VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h@ 77627

Last change on this file since 77627 was 77610, checked in by vboxsync, 6 years ago

VMM/EM, VMM/IEM: Nested VMX: bugref:9180 Implemented NMI-exiting, NMI-window and virtual-NMI support. Moved VMCPU_FF_VMX_APIC_WRITE to high-priority post mask. Fixed calling iemMemRollback in IEMExecDecodedXXX for VMX instructions. Clear all VMX force-flags in common VM-exit handler rather than in the specific handler, esp since multiple of them may be active at the time of VM-exit.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 353.0 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp.h 77610 2019-03-08 10:31:35Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Defined Constants And Macros *
21*********************************************************************************************************************************/
22#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
23/**
24 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
25 * relative offsets.
26 */
27# ifdef IEM_WITH_CODE_TLB
28# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
29# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
30# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
31# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
32# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
33# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
34# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
35# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
36# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
37# else /* !IEM_WITH_CODE_TLB */
38# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
39 do \
40 { \
41 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
42 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
43 } while (0)
44
45# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
46
47# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
48 do \
49 { \
50 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
51 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
52 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
53 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
54 } while (0)
55
56# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
57 do \
58 { \
59 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
60 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
61 } while (0)
62
63# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
64 do \
65 { \
66 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
67 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
68 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
69 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
70 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
71 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
72 } while (0)
73
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
75 do \
76 { \
77 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
78 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
79 } while (0)
80
81# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
82 do \
83 { \
84 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
86 } while (0)
87
88# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
89 do \
90 { \
91 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
92 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
93 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
94 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
95 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
96 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
97 } while (0)
98# endif /* !IEM_WITH_CODE_TLB */
99
100/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
101# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
102
103/** Whether a shadow VMCS is present for the given VCPU. */
104# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
105
106/** Gets the VMXON region pointer. */
107# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
108
109/** Gets the guest-physical address of the current VMCS for the given VCPU. */
110# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
111
112/** Whether a current VMCS is present for the given VCPU. */
113# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
114
115/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
116# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
117 do \
118 { \
119 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
120 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
121 } while (0)
122
123/** Clears any current VMCS for the given VCPU. */
124# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
125 do \
126 { \
127 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
128 } while (0)
129
130/** Check for VMX instructions requiring to be in VMX operation.
131 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
132# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
133 do \
134 { \
135 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
136 { /* likely */ } \
137 else \
138 { \
139 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
140 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
141 return iemRaiseUndefinedOpcode(a_pVCpu); \
142 } \
143 } while (0)
144
145/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
146# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
147 do \
148 { \
149 Log(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
150 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
151 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
152 return VERR_VMX_VMENTRY_FAILED; \
153 } while (0)
154
155/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
156# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
157 do \
158 { \
159 Log(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
160 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
161 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
162 return VERR_VMX_VMEXIT_FAILED; \
163 } while (0)
164
165/** Enables/disables IEM-only EM execution policy in and from ring-3. */
166# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
167# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcStrictRet) \
168 do { \
169 Log(("%s: Enabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \
170 int rcSched = EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); \
171 if (rcSched != VINF_SUCCESS) \
172 iemSetPassUpStatus(pVCpu, rcSched); \
173 return (a_rcStrictRet); \
174 } while (0)
175
176# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcStrictRet) \
177 do { \
178 Log(("%s: Disabling IEM-only EM execution policy!\n", (a_pszLogPrefix))); \
179 int rcSched = EMR3SetExecutionPolicy((a_pVCpu)->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); \
180 if (rcSched != VINF_SUCCESS) \
181 iemSetPassUpStatus(pVCpu, rcSched); \
182 return (a_rcStrictRet); \
183 } while (0)
184# else
185# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcStrictRet) do { return (a_rcRet); } while (0)
186# define IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(a_pVCpu, a_pszLogPrefix, a_rcStrictRet) do { return (a_rcRet); } while (0)
187# endif
188
189
190/*********************************************************************************************************************************
191* Global Variables *
192*********************************************************************************************************************************/
193/** @todo NSTVMX: The following VM-exit intercepts are pending:
194 * VMX_EXIT_IO_SMI
195 * VMX_EXIT_SMI
196 * VMX_EXIT_INT_WINDOW
197 * VMX_EXIT_NMI_WINDOW
198 * VMX_EXIT_GETSEC
199 * VMX_EXIT_RSM
200 * VMX_EXIT_MTF
201 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
202 * VMX_EXIT_ERR_MACHINE_CHECK
203 * VMX_EXIT_TPR_BELOW_THRESHOLD
204 * VMX_EXIT_APIC_ACCESS
205 * VMX_EXIT_VIRTUALIZED_EOI
206 * VMX_EXIT_EPT_VIOLATION
207 * VMX_EXIT_EPT_MISCONFIG
208 * VMX_EXIT_INVEPT
209 * VMX_EXIT_PREEMPT_TIMER
210 * VMX_EXIT_INVVPID
211 * VMX_EXIT_APIC_WRITE
212 * VMX_EXIT_RDRAND
213 * VMX_EXIT_VMFUNC
214 * VMX_EXIT_ENCLS
215 * VMX_EXIT_RDSEED
216 * VMX_EXIT_PML_FULL
217 * VMX_EXIT_XSAVES
218 * VMX_EXIT_XRSTORS
219 */
220/**
221 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
222 *
223 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
224 * second dimension is the Index, see VMXVMCSFIELDENC.
225 */
226uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
227{
228 /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
229 {
230 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
231 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
232 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
233 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
234 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
235 /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
236 },
237 /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
238 {
239 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
240 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
241 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
242 /* 24-25 */ UINT16_MAX, UINT16_MAX
243 },
244 /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
245 {
246 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
247 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
248 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
249 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
250 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
251 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
252 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
253 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
254 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
255 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
256 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
257 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
258 },
259 /* VMX_VMCS_ENC_WIDTH_16BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
260 {
261 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
262 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
263 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
264 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
265 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
266 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
267 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
268 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
269 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
270 /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
271 },
272 /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
273 {
274 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
275 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
276 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
277 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
278 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
279 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
280 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
281 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
282 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
283 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
284 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
285 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
286 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
287 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptpPtr),
288 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
289 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
290 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
291 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
292 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
293 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
294 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
295 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
296 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssBitmap),
297 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEnclsBitmap),
298 /* 24 */ UINT16_MAX,
299 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier)
300 },
301 /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
302 {
303 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
304 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
305 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
306 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
307 /* 25 */ UINT16_MAX
308 },
309 /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
310 {
311 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
312 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
313 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
314 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
315 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
316 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
317 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
318 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
319 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
320 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
321 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
322 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
323 },
324 /* VMX_VMCS_ENC_WIDTH_64BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
325 {
326 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
327 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
328 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
329 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
330 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
331 /* 19-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
332 },
333 /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_CONTROL: */
334 {
335 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
336 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
337 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
338 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
339 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
340 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
341 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
342 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
343 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
344 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
345 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
346 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
347 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
348 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
349 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
350 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
351 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
352 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
353 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
354 },
355 /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
356 {
357 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
358 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
359 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
360 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
361 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
362 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
363 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
364 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
365 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
366 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
367 /* 24-25 */ UINT16_MAX, UINT16_MAX
368 },
369 /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
370 {
371 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
372 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
373 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
374 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
375 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
376 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
377 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
378 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
379 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
380 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
381 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
382 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
383 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
384 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
385 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
386 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
387 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
388 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
389 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
390 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
391 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
392 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
393 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
394 /* 23-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
395 },
396 /* VMX_VMCS_ENC_WIDTH_32BIT | VMX_VMCS_ENC_TYPE_HOST_STATE: */
397 {
398 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
399 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
400 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
401 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
402 /* 25 */ UINT16_MAX
403 },
404 /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_CONTROL: */
405 {
406 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
407 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
408 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
409 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
410 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
411 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
412 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
413 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
414 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
415 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
416 /* 24-25 */ UINT16_MAX, UINT16_MAX
417 },
418 /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_VMEXIT_INFO: */
419 {
420 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
421 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
422 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
423 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
424 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
425 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
426 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
427 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
428 /* 22-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
429 },
430 /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_GUEST_STATE: */
431 {
432 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
433 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
434 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
435 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
436 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
437 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
438 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
439 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
440 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
441 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
442 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
443 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
444 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
445 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
446 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
447 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
448 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
449 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpt),
450 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
451 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
452 /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
453 },
454 /* VMX_VMCS_ENC_WIDTH_NATURAL | VMX_VMCS_ENC_TYPE_HOST_STATE: */
455 {
456 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
457 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
458 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
459 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
460 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
461 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
462 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
463 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
464 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
465 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
466 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
467 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
468 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
469 /* 20-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
470 }
471};
472
473
474/**
475 * Returns whether the given VMCS field is valid and supported by our emulation.
476 *
477 * @param pVCpu The cross context virtual CPU structure.
478 * @param u64FieldEnc The VMCS field encoding.
479 *
480 * @remarks This takes into account the CPU features exposed to the guest.
481 */
482IEM_STATIC bool iemVmxIsVmcsFieldValid(PVMCPU pVCpu, uint64_t u64FieldEnc)
483{
484 uint32_t const uFieldEncHi = RT_HI_U32(u64FieldEnc);
485 uint32_t const uFieldEncLo = RT_LO_U32(u64FieldEnc);
486 if (!uFieldEncHi)
487 { /* likely */ }
488 else
489 return false;
490
491 PCCPUMFEATURES pFeat = IEM_GET_GUEST_CPU_FEATURES(pVCpu);
492 switch (uFieldEncLo)
493 {
494 /*
495 * 16-bit fields.
496 */
497 /* Control fields. */
498 case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
499 case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
500 case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
501
502 /* Guest-state fields. */
503 case VMX_VMCS16_GUEST_ES_SEL:
504 case VMX_VMCS16_GUEST_CS_SEL:
505 case VMX_VMCS16_GUEST_SS_SEL:
506 case VMX_VMCS16_GUEST_DS_SEL:
507 case VMX_VMCS16_GUEST_FS_SEL:
508 case VMX_VMCS16_GUEST_GS_SEL:
509 case VMX_VMCS16_GUEST_LDTR_SEL:
510 case VMX_VMCS16_GUEST_TR_SEL: return true;
511 case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
512 case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
513
514 /* Host-state fields. */
515 case VMX_VMCS16_HOST_ES_SEL:
516 case VMX_VMCS16_HOST_CS_SEL:
517 case VMX_VMCS16_HOST_SS_SEL:
518 case VMX_VMCS16_HOST_DS_SEL:
519 case VMX_VMCS16_HOST_FS_SEL:
520 case VMX_VMCS16_HOST_GS_SEL:
521 case VMX_VMCS16_HOST_TR_SEL: return true;
522
523 /*
524 * 64-bit fields.
525 */
526 /* Control fields. */
527 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
528 case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
529 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
530 case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
531 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
532 case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
533 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
534 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
535 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
536 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
537 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
538 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
539 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
540 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
541 case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
542 case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
543 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
544 case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
545 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
546 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
547 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
548 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
549 case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
550 case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
551 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
552 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
553 case VMX_VMCS64_CTRL_EPTP_FULL:
554 case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
555 case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
556 case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
557 case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
558 case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
559 case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
560 case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
561 case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
562 case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
563 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
564 case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
565 {
566 uint64_t const uVmFuncMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64VmFunc;
567 return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
568 }
569 case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
570 case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
571 case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
572 case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
573 case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL:
574 case VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
575 case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
576 case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
577 case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL:
578 case VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH: return false;
579 case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
580 case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
581
582 /* Read-only data fields. */
583 case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
584 case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
585
586 /* Guest-state fields. */
587 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
588 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
589 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
590 case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
591 case VMX_VMCS64_GUEST_PAT_FULL:
592 case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
593 case VMX_VMCS64_GUEST_EFER_FULL:
594 case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
595 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
596 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH: return false;
597 case VMX_VMCS64_GUEST_PDPTE0_FULL:
598 case VMX_VMCS64_GUEST_PDPTE0_HIGH:
599 case VMX_VMCS64_GUEST_PDPTE1_FULL:
600 case VMX_VMCS64_GUEST_PDPTE1_HIGH:
601 case VMX_VMCS64_GUEST_PDPTE2_FULL:
602 case VMX_VMCS64_GUEST_PDPTE2_HIGH:
603 case VMX_VMCS64_GUEST_PDPTE3_FULL:
604 case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
605 case VMX_VMCS64_GUEST_BNDCFGS_FULL:
606 case VMX_VMCS64_GUEST_BNDCFGS_HIGH: return false;
607
608 /* Host-state fields. */
609 case VMX_VMCS64_HOST_PAT_FULL:
610 case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
611 case VMX_VMCS64_HOST_EFER_FULL:
612 case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
613 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
614 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH: return false;
615
616 /*
617 * 32-bit fields.
618 */
619 /* Control fields. */
620 case VMX_VMCS32_CTRL_PIN_EXEC:
621 case VMX_VMCS32_CTRL_PROC_EXEC:
622 case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
623 case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
624 case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
625 case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
626 case VMX_VMCS32_CTRL_EXIT:
627 case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
628 case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
629 case VMX_VMCS32_CTRL_ENTRY:
630 case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
631 case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
632 case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
633 case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
634 case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
635 case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
636 case VMX_VMCS32_CTRL_PLE_GAP:
637 case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
638
639 /* Read-only data fields. */
640 case VMX_VMCS32_RO_VM_INSTR_ERROR:
641 case VMX_VMCS32_RO_EXIT_REASON:
642 case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
643 case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
644 case VMX_VMCS32_RO_IDT_VECTORING_INFO:
645 case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
646 case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
647 case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
648
649 /* Guest-state fields. */
650 case VMX_VMCS32_GUEST_ES_LIMIT:
651 case VMX_VMCS32_GUEST_CS_LIMIT:
652 case VMX_VMCS32_GUEST_SS_LIMIT:
653 case VMX_VMCS32_GUEST_DS_LIMIT:
654 case VMX_VMCS32_GUEST_FS_LIMIT:
655 case VMX_VMCS32_GUEST_GS_LIMIT:
656 case VMX_VMCS32_GUEST_LDTR_LIMIT:
657 case VMX_VMCS32_GUEST_TR_LIMIT:
658 case VMX_VMCS32_GUEST_GDTR_LIMIT:
659 case VMX_VMCS32_GUEST_IDTR_LIMIT:
660 case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
661 case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
662 case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
663 case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
664 case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
665 case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
666 case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
667 case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
668 case VMX_VMCS32_GUEST_INT_STATE:
669 case VMX_VMCS32_GUEST_ACTIVITY_STATE:
670 case VMX_VMCS32_GUEST_SMBASE:
671 case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
672 case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
673
674 /* Host-state fields. */
675 case VMX_VMCS32_HOST_SYSENTER_CS: return true;
676
677 /*
678 * Natural-width fields.
679 */
680 /* Control fields. */
681 case VMX_VMCS_CTRL_CR0_MASK:
682 case VMX_VMCS_CTRL_CR4_MASK:
683 case VMX_VMCS_CTRL_CR0_READ_SHADOW:
684 case VMX_VMCS_CTRL_CR4_READ_SHADOW:
685 case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
686 case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
687 case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
688 case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
689
690 /* Read-only data fields. */
691 case VMX_VMCS_RO_EXIT_QUALIFICATION:
692 case VMX_VMCS_RO_IO_RCX:
693 case VMX_VMCS_RO_IO_RSX:
694 case VMX_VMCS_RO_IO_RDI:
695 case VMX_VMCS_RO_IO_RIP:
696 case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
697
698 /* Guest-state fields. */
699 case VMX_VMCS_GUEST_CR0:
700 case VMX_VMCS_GUEST_CR3:
701 case VMX_VMCS_GUEST_CR4:
702 case VMX_VMCS_GUEST_ES_BASE:
703 case VMX_VMCS_GUEST_CS_BASE:
704 case VMX_VMCS_GUEST_SS_BASE:
705 case VMX_VMCS_GUEST_DS_BASE:
706 case VMX_VMCS_GUEST_FS_BASE:
707 case VMX_VMCS_GUEST_GS_BASE:
708 case VMX_VMCS_GUEST_LDTR_BASE:
709 case VMX_VMCS_GUEST_TR_BASE:
710 case VMX_VMCS_GUEST_GDTR_BASE:
711 case VMX_VMCS_GUEST_IDTR_BASE:
712 case VMX_VMCS_GUEST_DR7:
713 case VMX_VMCS_GUEST_RSP:
714 case VMX_VMCS_GUEST_RIP:
715 case VMX_VMCS_GUEST_RFLAGS:
716 case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
717 case VMX_VMCS_GUEST_SYSENTER_ESP:
718 case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
719
720 /* Host-state fields. */
721 case VMX_VMCS_HOST_CR0:
722 case VMX_VMCS_HOST_CR3:
723 case VMX_VMCS_HOST_CR4:
724 case VMX_VMCS_HOST_FS_BASE:
725 case VMX_VMCS_HOST_GS_BASE:
726 case VMX_VMCS_HOST_TR_BASE:
727 case VMX_VMCS_HOST_GDTR_BASE:
728 case VMX_VMCS_HOST_IDTR_BASE:
729 case VMX_VMCS_HOST_SYSENTER_ESP:
730 case VMX_VMCS_HOST_SYSENTER_EIP:
731 case VMX_VMCS_HOST_RSP:
732 case VMX_VMCS_HOST_RIP: return true;
733 }
734
735 return false;
736}
737
738
739/**
740 * Gets a host selector from the VMCS.
741 *
742 * @param pVmcs Pointer to the virtual VMCS.
743 * @param iSelReg The index of the segment register (X86_SREG_XXX).
744 */
745DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
746{
747 Assert(iSegReg < X86_SREG_COUNT);
748 RTSEL HostSel;
749 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
750 uint8_t const uType = VMX_VMCS_ENC_TYPE_HOST_STATE;
751 uint8_t const uWidthType = (uWidth << 2) | uType;
752 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
753 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
754 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
755 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
756 uint8_t const *pbField = pbVmcs + offField;
757 HostSel = *(uint16_t *)pbField;
758 return HostSel;
759}
760
761
762/**
763 * Sets a guest segment register in the VMCS.
764 *
765 * @param pVmcs Pointer to the virtual VMCS.
766 * @param iSegReg The index of the segment register (X86_SREG_XXX).
767 * @param pSelReg Pointer to the segment register.
768 */
769IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
770{
771 Assert(pSelReg);
772 Assert(iSegReg < X86_SREG_COUNT);
773
774 /* Selector. */
775 {
776 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
777 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
778 uint8_t const uWidthType = (uWidth << 2) | uType;
779 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
780 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
781 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
782 uint8_t *pbVmcs = (uint8_t *)pVmcs;
783 uint8_t *pbField = pbVmcs + offField;
784 *(uint16_t *)pbField = pSelReg->Sel;
785 }
786
787 /* Limit. */
788 {
789 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
790 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
791 uint8_t const uWidthType = (uWidth << 2) | uType;
792 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
793 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
794 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
795 uint8_t *pbVmcs = (uint8_t *)pVmcs;
796 uint8_t *pbField = pbVmcs + offField;
797 *(uint32_t *)pbField = pSelReg->u32Limit;
798 }
799
800 /* Base. */
801 {
802 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
803 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
804 uint8_t const uWidthType = (uWidth << 2) | uType;
805 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
806 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
807 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
808 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
809 uint8_t const *pbField = pbVmcs + offField;
810 *(uint64_t *)pbField = pSelReg->u64Base;
811 }
812
813 /* Attributes. */
814 {
815 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
816 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
817 | X86DESCATTR_UNUSABLE;
818 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
819 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
820 uint8_t const uWidthType = (uWidth << 2) | uType;
821 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
822 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
823 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
824 uint8_t *pbVmcs = (uint8_t *)pVmcs;
825 uint8_t *pbField = pbVmcs + offField;
826 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
827 }
828}
829
830
831/**
832 * Gets a guest segment register from the VMCS.
833 *
834 * @returns VBox status code.
835 * @param pVmcs Pointer to the virtual VMCS.
836 * @param iSegReg The index of the segment register (X86_SREG_XXX).
837 * @param pSelReg Where to store the segment register (only updated when
838 * VINF_SUCCESS is returned).
839 *
840 * @remarks Warning! This does not validate the contents of the retrieved segment
841 * register.
842 */
843IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
844{
845 Assert(pSelReg);
846 Assert(iSegReg < X86_SREG_COUNT);
847
848 /* Selector. */
849 uint16_t u16Sel;
850 {
851 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_16BIT;
852 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
853 uint8_t const uWidthType = (uWidth << 2) | uType;
854 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCS_ENC_INDEX);
855 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
856 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
857 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
858 uint8_t const *pbField = pbVmcs + offField;
859 u16Sel = *(uint16_t *)pbField;
860 }
861
862 /* Limit. */
863 uint32_t u32Limit;
864 {
865 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
866 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
867 uint8_t const uWidthType = (uWidth << 2) | uType;
868 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCS_ENC_INDEX);
869 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
870 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
871 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
872 uint8_t const *pbField = pbVmcs + offField;
873 u32Limit = *(uint32_t *)pbField;
874 }
875
876 /* Base. */
877 uint64_t u64Base;
878 {
879 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
880 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
881 uint8_t const uWidthType = (uWidth << 2) | uType;
882 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCS_ENC_INDEX);
883 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
884 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
885 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
886 uint8_t const *pbField = pbVmcs + offField;
887 u64Base = *(uint64_t *)pbField;
888 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
889 }
890
891 /* Attributes. */
892 uint32_t u32Attr;
893 {
894 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_32BIT;
895 uint8_t const uType = VMX_VMCS_ENC_TYPE_GUEST_STATE;
896 uint8_t const uWidthType = (uWidth << 2) | uType;
897 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCS_ENC_INDEX);
898 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
899 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
900 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
901 uint8_t const *pbField = pbVmcs + offField;
902 u32Attr = *(uint32_t *)pbField;
903 }
904
905 pSelReg->Sel = u16Sel;
906 pSelReg->ValidSel = u16Sel;
907 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
908 pSelReg->u32Limit = u32Limit;
909 pSelReg->u64Base = u64Base;
910 pSelReg->Attr.u = u32Attr;
911 return VINF_SUCCESS;
912}
913
914
915/**
916 * Gets a CR3 target value from the VMCS.
917 *
918 * @returns VBox status code.
919 * @param pVmcs Pointer to the virtual VMCS.
920 * @param idxCr3Target The index of the CR3-target value to retrieve.
921 * @param puValue Where to store the CR3-target value.
922 */
923IEM_STATIC uint64_t iemVmxVmcsGetCr3TargetValue(PCVMXVVMCS pVmcs, uint8_t idxCr3Target)
924{
925 Assert(idxCr3Target < VMX_V_CR3_TARGET_COUNT);
926 uint8_t const uWidth = VMX_VMCS_ENC_WIDTH_NATURAL;
927 uint8_t const uType = VMX_VMCS_ENC_TYPE_CONTROL;
928 uint8_t const uWidthType = (uWidth << 2) | uType;
929 uint8_t const uIndex = idxCr3Target + RT_BF_GET(VMX_VMCS_CTRL_CR3_TARGET_VAL0, VMX_BF_VMCS_ENC_INDEX);
930 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
931 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
932 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
933 uint8_t const *pbField = pbVmcs + offField;
934 uint64_t const uCr3TargetValue = *(uint64_t *)pbField;
935 return uCr3TargetValue;
936}
937
938
939/**
940 * Converts an IEM exception event type to a VMX event type.
941 *
942 * @returns The VMX event type.
943 * @param uVector The interrupt / exception vector.
944 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
945 */
946DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
947{
948 /* Paranoia (callers may use these interchangeably). */
949 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
950 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
951 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
952 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
953 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
954 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
955 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
956 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
957 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
958 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
959 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
960 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
961
962 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
963 {
964 if (uVector == X86_XCPT_NMI)
965 return VMX_EXIT_INT_INFO_TYPE_NMI;
966 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
967 }
968
969 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
970 {
971 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
972 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
973 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
974 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
975 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
976 }
977
978 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
979 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
980}
981
982
983/**
984 * Sets the VM-exit qualification VMCS field.
985 *
986 * @param pVCpu The cross context virtual CPU structure.
987 * @param uExitQual The VM-exit qualification.
988 */
989DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPU pVCpu, uint64_t uExitQual)
990{
991 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
992 pVmcs->u64RoExitQual.u = uExitQual;
993}
994
995
996/**
997 * Sets the VM-exit interruption information field.
998 *
999 * @param pVCpu The cross context virtual CPU structure.
1000 * @param uExitQual The VM-exit interruption information.
1001 */
1002DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPU pVCpu, uint32_t uExitIntInfo)
1003{
1004 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1005 pVmcs->u32RoExitIntInfo = uExitIntInfo;
1006}
1007
1008
1009/**
1010 * Sets the VM-exit interruption error code.
1011 *
1012 * @param pVCpu The cross context virtual CPU structure.
1013 * @param uErrCode The error code.
1014 */
1015DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPU pVCpu, uint32_t uErrCode)
1016{
1017 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1018 pVmcs->u32RoExitIntErrCode = uErrCode;
1019}
1020
1021
1022/**
1023 * Sets the IDT-vectoring information field.
1024 *
1025 * @param pVCpu The cross context virtual CPU structure.
1026 * @param uIdtVectorInfo The IDT-vectoring information.
1027 */
1028DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPU pVCpu, uint32_t uIdtVectorInfo)
1029{
1030 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1031 pVmcs->u32RoIdtVectoringInfo = uIdtVectorInfo;
1032}
1033
1034
1035/**
1036 * Sets the IDT-vectoring error code field.
1037 *
1038 * @param pVCpu The cross context virtual CPU structure.
1039 * @param uErrCode The error code.
1040 */
1041DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPU pVCpu, uint32_t uErrCode)
1042{
1043 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1044 pVmcs->u32RoIdtVectoringErrCode = uErrCode;
1045}
1046
1047
1048/**
1049 * Sets the VM-exit guest-linear address VMCS field.
1050 *
1051 * @param pVCpu The cross context virtual CPU structure.
1052 * @param uGuestLinearAddr The VM-exit guest-linear address.
1053 */
1054DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPU pVCpu, uint64_t uGuestLinearAddr)
1055{
1056 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1057 pVmcs->u64RoGuestLinearAddr.u = uGuestLinearAddr;
1058}
1059
1060
1061/**
1062 * Sets the VM-exit guest-physical address VMCS field.
1063 *
1064 * @param pVCpu The cross context virtual CPU structure.
1065 * @param uGuestPhysAddr The VM-exit guest-physical address.
1066 */
1067DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPU pVCpu, uint64_t uGuestPhysAddr)
1068{
1069 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1070 pVmcs->u64RoGuestPhysAddr.u = uGuestPhysAddr;
1071}
1072
1073
1074/**
1075 * Sets the VM-exit instruction length VMCS field.
1076 *
1077 * @param pVCpu The cross context virtual CPU structure.
1078 * @param cbInstr The VM-exit instruction length in bytes.
1079 *
1080 * @remarks Callers may clear this field to 0. Hence, this function does not check
1081 * the validity of the instruction length.
1082 */
1083DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPU pVCpu, uint32_t cbInstr)
1084{
1085 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1086 pVmcs->u32RoExitInstrLen = cbInstr;
1087}
1088
1089
1090/**
1091 * Sets the VM-exit instruction info. VMCS field.
1092 *
1093 * @param pVCpu The cross context virtual CPU structure.
1094 * @param uExitInstrInfo The VM-exit instruction information.
1095 */
1096DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitInstrInfo)
1097{
1098 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1099 pVmcs->u32RoExitInstrInfo = uExitInstrInfo;
1100}
1101
1102
1103/**
1104 * Implements VMSucceed for VMX instruction success.
1105 *
1106 * @param pVCpu The cross context virtual CPU structure.
1107 */
1108DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPU pVCpu)
1109{
1110 return CPUMSetGuestVmxVmSucceed(IEM_GET_CTX(pVCpu));
1111}
1112
1113
1114/**
1115 * Implements VMFailInvalid for VMX instruction failure.
1116 *
1117 * @param pVCpu The cross context virtual CPU structure.
1118 */
1119DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPU pVCpu)
1120{
1121 return CPUMSetGuestVmxVmFailInvalid(IEM_GET_CTX(pVCpu));
1122}
1123
1124
1125/**
1126 * Implements VMFailValid for VMX instruction failure.
1127 *
1128 * @param pVCpu The cross context virtual CPU structure.
1129 * @param enmInsErr The VM instruction error.
1130 */
1131DECL_FORCE_INLINE(void) iemVmxVmFailValid(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
1132{
1133 return CPUMSetGuestVmxVmFailValid(IEM_GET_CTX(pVCpu), enmInsErr);
1134}
1135
1136
1137/**
1138 * Implements VMFail for VMX instruction failure.
