
1129 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 |
|
---|
1133 | /**
|
---|
1134 | * VMREAD common (memory/register) instruction execution worker
|
---|
1135 | *
|
---|
1136 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1137 | * @param cbInstr The instruction length.
|
---|
1138 | * @param pu64Dst Where to write the VMCS value (only updated when
|
---|
1139 | * VINF_SUCCESS is returned).
|
---|
1140 | * @param u64FieldEnc The VMCS field encoding.
|
---|
1141 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1142 | * be NULL.
|
---|
1143 | */
|
---|
1144 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
|
---|
1145 | PCVMXVEXITINFO pExitInfo)
|
---|
1146 | {
|
---|
1147 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1148 | {
|
---|
1149 | RT_NOREF(pExitInfo); RT_NOREF(cbInstr);
|
---|
1150 | /** @todo NSTVMX: intercept. */
|
---|
1151 | /** @todo NSTVMX: VMCS shadowing intercept (VMREAD bitmap). */
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | /* CPL. */
|
---|
1155 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1156 | {
|
---|
1157 | Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1158 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_Cpl;
|
---|
1159 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | /* VMCS pointer in root mode. */
|
---|
1163 | if ( IEM_IS_VMX_ROOT_MODE(pVCpu)
|
---|
1164 | && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1165 | {
|
---|
1166 | Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
1167 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_PtrInvalid;
|
---|
1168 | iemVmxVmFailInvalid(pVCpu);
|
---|
1169 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1170 | return VINF_SUCCESS;
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | /* VMCS-link pointer in non-root mode. */
|
---|
1174 | if ( IEM_IS_VMX_NON_ROOT_MODE(pVCpu)
|
---|
1175 | && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
1176 | {
|
---|
1177 | Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
1178 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_LinkPtrInvalid;
|
---|
1179 | iemVmxVmFailInvalid(pVCpu);
|
---|
1180 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1181 | return VINF_SUCCESS;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | /* Supported VMCS field. */
|
---|
1185 | if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
|
---|
1186 | {
|
---|
1187 | Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
|
---|
1188 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_FieldInvalid;
|
---|
1189 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
|
---|
1190 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1191 | return VINF_SUCCESS;
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 | /*
|
---|
1195 | * Setup reading from the current or shadow VMCS.
|
---|
1196 | */
|
---|
1197 | uint8_t *pbVmcs;
|
---|
1198 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1199 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
|
---|
1200 | else
|
---|
1201 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1202 | Assert(pbVmcs);
|
---|
1203 |
|
---|
1204 | VMXVMCSFIELDENC FieldEnc;
|
---|
1205 | FieldEnc.u = RT_LO_U32(u64FieldEnc);
|
---|
1206 | uint8_t const uWidth = FieldEnc.n.u2Width;
|
---|
1207 | uint8_t const uType = FieldEnc.n.u2Type;
|
---|
1208 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
1209 | uint8_t const uIndex = FieldEnc.n.u8Index;
|
---|
1210 | AssertRCReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
|
---|
1211 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
1212 |
|
---|
1213 | /*
|
---|
1214 | * Read the VMCS component based on the field's effective width.
|
---|
1215 | *
|
---|
1216 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
1217 | * indicates high bits (little endian).
|
---|
1218 | *
|
---|
1219 | * Note! The caller is responsible to trim the result and update registers
|
---|
1220 | * or memory locations are required. Here we just zero-extend to the largest
|
---|
1221 | * type (i.e. 64-bits).
|
---|
1222 | */
|
---|
1223 | uint8_t *pbField = pbVmcs + offField;
|
---|
1224 | uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
|
---|
1225 | switch (uEffWidth)
|
---|
1226 | {
|
---|
1227 | case VMX_VMCS_ENC_WIDTH_64BIT:
|
---|
1228 | case VMX_VMCS_ENC_WIDTH_NATURAL: *pu64Dst = *(uint64_t *)pbField; break;
|
---|
1229 | case VMX_VMCS_ENC_WIDTH_32BIT: *pu64Dst = *(uint32_t *)pbField; break;
|
---|
1230 | case VMX_VMCS_ENC_WIDTH_16BIT: *pu64Dst = *(uint16_t *)pbField; break;
|
---|
1231 | }
|
---|
1232 | return VINF_SUCCESS;
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 |
|
---|
1236 | /**
|
---|
1237 | * VMREAD (64-bit register) instruction execution worker.
|
---|
1238 | *
|
---|
1239 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1240 | * @param cbInstr The instruction length.
|
---|
1241 | * @param pu64Dst Where to store the VMCS field's value.
|
---|
1242 | * @param u64FieldEnc The VMCS field encoding.
|
---|
1243 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1244 | * be NULL.
|
---|
1245 | */
|
---|
1246 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
|
---|
1247 | PCVMXVEXITINFO pExitInfo)
|
---|
1248 | {
|
---|
1249 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
|
---|
1250 | if (rcStrict == VINF_SUCCESS)
|
---|
1251 | {
|
---|
1252 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
1253 | return VINF_SUCCESS;
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1257 | return rcStrict;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 |
|
---|
1261 | /**
|
---|
1262 | * VMREAD (32-bit register) instruction execution worker.
|
---|
1263 | *
|
---|
1264 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1265 | * @param cbInstr The instruction length.
|
---|
1266 | * @param pu32Dst Where to store the VMCS field's value.
|
---|
1267 | * @param u32FieldEnc The VMCS field encoding.
|
---|
1268 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1269 | * be NULL.
|
---|
1270 | */
|
---|
1271 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPU pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32FieldEnc,
|
---|
1272 | PCVMXVEXITINFO pExitInfo)
|
---|
1273 | {
|
---|
1274 | uint64_t u64Dst;
|
---|
1275 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32FieldEnc, pExitInfo);
|
---|
1276 | if (rcStrict == VINF_SUCCESS)
|
---|
1277 | {
|
---|
1278 | *pu32Dst = u64Dst;
|
---|
1279 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
1280 | return VINF_SUCCESS;
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1284 | return rcStrict;
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 |
|
---|
1288 | /**
|
---|
1289 | * VMREAD (memory) instruction execution worker.
|
---|
1290 | *
|
---|
1291 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1292 | * @param cbInstr The instruction length.
|
---|
1293 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
1294 | * Pass UINT8_MAX if it is a register access.
|
---|
1295 | * @param enmEffAddrMode The effective addressing mode (only used with memory
|
---|
1296 | * operand).
|
---|
1297 | * @param GCPtrDst The guest linear address to store the VMCS field's
|
---|
1298 | * value.
|
---|
1299 | * @param u64FieldEnc The VMCS field encoding.
|
---|
1300 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1301 | * be NULL.
|
---|
1302 | */
|
---|
1303 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode,
|
---|
1304 | RTGCPTR GCPtrDst, uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
|
---|
1305 | {
|
---|
1306 | uint64_t u64Dst;
|
---|
1307 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64FieldEnc, pExitInfo);
|
---|
1308 | if (rcStrict == VINF_SUCCESS)
|
---|
1309 | {
|
---|
1310 | /*
|
---|
1311 | * Write the VMCS field's value to the location specified in guest-memory.
|
---|
1312 | *
|
---|
1313 | * The pointer size depends on the address size (address-size prefix allowed).
|
---|
1314 | * The operand size depends on IA-32e mode (operand-size prefix not allowed).
|
---|
1315 | */
|
---|
1316 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
1317 | Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
1318 | GCPtrDst &= s_auAddrSizeMasks[enmEffAddrMode];
|
---|
1319 |
|
---|
1320 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1321 | rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
1322 | else
|
---|
1323 | rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
1324 | if (rcStrict == VINF_SUCCESS)
|
---|
1325 | {
|
---|
1326 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
1327 | return VINF_SUCCESS;
|
---|
1328 | }
|
---|
1329 |
|
---|
1330 | Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1331 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmread_PtrMap;
|
---|
1332 | return rcStrict;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1336 | return rcStrict;
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 |
|
---|
1340 | /**
|
---|
1341 | * VMWRITE instruction execution worker.
|
---|
1342 | *
|
---|
1343 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1344 | * @param cbInstr The instruction length.
|
---|
1345 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
1346 | * Pass UINT8_MAX if it is a register access.
|
---|
1347 | * @param enmEffAddrMode The effective addressing mode (only used with memory
|
---|
1348 | * operand).
|
---|
1349 | * @param u64Val The value to write (or guest linear address to the
|
---|
1350 | * value), @a iEffSeg will indicate if it's a memory
|
---|
1351 | * operand.
|
---|
1352 | * @param u64FieldEnc The VMCS field encoding.
|
---|
1353 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1354 | * be NULL.
