1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 74591 2018-10-03 05:04:09Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
20 | /** @todo NSTVMX: The following VM-exit intercepts are pending:
|
---|
21 | * VMX_EXIT_XCPT_OR_NMI
|
---|
22 | * VMX_EXIT_EXT_INT
|
---|
23 | * VMX_EXIT_TRIPLE_FAULT
|
---|
24 | * VMX_EXIT_INIT_SIGNAL
|
---|
25 | * VMX_EXIT_SIPI
|
---|
26 | * VMX_EXIT_IO_SMI
|
---|
27 | * VMX_EXIT_SMI
|
---|
28 | * VMX_EXIT_INT_WINDOW
|
---|
29 | * VMX_EXIT_NMI_WINDOW
|
---|
30 | * VMX_EXIT_TASK_SWITCH
|
---|
31 | * VMX_EXIT_GETSEC
|
---|
32 | * VMX_EXIT_INVD
|
---|
33 | * VMX_EXIT_RSM
|
---|
34 | * VMX_EXIT_MOV_CRX
|
---|
35 | * VMX_EXIT_MOV_DRX
|
---|
36 | * VMX_EXIT_IO_INSTR
|
---|
37 | * VMX_EXIT_MWAIT
|
---|
38 | * VMX_EXIT_MTF
|
---|
39 | * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
|
---|
40 | * VMX_EXIT_PAUSE
|
---|
41 | * VMX_EXIT_ERR_MACHINE_CHECK
|
---|
42 | * VMX_EXIT_TPR_BELOW_THRESHOLD
|
---|
43 | * VMX_EXIT_APIC_ACCESS
|
---|
44 | * VMX_EXIT_VIRTUALIZED_EOI
|
---|
45 | * VMX_EXIT_LDTR_TR_ACCESS
|
---|
46 | * VMX_EXIT_EPT_VIOLATION
|
---|
47 | * VMX_EXIT_EPT_MISCONFIG
|
---|
48 | * VMX_EXIT_INVEPT
|
---|
49 | * VMX_EXIT_PREEMPT_TIMER
|
---|
50 | * VMX_EXIT_INVVPID
|
---|
51 | * VMX_EXIT_WBINVD
|
---|
52 | * VMX_EXIT_XSETBV
|
---|
53 | * VMX_EXIT_APIC_WRITE
|
---|
54 | * VMX_EXIT_RDRAND
|
---|
55 | * VMX_EXIT_VMFUNC
|
---|
56 | * VMX_EXIT_ENCLS
|
---|
57 | * VMX_EXIT_RDSEED
|
---|
58 | * VMX_EXIT_PML_FULL
|
---|
59 | * VMX_EXIT_XSAVES
|
---|
60 | * VMX_EXIT_XRSTORS
|
---|
61 | */
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Map of VMCS field encodings to their virtual-VMCS structure offsets.
|
---|
65 | *
|
---|
66 | * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
|
---|
67 | * second dimension is the Index, see VMXVMCSFIELDENC.
|
---|
68 | */
|
---|
69 | uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
|
---|
70 | {
|
---|
71 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
72 | {
|
---|
73 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u16Vpid),
|
---|
74 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
|
---|
75 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u16EptpIndex),
|
---|
76 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
77 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
78 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
79 | },
|
---|
80 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
81 | {
|
---|
82 | /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
83 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
84 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
85 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
86 | },
|
---|
87 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
88 | {
|
---|
89 | /* 0 */ RT_OFFSETOF(VMXVVMCS, GuestEs),
|
---|
90 | /* 1 */ RT_OFFSETOF(VMXVVMCS, GuestCs),
|
---|
91 | /* 2 */ RT_OFFSETOF(VMXVVMCS, GuestSs),
|
---|
92 | /* 3 */ RT_OFFSETOF(VMXVVMCS, GuestDs),
|
---|
93 | /* 4 */ RT_OFFSETOF(VMXVVMCS, GuestFs),
|
---|
94 | /* 5 */ RT_OFFSETOF(VMXVVMCS, GuestGs),
|
---|
95 | /* 6 */ RT_OFFSETOF(VMXVVMCS, GuestLdtr),
|
---|
96 | /* 7 */ RT_OFFSETOF(VMXVVMCS, GuestTr),
|
---|
97 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u16GuestIntStatus),
|
---|
98 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u16PmlIndex),
|
---|
99 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
100 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
101 | },
|
---|
102 | /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
103 | {
|
---|
104 | /* 0 */ RT_OFFSETOF(VMXVVMCS, HostEs),
|
---|
105 | /* 1 */ RT_OFFSETOF(VMXVVMCS, HostCs),
|
---|
106 | /* 2 */ RT_OFFSETOF(VMXVVMCS, HostSs),
|
---|
107 | /* 3 */ RT_OFFSETOF(VMXVVMCS, HostDs),
|
---|
108 | /* 4 */ RT_OFFSETOF(VMXVVMCS, HostFs),
|
---|
109 | /* 5 */ RT_OFFSETOF(VMXVVMCS, HostGs),
|
---|
110 | /* 6 */ RT_OFFSETOF(VMXVVMCS, HostTr),
|
---|
111 | /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
112 | /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
113 | /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
114 | },
|
---|
115 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
116 | {
|
---|
117 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
|
---|
118 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
|
---|
119 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
|
---|
120 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
|
---|
121 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
|
---|
122 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
|
---|
123 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
|
---|
124 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64AddrPml),
|
---|
125 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64TscOffset),
|
---|
126 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64AddrVirtApic),
|
---|
127 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64AddrApicAccess),
|
---|
128 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
|
---|
129 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64VmFuncCtls),
|
---|
130 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64EptpPtr),
|
---|
131 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
|
---|
132 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
|
---|
133 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
|
---|
134 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
|
---|
135 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64AddrEptpList),
|
---|
136 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
|
---|
137 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
|
---|
138 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
|
---|
139 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u64AddrXssBitmap),
|
---|
140 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u64AddrEnclsBitmap),
|
---|
141 | /* 24 */ UINT16_MAX,
|
---|
142 | /* 25 */ RT_OFFSETOF(VMXVVMCS, u64TscMultiplier)
|
---|
143 | },
|
---|
144 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
145 | {
|
---|
146 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
|
---|
147 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
148 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
149 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
150 | /* 25 */ UINT16_MAX
|
---|
151 | },
|
---|
152 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
153 | {
|
---|
154 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
|
---|
155 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
|
---|
156 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestPatMsr),
|
---|
157 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEferMsr),
|
---|
158 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
|
---|
159 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte0),
|
---|
160 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte1),
|
---|
161 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte2),
|
---|
162 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestPdpte3),
|
---|
163 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
|
---|
164 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
165 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
166 | },
|
---|
167 | /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
168 | {
|
---|
169 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostPatMsr),
|
---|
170 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostEferMsr),
|
---|
171 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
|
---|
172 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
173 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
174 | /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
175 | },
|
---|
176 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
177 | {
|
---|
178 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32PinCtls),
|
---|
179 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls),
|
---|
180 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32XcptBitmap),
|
---|
181 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMask),
|
---|
182 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32XcptPFMatch),
|
---|
183 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32Cr3TargetCount),
|
---|
184 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32ExitCtls),
|
---|
185 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
|
---|
186 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
|
---|
187 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32EntryCtls),
|
---|
188 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
|
---|
189 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32EntryIntInfo),
|
---|
190 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
|
---|
191 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32EntryInstrLen),
|
---|
192 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32TprThreshold),
|
---|
193 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32ProcCtls2),
|
---|
194 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32PleGap),
|
---|
195 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32PleWindow),
|
---|
196 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
197 | },
|
---|
198 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
199 | {
|
---|
200 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32RoVmInstrError),
|
---|
201 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32RoExitReason),
|
---|
202 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32RoExitIntInfo),
|
---|
203 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32RoExitErrCode),
|
---|
204 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
|
---|
205 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
|
---|
206 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32RoExitInstrLen),
|
---|
207 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
|
---|
208 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
209 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
210 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
211 | },
|
---|
212 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
213 | {
|
---|
214 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
215 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsLimit),
|
---|
216 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsLimit),
|
---|
217 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsLimit),
|
---|
218 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
219 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsLimit),
|
---|
220 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsLimit),
|
---|
221 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
|
---|
222 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrLimit),
|
---|
223 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
|
---|
224 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
|
---|
225 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u32GuestEsAttr),
|
---|
226 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u32GuestCsAttr),
|
---|
227 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u32GuestSsAttr),
|
---|
228 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u32GuestDsAttr),
|
---|
229 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u32GuestFsAttr),
|
---|
230 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u32GuestGsAttr),
|
---|
231 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
|
---|
232 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u32GuestTrAttr),
|
---|
233 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u32GuestIntrState),
|
---|
234 | /* 20 */ RT_OFFSETOF(VMXVVMCS, u32GuestActivityState),
|
---|
235 | /* 21 */ RT_OFFSETOF(VMXVVMCS, u32GuestSmBase),
|
---|
236 | /* 22 */ RT_OFFSETOF(VMXVVMCS, u32GuestSysenterCS),
|
---|
237 | /* 23 */ RT_OFFSETOF(VMXVVMCS, u32PreemptTimer),
|
---|
238 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
239 | },
|
---|
240 | /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
241 | {
|
---|
242 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u32HostSysenterCs),
|
---|
243 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
244 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
245 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
246 | /* 25 */ UINT16_MAX
|
---|
247 | },
|
---|
248 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */
|
---|
249 | {
|
---|
250 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64Cr0Mask),
|
---|
251 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64Cr4Mask),
|
---|
252 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
|
---|
253 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
|
---|
254 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target0),
|
---|
255 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target1),
|
---|
256 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target2),
|
---|
257 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64Cr3Target3),
|
---|
258 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
259 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
260 | /* 24-25 */ UINT16_MAX, UINT16_MAX
|
---|
261 | },
|
---|
262 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
|
---|
263 | {
|
---|
264 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64RoExitQual),
|
---|
265 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64RoIoRcx),
|
---|
266 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64RoIoRsi),
|
---|
267 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64RoIoRdi),
|
---|
268 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64RoIoRip),
|
---|
269 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
|
---|
270 | /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
271 | /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
272 | /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
273 | },
|
---|
274 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
|
---|
275 | {
|
---|
276 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr0),
|
---|
277 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr3),
|
---|
278 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64GuestCr4),
|
---|
279 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64GuestEsBase),
|
---|
280 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64GuestCsBase),
|
---|
281 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64GuestSsBase),
|
---|
282 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64GuestDsBase),
|
---|
283 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64GuestFsBase),
|
---|
284 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64GuestGsBase),
|
---|
285 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64GuestLdtrBase),
|
---|
286 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64GuestTrBase),
|
---|
287 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64GuestGdtrBase),
|
---|
288 | /* 12 */ RT_OFFSETOF(VMXVVMCS, u64GuestIdtrBase),
|
---|
289 | /* 13 */ RT_OFFSETOF(VMXVVMCS, u64GuestDr7),
|
---|
290 | /* 14 */ RT_OFFSETOF(VMXVVMCS, u64GuestRsp),
|
---|
291 | /* 15 */ RT_OFFSETOF(VMXVVMCS, u64GuestRip),
|
---|
292 | /* 16 */ RT_OFFSETOF(VMXVVMCS, u64GuestRFlags),
|
---|
293 | /* 17 */ RT_OFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt),
|
---|
294 | /* 18 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
|
---|
295 | /* 19 */ RT_OFFSETOF(VMXVVMCS, u64GuestSysenterEip),
|
---|
296 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
297 | },
|
---|
298 | /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */
|
---|
299 | {
|
---|
300 | /* 0 */ RT_OFFSETOF(VMXVVMCS, u64HostCr0),
|
---|
301 | /* 1 */ RT_OFFSETOF(VMXVVMCS, u64HostCr3),
|
---|
302 | /* 2 */ RT_OFFSETOF(VMXVVMCS, u64HostCr4),
|
---|
303 | /* 3 */ RT_OFFSETOF(VMXVVMCS, u64HostFsBase),
|
---|
304 | /* 4 */ RT_OFFSETOF(VMXVVMCS, u64HostGsBase),
|
---|
305 | /* 5 */ RT_OFFSETOF(VMXVVMCS, u64HostTrBase),
|
---|
306 | /* 6 */ RT_OFFSETOF(VMXVVMCS, u64HostGdtrBase),
|
---|
307 | /* 7 */ RT_OFFSETOF(VMXVVMCS, u64HostIdtrBase),
|
---|
308 | /* 8 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEsp),
|
---|
309 | /* 9 */ RT_OFFSETOF(VMXVVMCS, u64HostSysenterEip),
|
---|
310 | /* 10 */ RT_OFFSETOF(VMXVVMCS, u64HostRsp),
|
---|
311 | /* 11 */ RT_OFFSETOF(VMXVVMCS, u64HostRip),
|
---|
312 | /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
313 | /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
314 | }
|
---|
315 | };
|
---|
316 |
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
320 | * relative offsets.
|
---|
321 | */
|
---|
322 | # ifdef IEM_WITH_CODE_TLB
|
---|
323 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
324 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
325 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
326 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
327 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
328 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
329 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
330 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
331 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
332 | # else /* !IEM_WITH_CODE_TLB */
|
---|
333 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
334 | do \
|
---|
335 | { \
|
---|
336 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
337 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
338 | } while (0)
|
---|
339 |
|
---|
340 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
341 |
|
---|
342 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
343 | do \
|
---|
344 | { \
|
---|
345 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
346 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
347 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
348 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
349 | } while (0)
|
---|
350 |
|
---|
351 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
352 | do \
|
---|
353 | { \
|
---|
354 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
355 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
356 | } while (0)
|
---|
357 |
|
---|
358 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
359 | do \
|
---|
360 | { \
|
---|
361 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
362 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
363 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
364 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
365 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
366 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
367 | } while (0)
|
---|
368 |
|
---|
369 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
370 | do \
|
---|
371 | { \
|
---|
372 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
373 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
374 | } while (0)
|
---|
375 |
|
---|
376 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
377 | do \
|
---|
378 | { \
|
---|
379 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
380 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
381 | } while (0)
|
---|
382 |
|
---|
383 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
384 | do \
|
---|
385 | { \
|
---|
386 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
387 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
388 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
389 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
390 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
391 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
392 | } while (0)
|
---|
393 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
394 |
|
---|
395 | /** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
|
---|
396 | #define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
|
---|
397 |
|
---|
398 | /** Whether a shadow VMCS is present for the given VCPU. */
|
---|
399 | #define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
400 |
|
---|
401 | /** Gets the VMXON region pointer. */
|
---|
402 | #define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
403 |
|
---|
404 | /** Gets the guest-physical address of the current VMCS for the given VCPU. */
|
---|
405 | #define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
|
---|
406 |
|
---|
407 | /** Whether a current VMCS is present for the given VCPU. */
|
---|
408 | #define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
409 |
|
---|
410 | /** Assigns the guest-physical address of the current VMCS for the given VCPU. */
|
---|
411 | #define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
|
---|
412 | do \
|
---|
413 | { \
|
---|
414 | Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
|
---|
415 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
|
---|
416 | } while (0)
|
---|
417 |
|
---|
418 | /** Clears any current VMCS for the given VCPU. */
|
---|
419 | #define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
|
---|
420 | do \
|
---|
421 | { \
|
---|
422 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
|
---|
423 | } while (0)
|
---|
424 |
|
---|
425 | /** Check for VMX instructions requiring to be in VMX operation.
|
---|
426 | * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs udpating. */
|
---|
427 | #define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
|
---|
428 | do \
|
---|
429 | { \
|
---|
430 | if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
|
---|
431 | { /* likely */ } \
|
---|
432 | else \
|
---|
433 | { \
|
---|
434 | Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
|
---|
435 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
|
---|
436 | return iemRaiseUndefinedOpcode(a_pVCpu); \
|
---|
437 | } \
|
---|
438 | } while (0)
|
---|
439 |
|
---|
440 | /** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
|
---|
441 | #define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
|
---|
442 | do \
|
---|
443 | { \
|
---|
444 | Log(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
|
---|
445 | HMVmxGetDiagDesc(a_VmxDiag), (a_pszFailure))); \
|
---|
446 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
|
---|
447 | return VERR_VMX_VMENTRY_FAILED; \
|
---|
448 | } while (0)
|
---|
449 |
|
---|
450 | /** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
|
---|
451 | #define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
|
---|
452 | do \
|
---|
453 | { \
|
---|
454 | Log(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
|
---|
455 | HMVmxGetDiagDesc(a_VmxDiag), (a_pszFailure))); \
|
---|
456 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
|
---|
457 | return VERR_VMX_VMEXIT_FAILED; \
|
---|
458 | } while (0)
|
---|
459 |
|
---|
460 |
|
---|
461 |
|
---|
462 | /**
|
---|
463 | * Returns whether the given VMCS field is valid and supported by our emulation.
|
---|
464 | *
|
---|
465 | * @param pVCpu The cross context virtual CPU structure.
|
---|
466 | * @param u64FieldEnc The VMCS field encoding.
|
---|
467 | *
|
---|
468 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
469 | */
|
---|
470 | IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint64_t u64FieldEnc)
|
---|
471 | {
|
---|
472 | uint32_t const uFieldEncHi = RT_HI_U32(u64FieldEnc);
|
---|
473 | uint32_t const uFieldEncLo = RT_LO_U32(u64FieldEnc);
|
---|
474 | if (!uFieldEncHi)
|
---|
475 | { /* likely */ }
|
---|
476 | else
|
---|
477 | return false;
|
---|
478 |
|
---|
479 | PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
|
---|
480 | switch (uFieldEncLo)
|
---|
481 | {
|
---|
482 | /*
|
---|
483 | * 16-bit fields.
|
---|
484 | */
|
---|
485 | /* Control fields. */
|
---|
486 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
487 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
488 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
489 |
|
---|
490 | /* Guest-state fields. */
|
---|
491 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
492 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
493 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
494 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
495 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
496 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
497 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
498 | case VMX_VMCS16_GUEST_TR_SEL:
|
---|
499 | case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
|
---|
500 | case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
|
---|
501 |
|
---|
502 | /* Host-state fields. */
|
---|
503 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
504 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
505 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
506 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
507 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
508 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
509 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
510 |
|
---|
511 | /*
|
---|
512 | * 64-bit fields.
|
---|
513 | */
|
---|
514 | /* Control fields. */
|
---|
515 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
516 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
517 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
518 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
519 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
520 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
521 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
522 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
523 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
524 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
525 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
526 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
527 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
528 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
529 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
530 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
|
---|
531 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
532 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
533 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
534 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
535 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
536 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
537 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
538 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
539 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
540 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
541 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
542 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
543 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
544 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
545 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
546 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
547 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
548 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
549 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
550 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
551 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
552 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
553 | {
|
---|
554 | uint64_t const uVmFuncMsr = CPUMGetGuestIa32VmxVmFunc(pVCpu);
|
---|
555 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
556 | }
|
---|
557 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
558 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
559 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
560 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
561 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
|
---|
562 | case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
563 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
564 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
565 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
|
---|
566 | case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
|
---|
567 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
568 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
569 |
|
---|
570 | /* Read-only data fields. */
|
---|
571 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
572 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
573 |
|
---|
574 | /* Guest-state fields. */
|
---|
575 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
576 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
577 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
578 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
579 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
580 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
581 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
582 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
583 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
584 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
585 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
586 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
587 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
588 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
589 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
590 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
591 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
592 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
593 | case VMX_VMCS64_GUEST_BNDCFGS_FULL:
|
---|
594 | case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
|
---|
595 |
|
---|
596 | /* Host-state fields. */
|
---|
597 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
598 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
599 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
600 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
601 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
602 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
|
---|
603 |
|
---|
604 | /*
|
---|
605 | * 32-bit fields.
|
---|
606 | */
|
---|
607 | /* Control fields. */
|
---|
608 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
609 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
610 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
611 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
612 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
613 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
614 | case VMX_VMCS32_CTRL_EXIT:
|
---|
615 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
616 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
617 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
618 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
619 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
620 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
621 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
622 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
623 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
624 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
625 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
626 |
|
---|
627 | /* Read-only data fields. */
|
---|
628 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
629 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
630 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
631 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
632 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
633 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
634 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
635 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
636 |
|
---|
637 | /* Guest-state fields. */
|
---|
638 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
639 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
640 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
641 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
642 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
643 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
644 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
645 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
646 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
647 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
648 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
649 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
650 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
651 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
652 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
653 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
654 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
655 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
656 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
657 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
658 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
659 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
660 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
661 |
|
---|
662 | /* Host-state fields. */
|
---|
663 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
664 |
|
---|
665 | /*
|
---|
666 | * Natural-width fields.
|
---|
667 | */
|
---|
668 | /* Control fields. */
|
---|
669 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
670 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
671 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
672 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
673 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
674 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
675 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
676 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
677 |
|
---|
678 | /* Read-only data fields. */
|
---|
679 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
680 | case VMX_VMCS_RO_IO_RCX:
|
---|
681 | case VMX_VMCS_RO_IO_RSX:
|
---|
682 | case VMX_VMCS_RO_IO_RDI:
|
---|
683 | case VMX_VMCS_RO_IO_RIP:
|
---|
684 | case VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR: return true;
|
---|
685 |
|
---|
686 | /* Guest-state fields. */
|
---|
687 | case VMX_VMCS_GUEST_CR0:
|
---|
688 | case VMX_VMCS_GUEST_CR3:
|
---|
689 | case VMX_VMCS_GUEST_CR4:
|
---|
690 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
691 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
692 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
693 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
694 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
695 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
696 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
697 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
698 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
699 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
700 | case VMX_VMCS_GUEST_DR7:
|
---|
701 | case VMX_VMCS_GUEST_RSP:
|
---|
702 | case VMX_VMCS_GUEST_RIP:
|
---|
703 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
704 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
705 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
706 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
707 |
|
---|
708 | /* Host-state fields. */
|
---|
709 | case VMX_VMCS_HOST_CR0:
|
---|
710 | case VMX_VMCS_HOST_CR3:
|
---|
711 | case VMX_VMCS_HOST_CR4:
|
---|
712 | case VMX_VMCS_HOST_FS_BASE:
|
---|
713 | case VMX_VMCS_HOST_GS_BASE:
|
---|
714 | case VMX_VMCS_HOST_TR_BASE:
|
---|
715 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
716 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
717 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
718 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
719 | case VMX_VMCS_HOST_RSP:
|
---|
720 | case VMX_VMCS_HOST_RIP: return true;
|
---|
721 | }
|
---|
722 |
|
---|
723 | return false;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | /**
|
---|
728 | * Gets a host selector from the VMCS.
|
---|
729 | *
|
---|
730 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
731 | * @param iSelReg The index of the segment register (X86_SREG_XXX).
|
---|
732 | */
|
---|
733 | DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
|
---|
734 | {
|
---|
735 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
736 | RTSEL HostSel;
|
---|
737 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
|
---|
738 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
739 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
740 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
|
---|
741 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
742 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
743 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
744 | uint8_t const *pbField = pbVmcs + offField;
|
---|
745 | HostSel = *(uint16_t *)pbField;
|
---|
746 | return HostSel;
|
---|
747 | }
|
---|
748 |
|
---|
749 |
|
---|
750 | /**
|
---|
751 | * Sets a guest segment register in the VMCS.
|
---|
752 | *
|
---|
753 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
754 | * @param iSegReg The index of the segment register (X86_SREG_XXX).
|
---|
755 | * @param pSelReg Pointer to the segment register.
|
---|
756 | */
|
---|
757 | IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
|
---|
758 | {
|
---|
759 | Assert(pSelReg);
|
---|
760 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
761 |
|
---|
762 | /* Selector. */
|
---|
763 | {
|
---|
764 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
|
---|
765 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
766 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
767 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
|
---|
768 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
769 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
770 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
771 | uint8_t *pbField = pbVmcs + offField;
|
---|
772 | *(uint16_t *)pbField = pSelReg->Sel;
|
---|
773 | }
|
---|
774 |
|
---|
775 | /* Limit. */
|
---|
776 | {
|
---|
777 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
|
---|
778 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
779 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
780 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
|
---|
781 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
782 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
783 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
784 | uint8_t *pbField = pbVmcs + offField;
|
---|
785 | *(uint32_t *)pbField = pSelReg->u32Limit;
|
---|
786 | }
|
---|
787 |
|
---|
788 | /* Base. */
|
---|
789 | {
|
---|
790 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
|
---|
791 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
792 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
793 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
|
---|
794 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
795 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
796 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
797 | uint8_t const *pbField = pbVmcs + offField;
|
---|
798 | *(uint64_t *)pbField = pSelReg->u64Base;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /* Attributes. */
|
---|
802 | {
|
---|
803 | uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
|
---|
804 | | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
805 | | X86DESCATTR_UNUSABLE;
|
---|
806 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
|
---|
807 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
808 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
809 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
|
---|
810 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
811 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
812 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
813 | uint8_t *pbField = pbVmcs + offField;
|
---|
814 | *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
|
---|
815 | }
|
---|
816 | }
|
---|
817 |
|
---|
818 |
|
---|
819 | /**
|
---|
820 | * Gets a guest segment register from the VMCS.
|
---|
821 | *
|
---|
822 | * @returns VBox status code.
|
---|
823 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
824 | * @param iSegReg The index of the segment register (X86_SREG_XXX).
|
---|
825 | * @param pSelReg Where to store the segment register (only updated when
|
---|
826 | * VINF_SUCCESS is returned).
|
---|
827 | *
|
---|
828 | * @remarks Warning! This does not validate the contents of the retreived segment
|
---|
829 | * register.
|
---|
830 | */
|
---|
831 | IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
|
---|
832 | {
|
---|
833 | Assert(pSelReg);
|
---|
834 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
835 |
|
---|
836 | /* Selector. */
|
---|
837 | uint16_t u16Sel;
|
---|
838 | {
|
---|
839 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
|
---|
840 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
841 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
842 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
|
---|
843 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
844 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
845 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
846 | uint8_t const *pbField = pbVmcs + offField;
|
---|
847 | u16Sel = *(uint16_t *)pbField;
|
---|
848 | }
|
---|
849 |
|
---|
850 | /* Limit. */
|
---|
851 | uint32_t u32Limit;
|
---|
852 | {
|
---|
853 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
|
---|
854 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
855 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
856 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
|
---|
857 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
858 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
859 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
860 | uint8_t const *pbField = pbVmcs + offField;
|
---|
861 | u32Limit = *(uint32_t *)pbField;
|
---|
862 | }
|
---|
863 |
|
---|
864 | /* Base. */
|
---|
865 | uint64_t u64Base;
|
---|
866 | {
|
---|
867 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
|
---|
868 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
869 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
870 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
|
---|
871 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
872 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
873 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
874 | uint8_t const *pbField = pbVmcs + offField;
|
---|
875 | u64Base = *(uint64_t *)pbField;
|
---|
876 | /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
|
---|
877 | }
|
---|
878 |
|
---|
879 | /* Attributes. */
|
---|
880 | uint32_t u32Attr;
|
---|
881 | {
|
---|
882 | uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
|
---|
883 | uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
|
---|
884 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
885 | uint8_t const uIndex = (iSegReg << 1) + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
|
---|
886 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
887 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
888 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
889 | uint8_t const *pbField = pbVmcs + offField;
|
---|
890 | u32Attr = *(uint32_t *)pbField;
|
---|
891 | }
|
---|
892 |
|
---|
893 | pSelReg->Sel = u16Sel;
|
---|
894 | pSelReg->ValidSel = u16Sel;
|
---|
895 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
896 | pSelReg->u32Limit = u32Limit;
|
---|
897 | pSelReg->u64Base = u64Base;
|
---|
898 | pSelReg->Attr.u = u32Attr;
|
---|
899 | return VINF_SUCCESS;
|
---|
900 | }
|
---|
901 |
|
---|
902 |
|
---|
903 | /**
|
---|
904 | * Gets VM-exit instruction information along with any displacement for an
|
---|
905 | * instruction VM-exit.