1139 *
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param enmInsErr The VM instruction error.
1142 */
1143DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPU pVCpu, VMXINSTRERR enmInsErr)
1144{
1145 return CPUMSetGuestVmxVmFail(IEM_GET_CTX(pVCpu), enmInsErr);
1146}
1147
1148
1149/**
1150 * Checks if the given auto-load/store MSR area count is valid for the
1151 * implementation.
1152 *
1153 * @returns @c true if it's within the valid limit, @c false otherwise.
1154 * @param pVCpu The cross context virtual CPU structure.
1155 * @param uMsrCount The MSR area count to check.
1156 */
1157DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PVMCPU pVCpu, uint32_t uMsrCount)
1158{
1159 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
1160 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
1161 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
1162 if (uMsrCount <= cMaxSupportedMsrs)
1163 return true;
1164 return false;
1165}
1166
1167
1168/**
1169 * Flushes the current VMCS contents back to guest memory.
1170 *
1171 * @returns VBox status code.
1172 * @param pVCpu The cross context virtual CPU structure.
1173 */
1174DECL_FORCE_INLINE(int) iemVmxCommitCurrentVmcsToMemory(PVMCPU pVCpu)
1175{
1176 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
1177 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
1178 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), sizeof(VMXVVMCS));
1179 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
1180 return rc;
1181}
1182
1183
1184/**
1185 * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
1186 *
1187 * @param pVCpu The cross context virtual CPU structure.
1188 */
1189DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPU pVCpu, uint8_t cbInstr)
1190{
1191 iemVmxVmSucceed(pVCpu);
1192 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
1193}
1194
1195
1196/**
1197 * Gets the instruction diagnostic for segment base checks during VM-entry of a
1198 * nested-guest.
1199 *
1200 * @param iSegReg The segment index (X86_SREG_XXX).
1201 */
1202IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
1203{
1204 switch (iSegReg)
1205 {
1206 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
1207 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
1208 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
1209 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
1210 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
1211 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
1212 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
1213 }
1214}
1215
1216
1217/**
1218 * Gets the instruction diagnostic for segment base checks during VM-entry of a
1219 * nested-guest that is in Virtual-8086 mode.
1220 *
1221 * @param iSegReg The segment index (X86_SREG_XXX).
1222 */
1223IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
1224{
1225 switch (iSegReg)
1226 {
1227 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
1228 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
1229 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
1230 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
1231 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
1232 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
1233 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
1234 }
1235}
1236
1237
1238/**
1239 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
1240 * nested-guest that is in Virtual-8086 mode.
1241 *
1242 * @param iSegReg The segment index (X86_SREG_XXX).
1243 */
1244IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
1245{
1246 switch (iSegReg)
1247 {
1248 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
1249 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
1250 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
1251 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
1252 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
1253 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
1254 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
1255 }
1256}
1257
1258
1259/**
1260 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
1261 * nested-guest that is in Virtual-8086 mode.
1262 *
1263 * @param iSegReg The segment index (X86_SREG_XXX).
1264 */
1265IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
1266{
1267 switch (iSegReg)
1268 {
1269 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
1270 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
1271 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
1272 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
1273 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
1274 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
1275 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
1276 }
1277}
1278
1279
1280/**
1281 * Gets the instruction diagnostic for segment attributes reserved bits failure
1282 * during VM-entry of a nested-guest.
1283 *
1284 * @param iSegReg The segment index (X86_SREG_XXX).
1285 */
1286IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
1287{
1288 switch (iSegReg)
1289 {
1290 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1291 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1292 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1293 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1294 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1295 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1296 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1297 }
1298}
1299
1300
1301/**
1302 * Gets the instruction diagnostic for segment attributes descriptor-type
1303 * (code/segment or system) failure during VM-entry of a nested-guest.
1304 *
1305 * @param iSegReg The segment index (X86_SREG_XXX).
1306 */
1307IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
1308{
1309 switch (iSegReg)
1310 {
1311 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1312 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1313 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1314 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1315 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1316 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1317 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1318 }
1319}
1320
1321
1322/**
1323 * Gets the instruction diagnostic for segment attributes descriptor-type
1324 * (code/segment or system) failure during VM-entry of a nested-guest.
1325 *
1326 * @param iSegReg The segment index (X86_SREG_XXX).
1327 */
1328IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
1329{
1330 switch (iSegReg)
1331 {
1332 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1333 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1334 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1335 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1336 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1337 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1338 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1339 }
1340}
1341
1342
1343/**
1344 * Gets the instruction diagnostic for segment attribute granularity failure during
1345 * VM-entry of a nested-guest.
1346 *
1347 * @param iSegReg The segment index (X86_SREG_XXX).
1348 */
1349IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
1350{
1351 switch (iSegReg)
1352 {
1353 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1354 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1355 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1356 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1357 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1358 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1359 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1360 }
1361}
1362
1363/**
1364 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1365 * VM-entry of a nested-guest.
1366 *
1367 * @param iSegReg The segment index (X86_SREG_XXX).
1368 */
1369IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
1370{
1371 switch (iSegReg)
1372 {
1373 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1374 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1375 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1376 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1377 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1378 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1379 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1380 }
1381}
1382
1383
1384/**
1385 * Gets the instruction diagnostic for segment attribute type accessed failure
1386 * during VM-entry of a nested-guest.
1387 *
1388 * @param iSegReg The segment index (X86_SREG_XXX).
1389 */
1390IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
1391{
1392 switch (iSegReg)
1393 {
1394 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1395 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1396 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1397 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1398 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1399 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1400 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1401 }
1402}
1403
1404
1405/**
1406 * Gets the instruction diagnostic for guest CR3 referenced PDPTE reserved bits
1407 * failure during VM-entry of a nested-guest.
1408 *
1409 * @param iSegReg The PDPTE entry index.
1410 */
1411IEM_STATIC VMXVDIAG iemVmxGetDiagVmentryPdpteRsvd(unsigned iPdpte)
1412{
1413 Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
1414 switch (iPdpte)
1415 {
1416 case 0: return kVmxVDiag_Vmentry_GuestPdpte0Rsvd;
1417 case 1: return kVmxVDiag_Vmentry_GuestPdpte1Rsvd;
1418 case 2: return kVmxVDiag_Vmentry_GuestPdpte2Rsvd;
1419 case 3: return kVmxVDiag_Vmentry_GuestPdpte3Rsvd;
1420 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_11);
1421 }
1422}
1423
1424
1425/**
1426 * Gets the instruction diagnostic for host CR3 referenced PDPTE reserved bits
1427 * failure during VM-exit of a nested-guest.
1428 *
1429 * @param iSegReg The PDPTE entry index.
1430 */
1431IEM_STATIC VMXVDIAG iemVmxGetDiagVmexitPdpteRsvd(unsigned iPdpte)
1432{
1433 Assert(iPdpte < X86_PG_PAE_PDPE_ENTRIES);
1434 switch (iPdpte)
1435 {
1436 case 0: return kVmxVDiag_Vmexit_HostPdpte0Rsvd;
1437 case 1: return kVmxVDiag_Vmexit_HostPdpte1Rsvd;
1438 case 2: return kVmxVDiag_Vmexit_HostPdpte2Rsvd;
1439 case 3: return kVmxVDiag_Vmexit_HostPdpte3Rsvd;
1440 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_12);
1441 }
1442}
1443
1444
1445/**
1446 * Masks the nested-guest CR0/CR4 mask subjected to the corresponding guest/host
1447 * mask and the read-shadow (CR0/CR4 read).
1448 *
1449 * @returns The masked CR0/CR4.
1450 * @param pVCpu The cross context virtual CPU structure.
1451 * @param iCrReg The control register (either CR0 or CR4).
1452 * @param uGuestCrX The current guest CR0 or guest CR4.
1453 */
1454IEM_STATIC uint64_t iemVmxMaskCr0CR4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t uGuestCrX)
1455{
1456 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
1457 Assert(iCrReg == 0 || iCrReg == 4);
1458
1459 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1460 Assert(pVmcs);
1461
1462 /*
1463 * For each CR0 or CR4 bit owned by the host, the corresponding bit is loaded from the
1464 * CR0 read shadow or CR4 read shadow. For each CR0 or CR4 bit that is not owned by the
1465 * host, the corresponding bit from the guest CR0 or guest CR4 is loaded.
1466 *
1467 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
1468 */
1469 uint64_t fGstHostMask;
1470 uint64_t fReadShadow;
1471 if (iCrReg == 0)
1472 {
1473 fGstHostMask = pVmcs->u64Cr0Mask.u;
1474 fReadShadow = pVmcs->u64Cr0ReadShadow.u;
1475 }
1476 else
1477 {
1478 fGstHostMask = pVmcs->u64Cr4Mask.u;
1479 fReadShadow = pVmcs->u64Cr4ReadShadow.u;
1480 }
1481
1482 uint64_t const fMaskedCrX = (fReadShadow & fGstHostMask) | (uGuestCrX & ~fGstHostMask);
1483 return fMaskedCrX;
1484}
1485
1486
1487/**
1488 * Saves the guest control registers, debug registers and some MSRs are part of
1489 * VM-exit.
1490 *
1491 * @param pVCpu The cross context virtual CPU structure.
1492 */
1493IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPU pVCpu)
1494{
1495 /*
1496 * Saves the guest control registers, debug registers and some MSRs.
1497 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1498 */
1499 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1500
1501 /* Save control registers. */
1502 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1503 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1504 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1505
1506 /* Save SYSENTER CS, ESP, EIP. */
1507 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1508 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1509 {
1510 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1511 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1512 }
1513 else
1514 {
1515 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1516 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1517 }
1518
1519 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1520 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1521 {
1522 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1523 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1524 }
1525
1526 /* Save PAT MSR. */
1527 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1528 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1529
1530 /* Save EFER MSR. */
1531 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1532 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1533
1534 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1535 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1536
1537 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1538}
1539
1540
1541/**
1542 * Saves the guest force-flags in preparation of entering the nested-guest.
1543 *
1544 * @param pVCpu The cross context virtual CPU structure.
1545 */
1546IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPU pVCpu)
1547{
1548 /* We shouldn't be called multiple times during VM-entry. */
1549 Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
1550
1551 /* MTF should not be set outside VMX non-root mode. */
1552 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1553
1554 /*
1555 * Preserve the required force-flags.
1556 *
1557 * We cache and clear force-flags that would affect the execution of the
1558 * nested-guest. Cached flags are then restored while returning to the guest
1559 * if necessary.
1560 *
1561 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1562 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1563 * instruction. Interrupt inhibition for any nested-guest instruction
1564 * is supplied by the guest-interruptibility state VMCS field and will
1565 * be set up as part of loading the guest state.
1566 *
1567 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1568 * successful VM-entry (due to invalid guest-state) need to continue
1569 * blocking NMIs if it was in effect before VM-entry.
1570 *
1571 * - MTF need not be preserved as it's used only in VMX non-root mode and
1572 * is supplied through the VM-execution controls.
1573 *
1574 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1575 * we will be able to generate interrupts that may cause VM-exits for
1576 * the nested-guest.
1577 */
1578 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
1579}
1580
1581
1582/**
1583 * Restores the guest force-flags in preparation of exiting the nested-guest.
1584 *
1585 * @param pVCpu The cross context virtual CPU structure.
1586 */
1587IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPU pVCpu)
1588{
1589 if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
1590 {
1591 VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
1592 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
1593 }
1594}
1595
1596
1597/**
1598 * Perform a VMX transition updated PGM, IEM and CPUM.
1599 *
1600 * @param pVCpu The cross context virtual CPU structure.
1601 */
1602IEM_STATIC int iemVmxWorldSwitch(PVMCPU pVCpu)
1603{
1604 /*
1605 * Inform PGM about paging mode changes.
1606 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1607 * see comment in iemMemPageTranslateAndCheckAccess().
1608 */
1609 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1610# ifdef IN_RING3
1611 Assert(rc != VINF_PGM_CHANGE_MODE);
1612# endif
1613 AssertRCReturn(rc, rc);
1614
1615 /* Inform CPUM (recompiler), can later be removed. */
1616 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1617
1618 /*
1619 * Flush the TLB with new CR3. This is required in case the PGM mode change
1620 * above doesn't actually change anything.
1621 */
1622 if (rc == VINF_SUCCESS)
1623 {
1624 rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true);
1625 AssertRCReturn(rc, rc);
1626 }
1627
1628 /* Re-initialize IEM cache/state after the drastic mode switch. */
1629 iemReInitExec(pVCpu);
1630 return rc;
1631}
1632
1633
1634/**
1635 * Calculates the current VMX-preemption timer value.
1636 *
1637 * @param pVCpu The cross context virtual CPU structure.
1638 */
1639IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPU pVCpu)
1640{
1641 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1642 Assert(pVmcs);
1643
1644 /*
1645 * Assume the following:
1646 * PreemptTimerShift = 5
1647 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1648 * VmentryTick = 50000 (TSC at time of VM-entry)
1649 *
1650 * CurTick Delta PreemptTimerVal
1651 * ----------------------------------
1652 * 60000 10000 2
1653 * 80000 30000 1
1654 * 90000 40000 0 -> VM-exit.
1655 *
1656 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1657 * The saved VMX-preemption timer value is calculated as follows:
1658 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1659 * E.g.:
1660 * Delta = 10000
1661 * Tmp = 10000 / (2 * 10000) = 0.5
1662 * NewPt = 2 - 0.5 = 2
1663 * Delta = 30000
1664 * Tmp = 30000 / (2 * 10000) = 1.5
1665 * NewPt = 2 - 1.5 = 1
1666 * Delta = 40000
1667 * Tmp = 40000 / 20000 = 2
1668 * NewPt = 2 - 2 = 0
1669 */
1670 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1671 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1672 uint64_t const uVmentryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick;
1673 uint64_t const uDelta = uCurTick - uVmentryTick;
1674 uint32_t const uVmcsPreemptVal = pVmcs->u32PreemptTimer;
1675 uint32_t const uPreemptTimer = uVmcsPreemptVal
1676 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1677 return uPreemptTimer;
1678}
1679
1680
1681/**
1682 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 */
1686IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPU pVCpu)
1687{
1688 /*
1689 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1690 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1691 */
1692 /* CS, SS, ES, DS, FS, GS. */
1693 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1694 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1695 {
1696 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1697 if (!pSelReg->Attr.n.u1Unusable)
1698 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1699 else
1700 {
1701 /*
1702 * For unusable segments the attributes are undefined except for CS and SS.
1703 * For the rest we don't bother preserving anything but the unusable bit.
1704 */
1705 switch (iSegReg)
1706 {
1707 case X86_SREG_CS:
1708 pVmcs->GuestCs = pSelReg->Sel;
1709 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1710 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1711 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1712 | X86DESCATTR_UNUSABLE);
1713 break;
1714
1715 case X86_SREG_SS:
1716 pVmcs->GuestSs = pSelReg->Sel;
1717 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1718 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1719 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1720 break;
1721
1722 case X86_SREG_DS:
1723 pVmcs->GuestDs = pSelReg->Sel;
1724 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1725 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1726 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1727 break;
1728
1729 case X86_SREG_ES:
1730 pVmcs->GuestEs = pSelReg->Sel;
1731 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1732 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1733 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1734 break;
1735
1736 case X86_SREG_FS:
1737 pVmcs->GuestFs = pSelReg->Sel;
1738 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1739 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1740 break;
1741
1742 case X86_SREG_GS:
1743 pVmcs->GuestGs = pSelReg->Sel;
1744 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1745 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1746 break;
1747 }
1748 }
1749 }
1750
1751 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1752 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1753 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1754 | X86DESCATTR_UNUSABLE;
1755 /* LDTR. */
1756 {
1757 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1758 pVmcs->GuestLdtr = pSelReg->Sel;
1759 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1760 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1761 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1762 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1763 }
1764
1765 /* TR. */
1766 {
1767 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1768 pVmcs->GuestTr = pSelReg->Sel;
1769 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1770 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1771 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1772 }
1773
1774 /* GDTR. */
1775 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1776 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1777
1778 /* IDTR. */
1779 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1780 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1781}
1782
1783
1784/**
1785 * Saves guest non-register state as part of VM-exit.
1786 *
1787 * @param pVCpu The cross context virtual CPU structure.
1788 * @param uExitReason The VM-exit reason.
1789 */
1790IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPU pVCpu, uint32_t uExitReason)
1791{
1792 /*
1793 * Save guest non-register state.
1794 * See Intel spec. 27.3.4 "Saving Non-Register State".
1795 */
1796 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1797
1798 /*
1799 * Activity state.
1800 * Most VM-exits will occur in the active state. However, if the first instruction
1801 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1802 * the VM-exit will be from the HLT activity state.
1803 *
1804 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1805 */
1806 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1807 * not? */
1808 EMSTATE const enmActivityState = EMGetState(pVCpu);
1809 switch (enmActivityState)
1810 {
1811 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1812 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1813 }
1814
1815 /*
1816 * Interruptibility-state.
1817 */
1818 /* NMI. */
1819 pVmcs->u32GuestIntrState = 0;
1820 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1821 {
1822 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1823 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1824 }
1825 else
1826 {
1827 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1828 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1829 }
1830
1831 /* Blocking-by-STI. */
1832 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1833 && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
1834 {
1835 /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
1836 * currently. */
1837 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1838 }
1839 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1840
1841 /*
1842 * Pending debug exceptions.
1843 */
1844 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1845 && uExitReason != VMX_EXIT_SMI
1846 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1847 && !HMVmxIsVmexitTrapLike(uExitReason))
1848 {
1849 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1850 * block-by-MovSS is in effect. */
1851 pVmcs->u64GuestPendingDbgXcpt.u = 0;
1852 }
1853 else
1854 {
1855 /*
1856 * Pending debug exception field is identical to DR6 except the RTM bit (16) which needs to be flipped.
1857 * The "enabled breakpoint" bit (12) is not present in DR6, so we need to update it here.
1858 *
1859 * See Intel spec. 24.4.2 "Guest Non-Register State".
1860 */
1861 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR6);
1862 uint64_t fPendingDbgMask = pVCpu->cpum.GstCtx.dr[6];
1863 uint64_t const fBpHitMask = VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP0 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP1
1864 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP2 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BP3;
1865 if (fPendingDbgMask & fBpHitMask)
1866 fPendingDbgMask |= VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP;
1867 fPendingDbgMask ^= VMX_VMCS_GUEST_PENDING_DEBUG_RTM;
1868 pVmcs->u64GuestPendingDbgXcpt.u = fPendingDbgMask;
1869 }
1870
1871 /*
1872 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1873 *
1874 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1875 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1876 */
1877 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1878 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1879 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1880
1881 /* PDPTEs. */
1882 /* We don't support EPT yet. */
1883 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
1884 pVmcs->u64GuestPdpte0.u = 0;
1885 pVmcs->u64GuestPdpte1.u = 0;
1886 pVmcs->u64GuestPdpte2.u = 0;
1887 pVmcs->u64GuestPdpte3.u = 0;
1888}
1889
1890
1891/**
1892 * Saves the guest-state as part of VM-exit.
1893 *
1894 * @returns VBox status code.
1895 * @param pVCpu The cross context virtual CPU structure.
1896 * @param uExitReason The VM-exit reason.
1897 */
1898IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPU pVCpu, uint32_t uExitReason)
1899{
1900 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1901 Assert(pVmcs);
1902
1903 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1904 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1905
1906 pVmcs->u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1907 pVmcs->u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1908 pVmcs->u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1909
1910 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1911}
1912
1913
1914/**
1915 * Saves the guest MSRs into the VM-exit auto-store MSRs area as part of VM-exit.
1916 *
1917 * @returns VBox status code.
1918 * @param pVCpu The cross context virtual CPU structure.
1919 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1920 */
1921IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
1922{
1923 /*
1924 * Save guest MSRs.
1925 * See Intel spec. 27.4 "Saving MSRs".
1926 */
1927 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1928 const char *const pszFailure = "VMX-abort";
1929
1930 /*
1931 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1932 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1933 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1934 */
1935 uint32_t const cMsrs = pVmcs->u32ExitMsrStoreCount;
1936 if (!cMsrs)
1937 return VINF_SUCCESS;
1938
1939 /*
1940 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1941 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1942 * implementation causes a VMX-abort followed by a triple-fault.
1943 */
1944 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1945 if (fIsMsrCountValid)
1946 { /* likely */ }
1947 else
1948 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1949
1950 PVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
1951 Assert(pMsr);
1952 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1953 {
1954 if ( !pMsr->u32Reserved
1955 && pMsr->u32Msr != MSR_IA32_SMBASE
1956 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1957 {
1958 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1959 if (rcStrict == VINF_SUCCESS)
1960 continue;
1961
1962 /*
1963 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1964 * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1965 * recording the MSR index in the auxiliary info. field and indicated further by our
1966 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1967 * if possible, or come up with a better, generic solution.
1968 */
1969 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1970 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1971 ? kVmxVDiag_Vmexit_MsrStoreRing3
1972 : kVmxVDiag_Vmexit_MsrStore;
1973 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1974 }
1975 else
1976 {
1977 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1978 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1979 }
1980 }
1981
1982 RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrStore.u;
1983 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysAutoMsrArea,
1984 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea), cMsrs * sizeof(VMXAUTOMSR));
1985 if (RT_SUCCESS(rc))
1986 { /* likely */ }
1987 else
1988 {
1989 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
1990 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1991 }
1992
1993 NOREF(uExitReason);
1994 NOREF(pszFailure);
1995 return VINF_SUCCESS;
1996}
1997
1998
1999/**
2000 * Performs a VMX abort (due to an fatal error during VM-exit).
2001 *
2002 * @returns Strict VBox status code.
2003 * @param pVCpu The cross context virtual CPU structure.
2004 * @param enmAbort The VMX abort reason.
2005 */
2006IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPU pVCpu, VMXABORT enmAbort)
2007{
2008 /*
2009 * Perform the VMX abort.
2010 * See Intel spec. 27.7 "VMX Aborts".
2011 */
2012 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, HMGetVmxAbortDesc(enmAbort)));
2013
2014 /* We don't support SMX yet. */
2015 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
2016 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
2017 {
2018 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
2019 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
2020 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
2021 }
2022
2023 return VINF_EM_TRIPLE_FAULT;
2024}
2025
2026
2027/**
2028 * Loads host control registers, debug registers and MSRs as part of VM-exit.
2029 *
2030 * @param pVCpu The cross context virtual CPU structure.
2031 */
2032IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPU pVCpu)
2033{
2034 /*
2035 * Load host control registers, debug registers and MSRs.
2036 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
2037 */
2038 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2039 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2040
2041 /* CR0. */
2042 {
2043 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 MB1 bits are not modified. */
2044 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
2045 uint64_t const fCr0IgnMask = UINT64_C(0xffffffff1ff8ffc0) | X86_CR0_ET | X86_CR0_CD | X86_CR0_NW | uCr0Fixed0;
2046 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
2047 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
2048 uint64_t const uValidCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
2049 CPUMSetGuestCR0(pVCpu, uValidCr0);
2050 }
2051
2052 /* CR4. */
2053 {
2054 /* CR4 MB1 bits are not modified. */
2055 uint64_t const fCr4IgnMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
2056 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
2057 uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
2058 uint64_t uValidCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
2059 if (fHostInLongMode)
2060 uValidCr4 |= X86_CR4_PAE;
2061 else
2062 uValidCr4 &= ~X86_CR4_PCIDE;
2063 CPUMSetGuestCR4(pVCpu, uValidCr4);
2064 }
2065
2066 /* CR3 (host value validated while checking host-state during VM-entry). */
2067 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
2068
2069 /* DR7. */
2070 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
2071
2072 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
2073
2074 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
2075 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
2076 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
2077 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
2078
2079 /* FS, GS bases are loaded later while we load host segment registers. */
2080
2081 /* EFER MSR (host value validated while checking host-state during VM-entry). */
2082 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2083 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
2084 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
2085 {
2086 if (fHostInLongMode)
2087 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
2088 else
2089 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
2090 }
2091
2092 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
2093
2094 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
2095 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
2096 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
2097
2098 /* We don't support IA32_BNDCFGS MSR yet. */
2099}
2100
2101
2102/**
2103 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
2104 *
2105 * @param pVCpu The cross context virtual CPU structure.
2106 */
2107IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPU pVCpu)
2108{
2109 /*
2110 * Load host segment registers, GDTR, IDTR, LDTR and TR.
2111 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
2112 *
2113 * Warning! Be careful to not touch fields that are reserved by VT-x,
2114 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
2115 */
2116 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2117 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2118
2119 /* CS, SS, ES, DS, FS, GS. */
2120 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
2121 {
2122 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
2123 bool const fUnusable = RT_BOOL(HostSel == 0);
2124 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
2125
2126 /* Selector. */
2127 pSelReg->Sel = HostSel;
2128 pSelReg->ValidSel = HostSel;
2129 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
2130
2131 /* Limit. */
2132 pSelReg->u32Limit = 0xffffffff;
2133
2134 /* Base. */
2135 pSelReg->u64Base = 0;
2136
2137 /* Attributes. */
2138 if (iSegReg == X86_SREG_CS)
2139 {
2140 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
2141 pSelReg->Attr.n.u1DescType = 1;
2142 pSelReg->Attr.n.u2Dpl = 0;
2143 pSelReg->Attr.n.u1Present = 1;
2144 pSelReg->Attr.n.u1Long = fHostInLongMode;
2145 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
2146 pSelReg->Attr.n.u1Granularity = 1;
2147 Assert(!pSelReg->Attr.n.u1Unusable);
2148 Assert(!fUnusable);
2149 }
2150 else
2151 {
2152 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
2153 pSelReg->Attr.n.u1DescType = 1;
2154 pSelReg->Attr.n.u2Dpl = 0;
2155 pSelReg->Attr.n.u1Present = 1;
2156 pSelReg->Attr.n.u1DefBig = 1;
2157 pSelReg->Attr.n.u1Granularity = 1;
2158 pSelReg->Attr.n.u1Unusable = fUnusable;
2159 }
2160 }
2161
2162 /* FS base. */
2163 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
2164 || fHostInLongMode)
2165 {
2166 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
2167 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
2168 }
2169
2170 /* GS base. */
2171 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
2172 || fHostInLongMode)
2173 {
2174 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
2175 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
2176 }
2177
2178 /* TR. */
2179 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
2180 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
2181 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
2182 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
2183 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2184 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
2185 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
2186 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2187 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
2188 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
2189 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
2190 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
2191 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
2192
2193 /* LDTR (Warning! do not touch the base and limits here). */
2194 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
2195 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
2196 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2197 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
2198
2199 /* GDTR. */
2200 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
2201 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
2202 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
2203
2204 /* IDTR.*/
2205 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
2206 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
2207 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
2208}
2209
2210
2211/**
2212 * Checks host PDPTes as part of VM-exit.
2213 *
2214 * @param pVCpu The cross context virtual CPU structure.
2215 * @param uExitReason The VM-exit reason (for logging purposes).
2216 */
2217IEM_STATIC int iemVmxVmexitCheckHostPdptes(PVMCPU pVCpu, uint32_t uExitReason)
2218{
2219 /*
2220 * Check host PDPTEs.
2221 * See Intel spec. 27.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
2222 */
2223 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2224 const char *const pszFailure = "VMX-abort";
2225 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2226
2227 if ( (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
2228 && !fHostInLongMode)
2229 {
2230 uint64_t const uHostCr3 = pVCpu->cpum.GstCtx.cr3 & X86_CR3_PAE_PAGE_MASK;
2231 X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
2232 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uHostCr3, sizeof(aPdptes));
2233 if (RT_SUCCESS(rc))
2234 {
2235 for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
2236 {
2237 if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
2238 || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
2239 { /* likely */ }
2240 else
2241 {
2242 VMXVDIAG const enmDiag = iemVmxGetDiagVmexitPdpteRsvd(iPdpte);
2243 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
2244 }
2245 }
2246 }
2247 else
2248 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_HostPdpteCr3ReadPhys);
2249 }
2250
2251 NOREF(pszFailure);
2252 NOREF(uExitReason);
2253 return VINF_SUCCESS;
2254}
2255
2256
2257/**
2258 * Loads the host MSRs from the VM-exit auto-load MSRs area as part of VM-exit.
2259 *
2260 * @returns VBox status code.
2261 * @param pVCpu The cross context virtual CPU structure.
2262 * @param pszInstr The VMX instruction name (for logging purposes).
2263 */
2264IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPU pVCpu, uint32_t uExitReason)
2265{
2266 /*
2267 * Load host MSRs.
2268 * See Intel spec. 27.6 "Loading MSRs".
2269 */
2270 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2271 const char *const pszFailure = "VMX-abort";
2272
2273 /*
2274 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
2275 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
2276 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
2277 */
2278 uint32_t const cMsrs = pVmcs->u32ExitMsrLoadCount;
2279 if (!cMsrs)
2280 return VINF_SUCCESS;
2281
2282 /*
2283 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
2284 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
2285 * implementation causes a VMX-abort followed by a triple-fault.