|
---|
1355 | */
|
---|
1356 | IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, uint64_t u64Val,
|
---|
1357 | uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
|
---|
1358 | {
|
---|
1359 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1360 | {
|
---|
1361 | RT_NOREF(pExitInfo);
|
---|
1362 | /** @todo NSTVMX: intercept. */
|
---|
1363 | /** @todo NSTVMX: VMCS shadowing intercept (VMWRITE bitmap). */
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | /* CPL. */
|
---|
1367 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1368 | {
|
---|
1369 | Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1370 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_Cpl;
|
---|
1371 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 | /* VMCS pointer in root mode. */
|
---|
1375 | if ( IEM_IS_VMX_ROOT_MODE(pVCpu)
|
---|
1376 | && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1377 | {
|
---|
1378 | Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
1379 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_PtrInvalid;
|
---|
1380 | iemVmxVmFailInvalid(pVCpu);
|
---|
1381 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1382 | return VINF_SUCCESS;
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 | /* VMCS-link pointer in non-root mode. */
|
---|
1386 | if ( IEM_IS_VMX_NON_ROOT_MODE(pVCpu)
|
---|
1387 | && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
1388 | {
|
---|
1389 | Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
1390 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_LinkPtrInvalid;
|
---|
1391 | iemVmxVmFailInvalid(pVCpu);
|
---|
1392 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1393 | return VINF_SUCCESS;
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 | /* If the VMWRITE instruction references memory, access the specified memory operand. */
|
---|
1397 | bool const fIsRegOperand = iEffSeg == UINT8_MAX;
|
---|
1398 | if (!fIsRegOperand)
|
---|
1399 | {
|
---|
1400 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
1401 | Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
1402 | RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[enmEffAddrMode];
|
---|
1403 |
|
---|
1404 | /* Read the value from the specified guest memory location. */
|
---|
1405 | VBOXSTRICTRC rcStrict;
|
---|
1406 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1407 | rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
|
---|
1408 | else
|
---|
1409 | {
|
---|
1410 | uint32_t u32Val;
|
---|
1411 | rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, iEffSeg, GCPtrVal);
|
---|
1412 | u64Val = u32Val;
|
---|
1413 | }
|
---|
1414 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1415 | {
|
---|
1416 | Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1417 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_PtrMap;
|
---|
1418 | return rcStrict;
|
---|
1419 | }
|
---|
1420 | }
|
---|
1421 | else
|
---|
1422 | Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
|
---|
1423 |
|
---|
1424 | /* Supported VMCS field. */
|
---|
1425 | if (!iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
|
---|
1426 | {
|
---|
1427 | Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
|
---|
1428 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_FieldInvalid;
|
---|
1429 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
|
---|
1430 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1431 | return VINF_SUCCESS;
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | /* Read-only VMCS field. */
|
---|
1435 | bool const fReadOnlyField = HMVmxIsVmcsFieldReadOnly(u64FieldEnc);
|
---|
1436 | if ( fReadOnlyField
|
---|
1437 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
|
---|
1438 | {
|
---|
1439 | Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64FieldEnc));
|
---|
1440 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_FieldRo;
|
---|
1441 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
|
---|
1442 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1443 | return VINF_SUCCESS;
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | /*
|
---|
1447 | * Setup writing to the current or shadow VMCS.
|
---|
1448 | */
|
---|
1449 | uint8_t *pbVmcs;
|
---|
1450 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1451 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
|
---|
1452 | else
|
---|
1453 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1454 | Assert(pbVmcs);
|
---|
1455 |
|
---|
1456 | VMXVMCSFIELDENC FieldEnc;
|
---|
1457 | FieldEnc.u = RT_LO_U32(u64FieldEnc);
|
---|
1458 | uint8_t const uWidth = FieldEnc.n.u2Width;
|
---|
1459 | uint8_t const uType = FieldEnc.n.u2Type;
|
---|
1460 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
1461 | uint8_t const uIndex = FieldEnc.n.u8Index;
|
---|
1462 | AssertRCReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
|
---|
1463 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
1464 |
|
---|
1465 | /*
|
---|
1466 | * Write the VMCS component based on the field's effective width.
|
---|
1467 | *
|
---|
1468 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
1469 | * indicates high bits (little endian).
|
---|
1470 | */
|
---|
1471 | uint8_t *pbField = pbVmcs + offField;
|
---|
1472 | uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
|
---|
1473 | switch (uEffWidth)
|
---|
1474 | {
|
---|
1475 | case VMX_VMCS_ENC_WIDTH_64BIT:
|
---|
1476 | case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
|
---|
1477 | case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
|
---|
1478 | case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmwrite_Success;
|
---|
1482 | iemVmxVmSucceed(pVCpu);
|
---|
1483 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1484 | return VINF_SUCCESS;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 |
|
---|
1488 | /**
|
---|
1489 | * VMCLEAR instruction execution worker.
|
---|
1490 | *
|
---|
1491 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1492 | * @param cbInstr The instruction length.
|
---|
1493 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
1494 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
1495 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1496 | * be NULL.
|
---|
1497 | *
|
---|
1498 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1499 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1500 | */
|
---|
1501 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
1502 | PCVMXVEXITINFO pExitInfo)
|
---|
1503 | {
|
---|
1504 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1505 | {
|
---|
1506 | RT_NOREF(pExitInfo);
|
---|
1507 | /** @todo NSTVMX: intercept. */
|
---|
1508 | }
|
---|
1509 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1510 |
|
---|
1511 | /* CPL. */
|
---|
1512 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1513 | {
|
---|
1514 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1515 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Cpl;
|
---|
1516 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
1520 | RTGCPHYS GCPhysVmcs;
|
---|
1521 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
1522 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1523 | {
|
---|
1524 | Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1525 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrMap;
|
---|
1526 | return rcStrict;
|
---|
1527 | }
|
---|
1528 |
|
---|
1529 | /* VMCS pointer alignment. */
|
---|
1530 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
1531 | {
|
---|
1532 | Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
1533 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrAlign;
|
---|
1534 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1535 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1536 | return VINF_SUCCESS;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | /* VMCS physical-address width limits. */
|
---|
1540 | if (GCPhysVmcs >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
1541 | {
|
---|
1542 | Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
1543 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrWidth;
|
---|
1544 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1545 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1546 | return VINF_SUCCESS;
|
---|
1547 | }
|
---|
1548 |
|
---|
1549 | /* VMCS is not the VMXON region. */
|
---|
1550 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
1551 | {
|
---|
1552 | Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
1553 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrVmxon;
|
---|
1554 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
|
---|
1555 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1556 | return VINF_SUCCESS;
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1560 | restriction imposed by our implementation. */
|
---|
1561 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
1562 | {
|
---|
1563 | Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
|
---|
1564 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_PtrAbnormal;
|
---|
1565 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
1566 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1567 | return VINF_SUCCESS;
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | /*
|
---|
1571 | * VMCLEAR allows committing and clearing any valid VMCS pointer.
|
---|
1572 | *
|
---|
1573 | * If the current VMCS is the one being cleared, set its state to 'clear' and commit
|
---|
1574 | * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
|
---|
1575 | * to 'clear'.
|
---|
1576 | */
|
---|
1577 | uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR;
|
---|
1578 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
|
---|
1579 | {
|
---|
1580 | Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */
|
---|
1581 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
|
---|
1582 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear;
|
---|
1583 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
1584 | Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
1585 | }
|
---|
1586 | else
|
---|
1587 | {
|
---|
1588 | rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPtrVmcs + RT_OFFSETOF(VMXVVMCS, fVmcsState),
|
---|
1589 | (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear));
|
---|
1590 | }
|
---|
1591 |
|
---|
1592 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmclear_Success;
|
---|
1593 | iemVmxVmSucceed(pVCpu);
|
---|
1594 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1595 | return rcStrict;
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 |
|
---|
1599 | /**
|
---|
1600 | * VMPTRST instruction execution worker.
|
---|
1601 | *
|
---|
1602 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1603 | * @param cbInstr The instruction length.
|
---|
1604 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
1605 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
1606 | * pointer.
|
---|
1607 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1608 | * be NULL.
|
---|
1609 | *
|
---|
1610 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1611 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1612 | */
|
---|
1613 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
1614 | PCVMXVEXITINFO pExitInfo)
|
---|
1615 | {
|
---|
1616 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1617 | {
|
---|
1618 | RT_NOREF(pExitInfo);
|
---|
1619 | /** @todo NSTVMX: intercept. */
|
---|
1620 | }
|
---|
1621 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1622 |
|
---|
1623 | /* CPL. */
|
---|
1624 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1625 | {
|
---|
1626 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1627 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Cpl;
|
---|
1628 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
1632 | AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
1633 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
|
---|
1634 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
1635 | {
|
---|
1636 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_Success;
|
---|
1637 | iemVmxVmSucceed(pVCpu);
|
---|
1638 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1639 | return rcStrict;
|
---|
1640 | }
|
---|
1641 |
|
---|
1642 | Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1643 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrst_PtrMap;
|
---|
1644 | return rcStrict;
|
---|
1645 | }
|
---|
1646 |
|
---|
1647 |
|
---|
1648 | /**
|
---|
1649 | * VMPTRLD instruction execution worker.
|
---|
1650 | *
|
---|
1651 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1652 | * @param cbInstr The instruction length.
|
---|
1653 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
1654 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
1655 | * be NULL.