|
---|
906 | *
|
---|
907 | * @returns The VM-exit instruction information.
|
---|
908 | * @param pVCpu The cross context virtual CPU structure.
|
---|
909 | * @param uExitReason The VM-exit reason.
|
---|
910 | * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
|
---|
911 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
912 | * NULL.
|
---|
913 | */
|
---|
914 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
|
---|
915 | {
|
---|
916 | RTGCPTR GCPtrDisp;
|
---|
917 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
918 | ExitInstrInfo.u = 0;
|
---|
919 |
|
---|
920 | /*
|
---|
921 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
922 | */
|
---|
923 | uint8_t bRm;
|
---|
924 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
925 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
926 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
927 | {
|
---|
928 | /*
|
---|
929 | * ModR/M indicates register addressing.
|
---|
930 | *
|
---|
931 | * The primary/secondary register operands are reported in the iReg1 or iReg2
|
---|
932 | * fields depending on whether it is a read/write form.
|
---|
933 | */
|
---|
934 | uint8_t idxReg1;
|
---|
935 | uint8_t idxReg2;
|
---|
936 | if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
|
---|
937 | {
|
---|
938 | idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
939 | idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
940 | }
|
---|
941 | else
|
---|
942 | {
|
---|
943 | idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
944 | idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
945 | }
|
---|
946 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
947 | ExitInstrInfo.All.iReg1 = idxReg1;
|
---|
948 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
949 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
950 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
951 | ExitInstrInfo.All.iSegReg = 0;
|
---|
952 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
953 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
954 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
955 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
956 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
957 |
|
---|
958 | /* Displacement not applicable for register addressing. */
|
---|
959 | GCPtrDisp = 0;
|
---|
960 | }
|
---|
961 | else
|
---|
962 | {
|
---|
963 | /*
|
---|
964 | * ModR/M indicates memory addressing.
|
---|
965 | */
|
---|
966 | uint8_t uScale = 0;
|
---|
967 | bool fBaseRegValid = false;
|
---|
968 | bool fIdxRegValid = false;
|
---|
969 | uint8_t iBaseReg = 0;
|
---|
970 | uint8_t iIdxReg = 0;
|
---|
971 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
972 | {
|
---|
973 | /*
|
---|
974 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
975 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
976 | */
|
---|
977 | uint16_t u16Disp = 0;
|
---|
978 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
979 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
980 | {
|
---|
981 | /* Displacement without any registers. */
|
---|
982 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
983 | }
|
---|
984 | else
|
---|
985 | {
|
---|
986 | /* Register (index and base). */
|
---|
987 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
988 | {
|
---|
989 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
990 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
991 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
992 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
993 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
994 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
995 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
996 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
997 | }
|
---|
998 |
|
---|
999 | /* Register + displacement. */
|
---|
1000 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
1001 | {
|
---|
1002 | case 0: break;
|
---|
1003 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
1004 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
1005 | default:
|
---|
1006 | {
|
---|
1007 | /* Register addressing, handled at the beginning. */
|
---|
1008 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
1009 | break;
|
---|
1010 | }
|
---|
1011 | }
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
1015 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
1016 | }
|
---|
1017 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
1018 | {
|
---|
1019 | /*
|
---|
1020 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
1021 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
1022 | */
|
---|
1023 | uint32_t u32Disp = 0;
|
---|
1024 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
1025 | {
|
---|
1026 | /* Displacement without any registers. */
|
---|
1027 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
1028 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
1029 | }
|
---|
1030 | else
|
---|
1031 | {
|
---|
1032 | /* Register (and perhaps scale, index and base). */
|
---|
1033 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
1034 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
1035 | if (iBaseReg == 4)
|
---|
1036 | {
|
---|
1037 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
1038 | uint8_t bSib;
|
---|
1039 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
1040 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
1041 |
|
---|
1042 | /* A displacement may follow SIB, update its offset. */
|
---|
1043 | offDisp += sizeof(bSib);
|
---|
1044 |
|
---|
1045 | /* Get the scale. */
|
---|
1046 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
1047 |
|
---|
1048 | /* Get the index register. */
|
---|
1049 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
1050 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
1051 |
|
---|
1052 | /* Get the base register. */
|
---|
1053 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
1054 | fBaseRegValid = true;
|
---|
1055 | if (iBaseReg == 5)
|
---|
1056 | {
|
---|
1057 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
1058 | {
|
---|
1059 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
1060 | fBaseRegValid = false;
|
---|
1061 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
1062 | }
|
---|
1063 | else
|
---|
1064 | {
|
---|
1065 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
1066 | iBaseReg = X86_GREG_xBP;
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | /* Register + displacement. */
|
---|
1072 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
1073 | {
|
---|
1074 | case 0: /* Handled above */ break;
|
---|
1075 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
1076 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
1077 | default:
|
---|
1078 | {
|
---|
1079 | /* Register addressing, handled at the beginning. */
|
---|
1080 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
1081 | break;
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
1087 | }
|
---|
1088 | else
|
---|
1089 | {
|
---|
1090 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
1091 |
|
---|
1092 | /*
|
---|
1093 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
1094 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
1095 | */
|
---|
1096 | uint64_t u64Disp = 0;
|
---|
1097 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
1098 | if (fRipRelativeAddr)
|
---|
1099 | {
|
---|
1100 | /*
|
---|
1101 | * RIP-relative addressing mode.
|
---|
1102 | *
|
---|
1103 | * The displacment is 32-bit signed implying an offset range of +/-2G.
|
---|
1104 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
1105 | */
|
---|
1106 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
1107 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
1108 | }
|
---|
1109 | else
|
---|
1110 | {
|
---|
1111 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
1112 |
|
---|
1113 | /*
|
---|
1114 | * Register (and perhaps scale, index and base).
|
---|
1115 | *
|
---|
1116 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
1117 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
1118 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
1119 | *
|
---|
1120 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
1121 | */
|
---|
1122 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
1123 | if (iBaseReg == 4)
|
---|
1124 | {
|
---|
1125 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
1126 | uint8_t bSib;
|
---|
1127 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
1128 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
1129 |
|
---|
1130 | /* Displacement may follow SIB, update its offset. */
|
---|
1131 | offDisp += sizeof(bSib);
|
---|
1132 |
|
---|
1133 | /* Get the scale. */
|
---|
1134 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
1135 |
|
---|
1136 | /* Get the index. */
|
---|
1137 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
1138 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
1139 |
|
---|
1140 | /* Get the base. */
|
---|
1141 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
1142 | fBaseRegValid = true;
|
---|
1143 | if (iBaseReg == 5)
|
---|
1144 | {
|
---|
1145 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
1146 | {
|
---|
1147 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
1148 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
1149 | }
|
---|
1150 | else
|
---|
1151 | {
|
---|
1152 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
1153 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
1154 | }
|
---|
1155 | }
|
---|
1156 | }
|
---|
1157 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
1158 |
|
---|
1159 | /* Register + displacement. */
|
---|
1160 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
1161 | {
|
---|
1162 | case 0: /* Handled above */ break;
|
---|
1163 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
1164 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
1165 | default:
|
---|
1166 | {
|
---|
1167 | /* Register addressing, handled at the beginning. */
|
---|
1168 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
1169 | break;
|
---|
1170 | }
|
---|
1171 | }
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | /*
|
---|
1178 | * The primary or secondary register operand is reported in iReg2 depending
|
---|
1179 | * on whether the primary operand is in read/write form.
|
---|
1180 | */
|
---|
1181 | uint8_t idxReg2;
|
---|
1182 | if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
|
---|
1183 | {
|
---|
1184 | idxReg2 = bRm & X86_MODRM_RM_MASK;
|
---|
1185 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
1186 | idxReg2 |= pVCpu->iem.s.uRexB;
|
---|
1187 | }
|
---|
1188 | else
|
---|
1189 | {
|
---|
1190 | idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
|
---|
1191 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
1192 | idxReg2 |= pVCpu->iem.s.uRexReg;
|
---|
1193 | }
|
---|
1194 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
1195 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
|
---|
1196 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
1197 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
1198 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
1199 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
1200 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
1201 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
1202 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
1203 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
1204 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | /*
|
---|
1208 | * Handle exceptions to the norm for certain instructions.
|
---|
1209 | * (e.g. some instructions convey an instruction identity in place of iReg2).
|
---|
1210 | */
|
---|
1211 | switch (uExitReason)
|
---|
1212 | {
|
---|
1213 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
1214 | {
|
---|
1215 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
1216 | Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
|
---|
1217 | ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
1218 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
1219 | break;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
1223 | {
|
---|
1224 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
1225 | Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
|
---|
1226 | ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
1227 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
1228 | break;
|
---|
1229 | }
|
---|
1230 |
|
---|
1231 | case VMX_EXIT_RDRAND:
|
---|
1232 | case VMX_EXIT_RDSEED:
|
---|
1233 | {
|
---|
1234 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
1235 | break;
|
---|
1236 | }
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
1240 | if (pGCPtrDisp)
|
---|
1241 | *pGCPtrDisp = GCPtrDisp;
|
---|
1242 |
|
---|
1243 | return ExitInstrInfo.u;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 |
|
---|
1247 | /**
|
---|
1248 | * Sets the VM-instruction error VMCS field.
|
---|
1249 | *
|
---|
1250 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1251 | * @param enmInsErr The VM-instruction error.
|
---|
1252 | */
|
---|
1253 | DECL_FORCE_INLINE(void) iemVmxVmcsSetVmInstrErr(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1254 | {
|
---|
1255 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1256 | pVmcs->u32RoVmInstrError = enmInsErr;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 |
|
---|
1260 | /**
|
---|
1261 | * Sets the VM-exit qualification VMCS field.
|
---|
1262 | *
|
---|
1263 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1264 | * @param uExitQual The VM-exit qualification field.
|
---|
1265 | */
|
---|
1266 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPU pVCpu, uint64_t uExitQual)
|
---|
1267 | {
|
---|
1268 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1269 | pVmcs->u64RoExitQual.u = uExitQual;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 |
|
---|
1273 | /**
|
---|
1274 | * Sets the VM-exit guest-linear address VMCS field.
|
---|
1275 | *
|
---|
1276 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1277 | * @param uGuestLinearAddr The VM-exit guest-linear address field.
|
---|
1278 | */
|
---|
1279 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPU pVCpu, uint64_t uGuestLinearAddr)
|
---|
1280 | {
|
---|
1281 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1282 | pVmcs->u64RoGuestLinearAddr.u = uGuestLinearAddr;
|
---|
1283 | }
|
---|
1284 |
|
---|
1285 |
|
---|
1286 | /**
|
---|
1287 | * Sets the VM-exit guest-physical address VMCS field.
|
---|
1288 | *
|
---|
1289 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1290 | * @param uGuestPhysAddr The VM-exit guest-physical address field.
|
---|
1291 | */
|
---|
1292 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPU pVCpu, uint64_t uGuestPhysAddr)
|
---|
1293 | {
|
---|
1294 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1295 | pVmcs->u64RoGuestPhysAddr.u = uGuestPhysAddr;
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 |
|
---|
1299 | /**
|
---|
1300 | * Sets the VM-exit instruction length VMCS field.
|
---|
1301 | *
|
---|
1302 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1303 | * @param cbInstr The VM-exit instruction length (in bytes).
|
---|
1304 | */
|
---|
1305 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPU pVCpu, uint32_t cbInstr)
|
---|
1306 | {
|
---|
1307 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1308 | pVmcs->u32RoExitInstrLen = cbInstr;
|
---|
1309 | }
|
---|
1310 |
|
---|
1311 |
|
---|
1312 | /**
|
---|
1313 | * Sets the VM-exit instruction info. VMCS field.
|
---|
1314 | *
|
---|
1315 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1316 | * @param uExitInstrInfo The VM-exit instruction info. field.
|
---|
1317 | */
|
---|
1318 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitInstrInfo)
|
---|
1319 | {
|
---|
1320 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1321 | pVmcs->u32RoExitInstrInfo = uExitInstrInfo;
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 |
|
---|
1325 | /**
|
---|
1326 | * Implements VMSucceed for VMX instruction success.
|
---|
1327 | *
|
---|
1328 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1329 | */
|
---|
1330 | DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
|
---|
1331 | {
|
---|
1332 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 |
|
---|
1336 | /**
|
---|
1337 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
1338 | *
|
---|
1339 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1340 | */
|
---|
1341 | DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
|
---|
1342 | {
|
---|
1343 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1344 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_CF;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | /**
|
---|
1349 | * Implements VMFailValid for VMX instruction failure.
|
---|
1350 | *
|
---|
1351 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1352 | * @param enmInsErr The VM instruction error.
|
---|
1353 | */
|
---|
1354 | DECL_FORCE_INLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1355 | {
|
---|
1356 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1357 | {
|
---|
1358 | pVCpu->cpum.GstCtx.eflags.u32 &= ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF);
|
---|
1359 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_ZF;
|
---|
1360 | iemVmxVmcsSetVmInstrErr(pVCpu, enmInsErr);
|
---|
1361 | }
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 |
|
---|
1365 | /**
|
---|
1366 | * Implements VMFail for VMX instruction failure.
|
---|
1367 | *
|
---|
1368 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1369 | * @param enmInsErr The VM instruction error.
|
---|
1370 | */
|
---|
1371 | DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
|
---|
1372 | {
|
---|
1373 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1374 | iemVmxVmFailValid(pVCpu, enmInsErr);
|
---|
1375 | else
|
---|
1376 | iemVmxVmFailInvalid(pVCpu);
|
---|
1377 | }
|
---|
1378 |
|
---|
1379 |
|
---|
1380 | /**
|
---|
1381 | * Checks if the given auto-load/store MSR area count is valid for the
|
---|
1382 | * implementation.
|
---|
1383 | *
|
---|
1384 | * @returns @c true if it's within the valid limit, @c false otherwise.
|
---|
1385 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1386 | * @param uMsrCount The MSR area count to check.
|
---|
1387 | */
|
---|
1388 | DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PVMCPU pVCpu, uint32_t uMsrCount)
|
---|
1389 | {
|
---|
1390 | uint64_t const u64VmxMiscMsr = CPUMGetGuestIa32VmxMisc(pVCpu);
|
---|
1391 | uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
|
---|
1392 | Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
|
---|
1393 | if (uMsrCount <= cMaxSupportedMsrs)
|
---|
1394 | return true;
|
---|
1395 | return false;
|
---|
1396 | }
|
---|
1397 |
|
---|
1398 |
|
---|
1399 | /**
|
---|
1400 | * Flushes the current VMCS contents back to guest memory.
|
---|
1401 | *
|
---|
1402 | * @returns VBox status code.
|
---|
1403 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1404 | */
|
---|
1405 | DECL_FORCE_INLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu)
|
---|
1406 | {
|
---|
1407 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
1408 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
|
---|
1409 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
|
---|
1410 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
1411 | return rc;
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 |
|
---|
1415 | /**
|
---|
1416 | * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
|
---|
1417 | *
|
---|
1418 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1419 | */
|
---|
1420 | DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPU pVCpu, uint8_t cbInstr)
|
---|
1421 | {
|
---|
1422 | iemVmxVmSucceed(pVCpu);
|
---|
1423 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
1424 | }
|
---|
1425 |
|
---|
1426 |
|
---|
1427 | /**
|
---|
1428 | * Gets the instruction diagnostic for segment base checks during VM-entry of a
|
---|
1429 | * nested-guest.
|
---|
1430 | *
|
---|
1431 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1432 | */
|
---|
1433 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
|
---|
1434 | {
|
---|
1435 | switch (iSegReg)
|
---|
1436 | {
|
---|
1437 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
|
---|
1438 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
|
---|
1439 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
|
---|
1440 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
|
---|
1441 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
|
---|
1442 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
|
---|
1443 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
|
---|
1444 | }
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 |
|
---|
1448 | /**
|
---|
1449 | * Gets the instruction diagnostic for segment base checks during VM-entry of a
|
---|
1450 | * nested-guest that is in Virtual-8086 mode.
|
---|
1451 | *
|
---|
1452 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1453 | */
|
---|
1454 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
|
---|
1455 | {
|
---|
1456 | switch (iSegReg)
|
---|
1457 | {
|
---|
1458 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
|
---|
1459 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
|
---|
1460 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
|
---|
1461 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
|
---|
1462 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
|
---|
1463 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
|
---|
1464 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
|
---|
1465 | }
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 |
|
---|
1469 | /**
|
---|
1470 | * Gets the instruction diagnostic for segment limit checks during VM-entry of a
|
---|
1471 | * nested-guest that is in Virtual-8086 mode.
|
---|
1472 | *
|
---|
1473 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1474 | */
|
---|
1475 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
|
---|
1476 | {
|
---|
1477 | switch (iSegReg)
|
---|
1478 | {
|
---|
1479 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
|
---|
1480 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
|
---|
1481 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
|
---|
1482 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
|
---|
1483 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
|
---|
1484 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
|
---|
1485 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
|
---|
1486 | }
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 |
|
---|
1490 | /**
|
---|
1491 | * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
|
---|
1492 | * nested-guest that is in Virtual-8086 mode.
|
---|
1493 | *
|
---|
1494 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1495 | */
|
---|
1496 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
|
---|
1497 | {
|
---|
1498 | switch (iSegReg)
|
---|
1499 | {
|
---|
1500 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
|
---|
1501 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
|
---|
1502 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
|
---|
1503 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
|
---|
1504 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
|
---|
1505 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
|
---|
1506 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
|
---|
1507 | }
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 |
|
---|
1511 | /**
|
---|
1512 | * Gets the instruction diagnostic for segment attributes reserved bits failure
|
---|
1513 | * during VM-entry of a nested-guest.
|
---|
1514 | *
|
---|
1515 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1516 | */
|
---|
1517 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
|
---|
1518 | {
|
---|
1519 | switch (iSegReg)
|
---|
1520 | {
|
---|
1521 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
|
---|
1522 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
|
---|
1523 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
|
---|
1524 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
|
---|
1525 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
|
---|
1526 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
|
---|
1527 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
|
---|
1528 | }
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 |
|
---|
1532 | /**
|
---|
1533 | * Gets the instruction diagnostic for segment attributes descriptor-type
|
---|
1534 | * (code/segment or system) failure during VM-entry of a nested-guest.
|
---|
1535 | *
|
---|
1536 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1537 | */
|
---|
1538 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
|
---|
1539 | {
|
---|
1540 | switch (iSegReg)
|
---|
1541 | {
|
---|
1542 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
|
---|
1543 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
|
---|
1544 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
|
---|
1545 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
|
---|
1546 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
|
---|
1547 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
|
---|
1548 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
|
---|
1549 | }
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 |
|
---|
1553 | /**
|
---|
1554 | * Gets the instruction diagnostic for segment attributes descriptor-type
|
---|
1555 | * (code/segment or system) failure during VM-entry of a nested-guest.
|
---|
1556 | *
|
---|
1557 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1558 | */
|
---|
1559 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
|
---|
1560 | {
|
---|
1561 | switch (iSegReg)
|
---|
1562 | {
|
---|
1563 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
|
---|
1564 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
|
---|
1565 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
|
---|
1566 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
|
---|
1567 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
|
---|
1568 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
|
---|
1569 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
|
---|
1570 | }
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 |
|
---|
1574 | /**
|
---|
1575 | * Gets the instruction diagnostic for segment attribute granularity failure during
|
---|
1576 | * VM-entry of a nested-guest.
|
---|
1577 | *
|
---|
1578 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1579 | */
|
---|
1580 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
|
---|
1581 | {
|
---|
1582 | switch (iSegReg)
|
---|
1583 | {
|
---|
1584 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
|
---|
1585 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
|
---|
1586 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
|
---|
1587 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
|
---|
1588 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
|
---|
1589 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
|
---|
1590 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
|
---|
1591 | }
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 | /**
|
---|
1595 | * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
|
---|
1596 | * VM-entry of a nested-guest.
|
---|
1597 | *
|
---|
1598 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1599 | */
|
---|
1600 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
|
---|
1601 | {
|
---|
1602 | switch (iSegReg)
|
---|
1603 | {
|
---|
1604 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
|
---|
1605 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
|
---|
1606 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
|
---|
1607 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
|
---|
1608 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
|
---|
1609 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
|
---|
1610 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
|
---|
1611 | }
|
---|
1612 | }
|
---|
1613 |
|
---|
1614 |
|
---|
1615 | /**
|
---|
1616 | * Gets the instruction diagnostic for segment attribute type accessed failure
|
---|
1617 | * during VM-entry of a nested-guest.
|
---|
1618 | *
|
---|
1619 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1620 | */
|
---|
1621 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
|
---|
1622 | {
|
---|
1623 | switch (iSegReg)
|
---|
1624 | {
|
---|
1625 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
|
---|
1626 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
|
---|
1627 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
|
---|
1628 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
|
---|
1629 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
|
---|
1630 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
|
---|
1631 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
|
---|
1632 | }
|
---|
1633 | }
|
---|
1634 |
|
---|
1635 |
|
---|
1636 | /**
|
---|
1637 | * Gets the instruction diagnostic for guest CR3 referenced PDPTE reserved bits
|
---|
1638 | * failure during VM-entry of a nested-guest.
|
---|
1639 | *
|
---|
1640 | * @param iSegReg The PDPTE entry index.
|
---|
1641 | */
|
---|
1642 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentryPdpteRsvd(unsigned iPdpte)
|
---|
1643 | {
|
---|
1644 | Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
|
---|
1645 | switch (iPdpte)
|
---|
1646 | {
|
---|
1647 | case 0: return kVmxVDiag_Vmentry_GuestPdpte0Rsvd;
|
---|
1648 | case 1: return kVmxVDiag_Vmentry_GuestPdpte1Rsvd;
|
---|
1649 | case 2: return kVmxVDiag_Vmentry_GuestPdpte2Rsvd;
|
---|
1650 | case 3: return kVmxVDiag_Vmentry_GuestPdpte3Rsvd;
|
---|
1651 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_11);
|
---|
1652 | }
|
---|
1653 | }
|
---|
1654 |
|
---|
1655 |
|
---|
1656 | /**
|
---|
1657 | * Gets the instruction diagnostic for host CR3 referenced PDPTE reserved bits
|
---|
1658 | * failure during VM-exit of a nested-guest.
|
---|
1659 | *
|
---|
1660 | * @param iSegReg The PDPTE entry index.
|
---|
1661 | */
|
---|
1662 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmexitPdpteRsvd(unsigned iPdpte)
|
---|
1663 | {
|
---|
1664 | Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
|
---|
1665 | switch (iPdpte)
|
---|
1666 | {
|
---|
1667 | case 0: return kVmxVDiag_Vmexit_HostPdpte0Rsvd;
|
---|
1668 | case 1: return kVmxVDiag_Vmexit_HostPdpte1Rsvd;
|
---|
1669 | case 2: return kVmxVDiag_Vmexit_HostPdpte2Rsvd;
|
---|
1670 | case 3: return kVmxVDiag_Vmexit_HostPdpte3Rsvd;
|
---|
1671 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_12);
|
---|
1672 | }
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 |
|
---|
1676 | /**
|
---|
1677 | * Saves the guest control registers, debug registers and some MSRs are part of
|
---|
1678 | * VM-exit.
|
---|
1679 | *
|
---|
1680 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1681 | */
|
---|
1682 | IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPU pVCpu)
|
---|
1683 | {
|
---|
1684 | /*
|
---|
1685 | * Saves the guest control registers, debug registers and some MSRs.
|
---|
1686 | * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
|
---|
1687 | */
|
---|
1688 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1689 |
|
---|
1690 | /* Save control registers. */
|
---|
1691 | pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
|
---|
1692 | pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
|
---|
1693 | pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
|
---|
1694 |
|
---|
1695 | /* Save SYSENTER CS, ESP, EIP. */
|
---|
1696 | pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
|
---|
1697 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1698 | {
|
---|
1699 | pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
|
---|
1700 | pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
|
---|
1701 | }
|
---|
1702 | else
|
---|
1703 | {
|
---|
1704 | pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
|
---|
1705 | pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 | /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
|
---|
1709 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
|
---|
1710 | {
|
---|
1711 | pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
|
---|
1712 | /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
|
---|
1713 | }
|
---|
1714 |
|
---|
1715 | /* Save PAT MSR. */
|
---|
1716 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
|
---|
1717 | pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
|
---|
1718 |
|
---|
1719 | /* Save EFER MSR. */
|
---|
1720 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
|
---|
1721 | pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
|
---|
1722 |
|
---|
1723 | /* We don't support clearing IA32_BNDCFGS MSR yet. */
|
---|
1724 | Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
|
---|
1725 |
|
---|
1726 | /* Nothing to do for SMBASE register - We don't support SMM yet. */
|
---|
1727 | }
|
---|
1728 |
|
---|
1729 |
|
---|
1730 | /**
|
---|
1731 | * Saves the guest force-flags in prepartion of entering the nested-guest.
|
---|
1732 | *
|
---|
1733 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1734 | */
|
---|
1735 | IEM_STATIC void iemVmxVmentrySaveForceFlags(PVMCPU pVCpu)
|
---|
1736 | {
|
---|
1737 | /* We shouldn't be called multiple times during VM-entry. */
|
---|
1738 | Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
|
---|
1739 |
|
---|
1740 | /* MTF should not be set outside VMX non-root mode. */
|
---|
1741 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_MTF));
|
---|
1742 |
|
---|
1743 | /*
|
---|
1744 | * Preserve the required force-flags.
|
---|
1745 | *
|
---|
1746 | * We cache and clear force-flags that would affect the execution of the
|
---|
1747 | * nested-guest. Cached flags are then restored while returning to the guest
|
---|
1748 | * if necessary.
|
---|
1749 | *
|
---|
1750 | * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
|
---|
1751 | * interrupts until the completion of the current VMLAUNCH/VMRESUME
|
---|
1752 | * instruction. Interrupt inhibition for any nested-guest instruction
|
---|
1753 | * will be set later while loading the guest-interruptibility state.