2286 */
2287 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
2288 if (fIsMsrCountValid)
2289 { /* likely */ }
2290 else
2291 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
2292
2293 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea));
2294 RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrExitMsrLoad.u;
2295 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
2296 GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR));
2297 if (RT_SUCCESS(rc))
2298 {
2299 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
2300 Assert(pMsr);
2301 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
2302 {
2303 if ( !pMsr->u32Reserved
2304 && pMsr->u32Msr != MSR_K8_FS_BASE
2305 && pMsr->u32Msr != MSR_K8_GS_BASE
2306 && pMsr->u32Msr != MSR_K6_EFER
2307 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
2308 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
2309 {
2310 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
2311 if (rcStrict == VINF_SUCCESS)
2312 continue;
2313
2314 /*
2315 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
2316 * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
2317 * recording the MSR index in the auxiliary info. field and indicated further by our
2318 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
2319 * if possible, or come up with a better, generic solution.
2320 */
2321 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
2322 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
2323 ? kVmxVDiag_Vmexit_MsrLoadRing3
2324 : kVmxVDiag_Vmexit_MsrLoad;
2325 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
2326 }
2327 else
2328 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
2329 }
2330 }
2331 else
2332 {
2333 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysAutoMsrArea, rc));
2334 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
2335 }
2336
2337 NOREF(uExitReason);
2338 NOREF(pszFailure);
2339 return VINF_SUCCESS;
2340}
2341
2342
2343/**
2344 * Loads the host state as part of VM-exit.
2345 *
2346 * @returns Strict VBox status code.
2347 * @param pVCpu The cross context virtual CPU structure.
2348 * @param uExitReason The VM-exit reason (for logging purposes).
2349 */
2350IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPU pVCpu, uint32_t uExitReason)
2351{
2352 /*
2353 * Load host state.
2354 * See Intel spec. 27.5 "Loading Host State".
2355 */
2356 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2357 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2358
2359 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2360 if ( CPUMIsGuestInLongMode(pVCpu)
2361 && !fHostInLongMode)
2362 {
2363 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2364 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2365 }
2366
2367 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2368 iemVmxVmexitLoadHostSegRegs(pVCpu);
2369
2370 /*
2371 * Load host RIP, RSP and RFLAGS.
2372 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2373 */
2374 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2375 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2376 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2377
2378 /* Clear address range monitoring. */
2379 EMMonitorWaitClear(pVCpu);
2380
2381 /* Perform the VMX transition (PGM updates). */
2382 VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
2383 if (rcStrict == VINF_SUCCESS)
2384 {
2385 /* Check host PDPTEs (only when we've fully switched page tables_. */
2386 /** @todo r=ramshankar: I don't know if PGM does this for us already or not... */
2387 int rc = iemVmxVmexitCheckHostPdptes(pVCpu, uExitReason);
2388 if (RT_FAILURE(rc))
2389 {
2390 Log(("VM-exit failed while restoring host PDPTEs -> VMX-Abort\n"));
2391 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2392 }
2393 }
2394 else if (RT_SUCCESS(rcStrict))
2395 {
2396 Log3(("VM-exit: iemVmxWorldSwitch returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2397 uExitReason));
2398 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2399 }
2400 else
2401 {
2402 Log3(("VM-exit: iemVmxWorldSwitch failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2403 return VBOXSTRICTRC_VAL(rcStrict);
2404 }
2405
2406 Assert(rcStrict == VINF_SUCCESS);
2407
2408 /* Load MSRs from the VM-exit auto-load MSR area. */
2409 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2410 if (RT_FAILURE(rc))
2411 {
2412 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2413 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2414 }
2415 return VINF_SUCCESS;
2416}
2417
2418
2419/**
2420 * Gets VM-exit instruction information along with any displacement for an
2421 * instruction VM-exit.
2422 *
2423 * @returns The VM-exit instruction information.
2424 * @param pVCpu The cross context virtual CPU structure.
2425 * @param uExitReason The VM-exit reason.
2426 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2427 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2428 * NULL.
2429 */
2430IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
2431{
2432 RTGCPTR GCPtrDisp;
2433 VMXEXITINSTRINFO ExitInstrInfo;
2434 ExitInstrInfo.u = 0;
2435
2436 /*
2437 * Get and parse the ModR/M byte from our decoded opcodes.
2438 */
2439 uint8_t bRm;
2440 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2441 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2442 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2443 {
2444 /*
2445 * ModR/M indicates register addressing.
2446 *
2447 * The primary/secondary register operands are reported in the iReg1 or iReg2
2448 * fields depending on whether it is a read/write form.
2449 */
2450 uint8_t idxReg1;
2451 uint8_t idxReg2;
2452 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2453 {
2454 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2455 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2456 }
2457 else
2458 {
2459 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2460 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2461 }
2462 ExitInstrInfo.All.u2Scaling = 0;
2463 ExitInstrInfo.All.iReg1 = idxReg1;
2464 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2465 ExitInstrInfo.All.fIsRegOperand = 1;
2466 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2467 ExitInstrInfo.All.iSegReg = 0;
2468 ExitInstrInfo.All.iIdxReg = 0;
2469 ExitInstrInfo.All.fIdxRegInvalid = 1;
2470 ExitInstrInfo.All.iBaseReg = 0;
2471 ExitInstrInfo.All.fBaseRegInvalid = 1;
2472 ExitInstrInfo.All.iReg2 = idxReg2;
2473
2474 /* Displacement not applicable for register addressing. */
2475 GCPtrDisp = 0;
2476 }
2477 else
2478 {
2479 /*
2480 * ModR/M indicates memory addressing.
2481 */
2482 uint8_t uScale = 0;
2483 bool fBaseRegValid = false;
2484 bool fIdxRegValid = false;
2485 uint8_t iBaseReg = 0;
2486 uint8_t iIdxReg = 0;
2487 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2488 {
2489 /*
2490 * Parse the ModR/M, displacement for 16-bit addressing mode.
2491 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2492 */
2493 uint16_t u16Disp = 0;
2494 uint8_t const offDisp = offModRm + sizeof(bRm);
2495 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2496 {
2497 /* Displacement without any registers. */
2498 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2499 }
2500 else
2501 {
2502 /* Register (index and base). */
2503 switch (bRm & X86_MODRM_RM_MASK)
2504 {
2505 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2506 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2507 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2508 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2509 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2510 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2511 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2512 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2513 }
2514
2515 /* Register + displacement. */
2516 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2517 {
2518 case 0: break;
2519 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2520 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2521 default:
2522 {
2523 /* Register addressing, handled at the beginning. */
2524 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2525 break;
2526 }
2527 }
2528 }
2529
2530 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2531 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2532 }
2533 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2534 {
2535 /*
2536 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2537 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2538 */
2539 uint32_t u32Disp = 0;
2540 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2541 {
2542 /* Displacement without any registers. */
2543 uint8_t const offDisp = offModRm + sizeof(bRm);
2544 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2545 }
2546 else
2547 {
2548 /* Register (and perhaps scale, index and base). */
2549 uint8_t offDisp = offModRm + sizeof(bRm);
2550 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2551 if (iBaseReg == 4)
2552 {
2553 /* An SIB byte follows the ModR/M byte, parse it. */
2554 uint8_t bSib;
2555 uint8_t const offSib = offModRm + sizeof(bRm);
2556 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2557
2558 /* A displacement may follow SIB, update its offset. */
2559 offDisp += sizeof(bSib);
2560
2561 /* Get the scale. */
2562 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2563
2564 /* Get the index register. */
2565 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2566 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2567
2568 /* Get the base register. */
2569 iBaseReg = bSib & X86_SIB_BASE_MASK;
2570 fBaseRegValid = true;
2571 if (iBaseReg == 5)
2572 {
2573 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2574 {
2575 /* Mod is 0 implies a 32-bit displacement with no base. */
2576 fBaseRegValid = false;
2577 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2578 }
2579 else
2580 {
2581 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2582 iBaseReg = X86_GREG_xBP;
2583 }
2584 }
2585 }
2586
2587 /* Register + displacement. */
2588 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2589 {
2590 case 0: /* Handled above */ break;
2591 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2592 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2593 default:
2594 {
2595 /* Register addressing, handled at the beginning. */
2596 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2597 break;
2598 }
2599 }
2600 }
2601
2602 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2603 }
2604 else
2605 {
2606 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2607
2608 /*
2609 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2610 * See Intel instruction spec. 2.2 "IA-32e Mode".
2611 */
2612 uint64_t u64Disp = 0;
2613 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2614 if (fRipRelativeAddr)
2615 {
2616 /*
2617 * RIP-relative addressing mode.
2618 *
2619 * The displacement is 32-bit signed implying an offset range of +/-2G.
2620 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2621 */
2622 uint8_t const offDisp = offModRm + sizeof(bRm);
2623 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2624 }
2625 else
2626 {
2627 uint8_t offDisp = offModRm + sizeof(bRm);
2628
2629 /*
2630 * Register (and perhaps scale, index and base).
2631 *
2632 * REX.B extends the most-significant bit of the base register. However, REX.B
2633 * is ignored while determining whether an SIB follows the opcode. Hence, we
2634 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2635 *
2636 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2637 */
2638 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2639 if (iBaseReg == 4)
2640 {
2641 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2642 uint8_t bSib;
2643 uint8_t const offSib = offModRm + sizeof(bRm);
2644 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2645
2646 /* Displacement may follow SIB, update its offset. */
2647 offDisp += sizeof(bSib);
2648
2649 /* Get the scale. */
2650 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2651
2652 /* Get the index. */
2653 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2654 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2655
2656 /* Get the base. */
2657 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2658 fBaseRegValid = true;
2659 if (iBaseReg == 5)
2660 {
2661 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2662 {
2663 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2664 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2665 }
2666 else
2667 {
2668 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2669 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2670 }
2671 }
2672 }
2673 iBaseReg |= pVCpu->iem.s.uRexB;
2674
2675 /* Register + displacement. */
2676 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2677 {
2678 case 0: /* Handled above */ break;
2679 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2680 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2681 default:
2682 {
2683 /* Register addressing, handled at the beginning. */
2684 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2685 break;
2686 }
2687 }
2688 }
2689
2690 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2691 }
2692
2693 /*
2694 * The primary or secondary register operand is reported in iReg2 depending
2695 * on whether the primary operand is in read/write form.
2696 */
2697 uint8_t idxReg2;
2698 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2699 {
2700 idxReg2 = bRm & X86_MODRM_RM_MASK;
2701 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2702 idxReg2 |= pVCpu->iem.s.uRexB;
2703 }
2704 else
2705 {
2706 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2707 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2708 idxReg2 |= pVCpu->iem.s.uRexReg;
2709 }
2710 ExitInstrInfo.All.u2Scaling = uScale;
2711 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2712 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2713 ExitInstrInfo.All.fIsRegOperand = 0;
2714 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2715 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2716 ExitInstrInfo.All.iIdxReg = iIdxReg;
2717 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2718 ExitInstrInfo.All.iBaseReg = iBaseReg;
2719 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2720 ExitInstrInfo.All.iReg2 = idxReg2;
2721 }
2722
2723 /*
2724 * Handle exceptions to the norm for certain instructions.
2725 * (e.g. some instructions convey an instruction identity in place of iReg2).
2726 */
2727 switch (uExitReason)
2728 {
2729 case VMX_EXIT_GDTR_IDTR_ACCESS:
2730 {
2731 Assert(VMXINSTRID_IS_VALID(uInstrId));
2732 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2733 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2734 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2735 break;
2736 }
2737
2738 case VMX_EXIT_LDTR_TR_ACCESS:
2739 {
2740 Assert(VMXINSTRID_IS_VALID(uInstrId));
2741 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2742 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2743 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2744 break;
2745 }
2746
2747 case VMX_EXIT_RDRAND:
2748 case VMX_EXIT_RDSEED:
2749 {
2750 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2751 break;
2752 }
2753 }
2754
2755 /* Update displacement and return the constructed VM-exit instruction information field. */
2756 if (pGCPtrDisp)
2757 *pGCPtrDisp = GCPtrDisp;
2758
2759 return ExitInstrInfo.u;
2760}
2761
2762
2763/**
2764 * VMX VM-exit handler.
2765 *
2766 * @returns Strict VBox status code.
2767 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2768 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2769 * triple-fault.
2770 *
2771 * @param pVCpu The cross context virtual CPU structure.
2772 * @param uExitReason The VM-exit reason.
2773 *
2774 * @remarks Make sure VM-exit qualification is updated before calling this
2775 * function!
2776 */
2777IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPU pVCpu, uint32_t uExitReason)
2778{
2779# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2780 RT_NOREF2(pVCpu, uExitReason);
2781 return VINF_EM_RAW_EMULATE_INSTR;
2782# else
2783 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 /* Control registers */
2784 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6 /* Debug registers */
2785 | CPUMCTX_EXTRN_EFER /* MSRs */
2786 | CPUMCTX_EXTRN_SYSENTER_MSRS
2787 | CPUMCTX_EXTRN_OTHER_MSRS /* PAT */
2788 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS /* GPRs */
2789 | CPUMCTX_EXTRN_SREG_MASK /* Segment registers */
2790 | CPUMCTX_EXTRN_TR /* Task register */
2791 | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_GDTR | CPUMCTX_EXTRN_IDTR /* Table registers */
2792 | CPUMCTX_EXTRN_HWVIRT); /* Hardware virtualization state */
2793
2794 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
2795 Assert(pVmcs);
2796
2797 /* Update the VM-exit reason, the other relevant data fields are expected to be updated by the caller already. */
2798 pVmcs->u32RoExitReason = uExitReason;
2799 Log3(("vmexit: uExitReason=%#RX32 uExitQual=%#RX64 cs:rip=%04x:%#RX64\n", uExitReason, pVmcs->u64RoExitQual,
2800 IEM_GET_CTX(pVCpu)->cs.Sel, IEM_GET_CTX(pVCpu)->rip));
2801
2802 /*
2803 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
2804 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
2805 */
2806 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2807
2808 /*
2809 * Clear IDT-vectoring information fields if the VM-exit was not triggered during delivery of an event.
2810 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
2811 */
2812 {
2813 uint8_t uVector;
2814 uint32_t fFlags;
2815 uint32_t uErrCode;
2816 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* uCr2 */);
2817 if (!fInEventDelivery)
2818 iemVmxVmcsSetIdtVectoringInfo(pVCpu, 0);
2819 /* else: Caller would have updated IDT-vectoring information already, see iemVmxVmexitEvent(). */
2820 }
2821
2822 /*
2823 * Save the guest state back into the VMCS.
2824 * We only need to save the state when the VM-entry was successful.
2825 */
2826 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2827 if (!fVmentryFailed)
2828 {
2829 /*
2830 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2831 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2832 *
2833 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2834 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2835 * as guest-CPU state would not been modified. Hence for now, we do this only when
2836 * the VM-entry succeeded.
2837 */
2838 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2839 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2840 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2841 {
2842 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2843 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2844 else
2845 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2846 }
2847
2848 /*
2849 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2850 * occurs in enclave mode/SMM which we don't support yet.
2851 *
2852 * If we ever add support for it, we can pass just the lower bits to the functions
2853 * below, till then an assert should suffice.
2854 */
2855 Assert(!RT_HI_U16(uExitReason));
2856
2857 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2858 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2859 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2860 if (RT_SUCCESS(rc))
2861 { /* likely */ }
2862 else
2863 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2864
2865 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2866 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
2867 }
2868 else
2869 {
2870 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2871 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2872 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2873 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2874 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2875 }
2876
2877 /*
2878 * Clear any pending VMX nested-guest force-flags.
2879 * These force-flags have no effect on guest execution and will
2880 * be re-evaluated and setup on the next nested-guest VM-entry.
2881 */
2882 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER
2883 | VMCPU_FF_VMX_MTF
2884 | VMCPU_FF_VMX_APIC_WRITE
2885 | VMCPU_FF_VMX_INT_WINDOW
2886 | VMCPU_FF_VMX_NMI_WINDOW);
2887
2888 /* Restore the host (outer guest) state. */
2889 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2890 if (RT_SUCCESS(rcStrict))
2891 {
2892 Assert(rcStrict == VINF_SUCCESS);
2893 rcStrict = VINF_VMX_VMEXIT;
2894 }
2895 else
2896 Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2897
2898 /* We're no longer in nested-guest execution mode. */
2899 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2900
2901 /* Revert any IEM-only nested-guest execution policy if it was set earlier, otherwise return rcStrict. */
2902 IEM_VMX_R3_EXECPOLICY_IEM_ALL_DISABLE_RET(pVCpu, "VM-exit", rcStrict);
2903# endif
2904}
2905
2906
2907/**
2908 * VMX VM-exit handler for VM-exits due to instruction execution.
2909 *
2910 * This is intended for instructions where the caller provides all the relevant
2911 * VM-exit information.
2912 *
2913 * @returns Strict VBox status code.
2914 * @param pVCpu The cross context virtual CPU structure.
2915 * @param pExitInfo Pointer to the VM-exit instruction information struct.
2916 */
2917DECLINLINE(VBOXSTRICTRC) iemVmxVmexitInstrWithInfo(PVMCPU pVCpu, PCVMXVEXITINFO pExitInfo)
2918{
2919 /*
2920 * For instructions where any of the following fields are not applicable:
2921 * - VM-exit instruction info. is undefined.
2922 * - VM-exit qualification must be cleared.
2923 * - VM-exit guest-linear address is undefined.
2924 * - VM-exit guest-physical address is undefined.
2925 *
2926 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2927 * instruction execution. For VM-exits that are not due to instruction execution this
2928 * field is undefined.
2929 *
2930 * In our implementation in IEM, all undefined fields are generally cleared. However,
2931 * if the caller supplies information (from say the physical CPU directly) it is
2932 * then possible that the undefined fields are not cleared.
2933 *
2934 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2935 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2936 */
2937 Assert(pExitInfo);
2938 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2939 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2940 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2941
2942 /* Update all the relevant fields from the VM-exit instruction information struct. */
2943 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2944 iemVmxVmcsSetExitQual(pVCpu, pExitInfo->u64Qual);
2945 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2946 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2947 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2948
2949 /* Perform the VM-exit. */
2950 return iemVmxVmexit(pVCpu, pExitInfo->uReason);
2951}
2952
2953
2954/**
2955 * VMX VM-exit handler for VM-exits due to instruction execution.
2956 *
2957 * This is intended for instructions that only provide the VM-exit instruction
2958 * length.
2959 *
2960 * @param pVCpu The cross context virtual CPU structure.
2961 * @param uExitReason The VM-exit reason.
2962 * @param cbInstr The instruction length in bytes.
2963 */
2964IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPU pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2965{
2966 VMXVEXITINFO ExitInfo;
2967 RT_ZERO(ExitInfo);
2968 ExitInfo.uReason = uExitReason;
2969 ExitInfo.cbInstr = cbInstr;
2970
2971#ifdef VBOX_STRICT
2972 /* To prevent us from shooting ourselves in the foot. Maybe remove later. */
2973 switch (uExitReason)
2974 {
2975 case VMX_EXIT_INVEPT:
2976 case VMX_EXIT_INVPCID:
2977 case VMX_EXIT_LDTR_TR_ACCESS:
2978 case VMX_EXIT_GDTR_IDTR_ACCESS:
2979 case VMX_EXIT_VMCLEAR:
2980 case VMX_EXIT_VMPTRLD:
2981 case VMX_EXIT_VMPTRST:
2982 case VMX_EXIT_VMREAD:
2983 case VMX_EXIT_VMWRITE:
2984 case VMX_EXIT_VMXON:
2985 case VMX_EXIT_XRSTORS:
2986 case VMX_EXIT_XSAVES:
2987 case VMX_EXIT_RDRAND:
2988 case VMX_EXIT_RDSEED:
2989 case VMX_EXIT_IO_INSTR:
2990 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2991 break;
2992 }
2993#endif
2994
2995 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2996}
2997
2998
2999/**
3000 * VMX VM-exit handler for VM-exits due to instruction execution.
3001 *
3002 * This is intended for instructions that have a ModR/M byte and update the VM-exit
3003 * instruction information and VM-exit qualification fields.
3004 *
3005 * @param pVCpu The cross context virtual CPU structure.
3006 * @param uExitReason The VM-exit reason.
3007 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
3008 * @param cbInstr The instruction length in bytes.
3009 *
3010 * @remarks Do not use this for INS/OUTS instruction.
3011 */
3012IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPU pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
3013{
3014 VMXVEXITINFO ExitInfo;
3015 RT_ZERO(ExitInfo);
3016 ExitInfo.uReason = uExitReason;
3017 ExitInfo.cbInstr = cbInstr;
3018
3019 /*
3020 * Update the VM-exit qualification field with displacement bytes.
3021 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3022 */
3023 switch (uExitReason)
3024 {
3025 case VMX_EXIT_INVEPT:
3026 case VMX_EXIT_INVPCID:
3027 case VMX_EXIT_LDTR_TR_ACCESS:
3028 case VMX_EXIT_GDTR_IDTR_ACCESS:
3029 case VMX_EXIT_VMCLEAR:
3030 case VMX_EXIT_VMPTRLD:
3031 case VMX_EXIT_VMPTRST:
3032 case VMX_EXIT_VMREAD:
3033 case VMX_EXIT_VMWRITE:
3034 case VMX_EXIT_VMXON:
3035 case VMX_EXIT_XRSTORS:
3036 case VMX_EXIT_XSAVES:
3037 case VMX_EXIT_RDRAND:
3038 case VMX_EXIT_RDSEED:
3039 {
3040 /* Construct the VM-exit instruction information. */
3041 RTGCPTR GCPtrDisp;
3042 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
3043
3044 /* Update the VM-exit instruction information. */
3045 ExitInfo.InstrInfo.u = uInstrInfo;
3046
3047 /* Update the VM-exit qualification. */
3048 ExitInfo.u64Qual = GCPtrDisp;
3049 break;
3050 }
3051
3052 default:
3053 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
3054 break;
3055 }
3056
3057 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3058}
3059
3060
3061/**
3062 * Checks whether an I/O instruction for the given port is intercepted (causes a
3063 * VM-exit) or not.
3064 *
3065 * @returns @c true if the instruction is intercepted, @c false otherwise.
3066 * @param pVCpu The cross context virtual CPU structure.
3067 * @param u16Port The I/O port being accessed by the instruction.
3068 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3069 */
3070IEM_STATIC bool iemVmxIsIoInterceptSet(PVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
3071{
3072 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3073 Assert(pVmcs);
3074
3075 /*
3076 * Check whether the I/O instruction must cause a VM-exit or not.
3077 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3078 */
3079 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT)
3080 return true;
3081
3082 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
3083 {
3084 uint8_t const *pbIoBitmapA = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap);
3085 uint8_t const *pbIoBitmapB = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvIoBitmap) + VMX_V_IO_BITMAP_A_SIZE;
3086 Assert(pbIoBitmapA);
3087 Assert(pbIoBitmapB);
3088 return HMGetVmxIoBitmapPermission(pbIoBitmapA, pbIoBitmapB, u16Port, cbAccess);
3089 }
3090
3091 return false;
3092}
3093
3094
3095/**
3096 * VMX VM-exit handler for VM-exits due to Monitor-Trap Flag (MTF).
3097 *
3098 * @returns Strict VBox status code.
3099 * @param pVCpu The cross context virtual CPU structure.
3100 */
3101IEM_STATIC VBOXSTRICTRC iemVmxVmexitMtf(PVMCPU pVCpu)
3102{
3103 /*
3104 * The MTF VM-exit can occur even when the MTF VM-execution control is
3105 * not set (e.g. when VM-entry injects an MTF pending event), so do not
3106 * check for the intercept here.
3107 */
3108 return iemVmxVmexit(pVCpu, VMX_EXIT_MTF);
3109}
3110
3111
3112/**
3113 * VMX VM-exit handler for VM-exits due to INVLPG.
3114 *
3115 * @returns Strict VBox status code.
3116 * @param pVCpu The cross context virtual CPU structure.
3117 * @param GCPtrPage The guest-linear address of the page being invalidated.
3118 * @param cbInstr The instruction length in bytes.
3119 */
3120IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPU pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
3121{
3122 VMXVEXITINFO ExitInfo;
3123 RT_ZERO(ExitInfo);
3124 ExitInfo.uReason = VMX_EXIT_INVLPG;
3125 ExitInfo.cbInstr = cbInstr;
3126 ExitInfo.u64Qual = GCPtrPage;
3127 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
3128
3129 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3130}
3131
3132
3133/**
3134 * VMX VM-exit handler for VM-exits due to LMSW.
3135 *
3136 * @returns Strict VBox status code.
3137 * @param pVCpu The cross context virtual CPU structure.
3138 * @param uGuestCr0 The current guest CR0.
3139 * @param pu16NewMsw The machine-status word specified in LMSW's source
3140 * operand. This will be updated depending on the VMX
3141 * guest/host CR0 mask if LMSW is not intercepted.
3142 * @param GCPtrEffDst The guest-linear address of the source operand in case
3143 * of a memory operand. For register operand, pass
3144 * NIL_RTGCPTR.
3145 * @param cbInstr The instruction length in bytes.
3146 */
3147IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPU pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst,
3148 uint8_t cbInstr)
3149{
3150 /*
3151 * LMSW VM-exits are subject to the CR0 guest/host mask and the CR0 read shadow.
3152 *
3153 * See Intel spec. 24.6.6 "Guest/Host Masks and Read Shadows for CR0 and CR4".
3154 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3155 */
3156 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3157 Assert(pVmcs);
3158 Assert(pu16NewMsw);
3159
3160 bool fIntercept = false;
3161 uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
3162 uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u;
3163
3164 /*
3165 * LMSW can never clear CR0.PE but it may set it. Hence, we handle the
3166 * CR0.PE case first, before the rest of the bits in the MSW.
3167 *
3168 * If CR0.PE is owned by the host and CR0.PE differs between the
3169 * MSW (source operand) and the read-shadow, we must cause a VM-exit.
3170 */
3171 if ( (fGstHostMask & X86_CR0_PE)
3172 && (*pu16NewMsw & X86_CR0_PE)
3173 && !(fReadShadow & X86_CR0_PE))
3174 fIntercept = true;
3175
3176 /*
3177 * If CR0.MP, CR0.EM or CR0.TS is owned by the host, and the corresponding
3178 * bits differ between the MSW (source operand) and the read-shadow, we must
3179 * cause a VM-exit.
3180 */
3181 uint32_t fGstHostLmswMask = fGstHostMask & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3182 if ((fReadShadow & fGstHostLmswMask) != (*pu16NewMsw & fGstHostLmswMask))
3183 fIntercept = true;
3184
3185 if (fIntercept)
3186 {
3187 Log2(("lmsw: Guest intercept -> VM-exit\n"));
3188
3189 VMXVEXITINFO ExitInfo;
3190 RT_ZERO(ExitInfo);
3191 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3192 ExitInfo.cbInstr = cbInstr;
3193
3194 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
3195 if (fMemOperand)
3196 {
3197 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
3198 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
3199 }
3200
3201 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
3202 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
3203 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
3204 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, *pu16NewMsw);
3205
3206 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3207 }
3208
3209 /*
3210 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
3211 * CR0 guest/host mask must be left unmodified.
3212 *
3213 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3214 */
3215 fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3216 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (*pu16NewMsw & ~fGstHostLmswMask);
3217
3218 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3219}
3220
3221
3222/**
3223 * VMX VM-exit handler for VM-exits due to CLTS.
3224 *
3225 * @returns Strict VBox status code.
3226 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
3227 * VM-exit but must not modify the guest CR0.TS bit.
3228 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
3229 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
3230 * CR0 fixed bits in VMX operation).
3231 * @param pVCpu The cross context virtual CPU structure.
3232 * @param cbInstr The instruction length in bytes.
3233 */
3234IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPU pVCpu, uint8_t cbInstr)
3235{
3236 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3237 Assert(pVmcs);
3238
3239 uint32_t const fGstHostMask = pVmcs->u64Cr0Mask.u;
3240 uint32_t const fReadShadow = pVmcs->u64Cr0ReadShadow.u;
3241
3242 /*
3243 * If CR0.TS is owned by the host:
3244 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
3245 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
3246 * CLTS instruction completes without clearing CR0.TS.
3247 *
3248 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3249 */
3250 if (fGstHostMask & X86_CR0_TS)
3251 {
3252 if (fReadShadow & X86_CR0_TS)
3253 {
3254 Log2(("clts: Guest intercept -> VM-exit\n"));
3255
3256 VMXVEXITINFO ExitInfo;
3257 RT_ZERO(ExitInfo);
3258 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3259 ExitInfo.cbInstr = cbInstr;
3260 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
3261 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
3262 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3263 }
3264
3265 return VINF_VMX_MODIFIES_BEHAVIOR;
3266 }
3267
3268 /*
3269 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
3270 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
3271 */
3272 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3273}
3274
3275
3276/**
3277 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
3278 * (CR0/CR4 write).