|
---|
1656 | *
|
---|
1657 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1658 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1659 | */
|
---|
1660 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
1661 | PCVMXVEXITINFO pExitInfo)
|
---|
1662 | {
|
---|
1663 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1664 | {
|
---|
1665 | RT_NOREF(pExitInfo);
|
---|
1666 | /** @todo NSTVMX: intercept. */
|
---|
1667 | }
|
---|
1668 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1669 |
|
---|
1670 | /* CPL. */
|
---|
1671 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1672 | {
|
---|
1673 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1674 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Cpl;
|
---|
1675 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1676 | }
|
---|
1677 |
|
---|
1678 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
1679 | RTGCPHYS GCPhysVmcs;
|
---|
1680 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
1681 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1682 | {
|
---|
1683 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1684 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrMap;
|
---|
1685 | return rcStrict;
|
---|
1686 | }
|
---|
1687 |
|
---|
1688 | /* VMCS pointer alignment. */
|
---|
1689 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
1690 | {
|
---|
1691 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
1692 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAlign;
|
---|
1693 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1694 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1695 | return VINF_SUCCESS;
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | /* VMCS physical-address width limits. */
|
---|
1699 | if (GCPhysVmcs >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
1700 | {
|
---|
1701 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
1702 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrWidth;
|
---|
1703 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1704 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1705 | return VINF_SUCCESS;
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 | /* VMCS is not the VMXON region. */
|
---|
1709 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
1710 | {
|
---|
1711 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
1712 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrVmxon;
|
---|
1713 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
1714 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1715 | return VINF_SUCCESS;
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1719 | restriction imposed by our implementation. */
|
---|
1720 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
1721 | {
|
---|
1722 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
1723 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrAbnormal;
|
---|
1724 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
1725 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1726 | return VINF_SUCCESS;
|
---|
1727 | }
|
---|
1728 |
|
---|
1729 | /* Read the VMCS revision ID from the VMCS. */
|
---|
1730 | VMXVMCSREVID VmcsRevId;
|
---|
1731 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
1732 | if (RT_FAILURE(rc))
|
---|
1733 | {
|
---|
1734 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
1735 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_PtrReadPhys;
|
---|
1736 | return rc;
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest,
|
---|
1740 | also check VMCS shadowing feature. */
|
---|
1741 | if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
|
---|
1742 | || ( VmcsRevId.n.fIsShadowVmcs
|
---|
1743 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
1744 | {
|
---|
1745 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
1746 | {
|
---|
1747 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFail()\n", VMX_V_VMCS_REVISION_ID,
|
---|
1748 | VmcsRevId.n.u31RevisionId));
|
---|
1749 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_VmcsRevId;
|
---|
1750 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
1751 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1752 | return VINF_SUCCESS;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
1756 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_ShadowVmcs;
|
---|
1757 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
1758 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1759 | return VINF_SUCCESS;
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | /*
|
---|
1763 | * We only maintain only the current VMCS in our virtual CPU context (CPUMCTX). Therefore,
|
---|
1764 | * VMPTRLD shall always flush any existing current VMCS back to guest memory before loading
|
---|
1765 | * a new VMCS as current.
|
---|
1766 | */
|
---|
1767 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
|
---|
1768 | {
|
---|
1769 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
1770 | IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
|
---|
1771 | }
|
---|
1772 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmptrld_Success;
|
---|
1773 | iemVmxVmSucceed(pVCpu);
|
---|
1774 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1775 | return VINF_SUCCESS;
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 |
|
---|
1779 | /**
|
---|
1780 | * VMXON instruction execution worker.
|
---|
1781 | *
|
---|
1782 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1783 | * @param cbInstr The instruction length.
|
---|
1784 | * @param iEffSeg The effective segment register to use with @a
|
---|
1785 | * GCPtrVmxon.
|
---|
1786 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
1787 | * @param pExitInfo Pointer to the VM-exit instruction information struct.
|
---|
1788 | * Optional, can be NULL.
|
---|
1789 | *
|
---|
1790 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
1791 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
1792 | */
|
---|
1793 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
|
---|
1794 | PCVMXVEXITINFO pExitInfo)
|
---|
1795 | {
|
---|
1796 | #if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
1797 | RT_NOREF5(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
|
---|
1798 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
1799 | #else
|
---|
1800 | if (!IEM_IS_VMX_ROOT_MODE(pVCpu))
|
---|
1801 | {
|
---|
1802 | /* CPL. */
|
---|
1803 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1804 | {
|
---|
1805 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1806 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cpl;
|
---|
1807 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1808 | }
|
---|
1809 |
|
---|
1810 | /* A20M (A20 Masked) mode. */
|
---|
1811 | if (!PGMPhysIsA20Enabled(pVCpu))
|
---|
1812 | {
|
---|
1813 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
1814 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_A20M;
|
---|
1815 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | /* CR0 fixed bits. */
|
---|
1819 | bool const fUnrestrictedGuest = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxUnrestrictedGuest;
|
---|
1820 | uint64_t const uCr0Fixed0 = fUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
|
---|
1821 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
|
---|
1822 | {
|
---|
1823 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
1824 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr0Fixed0;
|
---|
1825 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | /* CR4 fixed bits. */
|
---|
1829 | if ((pVCpu->cpum.GstCtx.cr4 & VMX_V_CR4_FIXED0) != VMX_V_CR4_FIXED0)
|
---|
1830 | {
|
---|
1831 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
1832 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Cr4Fixed0;
|
---|
1833 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
1837 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatureControl(pVCpu);
|
---|
1838 | if (!(uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)))
|
---|
1839 | {
|
---|
1840 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
1841 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_MsrFeatCtl;
|
---|
1842 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1843 | }
|
---|
1844 |
|
---|
1845 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
1846 | RTGCPHYS GCPhysVmxon;
|
---|
1847 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
|
---|
1848 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
1849 | {
|
---|
1850 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1851 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrMap;
|
---|
1852 | return rcStrict;
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 | /* VMXON region pointer alignment. */
|
---|
1856 | if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
|
---|
1857 | {
|
---|
1858 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
1859 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAlign;
|
---|
1860 | iemVmxVmFailInvalid(pVCpu);
|
---|
1861 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1862 | return VINF_SUCCESS;
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | /* VMXON physical-address width limits. */
|
---|
1866 | if (GCPhysVmxon >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
1867 | {
|
---|
1868 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
1869 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrWidth;
|
---|
1870 | iemVmxVmFailInvalid(pVCpu);
|
---|
1871 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1872 | return VINF_SUCCESS;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
1876 | restriction imposed by our implementation. */
|
---|
1877 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
1878 | {
|
---|
1879 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
1880 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrAbnormal;
|
---|
1881 | iemVmxVmFailInvalid(pVCpu);
|
---|
1882 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1883 | return VINF_SUCCESS;
|
---|
1884 | }
|
---|
1885 |
|
---|
1886 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
1887 | VMXVMCSREVID VmcsRevId;
|
---|
1888 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
1889 | if (RT_FAILURE(rc))
|
---|
1890 | {
|
---|
1891 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
1892 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_PtrReadPhys;
|
---|
1893 | return rc;
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
1897 | if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
|
---|
1898 | {
|
---|
1899 | /* Revision ID mismatch. */
|
---|
1900 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
1901 | {
|
---|
1902 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
1903 | VmcsRevId.n.u31RevisionId));
|
---|
1904 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmcsRevId;
|
---|
1905 | iemVmxVmFailInvalid(pVCpu);
|
---|
1906 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1907 | return VINF_SUCCESS;
|
---|
1908 | }
|
---|
1909 |
|
---|
1910 | /* Shadow VMCS disallowed. */
|
---|
1911 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
1912 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_ShadowVmcs;
|
---|
1913 | iemVmxVmFailInvalid(pVCpu);
|
---|
1914 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1915 | return VINF_SUCCESS;
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | /*
|
---|
1919 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
1920 | */
|
---|
1921 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
1922 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
1923 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
1924 | /** @todo NSTVMX: clear address-range monitoring. */
|
---|
1925 | /** @todo NSTVMX: Intel PT. */
|
---|
1926 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_Success;
|
---|
1927 | iemVmxVmSucceed(pVCpu);
|
---|
1928 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1929 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
1930 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
1931 | # else
|
---|
1932 | return VINF_SUCCESS;
|
---|
1933 | # endif
|
---|
1934 | }
|
---|
1935 | else if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
1936 | {
|
---|
1937 | RT_NOREF(pExitInfo);
|
---|
1938 | /** @todo NSTVMX: intercept. */
|
---|
1939 | }
|
---|
1940 |
|
---|
1941 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
1942 |
|
---|
1943 | /* CPL. */
|
---|
1944 | if (pVCpu->iem.s.uCpl > 0)
|
---|
1945 | {
|
---|
1946 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
1947 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxRootCpl;
|
---|
1948 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
1949 | }
|
---|
1950 |
|
---|
1951 | /* VMXON when already in VMX root mode. */
|
---|
1952 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
1953 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxon_VmxAlreadyRoot;
|
---|
1954 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1955 | return VINF_SUCCESS;
|
---|
1956 | #endif
|
---|
1957 | }
|
---|
1958 |
|
---|
1959 |
|
---|
1960 | /**
|
---|
1961 | * Checks host state as part of VM-entry.
|
---|
1962 | *
|
---|
1963 | * @returns VBox status code.
|
---|
1964 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1965 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
1966 | */
|
---|
1967 | IEM_STATIC VBOXSTRICTRC iemVmxVmentryCheckHostState(PVMCPU pVCpu, const char *pszInstr)
|
---|
1968 | {
|
---|
1969 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1970 |
|
---|
1971 | /*
|
---|
1972 | * Host Control Registers and MSRs.