|
---|
1754 | *
|
---|
1755 | * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
|
---|
1756 | * successful VM-entry needs to continue blocking NMIs if it was in effect
|
---|
1757 | * during VM-entry.
|
---|
1758 | *
|
---|
1759 | * - MTF need not be preserved as it's used only in VMX non-root mode and
|
---|
1760 | * is supplied on VM-entry through the VM-execution controls.
|
---|
1761 | *
|
---|
1762 | * The remaining FFs (e.g. timers, APIC updates) must stay in place so that
|
---|
1763 | * we will be able to generate interrupts that may cause VM-exits for
|
---|
1764 | * the nested-guest.
|
---|
1765 | */
|
---|
1766 | pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
|
---|
1767 |
|
---|
1768 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS | VMCPU_FF_BLOCK_NMIS))
|
---|
1769 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS | VMCPU_FF_BLOCK_NMIS);
|
---|
1770 | }
|
---|
1771 |
|
---|
1772 |
|
---|
1773 | /**
|
---|
1774 | * Restores the guest force-flags in prepartion of exiting the nested-guest.
|
---|
1775 | *
|
---|
1776 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1777 | */
|
---|
1778 | IEM_STATIC void iemVmxVmexitRestoreForceFlags(PVMCPU pVCpu)
|
---|
1779 | {
|
---|
1780 | if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
|
---|
1781 | {
|
---|
1782 | VMCPU_FF_SET(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
|
---|
1783 | pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
|
---|
1784 | }
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 |
|
---|
1788 | /**
|
---|
1789 | * Perform a VMX transition updated PGM, IEM and CPUM.
|
---|
1790 | *
|
---|
1791 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1792 | */
|
---|
1793 | IEM_STATIC int iemVmxWorldSwitch(PVMCPU pVCpu)
|
---|
1794 | {
|
---|
1795 | /*
|
---|
1796 | * Inform PGM about paging mode changes.
|
---|
1797 | * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
|
---|
1798 | * see comment in iemMemPageTranslateAndCheckAccess().
|
---|
1799 | */
|
---|
1800 | int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
|
---|
1801 | # ifdef IN_RING3
|
---|
1802 | Assert(rc != VINF_PGM_CHANGE_MODE);
|
---|
1803 | # endif
|
---|
1804 | AssertRCReturn(rc, rc);
|
---|
1805 |
|
---|
1806 | /* Inform CPUM (recompiler), can later be removed. */
|
---|
1807 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
|
---|
1808 |
|
---|
1809 | /*
|
---|
1810 | * Flush the TLB with new CR3. This is required in case the PGM mode change
|
---|
1811 | * above doesn't actually change anything.
|
---|
1812 | */
|
---|
1813 | if (rc == VINF_SUCCESS)
|
---|
1814 | {
|
---|
1815 | rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
|
---|
1816 | AssertRCReturn(rc, rc);
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | /* Re-initialize IEM cache/state after the drastic mode switch. */
|
---|
1820 | iemReInitExec(pVCpu);
|
---|
1821 | return rc;
|
---|
1822 | }
|
---|
1823 |
|
---|
1824 |
|
---|
1825 | /**
|
---|
1826 | * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
|
---|
1827 | *
|
---|
1828 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1829 | */
|
---|
1830 | IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPU pVCpu)
|
---|
1831 | {
|
---|
1832 | /*
|
---|
1833 | * Save guest segment registers, GDTR, IDTR, LDTR, TR.
|
---|
1834 | * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
1835 | */
|
---|
1836 | /* CS, SS, ES, DS, FS, GS. */
|
---|
1837 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1838 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
1839 | {
|
---|
1840 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
1841 | if (!pSelReg->Attr.n.u1Unusable)
|
---|
1842 | iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
|
---|
1843 | else
|
---|
1844 | {
|
---|
1845 | /*
|
---|
1846 | * For unusable segments the attributes are undefined except for CS and SS.
|
---|
1847 | * For the rest we don't bother preserving anything but the unusable bit.
|
---|
1848 | */
|
---|
1849 | switch (iSegReg)
|
---|
1850 | {
|
---|
1851 | case X86_SREG_CS:
|
---|
1852 | pVmcs->GuestCs = pSelReg->Sel;
|
---|
1853 | pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
|
---|
1854 | pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
|
---|
1855 | pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
1856 | | X86DESCATTR_UNUSABLE);
|
---|
1857 | break;
|
---|
1858 |
|
---|
1859 | case X86_SREG_SS:
|
---|
1860 | pVmcs->GuestSs = pSelReg->Sel;
|
---|
1861 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1862 | pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
|
---|
1863 | pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
|
---|
1864 | break;
|
---|
1865 |
|
---|
1866 | case X86_SREG_DS:
|
---|
1867 | pVmcs->GuestDs = pSelReg->Sel;
|
---|
1868 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1869 | pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
|
---|
1870 | pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
|
---|
1871 | break;
|
---|
1872 |
|
---|
1873 | case X86_SREG_ES:
|
---|
1874 | pVmcs->GuestEs = pSelReg->Sel;
|
---|
1875 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1876 | pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
|
---|
1877 | pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
|
---|
1878 | break;
|
---|
1879 |
|
---|
1880 | case X86_SREG_FS:
|
---|
1881 | pVmcs->GuestFs = pSelReg->Sel;
|
---|
1882 | pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
|
---|
1883 | pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
|
---|
1884 | break;
|
---|
1885 |
|
---|
1886 | case X86_SREG_GS:
|
---|
1887 | pVmcs->GuestGs = pSelReg->Sel;
|
---|
1888 | pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
|
---|
1889 | pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
|
---|
1890 | break;
|
---|
1891 | }
|
---|
1892 | }
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 | /* Segment attribute bits 31:7 and 11:8 MBZ. */
|
---|
1896 | uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
|
---|
1897 | | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G | X86DESCATTR_UNUSABLE;
|
---|
1898 | /* LDTR. */
|
---|
1899 | {
|
---|
1900 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
|
---|
1901 | pVmcs->GuestLdtr = pSelReg->Sel;
|
---|
1902 | pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
|
---|
1903 | Assert(X86_IS_CANONICAL(pSelReg->u64Base));
|
---|
1904 | pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
|
---|
1905 | pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | /* TR. */
|
---|
1909 | {
|
---|
1910 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
|
---|
1911 | pVmcs->GuestTr = pSelReg->Sel;
|
---|
1912 | pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
|
---|
1913 | pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
|
---|
1914 | pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | /* GDTR. */
|
---|
1918 | pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
1919 | pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
|
---|
1920 |
|
---|
1921 | /* IDTR. */
|
---|
1922 | pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
|
---|
1923 | pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
|
---|
1924 | }
|
---|
1925 |
|
---|
1926 |
|
---|
1927 | /**
|
---|
1928 | * Saves guest non-register state as part of VM-exit.
|
---|
1929 | *
|
---|
1930 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1931 | * @param uExitReason The VM-exit reason.
|
---|
1932 | */
|
---|
1933 | IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
1934 | {
|
---|
1935 | /*
|
---|
1936 | * Save guest non-register state.
|
---|
1937 | * See Intel spec. 27.3.4 "Saving Non-Register State".
|
---|
1938 | */
|
---|
1939 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1940 |
|
---|
1941 | /* Activity-state: VM-exits occur before changing the activity state, nothing further to do */
|
---|
1942 |
|
---|
1943 | /* Interruptibility-state. */
|
---|
1944 | pVmcs->u32GuestIntrState = 0;
|
---|
1945 | if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
1946 | { /** @todo NSTVMX: Virtual-NMI blocking. */ }
|
---|
1947 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1948 | pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
|
---|
1949 |
|
---|
1950 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
1951 | && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
1952 | {
|
---|
1953 | /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
|
---|
1954 | * currently. */
|
---|
1955 | pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
1956 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1957 | }
|
---|
1958 | /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
|
---|
1959 |
|
---|
1960 | /* Pending debug exceptions. */
|
---|
1961 | if ( uExitReason != VMX_EXIT_INIT_SIGNAL
|
---|
1962 | && uExitReason != VMX_EXIT_SMI
|
---|
1963 | && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
|
---|
1964 | && !HMVmxIsTrapLikeVmexit(uExitReason))
|
---|
1965 | {
|
---|
1966 | /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
|
---|
1967 | * block-by-MovSS is in effect. */
|
---|
1968 | pVmcs->u64GuestPendingDbgXcpt.u = 0;
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | /** @todo NSTVMX: Save VMX preemption timer value. */
|
---|
1972 |
|
---|
1973 | /* PDPTEs. */
|
---|
1974 | /* We don't support EPT yet. */
|
---|
1975 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
|
---|
1976 | pVmcs->u64GuestPdpte0.u = 0;
|
---|
1977 | pVmcs->u64GuestPdpte1.u = 0;
|
---|
1978 | pVmcs->u64GuestPdpte2.u = 0;
|
---|
1979 | pVmcs->u64GuestPdpte3.u = 0;
|
---|
1980 | }
|
---|
1981 |
|
---|
1982 |
|
---|
1983 | /**
|
---|
1984 | * Saves the guest-state as part of VM-exit.
|
---|
1985 | *
|
---|
1986 | * @returns VBox status code.
|
---|
1987 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1988 | * @param uExitReason The VM-exit reason.
|
---|
1989 | */
|
---|
1990 | IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
1991 | {
|
---|
1992 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
1993 | Assert(pVmcs);
|
---|
1994 |
|
---|
1995 | iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
|
---|
1996 | iemVmxVmexitSaveGuestSegRegs(pVCpu);
|
---|
1997 |
|
---|
1998 | /*
|
---|
1999 | * Save guest RIP, RSP and RFLAGS.
|
---|
2000 | * See Intel spec. 27.3.3 "Saving RIP, RSP and RFLAGS".
|
---|
2001 | */
|
---|
2002 | /* We don't support enclave mode yet. */
|
---|
2003 | pVmcs->u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
|
---|
2004 | pVmcs->u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
2005 | pVmcs->u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
|
---|
2006 |
|
---|
2007 | iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 |
|
---|
2011 | /**
|
---|
2012 | * Saves the guest MSRs into the VM-exit auto-store MSRs area as part of VM-exit.
|
---|
2013 | *
|
---|
2014 | * @returns VBox status code.
|
---|
2015 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2016 | * @param uExitReason The VM-exit reason (for diagnostic purposes).
|
---|
2017 | */
|
---|
2018 | IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
2019 | {
|
---|
2020 | /*
|
---|
2021 | * Save guest MSRs.
|
---|
2022 | * See Intel spec. 27.4 "Saving MSRs".
|
---|
2023 | */
|
---|
2024 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2025 | const char *const pszFailure = "VMX-abort";
|
---|
2026 |
|
---|
2027 | /*
|
---|
2028 | * The VM-exit MSR-store area address need not be a valid guest-physical address if the
|
---|
2029 | * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
|
---|
2030 | * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
|
---|
2031 | */
|
---|
2032 | uint32_t const cMsrs = pVmcs->u32ExitMsrStoreCount;
|
---|
2033 | if (!cMsrs)
|
---|
2034 | return VINF_SUCCESS;
|
---|
2035 |
|
---|
2036 | /*
|
---|
2037 | * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
|
---|
2038 | * is exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
2039 | * implementation causes a VMX-abort followed by a triple-fault.
|
---|
2040 | */
|
---|
2041 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
2042 | if (fIsMsrCountValid)
|
---|
2043 | { /* likely */ }
|
---|
2044 | else
|
---|
2045 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
|
---|
2046 |
|
---|
2047 | PVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
|
---|
2048 | Assert(pMsr);
|
---|
2049 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
2050 | {
|
---|
2051 | if ( !pMsr->u32Reserved
|
---|
2052 | && pMsr->u32Msr != MSR_IA32_SMBASE
|
---|
2053 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
2054 | {
|
---|
2055 | VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
|
---|
2056 | if (rcStrict == VINF_SUCCESS)
|
---|
2057 | continue;
|
---|
2058 |
|
---|
2059 | /*
|
---|
2060 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
|
---|
2061 | * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
|
---|
2062 | * recording the MSR index in the auxiliary info. field and indicated further by our
|
---|
2063 | * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
|
---|
2064 | * if possible, or come up with a better, generic solution.
|
---|
2065 | */
|
---|
2066 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
2067 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
2068 | ? kVmxVDiag_Vmexit_MsrStoreRing3
|
---|
2069 | : kVmxVDiag_Vmexit_MsrStore;
|
---|
2070 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
|
---|
2071 | }
|
---|
2072 | else
|
---|
2073 | {
|
---|
2074 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
2075 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
|
---|
2076 | }
|
---|
2077 | }
|
---|
2078 |
|
---|
2079 | RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrStore.u;
|
---|
2080 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysAutoMsrArea,
|
---|
2081 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), VMX_V_AUTOMSR_AREA_SIZE);
|
---|
2082 | if (RT_SUCCESS(rc))
|
---|
2083 | { /* likely */ }
|
---|
2084 | else
|
---|
2085 | {
|
---|
2086 | AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
|
---|
2087 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
|
---|
2088 | }
|
---|
2089 |
|
---|
2090 | NOREF(uExitReason);
|
---|
2091 | NOREF(pszFailure);
|
---|
2092 | return VINF_SUCCESS;
|
---|
2093 | }
|
---|
2094 |
|
---|
2095 |
|
---|
2096 | /**
|
---|
2097 | * Performs a VMX abort (due to an fatal error during VM-exit).
|
---|
2098 | *
|
---|
2099 | * @returns Strict VBox status code.
|
---|
2100 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2101 | * @param enmAbort The VMX abort reason.
|
---|
2102 | */
|
---|
2103 | IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPU pVCpu, VMXABORT enmAbort)
|
---|
2104 | {
|
---|
2105 | /*
|
---|
2106 | * Perform the VMX abort.
|
---|
2107 | * See Intel spec. 27.7 "VMX Aborts".
|
---|
2108 | */
|
---|
2109 | LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, HMVmxGetAbortDesc(enmAbort)));
|
---|
2110 |
|
---|
2111 | /* We don't support SMX yet. */
|
---|
2112 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
|
---|
2113 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
2114 | {
|
---|
2115 | RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
|
---|
2116 | uint32_t const offVmxAbort = RT_OFFSETOF(VMXVVMCS, u32VmxAbortId);
|
---|
2117 | PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
|
---|
2118 | }
|
---|
2119 |
|
---|
2120 | return VINF_EM_TRIPLE_FAULT;
|
---|
2121 | }
|
---|
2122 |
|
---|
2123 |
|
---|
2124 | /**
|
---|
2125 | * Loads host control registers, debug registers and MSRs as part of VM-exit.
|
---|
2126 | *
|
---|
2127 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2128 | */
|
---|
2129 | IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPU pVCpu)
|
---|
2130 | {
|
---|
2131 | /*
|
---|
2132 | * Load host control registers, debug registers and MSRs.
|
---|
2133 | * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
|
---|
2134 | */
|
---|
2135 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2136 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
2137 |
|
---|
2138 | /* CR0. */
|
---|
2139 | {
|
---|
2140 | /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 MB1 bits are not modified. */
|
---|
2141 | uint64_t const uCr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
|
---|
2142 | uint64_t const fCr0IgnMask = UINT64_C(0xffffffff1ff8ffc0) | X86_CR0_ET | X86_CR0_CD | X86_CR0_NW | uCr0Fixed0;
|
---|
2143 | uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
|
---|
2144 | uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
2145 | uint64_t const uValidCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
|
---|
2146 | CPUMSetGuestCR0(pVCpu, uValidCr0);
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | /* CR4. */
|
---|
2150 | {
|
---|
2151 | /* CR4 MB1 bits are not modified. */
|
---|
2152 | uint64_t const fCr4IgnMask = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
|
---|
2153 | uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
|
---|
2154 | uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
|
---|
2155 | uint64_t uValidCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
|
---|
2156 | if (fHostInLongMode)
|
---|
2157 | uValidCr4 |= X86_CR4_PAE;
|
---|
2158 | else
|
---|
2159 | uValidCr4 &= ~X86_CR4_PCIDE;
|
---|
2160 | CPUMSetGuestCR4(pVCpu, uValidCr4);
|
---|
2161 | }
|
---|
2162 |
|
---|
2163 | /* CR3 (host value validated while checking host-state during VM-entry). */
|
---|
2164 | pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
|
---|
2165 |
|
---|
2166 | /* DR7. */
|
---|
2167 | pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
|
---|
2168 |
|
---|
2169 | /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
|
---|
2170 |
|
---|
2171 | /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
|
---|
2172 | pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
|
---|
2173 | pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
|
---|
2174 | pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
|
---|
2175 |
|
---|
2176 | /* FS, GS bases are loaded later while we load host segment registers. */
|
---|
2177 |
|
---|
2178 | /* EFER MSR (host value validated while checking host-state during VM-entry). */
|
---|
2179 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
2180 | pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
|
---|
2181 | else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2182 | {
|
---|
2183 | if (fHostInLongMode)
|
---|
2184 | pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
2185 | else
|
---|
2186 | pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
2187 | }
|
---|
2188 |
|
---|
2189 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
2190 |
|
---|
2191 | /* PAT MSR (host value is validated while checking host-state during VM-entry). */
|
---|
2192 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
|
---|
2193 | pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
|
---|
2194 |
|
---|
2195 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 |
|
---|
2199 | /**
|
---|
2200 | * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
|
---|
2201 | *
|
---|
2202 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2203 | */
|
---|
2204 | IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPU pVCpu)
|
---|
2205 | {
|
---|
2206 | /*
|
---|
2207 | * Load host segment registers, GDTR, IDTR, LDTR and TR.
|
---|
2208 | * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
|
---|
2209 | *
|
---|
2210 | * Warning! Be careful to not touch fields that are reserved by VT-x,
|
---|
2211 | * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
|
---|
2212 | */
|
---|
2213 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2214 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
2215 |
|
---|
2216 | /* CS, SS, ES, DS, FS, GS. */
|
---|
2217 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
2218 | {
|
---|
2219 | RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
|
---|
2220 | bool const fUnusable = RT_BOOL(HostSel == 0);
|
---|
2221 |
|
---|
2222 | /* Selector. */
|
---|
2223 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel = HostSel;
|
---|
2224 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].ValidSel = HostSel;
|
---|
2225 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2226 |
|
---|
2227 | /* Limit. */
|
---|
2228 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].u32Limit = 0xffffffff;
|
---|
2229 |
|
---|
2230 | /* Base and Attributes. */
|
---|
2231 | switch (iSegReg)
|
---|
2232 | {
|
---|
2233 | case X86_SREG_CS:
|
---|
2234 | {
|
---|
2235 | pVCpu->cpum.GstCtx.cs.u64Base = 0;
|
---|
2236 | pVCpu->cpum.GstCtx.cs.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
|
---|
2237 | pVCpu->cpum.GstCtx.ss.Attr.n.u1DescType = 1;
|
---|
2238 | pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = 0;
|
---|
2239 | pVCpu->cpum.GstCtx.cs.Attr.n.u1Present = 1;
|
---|
2240 | pVCpu->cpum.GstCtx.cs.Attr.n.u1Long = fHostInLongMode;
|
---|
2241 | pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig = !fHostInLongMode;
|
---|
2242 | pVCpu->cpum.GstCtx.cs.Attr.n.u1Granularity = 1;
|
---|
2243 | Assert(!pVCpu->cpum.GstCtx.cs.Attr.n.u1Unusable);
|
---|
2244 | Assert(!fUnusable);
|
---|
2245 | break;
|
---|
2246 | }
|
---|
2247 |
|
---|
2248 | case X86_SREG_SS:
|
---|
2249 | case X86_SREG_ES:
|
---|
2250 | case X86_SREG_DS:
|
---|
2251 | {
|
---|
2252 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base = 0;
|
---|
2253 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
|
---|
2254 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1DescType = 1;
|
---|
2255 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u2Dpl = 0;
|
---|
2256 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Present = 1;
|
---|
2257 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1DefBig = 1;
|
---|
2258 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Granularity = 1;
|
---|
2259 | pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable = fUnusable;
|
---|
2260 | break;
|
---|
2261 | }
|
---|
2262 |
|
---|
2263 | case X86_SREG_FS:
|
---|
2264 | {
|
---|
2265 | Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
|
---|
2266 | pVCpu->cpum.GstCtx.fs.u64Base = !fUnusable ? pVmcs->u64HostFsBase.u : 0;
|
---|
2267 | pVCpu->cpum.GstCtx.fs.Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
|
---|
2268 | pVCpu->cpum.GstCtx.fs.Attr.n.u1DescType = 1;
|
---|
2269 | pVCpu->cpum.GstCtx.fs.Attr.n.u2Dpl = 0;
|
---|
2270 | pVCpu->cpum.GstCtx.fs.Attr.n.u1Present = 1;
|
---|
2271 | pVCpu->cpum.GstCtx.fs.Attr.n.u1DefBig = 1;
|
---|
2272 | pVCpu->cpum.GstCtx.fs.Attr.n.u1Granularity = 1;
|
---|
2273 | pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable = fUnusable;
|
---|
2274 | break;
|
---|
2275 | }
|
---|
2276 |
|
---|
2277 | case X86_SREG_GS:
|
---|
2278 | {
|
---|
2279 | Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
|
---|
2280 | pVCpu->cpum.GstCtx.gs.u64Base = !fUnusable ? pVmcs->u64HostGsBase.u : 0;
|
---|
2281 | pVCpu->cpum.GstCtx.gs.Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
|
---|
2282 | pVCpu->cpum.GstCtx.gs.Attr.n.u1DescType = 1;
|
---|
2283 | pVCpu->cpum.GstCtx.gs.Attr.n.u2Dpl = 0;
|
---|
2284 | pVCpu->cpum.GstCtx.gs.Attr.n.u1Present = 1;
|
---|
2285 | pVCpu->cpum.GstCtx.gs.Attr.n.u1DefBig = 1;
|
---|
2286 | pVCpu->cpum.GstCtx.gs.Attr.n.u1Granularity = 1;
|
---|
2287 | pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable = fUnusable;
|
---|
2288 | break;
|
---|
2289 | }
|
---|
2290 | }
|
---|
2291 | }
|
---|
2292 |
|
---|
2293 | /* TR. */
|
---|
2294 | Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
|
---|
2295 | Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
|
---|
2296 | pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
|
---|
2297 | pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
|
---|
2298 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2299 | pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
|
---|
2300 | pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
|
---|
2301 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2302 | pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
|
---|
2303 | pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
|
---|
2304 | pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
|
---|
2305 | pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
|
---|
2306 | pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
|
---|
2307 |
|
---|
2308 | /* LDTR. */
|
---|
2309 | pVCpu->cpum.GstCtx.ldtr.Sel = 0;
|
---|
2310 | pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
|
---|
2311 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
2312 | pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
|
---|
2313 | pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
|
---|
2314 | pVCpu->cpum.GstCtx.ldtr.Attr.n.u1Unusable = 1;
|
---|
2315 |
|
---|
2316 | /* GDTR. */
|
---|
2317 | Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
|
---|
2318 | pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
|
---|
2319 | pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xfff;
|
---|
2320 |
|
---|
2321 | /* IDTR.*/
|
---|
2322 | Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
|
---|
2323 | pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
|
---|
2324 | pVCpu->cpum.GstCtx.idtr.cbIdt = 0xfff;
|
---|
2325 | }
|
---|
2326 |
|
---|
2327 |
|
---|
2328 | /**
|
---|
2329 | * Checks host PDPTes as part of VM-exit.
|
---|
2330 | *
|
---|
2331 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2332 | * @param uExitReason The VM-exit reason (for logging purposes).
|
---|
2333 | */
|
---|
2334 | IEM_STATIC int iemVmxVmexitCheckHostPdptes(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
2335 | {
|
---|
2336 | /*
|
---|
2337 | * Check host PDPTEs.
|
---|
2338 | * See Intel spec. 27.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
|
---|
2339 | */
|
---|
2340 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2341 | const char *const pszFailure = "VMX-abort";
|
---|
2342 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
2343 |
|
---|
2344 | if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
2345 | && !fHostInLongMode)
|
---|
2346 | {
|
---|
2347 | uint64_t const uHostCr3 = pVCpu->cpum.GstCtx.cr3 & X86_CR3_PAE_PAGE_MASK;
|
---|
2348 | X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
|
---|
2349 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uHostCr3, sizeof(aPdptes));
|
---|
2350 | if (RT_SUCCESS(rc))
|
---|
2351 | {
|
---|
2352 | for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
|
---|
2353 | {
|
---|
2354 | if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
|
---|
2355 | || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
|
---|
2356 | { /* likely */ }
|
---|
2357 | else
|
---|
2358 | {
|
---|
2359 | VMXVDIAG const enmDiag = iemVmxGetDiagVmexitPdpteRsvd(iPdpte);
|
---|
2360 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
|
---|
2361 | }
|
---|
2362 | }
|
---|
2363 | }
|
---|
2364 | else
|
---|
2365 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_HostPdpteCr3ReadPhys);
|
---|
2366 | }
|
---|
2367 |
|
---|
2368 | NOREF(pszFailure);
|
---|
2369 | NOREF(uExitReason);
|
---|
2370 | return VINF_SUCCESS;
|
---|
2371 | }
|
---|
2372 |
|
---|
2373 |
|
---|
2374 | /**
|
---|
2375 | * Loads the host MSRs from the VM-exit auto-load MSRs area as part of VM-exit.
|
---|
2376 | *
|
---|
2377 | * @returns VBox status code.
|
---|
2378 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2379 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2380 | */
|
---|
2381 | IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
2382 | {
|
---|
2383 | /*
|
---|
2384 | * Load host MSRs.
|
---|
2385 | * See Intel spec. 27.6 "Loading MSRs".
|
---|
2386 | */
|
---|
2387 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2388 | const char *const pszFailure = "VMX-abort";
|
---|
2389 |
|
---|
2390 | /*
|
---|
2391 | * The VM-exit MSR-load area address need not be a valid guest-physical address if the
|
---|
2392 | * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
|
---|
2393 | * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
|
---|
2394 | */
|
---|
2395 | uint32_t const cMsrs = pVmcs->u32ExitMsrLoadCount;
|
---|
2396 | if (!cMsrs)
|
---|
2397 | return VINF_SUCCESS;
|
---|
2398 |
|
---|
2399 | /*
|
---|
2400 | * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
|
---|
2401 | * is exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
2402 | * implementation causes a VMX-abort followed by a triple-fault.