3279 *
3280 * @returns Strict VBox status code.
3281 * @param pVCpu The cross context virtual CPU structure.
3282 * @param iCrReg The control register (either CR0 or CR4).
3283 * @param uGuestCrX The current guest CR0/CR4.
3284 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated
3285 * if no VM-exit is caused.
3286 * @param iGReg The general register from which the CR0/CR4 value is
3287 * being loaded.
3288 * @param cbInstr The instruction length in bytes.
3289 */
3290IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPU pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg,
3291 uint8_t cbInstr)
3292{
3293 Assert(puNewCrX);
3294 Assert(iCrReg == 0 || iCrReg == 4);
3295 Assert(iGReg < X86_GREG_COUNT);
3296
3297 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3298 Assert(pVmcs);
3299
3300 uint64_t uGuestCrX;
3301 uint64_t fGstHostMask;
3302 uint64_t fReadShadow;
3303 if (iCrReg == 0)
3304 {
3305 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3306 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
3307 fGstHostMask = pVmcs->u64Cr0Mask.u;
3308 fReadShadow = pVmcs->u64Cr0ReadShadow.u;
3309 }
3310 else
3311 {
3312 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3313 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
3314 fGstHostMask = pVmcs->u64Cr4Mask.u;
3315 fReadShadow = pVmcs->u64Cr4ReadShadow.u;
3316 }
3317
3318 /*
3319 * For any CR0/CR4 bit owned by the host (in the CR0/CR4 guest/host mask), if the
3320 * corresponding bits differ between the source operand and the read-shadow,
3321 * we must cause a VM-exit.
3322 *
3323 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3324 */
3325 if ((fReadShadow & fGstHostMask) != (*puNewCrX & fGstHostMask))
3326 {
3327 Assert(fGstHostMask != 0);
3328 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
3329
3330 VMXVEXITINFO ExitInfo;
3331 RT_ZERO(ExitInfo);
3332 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3333 ExitInfo.cbInstr = cbInstr;
3334 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
3335 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3336 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3337 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3338 }
3339
3340 /*
3341 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
3342 * must not be modified the instruction.
3343 *
3344 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3345 */
3346 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3347
3348 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3349}
3350
3351
3352/**
3353 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3354 *
3355 * @returns VBox strict status code.
3356 * @param pVCpu The cross context virtual CPU structure.
3357 * @param iGReg The general register to which the CR3 value is being stored.
3358 * @param cbInstr The instruction length in bytes.
3359 */
3360IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
3361{
3362 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3363 Assert(pVmcs);
3364 Assert(iGReg < X86_GREG_COUNT);
3365 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3366
3367 /*
3368 * If the CR3-store exiting control is set, we must cause a VM-exit.
3369 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3370 */
3371 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3372 {
3373 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3374
3375 VMXVEXITINFO ExitInfo;
3376 RT_ZERO(ExitInfo);
3377 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3378 ExitInfo.cbInstr = cbInstr;
3379 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3380 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3381 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3382 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3383 }
3384
3385 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3386}
3387
3388
3389/**
3390 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3391 *
3392 * @returns VBox strict status code.
3393 * @param pVCpu The cross context virtual CPU structure.
3394 * @param uNewCr3 The new CR3 value.
3395 * @param iGReg The general register from which the CR3 value is being
3396 * loaded.
3397 * @param cbInstr The instruction length in bytes.
3398 */
3399IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPU pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr)
3400{
3401 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3402 Assert(pVmcs);
3403 Assert(iGReg < X86_GREG_COUNT);
3404
3405 /*
3406 * If the CR3-load exiting control is set and the new CR3 value does not
3407 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3408 *
3409 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3410 */
3411 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT)
3412 {
3413 uint32_t const uCr3TargetCount = pVmcs->u32Cr3TargetCount;
3414 Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
3415
3416 /* If the CR3-target count is 0, we must always cause a VM-exit. */
3417 bool fIntercept = RT_BOOL(uCr3TargetCount == 0);
3418 if (!fIntercept)
3419 {
3420 for (uint32_t idxCr3Target = 0; idxCr3Target < uCr3TargetCount; idxCr3Target++)
3421 {
3422 uint64_t const uCr3TargetValue = iemVmxVmcsGetCr3TargetValue(pVmcs, idxCr3Target);
3423 if (uNewCr3 != uCr3TargetValue)
3424 {
3425 fIntercept = true;
3426 break;
3427 }
3428 }
3429 }
3430
3431 if (fIntercept)
3432 {
3433 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3434
3435 VMXVEXITINFO ExitInfo;
3436 RT_ZERO(ExitInfo);
3437 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3438 ExitInfo.cbInstr = cbInstr;
3439 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3440 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3441 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3442 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3443 }
3444 }
3445
3446 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3447}
3448
3449
3450/**
3451 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3452 *
3453 * @returns VBox strict status code.
3454 * @param pVCpu The cross context virtual CPU structure.
3455 * @param iGReg The general register to which the CR8 value is being stored.
3456 * @param cbInstr The instruction length in bytes.
3457 */
3458IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
3459{
3460 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3461 Assert(pVmcs);
3462 Assert(iGReg < X86_GREG_COUNT);
3463
3464 /*
3465 * If the CR8-store exiting control is set, we must cause a VM-exit.
3466 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3467 */
3468 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3469 {
3470 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3471
3472 VMXVEXITINFO ExitInfo;
3473 RT_ZERO(ExitInfo);
3474 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3475 ExitInfo.cbInstr = cbInstr;
3476 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3477 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3478 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3479 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3480 }
3481
3482 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3483}
3484
3485
3486/**
3487 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3488 *
3489 * @returns VBox strict status code.
3490 * @param pVCpu The cross context virtual CPU structure.
3491 * @param iGReg The general register from which the CR8 value is being
3492 * loaded.
3493 * @param cbInstr The instruction length in bytes.
3494 */
3495IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPU pVCpu, uint8_t iGReg, uint8_t cbInstr)
3496{
3497 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3498 Assert(pVmcs);
3499 Assert(iGReg < X86_GREG_COUNT);
3500
3501 /*
3502 * If the CR8-load exiting control is set, we must cause a VM-exit.
3503 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3504 */
3505 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3506 {
3507 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3508
3509 VMXVEXITINFO ExitInfo;
3510 RT_ZERO(ExitInfo);
3511 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3512 ExitInfo.cbInstr = cbInstr;
3513 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3514 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3515 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3516 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3517 }
3518
3519 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3520}
3521
3522
3523/**
3524 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3525 * GReg,DRx' (DRx read).
3526 *
3527 * @returns VBox strict status code.
3528 * @param pVCpu The cross context virtual CPU structure.
3529 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3530 * VMXINSTRID_MOV_FROM_DRX).
3531 * @param iDrReg The debug register being accessed.
3532 * @param iGReg The general register to/from which the DRx value is being
3533 * store/loaded.
3534 * @param cbInstr The instruction length in bytes.
3535 */
3536IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPU pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg,
3537 uint8_t cbInstr)
3538{
3539 Assert(iDrReg <= 7);
3540 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3541 Assert(iGReg < X86_GREG_COUNT);
3542
3543 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3544 Assert(pVmcs);
3545
3546 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3547 {
3548 uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3549 : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
3550 VMXVEXITINFO ExitInfo;
3551 RT_ZERO(ExitInfo);
3552 ExitInfo.uReason = VMX_EXIT_MOV_DRX;
3553 ExitInfo.cbInstr = cbInstr;
3554 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3555 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
3556 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
3557 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3558 }
3559
3560 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3561}
3562
3563
3564/**
3565 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3566 *
3567 * @returns VBox strict status code.
3568 * @param pVCpu The cross context virtual CPU structure.
3569 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3570 * VMXINSTRID_IO_OUT).
3571 * @param u16Port The I/O port being accessed.
3572 * @param fImm Whether the I/O port was encoded using an immediate operand
3573 * or the implicit DX register.
3574 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3575 * @param cbInstr The instruction length in bytes.
3576 */
3577IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess,
3578 uint8_t cbInstr)
3579{
3580 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3581 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3582
3583 bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess);
3584 if (fIntercept)
3585 {
3586 uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3587 : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3588 VMXVEXITINFO ExitInfo;
3589 RT_ZERO(ExitInfo);
3590 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3591 ExitInfo.cbInstr = cbInstr;
3592 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3593 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3594 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3595 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3596 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3597 }
3598
3599 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3600}
3601
3602
3603/**
3604 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3605 *
3606 * @returns VBox strict status code.
3607 * @param pVCpu The cross context virtual CPU structure.
3608 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3609 * VMXINSTRID_IO_OUTS).
3610 * @param u16Port The I/O port being accessed.
3611 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3612 * @param fRep Whether the instruction has a REP prefix or not.
3613 * @param ExitInstrInfo The VM-exit instruction info. field.
3614 * @param cbInstr The instruction length in bytes.
3615 */
3616IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPU pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep,
3617 VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr)
3618{
3619 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3620 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3621 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3622 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3623 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3624
3625 bool const fIntercept = iemVmxIsIoInterceptSet(pVCpu, u16Port, cbAccess);
3626 if (fIntercept)
3627 {
3628 /*
3629 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3630 */
3631 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3632 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3633 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3634 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3635 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3636
3637 uint32_t uDirection;
3638 uint64_t uGuestLinearAddr;
3639 if (uInstrId == VMXINSTRID_IO_INS)
3640 {
3641 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3642 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3643 }
3644 else
3645 {
3646 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3647 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3648 }
3649
3650 /*
3651 * If the segment is ununsable, the guest-linear address in undefined.
3652 * We shall clear it for consistency.
3653 *
3654 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3655 */
3656 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3657 uGuestLinearAddr = 0;
3658
3659 VMXVEXITINFO ExitInfo;
3660 RT_ZERO(ExitInfo);
3661 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3662 ExitInfo.cbInstr = cbInstr;
3663 ExitInfo.InstrInfo = ExitInstrInfo;
3664 ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
3665 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3666 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3667 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3668 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3669 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
3670 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3671 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3672 }
3673
3674 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3675}
3676
3677
3678/**
3679 * VMX VM-exit handler for VM-exits due to MWAIT.
3680 *
3681 * @returns VBox strict status code.
3682 * @param pVCpu The cross context virtual CPU structure.
3683 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3684 * @param cbInstr The instruction length in bytes.
3685 */
3686IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPU pVCpu, bool fMonitorHwArmed, uint8_t cbInstr)
3687{
3688 VMXVEXITINFO ExitInfo;
3689 RT_ZERO(ExitInfo);
3690 ExitInfo.uReason = VMX_EXIT_MWAIT;
3691 ExitInfo.cbInstr = cbInstr;
3692 ExitInfo.u64Qual = fMonitorHwArmed;
3693 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3694}
3695
3696
3697/**
3698 * VMX VM-exit handler for VM-exits due to PAUSE.
3699 *
3700 * @returns VBox strict status code.
3701 * @param pVCpu The cross context virtual CPU structure.
3702 * @param cbInstr The instruction length in bytes.
3703 */
3704IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPU pVCpu, uint8_t cbInstr)
3705{
3706 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3707 Assert(pVmcs);
3708
3709 /*
3710 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3711 * "PAUSE-loop exiting" control.
3712 *
3713 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3714 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3715 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3716 * a VM-exit.
3717 *
3718 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3719 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3720 */
3721 bool fIntercept = false;
3722 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3723 fIntercept = true;
3724 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3725 && pVCpu->iem.s.uCpl == 0)
3726 {
3727 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3728
3729 /*
3730 * A previous-PAUSE-tick value of 0 is used to identify the first time
3731 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3732 * consider this to be the first execution of PAUSE in a loop according
3733 * to the Intel.
3734 *
3735 * All subsequent records for the previous-PAUSE-tick we ensure that it
3736 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3737 */
3738 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3739 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3740 uint64_t const uTick = TMCpuTickGet(pVCpu);
3741 uint32_t const uPleGap = pVmcs->u32PleGap;
3742 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3743 if ( *puPrevPauseTick == 0
3744 || uTick - *puPrevPauseTick > uPleGap)
3745 *puFirstPauseLoopTick = uTick;
3746 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3747 fIntercept = true;
3748
3749 *puPrevPauseTick = uTick | 1;
3750 }
3751
3752 if (fIntercept)
3753 {
3754 VMXVEXITINFO ExitInfo;
3755 RT_ZERO(ExitInfo);
3756 ExitInfo.uReason = VMX_EXIT_PAUSE;
3757 ExitInfo.cbInstr = cbInstr;
3758 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3759 }
3760
3761 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3762}
3763
3764
3765/**
3766 * VMX VM-exit handler for VM-exits due to task switches.
3767 *
3768 * @returns VBox strict status code.
3769 * @param pVCpu The cross context virtual CPU structure.
3770 * @param enmTaskSwitch The cause of the task switch.
3771 * @param SelNewTss The selector of the new TSS.
3772 * @param cbInstr The instruction length in bytes.
3773 */
3774IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPU pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr)
3775{
3776 /*
3777 * Task-switch VM-exits are unconditional and provide the VM-exit qualification.
3778 *
3779 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3780 * instruction or delivery of the exception generated by one of these instructions
3781 * lead to a task switch through a task gate in the IDT, we need to provide the
3782 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3783 * leaves the VM-exit instruction length field undefined.
3784 *
3785 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3786 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3787 */
3788 Assert(cbInstr <= 15);
3789
3790 uint8_t uType;
3791 switch (enmTaskSwitch)
3792 {
3793 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3794 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3795 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3796 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3797 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3798 }
3799
3800 uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3801 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3802 iemVmxVmcsSetExitQual(pVCpu, uExitQual);
3803 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3804 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH);
3805}
3806
3807
3808/**
3809 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3810 *
3811 * @returns VBox strict status code.
3812 * @param pVCpu The cross context virtual CPU structure.
3813 */
3814IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPU pVCpu)
3815{
3816 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3817 Assert(pVmcs);
3818
3819 /* The VM-exit is subject to "Activate VMX-preemption timer" being set. */
3820 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
3821 {
3822 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3823 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3824
3825 /*
3826 * Calculate the current VMX-preemption timer value.
3827 * Only if the value has reached zero, we cause the VM-exit.
3828 */
3829 uint32_t uPreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
3830 if (!uPreemptTimer)
3831 {
3832 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3833 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3834 pVmcs->u32PreemptTimer = 0;
3835
3836 /* Cause the VMX-preemption timer VM-exit. The VM-exit qualification MBZ. */
3837 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER);
3838 }
3839 }
3840
3841 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3842}
3843
3844
3845/**
3846 * VMX VM-exit handler for VM-exits due to external interrupts.
3847 *
3848 * @returns VBox strict status code.
3849 * @param pVCpu The cross context virtual CPU structure.
3850 * @param uVector The external interrupt vector (pass 0 if the interrupt
3851 * is still pending since we typically won't know the
3852 * vector).
3853 * @param fIntPending Whether the external interrupt is pending or
3854 * acknowledged in the interrupt controller.
3855 */
3856IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPU pVCpu, uint8_t uVector, bool fIntPending)
3857{
3858 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3859 Assert(pVmcs);
3860 Assert(fIntPending || uVector == 0);
3861
3862 /** @todo NSTVMX: r=ramshankar: Consider standardizing check basic/blanket
3863 * intercepts for VM-exits. Right now it is not clear which iemVmxVmexitXXX()
3864 * functions require prior checking of a blanket intercept and which don't.
3865 * It is better for the caller to check a blanket intercept performance wise
3866 * than making a function call. Leaving this as a todo because it is more
3867 * a performance issue. */
3868
3869 /* The VM-exit is subject to "External interrupt exiting" being set. */
3870 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3871 {
3872 if (fIntPending)
3873 {
3874 /*
3875 * If the interrupt is pending and we don't need to acknowledge the
3876 * interrupt on VM-exit, cause the VM-exit immediately.
3877 *
3878 * See Intel spec 25.2 "Other Causes Of VM Exits".
3879 */
3880 if (!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3881 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT);
3882
3883 /*
3884 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3885 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3886 * acknowledged that the interrupt has been consumed.
3887 */
3888 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3889 }
3890
3891 /*
3892 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3893 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3894 * all set, we cause the VM-exit now. We need to record the external interrupt that
3895 * just occurred in the VM-exit interruption information field.
3896 *
3897 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3898 */
3899 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3900 {
3901 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3902 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3903 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3904 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3905 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3906 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3907 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT);
3908 }
3909 }
3910
3911 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3912}
3913
3914
3915/**
3916 * VMX VM-exit handler for VM-exits due to startup-IPIs (SIPI).
3917 *
3918 * @returns VBox strict status code.
3919 * @param pVCpu The cross context virtual CPU structure.
3920 * @param uVector The SIPI vector.
3921 */
3922IEM_STATIC VBOXSTRICTRC iemVmxVmexitStartupIpi(PVMCPU pVCpu, uint8_t uVector)
3923{
3924 iemVmxVmcsSetExitQual(pVCpu, uVector);
3925 return iemVmxVmexit(pVCpu, VMX_EXIT_SIPI);
3926}
3927
3928
3929/**
3930 * VMX VM-exit handler for VM-exits due to init-IPIs (INIT).
3931 *
3932 * @returns VBox strict status code.
3933 * @param pVCpu The cross context virtual CPU structure.
3934 */
3935IEM_STATIC VBOXSTRICTRC iemVmxVmexitInitIpi(PVMCPU pVCpu)
3936{
3937 return iemVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL);
3938}
3939
3940
3941/**
3942 * VMX VM-exit handler for interrupt-window VM-exits.
3943 *
3944 * @returns VBox strict status code.
3945 * @param pVCpu The cross context virtual CPU structure.
3946 */
3947IEM_STATIC VBOXSTRICTRC iemVmxVmexitIntWindow(PVMCPU pVCpu)
3948{
3949 return iemVmxVmexit(pVCpu, VMX_EXIT_INT_WINDOW);
3950}
3951
3952
3953/**
3954 * VMX VM-exit handler for NMI-window VM-exits.
3955 *
3956 * @returns VBox strict status code.
3957 * @param pVCpu The cross context virtual CPU structure.
3958 */
3959IEM_STATIC VBOXSTRICTRC iemVmxVmexitNmiWindow(PVMCPU pVCpu)
3960{
3961 return iemVmxVmexit(pVCpu, VMX_EXIT_NMI_WINDOW);
3962}
3963
3964
3965/**
3966 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3967 * an event.
3968 *
3969 * @returns VBox strict status code.
3970 * @param pVCpu The cross context virtual CPU structure.
3971 */
3972IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPU pVCpu)
3973{
3974 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
3975 Assert(pVmcs);
3976
3977 uint32_t const fXcptBitmap = pVmcs->u32XcptBitmap;
3978 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3979 {
3980 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3981 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3982 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3983 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3984 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3985 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3986 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3987 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
3988 iemVmxVmcsSetExitQual(pVCpu, 0);
3989 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3990
3991 /*
3992 * A VM-exit is not considered to occur during event delivery when the original
3993 * event results in a double-fault that causes a VM-exit directly (i.e. intercepted
3994 * using the exception bitmap).
3995 *
3996 * Therefore, we must clear the original event from the IDT-vectoring fields which
3997 * would've been recorded before causing the VM-exit.
3998 *
3999 * 27.2.3 "Information for VM Exits During Event Delivery"
4000 */
4001 iemVmxVmcsSetIdtVectoringInfo(pVCpu, 0);
4002 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, 0);
4003
4004 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI);
4005 }
4006
4007 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4008}
4009
4010
4011/**
4012 * VMX VM-exit handler for VM-exits due to delivery of an event.
4013 *
4014 * @returns VBox strict status code.
4015 * @param pVCpu The cross context virtual CPU structure.
4016 * @param uVector The interrupt / exception vector.
4017 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
4018 * @param uErrCode The error code associated with the event.
4019 * @param uCr2 The CR2 value in case of a \#PF exception.
4020 * @param cbInstr The instruction length in bytes.
4021 */
4022IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPU pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2,
4023 uint8_t cbInstr)
4024{
4025 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4026 Assert(pVmcs);
4027
4028 /*
4029 * If the event is being injected as part of VM-entry, it isn't subject to event
4030 * intercepts in the nested-guest. However, secondary exceptions that occur during
4031 * injection of any event -are- subject to event interception.
4032 *
4033 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
4034 */
4035 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents)
4036 {
4037 /* Update the IDT-vectoring event in the VMCS as the source of the upcoming event. */
4038 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
4039 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
4040 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
4041 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
4042 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
4043 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
4044 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
4045 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
4046
4047 /*
4048 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
4049 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
4050 *
4051 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
4052 */
4053 if ( uVector == X86_XCPT_NMI
4054 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
4055 && (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
4056 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
4057 else
4058 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
4059
4060 pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = true;
4061 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4062 }
4063
4064 /*
4065 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
4066 * If not, the caller will continue delivery of the external interrupt as it would
4067 * normally. The interrupt is no longer pending in the interrupt controller at this
4068 * point.
4069 */
4070 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
4071 {
4072 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVmcs->u32RoIdtVectoringInfo));
4073 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
4074 }
4075
4076 /*
4077 * Evaluate intercepts for hardware exceptions including #BP, #DB, #OF
4078 * generated by INT3, INT1 (ICEBP) and INTO respectively.
4079 */
4080 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
4081 bool fIntercept = false;
4082 bool fIsHwXcpt = false;
4083 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
4084 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
4085 {
4086 fIsHwXcpt = true;
4087 /* NMIs have a dedicated VM-execution control for causing VM-exits. */
4088 if (uVector == X86_XCPT_NMI)
4089 fIntercept = RT_BOOL(pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT);
4090 else
4091 {
4092 /* Page-faults are subject to masking using its error code. */
4093 uint32_t fXcptBitmap = pVmcs->u32XcptBitmap;
4094 if (uVector == X86_XCPT_PF)
4095 {
4096 uint32_t const fXcptPFMask = pVmcs->u32XcptPFMask;
4097 uint32_t const fXcptPFMatch = pVmcs->u32XcptPFMatch;
4098 if ((uErrCode & fXcptPFMask) != fXcptPFMatch)
4099 fXcptBitmap ^= RT_BIT(X86_XCPT_PF);
4100 }
4101
4102 /* Consult the exception bitmap for all hardware exceptions (except NMI). */
4103 if (fXcptBitmap & RT_BIT(uVector))
4104 fIntercept = true;
4105 }
4106 }
4107 /* else: Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
4108
4109 /*
4110 * Now that we've determined whether the software interrupt or hardware exception
4111 * causes a VM-exit, we need to construct the relevant VM-exit information and
4112 * cause the VM-exit.
4113 */
4114 if (fIntercept)
4115 {
4116 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
4117
4118 /* Construct the rest of the event related information fields and cause the VM-exit. */
4119 uint64_t uExitQual = 0;
4120 if (fIsHwXcpt)
4121 {
4122 if (uVector == X86_XCPT_PF)
4123 {
4124 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
4125 uExitQual = uCr2;
4126 }
4127 else if (uVector == X86_XCPT_DB)
4128 {
4129 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
4130 uExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
4131 }
4132 }
4133
4134 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
4135 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
4136 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
4137 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
4138 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
4139 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
4140 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
4141 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
4142 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
4143 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
4144 iemVmxVmcsSetExitQual(pVCpu, uExitQual);
4145
4146 /*
4147 * For VM exits due to software exceptions (those generated by INT3 or INTO) or privileged
4148 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
4149 * length.
4150 */
4151 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
4152 && (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
4153 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
4154 else
4155 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
4156
4157 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI);
4158 }
4159
4160 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4161}
4162
4163
4164/**
4165 * VMX VM-exit handler for VM-exits due to a triple fault.
4166 *
4167 * @returns VBox strict status code.
4168 * @param pVCpu The cross context virtual CPU structure.
4169 */
4170IEM_STATIC VBOXSTRICTRC iemVmxVmexitTripleFault(PVMCPU pVCpu)
4171{
4172 /*
4173 * A VM-exit is not considered to occur during event delivery when the original
4174 * event results in a triple-fault.
4175 *
4176 * Therefore, we must clear the original event from the IDT-vectoring fields which
4177 * would've been recorded before causing the VM-exit.
4178 *
4179 * 27.2.3 "Information for VM Exits During Event Delivery"
4180 */
4181 iemVmxVmcsSetIdtVectoringInfo(pVCpu, 0);
4182 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, 0);
4183
4184 return iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT);
4185}
4186
4187
4188/**
4189 * VMX VM-exit handler for APIC-accesses.
4190 *
4191 * @param pVCpu The cross context virtual CPU structure.
4192 * @param offAccess The offset of the register being accessed.
4193 * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
4194 * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
4195 */
4196IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPU pVCpu, uint16_t offAccess, uint32_t fAccess)
4197{
4198 Assert((fAccess & IEM_ACCESS_TYPE_READ) || (fAccess & IEM_ACCESS_TYPE_WRITE) || (fAccess & IEM_ACCESS_INSTRUCTION));
4199
4200 VMXAPICACCESS enmAccess;
4201 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
4202 if (fInEventDelivery)
4203 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
4204 else if (fAccess & IEM_ACCESS_INSTRUCTION)
4205 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
4206 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
4207 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4208 else
4209 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4210
4211 uint64_t const uExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
4212 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
4213 iemVmxVmcsSetExitQual(pVCpu, uExitQual);
4214 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS);
4215}
4216
4217
4218/**
4219 * VMX VM-exit handler for APIC-write VM-exits.
4220 *
4221 * @param pVCpu The cross context virtual CPU structure.
4222 * @param offApic The write to the virtual-APIC page offset that caused this
4223 * VM-exit.
4224 */
4225IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPU pVCpu, uint16_t offApic)
4226{
4227 Assert(offApic < XAPIC_OFF_END + 4);
4228
4229 /* Write only bits 11:0 of the APIC offset into the VM-exit qualification field. */
4230 offApic &= UINT16_C(0xfff);
4231 iemVmxVmcsSetExitQual(pVCpu, offApic);
4232 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE);
4233}
4234
4235
4236/**
4237 * VMX VM-exit handler for virtualized-EOIs.
4238 *
4239 * @param pVCpu The cross context virtual CPU structure.
4240 */
4241IEM_STATIC VBOXSTRICTRC iemVmxVmexitVirtEoi(PVMCPU pVCpu, uint8_t uVector)
4242{
4243 iemVmxVmcsSetExitQual(pVCpu, uVector);
4244 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI);
4245}
4246
4247
4248/**
4249 * Sets virtual-APIC write emulation as pending.
4250 *
4251 * @param pVCpu The cross context virtual CPU structure.
4252 * @param offApic The offset in the virtual-APIC page that was written.
4253 */
4254DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPU pVCpu, uint16_t offApic)
4255{
4256 Assert(offApic < XAPIC_OFF_END + 4);
4257
4258 /*
4259 * Record the currently updated APIC offset, as we need this later for figuring
4260 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4261 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4262 */
4263 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
4264
4265 /*
4266 * Signal that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
4267 * virtualization or APIC-write emulation).
4268 */
4269 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4270 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4271}
4272
4273
4274/**
4275 * Clears any pending virtual-APIC write emulation.
4276 *
4277 * @returns The virtual-APIC offset that was written before clearing it.
4278 * @param pVCpu The cross context virtual CPU structure.
4279 */
4280DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPU pVCpu)
4281{
4282 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4283 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
4284 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
4285 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
4286 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4287 return offVirtApicWrite;
4288}
4289
4290
4291/**
4292 * Reads a 32-bit register from the virtual-APIC page at the given offset.
4293 *
4294 * @returns The register from the virtual-APIC page.
4295 * @param pVCpu The cross context virtual CPU structure.
4296 * @param offReg The offset of the register being read.
4297 */
4298DECLINLINE(uint32_t) iemVmxVirtApicReadRaw32(PVMCPU pVCpu, uint16_t offReg)
4299{
4300 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4301 uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
4302 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
4303 uint32_t const uReg = *(const uint32_t *)(pbVirtApic + offReg);
4304 return uReg;
4305}
4306
4307
4308/**
4309 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4310 *
4311 * @returns The register from the virtual-APIC page.
4312 * @param pVCpu The cross context virtual CPU structure.
4313 * @param offReg The offset of the register being read.
4314 */
4315DECLINLINE(uint64_t) iemVmxVirtApicReadRaw64(PVMCPU pVCpu, uint16_t offReg)
4316{
4317 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4318 uint8_t const *pbVirtApic = (const uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
4319 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
4320 uint64_t const uReg = *(const uint64_t *)(pbVirtApic + offReg);
4321 return uReg;
4322}
4323
4324
4325/**
4326 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4327 *
4328 * @param pVCpu The cross context virtual CPU structure.