|
---|
1973 | * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
|
---|
1974 | */
|
---|
1975 | /* CR0 reserved bits. */
|
---|
1976 | {
|
---|
1977 | /* CR0 MB1 bits. */
|
---|
1978 | uint64_t const u64Cr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
|
---|
1979 | if (~pVmcs->u64HostCr0.u & u64Cr0Fixed0)
|
---|
1980 | {
|
---|
1981 | Log(("%s: Invalid host CR0 %#RX32 (fixed0) -> VMFail\n", pszInstr, pVmcs->u64HostCr0));
|
---|
1982 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr0Fixed0;
|
---|
1983 | return VERR_VMX_VMENTRY_FAILED;
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 | /* CR0 MBZ bits. */
|
---|
1987 | uint64_t const u64Cr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
|
---|
1988 | if (pVmcs->u64HostCr0.u & ~u64Cr0Fixed1)
|
---|
1989 | {
|
---|
1990 | Log(("%s: Invalid host CR0 %#RX32 (fixed1) -> VMFail\n", pszInstr, pVmcs->u64HostCr0));
|
---|
1991 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr0Fixed1;
|
---|
1992 | return VERR_VMX_VMENTRY_FAILED;
|
---|
1993 | }
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 | /* CR4 reserved bits. */
|
---|
1997 | {
|
---|
1998 | /* CR4 MB1 bits. */
|
---|
1999 | uint64_t const u64Cr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
|
---|
2000 | if (~pVmcs->u64HostCr4.u & u64Cr4Fixed0)
|
---|
2001 | {
|
---|
2002 | Log(("%s: Invalid host CR4 %#RX64 (fixed0) -> VMFail\n", pszInstr, pVmcs->u64HostCr4));
|
---|
2003 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr4Fixed0;
|
---|
2004 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2005 | }
|
---|
2006 |
|
---|
2007 | /* CR4 MBZ bits. */
|
---|
2008 | uint64_t const u64Cr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
|
---|
2009 | if (pVmcs->u64HostCr4.u & ~u64Cr4Fixed1)
|
---|
2010 | {
|
---|
2011 | Log(("%s: Invalid host CR4 %#RX64 (fixed1) -> VMFail\n", pszInstr, pVmcs->u64HostCr4));
|
---|
2012 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr4Fixed1;
|
---|
2013 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2014 | }
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2018 | {
|
---|
2019 | /* CR3 reserved bits. */
|
---|
2020 | if (pVmcs->u64HostCr3.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2021 | {
|
---|
2022 | Log(("%s: Invalid host CR3 %#RX64 -> VMFail\n", pszInstr, pVmcs->u64HostCr3));
|
---|
2023 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr3;
|
---|
2024 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2025 | }
|
---|
2026 |
|
---|
2027 | /* SYSENTER ESP and SYSENTER EIP. */
|
---|
2028 | if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
|
---|
2029 | && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
|
---|
2030 | { /* likely */ }
|
---|
2031 | else
|
---|
2032 | {
|
---|
2033 | Log(("%s: Host Sysenter ESP (%#RX64) / EIP (%#RX64) not canonical -> VMFail\n", pszInstr,
|
---|
2034 | pVmcs->u64HostSysenterEsp.u, pVmcs->u64HostSysenterEip.u));
|
---|
2035 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostSysenterEspEip;
|
---|
2036 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2037 | }
|
---|
2038 | }
|
---|
2039 |
|
---|
2040 | Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR)); /* We don't support loading IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
2041 |
|
---|
2042 | /* PAT MSR. */
|
---|
2043 | if ( (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
|
---|
2044 | && !CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
|
---|
2045 | {
|
---|
2046 | Log(("%s: Host PAT MSR (%#RX64) invalid\n", pszInstr, pVmcs->u64HostPatMsr.u));
|
---|
2047 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostPatMsr;
|
---|
2048 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | /* EFER MSR. */
|
---|
2052 | uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
|
---|
2053 | if ( (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
2054 | && (pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
|
---|
2055 | {
|
---|
2056 | Log(("%s: Host EFER MSR (%#RX64) reserved bits set\n", pszInstr, pVmcs->u64HostEferMsr.u));
|
---|
2057 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostEferMsr;
|
---|
2058 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2059 | }
|
---|
2060 | bool const fVirtHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
2061 | bool const fNstGstLongModeActive = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_BIT_LMA);
|
---|
2062 | bool const fNstGstLongModeEnabled = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_BIT_LME);
|
---|
2063 | if (fVirtHostInLongMode == fNstGstLongModeActive == fNstGstLongModeEnabled)
|
---|
2064 | { /* likely */ }
|
---|
2065 | else
|
---|
2066 | {
|
---|
2067 | Log(("%s: Host EFER MSR (%#RX64) LMA, LME, host addr-space size mismatch\n", pszInstr, pVmcs->u64HostEferMsr.u));
|
---|
2068 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostAddrSpace;
|
---|
2069 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2070 | }
|
---|
2071 |
|
---|
2072 | /*
|
---|
2073 | * Host Segment and Descriptor-Table Registers.
|
---|
2074 | * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
2075 | */
|
---|
2076 | /* Selector RPL and TI. */
|
---|
2077 | if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2078 | && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2079 | && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2080 | && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2081 | && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2082 | && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2083 | && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
|
---|
2084 | { /* likely */ }
|
---|
2085 | else
|
---|
2086 | {
|
---|
2087 | Log(("%s: One or more host selector registers invalid\n", pszInstr));
|
---|
2088 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostSel;
|
---|
2089 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2090 | }
|
---|
2091 |
|
---|
2092 | /* CS and TR selectors cannot be 0. */
|
---|
2093 | if ( pVmcs->HostCs
|
---|
2094 | && pVmcs->HostTr)
|
---|
2095 | { /* likely */ }
|
---|
2096 | else
|
---|
2097 | {
|
---|
2098 | Log(("%s: Host CS/TR selector is invalid\n", pszInstr));
|
---|
2099 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCsTr;
|
---|
2100 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2101 | }
|
---|
2102 |
|
---|
2103 | /* SS cannot be 0 if 32-bit host. */
|
---|
2104 | if ( fVirtHostInLongMode
|
---|
2105 | || pVmcs->HostSs)
|
---|
2106 | { /* likely */ }
|
---|
2107 | else
|
---|
2108 | {
|
---|
2109 | Log(("%s: Host SS selector invalid for 32-bit host\n", pszInstr));
|
---|
2110 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostSs;
|
---|
2111 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2112 | }
|
---|
2113 |
|
---|
2114 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2115 | {
|
---|
2116 | /* FS, GS, GDTR, IDTR, TR base address. */
|
---|
2117 | if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
2118 | && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
2119 | && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
|
---|
2120 | && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
|
---|
2121 | && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
|
---|
2122 | { /* likely */ }
|
---|
2123 | else
|
---|
2124 | {
|
---|
2125 | Log(("%s: Host segment register (FS/GS/GDTR/IDTR/TR) base address is not canonical\n", pszInstr));
|
---|
2126 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostSegBase;
|
---|
2127 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2128 | }
|
---|
2129 | }
|
---|
2130 |
|
---|
2131 | /*
|
---|
2132 | * Host address-space size for 64-bit CPUs.
|
---|
2133 | * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
|
---|
2134 | */
|
---|
2135 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2136 | {
|
---|
2137 | bool const fGstInLongMode = CPUMIsGuestInLongMode(pVCpu);
|
---|
2138 | bool const fNstGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
2139 |
|
---|
2140 | /* Logical processor in IA-32e mode. */
|
---|
2141 | if (fGstInLongMode)
|
---|
2142 | {
|
---|
2143 | if (fVirtHostInLongMode)
|
---|
2144 | {
|
---|
2145 | /* PAE must be set. */
|
---|
2146 | if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
|
---|
2147 | { /* likely */ }
|
---|
2148 | else
|
---|
2149 | {
|
---|
2150 | Log(("%s: Host CR4.PAE not set when logical CPU is in long mode\n", pszInstr));
|
---|
2151 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr4Pae;
|
---|
2152 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2153 | }
|
---|
2154 |
|
---|
2155 | /* RIP must be canonical. */
|
---|
2156 | if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
|
---|
2157 | { /* likely */ }
|
---|
2158 | else
|
---|
2159 | {
|
---|
2160 | Log(("%s: Host RIP must be canonicalwhen logical CPU in long mode\n", pszInstr));
|
---|
2161 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostRip;
|
---|
2162 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2163 | }
|
---|
2164 | }
|
---|
2165 | else
|
---|
2166 | {
|
---|
2167 | Log(("%s: Host must be in long mode when logical CPU in long mode\n", pszInstr));
|
---|
2168 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostLongMode;
|
---|
2169 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2170 | }
|
---|
2171 | }
|
---|
2172 | else
|
---|
2173 | {
|
---|
2174 | /* Logical processor is outside IA-32e mode. */
|
---|
2175 | if ( !fNstGstInLongMode
|
---|
2176 | && !fVirtHostInLongMode)
|
---|
2177 | {
|
---|
2178 | /* PCIDE should not be set. */
|
---|
2179 | if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
|
---|
2180 | { /* likely */ }
|
---|
2181 | else
|
---|
2182 | {
|
---|
2183 | Log(("%s: Host CR4.PCIDE must be clear when logical CPU is not in long mode\n", pszInstr));
|
---|
2184 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostCr4Pcide;
|
---|
2185 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2186 | }
|
---|
2187 |
|
---|
2188 | /* The high 32-bits of RIP MBZ. */
|
---|
2189 | if (!pVmcs->u64HostRip.s.Hi)
|
---|
2190 | { /* likely */ }
|
---|
2191 | else
|
---|
2192 | {
|
---|
2193 | Log(("%s: Host RIP high 32-bits must be clear when logical CPU is not in long mode\n", pszInstr));
|
---|
2194 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostRipRsvd;
|
---|
2195 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2196 | }
|
---|
2197 | }
|
---|
2198 | else
|
---|
2199 | {
|
---|
2200 | Log(("%s: Host/guest cannot be in long mode when logical CPU is not in long mode\n", pszInstr));
|
---|
2201 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostGuestLongMode;
|
---|
2202 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2203 | }
|
---|
2204 | }
|
---|
2205 | }
|
---|
2206 | else
|
---|
2207 | {
|
---|
2208 | /* Host address-space size for 32-bit CPUs. */
|
---|
2209 | bool const fNstGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
2210 | if ( !fNstGstInLongMode
|
---|
2211 | && !fVirtHostInLongMode)
|
---|
2212 | { /* likely */ }
|
---|
2213 | else
|
---|
2214 | {
|
---|
2215 | Log(("%s: Host/guest cannot be in long mode on 32-bit CPUs\n", pszInstr));
|
---|
2216 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_HostGuestLongModeNoCpu;
|
---|
2217 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2218 | }
|
---|
2219 | }
|
---|
2220 |
|
---|
2221 | NOREF(pszInstr);
|
---|
2222 | return VINF_SUCCESS;
|
---|
2223 | }
|
---|
2224 |
|
---|
2225 |
|
---|
2226 | /**
|
---|
2227 | * Checks VM-entry controls fields as part of VM-entry.