|
---|
2403 | */
|
---|
2404 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
2405 | if (fIsMsrCountValid)
|
---|
2406 | { /* likely */ }
|
---|
2407 | else
|
---|
2408 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
|
---|
2409 |
|
---|
2410 | RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrLoad.u;
|
---|
2411 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
|
---|
2412 | GCPhysAutoMsrArea, VMX_V_AUTOMSR_AREA_SIZE);
|
---|
2413 | if (RT_SUCCESS(rc))
|
---|
2414 | {
|
---|
2415 | PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
|
---|
2416 | Assert(pMsr);
|
---|
2417 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
2418 | {
|
---|
2419 | if ( !pMsr->u32Reserved
|
---|
2420 | && pMsr->u32Msr != MSR_K8_FS_BASE
|
---|
2421 | && pMsr->u32Msr != MSR_K8_GS_BASE
|
---|
2422 | && pMsr->u32Msr != MSR_K6_EFER
|
---|
2423 | && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
|
---|
2424 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
2425 | {
|
---|
2426 | VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
|
---|
2427 | if (rcStrict == VINF_SUCCESS)
|
---|
2428 | continue;
|
---|
2429 |
|
---|
2430 | /*
|
---|
2431 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
|
---|
2432 | * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
|
---|
2433 | * recording the MSR index in the auxiliary info. field and indicated further by our
|
---|
2434 | * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
|
---|
2435 | * if possible, or come up with a better, generic solution.
|
---|
2436 | */
|
---|
2437 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
2438 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
2439 | ? kVmxVDiag_Vmexit_MsrLoadRing3
|
---|
2440 | : kVmxVDiag_Vmexit_MsrLoad;
|
---|
2441 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
|
---|
2442 | }
|
---|
2443 | else
|
---|
2444 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
|
---|
2445 | }
|
---|
2446 | }
|
---|
2447 | else
|
---|
2448 | {
|
---|
2449 | AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
|
---|
2450 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
|
---|
2451 | }
|
---|
2452 |
|
---|
2453 | NOREF(uExitReason);
|
---|
2454 | NOREF(pszFailure);
|
---|
2455 | return VINF_SUCCESS;
|
---|
2456 | }
|
---|
2457 |
|
---|
2458 |
|
---|
2459 | /**
|
---|
2460 | * Loads the host state as part of VM-exit.
|
---|
2461 | *
|
---|
2462 | * @returns Strict VBox status code.
|
---|
2463 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2464 | * @param uExitReason The VM-exit reason (for logging purposes).
|
---|
2465 | */
|
---|
2466 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
2467 | {
|
---|
2468 | /*
|
---|
2469 | * Load host state.
|
---|
2470 | * See Intel spec. 27.5 "Loading Host State".
|
---|
2471 | */
|
---|
2472 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2473 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
2474 |
|
---|
2475 | /* We cannot return from a long-mode guest to a host that is not in long mode. */
|
---|
2476 | if ( CPUMIsGuestInLongMode(pVCpu)
|
---|
2477 | && !fHostInLongMode)
|
---|
2478 | {
|
---|
2479 | Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
|
---|
2480 | return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
|
---|
2481 | }
|
---|
2482 |
|
---|
2483 | iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
|
---|
2484 | iemVmxVmexitLoadHostSegRegs(pVCpu);
|
---|
2485 |
|
---|
2486 | /*
|
---|
2487 | * Load host RIP, RSP and RFLAGS.
|
---|
2488 | * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
|
---|
2489 | */
|
---|
2490 | pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
|
---|
2491 | pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
|
---|
2492 | pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
|
---|
2493 |
|
---|
2494 | /* Update non-register state. */
|
---|
2495 | iemVmxVmexitRestoreForceFlags(pVCpu);
|
---|
2496 |
|
---|
2497 | /* Clear address range monitoring. */
|
---|
2498 | EMMonitorWaitClear(pVCpu);
|
---|
2499 |
|
---|
2500 | /* Perform the VMX transition (PGM updates). */
|
---|
2501 | VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
|
---|
2502 | if (rcStrict == VINF_SUCCESS)
|
---|
2503 | {
|
---|
2504 | /* Check host PDPTEs (only when we've fully switched page tables_. */
|
---|
2505 | /** @todo r=ramshankar: I don't know if PGM does this for us already or not... */
|
---|
2506 | int rc = iemVmxVmexitCheckHostPdptes(pVCpu, uExitReason);
|
---|
2507 | if (RT_FAILURE(rc))
|
---|
2508 | {
|
---|
2509 | Log(("VM-exit failed while restoring host PDPTEs -> VMX-Abort\n"));
|
---|
2510 | return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
|
---|
2511 | }
|
---|
2512 | }
|
---|
2513 | else if (RT_SUCCESS(rcStrict))
|
---|
2514 | {
|
---|
2515 | Log3(("VM-exit: iemVmxWorldSwitch returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
|
---|
2516 | uExitReason));
|
---|
2517 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2518 | }
|
---|
2519 | else
|
---|
2520 | {
|
---|
2521 | Log3(("VM-exit: iemVmxWorldSwitch failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
|
---|
2522 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 | Assert(rcStrict == VINF_SUCCESS);
|
---|
2526 |
|
---|
2527 | /* Load MSRs from the VM-exit auto-load MSR area. */
|
---|
2528 | int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
|
---|
2529 | if (RT_FAILURE(rc))
|
---|
2530 | {
|
---|
2531 | Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
|
---|
2532 | return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
|
---|
2533 | }
|
---|
2534 |
|
---|
2535 | return rcStrict;
|
---|
2536 | }
|
---|
2537 |
|
---|
2538 |
|
---|
2539 | /**
|
---|
2540 | * VMX VM-exit handler.
|
---|
2541 | *
|
---|
2542 | * @returns Strict VBox status code.
|
---|
2543 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2544 | * @param uExitReason The VM-exit reason.
|
---|
2545 | */
|
---|
2546 | IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
2547 | {
|
---|
2548 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2549 | Assert(pVmcs);
|
---|
2550 |
|
---|
2551 | pVmcs->u32RoExitReason = uExitReason;
|
---|
2552 |
|
---|
2553 | /** @todo NSTVMX: IEMGetCurrentXcpt will be VM-exit interruption info. */
|
---|
2554 | /** @todo NSTVMX: The source event should be recorded in IDT-vectoring info
|
---|
2555 | * during injection. */
|
---|
2556 |
|
---|
2557 | /*
|
---|
2558 | * Save the guest state back into the VMCS.
|
---|
2559 | * We only need to save the state when the VM-entry was successful.
|
---|
2560 | */
|
---|
2561 | bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
|
---|
2562 | if (!fVmentryFailed)
|
---|
2563 | {
|
---|
2564 | iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
|
---|
2565 | int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
|
---|
2566 | if (RT_SUCCESS(rc))
|
---|
2567 | { /* likely */ }
|
---|
2568 | else
|
---|
2569 | return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
|
---|
2570 | }
|
---|
2571 |
|
---|
2572 | /*
|
---|
2573 | * The high bits of the VM-exit reason are only relevant when the VM-exit occurs in
|
---|
2574 | * enclave mode/SMM which we don't support yet. If we ever add support for it, we can
|
---|
2575 | * pass just the lower bits, till then an assert should suffice.
|
---|
2576 | */
|
---|
2577 | Assert(!RT_HI_U16(uExitReason));
|
---|
2578 |
|
---|
2579 | VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
|
---|
2580 | if (RT_FAILURE(rcStrict))
|
---|
2581 | LogFunc(("Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2582 |
|
---|
2583 | /* We're no longer in nested-guest execution mode. */
|
---|
2584 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
|
---|
2585 |
|
---|
2586 | return rcStrict;
|
---|
2587 | }
|
---|
2588 |
|
---|
2589 |
|
---|
2590 | /**
|
---|
2591 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2592 | *
|
---|
2593 | * This is intended for instructions where the caller provides all the relevant
|
---|
2594 | * VM-exit information.
|
---|
2595 | *
|
---|
2596 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2597 | * @param pExitInfo Pointer to the VM-exit instruction information struct.
|
---|
2598 | */
|
---|
2599 | DECLINLINE(VBOXSTRICTRC) iemVmxVmexitInstrWithInfo(PVMCPU pVCpu, PCVMXVEXITINFO pExitInfo)
|
---|
2600 | {
|
---|
2601 | /*
|
---|
2602 | * For instructions where any of the following fields are not applicable:
|
---|
2603 | * - VM-exit instruction info. is undefined.
|
---|
2604 | * - VM-exit qualification must be cleared.
|
---|
2605 | * - VM-exit guest-linear address is undefined.
|
---|
2606 | * - VM-exit guest-physical address is undefined.
|
---|
2607 | *
|
---|
2608 | * The VM-exit instruction length is mandatory for all VM-exits that are caused by
|
---|
2609 | * instruction execution.
|
---|
2610 | *
|
---|
2611 | * In our implementation, all undefined fields are generally cleared (caller's
|
---|
2612 | * responsibility).
|
---|
2613 | *
|
---|
2614 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
2615 | * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
|
---|
2616 | */
|
---|
2617 | Assert(pExitInfo);
|
---|
2618 | AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
|
---|
2619 | AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
|
---|
2620 | ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
|
---|
2621 |
|
---|
2622 | /* Update all the relevant fields from the VM-exit instruction information struct. */
|
---|
2623 | iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
|
---|
2624 | iemVmxVmcsSetExitQual(pVCpu, pExitInfo->u64Qual);
|
---|
2625 | iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
|
---|
2626 | iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
|
---|
2627 | iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
|
---|
2628 |
|
---|
2629 | /* Perform the VM-exit. */
|
---|
2630 | return iemVmxVmexit(pVCpu, pExitInfo->uReason);
|
---|
2631 | }
|
---|
2632 |
|
---|
2633 |
|
---|
2634 | /**
|
---|
2635 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2636 | *
|
---|
2637 | * This is intended for instructions that only provide the VM-exit instruction
|
---|
2638 | * length.
|
---|
2639 | *
|
---|
2640 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2641 | * @param uExitReason The VM-exit reason.
|
---|
2642 | * @param cbInstr The instruction length (in bytes).
|
---|
2643 | */
|
---|
2644 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPU pVCpu, uint32_t uExitReason, uint8_t cbInstr)
|
---|
2645 | {
|
---|
2646 | VMXVEXITINFO ExitInfo;
|
---|
2647 | RT_ZERO(ExitInfo);
|
---|
2648 | ExitInfo.uReason = uExitReason;
|
---|
2649 | ExitInfo.cbInstr = cbInstr;
|
---|
2650 |
|
---|
2651 | #ifdef VBOX_STRICT
|
---|
2652 | /* To prevent us from shooting ourselves in the foot. Maybe remove later. */
|
---|
2653 | switch (uExitReason)
|
---|
2654 | {
|
---|
2655 | case VMX_EXIT_INVEPT:
|
---|
2656 | case VMX_EXIT_INVPCID:
|
---|
2657 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
2658 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
2659 | case VMX_EXIT_VMCLEAR:
|
---|
2660 | case VMX_EXIT_VMPTRLD:
|
---|
2661 | case VMX_EXIT_VMPTRST:
|
---|
2662 | case VMX_EXIT_VMREAD:
|
---|
2663 | case VMX_EXIT_VMWRITE:
|
---|
2664 | case VMX_EXIT_VMXON:
|
---|
2665 | case VMX_EXIT_XRSTORS:
|
---|
2666 | case VMX_EXIT_XSAVES:
|
---|
2667 | case VMX_EXIT_RDRAND:
|
---|
2668 | case VMX_EXIT_RDSEED:
|
---|
2669 | case VMX_EXIT_IO_INSTR:
|
---|
2670 | AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
|
---|
2671 | break;
|
---|
2672 | }
|
---|
2673 | #endif
|
---|
2674 |
|
---|
2675 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2676 | }
|
---|
2677 |
|
---|
2678 |
|
---|
2679 | /**
|
---|
2680 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2681 | *
|
---|
2682 | * This is intended for instructions that have a ModR/M byte and update the VM-exit
|
---|
2683 | * instruction information and VM-exit qualification fields.
|
---|
2684 | *
|
---|
2685 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2686 | * @param uExitReason The VM-exit reason.
|
---|
2687 | * @param uInstrid The instruction identity (VMXINSTRID_XXX).
|
---|
2688 | * @param cbInstr The instruction length (in bytes).
|
---|
2689 | *
|
---|
2690 | * @remarks Do not use this for INS/OUTS instruction.
|
---|
2691 | */
|
---|
2692 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
|
---|
2693 | {
|
---|
2694 | VMXVEXITINFO ExitInfo;
|
---|
2695 | RT_ZERO(ExitInfo);
|
---|
2696 | ExitInfo.uReason = uExitReason;
|
---|
2697 | ExitInfo.cbInstr = cbInstr;
|
---|
2698 |
|
---|
2699 | /*
|
---|
2700 | * Update the VM-exit qualification field with displacement bytes.
|
---|
2701 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
2702 | */
|
---|
2703 | switch (uExitReason)
|
---|
2704 | {
|
---|
2705 | case VMX_EXIT_INVEPT:
|
---|
2706 | case VMX_EXIT_INVPCID:
|
---|
2707 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
2708 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
2709 | case VMX_EXIT_VMCLEAR:
|
---|
2710 | case VMX_EXIT_VMPTRLD:
|
---|
2711 | case VMX_EXIT_VMPTRST:
|
---|
2712 | case VMX_EXIT_VMREAD:
|
---|
2713 | case VMX_EXIT_VMWRITE:
|
---|
2714 | case VMX_EXIT_VMXON:
|
---|
2715 | case VMX_EXIT_XRSTORS:
|
---|
2716 | case VMX_EXIT_XSAVES:
|
---|
2717 | case VMX_EXIT_RDRAND:
|
---|
2718 | case VMX_EXIT_RDSEED:
|
---|
2719 | {
|
---|
2720 | /* Construct the VM-exit instruction information. */
|
---|
2721 | RTGCPTR GCPtrDisp;
|
---|
2722 | uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
|
---|
2723 |
|
---|
2724 | /* Update the VM-exit instruction information. */
|
---|
2725 | ExitInfo.InstrInfo.u = uInstrInfo;
|
---|
2726 |
|
---|
2727 | /* Update the VM-exit qualification. */
|
---|
2728 | ExitInfo.u64Qual = GCPtrDisp;
|
---|
2729 | break;
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | default:
|
---|
2733 | AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
|
---|
2734 | break;
|
---|
2735 | }
|
---|
2736 |
|
---|
2737 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 |
|
---|
2741 | /**
|
---|
2742 | * VMX VM-exit handler for VM-exits due to INVLPG.
|
---|
2743 | *
|
---|
2744 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2745 | * @param GCPtrPage The guest-linear address of the page being invalidated.
|
---|
2746 | * @param cbInstr The instruction length (in bytes).
|
---|
2747 | */
|
---|
2748 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPU pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
|
---|
2749 | {
|
---|
2750 | VMXVEXITINFO ExitInfo;
|
---|
2751 | RT_ZERO(ExitInfo);
|
---|
2752 | ExitInfo.uReason = VMX_EXIT_INVLPG;
|
---|
2753 | ExitInfo.cbInstr = cbInstr;
|
---|
2754 | ExitInfo.u64Qual = GCPtrPage;
|
---|
2755 | Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
|
---|
2756 |
|
---|
2757 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2758 | }
|
---|
2759 |
|
---|
2760 |
|
---|
2761 | /**
|
---|
2762 | * Checks guest control registers, debug registers and MSRs as part of VM-entry.
|
---|
2763 | *
|
---|
2764 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2765 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2766 | */
|
---|
2767 | IEM_STATIC int iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPU pVCpu, const char *pszInstr)
|
---|
2768 | {
|
---|
2769 | /*
|
---|
2770 | * Guest Control Registers, Debug Registers, and MSRs.
|
---|
2771 | * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
|
---|
2772 | */
|
---|
2773 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2774 | const char *const pszFailure = "VM-exit";
|
---|
2775 | bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
|
---|
2776 |
|
---|
2777 | /* CR0 reserved bits. */
|
---|
2778 | {
|
---|
2779 | /* CR0 MB1 bits. */
|
---|
2780 | uint64_t u64Cr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
|
---|
2781 | Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
|
---|
2782 | if (fUnrestrictedGuest)
|
---|
2783 | u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
2784 | if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0)
|
---|
2785 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
|
---|
2786 |
|
---|
2787 | /* CR0 MBZ bits. */
|
---|
2788 | uint64_t const u64Cr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
|
---|
2789 | if (pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1)
|
---|
2790 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
|
---|
2791 |
|
---|
2792 | /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
|
---|
2793 | if ( !fUnrestrictedGuest
|
---|
2794 | && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
2795 | && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
2796 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
|
---|
2797 | }
|
---|
2798 |
|
---|
2799 | /* CR4 reserved bits. */
|
---|
2800 | {
|
---|
2801 | /* CR4 MB1 bits. */
|
---|
2802 | uint64_t const u64Cr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
|
---|
2803 | if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0)
|
---|
2804 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
|
---|
2805 |
|
---|
2806 | /* CR4 MBZ bits. */
|
---|
2807 | uint64_t const u64Cr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
|
---|
2808 | if (pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1)
|
---|
2809 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | /* DEBUGCTL MSR. */
|
---|
2813 | if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
2814 | && (pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
|
---|
2815 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
|
---|
2816 |
|
---|
2817 | /* 64-bit CPU checks. */
|
---|
2818 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
2819 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2820 | {
|
---|
2821 | if (fGstInLongMode)
|
---|
2822 | {
|
---|
2823 | /* PAE must be set. */
|
---|
2824 | if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
2825 | && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
|
---|
2826 | { /* likely */ }
|
---|
2827 | else
|
---|
2828 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
|
---|
2829 | }
|
---|
2830 | else
|
---|
2831 | {
|
---|
2832 | /* PCIDE should not be set. */
|
---|
2833 | if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
|
---|
2834 | { /* likely */ }
|
---|
2835 | else
|
---|
2836 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | /* CR3. */
|
---|
2840 | if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
|
---|
2841 | { /* likely */ }
|
---|
2842 | else
|
---|
2843 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
|
---|
2844 |
|
---|
2845 | /* DR7. */
|
---|
2846 | if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
2847 | && (pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
|
---|
2848 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
|
---|
2849 |
|
---|
2850 | /* SYSENTER ESP and SYSENTER EIP. */
|
---|
2851 | if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
|
---|
2852 | && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
|
---|
2853 | { /* likely */ }
|
---|
2854 | else
|
---|
2855 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
|
---|
2856 | }
|
---|
2857 |
|
---|
2858 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
2859 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
|
---|
2860 |
|
---|
2861 | /* PAT MSR. */
|
---|
2862 | if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
2863 | && !CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
|
---|
2864 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
|
---|
2865 |
|
---|
2866 | /* EFER MSR. */
|
---|
2867 | uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
|
---|
2868 | if ( (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
2869 | && (pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
|
---|
2870 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
|
---|
2871 |
|
---|
2872 | bool const fGstLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LMA);
|
---|
2873 | bool const fGstLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LME);
|
---|
2874 | if ( fGstInLongMode == fGstLma
|
---|
2875 | && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
2876 | || fGstLma == fGstLme))
|
---|
2877 | { /* likely */ }
|
---|
2878 | else
|
---|
2879 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
|
---|
2880 |
|
---|
2881 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
2882 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
|
---|
2883 |
|
---|
2884 | NOREF(pszInstr);
|
---|
2885 | NOREF(pszFailure);
|
---|
2886 | return VINF_SUCCESS;
|
---|
2887 | }
|
---|
2888 |
|
---|
2889 |
|
---|
2890 | /**
|
---|
2891 | * Checks guest segment registers, LDTR and TR as part of VM-entry.
|
---|
2892 | *
|
---|
2893 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2894 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
2895 | */
|
---|
2896 | IEM_STATIC int iemVmxVmentryCheckGuestSegRegs(PVMCPU pVCpu, const char *pszInstr)
|
---|
2897 | {
|
---|
2898 | /*
|
---|
2899 | * Segment registers.
|
---|
2900 | * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
2901 | */
|
---|
2902 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
2903 | const char *const pszFailure = "VM-exit";
|
---|
2904 | bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
|
---|
2905 | bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
|
---|
2906 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
2907 |
|
---|
2908 | /* Selectors. */
|
---|
2909 | if ( !fGstInV86Mode
|
---|
2910 | && !fUnrestrictedGuest
|
---|
2911 | && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
|
---|
2912 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
|
---|
2913 |
|
---|
2914 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
2915 | {
|
---|
2916 | CPUMSELREG SelReg;
|
---|
2917 | int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
|
---|
2918 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
2919 | { /* likely */ }
|
---|
2920 | else
|
---|
2921 | return rc;
|
---|
2922 |
|
---|
2923 | /*
|
---|
2924 | * Virtual-8086 mode checks.
|
---|
2925 | */
|
---|
2926 | if (fGstInV86Mode)
|
---|
2927 | {
|
---|
2928 | /* Base address. */
|
---|
2929 | if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
|
---|
2930 | { /* likely */ }
|
---|
2931 | else
|
---|
2932 | {
|
---|
2933 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
|
---|
2934 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
2935 | }
|
---|
2936 |
|
---|
2937 | /* Limit. */
|
---|
2938 | if (SelReg.u32Limit == 0xffff)
|
---|
2939 | { /* likely */ }
|
---|
2940 | else
|
---|
2941 | {
|
---|
2942 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
|
---|
2943 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
2944 | }
|
---|
2945 |
|
---|
2946 | /* Attribute. */
|
---|
2947 | if (SelReg.Attr.u == 0xf3)
|
---|
2948 | { /* likely */ }
|
---|
2949 | else
|
---|
2950 | {
|
---|
2951 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
|
---|
2952 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
2953 | }
|
---|
2954 |
|
---|
2955 | /* We're done; move to checking the next segment. */
|
---|
2956 | continue;
|
---|
2957 | }
|
---|
2958 |
|
---|
2959 | /* Checks done by 64-bit CPUs. */
|
---|
2960 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
2961 | {
|
---|
2962 | /* Base address. */
|
---|
2963 | if ( iSegReg == X86_SREG_FS
|
---|
2964 | || iSegReg == X86_SREG_GS)
|
---|
2965 | {
|
---|
2966 | if (X86_IS_CANONICAL(SelReg.u64Base))
|
---|
2967 | { /* likely */ }
|
---|
2968 | else
|
---|
2969 | {
|
---|
2970 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
|
---|
2971 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
2972 | }
|
---|
2973 | }
|
---|
2974 | else if (iSegReg == X86_SREG_CS)
|
---|
2975 | {
|
---|
2976 | if (!RT_HI_U32(SelReg.u64Base))
|
---|
2977 | { /* likely */ }
|
---|
2978 | else
|
---|
2979 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
|
---|
2980 | }
|
---|
2981 | else
|
---|
2982 | {
|
---|
2983 | if ( SelReg.Attr.n.u1Unusable
|
---|
2984 | || !RT_HI_U32(SelReg.u64Base))
|
---|
2985 | { /* likely */ }
|
---|
2986 | else
|
---|
2987 | {
|
---|
2988 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
|
---|
2989 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
2990 | }
|
---|
2991 | }
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 | /*
|
---|
2995 | * Checks outside Virtual-8086 mode.
|
---|
2996 | */
|
---|
2997 | uint8_t const uSegType = SelReg.Attr.n.u4Type;
|
---|
2998 | uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
|
---|
2999 | uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
|
---|
3000 | uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
|
---|
3001 | uint8_t const fPresent = SelReg.Attr.n.u1Present;
|
---|
3002 | uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
|
---|
3003 | uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
|
---|
3004 | uint8_t const fSegLong = SelReg.Attr.n.u1Long;
|
---|
3005 |
|
---|
3006 | /* Code or usable segment. */
|
---|
3007 | if ( iSegReg == X86_SREG_CS
|
---|
3008 | || fUsable)
|
---|
3009 | {
|
---|
3010 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
3011 | if (!(SelReg.Attr.u & 0xfffe0f00))
|
---|
3012 | { /* likely */ }
|
---|
3013 | else
|
---|
3014 | {
|
---|
3015 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
|
---|
3016 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3017 | }
|
---|
3018 |
|
---|
3019 | /* Descriptor type. */
|
---|
3020 | if (fCodeDataSeg)
|
---|
3021 | { /* likely */ }
|
---|
3022 | else
|
---|
3023 | {
|
---|
3024 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
|
---|
3025 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3026 | }
|
---|
3027 |
|
---|
3028 | /* Present. */
|
---|
3029 | if (fPresent)
|
---|
3030 | { /* likely */ }
|
---|
3031 | else
|
---|
3032 | {
|
---|
3033 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
|
---|
3034 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3035 | }
|
---|
3036 |
|
---|
3037 | /* Granularity. */
|
---|
3038 | if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
|
---|
3039 | && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
|
---|
3040 | { /* likely */ }
|
---|
3041 | else
|
---|
3042 | {
|
---|
3043 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
|
---|
3044 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3045 | }
|
---|
3046 | }
|
---|
3047 |
|
---|
3048 | if (iSegReg == X86_SREG_CS)
|
---|
3049 | {
|
---|
3050 | /* Segment Type and DPL. */
|
---|
3051 | if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
3052 | && fUnrestrictedGuest)
|
---|
3053 | {
|
---|
3054 | if (uDpl == 0)
|
---|
3055 | { /* likely */ }
|
---|
3056 | else
|
---|
3057 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
|
---|
3058 | }
|
---|
3059 | else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
|
---|
3060 | || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
|
---|
3061 | {
|
---|
3062 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
3063 | if (uDpl == AttrSs.n.u2Dpl)
|
---|
3064 | { /* likely */ }
|
---|
3065 | else
|
---|
3066 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
|
---|
3067 | }
|
---|
3068 | else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
|
---|
3069 | == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
|
---|
3070 | {
|
---|
3071 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
3072 | if (uDpl <= AttrSs.n.u2Dpl)
|
---|
3073 | { /* likely */ }
|
---|
3074 | else
|
---|
3075 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
|
---|
3076 | }
|
---|
3077 | else
|
---|
3078 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
|
---|
3079 |
|
---|
3080 | /* Def/Big. */
|
---|
3081 | if ( fGstInLongMode
|
---|
3082 | && fSegLong)
|
---|
3083 | {
|
---|
3084 | if (uDefBig == 0)
|
---|
3085 | { /* likely */ }
|
---|
3086 | else
|
---|
3087 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
|
---|
3088 | }
|
---|
3089 | }
|
---|
3090 | else if (iSegReg == X86_SREG_SS)
|
---|
3091 | {
|
---|
3092 | /* Segment Type. */
|
---|
3093 | if ( !fUsable
|
---|
3094 | || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
3095 | || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
|
---|
3096 | { /* likely */ }
|
---|
3097 | else
|
---|
3098 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
|
---|
3099 |
|
---|
3100 | /* DPL. */
|
---|
3101 | if (fUnrestrictedGuest)
|
---|
3102 | {
|
---|
3103 | if (uDpl == (SelReg.Sel & X86_SEL_RPL))
|
---|
3104 | { /* likely */ }
|
---|
3105 | else
|
---|
3106 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
|
---|
3107 | }
|
---|
3108 | X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
|
---|
3109 | if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
3110 | || (pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
3111 | {
|
---|
3112 | if (uDpl == 0)
|
---|
3113 | { /* likely */ }
|
---|
3114 | else
|
---|
3115 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
|
---|
3116 | }
|
---|
3117 | }
|
---|
3118 | else
|
---|
3119 | {
|
---|
3120 | /* DS, ES, FS, GS. */
|
---|
3121 | if (fUsable)
|
---|
3122 | {
|
---|
3123 | /* Segment type. */
|
---|
3124 | if (uSegType & X86_SEL_TYPE_ACCESSED)
|
---|
3125 | { /* likely */ }
|
---|
3126 | else
|
---|
3127 | {
|
---|
3128 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
|
---|
3129 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3130 | }
|
---|
3131 |
|
---|
3132 | if ( !(uSegType & X86_SEL_TYPE_CODE)
|
---|
3133 | || (uSegType & X86_SEL_TYPE_READ))
|
---|
3134 | { /* likely */ }
|
---|
3135 | else
|
---|
3136 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
|
---|
3137 |
|
---|
3138 | /* DPL. */
|
---|
3139 | if ( !fUnrestrictedGuest
|
---|
3140 | && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
|
---|
3141 | {
|
---|
3142 | if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
|
---|
3143 | { /* likely */ }
|
---|
3144 | else
|
---|
3145 | {
|
---|
3146 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
|
---|
3147 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3148 | }
|
---|
3149 | }
|
---|
3150 | }
|
---|
3151 | }
|
---|
3152 | }
|
---|
3153 |
|
---|
3154 | /*
|
---|
3155 | * LDTR.