4329 * @param offReg The offset of the register being written.
4330 * @param uReg The register value to write.
4331 */
4332DECLINLINE(void) iemVmxVirtApicWriteRaw32(PVMCPU pVCpu, uint16_t offReg, uint32_t uReg)
4333{
4334 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4335 uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
4336 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
4337 *(uint32_t *)(pbVirtApic + offReg) = uReg;
4338}
4339
4340
4341/**
4342 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4343 *
4344 * @param pVCpu The cross context virtual CPU structure.
4345 * @param offReg The offset of the register being written.
4346 * @param uReg The register value to write.
4347 */
4348DECLINLINE(void) iemVmxVirtApicWriteRaw64(PVMCPU pVCpu, uint16_t offReg, uint64_t uReg)
4349{
4350 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4351 uint8_t *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
4352 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
4353 *(uint64_t *)(pbVirtApic + offReg) = uReg;
4354}
4355
4356
4357/**
4358 * Sets the vector in a virtual-APIC 256-bit sparse register.
4359 *
4360 * @param pVCpu The cross context virtual CPU structure.
4361 * @param offReg The offset of the 256-bit spare register.
4362 * @param uVector The vector to set.
4363 *
4364 * @remarks This is based on our APIC device code.
4365 */
4366DECLINLINE(void) iemVmxVirtApicSetVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector)
4367{
4368 Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0);
4369 uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg;
4370 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4371 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4372 ASMAtomicBitSet(pbBitmap + offVector, idxVectorBit);
4373}
4374
4375
4376/**
4377 * Clears the vector in a virtual-APIC 256-bit sparse register.
4378 *
4379 * @param pVCpu The cross context virtual CPU structure.
4380 * @param offReg The offset of the 256-bit spare register.
4381 * @param uVector The vector to clear.
4382 *
4383 * @remarks This is based on our APIC device code.
4384 */
4385DECLINLINE(void) iemVmxVirtApicClearVector(PVMCPU pVCpu, uint16_t offReg, uint8_t uVector)
4386{
4387 Assert(offReg == XAPIC_OFF_ISR0 || offReg == XAPIC_OFF_TMR0 || offReg == XAPIC_OFF_IRR0);
4388 uint8_t *pbBitmap = ((uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage)) + offReg;
4389 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4390 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4391 ASMAtomicBitClear(pbBitmap + offVector, idxVectorBit);
4392}
4393
4394
4395/**
4396 * Checks if a memory access to the APIC-access page must causes an APIC-access
4397 * VM-exit.
4398 *
4399 * @param pVCpu The cross context virtual CPU structure.
4400 * @param offAccess The offset of the register being accessed.
4401 * @param cbAccess The size of the access in bytes.
4402 * @param fAccess The type of access (must be IEM_ACCESS_TYPE_READ or
4403 * IEM_ACCESS_TYPE_WRITE).
4404 *
4405 * @remarks This must not be used for MSR-based APIC-access page accesses!
4406 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4407 */
4408IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess)
4409{
4410 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4411 Assert(pVmcs);
4412 Assert(fAccess == IEM_ACCESS_TYPE_READ || fAccess == IEM_ACCESS_TYPE_WRITE);
4413
4414 /*
4415 * We must cause a VM-exit if any of the following are true:
4416 * - TPR shadowing isn't active.
4417 * - The access size exceeds 32-bits.
4418 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4419 *
4420 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4421 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4422 */
4423 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4424 || cbAccess > sizeof(uint32_t)
4425 || ((offAccess + cbAccess - 1) & 0xc)
4426 || offAccess >= XAPIC_OFF_END + 4)
4427 return true;
4428
4429 /*
4430 * If the access is part of an operation where we have already
4431 * virtualized a virtual-APIC write, we must cause a VM-exit.
4432 */
4433 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4434 return true;
4435
4436 /*
4437 * Check write accesses to the APIC-access page that cause VM-exits.
4438 */
4439 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4440 {
4441 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4442 {
4443 /*
4444 * With APIC-register virtualization, a write access to any of the
4445 * following registers are virtualized. Accessing any other register
4446 * causes a VM-exit.
4447 */
4448 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4449 switch (offAlignedAccess)
4450 {
4451 case XAPIC_OFF_ID:
4452 case XAPIC_OFF_TPR:
4453 case XAPIC_OFF_EOI:
4454 case XAPIC_OFF_LDR:
4455 case XAPIC_OFF_DFR:
4456 case XAPIC_OFF_SVR:
4457 case XAPIC_OFF_ESR:
4458 case XAPIC_OFF_ICR_LO:
4459 case XAPIC_OFF_ICR_HI:
4460 case XAPIC_OFF_LVT_TIMER:
4461 case XAPIC_OFF_LVT_THERMAL:
4462 case XAPIC_OFF_LVT_PERF:
4463 case XAPIC_OFF_LVT_LINT0:
4464 case XAPIC_OFF_LVT_LINT1:
4465 case XAPIC_OFF_LVT_ERROR:
4466 case XAPIC_OFF_TIMER_ICR:
4467 case XAPIC_OFF_TIMER_DCR:
4468 break;
4469 default:
4470 return true;
4471 }
4472 }
4473 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4474 {
4475 /*
4476 * With virtual-interrupt delivery, a write access to any of the
4477 * following registers are virtualized. Accessing any other register
4478 * causes a VM-exit.
4479 *
4480 * Note! The specification does not allow writing to offsets in-between
4481 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4482 */
4483 switch (offAccess)
4484 {
4485 case XAPIC_OFF_TPR:
4486 case XAPIC_OFF_EOI:
4487 case XAPIC_OFF_ICR_LO:
4488 break;
4489 default:
4490 return true;
4491 }
4492 }
4493 else
4494 {
4495 /*
4496 * Without APIC-register virtualization or virtual-interrupt delivery,
4497 * only TPR accesses are virtualized.
4498 */
4499 if (offAccess == XAPIC_OFF_TPR)
4500 { /* likely */ }
4501 else
4502 return true;
4503 }
4504 }
4505 else
4506 {
4507 /*
4508 * Check read accesses to the APIC-access page that cause VM-exits.
4509 */
4510 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4511 {
4512 /*
4513 * With APIC-register virtualization, a read access to any of the
4514 * following registers are virtualized. Accessing any other register
4515 * causes a VM-exit.
4516 */
4517 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4518 switch (offAlignedAccess)
4519 {
4520 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4521 case XAPIC_OFF_ID:
4522 case XAPIC_OFF_VERSION:
4523 case XAPIC_OFF_TPR:
4524 case XAPIC_OFF_EOI:
4525 case XAPIC_OFF_LDR:
4526 case XAPIC_OFF_DFR:
4527 case XAPIC_OFF_SVR:
4528 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4529 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4530 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4531 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4532 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4533 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4534 case XAPIC_OFF_ESR:
4535 case XAPIC_OFF_ICR_LO:
4536 case XAPIC_OFF_ICR_HI:
4537 case XAPIC_OFF_LVT_TIMER:
4538 case XAPIC_OFF_LVT_THERMAL:
4539 case XAPIC_OFF_LVT_PERF:
4540 case XAPIC_OFF_LVT_LINT0:
4541 case XAPIC_OFF_LVT_LINT1:
4542 case XAPIC_OFF_LVT_ERROR:
4543 case XAPIC_OFF_TIMER_ICR:
4544 case XAPIC_OFF_TIMER_DCR:
4545 break;
4546 default:
4547 return true;
4548 }
4549 }
4550 else
4551 {
4552 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4553 if (offAccess == XAPIC_OFF_TPR)
4554 { /* likely */ }
4555 else
4556 return true;
4557 }
4558 }
4559
4560 /* The APIC-access is virtualized, does not cause a VM-exit. */
4561 return false;
4562}
4563
4564
4565/**
4566 * Virtualizes a memory-based APIC-access where the address is not used to access
4567 * memory.
4568 *
4569 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4570 * page-faults but do not use the address to access memory.
4571 *
4572 * @param pVCpu The cross context virtual CPU structure.
4573 * @param pGCPhysAccess Pointer to the guest-physical address used.
4574 */
4575IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPU pVCpu, PRTGCPHYS pGCPhysAccess)
4576{
4577 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4578 Assert(pVmcs);
4579 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4580 Assert(pGCPhysAccess);
4581
4582 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)PAGE_OFFSET_MASK;
4583 RTGCPHYS const GCPhysApic = pVmcs->u64AddrApicAccess.u;
4584 Assert(!(GCPhysApic & PAGE_OFFSET_MASK));
4585
4586 if (GCPhysAccess == GCPhysApic)
4587 {
4588 uint16_t const offAccess = *pGCPhysAccess & PAGE_OFFSET_MASK;
4589 uint32_t const fAccess = IEM_ACCESS_TYPE_READ;
4590 uint16_t const cbAccess = 1;
4591 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4592 if (fIntercept)
4593 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4594
4595 *pGCPhysAccess = GCPhysApic | offAccess;
4596 return VINF_VMX_MODIFIES_BEHAVIOR;
4597 }
4598
4599 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4600}
4601
4602
4603/**
4604 * Virtualizes a memory-based APIC-access.
4605 *
4606 * @returns VBox strict status code.
4607 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4608 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4609 *
4610 * @param pVCpu The cross context virtual CPU structure.
4611 * @param offAccess The offset of the register being accessed (within the
4612 * APIC-access page).
4613 * @param cbAccess The size of the access in bytes.
4614 * @param pvData Pointer to the data being written or where to store the data
4615 * being read.
4616 * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
4617 * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
4618 */
4619IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPU pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData,
4620 uint32_t fAccess)
4621{
4622 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4623 Assert(pVmcs);
4624 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS); NOREF(pVmcs);
4625 Assert(pvData);
4626 Assert( (fAccess & IEM_ACCESS_TYPE_READ)
4627 || (fAccess & IEM_ACCESS_TYPE_WRITE)
4628 || (fAccess & IEM_ACCESS_INSTRUCTION));
4629
4630 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4631 if (fIntercept)
4632 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4633
4634 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4635 {
4636 /*
4637 * A write access to the APIC-access page that is virtualized (rather than
4638 * causing a VM-exit) writes data to the virtual-APIC page.
4639 */
4640 uint32_t const u32Data = *(uint32_t *)pvData;
4641 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4642
4643 /*
4644 * Record the currently updated APIC offset, as we need this later for figuring
4645 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4646 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4647 *
4648 * After completion of the current operation, we need to perform TPR virtualization,
4649 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4650 *
4651 * The current operation may be a REP-prefixed string instruction, execution of any
4652 * other instruction, or delivery of an event through the IDT.
4653 *
4654 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4655 * performed now but later after completion of the current operation.
4656 *
4657 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4658 */
4659 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4660 }
4661 else
4662 {
4663 /*
4664 * A read access from the APIC-access page that is virtualized (rather than
4665 * causing a VM-exit) returns data from the virtual-APIC page.
4666 *
4667 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4668 */
4669 Assert(cbAccess <= 4);
4670 Assert(offAccess < XAPIC_OFF_END + 4);
4671 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4672
4673 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4674 u32Data &= s_auAccessSizeMasks[cbAccess];
4675 *(uint32_t *)pvData = u32Data;
4676 }
4677
4678 return VINF_VMX_MODIFIES_BEHAVIOR;
4679}
4680
4681
4682/**
4683 * Virtualizes an MSR-based APIC read access.
4684 *
4685 * @returns VBox strict status code.
4686 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4687 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4688 * handled by the x2APIC device.
4689 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4690 * not within the range of valid MSRs, caller must raise \#GP(0).
4691 * @param pVCpu The cross context virtual CPU structure.
4692 * @param idMsr The x2APIC MSR being read.
4693 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4694 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4695 */
4696IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPU pVCpu, uint32_t idMsr, uint64_t *pu64Value)
4697{
4698 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4699 Assert(pVmcs);
4700 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4701 Assert(pu64Value);
4702
4703 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4704 {
4705 /*
4706 * Intel has different ideas in the x2APIC spec. vs the VT-x spec. as to
4707 * what the end of the valid x2APIC MSR range is. Hence the use of different
4708 * macros here.
4709 *
4710 * See Intel spec. 10.12.1.2 "x2APIC Register Address Space".
4711 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4712 */
4713 if ( idMsr >= VMX_V_VIRT_APIC_MSR_START
4714 && idMsr <= VMX_V_VIRT_APIC_MSR_END)
4715 {
4716 uint16_t const offReg = (idMsr & 0xff) << 4;
4717 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4718 *pu64Value = u64Value;
4719 return VINF_VMX_MODIFIES_BEHAVIOR;
4720 }
4721 return VERR_OUT_OF_RANGE;
4722 }
4723
4724 if (idMsr == MSR_IA32_X2APIC_TPR)
4725 {
4726 uint16_t const offReg = (idMsr & 0xff) << 4;
4727 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4728 *pu64Value = u64Value;
4729 return VINF_VMX_MODIFIES_BEHAVIOR;
4730 }
4731
4732 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4733}
4734
4735
4736/**
4737 * Virtualizes an MSR-based APIC write access.
4738 *
4739 * @returns VBox strict status code.
4740 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4741 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4742 * not within the range of valid MSRs, caller must raise \#GP(0).
4743 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4744 *
4745 * @param pVCpu The cross context virtual CPU structure.
4746 * @param idMsr The x2APIC MSR being written.
4747 * @param u64Value The value of the x2APIC MSR being written.
4748 */
4749IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPU pVCpu, uint32_t idMsr, uint64_t u64Value)
4750{
4751 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4752 Assert(pVmcs);
4753
4754 /*
4755 * Check if the access is to be virtualized.
4756 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4757 */
4758 if ( idMsr == MSR_IA32_X2APIC_TPR
4759 || ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4760 && ( idMsr == MSR_IA32_X2APIC_EOI
4761 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4762 {
4763 /* Validate the MSR write depending on the register. */
4764 switch (idMsr)
4765 {
4766 case MSR_IA32_X2APIC_TPR:
4767 case MSR_IA32_X2APIC_SELF_IPI:
4768 {
4769 if (u64Value & UINT64_C(0xffffffffffffff00))
4770 return VERR_OUT_OF_RANGE;
4771 break;
4772 }
4773 case MSR_IA32_X2APIC_EOI:
4774 {
4775 if (u64Value != 0)
4776 return VERR_OUT_OF_RANGE;
4777 break;
4778 }
4779 }
4780
4781 /* Write the MSR to the virtual-APIC page. */
4782 uint16_t const offReg = (idMsr & 0xff) << 4;
4783 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4784
4785 /*
4786 * Record the currently updated APIC offset, as we need this later for figuring
4787 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4788 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4789 */
4790 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4791
4792 return VINF_VMX_MODIFIES_BEHAVIOR;
4793 }
4794
4795 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4796}
4797
4798
4799/**
4800 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4801 *
4802 * @returns VBox status code.
4803 * @retval VINF_SUCCES when the highest set bit is found.
4804 * @retval VERR_NOT_FOUND when no bit is set.
4805 *
4806 * @param pVCpu The cross context virtual CPU structure.
4807 * @param offReg The offset of the APIC 256-bit sparse register.
4808 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4809 * set in the register. Only valid when VINF_SUCCESS is
4810 * returned.
4811 *
4812 * @remarks The format of the 256-bit sparse register here mirrors that found in
4813 * real APIC hardware.
4814 */
4815static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPU pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4816{
4817 Assert(offReg < XAPIC_OFF_END + 4);
4818 Assert(pidxHighestBit);
4819
4820 /*
4821 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4822 * However, in each fragment only the first 4 bytes are used.
4823 */
4824 uint8_t const cFrags = 8;
4825 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4826 {
4827 uint16_t const offFrag = iFrag * 16;
4828 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4829 if (!u32Frag)
4830 continue;
4831
4832 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4833 Assert(idxHighestBit > 0);
4834 --idxHighestBit;
4835 Assert(idxHighestBit <= UINT8_MAX);
4836 *pidxHighestBit = idxHighestBit;
4837 return VINF_SUCCESS;
4838 }
4839 return VERR_NOT_FOUND;
4840}
4841
4842
4843/**
4844 * Evaluates pending virtual interrupts.
4845 *
4846 * @param pVCpu The cross context virtual CPU structure.
4847 */
4848IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPU pVCpu)
4849{
4850 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4851 Assert(pVmcs);
4852 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4853
4854 if (!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4855 {
4856 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4857 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4858
4859 if ((uRvi >> 4) > (uPpr >> 4))
4860 {
4861 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signaling pending interrupt\n", uRvi, uPpr));
4862 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4863 }
4864 else
4865 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4866 }
4867}
4868
4869
4870/**
4871 * Performs PPR virtualization.
4872 *
4873 * @returns VBox strict status code.
4874 * @param pVCpu The cross context virtual CPU structure.
4875 */
4876IEM_STATIC void iemVmxPprVirtualization(PVMCPU pVCpu)
4877{
4878 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4879 Assert(pVmcs);
4880 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4881 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4882
4883 /*
4884 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4885 * or EOI-virtualization.
4886 *
4887 * See Intel spec. 29.1.3 "PPR Virtualization".
4888 */
4889 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4890 uint32_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4891
4892 uint32_t uPpr;
4893 if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
4894 uPpr = uTpr & 0xff;
4895 else
4896 uPpr = uSvi & 0xf0;
4897
4898 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4899 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4900}
4901
4902
4903/**
4904 * Performs VMX TPR virtualization.
4905 *
4906 * @returns VBox strict status code.
4907 * @param pVCpu The cross context virtual CPU structure.
4908 */
4909IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPU pVCpu)
4910{
4911 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4912 Assert(pVmcs);
4913 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4914
4915 /*
4916 * We should have already performed the virtual-APIC write to the TPR offset
4917 * in the virtual-APIC page. We now perform TPR virtualization.
4918 *
4919 * See Intel spec. 29.1.2 "TPR Virtualization".
4920 */
4921 if (!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4922 {
4923 uint32_t const uTprThreshold = pVmcs->u32TprThreshold;
4924 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4925
4926 /*
4927 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4928 * See Intel spec. 29.1.2 "TPR Virtualization".
4929 */
4930 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4931 {
4932 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4933 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD);
4934 }
4935 }
4936 else
4937 {
4938 iemVmxPprVirtualization(pVCpu);
4939 iemVmxEvalPendingVirtIntrs(pVCpu);
4940 }
4941
4942 return VINF_SUCCESS;
4943}
4944
4945
4946/**
4947 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4948 * not.
4949 *
4950 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4951 * @param pVCpu The cross context virtual CPU structure.
4952 * @param uVector The interrupt that was acknowledged using an EOI.
4953 */
4954IEM_STATIC bool iemVmxIsEoiInterceptSet(PVMCPU pVCpu, uint8_t uVector)
4955{
4956 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4957 Assert(pVmcs);
4958 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4959
4960 if (uVector < 64)
4961 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4962 if (uVector < 128)
4963 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4964 if (uVector < 192)
4965 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4966 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4967}
4968
4969
4970/**
4971 * Performs EOI virtualization.
4972 *
4973 * @returns VBox strict status code.
4974 * @param pVCpu The cross context virtual CPU structure.
4975 */
4976IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPU pVCpu)
4977{
4978 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4979 Assert(pVmcs);
4980 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4981
4982 /*
4983 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
4984 * and get the next guest-interrupt that's in-service (if any).
4985 *
4986 * See Intel spec. 29.1.4 "EOI Virtualization".
4987 */
4988 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4989 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4990 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
4991
4992 uint8_t uVector = uSvi;
4993 iemVmxVirtApicClearVector(pVCpu, XAPIC_OFF_ISR0, uVector);
4994
4995 uVector = 0;
4996 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
4997
4998 if (uVector)
4999 Log2(("eoi_virt: next interrupt %#x\n", uVector));
5000 else
5001 Log2(("eoi_virt: no interrupt pending in ISR\n"));
5002
5003 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
5004 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
5005
5006 iemVmxPprVirtualization(pVCpu);
5007 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
5008 return iemVmxVmexitVirtEoi(pVCpu, uVector);
5009 iemVmxEvalPendingVirtIntrs(pVCpu);
5010 return VINF_SUCCESS;
5011}
5012
5013
5014/**
5015 * Performs self-IPI virtualization.
5016 *
5017 * @returns VBox strict status code.
5018 * @param pVCpu The cross context virtual CPU structure.
5019 */
5020IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPU pVCpu)
5021{
5022 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5023 Assert(pVmcs);
5024 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5025
5026 /*
5027 * We should have already performed the virtual-APIC write to the self-IPI offset
5028 * in the virtual-APIC page. We now perform self-IPI virtualization.
5029 *
5030 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
5031 */
5032 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
5033 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
5034 iemVmxVirtApicSetVector(pVCpu, XAPIC_OFF_IRR0, uVector);
5035 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5036 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5037 if (uVector > uRvi)
5038 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
5039 iemVmxEvalPendingVirtIntrs(pVCpu);
5040 return VINF_SUCCESS;
5041}
5042
5043
5044/**
5045 * Performs VMX APIC-write emulation.
5046 *
5047 * @returns VBox strict status code.
5048 * @param pVCpu The cross context virtual CPU structure.
5049 */
5050IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPU pVCpu)
5051{
5052 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5053 Assert(pVmcs);
5054
5055 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
5056 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
5057
5058 /*
5059 * Perform APIC-write emulation based on the virtual-APIC register written.
5060 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
5061 */
5062 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
5063 VBOXSTRICTRC rcStrict;
5064 switch (offApicWrite)
5065 {
5066 case XAPIC_OFF_TPR:
5067 {
5068 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
5069 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5070 uTpr &= UINT32_C(0x000000ff);
5071 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5072 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
5073 rcStrict = iemVmxTprVirtualization(pVCpu);
5074 break;
5075 }
5076
5077 case XAPIC_OFF_EOI:
5078 {
5079 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5080 {
5081 /* Clear VEOI and perform EOI virtualization. */
5082 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
5083 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
5084 rcStrict = iemVmxEoiVirtualization(pVCpu);
5085 }
5086 else
5087 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5088 break;
5089 }
5090
5091 case XAPIC_OFF_ICR_LO:
5092 {
5093 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5094 {
5095 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
5096 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5097 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
5098 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
5099 if ( !(uIcrLo & fIcrLoMb0)
5100 && (uIcrLo & fIcrLoMb1))
5101 {
5102 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
5103 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
5104 }
5105 else
5106 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5107 }
5108 else
5109 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5110 break;
5111 }
5112
5113 case XAPIC_OFF_ICR_HI:
5114 {
5115 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
5116 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
5117 uIcrHi &= UINT32_C(0xff000000);
5118 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
5119 rcStrict = VINF_SUCCESS;
5120 break;
5121 }
5122
5123 default:
5124 {
5125 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
5126 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5127 break;
5128 }
5129 }
5130
5131 return rcStrict;
5132}
5133
5134
5135/**
5136 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
5137 *
5138 * @param pVCpu The cross context virtual CPU structure.
5139 * @param pszInstr The VMX instruction name (for logging purposes).
5140 */
5141IEM_STATIC int iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPU pVCpu, const char *pszInstr)
5142{
5143 /*
5144 * Guest Control Registers, Debug Registers, and MSRs.
5145 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
5146 */
5147 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5148 const char *const pszFailure = "VM-exit";
5149 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5150
5151 /* CR0 reserved bits. */
5152 {
5153 /* CR0 MB1 bits. */
5154 uint64_t u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
5155 Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
5156 if (fUnrestrictedGuest)
5157 u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
5158 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5159 { /* likely */ }
5160 else
5161 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
5162
5163 /* CR0 MBZ bits. */
5164 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5165 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
5166 { /* likely */ }
5167 else
5168 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
5169
5170 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
5171 if ( !fUnrestrictedGuest
5172 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5173 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5174 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
5175 }
5176
5177 /* CR4 reserved bits. */
5178 {
5179 /* CR4 MB1 bits. */
5180 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5181 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5182 { /* likely */ }
5183 else
5184 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
5185
5186 /* CR4 MBZ bits. */
5187 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5188 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
5189 { /* likely */ }
5190 else
5191 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
5192 }
5193
5194 /* DEBUGCTL MSR. */
5195 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5196 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
5197 { /* likely */ }
5198 else
5199 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
5200
5201 /* 64-bit CPU checks. */
5202 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5203 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5204 {
5205 if (fGstInLongMode)
5206 {
5207 /* PAE must be set. */
5208 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5209 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
5210 { /* likely */ }
5211 else
5212 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
5213 }
5214 else
5215 {
5216 /* PCIDE should not be set. */
5217 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
5218 { /* likely */ }
5219 else
5220 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
5221 }
5222
5223 /* CR3. */
5224 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5225 { /* likely */ }
5226 else
5227 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
5228
5229 /* DR7. */
5230 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5231 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
5232 { /* likely */ }
5233 else
5234 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
5235
5236 /* SYSENTER ESP and SYSENTER EIP. */
5237 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
5238 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
5239 { /* likely */ }
5240 else
5241 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
5242 }
5243
5244 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5245 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
5246
5247 /* PAT MSR. */
5248 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
5249 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
5250 { /* likely */ }
5251 else
5252 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
5253
5254 /* EFER MSR. */
5255 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
5256 {
5257 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5258 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
5259 { /* likely */ }
5260 else
5261 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
5262
5263 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
5264 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
5265 if ( fGstLma == fGstInLongMode
5266 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
5267 || fGstLma == fGstLme))
5268 { /* likely */ }
5269 else
5270 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
5271 }
5272
5273 /* We don't support IA32_BNDCFGS MSR yet. */
5274 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
5275
5276 NOREF(pszInstr);
5277 NOREF(pszFailure);
5278 return VINF_SUCCESS;
5279}
5280
5281
5282/**
5283 * Checks guest segment registers, LDTR and TR as part of VM-entry.
5284 *
5285 * @param pVCpu The cross context virtual CPU structure.
5286 * @param pszInstr The VMX instruction name (for logging purposes).
5287 */
5288IEM_STATIC int iemVmxVmentryCheckGuestSegRegs(PVMCPU pVCpu, const char *pszInstr)
5289{
5290 /*
5291 * Segment registers.
5292 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5293 */
5294 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5295 const char *const pszFailure = "VM-exit";
5296 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5297 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5298 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5299
5300 /* Selectors. */
5301 if ( !fGstInV86Mode
5302 && !fUnrestrictedGuest
5303 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5304 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5305
5306 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5307 {
5308 CPUMSELREG SelReg;
5309 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5310 if (RT_LIKELY(rc == VINF_SUCCESS))
5311 { /* likely */ }
5312 else
5313 return rc;
5314
5315 /*
5316 * Virtual-8086 mode checks.
5317 */
5318 if (fGstInV86Mode)
5319 {
5320 /* Base address. */
5321 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5322 { /* likely */ }
5323 else
5324 {
5325 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5326 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5327 }
5328
5329 /* Limit. */
5330 if (SelReg.u32Limit == 0xffff)
5331 { /* likely */ }
5332 else
5333 {
5334 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5335 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5336 }
5337
5338 /* Attribute. */
5339 if (SelReg.Attr.u == 0xf3)
5340 { /* likely */ }
5341 else
5342 {
5343 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5344 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5345 }
5346
5347 /* We're done; move to checking the next segment. */
5348 continue;
5349 }
5350
5351 /* Checks done by 64-bit CPUs. */
5352 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5353 {
5354 /* Base address. */
5355 if ( iSegReg == X86_SREG_FS
5356 || iSegReg == X86_SREG_GS)
5357 {
5358 if (X86_IS_CANONICAL(SelReg.u64Base))
5359 { /* likely */ }
5360 else
5361 {
5362 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5363 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5364 }
5365 }
5366 else if (iSegReg == X86_SREG_CS)
5367 {
5368 if (!RT_HI_U32(SelReg.u64Base))
5369 { /* likely */ }
5370 else
5371 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5372 }
5373 else
5374 {
5375 if ( SelReg.Attr.n.u1Unusable
5376 || !RT_HI_U32(SelReg.u64Base))
5377 { /* likely */ }
5378 else
5379 {
5380 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5381 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5382 }
5383 }
5384 }
5385
5386 /*
5387 * Checks outside Virtual-8086 mode.