|
---|
2228 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
2229 | *
|
---|
2230 | * @returns VBox status code.
|
---|
2231 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2232 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2233 | */
|
---|
2234 | IEM_STATIC VBOXSTRICTRC iemVmxVmentryCheckEntryCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
2235 | {
|
---|
2236 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2237 |
|
---|
2238 | /* VM-entry controls. */
|
---|
2239 | VMXCTLSMSR EntryCtls;
|
---|
2240 | EntryCtls.u = CPUMGetGuestIa32VmxEntryCtls(pVCpu);
|
---|
2241 | if (~pVmcs->u32EntryCtls & EntryCtls.n.disallowed0)
|
---|
2242 | {
|
---|
2243 | Log(("%s: Invalid EntryCtls %#RX32 (disallowed0) -> VMFail\n", pszInstr, pVmcs->u32EntryCtls));
|
---|
2244 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryCtlsDisallowed0;
|
---|
2245 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2246 | }
|
---|
2247 | if (pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1)
|
---|
2248 | {
|
---|
2249 | Log(("%s: Invalid EntryCtls %#RX32 (allowed1) -> VMFail\n", pszInstr, pVmcs->u32EntryCtls));
|
---|
2250 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryCtlsAllowed1;
|
---|
2251 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2252 | }
|
---|
2253 |
|
---|
2254 | /* Event injection. */
|
---|
2255 | uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
|
---|
2256 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
|
---|
2257 | {
|
---|
2258 | /* Type and vector. */
|
---|
2259 | uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
|
---|
2260 | uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
|
---|
2261 | uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
|
---|
2262 | if ( uRsvd == 0
|
---|
2263 | && HMVmxIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
|
---|
2264 | && HMVmxIsEntryIntInfoVectorValid(uVector, uType))
|
---|
2265 | { /* likely */ }
|
---|
2266 | else
|
---|
2267 | {
|
---|
2268 | Log(("%s: VM-entry interruption info (%#RX32) invalid (rsvd/type/vector) -> VMFail\n", pszInstr, uIntInfo));
|
---|
2269 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryIntInfoTypeVecRsvd;
|
---|
2270 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2271 | }
|
---|
2272 |
|
---|
2273 | /* Exception error code. */
|
---|
2274 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
|
---|
2275 | {
|
---|
2276 | /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
|
---|
2277 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
|
---|
2278 | || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
|
---|
2279 | { /* likely */ }
|
---|
2280 | else
|
---|
2281 | {
|
---|
2282 | Log(("%s: VM-entry interruption (%#RX32) invalid error-code (paging-mode) -> VMFail\n", pszInstr, uIntInfo));
|
---|
2283 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryIntInfoErrCodePe;
|
---|
2284 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2285 | }
|
---|
2286 |
|
---|
2287 | /* Exceptions that provide an error code. */
|
---|
2288 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
2289 | && ( uVector == X86_XCPT_DF
|
---|
2290 | || uVector == X86_XCPT_TS
|
---|
2291 | || uVector == X86_XCPT_NP
|
---|
2292 | || uVector == X86_XCPT_SS
|
---|
2293 | || uVector == X86_XCPT_GP
|
---|
2294 | || uVector == X86_XCPT_PF
|
---|
2295 | || uVector == X86_XCPT_AC))
|
---|
2296 | { /* likely */ }
|
---|
2297 | else
|
---|
2298 | {
|
---|
2299 | Log(("%s: VM-entry interruption (%#RX32) invalid error-code (vector) -> VMFail\n", pszInstr, uIntInfo));
|
---|
2300 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryIntInfoErrCodeVec;
|
---|
2301 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 | /* Exception error-code reserved bits. */
|
---|
2305 | if (pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK)
|
---|
2306 | {
|
---|
2307 | Log(("%s: VM-entry exception error-code (%#RX32) invalid -> VMFail\n", pszInstr, uIntInfo));
|
---|
2308 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryXcptErrCodeRsvd;
|
---|
2309 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2310 | }
|
---|
2311 |
|
---|
2312 | /* Injecting a software interrupt, software exception or privileged software exception. */
|
---|
2313 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
|
---|
2314 | || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
|
---|
2315 | || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
|
---|
2316 | {
|
---|
2317 | /* Instruction length must be in the range 0-15. */
|
---|
2318 | if (pVmcs->u32EntryInstrLen > VMX_ENTRY_INSTR_LEN_MAX)
|
---|
2319 | {
|
---|
2320 | Log(("%s: VM-entry instruction length (%#RX32) invalid -> VMFail\n", pszInstr, pVmcs->u32EntryInstrLen));
|
---|
2321 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryInstrLen;
|
---|
2322 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2323 | }
|
---|
2324 |
|
---|
2325 | /* Zero instruction length is allowed only when the CPU supports it explicitly. */
|
---|
2326 | if ( pVmcs->u32EntryInstrLen == 0
|
---|
2327 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
|
---|
2328 | {
|
---|
2329 | Log(("%s: VM-entry instruction length zero invalid (swint/xcpt/priv) -> VMFail\n", pszInstr));
|
---|
2330 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_EntryInstrLenZero;
|
---|
2331 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2332 | }
|
---|
2333 | }
|
---|
2334 | }
|
---|
2335 | }
|
---|
2336 |
|
---|
2337 | /* VM-entry MSR-load count and VM-entry MSR-load area address. */
|
---|
2338 | if (pVmcs->u32EntryMsrLoadCount)
|
---|
2339 | {
|
---|
2340 | if ( (pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
2341 | || (pVmcs->u64AddrEntryMsrLoad.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2342 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
|
---|
2343 | {
|
---|
2344 | Log(("%s: VM-entry MSR-load area address %#RX64 invalid -> VMFail\n", pszInstr, pVmcs->u64AddrEntryMsrLoad.u));
|
---|
2345 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrEntryMsrLoad;
|
---|
2346 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2347 | }
|
---|
2348 | }
|
---|
2349 |
|
---|
2350 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
|
---|
2351 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
|
---|
2352 |
|
---|
2353 | NOREF(pszInstr);
|
---|
2354 | return VINF_SUCCESS;
|
---|
2355 | }
|
---|
2356 |
|
---|
2357 |
|
---|
2358 | /**
|
---|
2359 | * Checks VM-exit controls fields as part of VM-entry.
|
---|
2360 | * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
|
---|
2361 | *
|
---|
2362 | * @returns VBox status code.
|
---|
2363 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2364 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2365 | */
|
---|
2366 | IEM_STATIC VBOXSTRICTRC iemVmxVmentryCheckExitCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
2367 | {
|
---|
2368 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2369 |
|
---|
2370 | /* VM-exit controls. */
|
---|
2371 | VMXCTLSMSR ExitCtls;
|
---|
2372 | ExitCtls.u = CPUMGetGuestIa32VmxExitCtls(pVCpu);
|
---|
2373 | if (~pVmcs->u32ExitCtls & ExitCtls.n.disallowed0)
|
---|
2374 | {
|
---|
2375 | Log(("%s: Invalid ExitCtls %#RX32 (disallowed0) -> VMFail\n", pszInstr, pVmcs->u32ExitCtls));
|
---|
2376 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ExitCtlsDisallowed0;
|
---|
2377 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2378 | }
|
---|
2379 | if (pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1)
|
---|
2380 | {
|
---|
2381 | Log(("%s: Invalid ExitCtls %#RX32 (allowed1) -> VMFail\n", pszInstr, pVmcs->u32ExitCtls));
|
---|
2382 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ExitCtlsAllowed1;
|
---|
2383 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 | /* Save preemption timer without activating it. */
|
---|
2387 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
|
---|
2388 | && (pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
|
---|
2389 | {
|
---|
2390 | Log(("%s: Save Preempt-Timer without activate Preempt timer -> VMFail\n", pszInstr, pVmcs->u32ExitCtls));
|
---|
2391 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_SavePreemptTimer;
|
---|
2392 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2393 | }
|
---|
2394 |
|
---|
2395 | /* VM-exit MSR-store count and VM-exit MSR-store area address. */
|
---|
2396 | if (pVmcs->u32ExitMsrStoreCount)
|
---|
2397 | {
|
---|
2398 | if ( (pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
2399 | || (pVmcs->u64AddrExitMsrStore.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2400 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
|
---|
2401 | {
|
---|
2402 | Log(("%s: VM-exit MSR-store area address %#RX64 invalid -> VMFail\n", pszInstr, pVmcs->u64AddrExitMsrStore.u));
|
---|
2403 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrExitMsrStore;
|
---|
2404 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2405 | }
|
---|
2406 | }
|
---|
2407 |
|
---|
2408 | /* VM-exit MSR-load count and VM-exit MSR-load area address. */
|
---|
2409 | if (pVmcs->u32ExitMsrLoadCount)
|
---|
2410 | {
|
---|
2411 | if ( (pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
2412 | || (pVmcs->u64AddrExitMsrLoad.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2413 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
|
---|
2414 | {
|
---|
2415 | Log(("%s: VM-exit MSR-store area address %#RX64 invalid -> VMFail\n", pszInstr, pVmcs->u64AddrExitMsrLoad.u));
|
---|
2416 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrExitMsrLoad;
|
---|
2417 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2418 | }
|
---|
2419 | }
|
---|
2420 |
|
---|
2421 | NOREF(pszInstr);
|
---|
2422 | return VINF_SUCCESS;
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 |
|
---|
2426 | /**
|
---|
2427 | * Checks VM-execution controls fields as part of VM-entry.
|
---|
2428 | * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
|
---|
2429 | *
|
---|
2430 | * @returns VBox status code.
|
---|
2431 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2432 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2433 | *
|
---|
2434 | * @remarks This may update secondary-processor based VM-execution control fields
|
---|
2435 | * in the current VMCS if necessary.
|
---|
2436 | */
|
---|
2437 | IEM_STATIC VBOXSTRICTRC iemVmxVmentryCheckExecCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
2438 | {
|
---|
2439 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2440 | /* Pin-based VM-execution controls. */
|
---|
2441 | {
|
---|
2442 | VMXCTLSMSR PinCtls;
|
---|
2443 | PinCtls.u = CPUMGetGuestIa32VmxPinbasedCtls(pVCpu);
|
---|
2444 | if (~pVmcs->u32PinCtls & PinCtls.n.disallowed0)
|
---|
2445 | {
|
---|
2446 | Log(("%s: Invalid PinCtls %#RX32 (disallowed0) -> VMFail\n", pszInstr, pVmcs->u32PinCtls));
|
---|
2447 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_PinCtlsDisallowed0;
|
---|
2448 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2449 | }
|
---|
2450 | if (pVmcs->u32PinCtls & ~PinCtls.n.allowed1)
|
---|
2451 | {
|
---|
2452 | Log(("%s: Invalid PinCtls %#RX32 (allowed1) -> VMFail\n", pszInstr, pVmcs->u32PinCtls));
|
---|
2453 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_PinCtlsAllowed1;
|
---|
2454 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2455 | }
|
---|
2456 | }
|
---|
2457 |
|
---|
2458 | /* Processor-based VM-execution controls. */
|
---|
2459 | {
|
---|
2460 | VMXCTLSMSR ProcCtls;
|
---|
2461 | ProcCtls.u = CPUMGetGuestIa32VmxProcbasedCtls(pVCpu);
|
---|
2462 | if (~pVmcs->u32ProcCtls & ProcCtls.n.disallowed0)
|
---|
2463 | {
|
---|
2464 | Log(("%s: Invalid ProcCtls %#RX32 (disallowed0) -> VMFail\n", pszInstr, pVmcs->u32ProcCtls));
|
---|
2465 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ProcCtlsDisallowed0;
|
---|
2466 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2467 | }
|
---|
2468 | if (pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1)
|
---|
2469 | {
|
---|
2470 | Log(("%s: Invalid ProcCtls %#RX32 (allowed1) -> VMFail\n", pszInstr, pVmcs->u32ProcCtls));
|
---|
2471 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ProcCtlsAllowed1;
|
---|
2472 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2473 | }
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | /* Secondary processor-based VM-execution controls. */
|
---|
2477 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
2478 | {
|
---|
2479 | VMXCTLSMSR ProcCtls2;
|
---|
2480 | ProcCtls2.u = CPUMGetGuestIa32VmxProcbasedCtls(pVCpu);
|
---|
2481 | if (~pVmcs->u32ProcCtls2 & ProcCtls2.n.disallowed0)
|
---|
2482 | {
|
---|
2483 | Log(("%s: Invalid ProcCtls2 %#RX32 (disallowed0) -> VMFail\n", pszInstr, pVmcs->u32ProcCtls2));
|
---|
2484 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ProcCtls2Disallowed0;
|
---|
2485 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2486 | }
|
---|
2487 | if (pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1)
|
---|
2488 | {
|
---|
2489 | Log(("%s: Invalid ProcCtls2 %#RX32 (allowed1) -> VMFail\n", pszInstr, pVmcs->u32ProcCtls2));
|
---|
2490 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ProcCtls2Allowed1;
|
---|
2491 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2492 | }
|
---|
2493 | }
|
---|
2494 | else
|
---|
2495 | {
|
---|
2496 | /*
|
---|
2497 | * The guest is always capable of corrupting the VMCS by writing to the VMCS is guest
|
---|
2498 | * memory directly rather than follow the rules. So we don't make any assumptions that
|
---|
2499 | * u32ProcCtls2 will be 0 if no secondary-processor based VM-execution control support
|
---|
2500 | * is reported to the guest.
|
---|
2501 | */
|
---|
2502 | pVmcs->u32ProcCtls2 = 0;
|
---|
2503 | }
|
---|
2504 |
|
---|
2505 | /* CR3-target count. */
|
---|
2506 | if (pVmcs->u32Cr3TargetCount > VMX_V_CR3_TARGET_COUNT)
|
---|
2507 | {
|
---|
2508 | Log(("%s: CR3-target count exceeded %#x -> VMFail\n", pszInstr, pVmcs->u32Cr3TargetCount));
|
---|
2509 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_Cr3TargetCount;
|
---|
2510 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | /* IO bitmaps physical addresses. */
|
---|
2514 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
2515 | {
|
---|
2516 | if ( (pVmcs->u64AddrIoBitmapA.u & X86_PAGE_4K_OFFSET_MASK)
|
---|
2517 | || (pVmcs->u64AddrIoBitmapA.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2518 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapA.u))
|
---|
2519 | {
|
---|
2520 | Log(("%s: I/O Bitmap A physaddr invalid %#RX64 -> VMFail\n", pszInstr, pVmcs->u64AddrIoBitmapA.u));
|
---|
2521 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrIoBitmapA;
|
---|
2522 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 | if ( (pVmcs->u64AddrIoBitmapB.u & X86_PAGE_4K_OFFSET_MASK)
|
---|
2526 | || (pVmcs->u64AddrIoBitmapB.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2527 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapB.u))
|
---|
2528 | {
|
---|
2529 | Log(("%s: I/O Bitmap B physaddr invalid %#RX64 -> VMFail\n", pszInstr, pVmcs->u64AddrIoBitmapB.u));
|
---|
2530 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrIoBitmapB;
|
---|
2531 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2532 | }
|
---|
2533 | }
|
---|
2534 |
|
---|
2535 | /* MSR bitmap physical address. */
|
---|
2536 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
2537 | {
|
---|
2538 | if ( (pVmcs->u64AddrMsrBitmap.u & X86_PAGE_4K_OFFSET_MASK)
|
---|
2539 | || (pVmcs->u64AddrMsrBitmap.u >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2540 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrMsrBitmap.u))
|
---|
2541 | {
|
---|
2542 | Log(("%s: MSR Bitmap physaddr invalid %#RX64 -> VMFail\n", pszInstr, pVmcs->u64AddrMsrBitmap.u));
|
---|
2543 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrMsrBitmap;
|
---|
2544 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2545 | }
|
---|
2546 | }
|
---|
2547 |
|
---|
2548 | /* TPR shadow related controls. */
|
---|
2549 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
2550 | {
|
---|
2551 | /* Virtual-APIC page physical address. */
|
---|
2552 | RTGCPHYS GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
|
---|
2553 | if ( (GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
|
---|
2554 | || (GCPhysVirtApic >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2555 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
|
---|
2556 | {
|
---|
2557 | Log(("%s: Virtual-APIC page physaddr invalid %#RX64 -> VMFail\n", pszInstr, GCPhysVirtApic));
|
---|
2558 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrVirtApicPage;
|
---|
2559 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2560 | }
|
---|
2561 |
|
---|
2562 | /* Read the Virtual-APIC page. */
|
---|
2563 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
|
---|
2564 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage),
|
---|
2565 | GCPhysVirtApic, VMX_V_VIRT_APIC_PAGES);
|
---|
2566 | if (RT_FAILURE(rc))
|
---|
2567 | {
|
---|
2568 | Log(("%s: Failed to read Virtual-APIC page at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVirtApic, rc));
|
---|
2569 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtApicPagePtrReadPhys;
|
---|
2570 | return rc;
|
---|
2571 | }
|
---|
2572 |
|
---|
2573 | /* TPR threshold without virtual-interrupt delivery. */
|
---|
2574 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
2575 | && (pVmcs->u32TprThreshold & VMX_TPR_THRESHOLD_MASK))
|
---|
2576 | {
|
---|
2577 | Log(("%s: TPR-threshold (%#RX32) invalid -> VMFail\n", pszInstr, pVmcs->u32TprThreshold));
|
---|
2578 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_TprThreshold;
|
---|
2579 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | /* TPR threshold and VTPR. */
|
---|
2583 | uint8_t const *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
|
---|
2584 | uint8_t const u8VTpr = *(pbVirtApic + XAPIC_OFF_TPR);
|
---|
2585 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
2586 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
2587 | && RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) > ((u8VTpr >> 4) & UINT32_C(0xf)) /* Bits 4:7 */)
|
---|
2588 | {
|
---|
2589 | Log(("%s: TPR-threshold (%#x) exceeds VTPR (%#x) -> VMFail\n", pszInstr,
|
---|
2590 | (pVmcs->u32TprThreshold & VMX_TPR_THRESHOLD_MASK), u8VTpr));
|
---|
2591 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_TprThresholdVTpr;
|
---|
2592 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2593 | }
|
---|
2594 | }
|
---|
2595 | else
|
---|
2596 | {
|
---|
2597 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
2598 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
2599 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
2600 | { /* likely */ }
|
---|
2601 | else
|
---|
2602 | {
|
---|
2603 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
2604 | {
|
---|
2605 | Log(("%s: Virtualize x2APIC access without TPR shadowing -> VMFail\n", pszInstr));
|
---|
2606 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtX2ApicTprShadow;
|
---|
2607 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2608 | }
|
---|
2609 | else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
2610 | {
|
---|
2611 | Log(("%s: APIC-register virtualization without TPR shadowing -> VMFail\n", pszInstr));
|
---|
2612 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_ApicRegVirt;
|
---|
2613 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2614 | }
|
---|
2615 | else
|
---|
2616 | {
|
---|
2617 | Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
2618 | Log(("%s: Virtual-interrupt delivery without TPR shadowing -> VMFail\n", pszInstr));
|
---|
2619 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtIntDelivery;
|
---|
2620 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2621 | }
|
---|
2622 | }
|
---|
2623 | }
|
---|
2624 |
|
---|
2625 | /* NMI exiting and virtual-NMIs. */
|
---|
2626 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
|
---|
2627 | && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
2628 | {
|
---|
2629 | Log(("%s: Virtual-NMIs invalid without NMI-exiting -> VMFail\n", pszInstr));
|
---|
2630 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtNmi;
|
---|
2631 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2632 | }
|
---|
2633 |
|
---|
2634 | /* Virtual-NMIs and NMI-window exiting. */
|
---|
2635 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
2636 | && (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
2637 | {
|
---|
2638 | Log(("%s: NMI-window exiting invalid without virtual-NMIs -> VMFail\n", pszInstr));
|
---|
2639 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_NmiWindowExit;
|
---|
2640 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2641 | }
|
---|
2642 |
|
---|
2643 | /* Virtualize APIC accesses. */
|
---|
2644 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
2645 | {
|
---|
2646 | /* APIC-access physical address. */
|
---|
2647 | RTGCPHYS GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
|
---|
2648 | if ( (GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
|
---|
2649 | || (GCPhysApicAccess >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2650 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
|
---|
2651 | {
|
---|
2652 | Log(("%s: APIC-access address invalid %#RX64 -> VMFail\n", pszInstr, GCPhysApicAccess));
|
---|
2653 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrApicAccess;
|
---|
2654 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2655 | }
|
---|
2656 | }
|
---|
2657 |
|
---|
2658 | /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
|
---|
2659 | if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
2660 | && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
|
---|
2661 | {
|
---|
2662 | Log(("%s: Virtualize-APIC access when virtualize-x2APIC mode is enabled -> VMFail", pszInstr));
|
---|
2663 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtX2ApicVirtApic;
|
---|
2664 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2665 | }
|
---|
2666 |
|
---|
2667 | /* Virtual-interrupt delivery requires external interrupt exiting. */
|
---|
2668 | if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
2669 | && !(pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
2670 | {
|
---|
2671 | Log(("%s: Virtual-interrupt delivery without external interrupt exiting -> VMFail\n", pszInstr));
|
---|
2672 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VirtX2ApicVirtApic;
|
---|
2673 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2674 | }
|
---|
2675 |
|
---|
2676 | /* VPID. */
|
---|
2677 | if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
|
---|
2678 | && pVmcs->u16Vpid == 0)
|
---|
2679 | {
|
---|
2680 | Log(("%s: VPID invalid -> VMFail\n", pszInstr));
|
---|
2681 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_Vpid;
|
---|
2682 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2683 | }
|
---|
2684 |
|
---|
2685 | Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
|
---|
2686 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
|
---|
2687 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
|
---|
2688 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
|
---|
2689 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
|
---|
2690 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */
|
---|
2691 |
|
---|
2692 | /* VMCS shadowing. */
|
---|
2693 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
2694 | {
|
---|
2695 | /* VMREAD-bitmap physical address. */
|
---|
2696 | RTGCPHYS GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
2697 | if ( ( GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
2698 | || ( GCPhysVmreadBitmap >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2699 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
|
---|
2700 | {
|
---|
2701 | Log(("%s: VMREAD-bitmap address invalid %#RX64 -> VMFail\n", pszInstr, GCPhysVmreadBitmap));
|
---|
2702 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrVmreadBitmap;
|
---|
2703 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2704 | }
|
---|
2705 |
|
---|
2706 | /* VMWRITE-bitmap physical address. */
|
---|
2707 | RTGCPHYS GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
2708 | if ( ( GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
2709 | || ( GCPhysVmwriteBitmap >> IEM_VMX_MAX_PHYSADDR_WIDTH(pVCpu))
|
---|
2710 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
|
---|
2711 | {
|
---|
2712 | Log(("%s: VMWRITE-bitmap address invalid %#RX64 -> VMFail\n", pszInstr, GCPhysVmwriteBitmap));
|
---|
2713 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_AddrVmwriteBitmap;
|
---|
2714 | return VERR_VMX_VMENTRY_FAILED;
|
---|
2715 | }
|
---|
2716 |
|
---|
2717 | /* Read the VMREAD-bitmap. */
|
---|
2718 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
|
---|
2719 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap),
|
---|
2720 | GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
2721 | if (RT_FAILURE(rc))
|
---|
2722 | {
|
---|
2723 | Log(("%s: Failed to read VMREAD-bitmap at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmreadBitmap, rc));
|
---|
2724 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VmreadBitmapPtrReadPhys;
|
---|
2725 | return rc;
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 | /* Read the VMWRITE-bitmap. */
|
---|
2729 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap));
|
---|
2730 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap),
|
---|
2731 | GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
2732 | if (RT_FAILURE(rc))
|
---|
2733 | {
|
---|
2734 | Log(("%s: Failed to read VMWRITE-bitmap at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmwriteBitmap, rc));
|
---|
2735 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VmwriteBitmapPtrReadPhys;
|
---|
2736 | return rc;
|
---|
2737 | }
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | NOREF(pszInstr);
|
---|
2741 | return VINF_SUCCESS;
|
---|
2742 | }
|
---|
2743 |
|
---|
2744 |
|
---|
2745 | /**
|
---|
2746 | * VMLAUNCH/VMRESUME instruction execution worker.
|
---|
2747 | *
|
---|
2748 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2749 | * @param cbInstr The instruction length.
|
---|
2750 | * @param uInstrId The instruction identity (either VMXINSTRID_VMLAUNCH or
|
---|
2751 | * VMXINSTRID_VMRESUME).
|
---|
2752 | * @param pExitInfo Pointer to the VM-exit instruction information struct.
|
---|
2753 | * Optional, can be NULL.
|
---|
2754 | *
|
---|
2755 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
2756 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
2757 | */
|
---|
2758 | IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPU pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId, PCVMXVEXITINFO pExitInfo)
|
---|
2759 | {
|
---|
2760 | Assert( uInstrId == VMXINSTRID_VMLAUNCH
|
---|
2761 | || uInstrId == VMXINSTRID_VMRESUME);
|
---|
2762 |
|
---|
2763 | const char *pszInstr = uInstrId == VMXINSTRID_VMLAUNCH ? "vmlaunch" : "vmresume";
|
---|
2764 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
2765 | {
|
---|
2766 | RT_NOREF(pExitInfo);
|
---|
2767 | /** @todo NSTVMX: intercept. */
|
---|
2768 | }
|
---|
2769 | Assert(IEM_IS_VMX_ROOT_MODE(pVCpu));
|
---|
2770 |
|
---|
2771 | /* CPL. */
|
---|
2772 | if (pVCpu->iem.s.uCpl > 0)
|
---|
2773 | {
|
---|
2774 | Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
|
---|
2775 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_Cpl;
|
---|
2776 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2777 | }
|
---|
2778 |
|
---|
2779 | /* Current VMCS valid. */
|
---|
2780 | if (!IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
2781 | {
|
---|
2782 | Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
2783 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_PtrInvalid;
|
---|
2784 | iemVmxVmFailInvalid(pVCpu);
|
---|
2785 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2786 | return VINF_SUCCESS;
|
---|
2787 | }
|
---|
2788 |
|
---|
2789 | /** @todo Distinguish block-by-MOV-SS from block-by-STI. Currently we
|
---|
2790 | * use block-by-STI here which is not quite correct. */
|
---|
2791 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
2792 | && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
2793 | {
|
---|
2794 | Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
|
---|
2795 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_BlocKMovSS;
|
---|
2796 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
|
---|
2797 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2798 | return VINF_SUCCESS;
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 | if (uInstrId == VMXINSTRID_VMLAUNCH)
|
---|
2802 | {
|
---|
2803 | /* VMLAUNCH with non-clear VMCS. */
|
---|
2804 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState != VMX_V_VMCS_STATE_CLEAR)
|
---|
2805 | {
|
---|
2806 | Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
|
---|
2807 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VmcsClear;
|
---|
2808 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
|
---|
2809 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2810 | return VINF_SUCCESS;
|
---|
2811 | }
|
---|
2812 | }
|
---|
2813 | else
|
---|
2814 | {
|
---|
2815 | /* VMRESUME with non-launched VMCS. */
|
---|
2816 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState != VMX_V_VMCS_STATE_LAUNCHED)
|
---|
2817 | {
|
---|
2818 | Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
|
---|
2819 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_VmcsLaunch;
|
---|
2820 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
|
---|
2821 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2822 | return VINF_SUCCESS;
|
---|
2823 | }
|
---|
2824 | }
|
---|
2825 |
|
---|
2826 | /*
|
---|
2827 | * Load the current VMCS.