|
---|
3156 | */
|
---|
3157 | {
|
---|
3158 | CPUMSELREG Ldtr;
|
---|
3159 | Ldtr.Sel = pVmcs->GuestLdtr;
|
---|
3160 | Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
|
---|
3161 | Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
|
---|
3162 | Ldtr.Attr.u = pVmcs->u32GuestLdtrLimit;
|
---|
3163 |
|
---|
3164 | if (!Ldtr.Attr.n.u1Unusable)
|
---|
3165 | {
|
---|
3166 | /* Selector. */
|
---|
3167 | if (!(Ldtr.Sel & X86_SEL_LDT))
|
---|
3168 | { /* likely */ }
|
---|
3169 | else
|
---|
3170 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
|
---|
3171 |
|
---|
3172 | /* Base. */
|
---|
3173 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3174 | {
|
---|
3175 | if (X86_IS_CANONICAL(Ldtr.u64Base))
|
---|
3176 | { /* likely */ }
|
---|
3177 | else
|
---|
3178 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
|
---|
3179 | }
|
---|
3180 |
|
---|
3181 | /* Attributes. */
|
---|
3182 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
3183 | if (!(Ldtr.Attr.u & 0xfffe0f00))
|
---|
3184 | { /* likely */ }
|
---|
3185 | else
|
---|
3186 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
|
---|
3187 |
|
---|
3188 | if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
|
---|
3189 | { /* likely */ }
|
---|
3190 | else
|
---|
3191 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
|
---|
3192 |
|
---|
3193 | if (!Ldtr.Attr.n.u1DescType)
|
---|
3194 | { /* likely */ }
|
---|
3195 | else
|
---|
3196 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
|
---|
3197 |
|
---|
3198 | if (Ldtr.Attr.n.u1Present)
|
---|
3199 | { /* likely */ }
|
---|
3200 | else
|
---|
3201 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
|
---|
3202 |
|
---|
3203 | if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
|
---|
3204 | && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
|
---|
3205 | { /* likely */ }
|
---|
3206 | else
|
---|
3207 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
|
---|
3208 | }
|
---|
3209 | }
|
---|
3210 |
|
---|
3211 | /*
|
---|
3212 | * TR.
|
---|
3213 | */
|
---|
3214 | {
|
---|
3215 | CPUMSELREG Tr;
|
---|
3216 | Tr.Sel = pVmcs->GuestTr;
|
---|
3217 | Tr.u32Limit = pVmcs->u32GuestTrLimit;
|
---|
3218 | Tr.u64Base = pVmcs->u64GuestTrBase.u;
|
---|
3219 | Tr.Attr.u = pVmcs->u32GuestTrLimit;
|
---|
3220 |
|
---|
3221 | /* Selector. */
|
---|
3222 | if (!(Tr.Sel & X86_SEL_LDT))
|
---|
3223 | { /* likely */ }
|
---|
3224 | else
|
---|
3225 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
|
---|
3226 |
|
---|
3227 | /* Base. */
|
---|
3228 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3229 | {
|
---|
3230 | if (X86_IS_CANONICAL(Tr.u64Base))
|
---|
3231 | { /* likely */ }
|
---|
3232 | else
|
---|
3233 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
|
---|
3234 | }
|
---|
3235 |
|
---|
3236 | /* Attributes. */
|
---|
3237 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
3238 | if (!(Tr.Attr.u & 0xfffe0f00))
|
---|
3239 | { /* likely */ }
|
---|
3240 | else
|
---|
3241 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
|
---|
3242 |
|
---|
3243 | if (!Tr.Attr.n.u1Unusable)
|
---|
3244 | { /* likely */ }
|
---|
3245 | else
|
---|
3246 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
|
---|
3247 |
|
---|
3248 | if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
3249 | || ( !fGstInLongMode
|
---|
3250 | && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
|
---|
3251 | { /* likely */ }
|
---|
3252 | else
|
---|
3253 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
|
---|
3254 |
|
---|
3255 | if (!Tr.Attr.n.u1DescType)
|
---|
3256 | { /* likely */ }
|
---|
3257 | else
|
---|
3258 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
|
---|
3259 |
|
---|
3260 | if (Tr.Attr.n.u1Present)
|
---|
3261 | { /* likely */ }
|
---|
3262 | else
|
---|
3263 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
|
---|
3264 |
|
---|
3265 | if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
|
---|
3266 | && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
|
---|
3267 | { /* likely */ }
|
---|
3268 | else
|
---|
3269 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
|
---|
3270 | }
|
---|
3271 |
|
---|
3272 | NOREF(pszInstr);
|
---|
3273 | NOREF(pszFailure);
|
---|
3274 | return VINF_SUCCESS;
|
---|
3275 | }
|
---|
3276 |
|
---|
3277 |
|
---|
3278 | /**
|
---|
3279 | * Checks guest GDTR and IDTR as part of VM-entry.
|
---|
3280 | *
|
---|
3281 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3282 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3283 | */
|
---|
3284 | IEM_STATIC int iemVmxVmentryCheckGuestGdtrIdtr(PVMCPU pVCpu, const char *pszInstr)
|
---|
3285 | {
|
---|
3286 | /*
|
---|
3287 | * GDTR and IDTR.
|
---|
3288 | * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
|
---|
3289 | */
|
---|
3290 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3291 | const char *const pszFailure = "VM-exit";
|
---|
3292 |
|
---|
3293 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3294 | {
|
---|
3295 | /* Base. */
|
---|
3296 | if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
|
---|
3297 | { /* likely */ }
|
---|
3298 | else
|
---|
3299 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
|
---|
3300 |
|
---|
3301 | if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
|
---|
3302 | { /* likely */ }
|
---|
3303 | else
|
---|
3304 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
|
---|
3305 | }
|
---|
3306 |
|
---|
3307 | /* Limit. */
|
---|
3308 | if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
|
---|
3309 | { /* likely */ }
|
---|
3310 | else
|
---|
3311 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
|
---|
3312 |
|
---|
3313 | if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
|
---|
3314 | { /* likely */ }
|
---|
3315 | else
|
---|
3316 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
|
---|
3317 |
|
---|
3318 | NOREF(pszInstr);
|
---|
3319 | NOREF(pszFailure);
|
---|
3320 | return VINF_SUCCESS;
|
---|
3321 | }
|
---|
3322 |
|
---|
3323 |
|
---|
3324 | /**
|
---|
3325 | * Checks guest RIP and RFLAGS as part of VM-entry.
|
---|
3326 | *
|
---|
3327 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3328 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3329 | */
|
---|
3330 | IEM_STATIC int iemVmxVmentryCheckGuestRipRFlags(PVMCPU pVCpu, const char *pszInstr)
|
---|
3331 | {
|
---|
3332 | /*
|
---|
3333 | * RIP and RFLAGS.
|
---|
3334 | * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
|
---|
3335 | */
|
---|
3336 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3337 | const char *const pszFailure = "VM-exit";
|
---|
3338 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
3339 |
|
---|
3340 | /* RIP. */
|
---|
3341 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3342 | {
|
---|
3343 | X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
|
---|
3344 | if ( !fGstInLongMode
|
---|
3345 | || !AttrCs.n.u1Long)
|
---|
3346 | {
|
---|
3347 | if (!RT_HI_U32(pVmcs->u64GuestRip.u))
|
---|
3348 | { /* likely */ }
|
---|
3349 | else
|
---|
3350 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
|
---|
3351 | }
|
---|
3352 |
|
---|
3353 | if ( fGstInLongMode
|
---|
3354 | && AttrCs.n.u1Long)
|
---|
3355 | {
|
---|
3356 | Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
|
---|
3357 | if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
|
---|
3358 | && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
|
---|
3359 | { /* likely */ }
|
---|
3360 | else
|
---|
3361 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
|
---|
3362 | }
|
---|
3363 | }
|
---|
3364 |
|
---|
3365 | /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
|
---|
3366 | uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
|
---|
3367 | : pVmcs->u64GuestRFlags.s.Lo;
|
---|
3368 | if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
|
---|
3369 | && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
|
---|
3370 | { /* likely */ }
|
---|
3371 | else
|
---|
3372 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
|
---|
3373 |
|
---|
3374 | if ( fGstInLongMode
|
---|
3375 | || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
3376 | {
|
---|
3377 | if (!(uGuestRFlags & X86_EFL_VM))
|
---|
3378 | { /* likely */ }
|
---|
3379 | else
|
---|
3380 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 | if ( VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo)
|
---|
3384 | && VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
3385 | {
|
---|
3386 | if (uGuestRFlags & X86_EFL_IF)
|
---|
3387 | { /* likely */ }
|
---|
3388 | else
|
---|
3389 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
|
---|
3390 | }
|
---|
3391 |
|
---|
3392 | NOREF(pszInstr);
|
---|
3393 | NOREF(pszFailure);
|
---|
3394 | return VINF_SUCCESS;
|
---|
3395 | }
|
---|
3396 |
|
---|
3397 |
|
---|
3398 | /**
|
---|
3399 | * Checks guest non-register state as part of VM-entry.
|
---|
3400 | *
|
---|
3401 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3402 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3403 | */
|
---|
3404 | IEM_STATIC int iemVmxVmentryCheckGuestNonRegState(PVMCPU pVCpu, const char *pszInstr)
|
---|
3405 | {
|
---|
3406 | /*
|
---|
3407 | * Guest non-register state.
|
---|
3408 | * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
|
---|
3409 | */
|
---|
3410 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3411 | const char *const pszFailure = "VM-exit";
|
---|
3412 |
|
---|
3413 | /*
|
---|
3414 | * Activity state.
|
---|
3415 | */
|
---|
3416 | uint64_t const u64GuestVmxMiscMsr = CPUMGetGuestIa32VmxMisc(pVCpu);
|
---|
3417 | uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
|
---|
3418 | if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
|
---|
3419 | { /* likely */ }
|
---|
3420 | else
|
---|
3421 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
|
---|
3422 |
|
---|
3423 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
3424 | if ( !AttrSs.n.u2Dpl
|
---|
3425 | || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
3426 | { /* likely */ }
|
---|
3427 | else
|
---|
3428 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
|
---|
3429 |
|
---|
3430 | if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
|
---|
3431 | || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
|
---|
3432 | {
|
---|
3433 | if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
|
---|
3434 | { /* likely */ }
|
---|
3435 | else
|
---|
3436 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
|
---|
3437 | }
|
---|
3438 |
|
---|
3439 | if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
|
---|
3440 | {
|
---|
3441 | uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
|
---|
3442 | uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
|
---|
3443 | AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
|
---|
3444 | switch (pVmcs->u32GuestActivityState)
|
---|
3445 | {
|
---|
3446 | case VMX_VMCS_GUEST_ACTIVITY_HLT:
|
---|
3447 | {
|
---|
3448 | if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
|
---|
3449 | || uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
3450 | || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
3451 | && ( uVector == X86_XCPT_DB
|
---|
3452 | || uVector == X86_XCPT_MC))
|
---|
3453 | || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
|
---|
3454 | && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
|
---|
3455 | { /* likely */ }
|
---|
3456 | else
|
---|
3457 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
|
---|
3458 | break;
|
---|
3459 | }
|
---|
3460 |
|
---|
3461 | case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
|
---|
3462 | {
|
---|
3463 | if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
3464 | || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
3465 | && uVector == X86_XCPT_MC))
|
---|
3466 | { /* likely */ }
|
---|
3467 | else
|
---|
3468 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
|
---|
3469 | break;
|
---|
3470 | }
|
---|
3471 |
|
---|
3472 | case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
|
---|
3473 | default:
|
---|
3474 | break;
|
---|
3475 | }
|
---|
3476 | }
|
---|
3477 |
|
---|
3478 | /*
|
---|
3479 | * Interruptibility state.
|
---|
3480 | */
|
---|
3481 | if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
|
---|
3482 | { /* likely */ }
|
---|
3483 | else
|
---|
3484 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
|
---|
3485 |
|
---|
3486 | if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
3487 | != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
3488 | { /* likely */ }
|
---|
3489 | else
|
---|
3490 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
|
---|
3491 |
|
---|
3492 | if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
|
---|
3493 | || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
3494 | { /* likely */ }
|
---|
3495 | else
|
---|
3496 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
|
---|
3497 |
|
---|
3498 | if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
|
---|
3499 | {
|
---|
3500 | uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
|
---|
3501 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
3502 | {
|
---|
3503 | if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
|
---|
3504 | { /* likely */ }
|
---|
3505 | else
|
---|
3506 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
|
---|
3507 | }
|
---|
3508 | else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
3509 | {
|
---|
3510 | if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
|
---|
3511 | { /* likely */ }
|
---|
3512 | else
|
---|
3513 | {
|
---|
3514 | /*
|
---|
3515 | * We don't support injecting NMIs when blocking-by-STI would be in effect.
|
---|
3516 | * We update the VM-exit qualification only when blocking-by-STI is set
|
---|
3517 | * without blocking-by-MovSS being set. Although in practise it does not
|
---|
3518 | * make much difference since the order of checks are implementation defined.
|
---|
3519 | */
|
---|
3520 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
3521 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
|
---|
3522 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
|
---|
3523 | }
|
---|
3524 |
|
---|
3525 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
3526 | || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
|
---|
3527 | { /* likely */ }
|
---|
3528 | else
|
---|
3529 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 |
|
---|
3533 | /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
|
---|
3534 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
|
---|
3535 | { /* likely */ }
|
---|
3536 | else
|
---|
3537 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
|
---|
3538 |
|
---|
3539 | /* We don't support SGX yet. So enclave-interruption must not be set. */
|
---|
3540 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
|
---|
3541 | { /* likely */ }
|
---|
3542 | else
|
---|
3543 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
|
---|
3544 |
|
---|
3545 | /*
|
---|
3546 | * Pending debug exceptions.
|
---|
3547 | */
|
---|
3548 | uint64_t const uPendingDbgXcpt = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
|
---|
3549 | ? pVmcs->u64GuestPendingDbgXcpt.u
|
---|
3550 | : pVmcs->u64GuestPendingDbgXcpt.s.Lo;
|
---|
3551 | if (!(uPendingDbgXcpt & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
|
---|
3552 | { /* likely */ }
|
---|
3553 | else
|
---|
3554 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
|
---|
3555 |
|
---|
3556 | if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
3557 | || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
3558 | {
|
---|
3559 | if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
|
---|
3560 | && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
|
---|
3561 | && !(uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
|
---|
3562 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
|
---|
3563 |
|
---|
3564 | if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
|
---|
3565 | || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
|
---|
3566 | && (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
|
---|
3567 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
|
---|
3568 | }
|
---|
3569 |
|
---|
3570 | /* We don't support RTM (Real-time Transactional Memory) yet. */
|
---|
3571 | if (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_RTM)
|
---|
3572 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
|
---|
3573 |
|
---|
3574 | /*
|
---|
3575 | * VMCS link pointer.
|
---|
3576 | */
|
---|
3577 | if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
|
---|
3578 | {
|
---|
3579 | RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
|
---|
3580 | /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
|
---|
3581 | if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
|
---|
3582 | { /* likely */ }
|
---|
3583 | else
|
---|
3584 | {
|
---|
3585 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
3586 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
|
---|
3587 | }
|
---|
3588 |
|
---|
3589 | /* Validate the address. */
|
---|
3590 | if ( (GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
3591 | || (GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
3592 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
|
---|
3593 | {
|
---|
3594 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
3595 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
|
---|
3596 | }
|
---|
3597 |
|
---|
3598 | /* Read the VMCS-link pointer from guest memory. */
|
---|
3599 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs));
|
---|
3600 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs),
|
---|
3601 | GCPhysShadowVmcs, VMX_V_VMCS_SIZE);
|
---|
3602 | if (RT_FAILURE(rc))
|
---|
3603 | {
|
---|
3604 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
3605 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
|
---|
3606 | }
|
---|
3607 |
|
---|
3608 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
3609 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
|
---|
3610 | { /* likely */ }
|
---|
3611 | else
|
---|
3612 | {
|
---|
3613 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
3614 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
|
---|
3615 | }
|
---|
3616 |
|
---|
3617 | /* Verify the shadow bit is set if VMCS shadowing is enabled . */
|
---|
3618 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
3619 | || pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
|
---|
3620 | { /* likely */ }
|
---|
3621 | else
|
---|
3622 | {
|
---|
3623 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
3624 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
|
---|
3625 | }
|
---|
3626 |
|
---|
3627 | /* Finally update our cache of the guest physical address of the shadow VMCS. */
|
---|
3628 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
|
---|
3629 | }
|
---|
3630 |
|
---|
3631 | NOREF(pszInstr);
|
---|
3632 | NOREF(pszFailure);
|
---|
3633 | return VINF_SUCCESS;
|
---|
3634 | }
|
---|
3635 |
|
---|
3636 |
|
---|
3637 | /**
|
---|
3638 | * Checks if the PDPTEs referenced by the nested-guest CR3 are valid as part of
|
---|
3639 | * VM-entry.
|
---|
3640 | *
|
---|
3641 | * @returns @c true if all PDPTEs are valid, @c false otherwise.
|
---|
3642 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3643 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3644 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
3645 | */
|
---|
3646 | IEM_STATIC int iemVmxVmentryCheckGuestPdptesForCr3(PVMCPU pVCpu, const char *pszInstr, PVMXVVMCS pVmcs)
|
---|
3647 | {
|
---|
3648 | /*
|
---|
3649 | * Check PDPTEs.
|
---|
3650 | * See Intel spec. 4.4.1 "PDPTE Registers".
|
---|
3651 | */
|
---|
3652 | uint64_t const uGuestCr3 = pVmcs->u64GuestCr3.u & X86_CR3_PAE_PAGE_MASK;
|
---|
3653 | const char *const pszFailure = "VM-exit";
|
---|
3654 |
|
---|
3655 | X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
|
---|
3656 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uGuestCr3, sizeof(aPdptes));
|
---|
3657 | if (RT_SUCCESS(rc))
|
---|
3658 | {
|
---|
3659 | for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
|
---|
3660 | {
|
---|
3661 | if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
|
---|
3662 | || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
|
---|
3663 | { /* likely */ }
|
---|
3664 | else
|
---|
3665 | {
|
---|
3666 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
|
---|
3667 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentryPdpteRsvd(iPdpte);
|
---|
3668 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
3669 | }
|
---|
3670 | }
|
---|
3671 | }
|
---|
3672 | else
|
---|
3673 | {
|
---|
3674 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
|
---|
3675 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpteCr3ReadPhys);
|
---|
3676 | }
|
---|
3677 |
|
---|
3678 | NOREF(pszFailure);
|
---|
3679 | return rc;
|
---|
3680 | }
|
---|
3681 |
|
---|
3682 |
|
---|
3683 | /**
|
---|
3684 | * Checks guest PDPTEs as part of VM-entry.
|
---|
3685 | *
|
---|
3686 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3687 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3688 | */
|
---|
3689 | IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPU pVCpu, const char *pszInstr)
|
---|
3690 | {
|
---|
3691 | /*
|
---|
3692 | * Guest PDPTEs.
|
---|
3693 | * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
|
---|
3694 | */
|
---|
3695 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3696 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
3697 |
|
---|
3698 | /* Check PDPTes if the VM-entry is to a guest using PAE paging. */
|
---|
3699 | int rc;
|
---|
3700 | if ( !fGstInLongMode
|
---|
3701 | && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
|
---|
3702 | && (pVmcs->u64GuestCr0.u & X86_CR0_PG))
|
---|
3703 | {
|
---|
3704 | /*
|
---|
3705 | * We don't support nested-paging for nested-guests yet.
|
---|
3706 | *
|
---|
3707 | * Without nested-paging for nested-guests, PDPTEs in the VMCS are not used,
|
---|
3708 | * rather we need to check the PDPTEs referenced by the guest CR3.
|
---|
3709 | */
|
---|
3710 | rc = iemVmxVmentryCheckGuestPdptesForCr3(pVCpu, pszInstr, pVmcs);
|
---|
3711 | }
|
---|
3712 | else
|
---|
3713 | rc = VINF_SUCCESS;
|
---|
3714 | return rc;
|
---|
3715 | }
|
---|
3716 |
|
---|
3717 |
|
---|
3718 | /**
|
---|
3719 | * Checks guest-state as part of VM-entry.
|
---|
3720 | *
|
---|
3721 | * @returns VBox status code.
|
---|
3722 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3723 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3724 | */
|
---|
3725 | IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPU pVCpu, const char *pszInstr)
|
---|
3726 | {
|
---|
3727 | int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
|
---|
3728 | if (RT_SUCCESS(rc))
|
---|
3729 | {
|
---|
3730 | rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
|
---|
3731 | if (RT_SUCCESS(rc))
|
---|
3732 | {
|
---|
3733 | rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
|
---|
3734 | if (RT_SUCCESS(rc))
|
---|
3735 | {
|
---|
3736 | rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
|
---|
3737 | if (RT_SUCCESS(rc))
|
---|
3738 | {
|
---|
3739 | rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
|
---|
3740 | if (RT_SUCCESS(rc))
|
---|
3741 | return iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
|
---|
3742 | }
|
---|
3743 | }
|
---|
3744 | }
|
---|
3745 | }
|
---|
3746 | return rc;
|
---|
3747 | }
|
---|
3748 |
|
---|
3749 |
|
---|
3750 | /**
|
---|
3751 | * Checks host-state as part of VM-entry.
|
---|
3752 | *
|
---|
3753 | * @returns VBox status code.
|
---|
3754 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3755 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3756 | */
|
---|
3757 | IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPU pVCpu, const char *pszInstr)
|
---|
3758 | {
|
---|
3759 | /*
|
---|
3760 | * Host Control Registers and MSRs.
|
---|
3761 | * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
|
---|
3762 | */
|
---|
3763 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3764 | const char * const pszFailure = "VMFail";
|
---|
3765 |
|
---|
3766 | /* CR0 reserved bits. */
|
---|
3767 | {
|
---|
3768 | /* CR0 MB1 bits. */
|
---|
3769 | uint64_t const u64Cr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
|
---|
3770 | if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) != u64Cr0Fixed0)
|
---|
3771 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
|
---|
3772 |
|
---|
3773 | /* CR0 MBZ bits. */
|
---|
3774 | uint64_t const u64Cr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
|
---|
3775 | if (pVmcs->u64HostCr0.u & ~u64Cr0Fixed1)
|
---|
3776 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
|
---|
3777 | }
|
---|
3778 |
|
---|
3779 | /* CR4 reserved bits. */
|
---|
3780 | {
|
---|
3781 | /* CR4 MB1 bits. */
|
---|
3782 | uint64_t const u64Cr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
|
---|
3783 | if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) != u64Cr4Fixed0)
|
---|
3784 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
|
---|
3785 |
|
---|
3786 | /* CR4 MBZ bits. */
|
---|
3787 | uint64_t const u64Cr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
|
---|
3788 | if (pVmcs->u64HostCr4.u & ~u64Cr4Fixed1)
|
---|
3789 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
|
---|
3790 | }
|
---|
3791 |
|
---|
3792 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3793 | {
|
---|
3794 | /* CR3 reserved bits. */
|
---|
3795 | if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
|
---|
3796 | { /* likely */ }
|
---|
3797 | else
|
---|
3798 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
|
---|
3799 |
|
---|
3800 | /* SYSENTER ESP and SYSENTER EIP. */
|
---|
3801 | if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
|
---|
3802 | && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
|
---|
3803 | { /* likely */ }
|
---|
3804 | else
|
---|
3805 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
|
---|
3806 | }
|
---|
3807 |
|
---|
3808 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
3809 | Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
|
---|
3810 |
|
---|
3811 | /* PAT MSR. */
|
---|
3812 | if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
|
---|
3813 | || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
|
---|
3814 | { /* likely */ }
|
---|
3815 | else
|
---|
3816 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
|
---|
3817 |
|
---|
3818 | /* EFER MSR. */
|
---|
3819 | uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
|
---|
3820 | if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
3821 | || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
|
---|
3822 | { /* likely */ }
|
---|
3823 | else
|
---|
3824 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
|
---|
3825 |
|
---|
3826 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
3827 | bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LMA);
|
---|
3828 | bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_BIT_LME);
|
---|
3829 | if ( fHostInLongMode == fHostLma
|
---|
3830 | && fHostInLongMode == fHostLme)
|
---|
3831 | { /* likely */ }
|
---|
3832 | else
|
---|
3833 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
|
---|
3834 |
|
---|
3835 | /*
|
---|
3836 | * Host Segment and Descriptor-Table Registers.
|
---|
3837 | * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
3838 | */
|
---|
3839 | /* Selector RPL and TI. */
|
---|
3840 | if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3841 | && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3842 | && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3843 | && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3844 | && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3845 | && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
3846 | && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
|
---|
3847 | { /* likely */ }
|
---|
3848 | else
|
---|
3849 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
|
---|
3850 |
|
---|
3851 | /* CS and TR selectors cannot be 0. */
|
---|
3852 | if ( pVmcs->HostCs
|
---|
3853 | && pVmcs->HostTr)
|
---|
3854 | { /* likely */ }
|
---|
3855 | else
|
---|
3856 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
|
---|
3857 |
|
---|
3858 | /* SS cannot be 0 if 32-bit host. */
|
---|
3859 | if ( fHostInLongMode
|
---|
3860 | || pVmcs->HostSs)
|
---|
3861 | { /* likely */ }
|
---|
3862 | else
|
---|
3863 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
|
---|
3864 |
|
---|
3865 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3866 | {
|
---|
3867 | /* FS, GS, GDTR, IDTR, TR base address. */
|
---|
3868 | if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
3869 | && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
3870 | && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
|
---|
3871 | && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
|
---|
3872 | && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
|
---|
3873 | { /* likely */ }
|
---|
3874 | else
|
---|
3875 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
|
---|
3876 | }
|
---|
3877 |
|
---|
3878 | /*
|
---|
3879 | * Host address-space size for 64-bit CPUs.