5388 */
5389 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5390 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5391 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5392 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5393 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5394 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5395 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5396 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5397
5398 /* Code or usable segment. */
5399 if ( iSegReg == X86_SREG_CS
5400 || fUsable)
5401 {
5402 /* Reserved bits (bits 31:17 and bits 11:8). */
5403 if (!(SelReg.Attr.u & 0xfffe0f00))
5404 { /* likely */ }
5405 else
5406 {
5407 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5408 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5409 }
5410
5411 /* Descriptor type. */
5412 if (fCodeDataSeg)
5413 { /* likely */ }
5414 else
5415 {
5416 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5417 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5418 }
5419
5420 /* Present. */
5421 if (fPresent)
5422 { /* likely */ }
5423 else
5424 {
5425 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5426 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5427 }
5428
5429 /* Granularity. */
5430 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5431 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5432 { /* likely */ }
5433 else
5434 {
5435 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5436 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5437 }
5438 }
5439
5440 if (iSegReg == X86_SREG_CS)
5441 {
5442 /* Segment Type and DPL. */
5443 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5444 && fUnrestrictedGuest)
5445 {
5446 if (uDpl == 0)
5447 { /* likely */ }
5448 else
5449 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5450 }
5451 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5452 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5453 {
5454 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5455 if (uDpl == AttrSs.n.u2Dpl)
5456 { /* likely */ }
5457 else
5458 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5459 }
5460 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5461 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5462 {
5463 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5464 if (uDpl <= AttrSs.n.u2Dpl)
5465 { /* likely */ }
5466 else
5467 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5468 }
5469 else
5470 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5471
5472 /* Def/Big. */
5473 if ( fGstInLongMode
5474 && fSegLong)
5475 {
5476 if (uDefBig == 0)
5477 { /* likely */ }
5478 else
5479 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5480 }
5481 }
5482 else if (iSegReg == X86_SREG_SS)
5483 {
5484 /* Segment Type. */
5485 if ( !fUsable
5486 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5487 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5488 { /* likely */ }
5489 else
5490 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5491
5492 /* DPL. */
5493 if (!fUnrestrictedGuest)
5494 {
5495 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5496 { /* likely */ }
5497 else
5498 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5499 }
5500 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5501 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5502 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5503 {
5504 if (uDpl == 0)
5505 { /* likely */ }
5506 else
5507 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5508 }
5509 }
5510 else
5511 {
5512 /* DS, ES, FS, GS. */
5513 if (fUsable)
5514 {
5515 /* Segment type. */
5516 if (uSegType & X86_SEL_TYPE_ACCESSED)
5517 { /* likely */ }
5518 else
5519 {
5520 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5521 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5522 }
5523
5524 if ( !(uSegType & X86_SEL_TYPE_CODE)
5525 || (uSegType & X86_SEL_TYPE_READ))
5526 { /* likely */ }
5527 else
5528 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5529
5530 /* DPL. */
5531 if ( !fUnrestrictedGuest
5532 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5533 {
5534 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5535 { /* likely */ }
5536 else
5537 {
5538 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5539 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5540 }
5541 }
5542 }
5543 }
5544 }
5545
5546 /*
5547 * LDTR.
5548 */
5549 {
5550 CPUMSELREG Ldtr;
5551 Ldtr.Sel = pVmcs->GuestLdtr;
5552 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5553 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5554 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5555
5556 if (!Ldtr.Attr.n.u1Unusable)
5557 {
5558 /* Selector. */
5559 if (!(Ldtr.Sel & X86_SEL_LDT))
5560 { /* likely */ }
5561 else
5562 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5563
5564 /* Base. */
5565 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5566 {
5567 if (X86_IS_CANONICAL(Ldtr.u64Base))
5568 { /* likely */ }
5569 else
5570 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5571 }
5572
5573 /* Attributes. */
5574 /* Reserved bits (bits 31:17 and bits 11:8). */
5575 if (!(Ldtr.Attr.u & 0xfffe0f00))
5576 { /* likely */ }
5577 else
5578 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5579
5580 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5581 { /* likely */ }
5582 else
5583 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5584
5585 if (!Ldtr.Attr.n.u1DescType)
5586 { /* likely */ }
5587 else
5588 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5589
5590 if (Ldtr.Attr.n.u1Present)
5591 { /* likely */ }
5592 else
5593 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5594
5595 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5596 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5597 { /* likely */ }
5598 else
5599 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5600 }
5601 }
5602
5603 /*
5604 * TR.
5605 */
5606 {
5607 CPUMSELREG Tr;
5608 Tr.Sel = pVmcs->GuestTr;
5609 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5610 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5611 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5612
5613 /* Selector. */
5614 if (!(Tr.Sel & X86_SEL_LDT))
5615 { /* likely */ }
5616 else
5617 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5618
5619 /* Base. */
5620 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5621 {
5622 if (X86_IS_CANONICAL(Tr.u64Base))
5623 { /* likely */ }
5624 else
5625 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5626 }
5627
5628 /* Attributes. */
5629 /* Reserved bits (bits 31:17 and bits 11:8). */
5630 if (!(Tr.Attr.u & 0xfffe0f00))
5631 { /* likely */ }
5632 else
5633 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5634
5635 if (!Tr.Attr.n.u1Unusable)
5636 { /* likely */ }
5637 else
5638 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5639
5640 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5641 || ( !fGstInLongMode
5642 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5643 { /* likely */ }
5644 else
5645 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5646
5647 if (!Tr.Attr.n.u1DescType)
5648 { /* likely */ }
5649 else
5650 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5651
5652 if (Tr.Attr.n.u1Present)
5653 { /* likely */ }
5654 else
5655 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5656
5657 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5658 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5659 { /* likely */ }
5660 else
5661 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5662 }
5663
5664 NOREF(pszInstr);
5665 NOREF(pszFailure);
5666 return VINF_SUCCESS;
5667}
5668
5669
5670/**
5671 * Checks guest GDTR and IDTR as part of VM-entry.
5672 *
5673 * @param pVCpu The cross context virtual CPU structure.
5674 * @param pszInstr The VMX instruction name (for logging purposes).
5675 */
5676IEM_STATIC int iemVmxVmentryCheckGuestGdtrIdtr(PVMCPU pVCpu, const char *pszInstr)
5677{
5678 /*
5679 * GDTR and IDTR.
5680 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5681 */
5682 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5683 const char *const pszFailure = "VM-exit";
5684
5685 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5686 {
5687 /* Base. */
5688 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5689 { /* likely */ }
5690 else
5691 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5692
5693 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5694 { /* likely */ }
5695 else
5696 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5697 }
5698
5699 /* Limit. */
5700 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5701 { /* likely */ }
5702 else
5703 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5704
5705 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5706 { /* likely */ }
5707 else
5708 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5709
5710 NOREF(pszInstr);
5711 NOREF(pszFailure);
5712 return VINF_SUCCESS;
5713}
5714
5715
5716/**
5717 * Checks guest RIP and RFLAGS as part of VM-entry.
5718 *
5719 * @param pVCpu The cross context virtual CPU structure.
5720 * @param pszInstr The VMX instruction name (for logging purposes).
5721 */
5722IEM_STATIC int iemVmxVmentryCheckGuestRipRFlags(PVMCPU pVCpu, const char *pszInstr)
5723{
5724 /*
5725 * RIP and RFLAGS.
5726 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5727 */
5728 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5729 const char *const pszFailure = "VM-exit";
5730 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5731
5732 /* RIP. */
5733 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5734 {
5735 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5736 if ( !fGstInLongMode
5737 || !AttrCs.n.u1Long)
5738 {
5739 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5740 { /* likely */ }
5741 else
5742 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5743 }
5744
5745 if ( fGstInLongMode
5746 && AttrCs.n.u1Long)
5747 {
5748 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5749 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5750 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5751 { /* likely */ }
5752 else
5753 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5754 }
5755 }
5756
5757 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5758 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5759 : pVmcs->u64GuestRFlags.s.Lo;
5760 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5761 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5762 { /* likely */ }
5763 else
5764 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5765
5766 if ( fGstInLongMode
5767 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5768 {
5769 if (!(uGuestRFlags & X86_EFL_VM))
5770 { /* likely */ }
5771 else
5772 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5773 }
5774
5775 if ( VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo)
5776 && VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5777 {
5778 if (uGuestRFlags & X86_EFL_IF)
5779 { /* likely */ }
5780 else
5781 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5782 }
5783
5784 NOREF(pszInstr);
5785 NOREF(pszFailure);
5786 return VINF_SUCCESS;
5787}
5788
5789
5790/**
5791 * Checks guest non-register state as part of VM-entry.
5792 *
5793 * @param pVCpu The cross context virtual CPU structure.
5794 * @param pszInstr The VMX instruction name (for logging purposes).
5795 */
5796IEM_STATIC int iemVmxVmentryCheckGuestNonRegState(PVMCPU pVCpu, const char *pszInstr)
5797{
5798 /*
5799 * Guest non-register state.
5800 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5801 */
5802 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5803 const char *const pszFailure = "VM-exit";
5804
5805 /*
5806 * Activity state.
5807 */
5808 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5809 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5810 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5811 { /* likely */ }
5812 else
5813 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5814
5815 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5816 if ( !AttrSs.n.u2Dpl
5817 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5818 { /* likely */ }
5819 else
5820 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5821
5822 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5823 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5824 {
5825 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5826 { /* likely */ }
5827 else
5828 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5829 }
5830
5831 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5832 {
5833 uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5834 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5835 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5836 switch (pVmcs->u32GuestActivityState)
5837 {
5838 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5839 {
5840 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5841 || uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
5842 || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5843 && ( uVector == X86_XCPT_DB
5844 || uVector == X86_XCPT_MC))
5845 || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5846 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5847 { /* likely */ }
5848 else
5849 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5850 break;
5851 }
5852
5853 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5854 {
5855 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI
5856 || ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5857 && uVector == X86_XCPT_MC))
5858 { /* likely */ }
5859 else
5860 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5861 break;
5862 }
5863
5864 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5865 default:
5866 break;
5867 }
5868 }
5869
5870 /*
5871 * Interruptibility state.
5872 */
5873 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5874 { /* likely */ }
5875 else
5876 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5877
5878 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5879 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5880 { /* likely */ }
5881 else
5882 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5883
5884 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5885 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5886 { /* likely */ }
5887 else
5888 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5889
5890 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5891 {
5892 uint8_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5893 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5894 {
5895 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5896 { /* likely */ }
5897 else
5898 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5899 }
5900 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5901 {
5902 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5903 { /* likely */ }
5904 else
5905 {
5906 /*
5907 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5908 * We update the VM-exit qualification only when blocking-by-STI is set
5909 * without blocking-by-MovSS being set. Although in practise it does not
5910 * make much difference since the order of checks are implementation defined.
5911 */
5912 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5913 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5914 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5915 }
5916
5917 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5918 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5919 { /* likely */ }
5920 else
5921 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5922 }
5923 }
5924
5925 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5926 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5927 { /* likely */ }
5928 else
5929 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5930
5931 /* We don't support SGX yet. So enclave-interruption must not be set. */
5932 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5933 { /* likely */ }
5934 else
5935 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5936
5937 /*
5938 * Pending debug exceptions.
5939 */
5940 uint64_t const uPendingDbgXcpt = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5941 ? pVmcs->u64GuestPendingDbgXcpt.u
5942 : pVmcs->u64GuestPendingDbgXcpt.s.Lo;
5943 if (!(uPendingDbgXcpt & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5944 { /* likely */ }
5945 else
5946 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5947
5948 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5949 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5950 {
5951 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5952 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5953 && !(uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5954 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5955
5956 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5957 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5958 && (uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5959 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5960 }
5961
5962 /* We don't support RTM (Real-time Transactional Memory) yet. */
5963 if (!(uPendingDbgXcpt & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5964 { /* likely */ }
5965 else
5966 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
5967
5968 /*
5969 * VMCS link pointer.
5970 */
5971 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
5972 {
5973 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
5974 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
5975 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
5976 { /* likely */ }
5977 else
5978 {
5979 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5980 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
5981 }
5982
5983 /* Validate the address. */
5984 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
5985 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
5986 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
5987 { /* likely */ }
5988 else
5989 {
5990 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5991 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
5992 }
5993
5994 /* Read the VMCS-link pointer from guest memory. */
5995 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs));
5996 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs),
5997 GCPhysShadowVmcs, VMX_V_VMCS_SIZE);
5998 if (RT_SUCCESS(rc))
5999 { /* likely */ }
6000 else
6001 {
6002 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6003 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
6004 }
6005
6006 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
6007 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
6008 { /* likely */ }
6009 else
6010 {
6011 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6012 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
6013 }
6014
6015 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
6016 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6017 || pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
6018 { /* likely */ }
6019 else
6020 {
6021 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6022 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
6023 }
6024
6025 /* Finally update our cache of the guest physical address of the shadow VMCS. */
6026 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
6027 }
6028
6029 NOREF(pszInstr);
6030 NOREF(pszFailure);
6031 return VINF_SUCCESS;
6032}
6033
6034
6035/**
6036 * Checks if the PDPTEs referenced by the nested-guest CR3 are valid as part of
6037 * VM-entry.
6038 *
6039 * @returns @c true if all PDPTEs are valid, @c false otherwise.
6040 * @param pVCpu The cross context virtual CPU structure.
6041 * @param pszInstr The VMX instruction name (for logging purposes).
6042 * @param pVmcs Pointer to the virtual VMCS.
6043 */
6044IEM_STATIC int iemVmxVmentryCheckGuestPdptesForCr3(PVMCPU pVCpu, const char *pszInstr, PVMXVVMCS pVmcs)
6045{
6046 /*
6047 * Check PDPTEs.
6048 * See Intel spec. 4.4.1 "PDPTE Registers".
6049 */
6050 uint64_t const uGuestCr3 = pVmcs->u64GuestCr3.u & X86_CR3_PAE_PAGE_MASK;
6051 const char *const pszFailure = "VM-exit";
6052
6053 X86PDPE aPdptes[X86_PG_PAE_PDPE_ENTRIES];
6054 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)&aPdptes[0], uGuestCr3, sizeof(aPdptes));
6055 if (RT_SUCCESS(rc))
6056 {
6057 for (unsigned iPdpte = 0; iPdpte < RT_ELEMENTS(aPdptes); iPdpte++)
6058 {
6059 if ( !(aPdptes[iPdpte].u & X86_PDPE_P)
6060 || !(aPdptes[iPdpte].u & X86_PDPE_PAE_MBZ_MASK))
6061 { /* likely */ }
6062 else
6063 {
6064 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6065 VMXVDIAG const enmDiag = iemVmxGetDiagVmentryPdpteRsvd(iPdpte);
6066 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
6067 }
6068 }
6069 }
6070 else
6071 {
6072 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6073 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpteCr3ReadPhys);
6074 }
6075
6076 NOREF(pszFailure);
6077 NOREF(pszInstr);
6078 return rc;
6079}
6080
6081
6082/**
6083 * Checks guest PDPTEs as part of VM-entry.
6084 *
6085 * @param pVCpu The cross context virtual CPU structure.
6086 * @param pszInstr The VMX instruction name (for logging purposes).
6087 */
6088IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPU pVCpu, const char *pszInstr)
6089{
6090 /*
6091 * Guest PDPTEs.
6092 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
6093 */
6094 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6095 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6096
6097 /* Check PDPTes if the VM-entry is to a guest using PAE paging. */
6098 int rc;
6099 if ( !fGstInLongMode
6100 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
6101 && (pVmcs->u64GuestCr0.u & X86_CR0_PG))
6102 {
6103 /*
6104 * We don't support nested-paging for nested-guests yet.
6105 *
6106 * Without nested-paging for nested-guests, PDPTEs in the VMCS are not used,
6107 * rather we need to check the PDPTEs referenced by the guest CR3.
6108 */
6109 rc = iemVmxVmentryCheckGuestPdptesForCr3(pVCpu, pszInstr, pVmcs);
6110 }
6111 else
6112 rc = VINF_SUCCESS;
6113 return rc;
6114}
6115
6116
6117/**
6118 * Checks guest-state as part of VM-entry.
6119 *
6120 * @returns VBox status code.
6121 * @param pVCpu The cross context virtual CPU structure.
6122 * @param pszInstr The VMX instruction name (for logging purposes).
6123 */
6124IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPU pVCpu, const char *pszInstr)
6125{
6126 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
6127 if (RT_SUCCESS(rc))
6128 {
6129 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
6130 if (RT_SUCCESS(rc))
6131 {
6132 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
6133 if (RT_SUCCESS(rc))
6134 {
6135 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
6136 if (RT_SUCCESS(rc))
6137 {
6138 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
6139 if (RT_SUCCESS(rc))
6140 return iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
6141 }
6142 }
6143 }
6144 }
6145 return rc;
6146}
6147
6148
6149/**
6150 * Checks host-state as part of VM-entry.
6151 *
6152 * @returns VBox status code.
6153 * @param pVCpu The cross context virtual CPU structure.
6154 * @param pszInstr The VMX instruction name (for logging purposes).
6155 */
6156IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPU pVCpu, const char *pszInstr)
6157{
6158 /*
6159 * Host Control Registers and MSRs.
6160 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
6161 */
6162 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6163 const char * const pszFailure = "VMFail";
6164
6165 /* CR0 reserved bits. */
6166 {
6167 /* CR0 MB1 bits. */
6168 uint64_t const u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
6169 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
6170 { /* likely */ }
6171 else
6172 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
6173
6174 /* CR0 MBZ bits. */
6175 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
6176 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
6177 { /* likely */ }
6178 else
6179 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
6180 }
6181
6182 /* CR4 reserved bits. */
6183 {
6184 /* CR4 MB1 bits. */
6185 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6186 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
6187 { /* likely */ }
6188 else
6189 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
6190
6191 /* CR4 MBZ bits. */
6192 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6193 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
6194 { /* likely */ }
6195 else
6196 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
6197 }
6198
6199 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6200 {
6201 /* CR3 reserved bits. */
6202 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
6203 { /* likely */ }
6204 else
6205 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
6206
6207 /* SYSENTER ESP and SYSENTER EIP. */
6208 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
6209 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
6210 { /* likely */ }
6211 else
6212 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
6213 }
6214
6215 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6216 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
6217
6218 /* PAT MSR. */
6219 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
6220 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
6221 { /* likely */ }
6222 else
6223 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
6224
6225 /* EFER MSR. */
6226 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
6227 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
6228 || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
6229 { /* likely */ }
6230 else
6231 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
6232
6233 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
6234 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
6235 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
6236 if ( fHostInLongMode == fHostLma
6237 && fHostInLongMode == fHostLme)
6238 { /* likely */ }
6239 else
6240 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
6241
6242 /*
6243 * Host Segment and Descriptor-Table Registers.
6244 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
6245 */
6246 /* Selector RPL and TI. */
6247 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
6248 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
6249 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
6250 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
6251 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
6252 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
6253 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
6254 { /* likely */ }
6255 else
6256 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
6257
6258 /* CS and TR selectors cannot be 0. */
6259 if ( pVmcs->HostCs
6260 && pVmcs->HostTr)
6261 { /* likely */ }
6262 else
6263 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
6264
6265 /* SS cannot be 0 if 32-bit host. */
6266 if ( fHostInLongMode
6267 || pVmcs->HostSs)
6268 { /* likely */ }
6269 else
6270 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
6271
6272 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6273 {
6274 /* FS, GS, GDTR, IDTR, TR base address. */
6275 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6276 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6277 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
6278 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
6279 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
6280 { /* likely */ }
6281 else
6282 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
6283 }
6284
6285 /*
6286 * Host address-space size for 64-bit CPUs.
6287 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
6288 */
6289 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6290 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6291 {
6292 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
6293
6294 /* Logical processor in IA-32e mode. */
6295 if (fCpuInLongMode)
6296 {
6297 if (fHostInLongMode)
6298 {
6299 /* PAE must be set. */
6300 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
6301 { /* likely */ }
6302 else
6303 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
6304
6305 /* RIP must be canonical. */
6306 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
6307 { /* likely */ }
6308 else
6309 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
6310 }
6311 else
6312 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
6313 }
6314 else
6315 {
6316 /* Logical processor is outside IA-32e mode. */
6317 if ( !fGstInLongMode
6318 && !fHostInLongMode)
6319 {
6320 /* PCIDE should not be set. */
6321 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
6322 { /* likely */ }
6323 else
6324 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
6325
6326 /* The high 32-bits of RIP MBZ. */
6327 if (!pVmcs->u64HostRip.s.Hi)
6328 { /* likely */ }
6329 else
6330 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
6331 }
6332 else
6333 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
6334 }
6335 }
6336 else
6337 {
6338 /* Host address-space size for 32-bit CPUs. */
6339 if ( !fGstInLongMode
6340 && !fHostInLongMode)
6341 { /* likely */ }
6342 else
6343 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
6344 }
6345
6346 NOREF(pszInstr);
6347 NOREF(pszFailure);
6348 return VINF_SUCCESS;
6349}
6350
6351
6352/**
6353 * Checks VM-entry controls fields as part of VM-entry.
6354 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6355 *
6356 * @returns VBox status code.
6357 * @param pVCpu The cross context virtual CPU structure.
6358 * @param pszInstr The VMX instruction name (for logging purposes).
6359 */
6360IEM_STATIC int iemVmxVmentryCheckEntryCtls(PVMCPU pVCpu, const char *pszInstr)
6361{
6362 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6363 const char * const pszFailure = "VMFail";
6364
6365 /* VM-entry controls. */
6366 VMXCTLSMSR const EntryCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6367 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6368 { /* likely */ }
6369 else
6370 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6371
6372 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6373 { /* likely */ }
6374 else
6375 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6376
6377 /* Event injection. */
6378 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6379 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6380 {
6381 /* Type and vector. */
6382 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6383 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6384 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6385 if ( !uRsvd
6386 && HMVmxIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6387 && HMVmxIsEntryIntInfoVectorValid(uVector, uType))
6388 { /* likely */ }
6389 else
6390 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6391
6392 /* Exception error code. */
6393 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6394 {
6395 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6396 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6397 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6398 { /* likely */ }
6399 else
6400 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6401
6402 /* Exceptions that provide an error code. */
6403 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6404 && ( uVector == X86_XCPT_DF
6405 || uVector == X86_XCPT_TS
6406 || uVector == X86_XCPT_NP
6407 || uVector == X86_XCPT_SS
6408 || uVector == X86_XCPT_GP
6409 || uVector == X86_XCPT_PF
6410 || uVector == X86_XCPT_AC))
6411 { /* likely */ }
6412 else
6413 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6414
6415 /* Exception error-code reserved bits. */
6416 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6417 { /* likely */ }
6418 else
6419 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6420
6421 /* Injecting a software interrupt, software exception or privileged software exception. */
6422 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6423 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6424 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6425 {
6426 /* Instruction length must be in the range 0-15. */
6427 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6428 { /* likely */ }
6429 else
6430 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6431
6432 /* Instruction length of 0 is allowed only when its CPU feature is present. */
6433 if ( pVmcs->u32EntryInstrLen == 0
6434 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6435 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6436 }
6437 }
6438 }
6439
6440 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6441 if (pVmcs->u32EntryMsrLoadCount)
6442 {
6443 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6444 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6445 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6446 { /* likely */ }
6447 else
6448 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6449 }
6450
6451 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6452 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6453
6454 NOREF(pszInstr);
6455 NOREF(pszFailure);
6456 return VINF_SUCCESS;
6457}
6458
6459
6460/**
6461 * Checks VM-exit controls fields as part of VM-entry.
6462 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6463 *
6464 * @returns VBox status code.
6465 * @param pVCpu The cross context virtual CPU structure.
6466 * @param pszInstr The VMX instruction name (for logging purposes).
6467 */
6468IEM_STATIC int iemVmxVmentryCheckExitCtls(PVMCPU pVCpu, const char *pszInstr)
6469{
6470 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6471 const char * const pszFailure = "VMFail";
6472
6473 /* VM-exit controls. */
6474 VMXCTLSMSR const ExitCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6475 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6476 { /* likely */ }
6477 else
6478 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6479
6480 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6481 { /* likely */ }
6482 else
6483 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6484
6485 /* Save preemption timer without activating it. */
6486 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6487 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6488 { /* likely */ }
6489 else
6490 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6491
6492 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6493 if (pVmcs->u32ExitMsrStoreCount)
6494 {
6495 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6496 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6497 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6498 { /* likely */ }
6499 else
6500 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6501 }
6502
6503 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6504 if (pVmcs->u32ExitMsrLoadCount)
6505 {
6506 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6507 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6508 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6509 { /* likely */ }
6510 else
6511 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6512 }
6513
6514 NOREF(pszInstr);
6515 NOREF(pszFailure);
6516 return VINF_SUCCESS;
6517}
6518
6519
6520/**
6521 * Checks VM-execution controls fields as part of VM-entry.
6522 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6523 *
6524 * @returns VBox status code.
6525 * @param pVCpu The cross context virtual CPU structure.
6526 * @param pszInstr The VMX instruction name (for logging purposes).
6527 *
6528 * @remarks This may update secondary-processor based VM-execution control fields
6529 * in the current VMCS if necessary.
6530 */
6531IEM_STATIC int iemVmxVmentryCheckExecCtls(PVMCPU pVCpu, const char *pszInstr)
6532{
6533 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6534 const char * const pszFailure = "VMFail";
6535
6536 /* Pin-based VM-execution controls. */
6537 {
6538 VMXCTLSMSR const PinCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6539 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6540 { /* likely */ }
6541 else
6542 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6543
6544 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6545 { /* likely */ }
6546 else
6547 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6548 }
6549
6550 /* Processor-based VM-execution controls. */
6551 {
6552 VMXCTLSMSR const ProcCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6553 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6554 { /* likely */ }
6555 else
6556 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6557
6558 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6559 { /* likely */ }
6560 else
6561 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6562 }
6563
6564 /* Secondary processor-based VM-execution controls. */
6565 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6566 {
6567 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6568 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6569 { /* likely */ }
6570 else
6571 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6572
6573 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6574 { /* likely */ }
6575 else
6576 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6577 }
6578 else
6579 Assert(!pVmcs->u32ProcCtls2);
6580
6581 /* CR3-target count. */
6582 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6583 { /* likely */ }
6584 else
6585 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6586
6587 /* I/O bitmaps physical addresses. */
6588 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6589 {
6590 if ( !(pVmcs->u64AddrIoBitmapA.u & X86_PAGE_4K_OFFSET_MASK)
6591 && !(pVmcs->u64AddrIoBitmapA.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6592 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapA.u))
6593 { /* likely */ }
6594 else
6595 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6596
6597 if ( !(pVmcs->u64AddrIoBitmapB.u & X86_PAGE_4K_OFFSET_MASK)
6598 && !(pVmcs->u64AddrIoBitmapB.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6599 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrIoBitmapB.u))
6600 { /* likely */ }
6601 else
6602 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6603 }
6604
6605 /* MSR bitmap physical address. */
6606 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6607 {
6608 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6609 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6610 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6611 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6612 { /* likely */ }
6613 else
6614 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6615
6616 /* Read the MSR bitmap. */
6617 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
6618 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap),
6619 GCPhysMsrBitmap, VMX_V_MSR_BITMAP_SIZE);
6620 if (RT_SUCCESS(rc))
6621 { /* likely */ }
6622 else
6623 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
6624 }
6625
6626 /* TPR shadow related controls. */
6627 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6628 {
6629 /* Virtual-APIC page physical address. */
6630 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6631 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6632 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6633 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6634 { /* likely */ }
6635 else
6636 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6637
6638 /* Read the Virtual-APIC page. */
6639 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage));
6640 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage),
6641 GCPhysVirtApic, VMX_V_VIRT_APIC_PAGES);
6642 if (RT_SUCCESS(rc))
6643 { /* likely */ }
6644 else
6645 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
6646
6647 /* TPR threshold without virtual-interrupt delivery. */
6648 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6649 && (pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK))
6650 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6651
6652 /* TPR threshold and VTPR. */
6653 uint8_t const *pbVirtApic = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVirtApicPage);
6654 uint8_t const u8VTpr = *(pbVirtApic + XAPIC_OFF_TPR);
6655 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6656 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6657 && RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) > ((u8VTpr >> 4) & UINT32_C(0xf)) /* Bits 4:7 */)
6658 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
6659 }
6660 else
6661 {
6662 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6663 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6664 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6665 { /* likely */ }
6666 else
6667 {
6668 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6669 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6670 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6671 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6672 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6673 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6674 }
6675 }
6676
6677 /* NMI exiting and virtual-NMIs. */
6678 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6679 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6680 { /* likely */ }
6681 else
6682 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6683
6684 /* Virtual-NMIs and NMI-window exiting. */
6685 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6686 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6687 { /* likely */ }
6688 else
6689 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6690
6691 /* Virtualize APIC accesses. */
6692 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6693 {
6694 /* APIC-access physical address. */
6695 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6696 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6697 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6698 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6699 { /* likely */ }
6700 else
6701 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6702
6703 /*
6704 * Disallow APIC-access page and virtual-APIC page from being the same address.
6705 * Note! This is not an Intel requirement, but one imposed by our implementation.
6706 */
6707 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6708 * redirecting accesses between the APIC-access page and the virtual-APIC
6709 * page. If any nested hypervisor requires this, we can implement it later. */
6710 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6711 {
6712 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6713 if (GCPhysVirtApic != GCPhysApicAccess)
6714 { /* likely */ }
6715 else
6716 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6717 }
6718
6719 /*
6720 * Register the handler for the APIC-access page.