|
---|
2828 | */
|
---|
2829 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
|
---|
2830 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs),
|
---|
2831 | IEM_VMX_GET_CURRENT_VMCS(pVCpu), VMX_V_VMCS_SIZE);
|
---|
2832 | if (RT_FAILURE(rc))
|
---|
2833 | {
|
---|
2834 | Log(("%s: Failed to read VMCS at %#RGp, rc=%Rrc\n", pszInstr, rc));
|
---|
2835 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_PtrReadPhys;
|
---|
2836 | return rc;
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | /*
|
---|
2840 | * Check VM-execution control fields.
|
---|
2841 | */
|
---|
2842 | rc = iemVmxVmentryCheckExecCtls(pVCpu, pszInstr);
|
---|
2843 | if (rc == VINF_SUCCESS)
|
---|
2844 | { /* likely */ }
|
---|
2845 | else
|
---|
2846 | {
|
---|
2847 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
|
---|
2848 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2849 | return VINF_SUCCESS;
|
---|
2850 | }
|
---|
2851 |
|
---|
2852 | /*
|
---|
2853 | * Check VM-exit control fields.
|
---|
2854 | */
|
---|
2855 | rc = iemVmxVmentryCheckExitCtls(pVCpu, pszInstr);
|
---|
2856 | if (rc == VINF_SUCCESS)
|
---|
2857 | { /* likely */ }
|
---|
2858 | else
|
---|
2859 | {
|
---|
2860 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
|
---|
2861 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2862 | return VINF_SUCCESS;
|
---|
2863 | }
|
---|
2864 |
|
---|
2865 | /*
|
---|
2866 | * Check VM-entry control fields.
|
---|
2867 | */
|
---|
2868 | rc = iemVmxVmentryCheckEntryCtls(pVCpu, pszInstr);
|
---|
2869 | if (rc == VINF_SUCCESS)
|
---|
2870 | { /* likely */ }
|
---|
2871 | else
|
---|
2872 | {
|
---|
2873 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
|
---|
2874 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2875 | return VINF_SUCCESS;
|
---|
2876 | }
|
---|
2877 |
|
---|
2878 | /*
|
---|
2879 | * Check host-state fields.
|
---|
2880 | */
|
---|
2881 | rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
|
---|
2882 | if (rc == VINF_SUCCESS)
|
---|
2883 | { /* likely */ }
|
---|
2884 | else
|
---|
2885 | {
|
---|
2886 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
|
---|
2887 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2888 | return VINF_SUCCESS;
|
---|
2889 | }
|
---|
2890 |
|
---|
2891 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmentry_Success;
|
---|
2892 | iemVmxVmSucceed(pVCpu);
|
---|
2893 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2894 | return VERR_IEM_IPE_2;
|
---|
2895 | }
|
---|
2896 |
|
---|
2897 |
|
---|
2898 | /**
|
---|
2899 | * Implements 'VMXON'.
|
---|
2900 | */
|
---|
2901 | IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
|
---|
2902 | {
|
---|
2903 | return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
|
---|
2904 | }
|
---|
2905 |
|
---|
2906 |
|
---|
2907 | /**
|
---|
2908 | * Implements 'VMXOFF'.
|
---|
2909 | *
|
---|
2910 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
2911 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
2912 | */
|
---|
2913 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
2914 | {
|
---|
2915 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
2916 | RT_NOREF2(pVCpu, cbInstr);
|
---|
2917 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
2918 | # else
|
---|
2919 | if (IEM_IS_VMX_NON_ROOT_MODE(pVCpu))
|
---|
2920 | {
|
---|
2921 | /** @todo NSTVMX: intercept. */
|
---|
2922 | }
|
---|
2923 |
|
---|
2924 | /* CPL. */
|
---|
2925 | if (pVCpu->iem.s.uCpl > 0)
|
---|
2926 | {
|
---|
2927 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
2928 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Cpl;
|
---|
2929 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2930 | }
|
---|
2931 |
|
---|
2932 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
2933 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
2934 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
|
---|
2935 | {
|
---|
2936 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
2937 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2938 | return VINF_SUCCESS;
|
---|
2939 | }
|
---|
2940 |
|
---|
2941 | /*
|
---|
2942 | * Record that we're no longer in VMX root operation, block INIT, block and disable A20M.
|
---|
2943 | */
|
---|
2944 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
2945 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
2946 |
|
---|
2947 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
2948 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
2949 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
2950 | /** @todo NSTVMX: Clear address-range monitoring. */
|
---|
2951 |
|
---|
2952 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmInstrDiag = kVmxVInstrDiag_Vmxoff_Success;
|
---|
2953 | iemVmxVmSucceed(pVCpu);
|
---|
2954 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
2955 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
2956 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
2957 | # else
|
---|
2958 | return VINF_SUCCESS;
|
---|
2959 | # endif
|
---|
2960 | # endif
|
---|
2961 | }
|
---|
2962 |
|
---|
2963 |
|
---|
2964 | /**
|
---|
2965 | * Implements 'VMLAUNCH'.
|
---|
2966 | */
|
---|
2967 | IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
|
---|
2968 | {
|
---|
2969 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH, NULL /* pExitInfo */);
|
---|
2970 | }
|
---|
2971 |
|
---|
2972 |
|
---|
2973 | /**
|
---|
2974 | * Implements 'VMRESUME'.
|
---|
2975 | */
|
---|
2976 | IEM_CIMPL_DEF_0(iemCImpl_vmresume)
|
---|
2977 | {
|
---|
2978 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME, NULL /* pExitInfo */);
|
---|
2979 | }
|
---|
2980 |
|
---|
2981 |
|
---|
2982 | /**
|
---|
2983 | * Implements 'VMPTRLD'.
|
---|
2984 | */
|
---|
2985 | IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
2986 | {
|
---|
2987 | return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 |
|
---|
2991 | /**
|
---|
2992 | * Implements 'VMPTRST'.
|
---|
2993 | */
|
---|
2994 | IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
2995 | {
|
---|
2996 | return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
2997 | }
|
---|
2998 |
|
---|
2999 |
|
---|
3000 | /**
|
---|
3001 | * Implements 'VMCLEAR'.
|
---|
3002 | */
|
---|
3003 | IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
3004 | {
|
---|
3005 | return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
3006 | }
|
---|
3007 |
|
---|
3008 |
|
---|
3009 | /**
|
---|
3010 | * Implements 'VMWRITE' register.
|
---|
3011 | */
|
---|
3012 | IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64FieldEnc)
|
---|
3013 | {
|
---|
3014 | return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, IEMMODE_64BIT /* N/A */, u64Val, u64FieldEnc,
|
---|
3015 | NULL /* pExitInfo */);
|
---|
3016 | }
|
---|
3017 |
|
---|
3018 |
|
---|
3019 | /**
|
---|
3020 | * Implements 'VMWRITE' memory.
|
---|
3021 | */
|
---|
3022 | IEM_CIMPL_DEF_4(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrVal, uint32_t, u64FieldEnc)
|
---|
3023 | {
|
---|
3024 | return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrVal, u64FieldEnc, NULL /* pExitInfo */);
|
---|
3025 | }
|
---|
3026 |
|
---|
3027 |
|
---|
3028 | /**
|
---|
3029 | * Implements 'VMREAD' 64-bit register.
|
---|
3030 | */
|
---|
3031 | IEM_CIMPL_DEF_2(iemCImpl_vmread64_reg, uint64_t *, pu64Dst, uint64_t, u64FieldEnc)
|
---|
3032 | {
|
---|
3033 | return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, NULL /* pExitInfo */);
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 |
|
---|
3037 | /**
|
---|
3038 | * Implements 'VMREAD' 32-bit register.
|
---|
3039 | */
|
---|
3040 | IEM_CIMPL_DEF_2(iemCImpl_vmread32_reg, uint32_t *, pu32Dst, uint32_t, u32FieldEnc)
|
---|
3041 | {
|
---|
3042 | return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32FieldEnc, NULL /* pExitInfo */);
|
---|
3043 | }
|
---|
3044 |
|
---|
3045 |
|
---|
3046 | /**
|
---|
3047 | * Implements 'VMREAD' memory.
|
---|
3048 | */
|
---|
3049 | IEM_CIMPL_DEF_4(iemCImpl_vmread_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u64FieldEnc)
|
---|
3050 | {
|
---|
3051 | return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u64FieldEnc, NULL /* pExitInfo */);
|
---|
3052 | }
|
---|
3053 |
|
---|
3054 | #endif
|
---|
3055 |
|
---|