|
---|
3880 | * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
|
---|
3881 | */
|
---|
3882 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
3883 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
3884 | {
|
---|
3885 | bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
|
---|
3886 |
|
---|
3887 | /* Logical processor in IA-32e mode. */
|
---|
3888 | if (fCpuInLongMode)
|
---|
3889 | {
|
---|
3890 | if (fHostInLongMode)
|
---|
3891 | {
|
---|
3892 | /* PAE must be set. */
|
---|
3893 | if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
|
---|
3894 | { /* likely */ }
|
---|
3895 | else
|
---|
3896 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
|
---|
3897 |
|
---|
3898 | /* RIP must be canonical. */
|
---|
3899 | if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
|
---|
3900 | { /* likely */ }
|
---|
3901 | else
|
---|
3902 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
|
---|
3903 | }
|
---|
3904 | else
|
---|
3905 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
|
---|
3906 | }
|
---|
3907 | else
|
---|
3908 | {
|
---|
3909 | /* Logical processor is outside IA-32e mode. */
|
---|
3910 | if ( !fGstInLongMode
|
---|
3911 | && !fHostInLongMode)
|
---|
3912 | {
|
---|
3913 | /* PCIDE should not be set. */
|
---|
3914 | if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
|
---|
3915 | { /* likely */ }
|
---|
3916 | else
|
---|
3917 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
|
---|
3918 |
|
---|
3919 | /* The high 32-bits of RIP MBZ. */
|
---|
3920 | if (!pVmcs->u64HostRip.s.Hi)
|
---|
3921 | { /* likely */ }
|
---|
3922 | else
|
---|
3923 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
|
---|
3924 | }
|
---|
3925 | else
|
---|
3926 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
|
---|
3927 | }
|
---|
3928 | }
|
---|
3929 | else
|
---|
3930 | {
|
---|
3931 | /* Host address-space size for 32-bit CPUs. */
|
---|
3932 | if ( !fGstInLongMode
|
---|
3933 | && !fHostInLongMode)
|
---|
3934 | { /* likely */ }
|
---|
3935 | else
|
---|
3936 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
|
---|
3937 | }
|
---|
3938 |
|
---|
3939 | NOREF(pszInstr);
|
---|
3940 | NOREF(pszFailure);
|
---|
3941 | return VINF_SUCCESS;
|
---|
3942 | }
|
---|
3943 |
|
---|
3944 |
|
---|
3945 | /**
|
---|
3946 | * Checks VM-entry controls fields as part of VM-entry.
|
---|
3947 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
3948 | *
|
---|
3949 | * @returns VBox status code.
|
---|
3950 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3951 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
3952 | */
|
---|
3953 | IEM_STATIC int iemVmxVmentryCheckEntryCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
3954 | {
|
---|
3955 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
3956 | const char * const pszFailure = "VMFail";
|
---|
3957 |
|
---|
3958 | /* VM-entry controls. */
|
---|
3959 | VMXCTLSMSR EntryCtls;
|
---|
3960 | EntryCtls.u = CPUMGetGuestIa32VmxEntryCtls(pVCpu);
|
---|
3961 | if (~pVmcs->u32EntryCtls & EntryCtls.n.disallowed0)
|
---|
3962 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
|
---|
3963 |
|
---|
3964 | if (pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1)
|
---|
3965 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
|
---|
3966 |
|
---|
3967 | /* Event injection. */
|
---|
3968 | uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
|
---|
3969 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
|
---|
3970 | {
|
---|
3971 | /* Type and vector. */
|
---|
3972 | uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
|
---|
3973 | uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
|
---|
3974 | uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
|
---|
3975 | if ( !uRsvd
|
---|
3976 | && HMVmxIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
|
---|
3977 | && HMVmxIsEntryIntInfoVectorValid(uVector, uType))
|
---|
3978 | { /* likely */ }
|
---|
3979 | else
|
---|
3980 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
|
---|
3981 |
|
---|
3982 | /* Exception error code. */
|
---|
3983 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
|
---|
3984 | {
|
---|
3985 | /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
|
---|
3986 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
|
---|
3987 | || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
|
---|
3988 | { /* likely */ }
|
---|
3989 | else
|
---|
3990 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
|
---|
3991 |
|
---|
3992 | /* Exceptions that provide an error code. */
|
---|
3993 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
3994 | && ( uVector == X86_XCPT_DF
|
---|
3995 | || uVector == X86_XCPT_TS
|
---|
3996 | || uVector == X86_XCPT_NP
|
---|
3997 | || uVector == X86_XCPT_SS
|
---|
3998 | || uVector == X86_XCPT_GP
|
---|
3999 | || uVector == X86_XCPT_PF
|
---|
4000 | || uVector == X86_XCPT_AC))
|
---|
4001 | { /* likely */ }
|
---|
4002 | else
|
---|
4003 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
|
---|
4004 |
|
---|
4005 | /* Exception error-code reserved bits. */
|
---|
4006 | if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
|
---|
4007 | { /* likely */ }
|
---|
4008 | else
|
---|
4009 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
|
---|
4010 |
|
---|
4011 | /* Injecting a software interrupt, software exception or privileged software exception. */
|
---|
4012 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
|
---|
4013 | || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
|
---|
4014 | || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
|
---|
4015 | {
|
---|
4016 | /* Instruction length must be in the range 0-15. */
|
---|
4017 | if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
|
---|
4018 | { /* likely */ }
|
---|
4019 | else
|
---|
4020 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
|
---|
4021 |
|
---|
4022 | /* Instruction length of 0 is allowed only when its CPU feature is present. */
|
---|
4023 | if ( pVmcs->u32EntryInstrLen == 0
|
---|
4024 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
|
---|
4025 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
|
---|
4026 | }
|
---|
4027 | }
|
---|
4028 | }
|
---|
4029 |
|
---|
4030 | /* VM-entry MSR-load count and VM-entry MSR-load area address. */
|
---|
4031 | if (pVmcs->u32EntryMsrLoadCount)
|
---|
4032 | {
|
---|
4033 | if ( (pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
4034 | || (pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4035 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
|
---|
4036 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
|
---|
4037 | }
|
---|
4038 |
|
---|
4039 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
|
---|
4040 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
|
---|
4041 |
|
---|
4042 | NOREF(pszInstr);
|
---|
4043 | NOREF(pszFailure);
|
---|
4044 | return VINF_SUCCESS;
|
---|
4045 | }
|
---|
4046 |
|
---|
4047 |
|
---|
4048 | /**
|
---|
4049 | * Checks VM-exit controls fields as part of VM-entry.
|
---|
4050 | * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
|
---|
4051 | *
|
---|
4052 | * @returns VBox status code.
|
---|
4053 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4054 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4055 | */
|
---|
4056 | IEM_STATIC int iemVmxVmentryCheckExitCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
4057 | {
|
---|
4058 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4059 | const char * const pszFailure = "VMFail";
|
---|
4060 |
|
---|
4061 | /* VM-exit controls. */
|
---|
4062 | VMXCTLSMSR ExitCtls;
|
---|
4063 | ExitCtls.u = CPUMGetGuestIa32VmxExitCtls(pVCpu);
|
---|
4064 | if (~pVmcs->u32ExitCtls & ExitCtls.n.disallowed0)
|
---|
4065 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
|
---|
4066 |
|
---|
4067 | if (pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1)
|
---|
4068 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
|
---|
4069 |
|
---|
4070 | /* Save preemption timer without activating it. */
|
---|
4071 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
|
---|
4072 | && (pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
|
---|
4073 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
|
---|
4074 |
|
---|
4075 | /* VM-exit MSR-store count and VM-exit MSR-store area address. */
|
---|
4076 | if (pVmcs->u32ExitMsrStoreCount)
|
---|
4077 | {
|
---|
4078 | if ( (pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
4079 | || (pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4080 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
|
---|
4081 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
|
---|
4082 | }
|
---|
4083 |
|
---|
4084 | /* VM-exit MSR-load count and VM-exit MSR-load area address. */
|
---|
4085 | if (pVmcs->u32ExitMsrLoadCount)
|
---|
4086 | {
|
---|
4087 | if ( (pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
4088 | || (pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4089 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
|
---|
4090 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
|
---|
4091 | }
|
---|
4092 |
|
---|
4093 | NOREF(pszInstr);
|
---|
4094 | NOREF(pszFailure);
|
---|
4095 | return VINF_SUCCESS;
|
---|
4096 | }
|
---|
4097 |
|
---|
4098 |
|
---|
4099 | /**
|
---|
4100 | * Checks VM-execution controls fields as part of VM-entry.
|
---|
4101 | * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
|
---|
4102 | *
|
---|
4103 | * @returns VBox status code.
|
---|
4104 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4105 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4106 | *
|
---|
4107 | * @remarks This may update secondary-processor based VM-execution control fields
|
---|
4108 | * in the current VMCS if necessary.
|
---|
4109 | */
|
---|
4110 | IEM_STATIC int iemVmxVmentryCheckExecCtls(PVMCPU pVCpu, const char *pszInstr)
|
---|
4111 | {
|
---|
4112 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4113 | const char * const pszFailure = "VMFail";
|
---|
4114 |
|
---|
4115 | /* Pin-based VM-execution controls. */
|
---|
4116 | {
|
---|
4117 | VMXCTLSMSR PinCtls;
|
---|
4118 | PinCtls.u = CPUMGetGuestIa32VmxPinbasedCtls(pVCpu);
|
---|
4119 | if (~pVmcs->u32PinCtls & PinCtls.n.disallowed0)
|
---|
4120 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
|
---|
4121 |
|
---|
4122 | if (pVmcs->u32PinCtls & ~PinCtls.n.allowed1)
|
---|
4123 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
|
---|
4124 | }
|
---|
4125 |
|
---|
4126 | /* Processor-based VM-execution controls. */
|
---|
4127 | {
|
---|
4128 | VMXCTLSMSR ProcCtls;
|
---|
4129 | ProcCtls.u = CPUMGetGuestIa32VmxProcbasedCtls(pVCpu);
|
---|
4130 | if (~pVmcs->u32ProcCtls & ProcCtls.n.disallowed0)
|
---|
4131 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
|
---|
4132 |
|
---|
4133 | if (pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1)
|
---|
4134 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
|
---|
4135 | }
|
---|
4136 |
|
---|
4137 | /* Secondary processor-based VM-execution controls. */
|
---|
4138 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
4139 | {
|
---|
4140 | VMXCTLSMSR ProcCtls2;
|
---|
4141 | ProcCtls2.u = CPUMGetGuestIa32VmxProcbasedCtls2(pVCpu);
|
---|
4142 | if (~pVmcs->u32ProcCtls2 & ProcCtls2.n.disallowed0)
|
---|
4143 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
|
---|
4144 |
|
---|
4145 | if (pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1)
|
---|
4146 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
|
---|
4147 | }
|
---|
4148 | else
|
---|
4149 | Assert(!pVmcs->u32ProcCtls2);
|
---|
4150 |
|
---|
4151 | /* CR3-target count. */
|
---|
4152 | if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
|
---|
4153 | { /* likely */ }
|
---|
4154 | else
|
---|
4155 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
|
---|
4156 |
|
---|
4157 | /* IO bitmaps physical addresses. */
|
---|
4158 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
4159 | {
|
---|
4160 | if ( (pVmcs->u64AddrIoBitmapA.u & X86_PAGE_4K_OFFSET_MASK)
|
---|
4161 | || (pVmcs->u64AddrIoBitmapA.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4162 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapA.u))
|
---|
4163 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
|
---|
4164 |
|
---|
4165 | if ( (pVmcs->u64AddrIoBitmapB.u & X86_PAGE_4K_OFFSET_MASK)
|
---|
4166 | || (pVmcs->u64AddrIoBitmapB.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4167 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapB.u))
|
---|
4168 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
|
---|
4169 | }
|
---|
4170 |
|
---|
4171 | /* MSR bitmap physical address. */
|
---|
4172 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
4173 | {
|
---|
4174 | RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
|
---|
4175 | if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
4176 | || (GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4177 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
|
---|
4178 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
|
---|
4179 |
|
---|
4180 | /* Read the MSR bitmap. */
|
---|
4181 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
|
---|
4182 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap),
|
---|
4183 | GCPhysMsrBitmap, VMX_V_MSR_BITMAP_SIZE);
|
---|
4184 | if (RT_FAILURE(rc))
|
---|
4185 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
|
---|
4186 | }
|
---|
4187 |
|
---|
4188 | /* TPR shadow related controls. */
|
---|
4189 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
4190 | {
|
---|
4191 | /* Virtual-APIC page physical address. */
|
---|
4192 | RTGCPHYS GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
|
---|
4193 | if ( (GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
|
---|
4194 | || (GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4195 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
|
---|
4196 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
|
---|
4197 |
|
---|
4198 | /* Read the Virtual-APIC page. */
|
---|
4199 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
|
---|
4200 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage),
|
---|
4201 | GCPhysVirtApic, VMX_V_VIRT_APIC_PAGES);
|
---|
4202 | if (RT_FAILURE(rc))
|
---|
4203 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
|
---|
4204 |
|
---|
4205 | /* TPR threshold without virtual-interrupt delivery. */
|
---|
4206 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4207 | && (pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK))
|
---|
4208 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
|
---|
4209 |
|
---|
4210 | /* TPR threshold and VTPR. */
|
---|
4211 | uint8_t const *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
|
---|
4212 | uint8_t const u8VTpr = *(pbVirtApic + XAPIC_OFF_TPR);
|
---|
4213 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
4214 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4215 | && RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) > ((u8VTpr >> 4) & UINT32_C(0xf)) /* Bits 4:7 */)
|
---|
4216 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
|
---|
4217 | }
|
---|
4218 | else
|
---|
4219 | {
|
---|
4220 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
4221 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
4222 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
4223 | { /* likely */ }
|
---|
4224 | else
|
---|
4225 | {
|
---|
4226 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
4227 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
|
---|
4228 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
4229 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
|
---|
4230 | Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
4231 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
|
---|
4232 | }
|
---|
4233 | }
|
---|
4234 |
|
---|
4235 | /* NMI exiting and virtual-NMIs. */
|
---|
4236 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
|
---|
4237 | && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
4238 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
|
---|
4239 |
|
---|
4240 | /* Virtual-NMIs and NMI-window exiting. */
|
---|
4241 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
4242 | && (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
4243 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
|
---|
4244 |
|
---|
4245 | /* Virtualize APIC accesses. */
|
---|
4246 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
4247 | {
|
---|
4248 | /* APIC-access physical address. */
|
---|
4249 | RTGCPHYS GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
|
---|
4250 | if ( (GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
|
---|
4251 | || (GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4252 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
|
---|
4253 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
|
---|
4254 | }
|
---|
4255 |
|
---|
4256 | /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
|
---|
4257 | if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
4258 | && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
|
---|
4259 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
|
---|
4260 |
|
---|
4261 | /* Virtual-interrupt delivery requires external interrupt exiting. */
|
---|
4262 | if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4263 | && !(pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
4264 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
|
---|
4265 |
|
---|
4266 | /* VPID. */
|
---|
4267 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
|
---|
4268 | || pVmcs->u16Vpid != 0)
|
---|
4269 | { /* likely */ }
|
---|
4270 | else
|
---|
4271 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
|
---|
4272 |
|
---|
4273 | Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
|
---|
4274 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
|
---|
4275 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
|
---|
4276 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
|
---|
4277 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
|
---|
4278 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */
|
---|
4279 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
|
---|
4280 |
|
---|
4281 | /* VMCS shadowing. */
|
---|
4282 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
4283 | {
|
---|
4284 | /* VMREAD-bitmap physical address. */
|
---|
4285 | RTGCPHYS GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
4286 | if ( ( GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
4287 | || ( GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4288 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
|
---|
4289 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
|
---|
4290 |
|
---|
4291 | /* VMWRITE-bitmap physical address. */
|
---|
4292 | RTGCPHYS GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
4293 | if ( ( GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
4294 | || ( GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
4295 | || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
|
---|
4296 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
|
---|
4297 |
|
---|
4298 | /* Read the VMREAD-bitmap. */
|
---|
4299 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
|
---|
4300 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap),
|
---|
4301 | GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
4302 | if (RT_FAILURE(rc))
|
---|
4303 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
|
---|
4304 |
|
---|
4305 | /* Read the VMWRITE-bitmap. */
|
---|
4306 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap));
|
---|
4307 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap),
|
---|
4308 | GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
4309 | if (RT_FAILURE(rc))
|
---|
4310 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
|
---|
4311 | }
|
---|
4312 |
|
---|
4313 | NOREF(pszInstr);
|
---|
4314 | NOREF(pszFailure);
|
---|
4315 | return VINF_SUCCESS;
|
---|
4316 | }
|
---|
4317 |
|
---|
4318 |
|
---|
4319 | /**
|
---|
4320 | * Loads the guest control registers, debug register and some MSRs as part of
|
---|
4321 | * VM-entry.
|
---|
4322 | *
|
---|
4323 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4324 | */
|
---|
4325 | IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPU pVCpu)
|
---|
4326 | {
|
---|
4327 | /*
|
---|
4328 | * Load guest control registers, debug registers and MSRs.
|
---|
4329 | * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
|
---|
4330 | */
|
---|
4331 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4332 | uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_CR0_IGNORE_MASK)
|
---|
4333 | | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_CR0_IGNORE_MASK);
|
---|
4334 | CPUMSetGuestCR0(pVCpu, uGstCr0);
|
---|
4335 | CPUMSetGuestCR4(pVCpu, pVmcs->u64GuestCr4.u);
|
---|
4336 | pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
|
---|
4337 |
|
---|
4338 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
4339 | pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_DR7_MBZ_MASK) | VMX_ENTRY_DR7_MB1_MASK;
|
---|
4340 |
|
---|
4341 | pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
|
---|
4342 | pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
|
---|
4343 | pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
|
---|
4344 |
|
---|
4345 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
4346 | {
|
---|
4347 | /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
|
---|
4348 |
|
---|
4349 | /* EFER MSR. */
|
---|
4350 | if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
|
---|
4351 | {
|
---|
4352 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
4353 | bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
|
---|
4354 | uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
|
---|
4355 | if (fGstInLongMode)
|
---|
4356 | {
|
---|
4357 | /* If the nested-guest is in long mode, LMA and LME are both set. */
|
---|
4358 | Assert(fGstPaging);
|
---|
4359 | pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
4360 | }
|
---|
4361 | else
|
---|
4362 | {
|
---|
4363 | /*
|
---|
4364 | * If the nested-guest is outside long mode:
|
---|
4365 | * - With paging: LMA is cleared, LME is cleared.
|
---|
4366 | * - Without paging: LMA is cleared, LME is left unmodified.
|
---|
4367 | */
|
---|
4368 | uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
|
---|
4369 | pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
|
---|
4370 | }
|
---|
4371 | }
|
---|
4372 | /* else: see below. */
|
---|
4373 | }
|
---|
4374 |
|
---|
4375 | /* PAT MSR. */
|
---|
4376 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
4377 | pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
|
---|
4378 |
|
---|
4379 | /* EFER MSR. */
|
---|
4380 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
4381 | pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
|
---|
4382 |
|
---|
4383 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
4384 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
|
---|
4385 |
|
---|
4386 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
4387 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
|
---|
4388 |
|
---|
4389 | /* Nothing to do for SMBASE register - We don't support SMM yet. */
|
---|
4390 | }
|
---|
4391 |
|
---|
4392 |
|
---|
4393 | /**
|
---|
4394 | * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
|
---|
4395 | *
|
---|
4396 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4397 | */
|
---|
4398 | IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPU pVCpu)
|
---|
4399 | {
|
---|
4400 | /*
|
---|
4401 | * Load guest segment registers, GDTR, IDTR, LDTR and TR.
|
---|
4402 | * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
|
---|
4403 | */
|
---|
4404 | /* CS, SS, ES, DS, FS, GS. */
|
---|
4405 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4406 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
4407 | {
|
---|
4408 | PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
4409 | CPUMSELREG VmcsSelReg;
|
---|
4410 | int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
|
---|
4411 | AssertRC(rc); NOREF(rc);
|
---|
4412 | if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4413 | {
|
---|
4414 | pGstSelReg->Sel = VmcsSelReg.Sel;
|
---|
4415 | pGstSelReg->ValidSel = VmcsSelReg.Sel;
|
---|
4416 | pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4417 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
4418 | pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
|
---|
4419 | pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
|
---|
4420 | }
|
---|
4421 | else
|
---|
4422 | {
|
---|
4423 | pGstSelReg->Sel = VmcsSelReg.Sel;
|
---|
4424 | pGstSelReg->ValidSel = VmcsSelReg.Sel;
|
---|
4425 | pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4426 | switch (iSegReg)
|
---|
4427 | {
|
---|
4428 | case X86_SREG_CS:
|
---|
4429 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
4430 | pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
|
---|
4431 | pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
|
---|
4432 | break;
|
---|
4433 |
|
---|
4434 | case X86_SREG_SS:
|
---|
4435 | pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
|
---|
4436 | pGstSelReg->u32Limit = 0;
|
---|
4437 | pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
|
---|
4438 | break;
|
---|
4439 |
|
---|
4440 | case X86_SREG_ES:
|
---|
4441 | case X86_SREG_DS:
|
---|
4442 | pGstSelReg->u64Base = 0;
|
---|
4443 | pGstSelReg->u32Limit = 0;
|
---|
4444 | pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4445 | break;
|
---|
4446 |
|
---|
4447 | case X86_SREG_FS:
|
---|
4448 | case X86_SREG_GS:
|
---|
4449 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
4450 | pGstSelReg->u32Limit = 0;
|
---|
4451 | pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4452 | break;
|
---|
4453 | }
|
---|
4454 | Assert(pGstSelReg->Attr.n.u1Unusable);
|
---|
4455 | }
|
---|
4456 | }
|
---|
4457 |
|
---|
4458 | /* LDTR. */
|
---|
4459 | pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
|
---|
4460 | pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
|
---|
4461 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4462 | if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
|
---|
4463 | {
|
---|
4464 | pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
|
---|
4465 | pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
|
---|
4466 | pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
|
---|
4467 | }
|
---|
4468 | else
|
---|
4469 | {
|
---|
4470 | pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
|
---|
4471 | pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
|
---|
4472 | pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
4473 | }
|
---|
4474 |
|
---|
4475 | /* TR. */
|
---|
4476 | Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
|
---|
4477 | pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
|
---|
4478 | pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
|
---|
4479 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
4480 | pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
|
---|
4481 | pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
|
---|
4482 | pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
|
---|
4483 |
|
---|
4484 | /* GDTR. */
|
---|
4485 | pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
|
---|
4486 | pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
|
---|
4487 |
|
---|
4488 | /* IDTR. */
|
---|
4489 | pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
|
---|
4490 | pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
|
---|
4491 | }
|
---|
4492 |
|
---|
4493 |
|
---|
4494 | /**
|
---|
4495 | * Loads the guest MSRs from the VM-entry auto-load MSRs as part of VM-entry.
|
---|
4496 | *
|
---|
4497 | * @returns VBox status code.
|
---|
4498 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4499 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4500 | */
|
---|
4501 | IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPU pVCpu, const char *pszInstr)
|
---|
4502 | {
|
---|
4503 | /*
|
---|
4504 | * Load guest MSRs.
|
---|
4505 | * See Intel spec. 26.4 "Loading MSRs".
|
---|
4506 | */
|
---|
4507 | PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4508 | const char *const pszFailure = "VM-exit";
|
---|
4509 |
|
---|
4510 | /*
|
---|
4511 | * The VM-entry MSR-load area address need not be a valid guest-physical address if the
|
---|
4512 | * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
|
---|
4513 | * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
|
---|
4514 | */
|
---|
4515 | uint32_t const cMsrs = pVmcs->u32EntryMsrLoadCount;
|
---|
4516 | if (!cMsrs)
|
---|
4517 | return VINF_SUCCESS;
|
---|
4518 |
|
---|
4519 | /*
|
---|
4520 | * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
|
---|
4521 | * exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
4522 | * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
|
---|
4523 | */
|
---|
4524 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
4525 | if (fIsMsrCountValid)
|
---|
4526 | { /* likely */ }
|
---|
4527 | else
|
---|
4528 | {
|
---|
4529 | iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
|
---|
4530 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
|
---|
4531 | }
|
---|
4532 |
|
---|
4533 | RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrEntryMsrLoad.u;
|
---|
4534 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
|
---|
4535 | GCPhysAutoMsrArea, VMX_V_AUTOMSR_AREA_SIZE);
|
---|
4536 | if (RT_SUCCESS(rc))
|
---|
4537 | {
|
---|
4538 | PVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
|
---|
4539 | Assert(pMsr);
|
---|
4540 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
4541 | {
|
---|
4542 | if ( !pMsr->u32Reserved
|
---|
4543 | && pMsr->u32Msr != MSR_K8_FS_BASE
|
---|
4544 | && pMsr->u32Msr != MSR_K8_GS_BASE
|
---|
4545 | && pMsr->u32Msr != MSR_K6_EFER
|
---|
4546 | && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
|
---|
4547 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
4548 | {
|
---|
4549 | VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
|
---|
4550 | if (rcStrict == VINF_SUCCESS)
|
---|
4551 | continue;
|
---|
4552 |
|
---|
4553 | /*
|
---|
4554 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
|
---|
4555 | * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
|
---|
4556 | * recording the MSR index in the VM-exit qualification (as per the Intel spec.) and indicated
|
---|
4557 | * further by our own, specific diagnostic code. Later, we can try implement handling of the
|
---|
4558 | * MSR in ring-0 if possible, or come up with a better, generic solution.
|
---|
4559 | */
|
---|
4560 | iemVmxVmcsSetExitQual(pVCpu, idxMsr);
|
---|
4561 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
4562 | ? kVmxVDiag_Vmentry_MsrLoadRing3
|
---|
4563 | : kVmxVDiag_Vmentry_MsrLoad;
|
---|
4564 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
4565 | }
|
---|
4566 | else
|
---|
4567 | {
|
---|
4568 | iemVmxVmcsSetExitQual(pVCpu, idxMsr);
|
---|
4569 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
|
---|
4570 | }
|
---|
4571 | }
|
---|
4572 | }
|
---|
4573 | else
|
---|
4574 | {
|
---|
4575 | AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysAutoMsrArea, rc));
|
---|
4576 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
|
---|
4577 | }
|
---|
4578 |
|
---|
4579 | NOREF(pszInstr);
|
---|
4580 | NOREF(pszFailure);
|
---|
4581 | return VINF_SUCCESS;
|
---|
4582 | }
|
---|
4583 |
|
---|
4584 |
|
---|
4585 | /**
|
---|
4586 | * Loads the guest-state non-register state as part of VM-entry.
|
---|
4587 | *
|
---|
4588 | * @returns VBox status code.
|
---|
4589 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4590 | *
|
---|
4591 | * @remarks This must be called only after loading the nested-guest register state
|
---|
4592 | * (especially nested-guest RIP).
|
---|
4593 | */
|
---|
4594 | IEM_STATIC void iemVmxVmentryLoadGuestNonRegState(PVMCPU pVCpu)
|
---|
4595 | {
|
---|
4596 | /*
|
---|
4597 | * Load guest non-register state.
|
---|
4598 | * See Intel spec. 26.6 "Special Features of VM Entry"
|
---|
4599 | */
|
---|
4600 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4601 | uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
|
---|
4602 | if (VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo))
|
---|
4603 | {
|
---|
4604 | /** @todo NSTVMX: Pending debug exceptions. */
|
---|
4605 | Assert(!(pVmcs->u64GuestPendingDbgXcpt.u));
|
---|
4606 |
|
---|
4607 | if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
|
---|
4608 | {
|
---|
4609 | /** @todo NSTVMX: Virtual-NMIs doesn't affect NMI blocking in the normal sense.
|
---|
4610 | * We probably need a different force flag for virtual-NMI
|
---|
4611 | * pending/blocking. */
|
---|
4612 | Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI));
|
---|
4613 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
4614 | }
|
---|
4615 | else
|
---|
4616 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
|
---|
4617 |
|
---|
4618 | if (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
4619 | EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
|
---|
4620 | else
|
---|
4621 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
|
---|
4622 |
|
---|
4623 | /* SMI blocking is irrelevant. We don't support SMIs yet. */
|
---|
4624 | }
|
---|
4625 |
|
---|
4626 | /* Loading PDPTEs will be taken care when we switch modes. We don't support EPT yet. */
|
---|
4627 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
|
---|
4628 |
|
---|
4629 | /* VPID is irrelevant. We don't support VPID yet. */
|
---|
4630 |
|
---|
4631 | /* Clear address-range monitoring. */
|
---|
4632 | EMMonitorWaitClear(pVCpu);
|
---|
4633 | }
|
---|
4634 |
|
---|
4635 |
|
---|
4636 | /**
|
---|
4637 | * Loads the guest-state as part of VM-entry.
|
---|
4638 | *
|
---|
4639 | * @returns VBox status code.
|
---|
4640 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4641 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4642 | *
|
---|
4643 | * @remarks This must be done after all the necessary steps prior to loading of
|
---|
4644 | * guest-state (e.g. checking various VMCS state).
|
---|
4645 | */
|
---|
4646 | IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPU pVCpu, const char *pszInstr)
|
---|
4647 | {
|
---|
4648 | iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
|
---|
4649 | iemVmxVmentryLoadGuestSegRegs(pVCpu);
|
---|
4650 |
|
---|
4651 | /*
|
---|
4652 | * Load guest RIP, RSP and RFLAGS.
|
---|
4653 | * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
|
---|
4654 | */
|
---|
4655 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4656 | pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
|
---|
4657 | pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
|
---|
4658 | pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
|
---|
4659 |
|
---|
4660 | iemVmxVmentryLoadGuestNonRegState(pVCpu);
|
---|
4661 |
|
---|
4662 | NOREF(pszInstr);
|
---|
4663 | return VINF_SUCCESS;
|
---|
4664 | }
|
---|
4665 |
|
---|
4666 |
|
---|
4667 | /**
|
---|
4668 | * Performs event injection (if any) as part of VM-entry.
|
---|
4669 | *
|
---|
4670 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4671 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4672 | */
|
---|
4673 | IEM_STATIC int iemVmxVmentryInjectEvent(PVMCPU pVCpu, const char *pszInstr)
|
---|
4674 | {
|
---|
4675 | /*
|
---|
4676 | * Inject events.
|
---|
4677 | * See Intel spec. 26.5 "Event Injection".
|
---|
4678 | */
|
---|
4679 | PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4680 | uint32_t const uEntryIntInfo = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32EntryIntInfo;
|
---|
4681 | if (VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo))
|
---|
4682 | {
|
---|
4683 | /*
|
---|
4684 | * The event that is going to be made pending for injection is not subject to VMX intercepts,
|
---|
4685 | * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
|
---|
4686 | * of the current event -are- subject to intercepts, hence this flag will be flipped during
|
---|
4687 | * the actually delivery of this event.
|
---|
4688 | */
|
---|
4689 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = false;
|
---|
4690 |
|
---|
4691 | uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
|
---|
4692 | if (uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
|
---|
4693 | {
|
---|
4694 | Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
|
---|
4695 | VMCPU_FF_SET(pVCpu, VMCPU_FF_MTF);
|
---|
4696 | return VINF_SUCCESS;
|
---|
4697 | }
|
---|
4698 |
|
---|
4699 | int rc = HMVmxEntryIntInfoInjectTrpmEvent(pVCpu, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
|
---|
4700 | pVCpu->cpum.GstCtx.cr2);
|
---|
4701 | AssertRCReturn(rc, rc);
|
---|
4702 | }
|
---|
4703 |
|
---|
4704 | NOREF(pszInstr);
|
---|
4705 | return VINF_SUCCESS;
|
---|
4706 | }
|
---|
4707 |
|
---|
4708 |
|
---|
4709 | /**
|
---|
4710 | * VMLAUNCH/VMRESUME instruction execution worker.
|
---|
4711 | *
|
---|
4712 | * @returns Strict VBox status code.
|
---|
4713 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4714 | * @param cbInstr The instruction length.
|
---|
4715 | * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
|
---|
4716 | * VMXINSTRID_VMRESUME).
|
---|
4717 | * @param pExitInfo Pointer to the VM-exit instruction information struct.
|
---|
4718 | * Optional, can be NULL.
|
---|
4719 | *
|
---|
4720 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
4721 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
4722 | */
|
---|
4723 | IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPU pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId, PCVMXVEXITINFO pExitInfo)
|
---|
4724 | {
|
---|
4725 | Assert( uInstrId == VMXINSTRID_VMLAUNCH
|
---|
4726 | || uInstrId == VMXINSTRID_VMRESUME);
|
---|
4727 | const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
|
---|
4728 |
|
---|
4729 | /* Nested-guest intercept. */
|
---|
4730 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
4731 | {
|
---|
4732 | if (pExitInfo)
|
---|
4733 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
4734 | uint32_t const uExitReason = uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH;
|
---|
4735 | return iemVmxVmexitInstrNeedsInfo(pVCpu, uExitReason, uInstrId, cbInstr);
|
---|
4736 | }
|
---|
4737 |
|
---|
4738 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
4739 |
|
---|
4740 | /* CPL. */
|
---|
4741 | if (pVCpu->iem.s.uCpl > 0)
|
---|
4742 | {
|
---|
4743 | Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
|
---|
4744 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
|
---|
4745 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
4746 | }
|
---|
4747 |
|
---|
4748 | /* Current VMCS valid. */
|
---|
4749 | if (!IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
4750 | {
|
---|
4751 | Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
4752 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
|
---|
4753 | iemVmxVmFailInvalid(pVCpu);
|
---|
4754 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4755 | return VINF_SUCCESS;
|
---|
4756 | }
|
---|
4757 |
|
---|
4758 | /** @todo Distinguish block-by-MOV-SS from block-by-STI. Currently we
|
---|
4759 | * use block-by-STI here which is not quite correct. */
|
---|
4760 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
4761 | && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
4762 | {
|
---|
4763 | Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
|
---|
4764 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
|
---|
4765 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
|
---|
4766 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4767 | return VINF_SUCCESS;
|
---|
4768 | }
|
---|
4769 |
|
---|
4770 | if (uInstrId == VMXINSTRID_VMLAUNCH)
|
---|
4771 | {
|
---|
4772 | /* VMLAUNCH with non-clear VMCS. */
|
---|
4773 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_CLEAR)
|
---|
4774 | { /* likely */ }
|
---|
4775 | else
|
---|
4776 | {
|
---|
4777 | Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
|
---|
4778 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
|
---|
4779 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
|
---|
4780 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4781 | return VINF_SUCCESS;
|
---|
4782 | }
|
---|
4783 | }
|
---|
4784 | else
|
---|
4785 | {
|
---|
4786 | /* VMRESUME with non-launched VMCS. */
|
---|
4787 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_LAUNCHED)
|
---|
4788 | { /* likely */ }
|
---|
4789 | else
|
---|
4790 | {
|
---|
4791 | Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
|
---|
4792 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
|
---|
4793 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
|
---|
4794 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4795 | return VINF_SUCCESS;
|
---|
4796 | }
|
---|
4797 | }
|
---|
4798 |
|
---|
4799 | /*
|
---|
4800 | * Load the current VMCS.
|
---|
4801 | */
|
---|
4802 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
|
---|
4803 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs),
|
---|
4804 | IEM_VMX_GET_CURRENT_VMCS(pVCpu), VMX_V_VMCS_SIZE);
|
---|
4805 | if (RT_FAILURE(rc))
|
---|
4806 | {
|
---|
4807 | Log(("%s: Failed to read VMCS at %#RGp, rc=%Rrc\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu), rc));
|
---|
4808 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrReadPhys;
|
---|
4809 | return rc;
|
---|
4810 | }
|
---|
4811 |
|
---|
4812 | /*
|
---|
4813 | * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
|
---|
4814 | * while entering VMX non-root mode. We do some of this while checking VM-execution
|
---|
4815 | * controls. The guest hypervisor should not make assumptions and is cannot expect
|
---|
4816 | * predictable behavior if changes to these structures are made in guest memory after
|
---|
4817 | * executing VMX non-root mode. As far as VirtualBox is concerned, the guest cannot modify
|
---|
4818 | * them anyway as we cache them in host memory. We are trade memory for speed here.
|
---|
4819 | *
|
---|
4820 | * See Intel spec. 24.11.4 "Software Access to Related Structures".
|
---|
4821 | */
|
---|
4822 | rc = iemVmxVmentryCheckExecCtls(pVCpu, pszInstr);
|
---|
4823 | if (RT_SUCCESS(rc))
|
---|
4824 | {
|
---|
4825 | rc = iemVmxVmentryCheckExitCtls(pVCpu, pszInstr);
|
---|
4826 | if (RT_SUCCESS(rc))
|
---|
4827 | {
|
---|
4828 | rc = iemVmxVmentryCheckEntryCtls(pVCpu, pszInstr);
|
---|
4829 | if (RT_SUCCESS(rc))
|
---|
4830 | {
|
---|
4831 | rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
|
---|
4832 | if (RT_SUCCESS(rc))
|
---|
4833 | {
|
---|
4834 | /* Save the guest force-flags as VM-exits can occur from this point on. */
|
---|
4835 | iemVmxVmentrySaveForceFlags(pVCpu);
|
---|
4836 |
|
---|
4837 | rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
|
---|
4838 | if (RT_SUCCESS(rc))
|
---|
4839 | {
|
---|
4840 | rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
|
---|
4841 | if (RT_SUCCESS(rc))
|
---|
4842 | {
|
---|
4843 | rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
|
---|
4844 | if (RT_SUCCESS(rc))
|
---|
4845 | {
|
---|
4846 | Assert(rc != VINF_CPUM_R3_MSR_WRITE);
|
---|
4847 |
|
---|
4848 | /* VMLAUNCH instruction must update the VMCS launch state. */
|
---|
4849 | if (uInstrId == VMXINSTRID_VMLAUNCH)
|
---|
4850 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = VMX_V_VMCS_STATE_LAUNCHED;
|
---|
4851 |
|
---|
4852 | /* Perform the VMX transition (PGM updates). */
|
---|
4853 | VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
|
---|
4854 | if (rcStrict == VINF_SUCCESS)
|
---|
4855 | { /* likely */ }
|
---|
4856 | else if (RT_SUCCESS(rcStrict))
|
---|
4857 | {
|
---|
4858 | Log3(("%s: iemVmxWorldSwitch returns %Rrc -> Setting passup status\n", pszInstr,
|
---|
4859 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4860 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
4861 | }
|
---|
4862 | else
|
---|
4863 | {
|
---|
4864 | Log3(("%s: iemVmxWorldSwitch failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4865 | return rcStrict;
|
---|
4866 | }
|
---|
4867 |
|
---|
4868 | /* We've now entered nested-guest execution. */
|
---|
4869 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
|
---|
4870 |
|
---|
4871 | /* Now that we've switched page tables, we can inject events if any. */
|
---|
4872 | iemVmxVmentryInjectEvent(pVCpu, pszInstr);
|
---|
4873 |
|
---|
4874 | /** @todo NSTVMX: Setup VMX preemption timer */
|
---|
4875 | /** @todo NSTVMX: TPR thresholding. */
|
---|
4876 |
|
---|
4877 | return VINF_SUCCESS;
|
---|
4878 | }
|
---|
4879 | return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED);
|
---|
4880 | }
|
---|
4881 | }
|
---|
4882 | return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED);
|
---|
4883 | }
|
---|
4884 |
|
---|
4885 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
|
---|
4886 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4887 | return VINF_SUCCESS;
|
---|
4888 | }
|
---|
4889 | }
|
---|
4890 | }
|
---|
4891 |
|
---|
4892 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
|
---|
4893 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
4894 | return VINF_SUCCESS;
|
---|
4895 | }
|
---|
4896 |
|
---|
4897 |
|
---|
4898 | /**
|
---|
4899 | * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
|
---|
4900 | * (causes a VM-exit) or not.
|
---|
4901 | *
|
---|
4902 | * @returns @c true if the instruction is intercepted, @c false otherwise.
|
---|
4903 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4904 | * @param uExitReason The VM-exit exit reason (VMX_EXIT_RDMSR or
|
---|
4905 | * VMX_EXIT_WRMSR).
|
---|
4906 | * @param idMsr The MSR.
|
---|
4907 | */
|
---|
4908 | IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
|
---|
4909 | {
|
---|
4910 | Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
|
---|
4911 | Assert( uExitReason == VMX_EXIT_RDMSR
|
---|
4912 | || uExitReason == VMX_EXIT_WRMSR);
|
---|
4913 |
|
---|
4914 | /* Consult the MSR bitmap if the feature is supported. */
|
---|
4915 | if (IEM_VMX_IS_PROCCTLS_SET(pVCpu, VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
4916 | {
|
---|
4917 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
|
---|
4918 | if (uExitReason == VMX_EXIT_RDMSR)
|
---|
4919 | {
|
---|
4920 | VMXMSREXITREAD enmRead;
|
---|
4921 | int rc = HMVmxGetMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, &enmRead,
|
---|
4922 | NULL /* penmWrite */);
|
---|
4923 | AssertRC(rc);
|
---|
4924 | if (enmRead == VMXMSREXIT_INTERCEPT_READ)
|
---|
4925 | return true;
|
---|
4926 | }
|
---|
4927 | else
|
---|
4928 | {
|
---|
4929 | VMXMSREXITWRITE enmWrite;
|
---|
4930 | int rc = HMVmxGetMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, NULL /* penmRead */,
|
---|
4931 | &enmWrite);
|
---|
4932 | AssertRC(rc);
|
---|
4933 | if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
|
---|
4934 | return true;
|
---|
4935 | }
|
---|
4936 | return false;
|
---|
4937 | }
|
---|
4938 |
|
---|
4939 | /* Without MSR bitmaps, all MSR accesses are intercepted. */
|
---|
4940 | return true;
|
---|
4941 | }
|
---|
4942 |
|
---|
4943 |
|
---|
4944 | /**
|
---|
4945 | * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field is
|
---|
4946 | * intercepted (causes a VM-exit) or not.
|
---|
4947 | *
|
---|
4948 | * @returns @c true if the instruction is intercepted, @c false otherwise.
|
---|
4949 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4950 | * @param u64FieldEnc The VMCS field encoding.
|
---|
4951 | * @param uExitReason The VM-exit exit reason (VMX_EXIT_VMREAD or
|
---|
4952 | * VMX_EXIT_VMREAD).
|
---|
4953 | */
|
---|
4954 | IEM_STATIC bool iemVmxIsVmreadVmwriteInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint64_t u64FieldEnc)
|
---|
4955 | {
|
---|
4956 | Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
|
---|
4957 | Assert( uExitReason == VMX_EXIT_VMREAD
|
---|
4958 | || uExitReason == VMX_EXIT_VMWRITE);
|
---|
4959 |
|
---|
4960 | /* Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. */
|
---|
4961 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing)
|
---|
4962 | return true;
|
---|
4963 |
|
---|
4964 | /*
|
---|
4965 | * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE is intercepted.
|
---|
4966 | * This excludes any reserved bits in the valid parts of the field encoding (i.e. bit 12).
|
---|
4967 | */
|
---|
4968 | if (u64FieldEnc & VMX_VMCS_ENC_RSVD_MASK)
|
---|
4969 | return true;
|
---|
4970 |
|
---|
4971 | /* Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. */
|
---|
4972 | uint32_t u32FieldEnc = RT_LO_U32(u64FieldEnc);
|
---|
4973 | Assert(u32FieldEnc >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
4974 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
|
---|
4975 | uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD
|
---|
4976 | ? (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)
|
---|
4977 | : (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap);
|
---|
4978 | pbBitmap += (u32FieldEnc >> 3);
|
---|
4979 | if (*pbBitmap & RT_BIT(u32FieldEnc & 7))
|
---|
4980 | return true;
|
---|
4981 |
|
---|
4982 | return false;
|
---|
4983 | }
|
---|
4984 |
|
---|
4985 |
|
---|
4986 | /**
|
---|
4987 | * VMREAD common (memory/register) instruction execution worker
|
---|
4988 | *
|
---|
4989 | * @returns Strict VBox status code.
|
---|
4990 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4991 | * @param cbInstr The instruction length.
|
---|
4992 | * @param pu64Dst Where to write the VMCS value (only updated when
|
---|
4993 | * VINF_SUCCESS is returned).
|
---|
4994 | * @param u64FieldEnc The VMCS field encoding.
|
---|
4995 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
4996 | * be NULL.
|
---|
4997 | */
|
---|
4998 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
|
---|
4999 | PCVMXVEXITINFO pExitInfo)
|
---|
5000 | {
|
---|
5001 | /* Nested-guest intercept. */
|
---|
5002 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
5003 | && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64FieldEnc))
|
---|
5004 | {
|
---|
5005 | if (pExitInfo)
|
---|
5006 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5007 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
|
---|
5008 | }
|
---|
5009 |
|
---|
5010 | /* CPL. */
|
---|
5011 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5012 | {
|
---|
5013 | Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5014 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
|
---|
5015 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5016 | }
|
---|
5017 |
|
---|
5018 | /* VMCS pointer in root mode. */
|
---|
5019 | if ( IEM_VMX_IS_ROOT_MODE(pVCpu)
|
---|
5020 | && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
5021 | {
|
---|
5022 | Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
5023 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
|
---|
5024 | iemVmxVmFailInvalid(pVCpu);
|
---|
5025 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5026 | return VINF_SUCCESS;
|
---|
5027 | }
|
---|
5028 |
|
---|
5029 | /* VMCS-link pointer in non-root mode. */
|
---|
5030 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
5031 | && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
5032 | {
|
---|
5033 | Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
5034 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
|
---|
5035 | iemVmxVmFailInvalid(pVCpu);
|
---|
5036 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5037 | return VINF_SUCCESS;
|
---|
5038 | }
|
---|
5039 |
|
---|
5040 | /* Supported VMCS field. */
|
---|
5041 | if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
|
---|
5042 | {
|
---|
5043 | Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
|
---|
5044 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
|
---|
5045 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
|
---|
5046 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5047 | return VINF_SUCCESS;
|
---|
5048 | }
|
---|
5049 |
|
---|
5050 | /*
|
---|
5051 | * Setup reading from the current or shadow VMCS.
|
---|
5052 | */
|
---|
5053 | uint8_t *pbVmcs;
|
---|
5054 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5055 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
|
---|
5056 | else
|
---|
5057 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
5058 | Assert(pbVmcs);
|
---|
5059 |
|
---|
5060 | VMXVMCSFIELDENC FieldEnc;
|
---|
5061 | FieldEnc.u = RT_LO_U32(u64FieldEnc);
|
---|
5062 | uint8_t const uWidth = FieldEnc.n.u2Width;
|
---|
5063 | uint8_t const uType = FieldEnc.n.u2Type;
|
---|
5064 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
5065 | uint8_t const uIndex = FieldEnc.n.u8Index;
|
---|
5066 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
|
---|
5067 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
5068 |
|
---|
5069 | /*
|
---|
5070 | * Read the VMCS component based on the field's effective width.
|
---|
5071 | *
|
---|
5072 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
5073 | * indicates high bits (little endian).
|
---|
5074 | *
|
---|
5075 | * Note! The caller is responsible to trim the result and update registers
|
---|
5076 | * or memory locations are required. Here we just zero-extend to the largest
|
---|
5077 | * type (i.e. 64-bits).
|
---|
5078 | */
|
---|
5079 | uint8_t *pbField = pbVmcs + offField;
|
---|
5080 | uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
|
---|
5081 | switch (uEffWidth)
|
---|
5082 | {
|
---|
5083 | case VMX_VMCS_ENC_WIDTH_64BIT:
|
---|
5084 | case VMX_VMCS_ENC_WIDTH_NATURAL: *pu64Dst = *(uint64_t *)pbField; break;
|
---|
5085 | case VMX_VMCS_ENC_WIDTH_32BIT: *pu64Dst = *(uint32_t *)pbField; break;
|
---|
5086 | case VMX_VMCS_ENC_WIDTH_16BIT: *pu64Dst = *(uint16_t *)pbField; break;
|
---|
5087 | }
|
---|
5088 | return VINF_SUCCESS;
|
---|
5089 | }
|
---|
5090 |
|
---|
5091 |
|
---|
5092 | /**
|
---|
5093 | * VMREAD (64-bit register) instruction execution worker.
|
---|
5094 | *
|
---|
5095 | * @returns Strict VBox status code.
|
---|
5096 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5097 | * @param cbInstr The instruction length.
|
---|
5098 | * @param pu64Dst Where to store the VMCS field's value.
|
---|
5099 | * @param u64FieldEnc The VMCS field encoding.
|
---|
5100 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5101 | * be NULL.
|
---|
5102 | */
|
---|
5103 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
|
---|
5104 | PCVMXVEXITINFO pExitInfo)
|
---|
5105 | {
|
---|
5106 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
|
---|
5107 | if (rcStrict == VINF_SUCCESS)
|
---|
5108 | {
|
---|
5109 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
5110 | return VINF_SUCCESS;
|
---|
5111 | }
|
---|
5112 |
|
---|
5113 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5114 | return rcStrict;
|
---|
5115 | }
|
---|
5116 |
|
---|
5117 |
|
---|
5118 | /**
|
---|
5119 | * VMREAD (32-bit register) instruction execution worker.
|
---|
5120 | *
|
---|
5121 | * @returns Strict VBox status code.
|
---|
5122 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5123 | * @param cbInstr The instruction length.
|
---|
5124 | * @param pu32Dst Where to store the VMCS field's value.
|
---|
5125 | * @param u32FieldEnc The VMCS field encoding.
|
---|
5126 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5127 | * be NULL.
|
---|
5128 | */
|
---|
5129 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPU pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32FieldEnc,
|
---|
5130 | PCVMXVEXITINFO pExitInfo)
|
---|
5131 | {
|
---|
5132 | uint64_t u64Dst;
|
---|
5133 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32FieldEnc, pExitInfo);
|
---|
5134 | if (rcStrict == VINF_SUCCESS)
|
---|
5135 | {
|
---|
5136 | *pu32Dst = u64Dst;
|
---|
5137 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
5138 | return VINF_SUCCESS;
|
---|
5139 | }
|
---|
5140 |
|
---|
5141 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5142 | return rcStrict;
|
---|
5143 | }
|
---|
5144 |
|
---|
5145 |
|
---|
5146 | /**
|
---|
5147 | * VMREAD (memory) instruction execution worker.
|
---|
5148 | *
|
---|
5149 | * @returns Strict VBox status code.
|
---|
5150 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5151 | * @param cbInstr The instruction length.
|
---|
5152 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
5153 | * Pass UINT8_MAX if it is a register access.
|
---|
5154 | * @param enmEffAddrMode The effective addressing mode (only used with memory
|
---|
5155 | * operand).
|
---|
5156 | * @param GCPtrDst The guest linear address to store the VMCS field's
|
---|
5157 | * value.
|
---|
5158 | * @param u64FieldEnc The VMCS field encoding.
|
---|
5159 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5160 | * be NULL.
|
---|
5161 | */
|
---|
5162 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode,
|
---|
5163 | RTGCPTR GCPtrDst, uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
|
---|
5164 | {
|
---|
5165 | uint64_t u64Dst;
|
---|
5166 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64FieldEnc, pExitInfo);
|
---|
5167 | if (rcStrict == VINF_SUCCESS)
|
---|
5168 | {
|
---|
5169 | /*
|
---|
5170 | * Write the VMCS field's value to the location specified in guest-memory.
|
---|
5171 | *
|
---|
5172 | * The pointer size depends on the address size (address-size prefix allowed).
|
---|
5173 | * The operand size depends on IA-32e mode (operand-size prefix not allowed).
|
---|
5174 | */
|
---|
5175 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
5176 | Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
5177 | GCPtrDst &= s_auAddrSizeMasks[enmEffAddrMode];
|
---|
5178 |
|
---|
5179 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5180 | rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
5181 | else
|
---|
5182 | rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
5183 | if (rcStrict == VINF_SUCCESS)
|
---|
5184 | {
|
---|
5185 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
5186 | return VINF_SUCCESS;
|
---|
5187 | }
|
---|
5188 |
|
---|
5189 | Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5190 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
|
---|
5191 | return rcStrict;
|
---|
5192 | }
|
---|
5193 |
|
---|
5194 | Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5195 | return rcStrict;
|
---|
5196 | }
|
---|
5197 |
|
---|
5198 |
|
---|
5199 | /**
|
---|
5200 | * VMWRITE instruction execution worker.
|
---|
5201 | *
|
---|
5202 | * @returns Strict VBox status code.
|
---|
5203 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5204 | * @param cbInstr The instruction length.
|
---|
5205 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
5206 | * Pass UINT8_MAX if it is a register access.
|
---|
5207 | * @param enmEffAddrMode The effective addressing mode (only used with memory
|
---|
5208 | * operand).
|
---|
5209 | * @param u64Val The value to write (or guest linear address to the
|
---|
5210 | * value), @a iEffSeg will indicate if it's a memory
|
---|
5211 | * operand.
|
---|
5212 | * @param u64FieldEnc The VMCS field encoding.
|
---|
5213 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5214 | * be NULL.
|
---|
5215 | */
|
---|
5216 | IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, uint64_t u64Val,
|
---|
5217 | uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
|
---|
5218 | {
|
---|
5219 | /* Nested-guest intercept. */
|
---|
5220 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
5221 | && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64FieldEnc))
|
---|
5222 | {
|
---|
5223 | if (pExitInfo)
|
---|
5224 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5225 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
|
---|
5226 | }
|
---|
5227 |
|
---|
5228 | /* CPL. */
|
---|
5229 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5230 | {
|
---|
5231 | Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5232 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
|
---|
5233 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5234 | }
|
---|
5235 |
|
---|
5236 | /* VMCS pointer in root mode. */
|
---|
5237 | if ( IEM_VMX_IS_ROOT_MODE(pVCpu)
|
---|
5238 | && !IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
5239 | {
|
---|
5240 | Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
5241 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
|
---|
5242 | iemVmxVmFailInvalid(pVCpu);
|
---|
5243 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5244 | return VINF_SUCCESS;
|
---|
5245 | }
|
---|
5246 |
|
---|
5247 | /* VMCS-link pointer in non-root mode. */
|
---|
5248 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
5249 | && !IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
5250 | {
|
---|
5251 | Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
5252 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
|
---|
5253 | iemVmxVmFailInvalid(pVCpu);
|
---|
5254 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5255 | return VINF_SUCCESS;
|
---|
5256 | }
|
---|
5257 |
|
---|
5258 | /* If the VMWRITE instruction references memory, access the specified memory operand. */
|
---|
5259 | bool const fIsRegOperand = iEffSeg == UINT8_MAX;
|
---|
5260 | if (!fIsRegOperand)
|
---|
5261 | {
|
---|
5262 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
5263 | Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
5264 | RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[enmEffAddrMode];
|
---|
5265 |
|
---|
5266 | /* Read the value from the specified guest memory location. */
|
---|
5267 | VBOXSTRICTRC rcStrict;
|
---|
5268 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
5269 | rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
|
---|
5270 | else
|
---|
5271 | {
|
---|
5272 | uint32_t u32Val;
|
---|
5273 | rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, iEffSeg, GCPtrVal);
|
---|
5274 | u64Val = u32Val;
|
---|
5275 | }
|
---|
5276 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
5277 | {
|
---|
5278 | Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5279 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
|
---|
5280 | return rcStrict;
|
---|
5281 | }
|
---|
5282 | }
|
---|
5283 | else
|
---|
5284 | Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
|
---|
5285 |
|
---|
5286 | /* Supported VMCS field. */
|
---|
5287 | if (!iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
|
---|
5288 | {
|
---|
5289 | Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
|
---|
5290 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
|
---|
5291 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
|
---|
5292 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5293 | return VINF_SUCCESS;
|
---|
5294 | }
|
---|
5295 |
|
---|
5296 | /* Read-only VMCS field. */
|
---|
5297 | bool const fIsFieldReadOnly = HMVmxIsVmcsFieldReadOnly(u64FieldEnc);
|
---|
5298 | if ( fIsFieldReadOnly
|
---|
5299 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
|
---|
5300 | {
|
---|
5301 | Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64FieldEnc));
|
---|
5302 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
|
---|
5303 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
|
---|
5304 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5305 | return VINF_SUCCESS;
|
---|
5306 | }
|
---|
5307 |
|
---|
5308 | /*
|
---|
5309 | * Setup writing to the current or shadow VMCS.
|
---|
5310 | */
|
---|
5311 | uint8_t *pbVmcs;
|
---|
5312 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5313 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
|
---|
5314 | else
|
---|
5315 | pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
5316 | Assert(pbVmcs);
|
---|
5317 |
|
---|
5318 | VMXVMCSFIELDENC FieldEnc;
|
---|
5319 | FieldEnc.u = RT_LO_U32(u64FieldEnc);
|
---|
5320 | uint8_t const uWidth = FieldEnc.n.u2Width;
|
---|
5321 | uint8_t const uType = FieldEnc.n.u2Type;
|
---|
5322 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
5323 | uint8_t const uIndex = FieldEnc.n.u8Index;
|
---|
5324 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
|
---|
5325 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
5326 |
|
---|
5327 | /*
|
---|
5328 | * Write the VMCS component based on the field's effective width.
|
---|
5329 | *
|
---|
5330 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
5331 | * indicates high bits (little endian).
|
---|
5332 | */
|
---|
5333 | uint8_t *pbField = pbVmcs + offField;
|
---|
5334 | uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
|
---|
5335 | switch (uEffWidth)
|
---|
5336 | {
|
---|
5337 | case VMX_VMCS_ENC_WIDTH_64BIT:
|
---|
5338 | case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
|
---|
5339 | case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
|
---|
5340 | case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
|
---|
5341 | }
|
---|
5342 |
|
---|
5343 | iemVmxVmSucceed(pVCpu);
|
---|
5344 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5345 | return VINF_SUCCESS;
|
---|
5346 | }
|
---|
5347 |
|
---|
5348 |
|
---|
5349 | /**
|
---|
5350 | * VMCLEAR instruction execution worker.
|
---|
5351 | *
|
---|
5352 | * @returns Strict VBox status code.
|
---|
5353 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5354 | * @param cbInstr The instruction length.
|
---|
5355 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
5356 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
5357 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5358 | * be NULL.
|
---|
5359 | *
|
---|
5360 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
5361 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
5362 | */
|
---|
5363 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
5364 | PCVMXVEXITINFO pExitInfo)
|
---|
5365 | {
|
---|
5366 | /* Nested-guest intercept. */
|
---|
5367 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5368 | {
|
---|
5369 | if (pExitInfo)
|
---|
5370 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5371 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
|
---|
5372 | }
|
---|
5373 |
|
---|
5374 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
5375 |
|
---|
5376 | /* CPL. */
|
---|
5377 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5378 | {
|
---|
5379 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5380 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
|
---|
5381 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5382 | }
|
---|
5383 |
|
---|
5384 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
5385 | RTGCPHYS GCPhysVmcs;
|
---|
5386 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
5387 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
5388 | {
|
---|
5389 | Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5390 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
|
---|
5391 | return rcStrict;
|
---|
5392 | }
|
---|
5393 |
|
---|
5394 | /* VMCS pointer alignment. */
|
---|
5395 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
5396 | {
|
---|
5397 | Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
5398 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
|
---|
5399 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
5400 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5401 | return VINF_SUCCESS;
|
---|
5402 | }
|
---|
5403 |
|
---|
5404 | /* VMCS physical-address width limits. */
|
---|
5405 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
5406 | {
|
---|
5407 | Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
5408 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
|
---|
5409 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
5410 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5411 | return VINF_SUCCESS;
|
---|
5412 | }
|
---|
5413 |
|
---|
5414 | /* VMCS is not the VMXON region. */
|
---|
5415 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
5416 | {
|
---|
5417 | Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
5418 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
|
---|
5419 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
|
---|
5420 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5421 | return VINF_SUCCESS;
|
---|
5422 | }
|
---|
5423 |
|
---|
5424 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
5425 | restriction imposed by our implementation. */
|
---|
5426 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
5427 | {
|
---|
5428 | Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
|
---|
5429 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
|
---|
5430 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
5431 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5432 | return VINF_SUCCESS;
|
---|
5433 | }
|
---|
5434 |
|
---|
5435 | /*
|
---|
5436 | * VMCLEAR allows committing and clearing any valid VMCS pointer.
|
---|
5437 | *
|
---|
5438 | * If the current VMCS is the one being cleared, set its state to 'clear' and commit
|
---|
5439 | * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
|
---|
5440 | * to 'clear'.
|
---|
5441 | */
|
---|
5442 | uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR;
|
---|
5443 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
|
---|
5444 | {
|
---|
5445 | Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */
|
---|
5446 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
|
---|
5447 | pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear;
|
---|
5448 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
5449 | Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
5450 | }
|
---|
5451 | else
|
---|
5452 | {
|
---|
5453 | rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPtrVmcs + RT_OFFSETOF(VMXVVMCS, fVmcsState),
|
---|
5454 | (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear));
|
---|
5455 | }
|
---|
5456 |
|
---|
5457 | iemVmxVmSucceed(pVCpu);
|
---|
5458 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5459 | return rcStrict;
|
---|
5460 | }
|
---|
5461 |
|
---|
5462 |
|
---|
5463 | /**
|
---|
5464 | * VMPTRST instruction execution worker.
|
---|
5465 | *
|
---|
5466 | * @returns Strict VBox status code.
|
---|
5467 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5468 | * @param cbInstr The instruction length.
|
---|
5469 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
5470 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
5471 | * pointer.
|
---|
5472 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5473 | * be NULL.
|
---|
5474 | *
|
---|
5475 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
5476 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
5477 | */
|
---|
5478 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
5479 | PCVMXVEXITINFO pExitInfo)
|
---|
5480 | {
|
---|
5481 | /* Nested-guest intercept. */
|
---|
5482 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5483 | {
|
---|
5484 | if (pExitInfo)
|
---|
5485 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5486 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
|
---|
5487 | }
|
---|
5488 |
|
---|
5489 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
5490 |
|
---|
5491 | /* CPL. */
|
---|
5492 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5493 | {
|
---|
5494 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5495 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
|
---|
5496 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5497 | }
|
---|
5498 |
|
---|
5499 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
5500 | AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
5501 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
|
---|
5502 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
5503 | {
|
---|
5504 | iemVmxVmSucceed(pVCpu);
|
---|
5505 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5506 | return rcStrict;
|
---|
5507 | }
|
---|
5508 |
|
---|
5509 | Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5510 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
|
---|
5511 | return rcStrict;
|
---|
5512 | }
|
---|
5513 |
|
---|
5514 |
|
---|
5515 | /**
|
---|
5516 | * VMPTRLD instruction execution worker.
|
---|
5517 | *
|
---|
5518 | * @returns Strict VBox status code.
|
---|
5519 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5520 | * @param cbInstr The instruction length.
|
---|
5521 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
5522 | * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
|
---|
5523 | * be NULL.
|
---|
5524 | *
|
---|
5525 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
5526 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
5527 | */
|
---|
5528 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
5529 | PCVMXVEXITINFO pExitInfo)
|
---|
5530 | {
|
---|
5531 | /* Nested-guest intercept. */
|
---|
5532 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5533 | {
|
---|
5534 | if (pExitInfo)
|
---|
5535 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5536 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
|
---|
5537 | }
|
---|
5538 |
|
---|
5539 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
5540 |
|
---|
5541 | /* CPL. */
|
---|
5542 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5543 | {
|
---|
5544 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5545 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
|
---|
5546 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5547 | }
|
---|
5548 |
|
---|
5549 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
5550 | RTGCPHYS GCPhysVmcs;
|
---|
5551 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
5552 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
5553 | {
|
---|
5554 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5555 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
|
---|
5556 | return rcStrict;
|
---|
5557 | }
|
---|
5558 |
|
---|
5559 | /* VMCS pointer alignment. */
|
---|
5560 | if (GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
5561 | {
|
---|
5562 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
5563 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
|
---|
5564 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
5565 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5566 | return VINF_SUCCESS;
|
---|
5567 | }
|
---|
5568 |
|
---|
5569 | /* VMCS physical-address width limits. */
|
---|
5570 | if (GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
5571 | {
|
---|
5572 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
5573 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
|
---|
5574 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
5575 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5576 | return VINF_SUCCESS;
|
---|
5577 | }
|
---|
5578 |
|
---|
5579 | /* VMCS is not the VMXON region. */
|
---|
5580 | if (GCPhysVmcs == pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
5581 | {
|
---|
5582 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
5583 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
|
---|
5584 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
5585 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5586 | return VINF_SUCCESS;
|
---|
5587 | }
|
---|
5588 |
|
---|
5589 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
5590 | restriction imposed by our implementation. */
|
---|
5591 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
5592 | {
|
---|
5593 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
5594 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
|
---|
5595 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
5596 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5597 | return VINF_SUCCESS;
|
---|
5598 | }
|
---|
5599 |
|
---|
5600 | /* Read the VMCS revision ID from the VMCS. */
|
---|
5601 | VMXVMCSREVID VmcsRevId;
|
---|
5602 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
5603 | if (RT_FAILURE(rc))
|
---|
5604 | {
|
---|
5605 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
5606 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
|
---|
5607 | return rc;
|
---|
5608 | }
|
---|
5609 |
|
---|
5610 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest,
|
---|
5611 | also check VMCS shadowing feature. */
|
---|
5612 | if ( VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID
|
---|
5613 | || ( VmcsRevId.n.fIsShadowVmcs
|
---|
5614 | && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
5615 | {
|
---|
5616 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
5617 | {
|
---|
5618 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFail()\n", VMX_V_VMCS_REVISION_ID,
|
---|
5619 | VmcsRevId.n.u31RevisionId));
|
---|
5620 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
|
---|
5621 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
5622 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5623 | return VINF_SUCCESS;
|
---|
5624 | }
|
---|
5625 |
|
---|
5626 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
5627 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
|
---|
5628 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
5629 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5630 | return VINF_SUCCESS;
|
---|
5631 | }
|
---|
5632 |
|
---|
5633 | /*
|
---|
5634 | * We only maintain only the current VMCS in our virtual CPU context (CPUMCTX). Therefore,
|
---|
5635 | * VMPTRLD shall always flush any existing current VMCS back to guest memory before loading
|
---|
5636 | * a new VMCS as current.
|
---|
5637 | */
|
---|
5638 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
|
---|
5639 | {
|
---|
5640 | iemVmxCommitCurrentVmcsToMemory(pVCpu);
|
---|
5641 | IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
|
---|
5642 | }
|
---|
5643 |
|
---|
5644 | iemVmxVmSucceed(pVCpu);
|
---|
5645 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5646 | return VINF_SUCCESS;
|
---|
5647 | }
|
---|
5648 |
|
---|
5649 |
|
---|
5650 | /**
|
---|
5651 | * VMXON instruction execution worker.
|
---|
5652 | *
|
---|
5653 | * @returns Strict VBox status code.
|
---|
5654 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5655 | * @param cbInstr The instruction length.
|
---|
5656 | * @param iEffSeg The effective segment register to use with @a
|
---|
5657 | * GCPtrVmxon.
|
---|
5658 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
5659 | * @param pExitInfo Pointer to the VM-exit instruction information struct.
|
---|
5660 | * Optional, can be NULL.
|
---|
5661 | *
|
---|
5662 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
5663 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
5664 | */
|
---|
5665 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
|
---|
5666 | PCVMXVEXITINFO pExitInfo)
|
---|
5667 | {
|
---|
5668 | #if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
5669 | RT_NOREF5(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
|
---|
5670 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
5671 | #else
|
---|
5672 | if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
|
---|
5673 | {
|
---|
5674 | /* CPL. */
|
---|
5675 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5676 | {
|
---|
5677 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5678 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
|
---|
5679 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5680 | }
|
---|
5681 |
|
---|
5682 | /* A20M (A20 Masked) mode. */
|
---|
5683 | if (!PGMPhysIsA20Enabled(pVCpu))
|
---|
5684 | {
|
---|
5685 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
5686 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
|
---|
5687 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5688 | }
|
---|
5689 |
|
---|
5690 | /* CR0. */
|
---|
5691 | {
|
---|
5692 | /* CR0 MB1 bits. */
|
---|
5693 | uint64_t const uCr0Fixed0 = CPUMGetGuestIa32VmxCr0Fixed0(pVCpu);
|
---|
5694 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) != uCr0Fixed0)
|
---|
5695 | {
|
---|
5696 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
5697 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
|
---|
5698 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5699 | }
|
---|
5700 |
|
---|
5701 | /* CR0 MBZ bits. */
|
---|
5702 | uint64_t const uCr0Fixed1 = CPUMGetGuestIa32VmxCr0Fixed1(pVCpu);
|
---|
5703 | if (pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1)
|
---|
5704 | {
|
---|
5705 | Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
|
---|
5706 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
|
---|
5707 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5708 | }
|
---|
5709 | }
|
---|
5710 |
|
---|
5711 | /* CR4. */
|
---|
5712 | {
|
---|
5713 | /* CR4 MB1 bits. */
|
---|
5714 | uint64_t const uCr4Fixed0 = CPUMGetGuestIa32VmxCr4Fixed0(pVCpu);
|
---|
5715 | if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) != uCr4Fixed0)
|
---|
5716 | {
|
---|
5717 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
5718 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
|
---|
5719 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5720 | }
|
---|
5721 |
|
---|
5722 | /* CR4 MBZ bits. */
|
---|
5723 | uint64_t const uCr4Fixed1 = CPUMGetGuestIa32VmxCr4Fixed1(pVCpu);
|
---|
5724 | if (pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1)
|
---|
5725 | {
|
---|
5726 | Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
|
---|
5727 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
|
---|
5728 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5729 | }
|
---|
5730 | }
|
---|
5731 |
|
---|
5732 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
5733 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatureControl(pVCpu);
|
---|
5734 | if (!(uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON)))
|
---|
5735 | {
|
---|
5736 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
5737 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
|
---|
5738 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5739 | }
|
---|
5740 |
|
---|
5741 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
5742 | RTGCPHYS GCPhysVmxon;
|
---|
5743 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
|
---|
5744 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
5745 | {
|
---|
5746 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5747 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
|
---|
5748 | return rcStrict;
|
---|
5749 | }
|
---|
5750 |
|
---|
5751 | /* VMXON region pointer alignment. */
|
---|
5752 | if (GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK)
|
---|
5753 | {
|
---|
5754 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
5755 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
|
---|
5756 | iemVmxVmFailInvalid(pVCpu);
|
---|
5757 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5758 | return VINF_SUCCESS;
|
---|
5759 | }
|
---|
5760 |
|
---|
5761 | /* VMXON physical-address width limits. */
|
---|
5762 | if (GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
5763 | {
|
---|
5764 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
5765 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
|
---|
5766 | iemVmxVmFailInvalid(pVCpu);
|
---|
5767 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5768 | return VINF_SUCCESS;
|
---|
5769 | }
|
---|
5770 |
|
---|
5771 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
5772 | restriction imposed by our implementation. */
|
---|
5773 | if (!PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
5774 | {
|
---|
5775 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
5776 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
|
---|
5777 | iemVmxVmFailInvalid(pVCpu);
|
---|
5778 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5779 | return VINF_SUCCESS;
|
---|
5780 | }
|
---|
5781 |
|
---|
5782 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
5783 | VMXVMCSREVID VmcsRevId;
|
---|
5784 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
5785 | if (RT_FAILURE(rc))
|
---|
5786 | {
|
---|
5787 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
5788 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
|
---|
5789 | return rc;
|
---|
5790 | }
|
---|
5791 |
|
---|
5792 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
5793 | if (RT_UNLIKELY(VmcsRevId.u != VMX_V_VMCS_REVISION_ID))
|
---|
5794 | {
|
---|
5795 | /* Revision ID mismatch. */
|
---|
5796 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
5797 | {
|
---|
5798 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
5799 | VmcsRevId.n.u31RevisionId));
|
---|
5800 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
|
---|
5801 | iemVmxVmFailInvalid(pVCpu);
|
---|
5802 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5803 | return VINF_SUCCESS;
|
---|
5804 | }
|
---|
5805 |
|
---|
5806 | /* Shadow VMCS disallowed. */
|
---|
5807 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
5808 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
|
---|
5809 | iemVmxVmFailInvalid(pVCpu);
|
---|
5810 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5811 | return VINF_SUCCESS;
|
---|
5812 | }
|
---|
5813 |
|
---|
5814 | /*
|
---|
5815 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
5816 | */
|
---|
5817 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
5818 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
5819 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
5820 |
|
---|
5821 | /* Clear address-range monitoring. */
|
---|
5822 | EMMonitorWaitClear(pVCpu);
|
---|
5823 | /** @todo NSTVMX: Intel PT. */
|
---|
5824 |
|
---|
5825 | iemVmxVmSucceed(pVCpu);
|
---|
5826 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5827 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
5828 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
5829 | # else
|
---|
5830 | return VINF_SUCCESS;
|
---|
5831 | # endif
|
---|
5832 | }
|
---|
5833 | else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5834 | {
|
---|
5835 | /* Nested-guest intercept. */
|
---|
5836 | if (pExitInfo)
|
---|
5837 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
5838 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
|
---|
5839 | }
|
---|
5840 |
|
---|
5841 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
5842 |
|
---|
5843 | /* CPL. */
|
---|
5844 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5845 | {
|
---|
5846 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5847 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
|
---|
5848 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5849 | }
|
---|
5850 |
|
---|
5851 | /* VMXON when already in VMX root mode. */
|
---|
5852 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
5853 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
|
---|
5854 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5855 | return VINF_SUCCESS;
|
---|
5856 | #endif
|
---|
5857 | }
|
---|
5858 |
|
---|
5859 |
|
---|
5860 | /**
|
---|
5861 | * Implements 'VMXOFF'.
|
---|
5862 | *
|
---|
5863 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
5864 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
5865 | */
|
---|
5866 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
5867 | {
|
---|
5868 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
5869 | RT_NOREF2(pVCpu, cbInstr);
|
---|
5870 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
5871 | # else
|
---|
5872 | /* Nested-guest intercept. */
|
---|
5873 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
5874 | return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
|
---|
5875 |
|
---|
5876 | /* CPL. */
|
---|
5877 | if (pVCpu->iem.s.uCpl > 0)
|
---|
5878 | {
|
---|
5879 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
5880 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
|
---|
5881 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
5882 | }
|
---|
5883 |
|
---|
5884 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
5885 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
5886 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID)
|
---|
5887 | {
|
---|
5888 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
5889 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5890 | return VINF_SUCCESS;
|
---|
5891 | }
|
---|
5892 |
|
---|
5893 | /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
|
---|
5894 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
5895 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
5896 |
|
---|
5897 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
5898 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
5899 |
|
---|
5900 | EMMonitorWaitClear(pVCpu);
|
---|
5901 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
5902 |
|
---|
5903 | iemVmxVmSucceed(pVCpu);
|
---|
5904 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
5905 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
5906 | return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
5907 | # else
|
---|
5908 | return VINF_SUCCESS;
|
---|
5909 | # endif
|
---|
5910 | # endif
|
---|
5911 | }
|
---|
5912 |
|
---|
5913 |
|
---|
5914 | /**
|
---|
5915 | * Implements 'VMXON'.
|
---|
5916 | */
|
---|
5917 | IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
|
---|
5918 | {
|
---|
5919 | return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
|
---|
5920 | }
|
---|
5921 |
|
---|
5922 |
|
---|
5923 | /**
|
---|
5924 | * Implements 'VMLAUNCH'.
|
---|
5925 | */
|
---|
5926 | IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
|
---|
5927 | {
|
---|
5928 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH, NULL /* pExitInfo */);
|
---|
5929 | }
|
---|
5930 |
|
---|
5931 |
|
---|
5932 | /**
|
---|
5933 | * Implements 'VMRESUME'.
|
---|
5934 | */
|
---|
5935 | IEM_CIMPL_DEF_0(iemCImpl_vmresume)
|
---|
5936 | {
|
---|
5937 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME, NULL /* pExitInfo */);
|
---|
5938 | }
|
---|
5939 |
|
---|
5940 |
|
---|
5941 | /**
|
---|
5942 | * Implements 'VMPTRLD'.
|
---|
5943 | */
|
---|
5944 | IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
5945 | {
|
---|
5946 | return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
5947 | }
|
---|
5948 |
|
---|
5949 |
|
---|
5950 | /**
|
---|
5951 | * Implements 'VMPTRST'.
|
---|
5952 | */
|
---|
5953 | IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
5954 | {
|
---|
5955 | return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
5956 | }
|
---|
5957 |
|
---|
5958 |
|
---|
5959 | /**
|
---|
5960 | * Implements 'VMCLEAR'.
|
---|
5961 | */
|
---|
5962 | IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
5963 | {
|
---|
5964 | return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
5965 | }
|
---|
5966 |
|
---|
5967 |
|
---|
5968 | /**
|
---|
5969 | * Implements 'VMWRITE' register.
|
---|
5970 | */
|
---|
5971 | IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64FieldEnc)
|
---|
5972 | {
|
---|
5973 | return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, IEMMODE_64BIT /* N/A */, u64Val, u64FieldEnc,
|
---|
5974 | NULL /* pExitInfo */);
|
---|
5975 | }
|
---|
5976 |
|
---|
5977 |
|
---|
5978 | /**
|
---|
5979 | * Implements 'VMWRITE' memory.
|
---|
5980 | */
|
---|
5981 | IEM_CIMPL_DEF_4(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrVal, uint32_t, u64FieldEnc)
|
---|
5982 | {
|
---|
5983 | return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrVal, u64FieldEnc, NULL /* pExitInfo */);
|
---|
5984 | }
|
---|
5985 |
|
---|
5986 |
|
---|
5987 | /**
|
---|
5988 | * Implements 'VMREAD' 64-bit register.
|
---|
5989 | */
|
---|
5990 | IEM_CIMPL_DEF_2(iemCImpl_vmread64_reg, uint64_t *, pu64Dst, uint64_t, u64FieldEnc)
|
---|
5991 | {
|
---|
5992 | return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, NULL /* pExitInfo */);
|
---|
5993 | }
|
---|
5994 |
|
---|
5995 |
|
---|
5996 | /**
|
---|
5997 | * Implements 'VMREAD' 32-bit register.
|
---|
5998 | */
|
---|
5999 | IEM_CIMPL_DEF_2(iemCImpl_vmread32_reg, uint32_t *, pu32Dst, uint32_t, u32FieldEnc)
|
---|
6000 | {
|
---|
6001 | return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32FieldEnc, NULL /* pExitInfo */);
|
---|
6002 | }
|
---|
6003 |
|
---|
6004 |
|
---|
6005 | /**
|
---|
6006 | * Implements 'VMREAD' memory.
|
---|
6007 | */
|
---|
6008 | IEM_CIMPL_DEF_4(iemCImpl_vmread_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u64FieldEnc)
|
---|
6009 | {
|
---|
6010 | return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u64FieldEnc, NULL /* pExitInfo */);
|
---|
6011 | }
|
---|
6012 |
|
---|
6013 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
6014 |
|
---|
6015 |
|
---|
6016 | /**
|
---|
6017 | * Implements 'VMCALL'.
|
---|
6018 | */
|
---|
6019 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
6020 | {
|
---|
6021 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6022 | /* Nested-guest intercept. */
|
---|
6023 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
6024 | return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
|
---|
6025 | #endif
|
---|
6026 |
|
---|
6027 | /* Join forces with vmmcall. */
|
---|
6028 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
6029 | }
|
---|
6030 |
|
---|