6721 *
6722 * We don't deregister the APIC-access page handler during the VM-exit as a different
6723 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
6724 *
6725 * We leave the page registered until the first access that happens outside VMX non-root
6726 * mode. Guest software is allowed to access structures such as the APIC-access page
6727 * only when no logical processor with a current VMCS references it in VMX non-root mode,
6728 * otherwise it can lead to unpredictable behavior including guest triple-faults.
6729 *
6730 * See Intel spec. 24.11.4 "Software Access to Related Structures".
6731 */
6732 int rc = PGMHandlerPhysicalRegister(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess, GCPhysApicAccess,
6733 pVCpu->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
6734 NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
6735 if (RT_SUCCESS(rc))
6736 { /* likely */ }
6737 else
6738 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
6739 }
6740
6741 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6742 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6743 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6744 { /* likely */ }
6745 else
6746 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6747
6748 /* Virtual-interrupt delivery requires external interrupt exiting. */
6749 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6750 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6751 { /* likely */ }
6752 else
6753 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6754
6755 /* VPID. */
6756 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6757 || pVmcs->u16Vpid != 0)
6758 { /* likely */ }
6759 else
6760 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6761
6762 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6763 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
6764 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6765 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
6766 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6767 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_VE)); /* We don't support EPT-violation #VE yet. */
6768 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
6769
6770 /* VMCS shadowing. */
6771 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6772 {
6773 /* VMREAD-bitmap physical address. */
6774 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6775 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6776 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6777 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6778 { /* likely */ }
6779 else
6780 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6781
6782 /* VMWRITE-bitmap physical address. */
6783 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6784 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6785 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6786 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6787 { /* likely */ }
6788 else
6789 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6790
6791 /* Read the VMREAD-bitmap. */
6792 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
6793 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap),
6794 GCPhysVmreadBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
6795 if (RT_SUCCESS(rc))
6796 { /* likely */ }
6797 else
6798 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
6799
6800 /* Read the VMWRITE-bitmap. */
6801 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap));
6802 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap),
6803 GCPhysVmwriteBitmap, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
6804 if (RT_SUCCESS(rc))
6805 { /* likely */ }
6806 else
6807 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
6808 }
6809
6810 NOREF(pszInstr);
6811 NOREF(pszFailure);
6812 return VINF_SUCCESS;
6813}
6814
6815
6816/**
6817 * Loads the guest control registers, debug register and some MSRs as part of
6818 * VM-entry.
6819 *
6820 * @param pVCpu The cross context virtual CPU structure.
6821 */
6822IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPU pVCpu)
6823{
6824 /*
6825 * Load guest control registers, debug registers and MSRs.
6826 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6827 */
6828 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6829
6830 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6831 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_CR0_IGNORE_MASK)
6832 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_CR0_IGNORE_MASK);
6833 CPUMSetGuestCR0(pVCpu, uGstCr0);
6834 CPUMSetGuestCR4(pVCpu, pVmcs->u64GuestCr4.u);
6835 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6836
6837 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6838 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_DR7_MBZ_MASK) | VMX_ENTRY_DR7_MB1_MASK;
6839
6840 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6841 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6842 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6843
6844 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6845 {
6846 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6847
6848 /* EFER MSR. */
6849 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6850 {
6851 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6852 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6853 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6854 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6855 if (fGstInLongMode)
6856 {
6857 /* If the nested-guest is in long mode, LMA and LME are both set. */
6858 Assert(fGstPaging);
6859 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6860 }
6861 else
6862 {
6863 /*
6864 * If the nested-guest is outside long mode:
6865 * - With paging: LMA is cleared, LME is cleared.
6866 * - Without paging: LMA is cleared, LME is left unmodified.
6867 */
6868 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6869 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6870 }
6871 }
6872 /* else: see below. */
6873 }
6874
6875 /* PAT MSR. */
6876 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6877 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6878
6879 /* EFER MSR. */
6880 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6881 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6882
6883 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6884 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6885
6886 /* We don't support IA32_BNDCFGS MSR yet. */
6887 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6888
6889 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6890}
6891
6892
6893/**
6894 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6895 *
6896 * @param pVCpu The cross context virtual CPU structure.
6897 */
6898IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPU pVCpu)
6899{
6900 /*
6901 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6902 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6903 */
6904 /* CS, SS, ES, DS, FS, GS. */
6905 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
6906 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6907 {
6908 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6909 CPUMSELREG VmcsSelReg;
6910 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6911 AssertRC(rc); NOREF(rc);
6912 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6913 {
6914 pGstSelReg->Sel = VmcsSelReg.Sel;
6915 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6916 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6917 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6918 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6919 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6920 }
6921 else
6922 {
6923 pGstSelReg->Sel = VmcsSelReg.Sel;
6924 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6925 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6926 switch (iSegReg)
6927 {
6928 case X86_SREG_CS:
6929 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6930 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6931 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6932 break;
6933
6934 case X86_SREG_SS:
6935 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6936 pGstSelReg->u32Limit = 0;
6937 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6938 break;
6939
6940 case X86_SREG_ES:
6941 case X86_SREG_DS:
6942 pGstSelReg->u64Base = 0;
6943 pGstSelReg->u32Limit = 0;
6944 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6945 break;
6946
6947 case X86_SREG_FS:
6948 case X86_SREG_GS:
6949 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6950 pGstSelReg->u32Limit = 0;
6951 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6952 break;
6953 }
6954 Assert(pGstSelReg->Attr.n.u1Unusable);
6955 }
6956 }
6957
6958 /* LDTR. */
6959 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6960 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6961 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6962 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6963 {
6964 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6965 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6966 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6967 }
6968 else
6969 {
6970 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6971 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6972 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6973 }
6974
6975 /* TR. */
6976 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6977 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6978 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6979 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6980 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6981 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6982 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6983
6984 /* GDTR. */
6985 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6986 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6987
6988 /* IDTR. */
6989 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6990 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6991}
6992
6993
6994/**
6995 * Loads the guest MSRs from the VM-entry auto-load MSRs as part of VM-entry.
6996 *
6997 * @returns VBox status code.
6998 * @param pVCpu The cross context virtual CPU structure.
6999 * @param pszInstr The VMX instruction name (for logging purposes).
7000 */
7001IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPU pVCpu, const char *pszInstr)
7002{
7003 /*
7004 * Load guest MSRs.
7005 * See Intel spec. 26.4 "Loading MSRs".
7006 */
7007 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7008 const char *const pszFailure = "VM-exit";
7009
7010 /*
7011 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
7012 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
7013 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
7014 */
7015 uint32_t const cMsrs = pVmcs->u32EntryMsrLoadCount;
7016 if (!cMsrs)
7017 return VINF_SUCCESS;
7018
7019 /*
7020 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
7021 * exceeded including possibly raising #MC exceptions during VMX transition. Our
7022 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
7023 */
7024 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
7025 if (fIsMsrCountValid)
7026 { /* likely */ }
7027 else
7028 {
7029 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
7030 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
7031 }
7032
7033 RTGCPHYS const GCPhysAutoMsrArea = pVmcs->u64AddrEntryMsrLoad.u;
7034 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea),
7035 GCPhysAutoMsrArea, cMsrs * sizeof(VMXAUTOMSR));
7036 if (RT_SUCCESS(rc))
7037 {
7038 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pAutoMsrArea);
7039 Assert(pMsr);
7040 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
7041 {
7042 if ( !pMsr->u32Reserved
7043 && pMsr->u32Msr != MSR_K8_FS_BASE
7044 && pMsr->u32Msr != MSR_K8_GS_BASE
7045 && pMsr->u32Msr != MSR_K6_EFER
7046 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
7047 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
7048 {
7049 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
7050 if (rcStrict == VINF_SUCCESS)
7051 continue;
7052
7053 /*
7054 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
7055 * If any guest hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
7056 * recording the MSR index in the VM-exit qualification (as per the Intel spec.) and indicated
7057 * further by our own, specific diagnostic code. Later, we can try implement handling of the
7058 * MSR in ring-0 if possible, or come up with a better, generic solution.
7059 */
7060 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7061 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
7062 ? kVmxVDiag_Vmentry_MsrLoadRing3
7063 : kVmxVDiag_Vmentry_MsrLoad;
7064 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
7065 }
7066 else
7067 {
7068 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7069 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
7070 }
7071 }
7072 }
7073 else
7074 {
7075 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysAutoMsrArea, rc));
7076 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
7077 }
7078
7079 NOREF(pszInstr);
7080 NOREF(pszFailure);
7081 return VINF_SUCCESS;
7082}
7083
7084
7085/**
7086 * Loads the guest-state non-register state as part of VM-entry.
7087 *
7088 * @returns VBox status code.
7089 * @param pVCpu The cross context virtual CPU structure.
7090 *
7091 * @remarks This must be called only after loading the nested-guest register state
7092 * (especially nested-guest RIP).
7093 */
7094IEM_STATIC void iemVmxVmentryLoadGuestNonRegState(PVMCPU pVCpu)
7095{
7096 /*
7097 * Load guest non-register state.
7098 * See Intel spec. 26.6 "Special Features of VM Entry"
7099 */
7100 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7101
7102 /*
7103 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
7104 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
7105 *
7106 * See Intel spec. 26.6.1 "Interruptibility State".
7107 */
7108 bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
7109 if ( !fEntryVectoring
7110 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
7111 EMSetInhibitInterruptsPC(pVCpu, pVmcs->u64GuestRip.u);
7112 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7113 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7114
7115 /* NMI blocking. */
7116 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7117 {
7118 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
7119 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
7120 else
7121 {
7122 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7123 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7124 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7125 }
7126 }
7127 else
7128 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7129
7130 /* SMI blocking is irrelevant. We don't support SMIs yet. */
7131
7132 /* Loading PDPTEs will be taken care when we switch modes. We don't support EPT yet. */
7133 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
7134
7135 /* VPID is irrelevant. We don't support VPID yet. */
7136
7137 /* Clear address-range monitoring. */
7138 EMMonitorWaitClear(pVCpu);
7139}
7140
7141
7142/**
7143 * Loads the guest-state as part of VM-entry.
7144 *
7145 * @returns VBox status code.
7146 * @param pVCpu The cross context virtual CPU structure.
7147 * @param pszInstr The VMX instruction name (for logging purposes).
7148 *
7149 * @remarks This must be done after all the necessary steps prior to loading of
7150 * guest-state (e.g. checking various VMCS state).
7151 */
7152IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPU pVCpu, const char *pszInstr)
7153{
7154 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7155 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7156
7157 /*
7158 * Load guest RIP, RSP and RFLAGS.
7159 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7160 */
7161 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7162 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7163 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7164 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7165
7166 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7167 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7168 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7169
7170 iemVmxVmentryLoadGuestNonRegState(pVCpu);
7171
7172 NOREF(pszInstr);
7173 return VINF_SUCCESS;
7174}
7175
7176
7177/**
7178 * Returns whether there are is a pending debug exception on VM-entry.
7179 *
7180 * @param pVCpu The cross context virtual CPU structure.
7181 * @param pszInstr The VMX instruction name (for logging purposes).
7182 */
7183IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPU pVCpu, const char *pszInstr)
7184{
7185 /*
7186 * Pending debug exceptions.
7187 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7188 */
7189 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7190 Assert(pVmcs);
7191
7192 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpt.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7193 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7194 if (fPendingDbgXcpt)
7195 {
7196 uint8_t uEntryIntInfoType;
7197 bool const fEntryVectoring = HMVmxIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7198 if (fEntryVectoring)
7199 {
7200 switch (uEntryIntInfoType)
7201 {
7202 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7203 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7204 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7205 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7206 fPendingDbgXcpt = false;
7207 break;
7208
7209 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7210 {
7211 /*
7212 * Whether the pending debug exception for software exceptions other than
7213 * #BP and #OF is delivered after injecting the exception or is discard
7214 * is CPU implementation specific. We will discard them (easier).
7215 */
7216 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7217 if ( uVector != X86_XCPT_BP
7218 && uVector != X86_XCPT_OF)
7219 fPendingDbgXcpt = false;
7220 RT_FALL_THRU();
7221 }
7222 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7223 {
7224 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7225 fPendingDbgXcpt = false;
7226 break;
7227 }
7228 }
7229 }
7230 else
7231 {
7232 /*
7233 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7234 * pending debug exception is held pending or is discarded is CPU implementation
7235 * specific. We will discard them (easier).
7236 */
7237 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7238 fPendingDbgXcpt = false;
7239
7240 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7241 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7242 fPendingDbgXcpt = false;
7243 }
7244 }
7245
7246 NOREF(pszInstr);
7247 return fPendingDbgXcpt;
7248}
7249
7250
7251/**
7252 * Set up the monitor-trap flag (MTF).
7253 *
7254 * @param pVCpu The cross context virtual CPU structure.
7255 * @param pszInstr The VMX instruction name (for logging purposes).
7256 */
7257IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPU pVCpu, const char *pszInstr)
7258{
7259 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7260 Assert(pVmcs);
7261 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7262 {
7263 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7264 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7265 }
7266 else
7267 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7268 NOREF(pszInstr);
7269}
7270
7271
7272/**
7273 * Set up the VMX-preemption timer.
7274 *
7275 * @param pVCpu The cross context virtual CPU structure.
7276 * @param pszInstr The VMX instruction name (for logging purposes).
7277 */
7278IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPU pVCpu, const char *pszInstr)
7279{
7280 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7281 Assert(pVmcs);
7282 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7283 {
7284 uint64_t const uVmentryTick = TMCpuTickGetNoCheck(pVCpu);
7285 pVCpu->cpum.GstCtx.hwvirt.vmx.uVmentryTick = uVmentryTick;
7286 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7287
7288 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uVmentryTick));
7289 }
7290 else
7291 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7292
7293 NOREF(pszInstr);
7294}
7295
7296
7297/**
7298 * Injects an event using TRPM given a VM-entry interruption info. and related
7299 * fields.
7300 *
7301 * @returns VBox status code.
7302 * @param pVCpu The cross context virtual CPU structure.
7303 * @param uEntryIntInfo The VM-entry interruption info.
7304 * @param uErrCode The error code associated with the event if any.
7305 * @param cbInstr The VM-entry instruction length (for software
7306 * interrupts and software exceptions). Pass 0
7307 * otherwise.
7308 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7309 */
7310IEM_STATIC int iemVmxVmentryInjectTrpmEvent(PVMCPU pVCpu, uint32_t uEntryIntInfo, uint32_t uErrCode, uint32_t cbInstr,
7311 RTGCUINTPTR GCPtrFaultAddress)
7312{
7313 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7314
7315 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7316 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7317 bool const fErrCodeValid = VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo);
7318
7319 TRPMEVENT enmTrapType;
7320 switch (uType)
7321 {
7322 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7323 enmTrapType = TRPM_HARDWARE_INT;
7324 break;
7325
7326 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7327 enmTrapType = TRPM_SOFTWARE_INT;
7328 break;
7329
7330 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7331 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT: /* ICEBP. */
7332 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7333 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7334 enmTrapType = TRPM_TRAP;
7335 break;
7336
7337 default:
7338 /* Shouldn't really happen. */
7339 AssertMsgFailedReturn(("Invalid trap type %#x\n", uType), VERR_VMX_IPE_4);
7340 break;
7341 }
7342
7343 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7344 AssertRCReturn(rc, rc);
7345
7346 if (fErrCodeValid)
7347 TRPMSetErrorCode(pVCpu, uErrCode);
7348
7349 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
7350 && uVector == X86_XCPT_PF)
7351 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7352 else if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
7353 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
7354 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7355 {
7356 AssertMsg( uType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7357 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7358 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uType));
7359 TRPMSetInstrLength(pVCpu, cbInstr);
7360 }
7361
7362 return VINF_SUCCESS;
7363}
7364
7365
7366/**
7367 * Performs event injection (if any) as part of VM-entry.
7368 *
7369 * @param pVCpu The cross context virtual CPU structure.
7370 * @param pszInstr The VMX instruction name (for logging purposes).
7371 */
7372IEM_STATIC int iemVmxVmentryInjectEvent(PVMCPU pVCpu, const char *pszInstr)
7373{
7374 /*
7375 * Inject events.
7376 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7377 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7378 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7379 * the actually delivery of this event.
7380 *
7381 * See Intel spec. 26.5 "Event Injection".
7382 */
7383 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7384 uint32_t const uEntryIntInfo = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32EntryIntInfo;
7385 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7386
7387 pVCpu->cpum.GstCtx.hwvirt.vmx.fInterceptEvents = !fEntryIntInfoValid;
7388 if (fEntryIntInfoValid)
7389 {
7390 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7391 if (uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7392 {
7393 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7394 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7395 return VINF_SUCCESS;
7396 }
7397
7398 return iemVmxVmentryInjectTrpmEvent(pVCpu, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7399 pVCpu->cpum.GstCtx.cr2);
7400 }
7401
7402 /*
7403 * Inject any pending guest debug exception.
7404 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7405 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7406 */
7407 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7408 if (fPendingDbgXcpt)
7409 {
7410 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7411 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7412 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7413 return iemVmxVmentryInjectTrpmEvent(pVCpu, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7414 0 /* GCPtrFaultAddress */);
7415 }
7416
7417 NOREF(pszInstr);
7418 return VINF_SUCCESS;
7419}
7420
7421
7422/**
7423 * Initializes all read-only VMCS fields as part of VM-entry.
7424 *
7425 * @param pVCpu The cross context virtual CPU structure.
7426 */
7427IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPU pVCpu)
7428{
7429 /*
7430 * Any VMCS field which we do not establish on every VM-exit but may potentially
7431 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7432 * specified to be undefined needs to be initialized here.
7433 *
7434 * Thus, it is especially important to clear the VM-exit qualification field
7435 * since it must be zero for VM-exits where it is not used. Similarly, the
7436 * VM-exit interruption information field's valid bit needs to be cleared for
7437 * the same reasons.
7438 */
7439 PVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7440 Assert(pVmcs);
7441
7442 /* 16-bit (none currently). */
7443 /* 32-bit. */
7444 pVmcs->u32RoVmInstrError = 0;
7445 pVmcs->u32RoExitReason = 0;
7446 pVmcs->u32RoExitIntInfo = 0;
7447 pVmcs->u32RoExitIntErrCode = 0;
7448 pVmcs->u32RoIdtVectoringInfo = 0;
7449 pVmcs->u32RoIdtVectoringErrCode = 0;
7450 pVmcs->u32RoExitInstrLen = 0;
7451 pVmcs->u32RoExitInstrInfo = 0;
7452
7453 /* 64-bit. */
7454 pVmcs->u64RoGuestPhysAddr.u = 0;
7455
7456 /* Natural-width. */
7457 pVmcs->u64RoExitQual.u = 0;
7458 pVmcs->u64RoIoRcx.u = 0;
7459 pVmcs->u64RoIoRsi.u = 0;
7460 pVmcs->u64RoIoRdi.u = 0;
7461 pVmcs->u64RoIoRip.u = 0;
7462 pVmcs->u64RoGuestLinearAddr.u = 0;
7463}
7464
7465
7466/**
7467 * VMLAUNCH/VMRESUME instruction execution worker.
7468 *
7469 * @returns Strict VBox status code.
7470 * @param pVCpu The cross context virtual CPU structure.
7471 * @param cbInstr The instruction length in bytes.
7472 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7473 * VMXINSTRID_VMRESUME).
7474 *
7475 * @remarks Common VMX instruction checks are already expected to by the caller,
7476 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7477 */
7478IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPU pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
7479{
7480# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7481 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7482 return VINF_EM_RAW_EMULATE_INSTR;
7483# else
7484 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7485 || uInstrId == VMXINSTRID_VMRESUME);
7486 const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7487
7488 /* Nested-guest intercept. */
7489 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7490 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7491
7492 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7493
7494 /*
7495 * Basic VM-entry checks.
7496 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7497 * The checks following that do not have to follow a specific order.
7498 *
7499 * See Intel spec. 26.1 "Basic VM-entry Checks".
7500 */
7501
7502 /* CPL. */
7503 if (pVCpu->iem.s.uCpl == 0)
7504 { /* likely */ }
7505 else
7506 {
7507 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7508 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7509 return iemRaiseGeneralProtectionFault0(pVCpu);
7510 }
7511
7512 /* Current VMCS valid. */
7513 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7514 { /* likely */ }
7515 else
7516 {
7517 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7518 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7519 iemVmxVmFailInvalid(pVCpu);
7520 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7521 return VINF_SUCCESS;
7522 }
7523
7524 /* Current VMCS is not a shadow VMCS. */
7525 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->u32VmcsRevId.n.fIsShadowVmcs)
7526 { /* likely */ }
7527 else
7528 {
7529 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7530 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7531 iemVmxVmFailInvalid(pVCpu);
7532 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7533 return VINF_SUCCESS;
7534 }
7535
7536 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7537 * use block-by-STI here which is not quite correct. */
7538 if ( !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
7539 || pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
7540 { /* likely */ }
7541 else
7542 {
7543 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7544 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7545 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7546 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7547 return VINF_SUCCESS;
7548 }
7549
7550 if (uInstrId == VMXINSTRID_VMLAUNCH)
7551 {
7552 /* VMLAUNCH with non-clear VMCS. */
7553 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_CLEAR)
7554 { /* likely */ }
7555 else
7556 {
7557 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7558 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7559 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7560 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7561 return VINF_SUCCESS;
7562 }
7563 }
7564 else
7565 {
7566 /* VMRESUME with non-launched VMCS. */
7567 if (pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState == VMX_V_VMCS_STATE_LAUNCHED)
7568 { /* likely */ }
7569 else
7570 {
7571 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7572 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7573 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7574 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7575 return VINF_SUCCESS;
7576 }
7577 }
7578
7579 /*
7580 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7581 * while entering VMX non-root mode. We do some of this while checking VM-execution
7582 * controls. The guest hypervisor should not make assumptions and cannot expect
7583 * predictable behavior if changes to these structures are made in guest memory while
7584 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7585 * modify them anyway as we cache them in host memory. We are trade memory for speed here.
7586 *
7587 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7588 */
7589 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
7590 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7591 int rc = iemVmxVmentryCheckExecCtls(pVCpu, pszInstr);
7592 if (RT_SUCCESS(rc))
7593 {
7594 rc = iemVmxVmentryCheckExitCtls(pVCpu, pszInstr);
7595 if (RT_SUCCESS(rc))
7596 {
7597 rc = iemVmxVmentryCheckEntryCtls(pVCpu, pszInstr);
7598 if (RT_SUCCESS(rc))
7599 {
7600 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7601 if (RT_SUCCESS(rc))
7602 {
7603 /* Initialize read-only VMCS fields before VM-entry since we don't update all of them for every VM-exit. */
7604 iemVmxVmentryInitReadOnlyFields(pVCpu);
7605
7606 /*
7607 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7608 * So we save the the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7609 * VM-exit when required.
7610 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7611 */
7612 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7613
7614 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7615 if (RT_SUCCESS(rc))
7616 {
7617 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7618 if (RT_SUCCESS(rc))
7619 {
7620 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7621 if (RT_SUCCESS(rc))
7622 {
7623 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7624
7625 /* VMLAUNCH instruction must update the VMCS launch state. */
7626 if (uInstrId == VMXINSTRID_VMLAUNCH)
7627 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = VMX_V_VMCS_STATE_LAUNCHED;
7628
7629 /* Perform the VMX transition (PGM updates). */
7630 VBOXSTRICTRC rcStrict = iemVmxWorldSwitch(pVCpu);
7631 if (rcStrict == VINF_SUCCESS)
7632 { /* likely */ }
7633 else if (RT_SUCCESS(rcStrict))
7634 {
7635 Log3(("%s: iemVmxWorldSwitch returns %Rrc -> Setting passup status\n", pszInstr,
7636 VBOXSTRICTRC_VAL(rcStrict)));
7637 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7638 }
7639 else
7640 {
7641 Log3(("%s: iemVmxWorldSwitch failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7642 return rcStrict;
7643 }
7644
7645 /* We've now entered nested-guest execution. */
7646 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7647
7648 /*
7649 * The priority of potential VM-exits during VM-entry is important.
7650 * The priorities of VM-exits and events are listed from highest
7651 * to lowest as follows:
7652 *
7653 * 1. Event injection.
7654 * 2. Trap on task-switch (T flag set in TSS).
7655 * 3. TPR below threshold / APIC-write.
7656 * 4. SMI, INIT.
7657 * 5. MTF exit.
7658 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7659 * 7. VMX-preemption timer.
7660 * 9. NMI-window exit.
7661 * 10. NMI injection.
7662 * 11. Interrupt-window exit.
7663 * 12. Virtual-interrupt injection.
7664 * 13. Interrupt injection.
7665 * 14. Process next instruction (fetch, decode, execute).
7666 */
7667
7668 /* Setup the VMX-preemption timer. */
7669 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7670
7671 /* Setup monitor-trap flag. */
7672 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7673
7674 /* Now that we've switched page tables, we can go ahead and inject any event. */
7675 rcStrict = iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7676 if (RT_SUCCESS(rcStrict))
7677 {
7678 /* Reschedule to IEM-only execution of the nested-guest or return VINF_SUCCESS. */
7679 IEM_VMX_R3_EXECPOLICY_IEM_ALL_ENABLE_RET(pVCpu, pszInstr, VINF_SUCCESS);
7680 }
7681
7682 Log(("%s: VM-entry event injection failed. rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7683 return rcStrict;
7684 }
7685 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED);
7686 }
7687 }
7688 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED);
7689 }
7690
7691 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
7692 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7693 return VINF_SUCCESS;
7694 }
7695 }
7696 }
7697
7698 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
7699 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7700 return VINF_SUCCESS;
7701# endif
7702}
7703
7704
7705/**
7706 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
7707 * (causes a VM-exit) or not.
7708 *
7709 * @returns @c true if the instruction is intercepted, @c false otherwise.
7710 * @param pVCpu The cross context virtual CPU structure.
7711 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
7712 * VMX_EXIT_WRMSR).
7713 * @param idMsr The MSR.
7714 */
7715IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
7716{
7717 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7718 Assert( uExitReason == VMX_EXIT_RDMSR
7719 || uExitReason == VMX_EXIT_WRMSR);
7720
7721 /* Consult the MSR bitmap if the feature is supported. */
7722 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7723 Assert(pVmcs);
7724 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7725 {
7726 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap));
7727 if (uExitReason == VMX_EXIT_RDMSR)
7728 {
7729 VMXMSREXITREAD enmRead;
7730 int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, &enmRead,
7731 NULL /* penmWrite */);
7732 AssertRC(rc);
7733 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
7734 return true;
7735 }
7736 else
7737 {
7738 VMXMSREXITWRITE enmWrite;
7739 int rc = HMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), idMsr, NULL /* penmRead */,
7740 &enmWrite);
7741 AssertRC(rc);
7742 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
7743 return true;
7744 }
7745 return false;
7746 }
7747
7748 /* Without MSR bitmaps, all MSR accesses are intercepted. */
7749 return true;
7750}
7751
7752
7753/**
7754 * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field is
7755 * intercepted (causes a VM-exit) or not.
7756 *
7757 * @returns @c true if the instruction is intercepted, @c false otherwise.
7758 * @param pVCpu The cross context virtual CPU structure.
7759 * @param u64FieldEnc The VMCS field encoding.
7760 * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
7761 * VMX_EXIT_VMREAD).
7762 */
7763IEM_STATIC bool iemVmxIsVmreadVmwriteInterceptSet(PVMCPU pVCpu, uint32_t uExitReason, uint64_t u64FieldEnc)
7764{
7765 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7766 Assert( uExitReason == VMX_EXIT_VMREAD
7767 || uExitReason == VMX_EXIT_VMWRITE);
7768
7769 /* Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. */
7770 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing)
7771 return true;
7772
7773 /*
7774 * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE is intercepted.
7775 * This excludes any reserved bits in the valid parts of the field encoding (i.e. bit 12).
7776 */
7777 if (u64FieldEnc & VMX_VMCS_ENC_RSVD_MASK)
7778 return true;
7779
7780 /* Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. */
7781 uint32_t const u32FieldEnc = RT_LO_U32(u64FieldEnc);
7782 Assert(u32FieldEnc >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
7783 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap));
7784 uint8_t const *pbBitmap = uExitReason == VMX_EXIT_VMREAD
7785 ? (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmreadBitmap)
7786 : (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap);
7787 pbBitmap += (u32FieldEnc >> 3);
7788 if (*pbBitmap & RT_BIT(u32FieldEnc & 7))
7789 return true;
7790
7791 return false;
7792}
7793
7794
7795/**
7796 * VMREAD common (memory/register) instruction execution worker
7797 *
7798 * @returns Strict VBox status code.
7799 * @param pVCpu The cross context virtual CPU structure.
7800 * @param cbInstr The instruction length in bytes.
7801 * @param pu64Dst Where to write the VMCS value (only updated when
7802 * VINF_SUCCESS is returned).
7803 * @param u64FieldEnc The VMCS field encoding.
7804 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
7805 * be NULL.
7806 */
7807IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
7808 PCVMXVEXITINFO pExitInfo)
7809{
7810 /* Nested-guest intercept. */
7811 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7812 && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64FieldEnc))
7813 {
7814 if (pExitInfo)
7815 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
7816 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
7817 }
7818
7819 /* CPL. */
7820 if (pVCpu->iem.s.uCpl == 0)
7821 { /* likely */ }
7822 else
7823 {
7824 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
7825 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
7826 return iemRaiseGeneralProtectionFault0(pVCpu);
7827 }
7828
7829 /* VMCS pointer in root mode. */
7830 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
7831 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7832 { /* likely */ }
7833 else
7834 {
7835 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7836 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
7837 iemVmxVmFailInvalid(pVCpu);
7838 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7839 return VINF_SUCCESS;
7840 }
7841
7842 /* VMCS-link pointer in non-root mode. */
7843 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7844 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
7845 { /* likely */ }
7846 else
7847 {
7848 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
7849 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
7850 iemVmxVmFailInvalid(pVCpu);
7851 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7852 return VINF_SUCCESS;
7853 }
7854
7855 /* Supported VMCS field. */
7856 if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
7857 { /* likely */ }
7858 else
7859 {
7860 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
7861 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
7862 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
7863 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7864 return VINF_SUCCESS;
7865 }
7866
7867 /*
7868 * Setup reading from the current or shadow VMCS.
7869 */
7870 uint8_t *pbVmcs;
7871 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7872 pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7873 else
7874 pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
7875 Assert(pbVmcs);
7876
7877 VMXVMCSFIELDENC FieldEnc;
7878 FieldEnc.u = u64FieldEnc;
7879 uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH);
7880 uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE);
7881 uint8_t const uWidthType = (uWidth << 2) | uType;
7882 uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX);
7883 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
7884 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
7885 Assert(offField < VMX_V_VMCS_SIZE);
7886
7887 /*
7888 * Read the VMCS component based on the field's effective width.
7889 *
7890 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
7891 * indicates high bits (little endian).
7892 *
7893 * Note! The caller is responsible to trim the result and update registers
7894 * or memory locations are required. Here we just zero-extend to the largest
7895 * type (i.e. 64-bits).
7896 */
7897 uint8_t *pbField = pbVmcs + offField;
7898 uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
7899 switch (uEffWidth)
7900 {
7901 case VMX_VMCS_ENC_WIDTH_64BIT:
7902 case VMX_VMCS_ENC_WIDTH_NATURAL: *pu64Dst = *(uint64_t *)pbField; break;
7903 case VMX_VMCS_ENC_WIDTH_32BIT: *pu64Dst = *(uint32_t *)pbField; break;
7904 case VMX_VMCS_ENC_WIDTH_16BIT: *pu64Dst = *(uint16_t *)pbField; break;
7905 }
7906 return VINF_SUCCESS;
7907}
7908
7909
7910/**
7911 * VMREAD (64-bit register) instruction execution worker.
7912 *
7913 * @returns Strict VBox status code.
7914 * @param pVCpu The cross context virtual CPU structure.
7915 * @param cbInstr The instruction length in bytes.
7916 * @param pu64Dst Where to store the VMCS field's value.
7917 * @param u64FieldEnc The VMCS field encoding.
7918 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
7919 * be NULL.
7920 */
7921IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPU pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64FieldEnc,
7922 PCVMXVEXITINFO pExitInfo)
7923{
7924 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
7925 if (rcStrict == VINF_SUCCESS)
7926 {
7927 iemVmxVmreadSuccess(pVCpu, cbInstr);
7928 return VINF_SUCCESS;
7929 }
7930
7931 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7932 return rcStrict;
7933}
7934
7935
7936/**
7937 * VMREAD (32-bit register) instruction execution worker.
7938 *
7939 * @returns Strict VBox status code.
7940 * @param pVCpu The cross context virtual CPU structure.
7941 * @param cbInstr The instruction length in bytes.
7942 * @param pu32Dst Where to store the VMCS field's value.
7943 * @param u32FieldEnc The VMCS field encoding.
7944 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
7945 * be NULL.
7946 */
7947IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPU pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32FieldEnc,
7948 PCVMXVEXITINFO pExitInfo)
7949{
7950 uint64_t u64Dst;
7951 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32FieldEnc, pExitInfo);
7952 if (rcStrict == VINF_SUCCESS)
7953 {
7954 *pu32Dst = u64Dst;
7955 iemVmxVmreadSuccess(pVCpu, cbInstr);
7956 return VINF_SUCCESS;
7957 }
7958
7959 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7960 return rcStrict;
7961}
7962
7963
7964/**
7965 * VMREAD (memory) instruction execution worker.
7966 *
7967 * @returns Strict VBox status code.
7968 * @param pVCpu The cross context virtual CPU structure.
7969 * @param cbInstr The instruction length in bytes.
7970 * @param iEffSeg The effective segment register to use with @a u64Val.
7971 * Pass UINT8_MAX if it is a register access.
7972 * @param enmEffAddrMode The effective addressing mode (only used with memory
7973 * operand).
7974 * @param GCPtrDst The guest linear address to store the VMCS field's
7975 * value.
7976 * @param u64FieldEnc The VMCS field encoding.
7977 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
7978 * be NULL.
7979 */
7980IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode,
7981 RTGCPTR GCPtrDst, uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
7982{
7983 uint64_t u64Dst;
7984 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64FieldEnc, pExitInfo);
7985 if (rcStrict == VINF_SUCCESS)
7986 {
7987 /*
7988 * Write the VMCS field's value to the location specified in guest-memory.
7989 *
7990 * The pointer size depends on the address size (address-size prefix allowed).
7991 * The operand size depends on IA-32e mode (operand-size prefix not allowed).
7992 */
7993 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
7994 Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
7995 GCPtrDst &= s_auAddrSizeMasks[enmEffAddrMode];
7996
7997 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
7998 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
7999 else
8000 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8001 if (rcStrict == VINF_SUCCESS)
8002 {
8003 iemVmxVmreadSuccess(pVCpu, cbInstr);
8004 return VINF_SUCCESS;
8005 }
8006
8007 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
8008 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
8009 return rcStrict;
8010 }
8011
8012 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8013 return rcStrict;
8014}
8015
8016
8017/**
8018 * VMWRITE instruction execution worker.
8019 *
8020 * @returns Strict VBox status code.
8021 * @param pVCpu The cross context virtual CPU structure.
8022 * @param cbInstr The instruction length in bytes.
8023 * @param iEffSeg The effective segment register to use with @a u64Val.
8024 * Pass UINT8_MAX if it is a register access.
8025 * @param enmEffAddrMode The effective addressing mode (only used with memory
8026 * operand).
8027 * @param u64Val The value to write (or guest linear address to the
8028 * value), @a iEffSeg will indicate if it's a memory
8029 * operand.
8030 * @param u64FieldEnc The VMCS field encoding.
8031 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
8032 * be NULL.
8033 */
8034IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, IEMMODE enmEffAddrMode, uint64_t u64Val,
8035 uint64_t u64FieldEnc, PCVMXVEXITINFO pExitInfo)
8036{
8037 /* Nested-guest intercept. */
8038 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8039 && iemVmxIsVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64FieldEnc))
8040 {
8041 if (pExitInfo)
8042 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8043 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8044 }
8045
8046 /* CPL. */
8047 if (pVCpu->iem.s.uCpl == 0)
8048 { /* likely */ }
8049 else
8050 {
8051 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8052 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8053 return iemRaiseGeneralProtectionFault0(pVCpu);
8054 }
8055
8056 /* VMCS pointer in root mode. */
8057 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8058 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8059 { /* likely */ }
8060 else
8061 {
8062 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8063 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8064 iemVmxVmFailInvalid(pVCpu);
8065 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8066 return VINF_SUCCESS;
8067 }
8068
8069 /* VMCS-link pointer in non-root mode. */
8070 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8071 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8072 { /* likely */ }
8073 else
8074 {
8075 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8076 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8077 iemVmxVmFailInvalid(pVCpu);
8078 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8079 return VINF_SUCCESS;
8080 }
8081
8082 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8083 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8084 if (!fIsRegOperand)
8085 {
8086 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
8087 Assert(enmEffAddrMode < RT_ELEMENTS(s_auAddrSizeMasks));
8088 RTGCPTR const GCPtrVal = u64Val & s_auAddrSizeMasks[enmEffAddrMode];
8089
8090 /* Read the value from the specified guest memory location. */
8091 VBOXSTRICTRC rcStrict;
8092 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8093 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8094 else
8095 {
8096 uint32_t u32Val;
8097 rcStrict = iemMemFetchDataU32(pVCpu, &u32Val, iEffSeg, GCPtrVal);
8098 u64Val = u32Val;
8099 }
8100 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8101 {
8102 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8103 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8104 return rcStrict;
8105 }
8106 }
8107 else
8108 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8109
8110 /* Supported VMCS field. */
8111 if (iemVmxIsVmcsFieldValid(pVCpu, u64FieldEnc))
8112 { /* likely */ }
8113 else
8114 {
8115 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64FieldEnc));
8116 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8117 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8118 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8119 return VINF_SUCCESS;
8120 }
8121
8122 /* Read-only VMCS field. */
8123 bool const fIsFieldReadOnly = HMVmxIsVmcsFieldReadOnly(u64FieldEnc);
8124 if ( !fIsFieldReadOnly
8125 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8126 { /* likely */ }
8127 else
8128 {
8129 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64FieldEnc));
8130 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8131 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8132 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8133 return VINF_SUCCESS;
8134 }
8135
8136 /*
8137 * Setup writing to the current or shadow VMCS.
8138 */
8139 uint8_t *pbVmcs;
8140 if (!IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8141 pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
8142 else
8143 pbVmcs = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pShadowVmcs);
8144 Assert(pbVmcs);
8145
8146 VMXVMCSFIELDENC FieldEnc;
8147 FieldEnc.u = u64FieldEnc;
8148 uint8_t const uWidth = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_WIDTH);
8149 uint8_t const uType = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_TYPE);
8150 uint8_t const uWidthType = (uWidth << 2) | uType;
8151 uint8_t const uIndex = RT_BF_GET(FieldEnc.u, VMX_BF_VMCS_ENC_INDEX);
8152 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_2);
8153 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8154 Assert(offField < VMX_V_VMCS_SIZE);
8155
8156 /*
8157 * Write the VMCS component based on the field's effective width.
8158 *
8159 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8160 * indicates high bits (little endian).
8161 */
8162 uint8_t *pbField = pbVmcs + offField;
8163 uint8_t const uEffWidth = HMVmxGetVmcsFieldWidthEff(FieldEnc.u);
8164 switch (uEffWidth)
8165 {
8166 case VMX_VMCS_ENC_WIDTH_64BIT:
8167 case VMX_VMCS_ENC_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
8168 case VMX_VMCS_ENC_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
8169 case VMX_VMCS_ENC_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
8170 }
8171
8172 iemVmxVmSucceed(pVCpu);
8173 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8174 return VINF_SUCCESS;
8175}
8176
8177
8178/**
8179 * VMCLEAR instruction execution worker.
8180 *
8181 * @returns Strict VBox status code.
8182 * @param pVCpu The cross context virtual CPU structure.
8183 * @param cbInstr The instruction length in bytes.
8184 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8185 * @param GCPtrVmcs The linear address of the VMCS pointer.
8186 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
8187 * be NULL.
8188 *
8189 * @remarks Common VMX instruction checks are already expected to by the caller,
8190 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8191 */
8192IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8193 PCVMXVEXITINFO pExitInfo)
8194{
8195 /* Nested-guest intercept. */
8196 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8197 {
8198 if (pExitInfo)
8199 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8200 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8201 }
8202
8203 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8204
8205 /* CPL. */
8206 if (pVCpu->iem.s.uCpl == 0)
8207 { /* likely */ }
8208 else
8209 {
8210 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8211 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8212 return iemRaiseGeneralProtectionFault0(pVCpu);
8213 }
8214
8215 /* Get the VMCS pointer from the location specified by the source memory operand. */
8216 RTGCPHYS GCPhysVmcs;
8217 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8218 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8219 { /* likely */ }
8220 else
8221 {
8222 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8223 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8224 return rcStrict;
8225 }
8226
8227 /* VMCS pointer alignment. */
8228 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8229 { /* likely */ }
8230 else
8231 {
8232 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8233 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8234 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8235 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8236 return VINF_SUCCESS;
8237 }
8238
8239 /* VMCS physical-address width limits. */
8240 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8241 { /* likely */ }
8242 else
8243 {
8244 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8245 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8246 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8247 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8248 return VINF_SUCCESS;
8249 }
8250
8251 /* VMCS is not the VMXON region. */
8252 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8253 { /* likely */ }
8254 else
8255 {
8256 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8257 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8258 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8259 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8260 return VINF_SUCCESS;
8261 }
8262
8263 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8264 restriction imposed by our implementation. */
8265 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8266 { /* likely */ }
8267 else
8268 {
8269 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8270 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8271 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8272 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8273 return VINF_SUCCESS;
8274 }
8275
8276 /*
8277 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8278 *
8279 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8280 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8281 * to 'clear'.
8282 */
8283 uint8_t const fVmcsStateClear = VMX_V_VMCS_STATE_CLEAR;
8284 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8285 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8286 {
8287 Assert(GCPhysVmcs != NIL_RTGCPHYS); /* Paranoia. */
8288 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs));
8289 pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs)->fVmcsState = fVmcsStateClear;
8290 iemVmxCommitCurrentVmcsToMemory(pVCpu);
8291 Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8292 }
8293 else
8294 {
8295 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsStateClear));
8296 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8297 (const void *)&fVmcsStateClear, sizeof(fVmcsStateClear));
8298 if (RT_FAILURE(rcStrict))
8299 return rcStrict;
8300 }
8301
8302 iemVmxVmSucceed(pVCpu);
8303 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8304 return VINF_SUCCESS;
8305}
8306
8307
8308/**
8309 * VMPTRST instruction execution worker.
8310 *
8311 * @returns Strict VBox status code.
8312 * @param pVCpu The cross context virtual CPU structure.
8313 * @param cbInstr The instruction length in bytes.
8314 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8315 * @param GCPtrVmcs The linear address of where to store the current VMCS
8316 * pointer.
8317 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
8318 * be NULL.
8319 *
8320 * @remarks Common VMX instruction checks are already expected to by the caller,
8321 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8322 */
8323IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8324 PCVMXVEXITINFO pExitInfo)
8325{
8326 /* Nested-guest intercept. */
8327 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8328 {
8329 if (pExitInfo)
8330 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8331 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8332 }
8333
8334 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8335
8336 /* CPL. */
8337 if (pVCpu->iem.s.uCpl == 0)
8338 { /* likely */ }
8339 else
8340 {
8341 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8342 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8343 return iemRaiseGeneralProtectionFault0(pVCpu);
8344 }
8345
8346 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8347 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8348 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8349 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8350 {
8351 iemVmxVmSucceed(pVCpu);
8352 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8353 return rcStrict;
8354 }
8355
8356 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8357 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8358 return rcStrict;
8359}
8360
8361
8362/**
8363 * VMPTRLD instruction execution worker.
8364 *
8365 * @returns Strict VBox status code.
8366 * @param pVCpu The cross context virtual CPU structure.
8367 * @param cbInstr The instruction length in bytes.
8368 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8369 * @param pExitInfo Pointer to the VM-exit information struct. Optional, can
8370 * be NULL.
8371 *
8372 * @remarks Common VMX instruction checks are already expected to by the caller,
8373 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8374 */
8375IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8376 PCVMXVEXITINFO pExitInfo)
8377{
8378 /* Nested-guest intercept. */
8379 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8380 {
8381 if (pExitInfo)
8382 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8383 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8384 }
8385
8386 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8387
8388 /* CPL. */
8389 if (pVCpu->iem.s.uCpl == 0)
8390 { /* likely */ }
8391 else
8392 {
8393 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8394 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8395 return iemRaiseGeneralProtectionFault0(pVCpu);
8396 }
8397
8398 /* Get the VMCS pointer from the location specified by the source memory operand. */
8399 RTGCPHYS GCPhysVmcs;
8400 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8401 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8402 { /* likely */ }
8403 else
8404 {
8405 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8406 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8407 return rcStrict;
8408 }
8409
8410 /* VMCS pointer alignment. */
8411 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8412 { /* likely */ }
8413 else
8414 {
8415 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8416 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8417 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8418 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8419 return VINF_SUCCESS;
8420 }
8421
8422 /* VMCS physical-address width limits. */
8423 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8424 { /* likely */ }
8425 else
8426 {
8427 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8428 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8429 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8430 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8431 return VINF_SUCCESS;
8432 }
8433
8434 /* VMCS is not the VMXON region. */
8435 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8436 { /* likely */ }
8437 else
8438 {
8439 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8440 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8441 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8442 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8443 return VINF_SUCCESS;
8444 }
8445
8446 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8447 restriction imposed by our implementation. */
8448 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8449 { /* likely */ }
8450 else
8451 {
8452 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8453 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8454 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8455 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8456 return VINF_SUCCESS;
8457 }
8458
8459 /* Read just the VMCS revision from the VMCS. */
8460 VMXVMCSREVID VmcsRevId;
8461 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8462 if (RT_SUCCESS(rc))
8463 { /* likely */ }
8464 else
8465 {
8466 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8467 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8468 return rc;
8469 }
8470
8471 /*
8472 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8473 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8474 */
8475 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8476 && ( !VmcsRevId.n.fIsShadowVmcs
8477 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8478 { /* likely */ }
8479 else
8480 {
8481 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8482 {
8483 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8484 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8485 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8486 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8487 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8488 return VINF_SUCCESS;
8489 }
8490
8491 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8492 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8493 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8494 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8495 return VINF_SUCCESS;
8496 }
8497
8498 /*
8499 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8500 * the cache of an existing, current VMCS back to guest memory before loading a new,
8501 * different current VMCS.
8502 */
8503 bool fLoadVmcsFromMem;
8504 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8505 {
8506 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8507 {
8508 iemVmxCommitCurrentVmcsToMemory(pVCpu);
8509 Assert(!IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8510 fLoadVmcsFromMem = true;
8511 }
8512 else
8513 fLoadVmcsFromMem = false;
8514 }
8515 else
8516 fLoadVmcsFromMem = true;
8517
8518 if (fLoadVmcsFromMem)
8519 {
8520 /* Finally, cache the new VMCS from guest memory and mark it as the current VMCS. */
8521 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), (void *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs), GCPhysVmcs,
8522 sizeof(VMXVVMCS));
8523 if (RT_SUCCESS(rc))
8524 { /* likely */ }
8525 else
8526 {
8527 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8528 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8529 return rc;
8530 }
8531 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8532 }
8533
8534 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8535 iemVmxVmSucceed(pVCpu);
8536 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8537 return VINF_SUCCESS;
8538}
8539
8540
8541/**
8542 * VMXON instruction execution worker.
8543 *
8544 * @returns Strict VBox status code.
8545 * @param pVCpu The cross context virtual CPU structure.
8546 * @param cbInstr The instruction length in bytes.
8547 * @param iEffSeg The effective segment register to use with @a
8548 * GCPtrVmxon.
8549 * @param GCPtrVmxon The linear address of the VMXON pointer.
8550 * @param pExitInfo Pointer to the VM-exit instruction information struct.
8551 * Optional, can be NULL.
8552 *
8553 * @remarks Common VMX instruction checks are already expected to by the caller,
8554 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8555 */
8556IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPU pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
8557 PCVMXVEXITINFO pExitInfo)
8558{
8559 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
8560 {
8561 /* CPL. */
8562 if (pVCpu->iem.s.uCpl == 0)
8563 { /* likely */ }
8564 else
8565 {
8566 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8567 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
8568 return iemRaiseGeneralProtectionFault0(pVCpu);
8569 }
8570
8571 /* A20M (A20 Masked) mode. */
8572 if (PGMPhysIsA20Enabled(pVCpu))
8573 { /* likely */ }
8574 else
8575 {
8576 Log(("vmxon: A20M mode -> #GP(0)\n"));
8577 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
8578 return iemRaiseGeneralProtectionFault0(pVCpu);
8579 }
8580
8581 /* CR0. */
8582 {
8583 /* CR0 MB1 bits. */
8584 uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
8585 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
8586 { /* likely */ }
8587 else
8588 {
8589 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
8590 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
8591 return iemRaiseGeneralProtectionFault0(pVCpu);
8592 }
8593
8594 /* CR0 MBZ bits. */
8595 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
8596 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
8597 { /* likely */ }
8598 else
8599 {
8600 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
8601 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
8602 return iemRaiseGeneralProtectionFault0(pVCpu);
8603 }
8604 }
8605
8606 /* CR4. */
8607 {
8608 /* CR4 MB1 bits. */
8609 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
8610 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
8611 { /* likely */ }
8612 else
8613 {
8614 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
8615 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
8616 return iemRaiseGeneralProtectionFault0(pVCpu);
8617 }
8618
8619 /* CR4 MBZ bits. */
8620 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
8621 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
8622 { /* likely */ }
8623 else
8624 {
8625 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
8626 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
8627 return iemRaiseGeneralProtectionFault0(pVCpu);
8628 }
8629 }
8630
8631 /* Feature control MSR's LOCK and VMXON bits. */
8632 uint64_t const uMsrFeatCtl = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64FeatCtrl;
8633 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8634 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8635 { /* likely */ }
8636 else
8637 {
8638 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
8639 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
8640 return iemRaiseGeneralProtectionFault0(pVCpu);
8641 }
8642
8643 /* Get the VMXON pointer from the location specified by the source memory operand. */
8644 RTGCPHYS GCPhysVmxon;
8645 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
8646 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8647 { /* likely */ }
8648 else
8649 {
8650 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
8651 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
8652 return rcStrict;
8653 }
8654
8655 /* VMXON region pointer alignment. */
8656 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
8657 { /* likely */ }
8658 else
8659 {
8660 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
8661 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
8662 iemVmxVmFailInvalid(pVCpu);
8663 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8664 return VINF_SUCCESS;
8665 }
8666
8667 /* VMXON physical-address width limits. */
8668 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8669 { /* likely */ }
8670 else
8671 {
8672 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
8673 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
8674 iemVmxVmFailInvalid(pVCpu);
8675 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8676 return VINF_SUCCESS;
8677 }
8678
8679 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
8680 restriction imposed by our implementation. */
8681 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
8682 { /* likely */ }
8683 else
8684 {
8685 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
8686 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
8687 iemVmxVmFailInvalid(pVCpu);
8688 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8689 return VINF_SUCCESS;
8690 }
8691
8692 /* Read the VMCS revision ID from the VMXON region. */
8693 VMXVMCSREVID VmcsRevId;
8694 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
8695 if (RT_SUCCESS(rc))
8696 { /* likely */ }
8697 else
8698 {
8699 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
8700 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
8701 return rc;
8702 }
8703
8704 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
8705 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
8706 { /* likely */ }
8707 else
8708 {
8709 /* Revision ID mismatch. */
8710 if (!VmcsRevId.n.fIsShadowVmcs)
8711 {
8712 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
8713 VmcsRevId.n.u31RevisionId));
8714 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
8715 iemVmxVmFailInvalid(pVCpu);
8716 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8717 return VINF_SUCCESS;
8718 }
8719
8720 /* Shadow VMCS disallowed. */
8721 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
8722 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
8723 iemVmxVmFailInvalid(pVCpu);
8724 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8725 return VINF_SUCCESS;
8726 }
8727
8728 /*
8729 * Record that we're in VMX operation, block INIT, block and disable A20M.
8730 */
8731 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
8732 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8733 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
8734
8735 /* Clear address-range monitoring. */
8736 EMMonitorWaitClear(pVCpu);
8737 /** @todo NSTVMX: Intel PT. */
8738
8739 iemVmxVmSucceed(pVCpu);
8740 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8741 return VINF_SUCCESS;
8742 }
8743 else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8744 {
8745 /* Nested-guest intercept. */
8746 if (pExitInfo)
8747 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8748 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
8749 }
8750
8751 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8752
8753 /* CPL. */
8754 if (pVCpu->iem.s.uCpl > 0)
8755 {
8756 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8757 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
8758 return iemRaiseGeneralProtectionFault0(pVCpu);
8759 }
8760
8761 /* VMXON when already in VMX root mode. */
8762 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
8763 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
8764 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8765 return VINF_SUCCESS;
8766}
8767
8768
8769/**
8770 * Implements 'VMXOFF'.
8771 *
8772 * @remarks Common VMX instruction checks are already expected to by the caller,
8773 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8774 */
8775IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
8776{
8777 /* Nested-guest intercept. */
8778 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8779 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
8780
8781 /* CPL. */
8782 if (pVCpu->iem.s.uCpl == 0)
8783 { /* likely */ }
8784 else
8785 {
8786 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8787 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
8788 return iemRaiseGeneralProtectionFault0(pVCpu);
8789 }
8790
8791 /* Dual monitor treatment of SMIs and SMM. */
8792 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
8793 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
8794 { /* likely */ }
8795 else
8796 {
8797 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
8798 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8799 return VINF_SUCCESS;
8800 }
8801
8802 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
8803 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
8804 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
8805
8806 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
8807 { /** @todo NSTVMX: Unblock SMI. */ }
8808
8809 EMMonitorWaitClear(pVCpu);
8810 /** @todo NSTVMX: Unblock and enable A20M. */
8811
8812 iemVmxVmSucceed(pVCpu);
8813 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8814 return VINF_SUCCESS;
8815}
8816
8817
8818/**
8819 * Implements 'VMXON'.
8820 */
8821IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
8822{
8823 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
8824}
8825
8826
8827/**
8828 * Implements 'VMLAUNCH'.
8829 */
8830IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
8831{
8832 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
8833}
8834
8835
8836/**
8837 * Implements 'VMRESUME'.
8838 */
8839IEM_CIMPL_DEF_0(iemCImpl_vmresume)
8840{
8841 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
8842}
8843
8844
8845/**
8846 * Implements 'VMPTRLD'.
8847 */
8848IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8849{
8850 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8851}
8852
8853
8854/**
8855 * Implements 'VMPTRST'.
8856 */
8857IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8858{
8859 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8860}
8861
8862
8863/**
8864 * Implements 'VMCLEAR'.
8865 */
8866IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
8867{
8868 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
8869}
8870
8871
8872/**
8873 * Implements 'VMWRITE' register.
8874 */
8875IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64FieldEnc)
8876{
8877 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, IEMMODE_64BIT /* N/A */, u64Val, u64FieldEnc,
8878 NULL /* pExitInfo */);
8879}
8880
8881
8882/**
8883 * Implements 'VMWRITE' memory.
8884 */
8885IEM_CIMPL_DEF_4(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrVal, uint32_t, u64FieldEnc)
8886{
8887 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrVal, u64FieldEnc, NULL /* pExitInfo */);
8888}
8889
8890
8891/**
8892 * Implements 'VMREAD' register (64-bit).
8893 */
8894IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64FieldEnc)
8895{
8896 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, NULL /* pExitInfo */);
8897}
8898
8899
8900/**
8901 * Implements 'VMREAD' register (32-bit).
8902 */
8903IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32FieldEnc)
8904{
8905 return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32FieldEnc, NULL /* pExitInfo */);
8906}
8907
8908
8909/**
8910 * Implements 'VMREAD' memory, 64-bit register.
8911 */
8912IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u64FieldEnc)
8913{
8914 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u64FieldEnc, NULL /* pExitInfo */);
8915}
8916
8917
8918/**
8919 * Implements 'VMREAD' memory, 32-bit register.
8920 */
8921IEM_CIMPL_DEF_4(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, IEMMODE, enmEffAddrMode, RTGCPTR, GCPtrDst, uint32_t, u32FieldEnc)
8922{
8923 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, enmEffAddrMode, GCPtrDst, u32FieldEnc, NULL /* pExitInfo */);
8924}
8925
8926
8927/**
8928 * Implements VMX's implementation of PAUSE.
8929 */
8930IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
8931{
8932 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8933 {
8934 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
8935 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8936 return rcStrict;
8937 }
8938
8939 /*
8940 * Outside VMX non-root operation or if the PAUSE instruction does not cause
8941 * a VM-exit, the instruction operates normally.
8942 */
8943 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8944 return VINF_SUCCESS;
8945}
8946
8947#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
8948
8949
8950/**
8951 * Implements 'VMCALL'.
8952 */
8953IEM_CIMPL_DEF_0(iemCImpl_vmcall)
8954{
8955#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8956 /* Nested-guest intercept. */
8957 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8958 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
8959#endif
8960
8961 /* Join forces with vmmcall. */
8962 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
8963}
8964
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette