1 | /* $Id: IEMAllCImplVmxInstr.cpp.h 93115 2022-01-01 11:31:46Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - VT-x instruction implementation.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
23 | /**
|
---|
24 | * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
|
---|
25 | * relative offsets.
|
---|
26 | */
|
---|
27 | # ifdef IEM_WITH_CODE_TLB
|
---|
28 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
|
---|
29 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
|
---|
30 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
31 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
|
---|
32 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
33 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
|
---|
34 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
35 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
|
---|
36 | # error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
|
---|
37 | # else /* !IEM_WITH_CODE_TLB */
|
---|
38 | # define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
|
---|
39 | do \
|
---|
40 | { \
|
---|
41 | Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
42 | (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
|
---|
43 | } while (0)
|
---|
44 |
|
---|
45 | # define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
|
---|
46 |
|
---|
47 | # define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
48 | do \
|
---|
49 | { \
|
---|
50 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
51 | uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
52 | uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
53 | (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
|
---|
54 | } while (0)
|
---|
55 |
|
---|
56 | # define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
|
---|
57 | do \
|
---|
58 | { \
|
---|
59 | Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
60 | (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
61 | } while (0)
|
---|
62 |
|
---|
63 | # define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
64 | do \
|
---|
65 | { \
|
---|
66 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
67 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
68 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
69 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
70 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
71 | (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
72 | } while (0)
|
---|
73 |
|
---|
74 | # define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
|
---|
75 | do \
|
---|
76 | { \
|
---|
77 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
78 | (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
79 | } while (0)
|
---|
80 |
|
---|
81 | # define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
82 | do \
|
---|
83 | { \
|
---|
84 | Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
85 | (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
|
---|
86 | } while (0)
|
---|
87 |
|
---|
88 | # define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
|
---|
89 | do \
|
---|
90 | { \
|
---|
91 | Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
|
---|
92 | uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
|
---|
93 | uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
|
---|
94 | uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
|
---|
95 | uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
|
---|
96 | (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
|
---|
97 | } while (0)
|
---|
98 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
99 |
|
---|
100 | /** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
|
---|
101 | # define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
|
---|
102 |
|
---|
103 | /** Whether a shadow VMCS is present for the given VCPU. */
|
---|
104 | # define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
105 |
|
---|
106 | /** Gets the VMXON region pointer. */
|
---|
107 | # define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
108 |
|
---|
109 | /** Gets the guest-physical address of the current VMCS for the given VCPU. */
|
---|
110 | # define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
|
---|
111 |
|
---|
112 | /** Whether a current VMCS is present for the given VCPU. */
|
---|
113 | # define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
|
---|
114 |
|
---|
115 | /** Assigns the guest-physical address of the current VMCS for the given VCPU. */
|
---|
116 | # define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
|
---|
117 | do \
|
---|
118 | { \
|
---|
119 | Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
|
---|
120 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
|
---|
121 | } while (0)
|
---|
122 |
|
---|
123 | /** Clears any current VMCS for the given VCPU. */
|
---|
124 | # define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
|
---|
125 | do \
|
---|
126 | { \
|
---|
127 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
|
---|
128 | } while (0)
|
---|
129 |
|
---|
130 | /** Check for VMX instructions requiring to be in VMX operation.
|
---|
131 | * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
|
---|
132 | # define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
|
---|
133 | do \
|
---|
134 | { \
|
---|
135 | if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
|
---|
136 | { /* likely */ } \
|
---|
137 | else \
|
---|
138 | { \
|
---|
139 | Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
|
---|
140 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
|
---|
141 | return iemRaiseUndefinedOpcode(a_pVCpu); \
|
---|
142 | } \
|
---|
143 | } while (0)
|
---|
144 |
|
---|
145 | /** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
|
---|
146 | # define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
|
---|
147 | do \
|
---|
148 | { \
|
---|
149 | LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
|
---|
150 | HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
|
---|
151 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
|
---|
152 | return VERR_VMX_VMENTRY_FAILED; \
|
---|
153 | } while (0)
|
---|
154 |
|
---|
155 | /** Marks a VM-exit failure with a diagnostic reason and logs. */
|
---|
156 | # define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
|
---|
157 | do \
|
---|
158 | { \
|
---|
159 | LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
|
---|
160 | HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
|
---|
161 | (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
|
---|
162 | } while (0)
|
---|
163 |
|
---|
164 | /** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
|
---|
165 | # define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
|
---|
166 | do \
|
---|
167 | { \
|
---|
168 | IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
|
---|
169 | return VERR_VMX_VMEXIT_FAILED; \
|
---|
170 | } while (0)
|
---|
171 |
|
---|
172 |
|
---|
173 | /*********************************************************************************************************************************
|
---|
174 | * Global Variables *
|
---|
175 | *********************************************************************************************************************************/
|
---|
176 | /** @todo NSTVMX: The following VM-exit intercepts are pending:
|
---|
177 | * VMX_EXIT_IO_SMI
|
---|
178 | * VMX_EXIT_SMI
|
---|
179 | * VMX_EXIT_GETSEC
|
---|
180 | * VMX_EXIT_RSM
|
---|
181 | * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
|
---|
182 | * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
|
---|
183 | * VMX_EXIT_INVEPT
|
---|
184 | * VMX_EXIT_RDRAND
|
---|
185 | * VMX_EXIT_VMFUNC
|
---|
186 | * VMX_EXIT_ENCLS
|
---|
187 | * VMX_EXIT_RDSEED
|
---|
188 | * VMX_EXIT_PML_FULL
|
---|
189 | * VMX_EXIT_XSAVES
|
---|
190 | * VMX_EXIT_XRSTORS
|
---|
191 | */
|
---|
192 | /**
|
---|
193 | * Map of VMCS field encodings to their virtual-VMCS structure offsets.
|
---|
194 | *
|
---|
195 | * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
|
---|
196 | * second dimension is the Index, see VMXVMCSFIELD.
|
---|
197 | */
|
---|
198 | uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
|
---|
199 | {
|
---|
200 | /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
|
---|
201 | {
|
---|
202 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
|
---|
203 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
|
---|
204 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
|
---|
205 | /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
206 | /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
207 | /* 19-26 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
208 | /* 27 */ UINT16_MAX,
|
---|
209 | },
|
---|
210 | /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
|
---|
211 | {
|
---|
212 | /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
213 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
214 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
215 | /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
216 | },
|
---|
217 | /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
|
---|
218 | {
|
---|
219 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
|
---|
220 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
|
---|
221 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
|
---|
222 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
|
---|
223 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
|
---|
224 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
|
---|
225 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
|
---|
226 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
|
---|
227 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
|
---|
228 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
|
---|
229 | /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
230 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
231 | /* 26-27 */ UINT16_MAX, UINT16_MAX
|
---|
232 | },
|
---|
233 | /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
|
---|
234 | {
|
---|
235 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
|
---|
236 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
|
---|
237 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
|
---|
238 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
|
---|
239 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
|
---|
240 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
|
---|
241 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
|
---|
242 | /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
243 | /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
244 | /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
245 | },
|
---|
246 | /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
|
---|
247 | {
|
---|
248 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
|
---|
249 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
|
---|
250 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
|
---|
251 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
|
---|
252 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
|
---|
253 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
|
---|
254 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
|
---|
255 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
|
---|
256 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
|
---|
257 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
|
---|
258 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
|
---|
259 | /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
|
---|
260 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
|
---|
261 | /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
|
---|
262 | /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
|
---|
263 | /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
|
---|
264 | /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
|
---|
265 | /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
|
---|
266 | /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
|
---|
267 | /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
|
---|
268 | /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
|
---|
269 | /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
|
---|
270 | /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
|
---|
271 | /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
|
---|
272 | /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
|
---|
273 | /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
|
---|
274 | /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
|
---|
275 | /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap)
|
---|
276 | },
|
---|
277 | /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
|
---|
278 | {
|
---|
279 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
|
---|
280 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
281 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
282 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
283 | /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
284 | },
|
---|
285 | /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
|
---|
286 | {
|
---|
287 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
|
---|
288 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
|
---|
289 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
|
---|
290 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
|
---|
291 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
|
---|
292 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
|
---|
293 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
|
---|
294 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
|
---|
295 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
|
---|
296 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
|
---|
297 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
|
---|
298 | /* 11 */ UINT16_MAX,
|
---|
299 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
|
---|
300 | /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
301 | /* 21-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
302 | },
|
---|
303 | /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
|
---|
304 | {
|
---|
305 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
|
---|
306 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
|
---|
307 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
|
---|
308 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
|
---|
309 | /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
310 | /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
311 | /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
312 | },
|
---|
313 | /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
|
---|
314 | {
|
---|
315 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
|
---|
316 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
|
---|
317 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
|
---|
318 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
|
---|
319 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
|
---|
320 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
|
---|
321 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
|
---|
322 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
|
---|
323 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
|
---|
324 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
|
---|
325 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
|
---|
326 | /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
|
---|
327 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
|
---|
328 | /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
|
---|
329 | /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
|
---|
330 | /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
|
---|
331 | /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
|
---|
332 | /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
|
---|
333 | /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
334 | /* 26-27 */ UINT16_MAX, UINT16_MAX
|
---|
335 | },
|
---|
336 | /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
|
---|
337 | {
|
---|
338 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
|
---|
339 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
|
---|
340 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
|
---|
341 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
|
---|
342 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
|
---|
343 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
|
---|
344 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
|
---|
345 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
|
---|
346 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
347 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
348 | /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
349 | },
|
---|
350 | /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
|
---|
351 | {
|
---|
352 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
|
---|
353 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
|
---|
354 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
|
---|
355 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
|
---|
356 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
|
---|
357 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
|
---|
358 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
|
---|
359 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
|
---|
360 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
|
---|
361 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
|
---|
362 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
|
---|
363 | /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
|
---|
364 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
|
---|
365 | /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
|
---|
366 | /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
|
---|
367 | /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
|
---|
368 | /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
|
---|
369 | /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
|
---|
370 | /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
|
---|
371 | /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
|
---|
372 | /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
|
---|
373 | /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
|
---|
374 | /* 22 */ UINT16_MAX,
|
---|
375 | /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
|
---|
376 | /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
377 | },
|
---|
378 | /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
|
---|
379 | {
|
---|
380 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
|
---|
381 | /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
382 | /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
383 | /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
384 | /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
385 | },
|
---|
386 | /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
|
---|
387 | {
|
---|
388 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
|
---|
389 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
|
---|
390 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
|
---|
391 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
|
---|
392 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
|
---|
393 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
|
---|
394 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
|
---|
395 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
|
---|
396 | /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
397 | /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
398 | /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
399 | },
|
---|
400 | /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
|
---|
401 | {
|
---|
402 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
|
---|
403 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
|
---|
404 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
|
---|
405 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
|
---|
406 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
|
---|
407 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
|
---|
408 | /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
409 | /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
410 | /* 22-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
411 | },
|
---|
412 | /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
|
---|
413 | {
|
---|
414 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
|
---|
415 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
|
---|
416 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
|
---|
417 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
|
---|
418 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
|
---|
419 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
|
---|
420 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
|
---|
421 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
|
---|
422 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
|
---|
423 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
|
---|
424 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
|
---|
425 | /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
|
---|
426 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
|
---|
427 | /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
|
---|
428 | /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
|
---|
429 | /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
|
---|
430 | /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
|
---|
431 | /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
|
---|
432 | /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
|
---|
433 | /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
|
---|
434 | /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
|
---|
435 | /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
|
---|
436 | /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
|
---|
437 | /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
438 | },
|
---|
439 | /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
|
---|
440 | {
|
---|
441 | /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
|
---|
442 | /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
|
---|
443 | /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
|
---|
444 | /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
|
---|
445 | /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
|
---|
446 | /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
|
---|
447 | /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
|
---|
448 | /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
|
---|
449 | /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
|
---|
450 | /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
|
---|
451 | /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
|
---|
452 | /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
|
---|
453 | /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
|
---|
454 | /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
|
---|
455 | /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
|
---|
456 | /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
|
---|
457 | /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
|
---|
458 | }
|
---|
459 | };
|
---|
460 |
|
---|
461 |
|
---|
462 | /**
|
---|
463 | * Gets a host selector from the VMCS.
|
---|
464 | *
|
---|
465 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
466 | * @param iSelReg The index of the segment register (X86_SREG_XXX).
|
---|
467 | */
|
---|
468 | DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
|
---|
469 | {
|
---|
470 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
471 | RTSEL HostSel;
|
---|
472 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
|
---|
473 | uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
|
---|
474 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
475 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
|
---|
476 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
477 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
478 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
479 | uint8_t const *pbField = pbVmcs + offField;
|
---|
480 | HostSel = *(uint16_t *)pbField;
|
---|
481 | return HostSel;
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 | /**
|
---|
486 | * Sets a guest segment register in the VMCS.
|
---|
487 | *
|
---|
488 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
489 | * @param iSegReg The index of the segment register (X86_SREG_XXX).
|
---|
490 | * @param pSelReg Pointer to the segment register.
|
---|
491 | */
|
---|
492 | IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
|
---|
493 | {
|
---|
494 | Assert(pSelReg);
|
---|
495 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
496 |
|
---|
497 | /* Selector. */
|
---|
498 | {
|
---|
499 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
|
---|
500 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
501 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
502 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
|
---|
503 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
504 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
505 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
506 | uint8_t *pbField = pbVmcs + offField;
|
---|
507 | *(uint16_t *)pbField = pSelReg->Sel;
|
---|
508 | }
|
---|
509 |
|
---|
510 | /* Limit. */
|
---|
511 | {
|
---|
512 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
|
---|
513 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
514 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
515 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
|
---|
516 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
517 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
518 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
519 | uint8_t *pbField = pbVmcs + offField;
|
---|
520 | *(uint32_t *)pbField = pSelReg->u32Limit;
|
---|
521 | }
|
---|
522 |
|
---|
523 | /* Base. */
|
---|
524 | {
|
---|
525 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
|
---|
526 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
527 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
528 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
|
---|
529 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
530 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
531 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
532 | uint8_t const *pbField = pbVmcs + offField;
|
---|
533 | *(uint64_t *)pbField = pSelReg->u64Base;
|
---|
534 | }
|
---|
535 |
|
---|
536 | /* Attributes. */
|
---|
537 | {
|
---|
538 | uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
|
---|
539 | | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
540 | | X86DESCATTR_UNUSABLE;
|
---|
541 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
|
---|
542 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
543 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
544 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
|
---|
545 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
546 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
547 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
548 | uint8_t *pbField = pbVmcs + offField;
|
---|
549 | *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
|
---|
550 | }
|
---|
551 | }
|
---|
552 |
|
---|
553 |
|
---|
554 | /**
|
---|
555 | * Gets a guest segment register from the VMCS.
|
---|
556 | *
|
---|
557 | * @returns VBox status code.
|
---|
558 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
559 | * @param iSegReg The index of the segment register (X86_SREG_XXX).
|
---|
560 | * @param pSelReg Where to store the segment register (only updated when
|
---|
561 | * VINF_SUCCESS is returned).
|
---|
562 | *
|
---|
563 | * @remarks Warning! This does not validate the contents of the retrieved segment
|
---|
564 | * register.
|
---|
565 | */
|
---|
566 | IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
|
---|
567 | {
|
---|
568 | Assert(pSelReg);
|
---|
569 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
570 |
|
---|
571 | /* Selector. */
|
---|
572 | uint16_t u16Sel;
|
---|
573 | {
|
---|
574 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
|
---|
575 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
576 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
577 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
|
---|
578 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
579 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
580 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
581 | uint8_t const *pbField = pbVmcs + offField;
|
---|
582 | u16Sel = *(uint16_t *)pbField;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /* Limit. */
|
---|
586 | uint32_t u32Limit;
|
---|
587 | {
|
---|
588 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
|
---|
589 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
590 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
591 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
|
---|
592 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
593 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
594 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
595 | uint8_t const *pbField = pbVmcs + offField;
|
---|
596 | u32Limit = *(uint32_t *)pbField;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /* Base. */
|
---|
600 | uint64_t u64Base;
|
---|
601 | {
|
---|
602 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
|
---|
603 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
604 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
605 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
|
---|
606 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
607 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
608 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
609 | uint8_t const *pbField = pbVmcs + offField;
|
---|
610 | u64Base = *(uint64_t *)pbField;
|
---|
611 | /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
|
---|
612 | }
|
---|
613 |
|
---|
614 | /* Attributes. */
|
---|
615 | uint32_t u32Attr;
|
---|
616 | {
|
---|
617 | uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
|
---|
618 | uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
|
---|
619 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
620 | uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
|
---|
621 | AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
|
---|
622 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
623 | uint8_t const *pbVmcs = (uint8_t *)pVmcs;
|
---|
624 | uint8_t const *pbField = pbVmcs + offField;
|
---|
625 | u32Attr = *(uint32_t *)pbField;
|
---|
626 | }
|
---|
627 |
|
---|
628 | pSelReg->Sel = u16Sel;
|
---|
629 | pSelReg->ValidSel = u16Sel;
|
---|
630 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
631 | pSelReg->u32Limit = u32Limit;
|
---|
632 | pSelReg->u64Base = u64Base;
|
---|
633 | pSelReg->Attr.u = u32Attr;
|
---|
634 | return VINF_SUCCESS;
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * Converts an IEM exception event type to a VMX event type.
|
---|
640 | *
|
---|
641 | * @returns The VMX event type.
|
---|
642 | * @param uVector The interrupt / exception vector.
|
---|
643 | * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
|
---|
644 | */
|
---|
645 | DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
|
---|
646 | {
|
---|
647 | /* Paranoia (callers may use these interchangeably). */
|
---|
648 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
|
---|
649 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
|
---|
650 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
|
---|
651 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
|
---|
652 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
|
---|
653 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
|
---|
654 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
|
---|
655 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
|
---|
656 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
|
---|
657 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
|
---|
658 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
|
---|
659 | AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
|
---|
660 |
|
---|
661 | if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
662 | {
|
---|
663 | if (uVector == X86_XCPT_NMI)
|
---|
664 | return VMX_EXIT_INT_INFO_TYPE_NMI;
|
---|
665 | return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
|
---|
666 | }
|
---|
667 |
|
---|
668 | if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
669 | {
|
---|
670 | if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
|
---|
671 | return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
|
---|
672 | if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
|
---|
673 | return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
|
---|
674 | return VMX_EXIT_INT_INFO_TYPE_SW_INT;
|
---|
675 | }
|
---|
676 |
|
---|
677 | Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
|
---|
678 | return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
|
---|
679 | }
|
---|
680 |
|
---|
681 |
|
---|
682 | /**
|
---|
683 | * Determines whether the guest is using PAE paging given the VMCS.
|
---|
684 | *
|
---|
685 | * @returns @c true if PAE paging mode is used, @c false otherwise.
|
---|
686 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
687 | */
|
---|
688 | DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
|
---|
689 | {
|
---|
690 | return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
|
---|
691 | && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
|
---|
692 | && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
|
---|
693 | }
|
---|
694 |
|
---|
695 |
|
---|
696 | /**
|
---|
697 | * Sets the Exit qualification VMCS field.
|
---|
698 | *
|
---|
699 | * @param pVCpu The cross context virtual CPU structure.
|
---|
700 | * @param u64ExitQual The Exit qualification.
|
---|
701 | */
|
---|
702 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
|
---|
703 | {
|
---|
704 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
|
---|
705 | }
|
---|
706 |
|
---|
707 |
|
---|
708 | /**
|
---|
709 | * Sets the VM-exit interruption information field.
|
---|
710 | *
|
---|
711 | * @param pVCpu The cross context virtual CPU structure.
|
---|
712 | * @param uExitIntInfo The VM-exit interruption information.
|
---|
713 | */
|
---|
714 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
|
---|
715 | {
|
---|
716 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
|
---|
717 | }
|
---|
718 |
|
---|
719 |
|
---|
720 | /**
|
---|
721 | * Sets the VM-exit interruption error code.
|
---|
722 | *
|
---|
723 | * @param pVCpu The cross context virtual CPU structure.
|
---|
724 | * @param uErrCode The error code.
|
---|
725 | */
|
---|
726 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
|
---|
727 | {
|
---|
728 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | /**
|
---|
733 | * Sets the IDT-vectoring information field.
|
---|
734 | *
|
---|
735 | * @param pVCpu The cross context virtual CPU structure.
|
---|
736 | * @param uIdtVectorInfo The IDT-vectoring information.
|
---|
737 | */
|
---|
738 | DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
|
---|
739 | {
|
---|
740 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
|
---|
741 | }
|
---|
742 |
|
---|
743 |
|
---|
744 | /**
|
---|
745 | * Sets the IDT-vectoring error code field.
|
---|
746 | *
|
---|
747 | * @param pVCpu The cross context virtual CPU structure.
|
---|
748 | * @param uErrCode The error code.
|
---|
749 | */
|
---|
750 | DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
|
---|
751 | {
|
---|
752 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
|
---|
753 | }
|
---|
754 |
|
---|
755 |
|
---|
756 | /**
|
---|
757 | * Sets the VM-exit guest-linear address VMCS field.
|
---|
758 | *
|
---|
759 | * @param pVCpu The cross context virtual CPU structure.
|
---|
760 | * @param uGuestLinearAddr The VM-exit guest-linear address.
|
---|
761 | */
|
---|
762 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
|
---|
763 | {
|
---|
764 | /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
|
---|
765 | Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
|
---|
766 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
|
---|
767 | }
|
---|
768 |
|
---|
769 |
|
---|
770 | /**
|
---|
771 | * Sets the VM-exit guest-physical address VMCS field.
|
---|
772 | *
|
---|
773 | * @param pVCpu The cross context virtual CPU structure.
|
---|
774 | * @param uGuestPhysAddr The VM-exit guest-physical address.
|
---|
775 | */
|
---|
776 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
|
---|
777 | {
|
---|
778 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
|
---|
779 | }
|
---|
780 |
|
---|
781 |
|
---|
782 | /**
|
---|
783 | * Sets the VM-exit instruction length VMCS field.
|
---|
784 | *
|
---|
785 | * @param pVCpu The cross context virtual CPU structure.
|
---|
786 | * @param cbInstr The VM-exit instruction length in bytes.
|
---|
787 | *
|
---|
788 | * @remarks Callers may clear this field to 0. Hence, this function does not check
|
---|
789 | * the validity of the instruction length.
|
---|
790 | */
|
---|
791 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
|
---|
792 | {
|
---|
793 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
|
---|
794 | }
|
---|
795 |
|
---|
796 |
|
---|
797 | /**
|
---|
798 | * Sets the VM-exit instruction info. VMCS field.
|
---|
799 | *
|
---|
800 | * @param pVCpu The cross context virtual CPU structure.
|
---|
801 | * @param uExitInstrInfo The VM-exit instruction information.
|
---|
802 | */
|
---|
803 | DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
|
---|
804 | {
|
---|
805 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | /**
|
---|
810 | * Sets the guest pending-debug exceptions field.
|
---|
811 | *
|
---|
812 | * @param pVCpu The cross context virtual CPU structure.
|
---|
813 | * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
|
---|
814 | */
|
---|
815 | DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
|
---|
816 | {
|
---|
817 | Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
|
---|
818 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
|
---|
819 | }
|
---|
820 |
|
---|
821 |
|
---|
822 | /**
|
---|
823 | * Implements VMSucceed for VMX instruction success.
|
---|
824 | *
|
---|
825 | * @param pVCpu The cross context virtual CPU structure.
|
---|
826 | */
|
---|
827 | DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
|
---|
828 | {
|
---|
829 | return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
|
---|
830 | }
|
---|
831 |
|
---|
832 |
|
---|
833 | /**
|
---|
834 | * Implements VMFailInvalid for VMX instruction failure.
|
---|
835 | *
|
---|
836 | * @param pVCpu The cross context virtual CPU structure.
|
---|
837 | */
|
---|
838 | DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
|
---|
839 | {
|
---|
840 | return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
|
---|
841 | }
|
---|
842 |
|
---|
843 |
|
---|
844 | /**
|
---|
845 | * Implements VMFail for VMX instruction failure.
|
---|
846 | *
|
---|
847 | * @param pVCpu The cross context virtual CPU structure.
|
---|
848 | * @param enmInsErr The VM instruction error.
|
---|
849 | */
|
---|
850 | DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
|
---|
851 | {
|
---|
852 | return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
|
---|
853 | }
|
---|
854 |
|
---|
855 |
|
---|
856 | /**
|
---|
857 | * Checks if the given auto-load/store MSR area count is valid for the
|
---|
858 | * implementation.
|
---|
859 | *
|
---|
860 | * @returns @c true if it's within the valid limit, @c false otherwise.
|
---|
861 | * @param pVCpu The cross context virtual CPU structure.
|
---|
862 | * @param uMsrCount The MSR area count to check.
|
---|
863 | */
|
---|
864 | DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
|
---|
865 | {
|
---|
866 | uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
|
---|
867 | uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
|
---|
868 | Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
|
---|
869 | if (uMsrCount <= cMaxSupportedMsrs)
|
---|
870 | return true;
|
---|
871 | return false;
|
---|
872 | }
|
---|
873 |
|
---|
874 |
|
---|
875 | /**
|
---|
876 | * Flushes the current VMCS contents back to guest memory.
|
---|
877 | *
|
---|
878 | * @returns VBox status code.
|
---|
879 | * @param pVCpu The cross context virtual CPU structure.
|
---|
880 | */
|
---|
881 | DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
|
---|
882 | {
|
---|
883 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
884 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
|
---|
885 | &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
|
---|
886 | return rc;
|
---|
887 | }
|
---|
888 |
|
---|
889 |
|
---|
890 | /**
|
---|
891 | * Populates the current VMCS contents from guest memory.
|
---|
892 | *
|
---|
893 | * @returns VBox status code.
|
---|
894 | * @param pVCpu The cross context virtual CPU structure.
|
---|
895 | */
|
---|
896 | DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
|
---|
897 | {
|
---|
898 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
899 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
|
---|
900 | IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
|
---|
901 | return rc;
|
---|
902 | }
|
---|
903 |
|
---|
904 |
|
---|
905 | /**
|
---|
906 | * Implements VMSucceed for the VMREAD instruction and increments the guest RIP.
|
---|
907 | *
|
---|
908 | * @param pVCpu The cross context virtual CPU structure.
|
---|
909 | */
|
---|
910 | DECL_FORCE_INLINE(void) iemVmxVmreadSuccess(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
911 | {
|
---|
912 | iemVmxVmSucceed(pVCpu);
|
---|
913 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
914 | }
|
---|
915 |
|
---|
916 |
|
---|
917 | /**
|
---|
918 | * Gets the instruction diagnostic for segment base checks during VM-entry of a
|
---|
919 | * nested-guest.
|
---|
920 | *
|
---|
921 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
922 | */
|
---|
923 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
|
---|
924 | {
|
---|
925 | switch (iSegReg)
|
---|
926 | {
|
---|
927 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
|
---|
928 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
|
---|
929 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
|
---|
930 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
|
---|
931 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
|
---|
932 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
|
---|
933 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
|
---|
934 | }
|
---|
935 | }
|
---|
936 |
|
---|
937 |
|
---|
938 | /**
|
---|
939 | * Gets the instruction diagnostic for segment base checks during VM-entry of a
|
---|
940 | * nested-guest that is in Virtual-8086 mode.
|
---|
941 | *
|
---|
942 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
943 | */
|
---|
944 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
|
---|
945 | {
|
---|
946 | switch (iSegReg)
|
---|
947 | {
|
---|
948 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
|
---|
949 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
|
---|
950 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
|
---|
951 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
|
---|
952 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
|
---|
953 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
|
---|
954 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
|
---|
955 | }
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | /**
|
---|
960 | * Gets the instruction diagnostic for segment limit checks during VM-entry of a
|
---|
961 | * nested-guest that is in Virtual-8086 mode.
|
---|
962 | *
|
---|
963 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
964 | */
|
---|
965 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
|
---|
966 | {
|
---|
967 | switch (iSegReg)
|
---|
968 | {
|
---|
969 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
|
---|
970 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
|
---|
971 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
|
---|
972 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
|
---|
973 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
|
---|
974 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
|
---|
975 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
|
---|
976 | }
|
---|
977 | }
|
---|
978 |
|
---|
979 |
|
---|
980 | /**
|
---|
981 | * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
|
---|
982 | * nested-guest that is in Virtual-8086 mode.
|
---|
983 | *
|
---|
984 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
985 | */
|
---|
986 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
|
---|
987 | {
|
---|
988 | switch (iSegReg)
|
---|
989 | {
|
---|
990 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
|
---|
991 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
|
---|
992 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
|
---|
993 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
|
---|
994 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
|
---|
995 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
|
---|
996 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
|
---|
997 | }
|
---|
998 | }
|
---|
999 |
|
---|
1000 |
|
---|
1001 | /**
|
---|
1002 | * Gets the instruction diagnostic for segment attributes reserved bits failure
|
---|
1003 | * during VM-entry of a nested-guest.
|
---|
1004 | *
|
---|
1005 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1006 | */
|
---|
1007 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
|
---|
1008 | {
|
---|
1009 | switch (iSegReg)
|
---|
1010 | {
|
---|
1011 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
|
---|
1012 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
|
---|
1013 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
|
---|
1014 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
|
---|
1015 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
|
---|
1016 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
|
---|
1017 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
|
---|
1018 | }
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /**
|
---|
1023 | * Gets the instruction diagnostic for segment attributes descriptor-type
|
---|
1024 | * (code/segment or system) failure during VM-entry of a nested-guest.
|
---|
1025 | *
|
---|
1026 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1027 | */
|
---|
1028 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
|
---|
1029 | {
|
---|
1030 | switch (iSegReg)
|
---|
1031 | {
|
---|
1032 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
|
---|
1033 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
|
---|
1034 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
|
---|
1035 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
|
---|
1036 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
|
---|
1037 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
|
---|
1038 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 |
|
---|
1043 | /**
|
---|
1044 | * Gets the instruction diagnostic for segment attributes descriptor-type
|
---|
1045 | * (code/segment or system) failure during VM-entry of a nested-guest.
|
---|
1046 | *
|
---|
1047 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1048 | */
|
---|
1049 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
|
---|
1050 | {
|
---|
1051 | switch (iSegReg)
|
---|
1052 | {
|
---|
1053 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
|
---|
1054 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
|
---|
1055 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
|
---|
1056 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
|
---|
1057 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
|
---|
1058 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
|
---|
1059 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
|
---|
1060 | }
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 |
|
---|
1064 | /**
|
---|
1065 | * Gets the instruction diagnostic for segment attribute granularity failure during
|
---|
1066 | * VM-entry of a nested-guest.
|
---|
1067 | *
|
---|
1068 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1069 | */
|
---|
1070 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
|
---|
1071 | {
|
---|
1072 | switch (iSegReg)
|
---|
1073 | {
|
---|
1074 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
|
---|
1075 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
|
---|
1076 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
|
---|
1077 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
|
---|
1078 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
|
---|
1079 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
|
---|
1080 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
|
---|
1081 | }
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | /**
|
---|
1085 | * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
|
---|
1086 | * VM-entry of a nested-guest.
|
---|
1087 | *
|
---|
1088 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1089 | */
|
---|
1090 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
|
---|
1091 | {
|
---|
1092 | switch (iSegReg)
|
---|
1093 | {
|
---|
1094 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
|
---|
1095 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
|
---|
1096 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
|
---|
1097 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
|
---|
1098 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
|
---|
1099 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
|
---|
1100 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 |
|
---|
1105 | /**
|
---|
1106 | * Gets the instruction diagnostic for segment attribute type accessed failure
|
---|
1107 | * during VM-entry of a nested-guest.
|
---|
1108 | *
|
---|
1109 | * @param iSegReg The segment index (X86_SREG_XXX).
|
---|
1110 | */
|
---|
1111 | IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
|
---|
1112 | {
|
---|
1113 | switch (iSegReg)
|
---|
1114 | {
|
---|
1115 | case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
|
---|
1116 | case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
|
---|
1117 | case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
|
---|
1118 | case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
|
---|
1119 | case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
|
---|
1120 | case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
|
---|
1121 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
|
---|
1122 | }
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 |
|
---|
1126 | /**
|
---|
1127 | * Saves the guest control registers, debug registers and some MSRs are part of
|
---|
1128 | * VM-exit.
|
---|
1129 | *
|
---|
1130 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1131 | */
|
---|
1132 | IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu)
|
---|
1133 | {
|
---|
1134 | /*
|
---|
1135 | * Saves the guest control registers, debug registers and some MSRs.
|
---|
1136 | * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
|
---|
1137 | */
|
---|
1138 | PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1139 |
|
---|
1140 | /* Save control registers. */
|
---|
1141 | pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
|
---|
1142 | pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
|
---|
1143 | pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
|
---|
1144 |
|
---|
1145 | /* Save SYSENTER CS, ESP, EIP. */
|
---|
1146 | pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
|
---|
1147 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1148 | {
|
---|
1149 | pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
|
---|
1150 | pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
|
---|
1151 | }
|
---|
1152 | else
|
---|
1153 | {
|
---|
1154 | pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
|
---|
1155 | pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
|
---|
1159 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
|
---|
1160 | {
|
---|
1161 | pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
|
---|
1162 | /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | /* Save PAT MSR. */
|
---|
1166 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
|
---|
1167 | pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
|
---|
1168 |
|
---|
1169 | /* Save EFER MSR. */
|
---|
1170 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
|
---|
1171 | pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
|
---|
1172 |
|
---|
1173 | /* We don't support clearing IA32_BNDCFGS MSR yet. */
|
---|
1174 | Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
|
---|
1175 |
|
---|
1176 | /* Nothing to do for SMBASE register - We don't support SMM yet. */
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 |
|
---|
1180 | /**
|
---|
1181 | * Saves the guest force-flags in preparation of entering the nested-guest.
|
---|
1182 | *
|
---|
1183 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1184 | */
|
---|
1185 | IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu)
|
---|
1186 | {
|
---|
1187 | /* We shouldn't be called multiple times during VM-entry. */
|
---|
1188 | Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
|
---|
1189 |
|
---|
1190 | /* MTF should not be set outside VMX non-root mode. */
|
---|
1191 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
|
---|
1192 |
|
---|
1193 | /*
|
---|
1194 | * Preserve the required force-flags.
|
---|
1195 | *
|
---|
1196 | * We cache and clear force-flags that would affect the execution of the
|
---|
1197 | * nested-guest. Cached flags are then restored while returning to the guest
|
---|
1198 | * if necessary.
|
---|
1199 | *
|
---|
1200 | * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
|
---|
1201 | * interrupts until the completion of the current VMLAUNCH/VMRESUME
|
---|
1202 | * instruction. Interrupt inhibition for any nested-guest instruction
|
---|
1203 | * is supplied by the guest-interruptibility state VMCS field and will
|
---|
1204 | * be set up as part of loading the guest state.
|
---|
1205 | *
|
---|
1206 | * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
|
---|
1207 | * successful VM-entry (due to invalid guest-state) need to continue
|
---|
1208 | * blocking NMIs if it was in effect before VM-entry.
|
---|
1209 | *
|
---|
1210 | * - MTF need not be preserved as it's used only in VMX non-root mode and
|
---|
1211 | * is supplied through the VM-execution controls.
|
---|
1212 | *
|
---|
1213 | * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
|
---|
1214 | * we will be able to generate interrupts that may cause VM-exits for
|
---|
1215 | * the nested-guest.
|
---|
1216 | */
|
---|
1217 | pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 |
|
---|
1221 | /**
|
---|
1222 | * Restores the guest force-flags in preparation of exiting the nested-guest.
|
---|
1223 | *
|
---|
1224 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1225 | */
|
---|
1226 | IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu)
|
---|
1227 | {
|
---|
1228 | if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
|
---|
1229 | {
|
---|
1230 | VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
|
---|
1231 | pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
|
---|
1232 | }
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 |
|
---|
1236 | /**
|
---|
1237 | * Performs the VMX transition to/from VMX non-root mode.
|
---|
1238 | *
|
---|
1239 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1240 | */
|
---|
1241 | IEM_STATIC int iemVmxTransition(PVMCPUCC pVCpu)
|
---|
1242 | {
|
---|
1243 | /*
|
---|
1244 | * Inform PGM about paging mode changes.
|
---|
1245 | * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
|
---|
1246 | * see comment in iemMemPageTranslateAndCheckAccess().
|
---|
1247 | */
|
---|
1248 | int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
|
---|
1249 | true /* fForce */);
|
---|
1250 | AssertRCReturn(rc, rc);
|
---|
1251 |
|
---|
1252 | /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
|
---|
1253 | IEMTlbInvalidateAll(pVCpu, false /*fVmm*/);
|
---|
1254 |
|
---|
1255 | /* Inform CPUM (recompiler), can later be removed. */
|
---|
1256 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
|
---|
1257 |
|
---|
1258 | /* Re-initialize IEM cache/state after the drastic mode switch. */
|
---|
1259 | iemReInitExec(pVCpu);
|
---|
1260 | return rc;
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 |
|
---|
1264 | /**
|
---|
1265 | * Calculates the current VMX-preemption timer value.
|
---|
1266 | *
|
---|
1267 | * @returns The current VMX-preemption timer value.
|
---|
1268 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1269 | */
|
---|
1270 | IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu)
|
---|
1271 | {
|
---|
1272 | /*
|
---|
1273 | * Assume the following:
|
---|
1274 | * PreemptTimerShift = 5
|
---|
1275 | * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
|
---|
1276 | * EntryTick = 50000 (TSC at time of VM-entry)
|
---|
1277 | *
|
---|
1278 | * CurTick Delta PreemptTimerVal
|
---|
1279 | * ----------------------------------
|
---|
1280 | * 60000 10000 2
|
---|
1281 | * 80000 30000 1
|
---|
1282 | * 90000 40000 0 -> VM-exit.
|
---|
1283 | *
|
---|
1284 | * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
|
---|
1285 | * The saved VMX-preemption timer value is calculated as follows:
|
---|
1286 | * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
|
---|
1287 | * E.g.:
|
---|
1288 | * Delta = 10000
|
---|
1289 | * Tmp = 10000 / (2 * 10000) = 0.5
|
---|
1290 | * NewPt = 2 - 0.5 = 2
|
---|
1291 | * Delta = 30000
|
---|
1292 | * Tmp = 30000 / (2 * 10000) = 1.5
|
---|
1293 | * NewPt = 2 - 1.5 = 1
|
---|
1294 | * Delta = 40000
|
---|
1295 | * Tmp = 40000 / 20000 = 2
|
---|
1296 | * NewPt = 2 - 2 = 0
|
---|
1297 | */
|
---|
1298 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
|
---|
1299 | uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
|
---|
1300 | if (uVmcsPreemptVal > 0)
|
---|
1301 | {
|
---|
1302 | uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
|
---|
1303 | uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
|
---|
1304 | uint64_t const uDelta = uCurTick - uEntryTick;
|
---|
1305 | uint32_t const uPreemptTimer = uVmcsPreemptVal
|
---|
1306 | - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
|
---|
1307 | return uPreemptTimer;
|
---|
1308 | }
|
---|
1309 | return 0;
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 |
|
---|
1313 | /**
|
---|
1314 | * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
|
---|
1315 | *
|
---|
1316 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1317 | */
|
---|
1318 | IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu)
|
---|
1319 | {
|
---|
1320 | /*
|
---|
1321 | * Save guest segment registers, GDTR, IDTR, LDTR, TR.
|
---|
1322 | * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
1323 | */
|
---|
1324 | /* CS, SS, ES, DS, FS, GS. */
|
---|
1325 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1326 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
1327 | {
|
---|
1328 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
1329 | if (!pSelReg->Attr.n.u1Unusable)
|
---|
1330 | iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
|
---|
1331 | else
|
---|
1332 | {
|
---|
1333 | /*
|
---|
1334 | * For unusable segments the attributes are undefined except for CS and SS.
|
---|
1335 | * For the rest we don't bother preserving anything but the unusable bit.
|
---|
1336 | */
|
---|
1337 | switch (iSegReg)
|
---|
1338 | {
|
---|
1339 | case X86_SREG_CS:
|
---|
1340 | pVmcs->GuestCs = pSelReg->Sel;
|
---|
1341 | pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
|
---|
1342 | pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
|
---|
1343 | pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
1344 | | X86DESCATTR_UNUSABLE);
|
---|
1345 | break;
|
---|
1346 |
|
---|
1347 | case X86_SREG_SS:
|
---|
1348 | pVmcs->GuestSs = pSelReg->Sel;
|
---|
1349 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1350 | pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
|
---|
1351 | pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
|
---|
1352 | break;
|
---|
1353 |
|
---|
1354 | case X86_SREG_DS:
|
---|
1355 | pVmcs->GuestDs = pSelReg->Sel;
|
---|
1356 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1357 | pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
|
---|
1358 | pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
|
---|
1359 | break;
|
---|
1360 |
|
---|
1361 | case X86_SREG_ES:
|
---|
1362 | pVmcs->GuestEs = pSelReg->Sel;
|
---|
1363 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1364 | pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
|
---|
1365 | pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
|
---|
1366 | break;
|
---|
1367 |
|
---|
1368 | case X86_SREG_FS:
|
---|
1369 | pVmcs->GuestFs = pSelReg->Sel;
|
---|
1370 | pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
|
---|
1371 | pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
|
---|
1372 | break;
|
---|
1373 |
|
---|
1374 | case X86_SREG_GS:
|
---|
1375 | pVmcs->GuestGs = pSelReg->Sel;
|
---|
1376 | pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
|
---|
1377 | pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
|
---|
1378 | break;
|
---|
1379 | }
|
---|
1380 | }
|
---|
1381 | }
|
---|
1382 |
|
---|
1383 | /* Segment attribute bits 31:17 and 11:8 MBZ. */
|
---|
1384 | uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
|
---|
1385 | | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
1386 | | X86DESCATTR_UNUSABLE;
|
---|
1387 | /* LDTR. */
|
---|
1388 | {
|
---|
1389 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
|
---|
1390 | pVmcs->GuestLdtr = pSelReg->Sel;
|
---|
1391 | pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
|
---|
1392 | Assert(X86_IS_CANONICAL(pSelReg->u64Base));
|
---|
1393 | pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
|
---|
1394 | pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
|
---|
1395 | }
|
---|
1396 |
|
---|
1397 | /* TR. */
|
---|
1398 | {
|
---|
1399 | PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
|
---|
1400 | pVmcs->GuestTr = pSelReg->Sel;
|
---|
1401 | pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
|
---|
1402 | pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
|
---|
1403 | pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | /* GDTR. */
|
---|
1407 | pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
1408 | pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
|
---|
1409 |
|
---|
1410 | /* IDTR. */
|
---|
1411 | pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
|
---|
1412 | pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 |
|
---|
1416 | /**
|
---|
1417 | * Saves guest non-register state as part of VM-exit.
|
---|
1418 | *
|
---|
1419 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1420 | * @param uExitReason The VM-exit reason.
|
---|
1421 | */
|
---|
1422 | IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
1423 | {
|
---|
1424 | /*
|
---|
1425 | * Save guest non-register state.
|
---|
1426 | * See Intel spec. 27.3.4 "Saving Non-Register State".
|
---|
1427 | */
|
---|
1428 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1429 |
|
---|
1430 | /*
|
---|
1431 | * Activity state.
|
---|
1432 | * Most VM-exits will occur in the active state. However, if the first instruction
|
---|
1433 | * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
|
---|
1434 | * the VM-exit will be from the HLT activity state.
|
---|
1435 | *
|
---|
1436 | * See Intel spec. 25.5.2 "Monitor Trap Flag".
|
---|
1437 | */
|
---|
1438 | /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
|
---|
1439 | * not? */
|
---|
1440 | EMSTATE const enmActivityState = EMGetState(pVCpu);
|
---|
1441 | switch (enmActivityState)
|
---|
1442 | {
|
---|
1443 | case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
|
---|
1444 | default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | /*
|
---|
1448 | * Interruptibility-state.
|
---|
1449 | */
|
---|
1450 | /* NMI. */
|
---|
1451 | pVmcs->u32GuestIntrState = 0;
|
---|
1452 | if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
1453 | {
|
---|
1454 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
|
---|
1455 | pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
|
---|
1456 | }
|
---|
1457 | else
|
---|
1458 | {
|
---|
1459 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1460 | pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | /* Blocking-by-STI. */
|
---|
1464 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
1465 | && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
1466 | {
|
---|
1467 | /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
|
---|
1468 | * currently. */
|
---|
1469 | pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
1470 | }
|
---|
1471 | /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
|
---|
1472 |
|
---|
1473 | /*
|
---|
1474 | * Pending debug exceptions.
|
---|
1475 | *
|
---|
1476 | * For VM-exits where it is not applicable, we can safely zero out the field.
|
---|
1477 | * For VM-exits where it is applicable, it's expected to be updated by the caller already.
|
---|
1478 | */
|
---|
1479 | if ( uExitReason != VMX_EXIT_INIT_SIGNAL
|
---|
1480 | && uExitReason != VMX_EXIT_SMI
|
---|
1481 | && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
|
---|
1482 | && !VMXIsVmexitTrapLike(uExitReason))
|
---|
1483 | {
|
---|
1484 | /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
|
---|
1485 | * block-by-MovSS is in effect. */
|
---|
1486 | pVmcs->u64GuestPendingDbgXcpts.u = 0;
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 | /*
|
---|
1490 | * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
|
---|
1491 | *
|
---|
1492 | * For VMX-preemption timer VM-exits, we should have already written back 0 if the
|
---|
1493 | * feature is supported back into the VMCS, and thus there is nothing further to do here.
|
---|
1494 | */
|
---|
1495 | if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
|
---|
1496 | && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
|
---|
1497 | pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
|
---|
1498 |
|
---|
1499 | /*
|
---|
1500 | * PAE PDPTEs.
|
---|
1501 | *
|
---|
1502 | * If EPT is enabled and PAE paging was used at the time of the VM-exit,
|
---|
1503 | * the PDPTEs are saved from the VMCS. Otherwise they're undefined but
|
---|
1504 | * we zero them for consistency.
|
---|
1505 | */
|
---|
1506 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
|
---|
1507 | {
|
---|
1508 | if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
|
---|
1509 | && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
|
---|
1510 | && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG))
|
---|
1511 | {
|
---|
1512 | pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
|
---|
1513 | pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
|
---|
1514 | pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
|
---|
1515 | pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
|
---|
1516 | }
|
---|
1517 | else
|
---|
1518 | {
|
---|
1519 | pVmcs->u64GuestPdpte0.u = 0;
|
---|
1520 | pVmcs->u64GuestPdpte1.u = 0;
|
---|
1521 | pVmcs->u64GuestPdpte2.u = 0;
|
---|
1522 | pVmcs->u64GuestPdpte3.u = 0;
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | /* Clear PGM's copy of the EPT pointer for added safety. */
|
---|
1526 | PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
|
---|
1527 | }
|
---|
1528 | else
|
---|
1529 | {
|
---|
1530 | pVmcs->u64GuestPdpte0.u = 0;
|
---|
1531 | pVmcs->u64GuestPdpte1.u = 0;
|
---|
1532 | pVmcs->u64GuestPdpte2.u = 0;
|
---|
1533 | pVmcs->u64GuestPdpte3.u = 0;
|
---|
1534 | }
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 |
|
---|
1538 | /**
|
---|
1539 | * Saves the guest-state as part of VM-exit.
|
---|
1540 | *
|
---|
1541 | * @returns VBox status code.
|
---|
1542 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1543 | * @param uExitReason The VM-exit reason.
|
---|
1544 | */
|
---|
1545 | IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
1546 | {
|
---|
1547 | iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
|
---|
1548 | iemVmxVmexitSaveGuestSegRegs(pVCpu);
|
---|
1549 |
|
---|
1550 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
|
---|
1551 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
1552 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
|
---|
1553 |
|
---|
1554 | iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
|
---|
1555 | }
|
---|
1556 |
|
---|
1557 |
|
---|
1558 | /**
|
---|
1559 | * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
|
---|
1560 | *
|
---|
1561 | * @returns VBox status code.
|
---|
1562 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1563 | * @param uExitReason The VM-exit reason (for diagnostic purposes).
|
---|
1564 | */
|
---|
1565 | IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
1566 | {
|
---|
1567 | /*
|
---|
1568 | * Save guest MSRs.
|
---|
1569 | * See Intel spec. 27.4 "Saving MSRs".
|
---|
1570 | */
|
---|
1571 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1572 | const char * const pszFailure = "VMX-abort";
|
---|
1573 |
|
---|
1574 | /*
|
---|
1575 | * The VM-exit MSR-store area address need not be a valid guest-physical address if the
|
---|
1576 | * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
|
---|
1577 | * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
|
---|
1578 | */
|
---|
1579 | uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
|
---|
1580 | if (!cMsrs)
|
---|
1581 | return VINF_SUCCESS;
|
---|
1582 |
|
---|
1583 | /*
|
---|
1584 | * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
|
---|
1585 | * is exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
1586 | * implementation causes a VMX-abort followed by a triple-fault.
|
---|
1587 | */
|
---|
1588 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
1589 | if (fIsMsrCountValid)
|
---|
1590 | { /* likely */ }
|
---|
1591 | else
|
---|
1592 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
|
---|
1593 |
|
---|
1594 | /*
|
---|
1595 | * Optimization if the nested hypervisor is using the same guest-physical page for both
|
---|
1596 | * the VM-entry MSR-load area as well as the VM-exit MSR store area.
|
---|
1597 | */
|
---|
1598 | PVMXAUTOMSR pMsrArea;
|
---|
1599 | RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
|
---|
1600 | RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
|
---|
1601 | if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
|
---|
1602 | pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
|
---|
1603 | else
|
---|
1604 | {
|
---|
1605 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
|
---|
1606 | GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
|
---|
1607 | if (RT_SUCCESS(rc))
|
---|
1608 | pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
|
---|
1609 | else
|
---|
1610 | {
|
---|
1611 | AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
|
---|
1612 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
|
---|
1613 | }
|
---|
1614 | }
|
---|
1615 |
|
---|
1616 | /*
|
---|
1617 | * Update VM-exit MSR store area.
|
---|
1618 | */
|
---|
1619 | PVMXAUTOMSR pMsr = pMsrArea;
|
---|
1620 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
1621 | {
|
---|
1622 | if ( !pMsr->u32Reserved
|
---|
1623 | && pMsr->u32Msr != MSR_IA32_SMBASE
|
---|
1624 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
1625 | {
|
---|
1626 | VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
|
---|
1627 | if (rcStrict == VINF_SUCCESS)
|
---|
1628 | continue;
|
---|
1629 |
|
---|
1630 | /*
|
---|
1631 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
|
---|
1632 | * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
|
---|
1633 | * recording the MSR index in the auxiliary info. field and indicated further by our
|
---|
1634 | * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
|
---|
1635 | * if possible, or come up with a better, generic solution.
|
---|
1636 | */
|
---|
1637 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
1638 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
1639 | ? kVmxVDiag_Vmexit_MsrStoreRing3
|
---|
1640 | : kVmxVDiag_Vmexit_MsrStore;
|
---|
1641 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
|
---|
1642 | }
|
---|
1643 | else
|
---|
1644 | {
|
---|
1645 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
1646 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
|
---|
1647 | }
|
---|
1648 | }
|
---|
1649 |
|
---|
1650 | /*
|
---|
1651 | * Commit the VM-exit MSR store are to guest memory.
|
---|
1652 | */
|
---|
1653 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
|
---|
1654 | if (RT_SUCCESS(rc))
|
---|
1655 | return VINF_SUCCESS;
|
---|
1656 |
|
---|
1657 | NOREF(uExitReason);
|
---|
1658 | NOREF(pszFailure);
|
---|
1659 |
|
---|
1660 | AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
|
---|
1661 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
|
---|
1662 | }
|
---|
1663 |
|
---|
1664 |
|
---|
1665 | /**
|
---|
1666 | * Performs a VMX abort (due to an fatal error during VM-exit).
|
---|
1667 | *
|
---|
1668 | * @returns Strict VBox status code.
|
---|
1669 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1670 | * @param enmAbort The VMX abort reason.
|
---|
1671 | */
|
---|
1672 | IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort)
|
---|
1673 | {
|
---|
1674 | /*
|
---|
1675 | * Perform the VMX abort.
|
---|
1676 | * See Intel spec. 27.7 "VMX Aborts".
|
---|
1677 | */
|
---|
1678 | LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
|
---|
1679 |
|
---|
1680 | /* We don't support SMX yet. */
|
---|
1681 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
|
---|
1682 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
1683 | {
|
---|
1684 | RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
|
---|
1685 | uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
|
---|
1686 | PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | return VINF_EM_TRIPLE_FAULT;
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 |
|
---|
1693 | /**
|
---|
1694 | * Loads host control registers, debug registers and MSRs as part of VM-exit.
|
---|
1695 | *
|
---|
1696 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1697 | */
|
---|
1698 | IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu)
|
---|
1699 | {
|
---|
1700 | /*
|
---|
1701 | * Load host control registers, debug registers and MSRs.
|
---|
1702 | * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
|
---|
1703 | */
|
---|
1704 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1705 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
1706 |
|
---|
1707 | /* CR0. */
|
---|
1708 | {
|
---|
1709 | /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
|
---|
1710 | uint64_t const uCr0Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
|
---|
1711 | uint64_t const uCr0Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
|
---|
1712 | uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK | uCr0Mb1 | ~uCr0Mb0;
|
---|
1713 | uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
|
---|
1714 | uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
1715 | uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
|
---|
1716 |
|
---|
1717 | /* Verify we have not modified CR0 fixed bits in VMX non-root operation. */
|
---|
1718 | Assert((uGuestCr0 & uCr0Mb1) == uCr0Mb1);
|
---|
1719 | Assert((uGuestCr0 & ~uCr0Mb0) == 0);
|
---|
1720 | CPUMSetGuestCR0(pVCpu, uValidHostCr0);
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 | /* CR4. */
|
---|
1724 | {
|
---|
1725 | /* CR4 fixed bits are not modified. */
|
---|
1726 | uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
|
---|
1727 | uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
|
---|
1728 | uint64_t const fCr4IgnMask = uCr4Mb1 | ~uCr4Mb0;
|
---|
1729 | uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
|
---|
1730 | uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
|
---|
1731 | uint64_t uValidHostCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
|
---|
1732 | if (fHostInLongMode)
|
---|
1733 | uValidHostCr4 |= X86_CR4_PAE;
|
---|
1734 | else
|
---|
1735 | uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
|
---|
1736 |
|
---|
1737 | /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
|
---|
1738 | Assert((uGuestCr4 & uCr4Mb1) == uCr4Mb1);
|
---|
1739 | Assert((uGuestCr4 & ~uCr4Mb0) == 0);
|
---|
1740 | CPUMSetGuestCR4(pVCpu, uValidHostCr4);
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 | /* CR3 (host value validated while checking host-state during VM-entry). */
|
---|
1744 | pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
|
---|
1745 |
|
---|
1746 | /* DR7. */
|
---|
1747 | pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
|
---|
1748 |
|
---|
1749 | /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
|
---|
1750 |
|
---|
1751 | /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
|
---|
1752 | pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
|
---|
1753 | pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
|
---|
1754 | pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
|
---|
1755 |
|
---|
1756 | /* FS, GS bases are loaded later while we load host segment registers. */
|
---|
1757 |
|
---|
1758 | /* EFER MSR (host value validated while checking host-state during VM-entry). */
|
---|
1759 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
1760 | pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
|
---|
1761 | else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
1762 | {
|
---|
1763 | if (fHostInLongMode)
|
---|
1764 | pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
1765 | else
|
---|
1766 | pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
1770 |
|
---|
1771 | /* PAT MSR (host value is validated while checking host-state during VM-entry). */
|
---|
1772 | if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
|
---|
1773 | pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
|
---|
1774 |
|
---|
1775 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 |
|
---|
1779 | /**
|
---|
1780 | * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
|
---|
1781 | *
|
---|
1782 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1783 | */
|
---|
1784 | IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu)
|
---|
1785 | {
|
---|
1786 | /*
|
---|
1787 | * Load host segment registers, GDTR, IDTR, LDTR and TR.
|
---|
1788 | * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
|
---|
1789 | *
|
---|
1790 | * Warning! Be careful to not touch fields that are reserved by VT-x,
|
---|
1791 | * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
|
---|
1792 | */
|
---|
1793 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1794 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
1795 |
|
---|
1796 | /* CS, SS, ES, DS, FS, GS. */
|
---|
1797 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
1798 | {
|
---|
1799 | RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
|
---|
1800 | bool const fUnusable = RT_BOOL(HostSel == 0);
|
---|
1801 | PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
1802 |
|
---|
1803 | /* Selector. */
|
---|
1804 | pSelReg->Sel = HostSel;
|
---|
1805 | pSelReg->ValidSel = HostSel;
|
---|
1806 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1807 |
|
---|
1808 | /* Limit. */
|
---|
1809 | pSelReg->u32Limit = 0xffffffff;
|
---|
1810 |
|
---|
1811 | /* Base. */
|
---|
1812 | pSelReg->u64Base = 0;
|
---|
1813 |
|
---|
1814 | /* Attributes. */
|
---|
1815 | if (iSegReg == X86_SREG_CS)
|
---|
1816 | {
|
---|
1817 | pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
|
---|
1818 | pSelReg->Attr.n.u1DescType = 1;
|
---|
1819 | pSelReg->Attr.n.u2Dpl = 0;
|
---|
1820 | pSelReg->Attr.n.u1Present = 1;
|
---|
1821 | pSelReg->Attr.n.u1Long = fHostInLongMode;
|
---|
1822 | pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
|
---|
1823 | pSelReg->Attr.n.u1Granularity = 1;
|
---|
1824 | Assert(!pSelReg->Attr.n.u1Unusable);
|
---|
1825 | Assert(!fUnusable);
|
---|
1826 | }
|
---|
1827 | else
|
---|
1828 | {
|
---|
1829 | pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
|
---|
1830 | pSelReg->Attr.n.u1DescType = 1;
|
---|
1831 | pSelReg->Attr.n.u2Dpl = 0;
|
---|
1832 | pSelReg->Attr.n.u1Present = 1;
|
---|
1833 | pSelReg->Attr.n.u1DefBig = 1;
|
---|
1834 | pSelReg->Attr.n.u1Granularity = 1;
|
---|
1835 | pSelReg->Attr.n.u1Unusable = fUnusable;
|
---|
1836 | }
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 | /* FS base. */
|
---|
1840 | if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
|
---|
1841 | || fHostInLongMode)
|
---|
1842 | {
|
---|
1843 | Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
|
---|
1844 | pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
|
---|
1845 | }
|
---|
1846 |
|
---|
1847 | /* GS base. */
|
---|
1848 | if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
|
---|
1849 | || fHostInLongMode)
|
---|
1850 | {
|
---|
1851 | Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
|
---|
1852 | pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 | /* TR. */
|
---|
1856 | Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
|
---|
1857 | Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
|
---|
1858 | pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
|
---|
1859 | pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
|
---|
1860 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1861 | pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
|
---|
1862 | pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
|
---|
1863 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
1864 | pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
|
---|
1865 | pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
|
---|
1866 | pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
|
---|
1867 | pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
|
---|
1868 | pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
|
---|
1869 |
|
---|
1870 | /* LDTR (Warning! do not touch the base and limits here). */
|
---|
1871 | pVCpu->cpum.GstCtx.ldtr.Sel = 0;
|
---|
1872 | pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
|
---|
1873 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1874 | pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
1875 |
|
---|
1876 | /* GDTR. */
|
---|
1877 | Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
|
---|
1878 | pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
|
---|
1879 | pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
|
---|
1880 |
|
---|
1881 | /* IDTR.*/
|
---|
1882 | Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
|
---|
1883 | pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
|
---|
1884 | pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
|
---|
1885 | }
|
---|
1886 |
|
---|
1887 |
|
---|
1888 | /**
|
---|
1889 | * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
|
---|
1890 | *
|
---|
1891 | * @returns VBox status code.
|
---|
1892 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1893 | * @param uExitReason The VMX instruction name (for logging purposes).
|
---|
1894 | */
|
---|
1895 | IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
1896 | {
|
---|
1897 | /*
|
---|
1898 | * Load host MSRs.
|
---|
1899 | * See Intel spec. 27.6 "Loading MSRs".
|
---|
1900 | */
|
---|
1901 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1902 | const char * const pszFailure = "VMX-abort";
|
---|
1903 |
|
---|
1904 | /*
|
---|
1905 | * The VM-exit MSR-load area address need not be a valid guest-physical address if the
|
---|
1906 | * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
|
---|
1907 | * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
|
---|
1908 | */
|
---|
1909 | uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
|
---|
1910 | if (!cMsrs)
|
---|
1911 | return VINF_SUCCESS;
|
---|
1912 |
|
---|
1913 | /*
|
---|
1914 | * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
|
---|
1915 | * is exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
1916 | * implementation causes a VMX-abort followed by a triple-fault.
|
---|
1917 | */
|
---|
1918 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
1919 | if (fIsMsrCountValid)
|
---|
1920 | { /* likely */ }
|
---|
1921 | else
|
---|
1922 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
|
---|
1923 |
|
---|
1924 | RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
|
---|
1925 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
|
---|
1926 | GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
|
---|
1927 | if (RT_SUCCESS(rc))
|
---|
1928 | {
|
---|
1929 | PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
|
---|
1930 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
1931 | {
|
---|
1932 | if ( !pMsr->u32Reserved
|
---|
1933 | && pMsr->u32Msr != MSR_K8_FS_BASE
|
---|
1934 | && pMsr->u32Msr != MSR_K8_GS_BASE
|
---|
1935 | && pMsr->u32Msr != MSR_K6_EFER
|
---|
1936 | && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
|
---|
1937 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
1938 | {
|
---|
1939 | VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
|
---|
1940 | if (rcStrict == VINF_SUCCESS)
|
---|
1941 | continue;
|
---|
1942 |
|
---|
1943 | /*
|
---|
1944 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
|
---|
1945 | * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
|
---|
1946 | * recording the MSR index in the auxiliary info. field and indicated further by our
|
---|
1947 | * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
|
---|
1948 | * if possible, or come up with a better, generic solution.
|
---|
1949 | */
|
---|
1950 | pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
|
---|
1951 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
1952 | ? kVmxVDiag_Vmexit_MsrLoadRing3
|
---|
1953 | : kVmxVDiag_Vmexit_MsrLoad;
|
---|
1954 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
|
---|
1955 | }
|
---|
1956 | else
|
---|
1957 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
|
---|
1958 | }
|
---|
1959 | }
|
---|
1960 | else
|
---|
1961 | {
|
---|
1962 | AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
|
---|
1963 | IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 | NOREF(uExitReason);
|
---|
1967 | NOREF(pszFailure);
|
---|
1968 | return VINF_SUCCESS;
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 |
|
---|
1972 | /**
|
---|
1973 | * Loads the host state as part of VM-exit.
|
---|
1974 | *
|
---|
1975 | * @returns Strict VBox status code.
|
---|
1976 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1977 | * @param uExitReason The VM-exit reason (for logging purposes).
|
---|
1978 | */
|
---|
1979 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
1980 | {
|
---|
1981 | /*
|
---|
1982 | * Load host state.
|
---|
1983 | * See Intel spec. 27.5 "Loading Host State".
|
---|
1984 | */
|
---|
1985 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1986 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
1987 |
|
---|
1988 | /* We cannot return from a long-mode guest to a host that is not in long mode. */
|
---|
1989 | if ( CPUMIsGuestInLongMode(pVCpu)
|
---|
1990 | && !fHostInLongMode)
|
---|
1991 | {
|
---|
1992 | Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
|
---|
1993 | return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 | /*
|
---|
1997 | * Check host PAE PDPTEs prior to loading the host state.
|
---|
1998 | * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
|
---|
1999 | */
|
---|
2000 | if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
|
---|
2001 | && !fHostInLongMode
|
---|
2002 | && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
|
---|
2003 | || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
|
---|
2004 | {
|
---|
2005 | int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
|
---|
2006 | if (RT_SUCCESS(rc))
|
---|
2007 | { /* likely*/ }
|
---|
2008 | else
|
---|
2009 | {
|
---|
2010 | IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
|
---|
2011 | return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
|
---|
2012 | }
|
---|
2013 | }
|
---|
2014 |
|
---|
2015 | iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
|
---|
2016 | iemVmxVmexitLoadHostSegRegs(pVCpu);
|
---|
2017 |
|
---|
2018 | /*
|
---|
2019 | * Load host RIP, RSP and RFLAGS.
|
---|
2020 | * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
|
---|
2021 | */
|
---|
2022 | pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
|
---|
2023 | pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
|
---|
2024 | pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
|
---|
2025 |
|
---|
2026 | /* Clear address range monitoring. */
|
---|
2027 | EMMonitorWaitClear(pVCpu);
|
---|
2028 |
|
---|
2029 | /* Perform the VMX transition (PGM updates). */
|
---|
2030 | VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
|
---|
2031 | if (rcStrict == VINF_SUCCESS)
|
---|
2032 | { /* likely */ }
|
---|
2033 | else if (RT_SUCCESS(rcStrict))
|
---|
2034 | {
|
---|
2035 | Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
|
---|
2036 | uExitReason));
|
---|
2037 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
2038 | }
|
---|
2039 | else
|
---|
2040 | {
|
---|
2041 | Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
|
---|
2042 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 | Assert(rcStrict == VINF_SUCCESS);
|
---|
2046 |
|
---|
2047 | /* Load MSRs from the VM-exit auto-load MSR area. */
|
---|
2048 | int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
|
---|
2049 | if (RT_FAILURE(rc))
|
---|
2050 | {
|
---|
2051 | Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
|
---|
2052 | return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
|
---|
2053 | }
|
---|
2054 | return VINF_SUCCESS;
|
---|
2055 | }
|
---|
2056 |
|
---|
2057 |
|
---|
2058 | /**
|
---|
2059 | * Gets VM-exit instruction information along with any displacement for an
|
---|
2060 | * instruction VM-exit.
|
---|
2061 | *
|
---|
2062 | * @returns The VM-exit instruction information.
|
---|
2063 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2064 | * @param uExitReason The VM-exit reason.
|
---|
2065 | * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
|
---|
2066 | * @param pGCPtrDisp Where to store the displacement field. Optional, can be
|
---|
2067 | * NULL.
|
---|
2068 | */
|
---|
2069 | IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
|
---|
2070 | {
|
---|
2071 | RTGCPTR GCPtrDisp;
|
---|
2072 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
2073 | ExitInstrInfo.u = 0;
|
---|
2074 |
|
---|
2075 | /*
|
---|
2076 | * Get and parse the ModR/M byte from our decoded opcodes.
|
---|
2077 | */
|
---|
2078 | uint8_t bRm;
|
---|
2079 | uint8_t const offModRm = pVCpu->iem.s.offModRm;
|
---|
2080 | IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
|
---|
2081 | if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
|
---|
2082 | {
|
---|
2083 | /*
|
---|
2084 | * ModR/M indicates register addressing.
|
---|
2085 | *
|
---|
2086 | * The primary/secondary register operands are reported in the iReg1 or iReg2
|
---|
2087 | * fields depending on whether it is a read/write form.
|
---|
2088 | */
|
---|
2089 | uint8_t idxReg1;
|
---|
2090 | uint8_t idxReg2;
|
---|
2091 | if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
|
---|
2092 | {
|
---|
2093 | idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
2094 | idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
2095 | }
|
---|
2096 | else
|
---|
2097 | {
|
---|
2098 | idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
|
---|
2099 | idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
|
---|
2100 | }
|
---|
2101 | ExitInstrInfo.All.u2Scaling = 0;
|
---|
2102 | ExitInstrInfo.All.iReg1 = idxReg1;
|
---|
2103 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
2104 | ExitInstrInfo.All.fIsRegOperand = 1;
|
---|
2105 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
2106 | ExitInstrInfo.All.iSegReg = 0;
|
---|
2107 | ExitInstrInfo.All.iIdxReg = 0;
|
---|
2108 | ExitInstrInfo.All.fIdxRegInvalid = 1;
|
---|
2109 | ExitInstrInfo.All.iBaseReg = 0;
|
---|
2110 | ExitInstrInfo.All.fBaseRegInvalid = 1;
|
---|
2111 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
2112 |
|
---|
2113 | /* Displacement not applicable for register addressing. */
|
---|
2114 | GCPtrDisp = 0;
|
---|
2115 | }
|
---|
2116 | else
|
---|
2117 | {
|
---|
2118 | /*
|
---|
2119 | * ModR/M indicates memory addressing.
|
---|
2120 | */
|
---|
2121 | uint8_t uScale = 0;
|
---|
2122 | bool fBaseRegValid = false;
|
---|
2123 | bool fIdxRegValid = false;
|
---|
2124 | uint8_t iBaseReg = 0;
|
---|
2125 | uint8_t iIdxReg = 0;
|
---|
2126 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
2127 | {
|
---|
2128 | /*
|
---|
2129 | * Parse the ModR/M, displacement for 16-bit addressing mode.
|
---|
2130 | * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
|
---|
2131 | */
|
---|
2132 | uint16_t u16Disp = 0;
|
---|
2133 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
2134 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
2135 | {
|
---|
2136 | /* Displacement without any registers. */
|
---|
2137 | IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
|
---|
2138 | }
|
---|
2139 | else
|
---|
2140 | {
|
---|
2141 | /* Register (index and base). */
|
---|
2142 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
2143 | {
|
---|
2144 | case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
2145 | case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
2146 | case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
2147 | case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
2148 | case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
|
---|
2149 | case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
|
---|
2150 | case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
|
---|
2151 | case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 | /* Register + displacement. */
|
---|
2155 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
2156 | {
|
---|
2157 | case 0: break;
|
---|
2158 | case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
|
---|
2159 | case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
|
---|
2160 | default:
|
---|
2161 | {
|
---|
2162 | /* Register addressing, handled at the beginning. */
|
---|
2163 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
2164 | break;
|
---|
2165 | }
|
---|
2166 | }
|
---|
2167 | }
|
---|
2168 |
|
---|
2169 | Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
|
---|
2170 | GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
|
---|
2171 | }
|
---|
2172 | else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
|
---|
2173 | {
|
---|
2174 | /*
|
---|
2175 | * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
|
---|
2176 | * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
|
---|
2177 | */
|
---|
2178 | uint32_t u32Disp = 0;
|
---|
2179 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
2180 | {
|
---|
2181 | /* Displacement without any registers. */
|
---|
2182 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
2183 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
2184 | }
|
---|
2185 | else
|
---|
2186 | {
|
---|
2187 | /* Register (and perhaps scale, index and base). */
|
---|
2188 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
2189 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
2190 | if (iBaseReg == 4)
|
---|
2191 | {
|
---|
2192 | /* An SIB byte follows the ModR/M byte, parse it. */
|
---|
2193 | uint8_t bSib;
|
---|
2194 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
2195 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
2196 |
|
---|
2197 | /* A displacement may follow SIB, update its offset. */
|
---|
2198 | offDisp += sizeof(bSib);
|
---|
2199 |
|
---|
2200 | /* Get the scale. */
|
---|
2201 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
2202 |
|
---|
2203 | /* Get the index register. */
|
---|
2204 | iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
|
---|
2205 | fIdxRegValid = RT_BOOL(iIdxReg != 4);
|
---|
2206 |
|
---|
2207 | /* Get the base register. */
|
---|
2208 | iBaseReg = bSib & X86_SIB_BASE_MASK;
|
---|
2209 | fBaseRegValid = true;
|
---|
2210 | if (iBaseReg == 5)
|
---|
2211 | {
|
---|
2212 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
2213 | {
|
---|
2214 | /* Mod is 0 implies a 32-bit displacement with no base. */
|
---|
2215 | fBaseRegValid = false;
|
---|
2216 | IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
|
---|
2217 | }
|
---|
2218 | else
|
---|
2219 | {
|
---|
2220 | /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
|
---|
2221 | iBaseReg = X86_GREG_xBP;
|
---|
2222 | }
|
---|
2223 | }
|
---|
2224 | }
|
---|
2225 |
|
---|
2226 | /* Register + displacement. */
|
---|
2227 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
2228 | {
|
---|
2229 | case 0: /* Handled above */ break;
|
---|
2230 | case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
|
---|
2231 | case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
|
---|
2232 | default:
|
---|
2233 | {
|
---|
2234 | /* Register addressing, handled at the beginning. */
|
---|
2235 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
2236 | break;
|
---|
2237 | }
|
---|
2238 | }
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
|
---|
2242 | }
|
---|
2243 | else
|
---|
2244 | {
|
---|
2245 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
|
---|
2246 |
|
---|
2247 | /*
|
---|
2248 | * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
|
---|
2249 | * See Intel instruction spec. 2.2 "IA-32e Mode".
|
---|
2250 | */
|
---|
2251 | uint64_t u64Disp = 0;
|
---|
2252 | bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
|
---|
2253 | if (fRipRelativeAddr)
|
---|
2254 | {
|
---|
2255 | /*
|
---|
2256 | * RIP-relative addressing mode.
|
---|
2257 | *
|
---|
2258 | * The displacement is 32-bit signed implying an offset range of +/-2G.
|
---|
2259 | * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
|
---|
2260 | */
|
---|
2261 | uint8_t const offDisp = offModRm + sizeof(bRm);
|
---|
2262 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
2263 | }
|
---|
2264 | else
|
---|
2265 | {
|
---|
2266 | uint8_t offDisp = offModRm + sizeof(bRm);
|
---|
2267 |
|
---|
2268 | /*
|
---|
2269 | * Register (and perhaps scale, index and base).
|
---|
2270 | *
|
---|
2271 | * REX.B extends the most-significant bit of the base register. However, REX.B
|
---|
2272 | * is ignored while determining whether an SIB follows the opcode. Hence, we
|
---|
2273 | * shall OR any REX.B bit -after- inspecting for an SIB byte below.
|
---|
2274 | *
|
---|
2275 | * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
|
---|
2276 | */
|
---|
2277 | iBaseReg = (bRm & X86_MODRM_RM_MASK);
|
---|
2278 | if (iBaseReg == 4)
|
---|
2279 | {
|
---|
2280 | /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
|
---|
2281 | uint8_t bSib;
|
---|
2282 | uint8_t const offSib = offModRm + sizeof(bRm);
|
---|
2283 | IEM_SIB_GET_U8(pVCpu, bSib, offSib);
|
---|
2284 |
|
---|
2285 | /* Displacement may follow SIB, update its offset. */
|
---|
2286 | offDisp += sizeof(bSib);
|
---|
2287 |
|
---|
2288 | /* Get the scale. */
|
---|
2289 | uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
2290 |
|
---|
2291 | /* Get the index. */
|
---|
2292 | iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
|
---|
2293 | fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
|
---|
2294 |
|
---|
2295 | /* Get the base. */
|
---|
2296 | iBaseReg = (bSib & X86_SIB_BASE_MASK);
|
---|
2297 | fBaseRegValid = true;
|
---|
2298 | if (iBaseReg == 5)
|
---|
2299 | {
|
---|
2300 | if ((bRm & X86_MODRM_MOD_MASK) == 0)
|
---|
2301 | {
|
---|
2302 | /* Mod is 0 implies a signed 32-bit displacement with no base. */
|
---|
2303 | IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
|
---|
2304 | }
|
---|
2305 | else
|
---|
2306 | {
|
---|
2307 | /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
|
---|
2308 | iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
|
---|
2309 | }
|
---|
2310 | }
|
---|
2311 | }
|
---|
2312 | iBaseReg |= pVCpu->iem.s.uRexB;
|
---|
2313 |
|
---|
2314 | /* Register + displacement. */
|
---|
2315 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
2316 | {
|
---|
2317 | case 0: /* Handled above */ break;
|
---|
2318 | case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
2319 | case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
|
---|
2320 | default:
|
---|
2321 | {
|
---|
2322 | /* Register addressing, handled at the beginning. */
|
---|
2323 | AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
|
---|
2324 | break;
|
---|
2325 | }
|
---|
2326 | }
|
---|
2327 | }
|
---|
2328 |
|
---|
2329 | GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
|
---|
2330 | }
|
---|
2331 |
|
---|
2332 | /*
|
---|
2333 | * The primary or secondary register operand is reported in iReg2 depending
|
---|
2334 | * on whether the primary operand is in read/write form.
|
---|
2335 | */
|
---|
2336 | uint8_t idxReg2;
|
---|
2337 | if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
|
---|
2338 | {
|
---|
2339 | idxReg2 = bRm & X86_MODRM_RM_MASK;
|
---|
2340 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
2341 | idxReg2 |= pVCpu->iem.s.uRexB;
|
---|
2342 | }
|
---|
2343 | else
|
---|
2344 | {
|
---|
2345 | idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
|
---|
2346 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
2347 | idxReg2 |= pVCpu->iem.s.uRexReg;
|
---|
2348 | }
|
---|
2349 | ExitInstrInfo.All.u2Scaling = uScale;
|
---|
2350 | ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
|
---|
2351 | ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
|
---|
2352 | ExitInstrInfo.All.fIsRegOperand = 0;
|
---|
2353 | ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
|
---|
2354 | ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
|
---|
2355 | ExitInstrInfo.All.iIdxReg = iIdxReg;
|
---|
2356 | ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
|
---|
2357 | ExitInstrInfo.All.iBaseReg = iBaseReg;
|
---|
2358 | ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
|
---|
2359 | ExitInstrInfo.All.iReg2 = idxReg2;
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | /*
|
---|
2363 | * Handle exceptions to the norm for certain instructions.
|
---|
2364 | * (e.g. some instructions convey an instruction identity in place of iReg2).
|
---|
2365 | */
|
---|
2366 | switch (uExitReason)
|
---|
2367 | {
|
---|
2368 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
2369 | {
|
---|
2370 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
2371 | Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
|
---|
2372 | ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
2373 | ExitInstrInfo.GdtIdt.u2Undef0 = 0;
|
---|
2374 | break;
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
2378 | {
|
---|
2379 | Assert(VMXINSTRID_IS_VALID(uInstrId));
|
---|
2380 | Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
|
---|
2381 | ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
|
---|
2382 | ExitInstrInfo.LdtTr.u2Undef0 = 0;
|
---|
2383 | break;
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 | case VMX_EXIT_RDRAND:
|
---|
2387 | case VMX_EXIT_RDSEED:
|
---|
2388 | {
|
---|
2389 | Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
|
---|
2390 | break;
|
---|
2391 | }
|
---|
2392 | }
|
---|
2393 |
|
---|
2394 | /* Update displacement and return the constructed VM-exit instruction information field. */
|
---|
2395 | if (pGCPtrDisp)
|
---|
2396 | *pGCPtrDisp = GCPtrDisp;
|
---|
2397 |
|
---|
2398 | return ExitInstrInfo.u;
|
---|
2399 | }
|
---|
2400 |
|
---|
2401 |
|
---|
2402 | /**
|
---|
2403 | * VMX VM-exit handler.
|
---|
2404 | *
|
---|
2405 | * @returns Strict VBox status code.
|
---|
2406 | * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
|
---|
2407 | * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
|
---|
2408 | * triple-fault.
|
---|
2409 | *
|
---|
2410 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2411 | * @param uExitReason The VM-exit reason.
|
---|
2412 | * @param u64ExitQual The Exit qualification.
|
---|
2413 | *
|
---|
2414 | * @remarks We need not necessarily have completed VM-entry before a VM-exit is
|
---|
2415 | * called. Failures during VM-entry can cause VM-exits as well, so we
|
---|
2416 | * -cannot- assert we're in VMX non-root mode here.
|
---|
2417 | */
|
---|
2418 | IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
|
---|
2419 | {
|
---|
2420 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
2421 | RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
|
---|
2422 | AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
|
---|
2423 | return VERR_IEM_IPE_7;
|
---|
2424 | # else
|
---|
2425 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
2426 |
|
---|
2427 | /*
|
---|
2428 | * Import all the guest-CPU state.
|
---|
2429 | *
|
---|
2430 | * HM on returning to guest execution would have to reset up a whole lot of state
|
---|
2431 | * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
|
---|
2432 | * the state and flag reloading the entire state on re-entry. So import the entire
|
---|
2433 | * state here, see HMNotifyVmxNstGstVmexit() for more comments.
|
---|
2434 | */
|
---|
2435 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
|
---|
2436 |
|
---|
2437 | /*
|
---|
2438 | * Ensure VM-entry interruption information valid bit is cleared.
|
---|
2439 | *
|
---|
2440 | * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
|
---|
2441 | * by invalid-guest state or machine-check exceptions) also clear this bit.
|
---|
2442 | *
|
---|
2443 | * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
|
---|
2444 | */
|
---|
2445 | if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
|
---|
2446 | pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
|
---|
2447 |
|
---|
2448 | /*
|
---|
2449 | * Update the VM-exit reason and Exit qualification.
|
---|
2450 | * Other VMCS read-only data fields are expected to be updated by the caller already.
|
---|
2451 | */
|
---|
2452 | pVmcs->u32RoExitReason = uExitReason;
|
---|
2453 | pVmcs->u64RoExitQual.u = u64ExitQual;
|
---|
2454 |
|
---|
2455 | Log3(("vmexit: reason=%#RX32 qual=%#RX64 cs:rip=%04x:%#RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", uExitReason,
|
---|
2456 | pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
|
---|
2457 | pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4));
|
---|
2458 |
|
---|
2459 | /*
|
---|
2460 | * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
|
---|
2461 | * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
|
---|
2462 | */
|
---|
2463 | {
|
---|
2464 | uint8_t uVector;
|
---|
2465 | uint32_t fFlags;
|
---|
2466 | uint32_t uErrCode;
|
---|
2467 | bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
|
---|
2468 | if (fInEventDelivery)
|
---|
2469 | {
|
---|
2470 | /*
|
---|
2471 | * A VM-exit is not considered to occur during event delivery when the VM-exit is
|
---|
2472 | * caused by a triple-fault or the original event results in a double-fault that
|
---|
2473 | * causes the VM exit directly (exception bitmap). Therefore, we must not set the
|
---|
2474 | * original event information into the IDT-vectoring information fields.
|
---|
2475 | *
|
---|
2476 | * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
|
---|
2477 | */
|
---|
2478 | if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
|
---|
2479 | && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
|
---|
2480 | || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
|
---|
2481 | {
|
---|
2482 | uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
|
---|
2483 | uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
|
---|
2484 | uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
|
---|
2485 | | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
|
---|
2486 | | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
|
---|
2487 | | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
|
---|
2488 | iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
|
---|
2489 | iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
|
---|
2490 | LogFlow(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
|
---|
2491 | pVCpu->cpum.GstCtx.cr2));
|
---|
2492 | }
|
---|
2493 | }
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 | /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
|
---|
2497 | Assert(pVmcs->u64RoIoRcx.u == 0);
|
---|
2498 | Assert(pVmcs->u64RoIoRsi.u == 0);
|
---|
2499 | Assert(pVmcs->u64RoIoRdi.u == 0);
|
---|
2500 | Assert(pVmcs->u64RoIoRip.u == 0);
|
---|
2501 |
|
---|
2502 | /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
|
---|
2503 | if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
|
---|
2504 | {
|
---|
2505 | Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
|
---|
2506 | Assert(uExitReason != VMX_EXIT_INT_WINDOW);
|
---|
2507 | }
|
---|
2508 |
|
---|
2509 | /* For exception or NMI VM-exits the VM-exit interruption info. field must be valid. */
|
---|
2510 | Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
|
---|
2511 |
|
---|
2512 | /*
|
---|
2513 | * Save the guest state back into the VMCS.
|
---|
2514 | * We only need to save the state when the VM-entry was successful.
|
---|
2515 | */
|
---|
2516 | bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
|
---|
2517 | if (!fVmentryFailed)
|
---|
2518 | {
|
---|
2519 | /*
|
---|
2520 | * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
|
---|
2521 | * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
|
---|
2522 | *
|
---|
2523 | * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
|
---|
2524 | * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
|
---|
2525 | * as guest-CPU state would not been modified. Hence for now, we do this only when
|
---|
2526 | * the VM-entry succeeded.
|
---|
2527 | */
|
---|
2528 | /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
|
---|
2529 | * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
|
---|
2530 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
|
---|
2531 | {
|
---|
2532 | if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
|
---|
2533 | pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
|
---|
2534 | else
|
---|
2535 | pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
|
---|
2536 | }
|
---|
2537 |
|
---|
2538 | /*
|
---|
2539 | * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
|
---|
2540 | * occurs in enclave mode/SMM which we don't support yet.
|
---|
2541 | *
|
---|
2542 | * If we ever add support for it, we can pass just the lower bits to the functions
|
---|
2543 | * below, till then an assert should suffice.
|
---|
2544 | */
|
---|
2545 | Assert(!RT_HI_U16(uExitReason));
|
---|
2546 |
|
---|
2547 | /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
|
---|
2548 | iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
|
---|
2549 | int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
|
---|
2550 | if (RT_SUCCESS(rc))
|
---|
2551 | { /* likely */ }
|
---|
2552 | else
|
---|
2553 | return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
|
---|
2554 |
|
---|
2555 | /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
|
---|
2556 | pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
|
---|
2557 | }
|
---|
2558 | else
|
---|
2559 | {
|
---|
2560 | /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
|
---|
2561 | uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
|
---|
2562 | if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
|
---|
2563 | || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
|
---|
2564 | iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
|
---|
2565 | }
|
---|
2566 |
|
---|
2567 | /*
|
---|
2568 | * Stop any running VMX-preemption timer if necessary.
|
---|
2569 | */
|
---|
2570 | if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
|
---|
2571 | CPUMStopGuestVmxPremptTimer(pVCpu);
|
---|
2572 |
|
---|
2573 | /*
|
---|
2574 | * Clear any pending VMX nested-guest force-flags.
|
---|
2575 | * These force-flags have no effect on (outer) guest execution and will
|
---|
2576 | * be re-evaluated and setup on the next nested-guest VM-entry.
|
---|
2577 | */
|
---|
2578 | VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
|
---|
2579 |
|
---|
2580 | /*
|
---|
2581 | * We're no longer in nested-guest execution mode.
|
---|
2582 | *
|
---|
2583 | * It is important to do this prior to loading the host state because
|
---|
2584 | * PGM looks at fInVmxNonRootMode to determine if it needs to perform
|
---|
2585 | * second-level address translation while switching to host CR3.
|
---|
2586 | */
|
---|
2587 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
|
---|
2588 |
|
---|
2589 | /* Restore the host (outer guest) state. */
|
---|
2590 | VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
|
---|
2591 | if (RT_SUCCESS(rcStrict))
|
---|
2592 | {
|
---|
2593 | Assert(rcStrict == VINF_SUCCESS);
|
---|
2594 | rcStrict = VINF_VMX_VMEXIT;
|
---|
2595 | }
|
---|
2596 | else
|
---|
2597 | Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2598 |
|
---|
2599 | /* Notify HM that the current VMCS fields have been modified. */
|
---|
2600 | HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
|
---|
2601 |
|
---|
2602 | /* Notify HM that we've completed the VM-exit. */
|
---|
2603 | HMNotifyVmxNstGstVmexit(pVCpu);
|
---|
2604 |
|
---|
2605 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
2606 | /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
|
---|
2607 | Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
|
---|
2608 | int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
|
---|
2609 | if (rcSched != VINF_SUCCESS)
|
---|
2610 | iemSetPassUpStatus(pVCpu, rcSched);
|
---|
2611 | # endif
|
---|
2612 | return rcStrict;
|
---|
2613 | # endif
|
---|
2614 | }
|
---|
2615 |
|
---|
2616 |
|
---|
2617 | /**
|
---|
2618 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2619 | *
|
---|
2620 | * This is intended for instructions where the caller provides all the relevant
|
---|
2621 | * VM-exit information.
|
---|
2622 | *
|
---|
2623 | * @returns Strict VBox status code.
|
---|
2624 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2625 | * @param pExitInfo Pointer to the VM-exit information.
|
---|
2626 | */
|
---|
2627 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
|
---|
2628 | {
|
---|
2629 | /*
|
---|
2630 | * For instructions where any of the following fields are not applicable:
|
---|
2631 | * - Exit qualification must be cleared.
|
---|
2632 | * - VM-exit instruction info. is undefined.
|
---|
2633 | * - Guest-linear address is undefined.
|
---|
2634 | * - Guest-physical address is undefined.
|
---|
2635 | *
|
---|
2636 | * The VM-exit instruction length is mandatory for all VM-exits that are caused by
|
---|
2637 | * instruction execution. For VM-exits that are not due to instruction execution this
|
---|
2638 | * field is undefined.
|
---|
2639 | *
|
---|
2640 | * In our implementation in IEM, all undefined fields are generally cleared. However,
|
---|
2641 | * if the caller supplies information (from say the physical CPU directly) it is
|
---|
2642 | * then possible that the undefined fields are not cleared.
|
---|
2643 | *
|
---|
2644 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
2645 | * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
|
---|
2646 | */
|
---|
2647 | Assert(pExitInfo);
|
---|
2648 | AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
|
---|
2649 | AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
|
---|
2650 | ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
|
---|
2651 |
|
---|
2652 | /* Update all the relevant fields from the VM-exit instruction information struct. */
|
---|
2653 | iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
|
---|
2654 | iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
|
---|
2655 | iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
|
---|
2656 | iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
|
---|
2657 |
|
---|
2658 | /* Perform the VM-exit. */
|
---|
2659 | return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 |
|
---|
2663 | /**
|
---|
2664 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2665 | *
|
---|
2666 | * This is intended for instructions that only provide the VM-exit instruction
|
---|
2667 | * length.
|
---|
2668 | *
|
---|
2669 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2670 | * @param uExitReason The VM-exit reason.
|
---|
2671 | * @param cbInstr The instruction length in bytes.
|
---|
2672 | */
|
---|
2673 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
|
---|
2674 | {
|
---|
2675 | VMXVEXITINFO ExitInfo;
|
---|
2676 | RT_ZERO(ExitInfo);
|
---|
2677 | ExitInfo.uReason = uExitReason;
|
---|
2678 | ExitInfo.cbInstr = cbInstr;
|
---|
2679 |
|
---|
2680 | #ifdef VBOX_STRICT
|
---|
2681 | /*
|
---|
2682 | * To prevent us from shooting ourselves in the foot.
|
---|
2683 | * The follow instructions should convey more than just the instruction length.
|
---|
2684 | */
|
---|
2685 | switch (uExitReason)
|
---|
2686 | {
|
---|
2687 | case VMX_EXIT_INVEPT:
|
---|
2688 | case VMX_EXIT_INVPCID:
|
---|
2689 | case VMX_EXIT_INVVPID:
|
---|
2690 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
2691 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
2692 | case VMX_EXIT_VMCLEAR:
|
---|
2693 | case VMX_EXIT_VMPTRLD:
|
---|
2694 | case VMX_EXIT_VMPTRST:
|
---|
2695 | case VMX_EXIT_VMREAD:
|
---|
2696 | case VMX_EXIT_VMWRITE:
|
---|
2697 | case VMX_EXIT_VMXON:
|
---|
2698 | case VMX_EXIT_XRSTORS:
|
---|
2699 | case VMX_EXIT_XSAVES:
|
---|
2700 | case VMX_EXIT_RDRAND:
|
---|
2701 | case VMX_EXIT_RDSEED:
|
---|
2702 | case VMX_EXIT_IO_INSTR:
|
---|
2703 | AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
|
---|
2704 | break;
|
---|
2705 | }
|
---|
2706 | #endif
|
---|
2707 |
|
---|
2708 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2709 | }
|
---|
2710 |
|
---|
2711 |
|
---|
2712 | /**
|
---|
2713 | * VMX VM-exit handler for VM-exits due to instruction execution.
|
---|
2714 | *
|
---|
2715 | * This is intended for instructions that have a ModR/M byte and update the VM-exit
|
---|
2716 | * instruction information and Exit qualification fields.
|
---|
2717 | *
|
---|
2718 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2719 | * @param uExitReason The VM-exit reason.
|
---|
2720 | * @param uInstrid The instruction identity (VMXINSTRID_XXX).
|
---|
2721 | * @param cbInstr The instruction length in bytes.
|
---|
2722 | *
|
---|
2723 | * @remarks Do not use this for INS/OUTS instruction.
|
---|
2724 | */
|
---|
2725 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
|
---|
2726 | {
|
---|
2727 | VMXVEXITINFO ExitInfo;
|
---|
2728 | RT_ZERO(ExitInfo);
|
---|
2729 | ExitInfo.uReason = uExitReason;
|
---|
2730 | ExitInfo.cbInstr = cbInstr;
|
---|
2731 |
|
---|
2732 | /*
|
---|
2733 | * Update the Exit qualification field with displacement bytes.
|
---|
2734 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
2735 | */
|
---|
2736 | switch (uExitReason)
|
---|
2737 | {
|
---|
2738 | case VMX_EXIT_INVEPT:
|
---|
2739 | case VMX_EXIT_INVPCID:
|
---|
2740 | case VMX_EXIT_INVVPID:
|
---|
2741 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
2742 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
2743 | case VMX_EXIT_VMCLEAR:
|
---|
2744 | case VMX_EXIT_VMPTRLD:
|
---|
2745 | case VMX_EXIT_VMPTRST:
|
---|
2746 | case VMX_EXIT_VMREAD:
|
---|
2747 | case VMX_EXIT_VMWRITE:
|
---|
2748 | case VMX_EXIT_VMXON:
|
---|
2749 | case VMX_EXIT_XRSTORS:
|
---|
2750 | case VMX_EXIT_XSAVES:
|
---|
2751 | case VMX_EXIT_RDRAND:
|
---|
2752 | case VMX_EXIT_RDSEED:
|
---|
2753 | {
|
---|
2754 | /* Construct the VM-exit instruction information. */
|
---|
2755 | RTGCPTR GCPtrDisp;
|
---|
2756 | uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
|
---|
2757 |
|
---|
2758 | /* Update the VM-exit instruction information. */
|
---|
2759 | ExitInfo.InstrInfo.u = uInstrInfo;
|
---|
2760 |
|
---|
2761 | /* Update the Exit qualification. */
|
---|
2762 | ExitInfo.u64Qual = GCPtrDisp;
|
---|
2763 | break;
|
---|
2764 | }
|
---|
2765 |
|
---|
2766 | default:
|
---|
2767 | AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
|
---|
2768 | break;
|
---|
2769 | }
|
---|
2770 |
|
---|
2771 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2772 | }
|
---|
2773 |
|
---|
2774 |
|
---|
2775 | /**
|
---|
2776 | * VMX VM-exit handler for VM-exits due to INVLPG.
|
---|
2777 | *
|
---|
2778 | * @returns Strict VBox status code.
|
---|
2779 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2780 | * @param GCPtrPage The guest-linear address of the page being invalidated.
|
---|
2781 | * @param cbInstr The instruction length in bytes.
|
---|
2782 | */
|
---|
2783 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
|
---|
2784 | {
|
---|
2785 | VMXVEXITINFO ExitInfo;
|
---|
2786 | RT_ZERO(ExitInfo);
|
---|
2787 | ExitInfo.uReason = VMX_EXIT_INVLPG;
|
---|
2788 | ExitInfo.cbInstr = cbInstr;
|
---|
2789 | ExitInfo.u64Qual = GCPtrPage;
|
---|
2790 | Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
|
---|
2791 |
|
---|
2792 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2793 | }
|
---|
2794 |
|
---|
2795 |
|
---|
2796 | /**
|
---|
2797 | * VMX VM-exit handler for VM-exits due to LMSW.
|
---|
2798 | *
|
---|
2799 | * @returns Strict VBox status code.
|
---|
2800 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2801 | * @param uGuestCr0 The current guest CR0.
|
---|
2802 | * @param pu16NewMsw The machine-status word specified in LMSW's source
|
---|
2803 | * operand. This will be updated depending on the VMX
|
---|
2804 | * guest/host CR0 mask if LMSW is not intercepted.
|
---|
2805 | * @param GCPtrEffDst The guest-linear address of the source operand in case
|
---|
2806 | * of a memory operand. For register operand, pass
|
---|
2807 | * NIL_RTGCPTR.
|
---|
2808 | * @param cbInstr The instruction length in bytes.
|
---|
2809 | */
|
---|
2810 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst,
|
---|
2811 | uint8_t cbInstr)
|
---|
2812 | {
|
---|
2813 | Assert(pu16NewMsw);
|
---|
2814 |
|
---|
2815 | uint16_t const uNewMsw = *pu16NewMsw;
|
---|
2816 | if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
|
---|
2817 | {
|
---|
2818 | Log2(("lmsw: Guest intercept -> VM-exit\n"));
|
---|
2819 |
|
---|
2820 | VMXVEXITINFO ExitInfo;
|
---|
2821 | RT_ZERO(ExitInfo);
|
---|
2822 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
2823 | ExitInfo.cbInstr = cbInstr;
|
---|
2824 |
|
---|
2825 | bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
|
---|
2826 | if (fMemOperand)
|
---|
2827 | {
|
---|
2828 | Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
|
---|
2829 | ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
|
---|
2830 | }
|
---|
2831 |
|
---|
2832 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
|
---|
2833 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
|
---|
2834 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
|
---|
2835 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw);
|
---|
2836 |
|
---|
2837 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2838 | }
|
---|
2839 |
|
---|
2840 | /*
|
---|
2841 | * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
|
---|
2842 | * CR0 guest/host mask must be left unmodified.
|
---|
2843 | *
|
---|
2844 | * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
|
---|
2845 | */
|
---|
2846 | uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
|
---|
2847 | uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
|
---|
2848 | *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
|
---|
2849 |
|
---|
2850 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
2851 | }
|
---|
2852 |
|
---|
2853 |
|
---|
2854 | /**
|
---|
2855 | * VMX VM-exit handler for VM-exits due to CLTS.
|
---|
2856 | *
|
---|
2857 | * @returns Strict VBox status code.
|
---|
2858 | * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
|
---|
2859 | * VM-exit but must not modify the guest CR0.TS bit.
|
---|
2860 | * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
|
---|
2861 | * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
|
---|
2862 | * CR0 fixed bits in VMX operation).
|
---|
2863 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2864 | * @param cbInstr The instruction length in bytes.
|
---|
2865 | */
|
---|
2866 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
2867 | {
|
---|
2868 | uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
|
---|
2869 | uint32_t const fReadShadow = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u;
|
---|
2870 |
|
---|
2871 | /*
|
---|
2872 | * If CR0.TS is owned by the host:
|
---|
2873 | * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
|
---|
2874 | * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
|
---|
2875 | * CLTS instruction completes without clearing CR0.TS.
|
---|
2876 | *
|
---|
2877 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2878 | */
|
---|
2879 | if (fGstHostMask & X86_CR0_TS)
|
---|
2880 | {
|
---|
2881 | if (fReadShadow & X86_CR0_TS)
|
---|
2882 | {
|
---|
2883 | Log2(("clts: Guest intercept -> VM-exit\n"));
|
---|
2884 |
|
---|
2885 | VMXVEXITINFO ExitInfo;
|
---|
2886 | RT_ZERO(ExitInfo);
|
---|
2887 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
2888 | ExitInfo.cbInstr = cbInstr;
|
---|
2889 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
|
---|
2890 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
|
---|
2891 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2892 | }
|
---|
2893 |
|
---|
2894 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
2895 | }
|
---|
2896 |
|
---|
2897 | /*
|
---|
2898 | * If CR0.TS is not owned by the host, the CLTS instructions operates normally
|
---|
2899 | * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
|
---|
2900 | */
|
---|
2901 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
2902 | }
|
---|
2903 |
|
---|
2904 |
|
---|
2905 | /**
|
---|
2906 | * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
|
---|
2907 | * (CR0/CR4 write).
|
---|
2908 | *
|
---|
2909 | * @returns Strict VBox status code.
|
---|
2910 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2911 | * @param iCrReg The control register (either CR0 or CR4).
|
---|
2912 | * @param uGuestCrX The current guest CR0/CR4.
|
---|
2913 | * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
|
---|
2914 | * VM-exit is caused.
|
---|
2915 | * @param iGReg The general register from which the CR0/CR4 value is being
|
---|
2916 | * loaded.
|
---|
2917 | * @param cbInstr The instruction length in bytes.
|
---|
2918 | */
|
---|
2919 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg,
|
---|
2920 | uint8_t cbInstr)
|
---|
2921 | {
|
---|
2922 | Assert(puNewCrX);
|
---|
2923 | Assert(iCrReg == 0 || iCrReg == 4);
|
---|
2924 | Assert(iGReg < X86_GREG_COUNT);
|
---|
2925 |
|
---|
2926 | uint64_t const uNewCrX = *puNewCrX;
|
---|
2927 | if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
|
---|
2928 | {
|
---|
2929 | Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
|
---|
2930 |
|
---|
2931 | VMXVEXITINFO ExitInfo;
|
---|
2932 | RT_ZERO(ExitInfo);
|
---|
2933 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
2934 | ExitInfo.cbInstr = cbInstr;
|
---|
2935 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
|
---|
2936 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
|
---|
2937 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
|
---|
2938 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2939 | }
|
---|
2940 |
|
---|
2941 | /*
|
---|
2942 | * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
|
---|
2943 | * must not be modified the instruction.
|
---|
2944 | *
|
---|
2945 | * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
|
---|
2946 | */
|
---|
2947 | uint64_t uGuestCrX;
|
---|
2948 | uint64_t fGstHostMask;
|
---|
2949 | if (iCrReg == 0)
|
---|
2950 | {
|
---|
2951 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
2952 | uGuestCrX = pVCpu->cpum.GstCtx.cr0;
|
---|
2953 | fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
|
---|
2954 | }
|
---|
2955 | else
|
---|
2956 | {
|
---|
2957 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
2958 | uGuestCrX = pVCpu->cpum.GstCtx.cr4;
|
---|
2959 | fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
|
---|
2960 | }
|
---|
2961 |
|
---|
2962 | *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
|
---|
2963 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
2964 | }
|
---|
2965 |
|
---|
2966 |
|
---|
2967 | /**
|
---|
2968 | * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
|
---|
2969 | *
|
---|
2970 | * @returns VBox strict status code.
|
---|
2971 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2972 | * @param iGReg The general register to which the CR3 value is being stored.
|
---|
2973 | * @param cbInstr The instruction length in bytes.
|
---|
2974 | */
|
---|
2975 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
|
---|
2976 | {
|
---|
2977 | Assert(iGReg < X86_GREG_COUNT);
|
---|
2978 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
2979 |
|
---|
2980 | /*
|
---|
2981 | * If the CR3-store exiting control is set, we must cause a VM-exit.
|
---|
2982 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2983 | */
|
---|
2984 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
|
---|
2985 | {
|
---|
2986 | Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
|
---|
2987 |
|
---|
2988 | VMXVEXITINFO ExitInfo;
|
---|
2989 | RT_ZERO(ExitInfo);
|
---|
2990 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
2991 | ExitInfo.cbInstr = cbInstr;
|
---|
2992 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
|
---|
2993 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
|
---|
2994 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
|
---|
2995 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
2996 | }
|
---|
2997 |
|
---|
2998 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
2999 | }
|
---|
3000 |
|
---|
3001 |
|
---|
3002 | /**
|
---|
3003 | * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
|
---|
3004 | *
|
---|
3005 | * @returns VBox strict status code.
|
---|
3006 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3007 | * @param uNewCr3 The new CR3 value.
|
---|
3008 | * @param iGReg The general register from which the CR3 value is being
|
---|
3009 | * loaded.
|
---|
3010 | * @param cbInstr The instruction length in bytes.
|
---|
3011 | */
|
---|
3012 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr)
|
---|
3013 | {
|
---|
3014 | Assert(iGReg < X86_GREG_COUNT);
|
---|
3015 |
|
---|
3016 | /*
|
---|
3017 | * If the CR3-load exiting control is set and the new CR3 value does not
|
---|
3018 | * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
|
---|
3019 | *
|
---|
3020 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
3021 | */
|
---|
3022 | if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
|
---|
3023 | {
|
---|
3024 | Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
|
---|
3025 |
|
---|
3026 | VMXVEXITINFO ExitInfo;
|
---|
3027 | RT_ZERO(ExitInfo);
|
---|
3028 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
3029 | ExitInfo.cbInstr = cbInstr;
|
---|
3030 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
|
---|
3031 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
|
---|
3032 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
|
---|
3033 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3034 | }
|
---|
3035 |
|
---|
3036 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3037 | }
|
---|
3038 |
|
---|
3039 |
|
---|
3040 | /**
|
---|
3041 | * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
|
---|
3042 | *
|
---|
3043 | * @returns VBox strict status code.
|
---|
3044 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3045 | * @param iGReg The general register to which the CR8 value is being stored.
|
---|
3046 | * @param cbInstr The instruction length in bytes.
|
---|
3047 | */
|
---|
3048 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
|
---|
3049 | {
|
---|
3050 | Assert(iGReg < X86_GREG_COUNT);
|
---|
3051 |
|
---|
3052 | /*
|
---|
3053 | * If the CR8-store exiting control is set, we must cause a VM-exit.
|
---|
3054 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
3055 | */
|
---|
3056 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
|
---|
3057 | {
|
---|
3058 | Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
|
---|
3059 |
|
---|
3060 | VMXVEXITINFO ExitInfo;
|
---|
3061 | RT_ZERO(ExitInfo);
|
---|
3062 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
3063 | ExitInfo.cbInstr = cbInstr;
|
---|
3064 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
|
---|
3065 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
|
---|
3066 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
|
---|
3067 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3068 | }
|
---|
3069 |
|
---|
3070 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 |
|
---|
3074 | /**
|
---|
3075 | * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
|
---|
3076 | *
|
---|
3077 | * @returns VBox strict status code.
|
---|
3078 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3079 | * @param iGReg The general register from which the CR8 value is being
|
---|
3080 | * loaded.
|
---|
3081 | * @param cbInstr The instruction length in bytes.
|
---|
3082 | */
|
---|
3083 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
|
---|
3084 | {
|
---|
3085 | Assert(iGReg < X86_GREG_COUNT);
|
---|
3086 |
|
---|
3087 | /*
|
---|
3088 | * If the CR8-load exiting control is set, we must cause a VM-exit.
|
---|
3089 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
3090 | */
|
---|
3091 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
|
---|
3092 | {
|
---|
3093 | Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
|
---|
3094 |
|
---|
3095 | VMXVEXITINFO ExitInfo;
|
---|
3096 | RT_ZERO(ExitInfo);
|
---|
3097 | ExitInfo.uReason = VMX_EXIT_MOV_CRX;
|
---|
3098 | ExitInfo.cbInstr = cbInstr;
|
---|
3099 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
|
---|
3100 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
|
---|
3101 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
|
---|
3102 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3103 | }
|
---|
3104 |
|
---|
3105 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3106 | }
|
---|
3107 |
|
---|
3108 |
|
---|
3109 | /**
|
---|
3110 | * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
|
---|
3111 | * GReg,DRx' (DRx read).
|
---|
3112 | *
|
---|
3113 | * @returns VBox strict status code.
|
---|
3114 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3115 | * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
|
---|
3116 | * VMXINSTRID_MOV_FROM_DRX).
|
---|
3117 | * @param iDrReg The debug register being accessed.
|
---|
3118 | * @param iGReg The general register to/from which the DRx value is being
|
---|
3119 | * store/loaded.
|
---|
3120 | * @param cbInstr The instruction length in bytes.
|
---|
3121 | */
|
---|
3122 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg,
|
---|
3123 | uint8_t cbInstr)
|
---|
3124 | {
|
---|
3125 | Assert(iDrReg <= 7);
|
---|
3126 | Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
|
---|
3127 | Assert(iGReg < X86_GREG_COUNT);
|
---|
3128 |
|
---|
3129 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
|
---|
3130 | {
|
---|
3131 | uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
|
---|
3132 | : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
|
---|
3133 | VMXVEXITINFO ExitInfo;
|
---|
3134 | RT_ZERO(ExitInfo);
|
---|
3135 | ExitInfo.uReason = VMX_EXIT_MOV_DRX;
|
---|
3136 | ExitInfo.cbInstr = cbInstr;
|
---|
3137 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
|
---|
3138 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
|
---|
3139 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
|
---|
3140 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3141 | }
|
---|
3142 |
|
---|
3143 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3144 | }
|
---|
3145 |
|
---|
3146 |
|
---|
3147 | /**
|
---|
3148 | * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
|
---|
3149 | *
|
---|
3150 | * @returns VBox strict status code.
|
---|
3151 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3152 | * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
|
---|
3153 | * VMXINSTRID_IO_OUT).
|
---|
3154 | * @param u16Port The I/O port being accessed.
|
---|
3155 | * @param fImm Whether the I/O port was encoded using an immediate operand
|
---|
3156 | * or the implicit DX register.
|
---|
3157 | * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
3158 | * @param cbInstr The instruction length in bytes.
|
---|
3159 | */
|
---|
3160 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess,
|
---|
3161 | uint8_t cbInstr)
|
---|
3162 | {
|
---|
3163 | Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
|
---|
3164 | Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
|
---|
3165 |
|
---|
3166 | bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
|
---|
3167 | if (fIntercept)
|
---|
3168 | {
|
---|
3169 | uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
|
---|
3170 | : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
|
---|
3171 | VMXVEXITINFO ExitInfo;
|
---|
3172 | RT_ZERO(ExitInfo);
|
---|
3173 | ExitInfo.uReason = VMX_EXIT_IO_INSTR;
|
---|
3174 | ExitInfo.cbInstr = cbInstr;
|
---|
3175 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
|
---|
3176 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
|
---|
3177 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
|
---|
3178 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
|
---|
3179 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3180 | }
|
---|
3181 |
|
---|
3182 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3183 | }
|
---|
3184 |
|
---|
3185 |
|
---|
3186 | /**
|
---|
3187 | * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
|
---|
3188 | *
|
---|
3189 | * @returns VBox strict status code.
|
---|
3190 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3191 | * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
|
---|
3192 | * VMXINSTRID_IO_OUTS).
|
---|
3193 | * @param u16Port The I/O port being accessed.
|
---|
3194 | * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
3195 | * @param fRep Whether the instruction has a REP prefix or not.
|
---|
3196 | * @param ExitInstrInfo The VM-exit instruction info. field.
|
---|
3197 | * @param cbInstr The instruction length in bytes.
|
---|
3198 | */
|
---|
3199 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep,
|
---|
3200 | VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr)
|
---|
3201 | {
|
---|
3202 | Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
|
---|
3203 | Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
|
---|
3204 | Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
|
---|
3205 | Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
|
---|
3206 | Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
|
---|
3207 |
|
---|
3208 | bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
|
---|
3209 | if (fIntercept)
|
---|
3210 | {
|
---|
3211 | /*
|
---|
3212 | * Figure out the guest-linear address and the direction bit (INS/OUTS).
|
---|
3213 | */
|
---|
3214 | /** @todo r=ramshankar: Is there something in IEM that already does this? */
|
---|
3215 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
3216 | uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
|
---|
3217 | uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
|
---|
3218 | uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
|
---|
3219 |
|
---|
3220 | uint32_t uDirection;
|
---|
3221 | uint64_t uGuestLinearAddr;
|
---|
3222 | if (uInstrId == VMXINSTRID_IO_INS)
|
---|
3223 | {
|
---|
3224 | uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
|
---|
3225 | uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
|
---|
3226 | }
|
---|
3227 | else
|
---|
3228 | {
|
---|
3229 | uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
|
---|
3230 | uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
|
---|
3231 | }
|
---|
3232 |
|
---|
3233 | /*
|
---|
3234 | * If the segment is unusable, the guest-linear address in undefined.
|
---|
3235 | * We shall clear it for consistency.
|
---|
3236 | *
|
---|
3237 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
3238 | */
|
---|
3239 | if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
|
---|
3240 | uGuestLinearAddr = 0;
|
---|
3241 |
|
---|
3242 | VMXVEXITINFO ExitInfo;
|
---|
3243 | RT_ZERO(ExitInfo);
|
---|
3244 | ExitInfo.uReason = VMX_EXIT_IO_INSTR;
|
---|
3245 | ExitInfo.cbInstr = cbInstr;
|
---|
3246 | ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
|
---|
3247 | ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
|
---|
3248 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
|
---|
3249 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
|
---|
3250 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
|
---|
3251 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
|
---|
3252 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
|
---|
3253 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo)
|
---|
3254 | ExitInfo.InstrInfo = ExitInstrInfo;
|
---|
3255 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3256 | }
|
---|
3257 |
|
---|
3258 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3259 | }
|
---|
3260 |
|
---|
3261 |
|
---|
3262 | /**
|
---|
3263 | * VMX VM-exit handler for VM-exits due to MWAIT.
|
---|
3264 | *
|
---|
3265 | * @returns VBox strict status code.
|
---|
3266 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3267 | * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
|
---|
3268 | * @param cbInstr The instruction length in bytes.
|
---|
3269 | */
|
---|
3270 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr)
|
---|
3271 | {
|
---|
3272 | VMXVEXITINFO ExitInfo;
|
---|
3273 | RT_ZERO(ExitInfo);
|
---|
3274 | ExitInfo.uReason = VMX_EXIT_MWAIT;
|
---|
3275 | ExitInfo.cbInstr = cbInstr;
|
---|
3276 | ExitInfo.u64Qual = fMonitorHwArmed;
|
---|
3277 | return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
3278 | }
|
---|
3279 |
|
---|
3280 |
|
---|
3281 | /**
|
---|
3282 | * VMX VM-exit handler for VM-exits due to PAUSE.
|
---|
3283 | *
|
---|
3284 | * @returns VBox strict status code.
|
---|
3285 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3286 | * @param cbInstr The instruction length in bytes.
|
---|
3287 | */
|
---|
3288 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr)
|
---|
3289 | {
|
---|
3290 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
3291 |
|
---|
3292 | /*
|
---|
3293 | * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
|
---|
3294 | * "PAUSE-loop exiting" control.
|
---|
3295 | *
|
---|
3296 | * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
|
---|
3297 | * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
|
---|
3298 | * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
|
---|
3299 | * a VM-exit.
|
---|
3300 | *
|
---|
3301 | * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
|
---|
3302 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
3303 | */
|
---|
3304 | bool fIntercept = false;
|
---|
3305 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
|
---|
3306 | fIntercept = true;
|
---|
3307 | else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
|
---|
3308 | && pVCpu->iem.s.uCpl == 0)
|
---|
3309 | {
|
---|
3310 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
|
---|
3311 |
|
---|
3312 | /*
|
---|
3313 | * A previous-PAUSE-tick value of 0 is used to identify the first time
|
---|
3314 | * execution of a PAUSE instruction after VM-entry at CPL 0. We must
|
---|
3315 | * consider this to be the first execution of PAUSE in a loop according
|
---|
3316 | * to the Intel.
|
---|
3317 | *
|
---|
3318 | * All subsequent records for the previous-PAUSE-tick we ensure that it
|
---|
3319 | * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
|
---|
3320 | */
|
---|
3321 | uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
|
---|
3322 | uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
|
---|
3323 | uint64_t const uTick = TMCpuTickGet(pVCpu);
|
---|
3324 | uint32_t const uPleGap = pVmcs->u32PleGap;
|
---|
3325 | uint32_t const uPleWindow = pVmcs->u32PleWindow;
|
---|
3326 | if ( *puPrevPauseTick == 0
|
---|
3327 | || uTick - *puPrevPauseTick > uPleGap)
|
---|
3328 | *puFirstPauseLoopTick = uTick;
|
---|
3329 | else if (uTick - *puFirstPauseLoopTick > uPleWindow)
|
---|
3330 | fIntercept = true;
|
---|
3331 |
|
---|
3332 | *puPrevPauseTick = uTick | 1;
|
---|
3333 | }
|
---|
3334 |
|
---|
3335 | if (fIntercept)
|
---|
3336 | return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
|
---|
3337 |
|
---|
3338 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3339 | }
|
---|
3340 |
|
---|
3341 |
|
---|
3342 | /**
|
---|
3343 | * VMX VM-exit handler for VM-exits due to task switches.
|
---|
3344 | *
|
---|
3345 | * @returns VBox strict status code.
|
---|
3346 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3347 | * @param enmTaskSwitch The cause of the task switch.
|
---|
3348 | * @param SelNewTss The selector of the new TSS.
|
---|
3349 | * @param cbInstr The instruction length in bytes.
|
---|
3350 | */
|
---|
3351 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr)
|
---|
3352 | {
|
---|
3353 | /*
|
---|
3354 | * Task-switch VM-exits are unconditional and provide the Exit qualification.
|
---|
3355 | *
|
---|
3356 | * If the cause of the task switch is due to execution of CALL, IRET or the JMP
|
---|
3357 | * instruction or delivery of the exception generated by one of these instructions
|
---|
3358 | * lead to a task switch through a task gate in the IDT, we need to provide the
|
---|
3359 | * VM-exit instruction length. Any other means of invoking a task switch VM-exit
|
---|
3360 | * leaves the VM-exit instruction length field undefined.
|
---|
3361 | *
|
---|
3362 | * See Intel spec. 25.2 "Other Causes Of VM Exits".
|
---|
3363 | * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
|
---|
3364 | */
|
---|
3365 | Assert(cbInstr <= 15);
|
---|
3366 |
|
---|
3367 | uint8_t uType;
|
---|
3368 | switch (enmTaskSwitch)
|
---|
3369 | {
|
---|
3370 | case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
|
---|
3371 | case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
|
---|
3372 | case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
|
---|
3373 | case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
|
---|
3374 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
3375 | }
|
---|
3376 |
|
---|
3377 | uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
|
---|
3378 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
|
---|
3379 | iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
|
---|
3380 | return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 |
|
---|
3384 | /**
|
---|
3385 | * VMX VM-exit handler for trap-like VM-exits.
|
---|
3386 | *
|
---|
3387 | * @returns VBox strict status code.
|
---|
3388 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3389 | * @param pExitInfo Pointer to the VM-exit information.
|
---|
3390 | * @param pExitEventInfo Pointer to the VM-exit event information.
|
---|
3391 | */
|
---|
3392 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
|
---|
3393 | {
|
---|
3394 | Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
|
---|
3395 | iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
|
---|
3396 | return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
|
---|
3397 | }
|
---|
3398 |
|
---|
3399 |
|
---|
3400 | /**
|
---|
3401 | * VMX VM-exit handler for VM-exits due to task switches.
|
---|
3402 | *
|
---|
3403 | * This is intended for task switches where the caller provides all the relevant
|
---|
3404 | * VM-exit information.
|
---|
3405 | *
|
---|
3406 | * @returns VBox strict status code.
|
---|
3407 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3408 | * @param pExitInfo Pointer to the VM-exit information.
|
---|
3409 | * @param pExitEventInfo Pointer to the VM-exit event information.
|
---|
3410 | */
|
---|
3411 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
|
---|
3412 | PCVMXVEXITEVENTINFO pExitEventInfo)
|
---|
3413 | {
|
---|
3414 | Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
|
---|
3415 | iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
|
---|
3416 | iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
|
---|
3417 | iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
|
---|
3418 | return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
|
---|
3419 | }
|
---|
3420 |
|
---|
3421 |
|
---|
3422 | /**
|
---|
3423 | * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
|
---|
3424 | *
|
---|
3425 | * @returns VBox strict status code.
|
---|
3426 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3427 | */
|
---|
3428 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
|
---|
3429 | {
|
---|
3430 | Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
|
---|
3431 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
|
---|
3432 |
|
---|
3433 | /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
|
---|
3434 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
|
---|
3435 |
|
---|
3436 | /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
|
---|
3437 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
|
---|
3438 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
|
---|
3439 |
|
---|
3440 | /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
|
---|
3441 | return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
|
---|
3442 | }
|
---|
3443 |
|
---|
3444 |
|
---|
3445 | /**
|
---|
3446 | * VMX VM-exit handler for VM-exits due to external interrupts.
|
---|
3447 | *
|
---|
3448 | * @returns VBox strict status code.
|
---|
3449 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3450 | * @param uVector The external interrupt vector (pass 0 if the interrupt
|
---|
3451 | * is still pending since we typically won't know the
|
---|
3452 | * vector).
|
---|
3453 | * @param fIntPending Whether the external interrupt is pending or
|
---|
3454 | * acknowledged in the interrupt controller.
|
---|
3455 | */
|
---|
3456 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
|
---|
3457 | {
|
---|
3458 | Assert(!fIntPending || uVector == 0);
|
---|
3459 |
|
---|
3460 | /* The VM-exit is subject to "External interrupt exiting" being set. */
|
---|
3461 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
|
---|
3462 | {
|
---|
3463 | if (fIntPending)
|
---|
3464 | {
|
---|
3465 | /*
|
---|
3466 | * If the interrupt is pending and we don't need to acknowledge the
|
---|
3467 | * interrupt on VM-exit, cause the VM-exit immediately.
|
---|
3468 | *
|
---|
3469 | * See Intel spec 25.2 "Other Causes Of VM Exits".
|
---|
3470 | */
|
---|
3471 | if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
|
---|
3472 | return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
|
---|
3473 |
|
---|
3474 | /*
|
---|
3475 | * If the interrupt is pending and we -do- need to acknowledge the interrupt
|
---|
3476 | * on VM-exit, postpone VM-exit till after the interrupt controller has been
|
---|
3477 | * acknowledged that the interrupt has been consumed. Callers would have to call
|
---|
3478 | * us again after getting the vector (and ofc, with fIntPending with false).
|
---|
3479 | */
|
---|
3480 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3481 | }
|
---|
3482 |
|
---|
3483 | /*
|
---|
3484 | * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
|
---|
3485 | * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
|
---|
3486 | * all set, we need to record the vector of the external interrupt in the
|
---|
3487 | * VM-exit interruption information field. Otherwise, mark this field as invalid.
|
---|
3488 | *
|
---|
3489 | * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
|
---|
3490 | */
|
---|
3491 | uint32_t uExitIntInfo;
|
---|
3492 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
|
---|
3493 | {
|
---|
3494 | bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
|
---|
3495 | uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
|
---|
3496 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
|
---|
3497 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
|
---|
3498 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
|
---|
3499 | }
|
---|
3500 | else
|
---|
3501 | uExitIntInfo = 0;
|
---|
3502 | iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
|
---|
3503 |
|
---|
3504 | /*
|
---|
3505 | * Cause the VM-exit whether or not the vector has been stored
|
---|
3506 | * in the VM-exit interruption-information field.
|
---|
3507 | */
|
---|
3508 | return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
|
---|
3509 | }
|
---|
3510 |
|
---|
3511 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3512 | }
|
---|
3513 |
|
---|
3514 |
|
---|
3515 | /**
|
---|
3516 | * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
|
---|
3517 | * an event.
|
---|
3518 | *
|
---|
3519 | * @returns VBox strict status code.
|
---|
3520 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3521 | */
|
---|
3522 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu)
|
---|
3523 | {
|
---|
3524 | uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
|
---|
3525 | if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
|
---|
3526 | {
|
---|
3527 | /*
|
---|
3528 | * The NMI-unblocking due to IRET field need not be set for double faults.
|
---|
3529 | * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
|
---|
3530 | */
|
---|
3531 | uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
|
---|
3532 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3533 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
|
---|
3534 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
|
---|
3535 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
|
---|
3536 | iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
|
---|
3537 | return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3541 | }
|
---|
3542 |
|
---|
3543 |
|
---|
3544 | /**
|
---|
3545 | * VMX VM-exit handler for VM-exit due to delivery of an events.
|
---|
3546 | *
|
---|
3547 | * This is intended for VM-exit due to exceptions or NMIs where the caller provides
|
---|
3548 | * all the relevant VM-exit information.
|
---|
3549 | *
|
---|
3550 | * @returns VBox strict status code.
|
---|
3551 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3552 | * @param pExitInfo Pointer to the VM-exit information.
|
---|
3553 | * @param pExitEventInfo Pointer to the VM-exit event information.
|
---|
3554 | */
|
---|
3555 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
|
---|
3556 | {
|
---|
3557 | Assert(pExitInfo);
|
---|
3558 | Assert(pExitEventInfo);
|
---|
3559 | Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
|
---|
3560 | Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
|
---|
3561 |
|
---|
3562 | iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
|
---|
3563 | iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
|
---|
3564 | iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
|
---|
3565 | iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
|
---|
3566 | iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
|
---|
3567 | return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
|
---|
3568 | }
|
---|
3569 |
|
---|
3570 |
|
---|
3571 | /**
|
---|
3572 | * VMX VM-exit handler for VM-exits due to delivery of an event.
|
---|
3573 | *
|
---|
3574 | * @returns VBox strict status code.
|
---|
3575 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3576 | * @param uVector The interrupt / exception vector.
|
---|
3577 | * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
|
---|
3578 | * @param uErrCode The error code associated with the event.
|
---|
3579 | * @param uCr2 The CR2 value in case of a \#PF exception.
|
---|
3580 | * @param cbInstr The instruction length in bytes.
|
---|
3581 | */
|
---|
3582 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2,
|
---|
3583 | uint8_t cbInstr)
|
---|
3584 | {
|
---|
3585 | /*
|
---|
3586 | * If the event is being injected as part of VM-entry, it is -not- subject to event
|
---|
3587 | * intercepts in the nested-guest. However, secondary exceptions that occur during
|
---|
3588 | * injection of any event -are- subject to event interception.
|
---|
3589 | *
|
---|
3590 | * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
|
---|
3591 | */
|
---|
3592 | if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
|
---|
3593 | {
|
---|
3594 | /*
|
---|
3595 | * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
|
---|
3596 | * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
|
---|
3597 | *
|
---|
3598 | * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
|
---|
3599 | */
|
---|
3600 | if ( uVector == X86_XCPT_NMI
|
---|
3601 | && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
|
---|
3602 | && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
3603 | pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
|
---|
3604 | else
|
---|
3605 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
|
---|
3606 |
|
---|
3607 | CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
|
---|
3608 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3609 | }
|
---|
3610 |
|
---|
3611 | /*
|
---|
3612 | * We are injecting an external interrupt, check if we need to cause a VM-exit now.
|
---|
3613 | * If not, the caller will continue delivery of the external interrupt as it would
|
---|
3614 | * normally. The interrupt is no longer pending in the interrupt controller at this
|
---|
3615 | * point.
|
---|
3616 | */
|
---|
3617 | if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
|
---|
3618 | {
|
---|
3619 | Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
|
---|
3620 | return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
|
---|
3621 | }
|
---|
3622 |
|
---|
3623 | /*
|
---|
3624 | * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
|
---|
3625 | * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
|
---|
3626 | * interrupts.
|
---|
3627 | */
|
---|
3628 | Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
|
---|
3629 | bool fIntercept;
|
---|
3630 | if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3631 | || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
|
---|
3632 | fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
|
---|
3633 | else
|
---|
3634 | {
|
---|
3635 | /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
|
---|
3636 | fIntercept = false;
|
---|
3637 | }
|
---|
3638 |
|
---|
3639 | /*
|
---|
3640 | * Now that we've determined whether the event causes a VM-exit, we need to construct the
|
---|
3641 | * relevant VM-exit information and cause the VM-exit.
|
---|
3642 | */
|
---|
3643 | if (fIntercept)
|
---|
3644 | {
|
---|
3645 | Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
|
---|
3646 |
|
---|
3647 | /* Construct the rest of the event related information fields and cause the VM-exit. */
|
---|
3648 | uint64_t u64ExitQual;
|
---|
3649 | if (uVector == X86_XCPT_PF)
|
---|
3650 | {
|
---|
3651 | Assert(fFlags & IEM_XCPT_FLAGS_CR2);
|
---|
3652 | u64ExitQual = uCr2;
|
---|
3653 | }
|
---|
3654 | else if (uVector == X86_XCPT_DB)
|
---|
3655 | {
|
---|
3656 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
3657 | u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
|
---|
3658 | }
|
---|
3659 | else
|
---|
3660 | u64ExitQual = 0;
|
---|
3661 |
|
---|
3662 | uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
|
---|
3663 | bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
|
---|
3664 | uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
|
---|
3665 | uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
|
---|
3666 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
|
---|
3667 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
|
---|
3668 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
|
---|
3669 | | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
|
---|
3670 | iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
|
---|
3671 | iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
|
---|
3672 |
|
---|
3673 | /*
|
---|
3674 | * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
|
---|
3675 | * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
|
---|
3676 | * length.
|
---|
3677 | */
|
---|
3678 | if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
|
---|
3679 | || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
|
---|
3680 | iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
|
---|
3681 | else
|
---|
3682 | iemVmxVmcsSetExitInstrLen(pVCpu, 0);
|
---|
3683 |
|
---|
3684 | return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
|
---|
3685 | }
|
---|
3686 |
|
---|
3687 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
3688 | }
|
---|
3689 |
|
---|
3690 |
|
---|
3691 | /**
|
---|
3692 | * VMX VM-exit handler for EPT misconfiguration.
|
---|
3693 | *
|
---|
3694 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3695 | * @param GCPhysAddr The physical address causing the EPT misconfiguration. This
|
---|
3696 | * must be page aligned.
|
---|
3697 | */
|
---|
3698 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr)
|
---|
3699 | {
|
---|
3700 | Assert(!(GCPhysAddr & PAGE_OFFSET_MASK));
|
---|
3701 | iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
|
---|
3702 | return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
|
---|
3703 | }
|
---|
3704 |
|
---|
3705 |
|
---|
3706 | /**
|
---|
3707 | * VMX VM-exit handler for EPT violation.
|
---|
3708 | *
|
---|
3709 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3710 | * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
|
---|
3711 | * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
|
---|
3712 | * @param fEptAccess The EPT paging structure bits.
|
---|
3713 | * @param GCPhysAddr The physical address causing the EPT violation. This
|
---|
3714 | * must be page aligned.
|
---|
3715 | * @param fIsLinearAddrValid Whether translation of a linear address caused this
|
---|
3716 | * EPT violation. If @c false, GCPtrAddr must be 0.
|
---|
3717 | * @param GCPtrAddr The linear address causing the EPT violation.
|
---|
3718 | * @param cbInstr The VM-exit instruction length.
|
---|
3719 | */
|
---|
3720 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail, uint64_t fEptAccess,
|
---|
3721 | RTGCPHYS GCPhysAddr, bool fLinearAddrValid, uint64_t GCPtrAddr, uint8_t cbInstr)
|
---|
3722 | {
|
---|
3723 | /*
|
---|
3724 | * If the linear address isn't valid (can happen when loading PDPTEs
|
---|
3725 | * as part of MOV CR execution) the linear address field is undefined.
|
---|
3726 | * While we can leave it this way, it's preferrable to zero it for consistency.
|
---|
3727 | */
|
---|
3728 | Assert(fLinearAddrValid || GCPtrAddr == 0);
|
---|
3729 | Assert(!(GCPhysAddr & PAGE_OFFSET_MASK));
|
---|
3730 |
|
---|
3731 | uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
|
---|
3732 | uint8_t const fSupportsAccessDirty = fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY;
|
---|
3733 |
|
---|
3734 | uint8_t const fDataRead = ((fAccess & IEM_ACCESS_DATA_R) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
|
---|
3735 | uint8_t const fDataWrite = ((fAccess & IEM_ACCESS_DATA_RW) == IEM_ACCESS_DATA_RW) | fSupportsAccessDirty;
|
---|
3736 | uint8_t const fInstrFetch = (fAccess & IEM_ACCESS_INSTRUCTION) == IEM_ACCESS_INSTRUCTION;
|
---|
3737 | bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
|
---|
3738 | bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
|
---|
3739 | bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
|
---|
3740 | bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
|
---|
3741 | bool const fLinearToPhysAddr = fLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
|
---|
3742 |
|
---|
3743 | uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
|
---|
3744 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
|
---|
3745 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
|
---|
3746 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
|
---|
3747 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
|
---|
3748 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
|
---|
3749 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fLinearAddrValid)
|
---|
3750 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fLinearToPhysAddr)
|
---|
3751 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
|
---|
3752 |
|
---|
3753 | #ifdef VBOX_STRICT
|
---|
3754 | uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
|
---|
3755 | uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
|
---|
3756 | Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
|
---|
3757 | Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
|
---|
3758 | Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
|
---|
3759 | Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
|
---|
3760 | #endif
|
---|
3761 |
|
---|
3762 | iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
|
---|
3763 | iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
|
---|
3764 | iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
|
---|
3765 |
|
---|
3766 | return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
|
---|
3767 | }
|
---|
3768 |
|
---|
3769 |
|
---|
3770 | /**
|
---|
3771 | * VMX VM-exit handler for EPT-induced VM-exits.
|
---|
3772 | *
|
---|
3773 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3774 | * @param pWalk The page walk info.
|
---|
3775 | * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
|
---|
3776 | * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
|
---|
3777 | * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
|
---|
3778 | * applicable.
|
---|
3779 | */
|
---|
3780 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail,
|
---|
3781 | uint8_t cbInstr)
|
---|
3782 | {
|
---|
3783 | Assert(pWalk->fIsSlat);
|
---|
3784 | Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
|
---|
3785 | Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
|
---|
3786 | Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
|
---|
3787 |
|
---|
3788 | if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
|
---|
3789 | {
|
---|
3790 | uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
|
---|
3791 | return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
|
---|
3792 | pWalk->GCPtr, cbInstr);
|
---|
3793 | }
|
---|
3794 |
|
---|
3795 | Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
|
---|
3796 | return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
|
---|
3797 | }
|
---|
3798 |
|
---|
3799 |
|
---|
3800 | /**
|
---|
3801 | * VMX VM-exit handler for APIC accesses.
|
---|
3802 | *
|
---|
3803 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3804 | * @param offAccess The offset of the register being accessed.
|
---|
3805 | * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
|
---|
3806 | * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
|
---|
3807 | */
|
---|
3808 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess)
|
---|
3809 | {
|
---|
3810 | Assert((fAccess & IEM_ACCESS_TYPE_READ) || (fAccess & IEM_ACCESS_TYPE_WRITE) || (fAccess & IEM_ACCESS_INSTRUCTION));
|
---|
3811 |
|
---|
3812 | VMXAPICACCESS enmAccess;
|
---|
3813 | bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
|
---|
3814 | if (fInEventDelivery)
|
---|
3815 | enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
|
---|
3816 | else if (fAccess & IEM_ACCESS_INSTRUCTION)
|
---|
3817 | enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
|
---|
3818 | else if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
3819 | enmAccess = VMXAPICACCESS_LINEAR_WRITE;
|
---|
3820 | else
|
---|
3821 | enmAccess = VMXAPICACCESS_LINEAR_READ;
|
---|
3822 |
|
---|
3823 | uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
|
---|
3824 | | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
|
---|
3825 | return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
|
---|
3826 | }
|
---|
3827 |
|
---|
3828 |
|
---|
3829 | /**
|
---|
3830 | * VMX VM-exit handler for APIC accesses.
|
---|
3831 | *
|
---|
3832 | * This is intended for APIC accesses where the caller provides all the
|
---|
3833 | * relevant VM-exit information.
|
---|
3834 | *
|
---|
3835 | * @returns VBox strict status code.
|
---|
3836 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3837 | * @param pExitInfo Pointer to the VM-exit information.
|
---|
3838 | * @param pExitEventInfo Pointer to the VM-exit event information.
|
---|
3839 | */
|
---|
3840 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
|
---|
3841 | PCVMXVEXITEVENTINFO pExitEventInfo)
|
---|
3842 | {
|
---|
3843 | /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
|
---|
3844 | Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
|
---|
3845 | Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
|
---|
3846 | iemVmxVmcsSetExitIntInfo(pVCpu, 0);
|
---|
3847 | iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
|
---|
3848 | iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
|
---|
3849 | iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
|
---|
3850 | iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
|
---|
3851 | return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
|
---|
3852 | }
|
---|
3853 |
|
---|
3854 |
|
---|
3855 | /**
|
---|
3856 | * VMX VM-exit handler for APIC-write VM-exits.
|
---|
3857 | *
|
---|
3858 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3859 | * @param offApic The write to the virtual-APIC page offset that caused this
|
---|
3860 | * VM-exit.
|
---|
3861 | */
|
---|
3862 | IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic)
|
---|
3863 | {
|
---|
3864 | Assert(offApic < XAPIC_OFF_END + 4);
|
---|
3865 | /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
|
---|
3866 | offApic &= UINT16_C(0xfff);
|
---|
3867 | return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
|
---|
3868 | }
|
---|
3869 |
|
---|
3870 |
|
---|
3871 | /**
|
---|
3872 | * Sets virtual-APIC write emulation as pending.
|
---|
3873 | *
|
---|
3874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3875 | * @param offApic The offset in the virtual-APIC page that was written.
|
---|
3876 | */
|
---|
3877 | DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic)
|
---|
3878 | {
|
---|
3879 | Assert(offApic < XAPIC_OFF_END + 4);
|
---|
3880 |
|
---|
3881 | /*
|
---|
3882 | * Record the currently updated APIC offset, as we need this later for figuring
|
---|
3883 | * out whether to perform TPR, EOI or self-IPI virtualization as well as well
|
---|
3884 | * as for supplying the exit qualification when causing an APIC-write VM-exit.
|
---|
3885 | */
|
---|
3886 | pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
|
---|
3887 |
|
---|
3888 | /*
|
---|
3889 | * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
|
---|
3890 | * virtualization or APIC-write emulation).
|
---|
3891 | */
|
---|
3892 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
3893 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
|
---|
3894 | }
|
---|
3895 |
|
---|
3896 |
|
---|
3897 | /**
|
---|
3898 | * Clears any pending virtual-APIC write emulation.
|
---|
3899 | *
|
---|
3900 | * @returns The virtual-APIC offset that was written before clearing it.
|
---|
3901 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3902 | */
|
---|
3903 | DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
|
---|
3904 | {
|
---|
3905 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
|
---|
3906 | uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
|
---|
3907 | pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
|
---|
3908 | Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
|
---|
3909 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
|
---|
3910 | return offVirtApicWrite;
|
---|
3911 | }
|
---|
3912 |
|
---|
3913 |
|
---|
3914 | /**
|
---|
3915 | * Reads a 32-bit register from the virtual-APIC page at the given offset.
|
---|
3916 | *
|
---|
3917 | * @returns The register from the virtual-APIC page.
|
---|
3918 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3919 | * @param offReg The offset of the register being read.
|
---|
3920 | */
|
---|
3921 | IEM_STATIC uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg)
|
---|
3922 | {
|
---|
3923 | Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
|
---|
3924 |
|
---|
3925 | uint32_t uReg = 0;
|
---|
3926 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
3927 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
|
---|
3928 | AssertMsgStmt(RT_SUCCESS(rc),
|
---|
3929 | ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
3930 | sizeof(uReg), offReg, GCPhysVirtApic, rc),
|
---|
3931 | uReg = 0);
|
---|
3932 | return uReg;
|
---|
3933 | }
|
---|
3934 |
|
---|
3935 |
|
---|
3936 | /**
|
---|
3937 | * Reads a 64-bit register from the virtual-APIC page at the given offset.
|
---|
3938 | *
|
---|
3939 | * @returns The register from the virtual-APIC page.
|
---|
3940 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3941 | * @param offReg The offset of the register being read.
|
---|
3942 | */
|
---|
3943 | IEM_STATIC uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg)
|
---|
3944 | {
|
---|
3945 | Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
|
---|
3946 |
|
---|
3947 | uint64_t uReg = 0;
|
---|
3948 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
3949 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
|
---|
3950 | AssertMsgStmt(RT_SUCCESS(rc),
|
---|
3951 | ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
3952 | sizeof(uReg), offReg, GCPhysVirtApic, rc),
|
---|
3953 | uReg = 0);
|
---|
3954 | return uReg;
|
---|
3955 | }
|
---|
3956 |
|
---|
3957 |
|
---|
3958 | /**
|
---|
3959 | * Writes a 32-bit register to the virtual-APIC page at the given offset.
|
---|
3960 | *
|
---|
3961 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3962 | * @param offReg The offset of the register being written.
|
---|
3963 | * @param uReg The register value to write.
|
---|
3964 | */
|
---|
3965 | IEM_STATIC void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg)
|
---|
3966 | {
|
---|
3967 | Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
|
---|
3968 |
|
---|
3969 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
3970 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
|
---|
3971 | AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
3972 | sizeof(uReg), offReg, GCPhysVirtApic, rc));
|
---|
3973 | }
|
---|
3974 |
|
---|
3975 |
|
---|
3976 | /**
|
---|
3977 | * Writes a 64-bit register to the virtual-APIC page at the given offset.
|
---|
3978 | *
|
---|
3979 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3980 | * @param offReg The offset of the register being written.
|
---|
3981 | * @param uReg The register value to write.
|
---|
3982 | */
|
---|
3983 | IEM_STATIC void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg)
|
---|
3984 | {
|
---|
3985 | Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
|
---|
3986 |
|
---|
3987 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
3988 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
|
---|
3989 | AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
3990 | sizeof(uReg), offReg, GCPhysVirtApic, rc));
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 |
|
---|
3994 | /**
|
---|
3995 | * Sets the vector in a virtual-APIC 256-bit sparse register.
|
---|
3996 | *
|
---|
3997 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3998 | * @param offReg The offset of the 256-bit spare register.
|
---|
3999 | * @param uVector The vector to set.
|
---|
4000 | *
|
---|
4001 | * @remarks This is based on our APIC device code.
|
---|
4002 | */
|
---|
4003 | IEM_STATIC void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
|
---|
4004 | {
|
---|
4005 | /* Determine the vector offset within the chunk. */
|
---|
4006 | uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
|
---|
4007 |
|
---|
4008 | /* Read the chunk at the offset. */
|
---|
4009 | uint32_t uReg;
|
---|
4010 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
4011 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
|
---|
4012 | if (RT_SUCCESS(rc))
|
---|
4013 | {
|
---|
4014 | /* Modify the chunk. */
|
---|
4015 | uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
|
---|
4016 | uReg |= RT_BIT(idxVectorBit);
|
---|
4017 |
|
---|
4018 | /* Write the chunk. */
|
---|
4019 | rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
|
---|
4020 | AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
4021 | uVector, offReg, GCPhysVirtApic, rc));
|
---|
4022 | }
|
---|
4023 | else
|
---|
4024 | AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
4025 | uVector, offReg, GCPhysVirtApic, rc));
|
---|
4026 | }
|
---|
4027 |
|
---|
4028 |
|
---|
4029 | /**
|
---|
4030 | * Clears the vector in a virtual-APIC 256-bit sparse register.
|
---|
4031 | *
|
---|
4032 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4033 | * @param offReg The offset of the 256-bit spare register.
|
---|
4034 | * @param uVector The vector to clear.
|
---|
4035 | *
|
---|
4036 | * @remarks This is based on our APIC device code.
|
---|
4037 | */
|
---|
4038 | IEM_STATIC void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
|
---|
4039 | {
|
---|
4040 | /* Determine the vector offset within the chunk. */
|
---|
4041 | uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
|
---|
4042 |
|
---|
4043 | /* Read the chunk at the offset. */
|
---|
4044 | uint32_t uReg;
|
---|
4045 | RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
|
---|
4046 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
|
---|
4047 | if (RT_SUCCESS(rc))
|
---|
4048 | {
|
---|
4049 | /* Modify the chunk. */
|
---|
4050 | uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
|
---|
4051 | uReg &= ~RT_BIT(idxVectorBit);
|
---|
4052 |
|
---|
4053 | /* Write the chunk. */
|
---|
4054 | rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
|
---|
4055 | AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
4056 | uVector, offReg, GCPhysVirtApic, rc));
|
---|
4057 | }
|
---|
4058 | else
|
---|
4059 | AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
|
---|
4060 | uVector, offReg, GCPhysVirtApic, rc));
|
---|
4061 | }
|
---|
4062 |
|
---|
4063 |
|
---|
4064 | /**
|
---|
4065 | * Checks if a memory access to the APIC-access page must causes an APIC-access
|
---|
4066 | * VM-exit.
|
---|
4067 | *
|
---|
4068 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4069 | * @param offAccess The offset of the register being accessed.
|
---|
4070 | * @param cbAccess The size of the access in bytes.
|
---|
4071 | * @param fAccess The type of access (must be IEM_ACCESS_TYPE_READ or
|
---|
4072 | * IEM_ACCESS_TYPE_WRITE).
|
---|
4073 | *
|
---|
4074 | * @remarks This must not be used for MSR-based APIC-access page accesses!
|
---|
4075 | * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
|
---|
4076 | */
|
---|
4077 | IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess)
|
---|
4078 | {
|
---|
4079 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4080 | Assert(fAccess == IEM_ACCESS_TYPE_READ || fAccess == IEM_ACCESS_TYPE_WRITE);
|
---|
4081 |
|
---|
4082 | /*
|
---|
4083 | * We must cause a VM-exit if any of the following are true:
|
---|
4084 | * - TPR shadowing isn't active.
|
---|
4085 | * - The access size exceeds 32-bits.
|
---|
4086 | * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
|
---|
4087 | *
|
---|
4088 | * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
|
---|
4089 | * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
|
---|
4090 | */
|
---|
4091 | if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
4092 | || cbAccess > sizeof(uint32_t)
|
---|
4093 | || ((offAccess + cbAccess - 1) & 0xc)
|
---|
4094 | || offAccess >= XAPIC_OFF_END + 4)
|
---|
4095 | return true;
|
---|
4096 |
|
---|
4097 | /*
|
---|
4098 | * If the access is part of an operation where we have already
|
---|
4099 | * virtualized a virtual-APIC write, we must cause a VM-exit.
|
---|
4100 | */
|
---|
4101 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
4102 | return true;
|
---|
4103 |
|
---|
4104 | /*
|
---|
4105 | * Check write accesses to the APIC-access page that cause VM-exits.
|
---|
4106 | */
|
---|
4107 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4108 | {
|
---|
4109 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
4110 | {
|
---|
4111 | /*
|
---|
4112 | * With APIC-register virtualization, a write access to any of the
|
---|
4113 | * following registers are virtualized. Accessing any other register
|
---|
4114 | * causes a VM-exit.
|
---|
4115 | */
|
---|
4116 | uint16_t const offAlignedAccess = offAccess & 0xfffc;
|
---|
4117 | switch (offAlignedAccess)
|
---|
4118 | {
|
---|
4119 | case XAPIC_OFF_ID:
|
---|
4120 | case XAPIC_OFF_TPR:
|
---|
4121 | case XAPIC_OFF_EOI:
|
---|
4122 | case XAPIC_OFF_LDR:
|
---|
4123 | case XAPIC_OFF_DFR:
|
---|
4124 | case XAPIC_OFF_SVR:
|
---|
4125 | case XAPIC_OFF_ESR:
|
---|
4126 | case XAPIC_OFF_ICR_LO:
|
---|
4127 | case XAPIC_OFF_ICR_HI:
|
---|
4128 | case XAPIC_OFF_LVT_TIMER:
|
---|
4129 | case XAPIC_OFF_LVT_THERMAL:
|
---|
4130 | case XAPIC_OFF_LVT_PERF:
|
---|
4131 | case XAPIC_OFF_LVT_LINT0:
|
---|
4132 | case XAPIC_OFF_LVT_LINT1:
|
---|
4133 | case XAPIC_OFF_LVT_ERROR:
|
---|
4134 | case XAPIC_OFF_TIMER_ICR:
|
---|
4135 | case XAPIC_OFF_TIMER_DCR:
|
---|
4136 | break;
|
---|
4137 | default:
|
---|
4138 | return true;
|
---|
4139 | }
|
---|
4140 | }
|
---|
4141 | else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4142 | {
|
---|
4143 | /*
|
---|
4144 | * With virtual-interrupt delivery, a write access to any of the
|
---|
4145 | * following registers are virtualized. Accessing any other register
|
---|
4146 | * causes a VM-exit.
|
---|
4147 | *
|
---|
4148 | * Note! The specification does not allow writing to offsets in-between
|
---|
4149 | * these registers (e.g. TPR + 1 byte) unlike read accesses.
|
---|
4150 | */
|
---|
4151 | switch (offAccess)
|
---|
4152 | {
|
---|
4153 | case XAPIC_OFF_TPR:
|
---|
4154 | case XAPIC_OFF_EOI:
|
---|
4155 | case XAPIC_OFF_ICR_LO:
|
---|
4156 | break;
|
---|
4157 | default:
|
---|
4158 | return true;
|
---|
4159 | }
|
---|
4160 | }
|
---|
4161 | else
|
---|
4162 | {
|
---|
4163 | /*
|
---|
4164 | * Without APIC-register virtualization or virtual-interrupt delivery,
|
---|
4165 | * only TPR accesses are virtualized.
|
---|
4166 | */
|
---|
4167 | if (offAccess == XAPIC_OFF_TPR)
|
---|
4168 | { /* likely */ }
|
---|
4169 | else
|
---|
4170 | return true;
|
---|
4171 | }
|
---|
4172 | }
|
---|
4173 | else
|
---|
4174 | {
|
---|
4175 | /*
|
---|
4176 | * Check read accesses to the APIC-access page that cause VM-exits.
|
---|
4177 | */
|
---|
4178 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
4179 | {
|
---|
4180 | /*
|
---|
4181 | * With APIC-register virtualization, a read access to any of the
|
---|
4182 | * following registers are virtualized. Accessing any other register
|
---|
4183 | * causes a VM-exit.
|
---|
4184 | */
|
---|
4185 | uint16_t const offAlignedAccess = offAccess & 0xfffc;
|
---|
4186 | switch (offAlignedAccess)
|
---|
4187 | {
|
---|
4188 | /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
|
---|
4189 | case XAPIC_OFF_ID:
|
---|
4190 | case XAPIC_OFF_VERSION:
|
---|
4191 | case XAPIC_OFF_TPR:
|
---|
4192 | case XAPIC_OFF_EOI:
|
---|
4193 | case XAPIC_OFF_LDR:
|
---|
4194 | case XAPIC_OFF_DFR:
|
---|
4195 | case XAPIC_OFF_SVR:
|
---|
4196 | case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
|
---|
4197 | case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
|
---|
4198 | case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
|
---|
4199 | case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
|
---|
4200 | case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
|
---|
4201 | case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
|
---|
4202 | case XAPIC_OFF_ESR:
|
---|
4203 | case XAPIC_OFF_ICR_LO:
|
---|
4204 | case XAPIC_OFF_ICR_HI:
|
---|
4205 | case XAPIC_OFF_LVT_TIMER:
|
---|
4206 | case XAPIC_OFF_LVT_THERMAL:
|
---|
4207 | case XAPIC_OFF_LVT_PERF:
|
---|
4208 | case XAPIC_OFF_LVT_LINT0:
|
---|
4209 | case XAPIC_OFF_LVT_LINT1:
|
---|
4210 | case XAPIC_OFF_LVT_ERROR:
|
---|
4211 | case XAPIC_OFF_TIMER_ICR:
|
---|
4212 | case XAPIC_OFF_TIMER_DCR:
|
---|
4213 | break;
|
---|
4214 | default:
|
---|
4215 | return true;
|
---|
4216 | }
|
---|
4217 | }
|
---|
4218 | else
|
---|
4219 | {
|
---|
4220 | /* Without APIC-register virtualization, only TPR accesses are virtualized. */
|
---|
4221 | if (offAccess == XAPIC_OFF_TPR)
|
---|
4222 | { /* likely */ }
|
---|
4223 | else
|
---|
4224 | return true;
|
---|
4225 | }
|
---|
4226 | }
|
---|
4227 |
|
---|
4228 | /* The APIC access is virtualized, does not cause a VM-exit. */
|
---|
4229 | return false;
|
---|
4230 | }
|
---|
4231 |
|
---|
4232 |
|
---|
4233 | /**
|
---|
4234 | * Virtualizes a memory-based APIC access where the address is not used to access
|
---|
4235 | * memory.
|
---|
4236 | *
|
---|
4237 | * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
|
---|
4238 | * page-faults but do not use the address to access memory.
|
---|
4239 | *
|
---|
4240 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4241 | * @param pGCPhysAccess Pointer to the guest-physical address used.
|
---|
4242 | */
|
---|
4243 | IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess)
|
---|
4244 | {
|
---|
4245 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
|
---|
4246 | Assert(pGCPhysAccess);
|
---|
4247 |
|
---|
4248 | RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
4249 | RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
|
---|
4250 | Assert(!(GCPhysApic & PAGE_OFFSET_MASK));
|
---|
4251 |
|
---|
4252 | if (GCPhysAccess == GCPhysApic)
|
---|
4253 | {
|
---|
4254 | uint16_t const offAccess = *pGCPhysAccess & PAGE_OFFSET_MASK;
|
---|
4255 | uint32_t const fAccess = IEM_ACCESS_TYPE_READ;
|
---|
4256 | uint16_t const cbAccess = 1;
|
---|
4257 | bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
|
---|
4258 | if (fIntercept)
|
---|
4259 | return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
|
---|
4260 |
|
---|
4261 | *pGCPhysAccess = GCPhysApic | offAccess;
|
---|
4262 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
4263 | }
|
---|
4264 |
|
---|
4265 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
4266 | }
|
---|
4267 |
|
---|
4268 |
|
---|
4269 | /**
|
---|
4270 | * Virtualizes a memory-based APIC access.
|
---|
4271 | *
|
---|
4272 | * @returns VBox strict status code.
|
---|
4273 | * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
|
---|
4274 | * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
|
---|
4275 | *
|
---|
4276 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4277 | * @param offAccess The offset of the register being accessed (within the
|
---|
4278 | * APIC-access page).
|
---|
4279 | * @param cbAccess The size of the access in bytes.
|
---|
4280 | * @param pvData Pointer to the data being written or where to store the data
|
---|
4281 | * being read.
|
---|
4282 | * @param fAccess The type of access (must contain IEM_ACCESS_TYPE_READ or
|
---|
4283 | * IEM_ACCESS_TYPE_WRITE or IEM_ACCESS_INSTRUCTION).
|
---|
4284 | */
|
---|
4285 | IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData,
|
---|
4286 | uint32_t fAccess)
|
---|
4287 | {
|
---|
4288 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
|
---|
4289 | Assert(pvData);
|
---|
4290 | Assert( (fAccess & IEM_ACCESS_TYPE_READ)
|
---|
4291 | || (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4292 | || (fAccess & IEM_ACCESS_INSTRUCTION));
|
---|
4293 |
|
---|
4294 | bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
|
---|
4295 | if (fIntercept)
|
---|
4296 | return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
|
---|
4297 |
|
---|
4298 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
4299 | {
|
---|
4300 | /*
|
---|
4301 | * A write access to the APIC-access page that is virtualized (rather than
|
---|
4302 | * causing a VM-exit) writes data to the virtual-APIC page.
|
---|
4303 | */
|
---|
4304 | uint32_t const u32Data = *(uint32_t *)pvData;
|
---|
4305 | iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
|
---|
4306 |
|
---|
4307 | /*
|
---|
4308 | * Record the currently updated APIC offset, as we need this later for figuring
|
---|
4309 | * out whether to perform TPR, EOI or self-IPI virtualization as well as well
|
---|
4310 | * as for supplying the exit qualification when causing an APIC-write VM-exit.
|
---|
4311 | *
|
---|
4312 | * After completion of the current operation, we need to perform TPR virtualization,
|
---|
4313 | * EOI virtualization or APIC-write VM-exit depending on which register was written.
|
---|
4314 | *
|
---|
4315 | * The current operation may be a REP-prefixed string instruction, execution of any
|
---|
4316 | * other instruction, or delivery of an event through the IDT.
|
---|
4317 | *
|
---|
4318 | * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
|
---|
4319 | * performed now but later after completion of the current operation.
|
---|
4320 | *
|
---|
4321 | * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
|
---|
4322 | */
|
---|
4323 | iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
|
---|
4324 | }
|
---|
4325 | else
|
---|
4326 | {
|
---|
4327 | /*
|
---|
4328 | * A read access from the APIC-access page that is virtualized (rather than
|
---|
4329 | * causing a VM-exit) returns data from the virtual-APIC page.
|
---|
4330 | *
|
---|
4331 | * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
|
---|
4332 | */
|
---|
4333 | Assert(cbAccess <= 4);
|
---|
4334 | Assert(offAccess < XAPIC_OFF_END + 4);
|
---|
4335 | static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
|
---|
4336 |
|
---|
4337 | uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
|
---|
4338 | u32Data &= s_auAccessSizeMasks[cbAccess];
|
---|
4339 | *(uint32_t *)pvData = u32Data;
|
---|
4340 | }
|
---|
4341 |
|
---|
4342 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
4343 | }
|
---|
4344 |
|
---|
4345 |
|
---|
4346 | /**
|
---|
4347 | * Virtualizes an MSR-based APIC read access.
|
---|
4348 | *
|
---|
4349 | * @returns VBox strict status code.
|
---|
4350 | * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
|
---|
4351 | * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
|
---|
4352 | * handled by the x2APIC device.
|
---|
4353 | * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
|
---|
4354 | * not within the range of valid MSRs, caller must raise \#GP(0).
|
---|
4355 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4356 | * @param idMsr The x2APIC MSR being read.
|
---|
4357 | * @param pu64Value Where to store the read x2APIC MSR value (only valid when
|
---|
4358 | * VINF_VMX_MODIFIES_BEHAVIOR is returned).
|
---|
4359 | */
|
---|
4360 | IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value)
|
---|
4361 | {
|
---|
4362 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
|
---|
4363 | Assert(pu64Value);
|
---|
4364 |
|
---|
4365 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
4366 | {
|
---|
4367 | if ( idMsr >= MSR_IA32_X2APIC_START
|
---|
4368 | && idMsr <= MSR_IA32_X2APIC_END)
|
---|
4369 | {
|
---|
4370 | uint16_t const offReg = (idMsr & 0xff) << 4;
|
---|
4371 | uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
|
---|
4372 | *pu64Value = u64Value;
|
---|
4373 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
4374 | }
|
---|
4375 | return VERR_OUT_OF_RANGE;
|
---|
4376 | }
|
---|
4377 |
|
---|
4378 | if (idMsr == MSR_IA32_X2APIC_TPR)
|
---|
4379 | {
|
---|
4380 | uint16_t const offReg = (idMsr & 0xff) << 4;
|
---|
4381 | uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
|
---|
4382 | *pu64Value = u64Value;
|
---|
4383 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
4384 | }
|
---|
4385 |
|
---|
4386 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
4387 | }
|
---|
4388 |
|
---|
4389 |
|
---|
4390 | /**
|
---|
4391 | * Virtualizes an MSR-based APIC write access.
|
---|
4392 | *
|
---|
4393 | * @returns VBox strict status code.
|
---|
4394 | * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
|
---|
4395 | * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
|
---|
4396 | * not within the range of valid MSRs, caller must raise \#GP(0).
|
---|
4397 | * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
|
---|
4398 | *
|
---|
4399 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4400 | * @param idMsr The x2APIC MSR being written.
|
---|
4401 | * @param u64Value The value of the x2APIC MSR being written.
|
---|
4402 | */
|
---|
4403 | IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value)
|
---|
4404 | {
|
---|
4405 | /*
|
---|
4406 | * Check if the access is to be virtualized.
|
---|
4407 | * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
|
---|
4408 | */
|
---|
4409 | if ( idMsr == MSR_IA32_X2APIC_TPR
|
---|
4410 | || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4411 | && ( idMsr == MSR_IA32_X2APIC_EOI
|
---|
4412 | || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
|
---|
4413 | {
|
---|
4414 | /* Validate the MSR write depending on the register. */
|
---|
4415 | switch (idMsr)
|
---|
4416 | {
|
---|
4417 | case MSR_IA32_X2APIC_TPR:
|
---|
4418 | case MSR_IA32_X2APIC_SELF_IPI:
|
---|
4419 | {
|
---|
4420 | if (u64Value & UINT64_C(0xffffffffffffff00))
|
---|
4421 | return VERR_OUT_OF_RANGE;
|
---|
4422 | break;
|
---|
4423 | }
|
---|
4424 | case MSR_IA32_X2APIC_EOI:
|
---|
4425 | {
|
---|
4426 | if (u64Value != 0)
|
---|
4427 | return VERR_OUT_OF_RANGE;
|
---|
4428 | break;
|
---|
4429 | }
|
---|
4430 | }
|
---|
4431 |
|
---|
4432 | /* Write the MSR to the virtual-APIC page. */
|
---|
4433 | uint16_t const offReg = (idMsr & 0xff) << 4;
|
---|
4434 | iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
|
---|
4435 |
|
---|
4436 | /*
|
---|
4437 | * Record the currently updated APIC offset, as we need this later for figuring
|
---|
4438 | * out whether to perform TPR, EOI or self-IPI virtualization as well as well
|
---|
4439 | * as for supplying the exit qualification when causing an APIC-write VM-exit.
|
---|
4440 | */
|
---|
4441 | iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
|
---|
4442 |
|
---|
4443 | return VINF_VMX_MODIFIES_BEHAVIOR;
|
---|
4444 | }
|
---|
4445 |
|
---|
4446 | return VINF_VMX_INTERCEPT_NOT_ACTIVE;
|
---|
4447 | }
|
---|
4448 |
|
---|
4449 |
|
---|
4450 | /**
|
---|
4451 | * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
|
---|
4452 | *
|
---|
4453 | * @returns VBox status code.
|
---|
4454 | * @retval VINF_SUCCESS when the highest set bit is found.
|
---|
4455 | * @retval VERR_NOT_FOUND when no bit is set.
|
---|
4456 | *
|
---|
4457 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4458 | * @param offReg The offset of the APIC 256-bit sparse register.
|
---|
4459 | * @param pidxHighestBit Where to store the highest bit (most significant bit)
|
---|
4460 | * set in the register. Only valid when VINF_SUCCESS is
|
---|
4461 | * returned.
|
---|
4462 | *
|
---|
4463 | * @remarks The format of the 256-bit sparse register here mirrors that found in
|
---|
4464 | * real APIC hardware.
|
---|
4465 | */
|
---|
4466 | static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
|
---|
4467 | {
|
---|
4468 | Assert(offReg < XAPIC_OFF_END + 4);
|
---|
4469 | Assert(pidxHighestBit);
|
---|
4470 |
|
---|
4471 | /*
|
---|
4472 | * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
|
---|
4473 | * However, in each fragment only the first 4 bytes are used.
|
---|
4474 | */
|
---|
4475 | uint8_t const cFrags = 8;
|
---|
4476 | for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
|
---|
4477 | {
|
---|
4478 | uint16_t const offFrag = iFrag * 16;
|
---|
4479 | uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
|
---|
4480 | if (!u32Frag)
|
---|
4481 | continue;
|
---|
4482 |
|
---|
4483 | unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
|
---|
4484 | Assert(idxHighestBit > 0);
|
---|
4485 | --idxHighestBit;
|
---|
4486 | Assert(idxHighestBit <= UINT8_MAX);
|
---|
4487 | *pidxHighestBit = idxHighestBit;
|
---|
4488 | return VINF_SUCCESS;
|
---|
4489 | }
|
---|
4490 | return VERR_NOT_FOUND;
|
---|
4491 | }
|
---|
4492 |
|
---|
4493 |
|
---|
4494 | /**
|
---|
4495 | * Evaluates pending virtual interrupts.
|
---|
4496 | *
|
---|
4497 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4498 | */
|
---|
4499 | IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu)
|
---|
4500 | {
|
---|
4501 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
4502 |
|
---|
4503 | if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
|
---|
4504 | {
|
---|
4505 | uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
|
---|
4506 | uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
|
---|
4507 |
|
---|
4508 | if ((uRvi >> 4) > (uPpr >> 4))
|
---|
4509 | {
|
---|
4510 | Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
|
---|
4511 | VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
4512 | }
|
---|
4513 | else
|
---|
4514 | Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
|
---|
4515 | }
|
---|
4516 | }
|
---|
4517 |
|
---|
4518 |
|
---|
4519 | /**
|
---|
4520 | * Performs PPR virtualization.
|
---|
4521 | *
|
---|
4522 | * @returns VBox strict status code.
|
---|
4523 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4524 | */
|
---|
4525 | IEM_STATIC void iemVmxPprVirtualization(PVMCPUCC pVCpu)
|
---|
4526 | {
|
---|
4527 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
4528 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
4529 |
|
---|
4530 | /*
|
---|
4531 | * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
|
---|
4532 | * or EOI-virtualization.
|
---|
4533 | *
|
---|
4534 | * See Intel spec. 29.1.3 "PPR Virtualization".
|
---|
4535 | */
|
---|
4536 | uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
|
---|
4537 | uint32_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
|
---|
4538 |
|
---|
4539 | uint32_t uPpr;
|
---|
4540 | if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
|
---|
4541 | uPpr = uTpr & 0xff;
|
---|
4542 | else
|
---|
4543 | uPpr = uSvi & 0xf0;
|
---|
4544 |
|
---|
4545 | Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
|
---|
4546 | iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
|
---|
4547 | }
|
---|
4548 |
|
---|
4549 |
|
---|
4550 | /**
|
---|
4551 | * Performs VMX TPR virtualization.
|
---|
4552 | *
|
---|
4553 | * @returns VBox strict status code.
|
---|
4554 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4555 | */
|
---|
4556 | IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu)
|
---|
4557 | {
|
---|
4558 | Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
4559 |
|
---|
4560 | /*
|
---|
4561 | * We should have already performed the virtual-APIC write to the TPR offset
|
---|
4562 | * in the virtual-APIC page. We now perform TPR virtualization.
|
---|
4563 | *
|
---|
4564 | * See Intel spec. 29.1.2 "TPR Virtualization".
|
---|
4565 | */
|
---|
4566 | if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
4567 | {
|
---|
4568 | uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
|
---|
4569 | uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
|
---|
4570 |
|
---|
4571 | /*
|
---|
4572 | * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
|
---|
4573 | * See Intel spec. 29.1.2 "TPR Virtualization".
|
---|
4574 | */
|
---|
4575 | if (((uTpr >> 4) & 0xf) < uTprThreshold)
|
---|
4576 | {
|
---|
4577 | Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
|
---|
4578 | return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
|
---|
4579 | }
|
---|
4580 | }
|
---|
4581 | else
|
---|
4582 | {
|
---|
4583 | iemVmxPprVirtualization(pVCpu);
|
---|
4584 | iemVmxEvalPendingVirtIntrs(pVCpu);
|
---|
4585 | }
|
---|
4586 |
|
---|
4587 | return VINF_SUCCESS;
|
---|
4588 | }
|
---|
4589 |
|
---|
4590 |
|
---|
4591 | /**
|
---|
4592 | * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
|
---|
4593 | * not.
|
---|
4594 | *
|
---|
4595 | * @returns @c true if the EOI write is intercepted, @c false otherwise.
|
---|
4596 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4597 | * @param uVector The interrupt that was acknowledged using an EOI.
|
---|
4598 | */
|
---|
4599 | IEM_STATIC bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector)
|
---|
4600 | {
|
---|
4601 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4602 | Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
4603 |
|
---|
4604 | if (uVector < 64)
|
---|
4605 | return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
|
---|
4606 | if (uVector < 128)
|
---|
4607 | return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
|
---|
4608 | if (uVector < 192)
|
---|
4609 | return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
|
---|
4610 | return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
|
---|
4611 | }
|
---|
4612 |
|
---|
4613 |
|
---|
4614 | /**
|
---|
4615 | * Performs EOI virtualization.
|
---|
4616 | *
|
---|
4617 | * @returns VBox strict status code.
|
---|
4618 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4619 | */
|
---|
4620 | IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu)
|
---|
4621 | {
|
---|
4622 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4623 | Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
4624 |
|
---|
4625 | /*
|
---|
4626 | * Clear the interrupt guest-interrupt as no longer in-service (ISR)
|
---|
4627 | * and get the next guest-interrupt that's in-service (if any).
|
---|
4628 | *
|
---|
4629 | * See Intel spec. 29.1.4 "EOI Virtualization".
|
---|
4630 | */
|
---|
4631 | uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
|
---|
4632 | uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
|
---|
4633 | Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
|
---|
4634 |
|
---|
4635 | uint8_t uVector = uSvi;
|
---|
4636 | iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
|
---|
4637 |
|
---|
4638 | uVector = 0;
|
---|
4639 | iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
|
---|
4640 |
|
---|
4641 | if (uVector)
|
---|
4642 | Log2(("eoi_virt: next interrupt %#x\n", uVector));
|
---|
4643 | else
|
---|
4644 | Log2(("eoi_virt: no interrupt pending in ISR\n"));
|
---|
4645 |
|
---|
4646 | /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
|
---|
4647 | pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
|
---|
4648 |
|
---|
4649 | iemVmxPprVirtualization(pVCpu);
|
---|
4650 | if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
|
---|
4651 | return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
|
---|
4652 | iemVmxEvalPendingVirtIntrs(pVCpu);
|
---|
4653 | return VINF_SUCCESS;
|
---|
4654 | }
|
---|
4655 |
|
---|
4656 |
|
---|
4657 | /**
|
---|
4658 | * Performs self-IPI virtualization.
|
---|
4659 | *
|
---|
4660 | * @returns VBox strict status code.
|
---|
4661 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4662 | */
|
---|
4663 | IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu)
|
---|
4664 | {
|
---|
4665 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4666 | Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
4667 |
|
---|
4668 | /*
|
---|
4669 | * We should have already performed the virtual-APIC write to the self-IPI offset
|
---|
4670 | * in the virtual-APIC page. We now perform self-IPI virtualization.
|
---|
4671 | *
|
---|
4672 | * See Intel spec. 29.1.5 "Self-IPI Virtualization".
|
---|
4673 | */
|
---|
4674 | uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
|
---|
4675 | Log2(("self_ipi_virt: uVector=%#x\n", uVector));
|
---|
4676 | iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
|
---|
4677 | uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
|
---|
4678 | uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
|
---|
4679 | if (uVector > uRvi)
|
---|
4680 | pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
|
---|
4681 | iemVmxEvalPendingVirtIntrs(pVCpu);
|
---|
4682 | return VINF_SUCCESS;
|
---|
4683 | }
|
---|
4684 |
|
---|
4685 |
|
---|
4686 | /**
|
---|
4687 | * Performs VMX APIC-write emulation.
|
---|
4688 | *
|
---|
4689 | * @returns VBox strict status code.
|
---|
4690 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4691 | */
|
---|
4692 | IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu)
|
---|
4693 | {
|
---|
4694 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4695 |
|
---|
4696 | /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
|
---|
4697 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
|
---|
4698 |
|
---|
4699 | /*
|
---|
4700 | * Perform APIC-write emulation based on the virtual-APIC register written.
|
---|
4701 | * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
|
---|
4702 | */
|
---|
4703 | uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
|
---|
4704 | VBOXSTRICTRC rcStrict;
|
---|
4705 | switch (offApicWrite)
|
---|
4706 | {
|
---|
4707 | case XAPIC_OFF_TPR:
|
---|
4708 | {
|
---|
4709 | /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
|
---|
4710 | uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
|
---|
4711 | uTpr &= UINT32_C(0x000000ff);
|
---|
4712 | iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
|
---|
4713 | Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
|
---|
4714 | rcStrict = iemVmxTprVirtualization(pVCpu);
|
---|
4715 | break;
|
---|
4716 | }
|
---|
4717 |
|
---|
4718 | case XAPIC_OFF_EOI:
|
---|
4719 | {
|
---|
4720 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4721 | {
|
---|
4722 | /* Clear VEOI and perform EOI virtualization. */
|
---|
4723 | iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
|
---|
4724 | Log2(("iemVmxApicWriteEmulation: EOI write\n"));
|
---|
4725 | rcStrict = iemVmxEoiVirtualization(pVCpu);
|
---|
4726 | }
|
---|
4727 | else
|
---|
4728 | rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
|
---|
4729 | break;
|
---|
4730 | }
|
---|
4731 |
|
---|
4732 | case XAPIC_OFF_ICR_LO:
|
---|
4733 | {
|
---|
4734 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
4735 | {
|
---|
4736 | /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
|
---|
4737 | uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
|
---|
4738 | uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
|
---|
4739 | uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
|
---|
4740 | if ( !(uIcrLo & fIcrLoMb0)
|
---|
4741 | && (uIcrLo & fIcrLoMb1))
|
---|
4742 | {
|
---|
4743 | Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
|
---|
4744 | rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
|
---|
4745 | }
|
---|
4746 | else
|
---|
4747 | rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
|
---|
4748 | }
|
---|
4749 | else
|
---|
4750 | rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
|
---|
4751 | break;
|
---|
4752 | }
|
---|
4753 |
|
---|
4754 | case XAPIC_OFF_ICR_HI:
|
---|
4755 | {
|
---|
4756 | /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
|
---|
4757 | uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
|
---|
4758 | uIcrHi &= UINT32_C(0xff000000);
|
---|
4759 | iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
|
---|
4760 | rcStrict = VINF_SUCCESS;
|
---|
4761 | break;
|
---|
4762 | }
|
---|
4763 |
|
---|
4764 | default:
|
---|
4765 | {
|
---|
4766 | /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
|
---|
4767 | rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
|
---|
4768 | break;
|
---|
4769 | }
|
---|
4770 | }
|
---|
4771 |
|
---|
4772 | return rcStrict;
|
---|
4773 | }
|
---|
4774 |
|
---|
4775 |
|
---|
4776 | /**
|
---|
4777 | * Checks guest control registers, debug registers and MSRs as part of VM-entry.
|
---|
4778 | *
|
---|
4779 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4780 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4781 | */
|
---|
4782 | DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
4783 | {
|
---|
4784 | /*
|
---|
4785 | * Guest Control Registers, Debug Registers, and MSRs.
|
---|
4786 | * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
|
---|
4787 | */
|
---|
4788 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4789 | const char * const pszFailure = "VM-exit";
|
---|
4790 | bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
|
---|
4791 |
|
---|
4792 | /* CR0 reserved bits. */
|
---|
4793 | {
|
---|
4794 | /* CR0 MB1 bits. */
|
---|
4795 | uint64_t u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
|
---|
4796 | Assert(!(u64Cr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
|
---|
4797 | if (fUnrestrictedGuest)
|
---|
4798 | u64Cr0Fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
4799 | if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
|
---|
4800 | { /* likely */ }
|
---|
4801 | else
|
---|
4802 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
|
---|
4803 |
|
---|
4804 | /* CR0 MBZ bits. */
|
---|
4805 | uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
|
---|
4806 | if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
|
---|
4807 | { /* likely */ }
|
---|
4808 | else
|
---|
4809 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
|
---|
4810 |
|
---|
4811 | /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
|
---|
4812 | if ( !fUnrestrictedGuest
|
---|
4813 | && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
4814 | && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
4815 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
|
---|
4816 | }
|
---|
4817 |
|
---|
4818 | /* CR4 reserved bits. */
|
---|
4819 | {
|
---|
4820 | /* CR4 MB1 bits. */
|
---|
4821 | uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
|
---|
4822 | if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
|
---|
4823 | { /* likely */ }
|
---|
4824 | else
|
---|
4825 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
|
---|
4826 |
|
---|
4827 | /* CR4 MBZ bits. */
|
---|
4828 | uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
|
---|
4829 | if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
|
---|
4830 | { /* likely */ }
|
---|
4831 | else
|
---|
4832 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
|
---|
4833 | }
|
---|
4834 |
|
---|
4835 | /* DEBUGCTL MSR. */
|
---|
4836 | if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
4837 | || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
|
---|
4838 | { /* likely */ }
|
---|
4839 | else
|
---|
4840 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
|
---|
4841 |
|
---|
4842 | /* 64-bit CPU checks. */
|
---|
4843 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
4844 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
4845 | {
|
---|
4846 | if (fGstInLongMode)
|
---|
4847 | {
|
---|
4848 | /* PAE must be set. */
|
---|
4849 | if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
4850 | && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
|
---|
4851 | { /* likely */ }
|
---|
4852 | else
|
---|
4853 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
|
---|
4854 | }
|
---|
4855 | else
|
---|
4856 | {
|
---|
4857 | /* PCIDE should not be set. */
|
---|
4858 | if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
|
---|
4859 | { /* likely */ }
|
---|
4860 | else
|
---|
4861 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
|
---|
4862 | }
|
---|
4863 |
|
---|
4864 | /* CR3. */
|
---|
4865 | if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
|
---|
4866 | { /* likely */ }
|
---|
4867 | else
|
---|
4868 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
|
---|
4869 |
|
---|
4870 | /* DR7. */
|
---|
4871 | if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
4872 | || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
|
---|
4873 | { /* likely */ }
|
---|
4874 | else
|
---|
4875 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
|
---|
4876 |
|
---|
4877 | /* SYSENTER ESP and SYSENTER EIP. */
|
---|
4878 | if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
|
---|
4879 | && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
|
---|
4880 | { /* likely */ }
|
---|
4881 | else
|
---|
4882 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
|
---|
4883 | }
|
---|
4884 |
|
---|
4885 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
4886 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
|
---|
4887 |
|
---|
4888 | /* PAT MSR. */
|
---|
4889 | if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
4890 | || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
|
---|
4891 | { /* likely */ }
|
---|
4892 | else
|
---|
4893 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
|
---|
4894 |
|
---|
4895 | /* EFER MSR. */
|
---|
4896 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
4897 | {
|
---|
4898 | uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
|
---|
4899 | if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
|
---|
4900 | { /* likely */ }
|
---|
4901 | else
|
---|
4902 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
|
---|
4903 |
|
---|
4904 | bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
|
---|
4905 | bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
|
---|
4906 | if ( fGstLma == fGstInLongMode
|
---|
4907 | && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
|
---|
4908 | || fGstLma == fGstLme))
|
---|
4909 | { /* likely */ }
|
---|
4910 | else
|
---|
4911 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
|
---|
4912 | }
|
---|
4913 |
|
---|
4914 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
4915 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
|
---|
4916 |
|
---|
4917 | NOREF(pszInstr);
|
---|
4918 | NOREF(pszFailure);
|
---|
4919 | return VINF_SUCCESS;
|
---|
4920 | }
|
---|
4921 |
|
---|
4922 |
|
---|
4923 | /**
|
---|
4924 | * Checks guest segment registers, LDTR and TR as part of VM-entry.
|
---|
4925 | *
|
---|
4926 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4927 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
4928 | */
|
---|
4929 | DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
4930 | {
|
---|
4931 | /*
|
---|
4932 | * Segment registers.
|
---|
4933 | * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
4934 | */
|
---|
4935 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
4936 | const char * const pszFailure = "VM-exit";
|
---|
4937 | bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
|
---|
4938 | bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
|
---|
4939 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
4940 |
|
---|
4941 | /* Selectors. */
|
---|
4942 | if ( !fGstInV86Mode
|
---|
4943 | && !fUnrestrictedGuest
|
---|
4944 | && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
|
---|
4945 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
|
---|
4946 |
|
---|
4947 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
4948 | {
|
---|
4949 | CPUMSELREG SelReg;
|
---|
4950 | int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
|
---|
4951 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4952 | { /* likely */ }
|
---|
4953 | else
|
---|
4954 | return rc;
|
---|
4955 |
|
---|
4956 | /*
|
---|
4957 | * Virtual-8086 mode checks.
|
---|
4958 | */
|
---|
4959 | if (fGstInV86Mode)
|
---|
4960 | {
|
---|
4961 | /* Base address. */
|
---|
4962 | if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
|
---|
4963 | { /* likely */ }
|
---|
4964 | else
|
---|
4965 | {
|
---|
4966 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
|
---|
4967 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
4968 | }
|
---|
4969 |
|
---|
4970 | /* Limit. */
|
---|
4971 | if (SelReg.u32Limit == 0xffff)
|
---|
4972 | { /* likely */ }
|
---|
4973 | else
|
---|
4974 | {
|
---|
4975 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
|
---|
4976 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
4977 | }
|
---|
4978 |
|
---|
4979 | /* Attribute. */
|
---|
4980 | if (SelReg.Attr.u == 0xf3)
|
---|
4981 | { /* likely */ }
|
---|
4982 | else
|
---|
4983 | {
|
---|
4984 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
|
---|
4985 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
4986 | }
|
---|
4987 |
|
---|
4988 | /* We're done; move to checking the next segment. */
|
---|
4989 | continue;
|
---|
4990 | }
|
---|
4991 |
|
---|
4992 | /* Checks done by 64-bit CPUs. */
|
---|
4993 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
4994 | {
|
---|
4995 | /* Base address. */
|
---|
4996 | if ( iSegReg == X86_SREG_FS
|
---|
4997 | || iSegReg == X86_SREG_GS)
|
---|
4998 | {
|
---|
4999 | if (X86_IS_CANONICAL(SelReg.u64Base))
|
---|
5000 | { /* likely */ }
|
---|
5001 | else
|
---|
5002 | {
|
---|
5003 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
|
---|
5004 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5005 | }
|
---|
5006 | }
|
---|
5007 | else if (iSegReg == X86_SREG_CS)
|
---|
5008 | {
|
---|
5009 | if (!RT_HI_U32(SelReg.u64Base))
|
---|
5010 | { /* likely */ }
|
---|
5011 | else
|
---|
5012 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
|
---|
5013 | }
|
---|
5014 | else
|
---|
5015 | {
|
---|
5016 | if ( SelReg.Attr.n.u1Unusable
|
---|
5017 | || !RT_HI_U32(SelReg.u64Base))
|
---|
5018 | { /* likely */ }
|
---|
5019 | else
|
---|
5020 | {
|
---|
5021 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
|
---|
5022 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5023 | }
|
---|
5024 | }
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | /*
|
---|
5028 | * Checks outside Virtual-8086 mode.
|
---|
5029 | */
|
---|
5030 | uint8_t const uSegType = SelReg.Attr.n.u4Type;
|
---|
5031 | uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
|
---|
5032 | uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
|
---|
5033 | uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
|
---|
5034 | uint8_t const fPresent = SelReg.Attr.n.u1Present;
|
---|
5035 | uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
|
---|
5036 | uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
|
---|
5037 | uint8_t const fSegLong = SelReg.Attr.n.u1Long;
|
---|
5038 |
|
---|
5039 | /* Code or usable segment. */
|
---|
5040 | if ( iSegReg == X86_SREG_CS
|
---|
5041 | || fUsable)
|
---|
5042 | {
|
---|
5043 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
5044 | if (!(SelReg.Attr.u & 0xfffe0f00))
|
---|
5045 | { /* likely */ }
|
---|
5046 | else
|
---|
5047 | {
|
---|
5048 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
|
---|
5049 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5050 | }
|
---|
5051 |
|
---|
5052 | /* Descriptor type. */
|
---|
5053 | if (fCodeDataSeg)
|
---|
5054 | { /* likely */ }
|
---|
5055 | else
|
---|
5056 | {
|
---|
5057 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
|
---|
5058 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5059 | }
|
---|
5060 |
|
---|
5061 | /* Present. */
|
---|
5062 | if (fPresent)
|
---|
5063 | { /* likely */ }
|
---|
5064 | else
|
---|
5065 | {
|
---|
5066 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
|
---|
5067 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5068 | }
|
---|
5069 |
|
---|
5070 | /* Granularity. */
|
---|
5071 | if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
|
---|
5072 | && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
|
---|
5073 | { /* likely */ }
|
---|
5074 | else
|
---|
5075 | {
|
---|
5076 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
|
---|
5077 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5078 | }
|
---|
5079 | }
|
---|
5080 |
|
---|
5081 | if (iSegReg == X86_SREG_CS)
|
---|
5082 | {
|
---|
5083 | /* Segment Type and DPL. */
|
---|
5084 | if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
5085 | && fUnrestrictedGuest)
|
---|
5086 | {
|
---|
5087 | if (uDpl == 0)
|
---|
5088 | { /* likely */ }
|
---|
5089 | else
|
---|
5090 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
|
---|
5091 | }
|
---|
5092 | else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
|
---|
5093 | || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
|
---|
5094 | {
|
---|
5095 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
5096 | if (uDpl == AttrSs.n.u2Dpl)
|
---|
5097 | { /* likely */ }
|
---|
5098 | else
|
---|
5099 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
|
---|
5100 | }
|
---|
5101 | else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
|
---|
5102 | == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
|
---|
5103 | {
|
---|
5104 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
5105 | if (uDpl <= AttrSs.n.u2Dpl)
|
---|
5106 | { /* likely */ }
|
---|
5107 | else
|
---|
5108 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
|
---|
5109 | }
|
---|
5110 | else
|
---|
5111 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
|
---|
5112 |
|
---|
5113 | /* Def/Big. */
|
---|
5114 | if ( fGstInLongMode
|
---|
5115 | && fSegLong)
|
---|
5116 | {
|
---|
5117 | if (uDefBig == 0)
|
---|
5118 | { /* likely */ }
|
---|
5119 | else
|
---|
5120 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
|
---|
5121 | }
|
---|
5122 | }
|
---|
5123 | else if (iSegReg == X86_SREG_SS)
|
---|
5124 | {
|
---|
5125 | /* Segment Type. */
|
---|
5126 | if ( !fUsable
|
---|
5127 | || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
5128 | || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
|
---|
5129 | { /* likely */ }
|
---|
5130 | else
|
---|
5131 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
|
---|
5132 |
|
---|
5133 | /* DPL. */
|
---|
5134 | if (!fUnrestrictedGuest)
|
---|
5135 | {
|
---|
5136 | if (uDpl == (SelReg.Sel & X86_SEL_RPL))
|
---|
5137 | { /* likely */ }
|
---|
5138 | else
|
---|
5139 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
|
---|
5140 | }
|
---|
5141 | X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
|
---|
5142 | if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
|
---|
5143 | || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
5144 | {
|
---|
5145 | if (uDpl == 0)
|
---|
5146 | { /* likely */ }
|
---|
5147 | else
|
---|
5148 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
|
---|
5149 | }
|
---|
5150 | }
|
---|
5151 | else
|
---|
5152 | {
|
---|
5153 | /* DS, ES, FS, GS. */
|
---|
5154 | if (fUsable)
|
---|
5155 | {
|
---|
5156 | /* Segment type. */
|
---|
5157 | if (uSegType & X86_SEL_TYPE_ACCESSED)
|
---|
5158 | { /* likely */ }
|
---|
5159 | else
|
---|
5160 | {
|
---|
5161 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
|
---|
5162 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5163 | }
|
---|
5164 |
|
---|
5165 | if ( !(uSegType & X86_SEL_TYPE_CODE)
|
---|
5166 | || (uSegType & X86_SEL_TYPE_READ))
|
---|
5167 | { /* likely */ }
|
---|
5168 | else
|
---|
5169 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
|
---|
5170 |
|
---|
5171 | /* DPL. */
|
---|
5172 | if ( !fUnrestrictedGuest
|
---|
5173 | && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
|
---|
5174 | {
|
---|
5175 | if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
|
---|
5176 | { /* likely */ }
|
---|
5177 | else
|
---|
5178 | {
|
---|
5179 | VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
|
---|
5180 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
5181 | }
|
---|
5182 | }
|
---|
5183 | }
|
---|
5184 | }
|
---|
5185 | }
|
---|
5186 |
|
---|
5187 | /*
|
---|
5188 | * LDTR.
|
---|
5189 | */
|
---|
5190 | {
|
---|
5191 | CPUMSELREG Ldtr;
|
---|
5192 | Ldtr.Sel = pVmcs->GuestLdtr;
|
---|
5193 | Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
|
---|
5194 | Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
|
---|
5195 | Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
|
---|
5196 |
|
---|
5197 | if (!Ldtr.Attr.n.u1Unusable)
|
---|
5198 | {
|
---|
5199 | /* Selector. */
|
---|
5200 | if (!(Ldtr.Sel & X86_SEL_LDT))
|
---|
5201 | { /* likely */ }
|
---|
5202 | else
|
---|
5203 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
|
---|
5204 |
|
---|
5205 | /* Base. */
|
---|
5206 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5207 | {
|
---|
5208 | if (X86_IS_CANONICAL(Ldtr.u64Base))
|
---|
5209 | { /* likely */ }
|
---|
5210 | else
|
---|
5211 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
|
---|
5212 | }
|
---|
5213 |
|
---|
5214 | /* Attributes. */
|
---|
5215 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
5216 | if (!(Ldtr.Attr.u & 0xfffe0f00))
|
---|
5217 | { /* likely */ }
|
---|
5218 | else
|
---|
5219 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
|
---|
5220 |
|
---|
5221 | if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
|
---|
5222 | { /* likely */ }
|
---|
5223 | else
|
---|
5224 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
|
---|
5225 |
|
---|
5226 | if (!Ldtr.Attr.n.u1DescType)
|
---|
5227 | { /* likely */ }
|
---|
5228 | else
|
---|
5229 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
|
---|
5230 |
|
---|
5231 | if (Ldtr.Attr.n.u1Present)
|
---|
5232 | { /* likely */ }
|
---|
5233 | else
|
---|
5234 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
|
---|
5235 |
|
---|
5236 | if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
|
---|
5237 | && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
|
---|
5238 | { /* likely */ }
|
---|
5239 | else
|
---|
5240 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
|
---|
5241 | }
|
---|
5242 | }
|
---|
5243 |
|
---|
5244 | /*
|
---|
5245 | * TR.
|
---|
5246 | */
|
---|
5247 | {
|
---|
5248 | CPUMSELREG Tr;
|
---|
5249 | Tr.Sel = pVmcs->GuestTr;
|
---|
5250 | Tr.u32Limit = pVmcs->u32GuestTrLimit;
|
---|
5251 | Tr.u64Base = pVmcs->u64GuestTrBase.u;
|
---|
5252 | Tr.Attr.u = pVmcs->u32GuestTrAttr;
|
---|
5253 |
|
---|
5254 | /* Selector. */
|
---|
5255 | if (!(Tr.Sel & X86_SEL_LDT))
|
---|
5256 | { /* likely */ }
|
---|
5257 | else
|
---|
5258 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
|
---|
5259 |
|
---|
5260 | /* Base. */
|
---|
5261 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5262 | {
|
---|
5263 | if (X86_IS_CANONICAL(Tr.u64Base))
|
---|
5264 | { /* likely */ }
|
---|
5265 | else
|
---|
5266 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
|
---|
5267 | }
|
---|
5268 |
|
---|
5269 | /* Attributes. */
|
---|
5270 | /* Reserved bits (bits 31:17 and bits 11:8). */
|
---|
5271 | if (!(Tr.Attr.u & 0xfffe0f00))
|
---|
5272 | { /* likely */ }
|
---|
5273 | else
|
---|
5274 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
|
---|
5275 |
|
---|
5276 | if (!Tr.Attr.n.u1Unusable)
|
---|
5277 | { /* likely */ }
|
---|
5278 | else
|
---|
5279 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
|
---|
5280 |
|
---|
5281 | if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
5282 | || ( !fGstInLongMode
|
---|
5283 | && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
|
---|
5284 | { /* likely */ }
|
---|
5285 | else
|
---|
5286 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
|
---|
5287 |
|
---|
5288 | if (!Tr.Attr.n.u1DescType)
|
---|
5289 | { /* likely */ }
|
---|
5290 | else
|
---|
5291 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
|
---|
5292 |
|
---|
5293 | if (Tr.Attr.n.u1Present)
|
---|
5294 | { /* likely */ }
|
---|
5295 | else
|
---|
5296 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
|
---|
5297 |
|
---|
5298 | if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
|
---|
5299 | && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
|
---|
5300 | { /* likely */ }
|
---|
5301 | else
|
---|
5302 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
|
---|
5303 | }
|
---|
5304 |
|
---|
5305 | NOREF(pszInstr);
|
---|
5306 | NOREF(pszFailure);
|
---|
5307 | return VINF_SUCCESS;
|
---|
5308 | }
|
---|
5309 |
|
---|
5310 |
|
---|
5311 | /**
|
---|
5312 | * Checks guest GDTR and IDTR as part of VM-entry.
|
---|
5313 | *
|
---|
5314 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5315 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5316 | */
|
---|
5317 | DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5318 | {
|
---|
5319 | /*
|
---|
5320 | * GDTR and IDTR.
|
---|
5321 | * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
|
---|
5322 | */
|
---|
5323 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5324 | const char *const pszFailure = "VM-exit";
|
---|
5325 |
|
---|
5326 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5327 | {
|
---|
5328 | /* Base. */
|
---|
5329 | if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
|
---|
5330 | { /* likely */ }
|
---|
5331 | else
|
---|
5332 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
|
---|
5333 |
|
---|
5334 | if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
|
---|
5335 | { /* likely */ }
|
---|
5336 | else
|
---|
5337 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
|
---|
5338 | }
|
---|
5339 |
|
---|
5340 | /* Limit. */
|
---|
5341 | if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
|
---|
5342 | { /* likely */ }
|
---|
5343 | else
|
---|
5344 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
|
---|
5345 |
|
---|
5346 | if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
|
---|
5347 | { /* likely */ }
|
---|
5348 | else
|
---|
5349 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
|
---|
5350 |
|
---|
5351 | NOREF(pszInstr);
|
---|
5352 | NOREF(pszFailure);
|
---|
5353 | return VINF_SUCCESS;
|
---|
5354 | }
|
---|
5355 |
|
---|
5356 |
|
---|
5357 | /**
|
---|
5358 | * Checks guest RIP and RFLAGS as part of VM-entry.
|
---|
5359 | *
|
---|
5360 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5361 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5362 | */
|
---|
5363 | DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5364 | {
|
---|
5365 | /*
|
---|
5366 | * RIP and RFLAGS.
|
---|
5367 | * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
|
---|
5368 | */
|
---|
5369 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5370 | const char *const pszFailure = "VM-exit";
|
---|
5371 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
5372 |
|
---|
5373 | /* RIP. */
|
---|
5374 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5375 | {
|
---|
5376 | X86DESCATTR AttrCs;
|
---|
5377 | AttrCs.u = pVmcs->u32GuestCsAttr;
|
---|
5378 | if ( !fGstInLongMode
|
---|
5379 | || !AttrCs.n.u1Long)
|
---|
5380 | {
|
---|
5381 | if (!RT_HI_U32(pVmcs->u64GuestRip.u))
|
---|
5382 | { /* likely */ }
|
---|
5383 | else
|
---|
5384 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
|
---|
5385 | }
|
---|
5386 |
|
---|
5387 | if ( fGstInLongMode
|
---|
5388 | && AttrCs.n.u1Long)
|
---|
5389 | {
|
---|
5390 | Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
|
---|
5391 | if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
|
---|
5392 | && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
|
---|
5393 | { /* likely */ }
|
---|
5394 | else
|
---|
5395 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
|
---|
5396 | }
|
---|
5397 | }
|
---|
5398 |
|
---|
5399 | /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
|
---|
5400 | uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
|
---|
5401 | : pVmcs->u64GuestRFlags.s.Lo;
|
---|
5402 | if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
|
---|
5403 | && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
|
---|
5404 | { /* likely */ }
|
---|
5405 | else
|
---|
5406 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
|
---|
5407 |
|
---|
5408 | if ( fGstInLongMode
|
---|
5409 | || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
|
---|
5410 | {
|
---|
5411 | if (!(uGuestRFlags & X86_EFL_VM))
|
---|
5412 | { /* likely */ }
|
---|
5413 | else
|
---|
5414 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
|
---|
5415 | }
|
---|
5416 |
|
---|
5417 | if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
|
---|
5418 | {
|
---|
5419 | if (uGuestRFlags & X86_EFL_IF)
|
---|
5420 | { /* likely */ }
|
---|
5421 | else
|
---|
5422 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
|
---|
5423 | }
|
---|
5424 |
|
---|
5425 | NOREF(pszInstr);
|
---|
5426 | NOREF(pszFailure);
|
---|
5427 | return VINF_SUCCESS;
|
---|
5428 | }
|
---|
5429 |
|
---|
5430 |
|
---|
5431 | /**
|
---|
5432 | * Checks guest non-register state as part of VM-entry.
|
---|
5433 | *
|
---|
5434 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5435 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5436 | */
|
---|
5437 | DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5438 | {
|
---|
5439 | /*
|
---|
5440 | * Guest non-register state.
|
---|
5441 | * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
|
---|
5442 | */
|
---|
5443 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5444 | const char *const pszFailure = "VM-exit";
|
---|
5445 |
|
---|
5446 | /*
|
---|
5447 | * Activity state.
|
---|
5448 | */
|
---|
5449 | uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
|
---|
5450 | uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
|
---|
5451 | if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
|
---|
5452 | { /* likely */ }
|
---|
5453 | else
|
---|
5454 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
|
---|
5455 |
|
---|
5456 | X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
|
---|
5457 | if ( !AttrSs.n.u2Dpl
|
---|
5458 | || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
5459 | { /* likely */ }
|
---|
5460 | else
|
---|
5461 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
|
---|
5462 |
|
---|
5463 | if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
|
---|
5464 | || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
|
---|
5465 | {
|
---|
5466 | if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
|
---|
5467 | { /* likely */ }
|
---|
5468 | else
|
---|
5469 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
|
---|
5470 | }
|
---|
5471 |
|
---|
5472 | if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
|
---|
5473 | {
|
---|
5474 | uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
|
---|
5475 | uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
|
---|
5476 | AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
|
---|
5477 | switch (pVmcs->u32GuestActivityState)
|
---|
5478 | {
|
---|
5479 | case VMX_VMCS_GUEST_ACTIVITY_HLT:
|
---|
5480 | {
|
---|
5481 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
|
---|
5482 | || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
5483 | || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
5484 | && ( uVector == X86_XCPT_DB
|
---|
5485 | || uVector == X86_XCPT_MC))
|
---|
5486 | || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
|
---|
5487 | && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
|
---|
5488 | { /* likely */ }
|
---|
5489 | else
|
---|
5490 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
|
---|
5491 | break;
|
---|
5492 | }
|
---|
5493 |
|
---|
5494 | case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
|
---|
5495 | {
|
---|
5496 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
5497 | || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
5498 | && uVector == X86_XCPT_MC))
|
---|
5499 | { /* likely */ }
|
---|
5500 | else
|
---|
5501 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
|
---|
5502 | break;
|
---|
5503 | }
|
---|
5504 |
|
---|
5505 | case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
|
---|
5506 | default:
|
---|
5507 | break;
|
---|
5508 | }
|
---|
5509 | }
|
---|
5510 |
|
---|
5511 | /*
|
---|
5512 | * Interruptibility state.
|
---|
5513 | */
|
---|
5514 | if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
|
---|
5515 | { /* likely */ }
|
---|
5516 | else
|
---|
5517 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
|
---|
5518 |
|
---|
5519 | if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
5520 | != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
5521 | { /* likely */ }
|
---|
5522 | else
|
---|
5523 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
|
---|
5524 |
|
---|
5525 | if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
|
---|
5526 | || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
5527 | { /* likely */ }
|
---|
5528 | else
|
---|
5529 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
|
---|
5530 |
|
---|
5531 | if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
|
---|
5532 | {
|
---|
5533 | uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
|
---|
5534 | if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
5535 | {
|
---|
5536 | if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
|
---|
5537 | { /* likely */ }
|
---|
5538 | else
|
---|
5539 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
|
---|
5540 | }
|
---|
5541 | else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
5542 | {
|
---|
5543 | if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
|
---|
5544 | { /* likely */ }
|
---|
5545 | else
|
---|
5546 | {
|
---|
5547 | /*
|
---|
5548 | * We don't support injecting NMIs when blocking-by-STI would be in effect.
|
---|
5549 | * We update the Exit qualification only when blocking-by-STI is set
|
---|
5550 | * without blocking-by-MovSS being set. Although in practise it does not
|
---|
5551 | * make much difference since the order of checks are implementation defined.
|
---|
5552 | */
|
---|
5553 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
5554 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
|
---|
5555 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
|
---|
5556 | }
|
---|
5557 |
|
---|
5558 | if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
5559 | || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
|
---|
5560 | { /* likely */ }
|
---|
5561 | else
|
---|
5562 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
|
---|
5563 | }
|
---|
5564 | }
|
---|
5565 |
|
---|
5566 | /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
|
---|
5567 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
|
---|
5568 | { /* likely */ }
|
---|
5569 | else
|
---|
5570 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
|
---|
5571 |
|
---|
5572 | /* We don't support SGX yet. So enclave-interruption must not be set. */
|
---|
5573 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
|
---|
5574 | { /* likely */ }
|
---|
5575 | else
|
---|
5576 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
|
---|
5577 |
|
---|
5578 | /*
|
---|
5579 | * Pending debug exceptions.
|
---|
5580 | */
|
---|
5581 | uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
|
---|
5582 | ? pVmcs->u64GuestPendingDbgXcpts.u
|
---|
5583 | : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
|
---|
5584 | if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
|
---|
5585 | { /* likely */ }
|
---|
5586 | else
|
---|
5587 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
|
---|
5588 |
|
---|
5589 | if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
5590 | || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
5591 | {
|
---|
5592 | if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
|
---|
5593 | && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
|
---|
5594 | && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
|
---|
5595 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
|
---|
5596 |
|
---|
5597 | if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
|
---|
5598 | || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
|
---|
5599 | && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
|
---|
5600 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
|
---|
5601 | }
|
---|
5602 |
|
---|
5603 | /* We don't support RTM (Real-time Transactional Memory) yet. */
|
---|
5604 | if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
|
---|
5605 | { /* likely */ }
|
---|
5606 | else
|
---|
5607 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
|
---|
5608 |
|
---|
5609 | /*
|
---|
5610 | * VMCS link pointer.
|
---|
5611 | */
|
---|
5612 | if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
|
---|
5613 | {
|
---|
5614 | RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
|
---|
5615 | /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
|
---|
5616 | if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
|
---|
5617 | { /* likely */ }
|
---|
5618 | else
|
---|
5619 | {
|
---|
5620 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
5621 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
|
---|
5622 | }
|
---|
5623 |
|
---|
5624 | /* Validate the address. */
|
---|
5625 | if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
|
---|
5626 | && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
5627 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
|
---|
5628 | { /* likely */ }
|
---|
5629 | else
|
---|
5630 | {
|
---|
5631 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
5632 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
|
---|
5633 | }
|
---|
5634 | }
|
---|
5635 |
|
---|
5636 | NOREF(pszInstr);
|
---|
5637 | NOREF(pszFailure);
|
---|
5638 | return VINF_SUCCESS;
|
---|
5639 | }
|
---|
5640 |
|
---|
5641 |
|
---|
5642 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5643 | /**
|
---|
5644 | * Checks guest PDPTEs as part of VM-entry.
|
---|
5645 | *
|
---|
5646 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5647 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5648 | */
|
---|
5649 | IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5650 | {
|
---|
5651 | /*
|
---|
5652 | * Guest PDPTEs.
|
---|
5653 | * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
|
---|
5654 | */
|
---|
5655 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5656 | const char * const pszFailure = "VM-exit";
|
---|
5657 |
|
---|
5658 | /*
|
---|
5659 | * When EPT is used, we only validate the PAE PDPTEs provided in the VMCS.
|
---|
5660 | * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
|
---|
5661 | */
|
---|
5662 | if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
|
---|
5663 | && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
|
---|
5664 | {
|
---|
5665 | /* Get PDPTEs from the VMCS. */
|
---|
5666 | X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
|
---|
5667 | aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
|
---|
5668 | aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
|
---|
5669 | aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
|
---|
5670 | aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
|
---|
5671 |
|
---|
5672 | /* Check validity of the PDPTEs. */
|
---|
5673 | bool const fValid = PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]);
|
---|
5674 | if (fValid)
|
---|
5675 | { /* likely */ }
|
---|
5676 | else
|
---|
5677 | {
|
---|
5678 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
|
---|
5679 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
|
---|
5680 | }
|
---|
5681 | }
|
---|
5682 |
|
---|
5683 | NOREF(pszFailure);
|
---|
5684 | NOREF(pszInstr);
|
---|
5685 | return VINF_SUCCESS;
|
---|
5686 | }
|
---|
5687 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
|
---|
5688 |
|
---|
5689 |
|
---|
5690 | /**
|
---|
5691 | * Checks guest-state as part of VM-entry.
|
---|
5692 | *
|
---|
5693 | * @returns VBox status code.
|
---|
5694 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5695 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5696 | */
|
---|
5697 | IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5698 | {
|
---|
5699 | int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
|
---|
5700 | if (RT_SUCCESS(rc))
|
---|
5701 | {
|
---|
5702 | rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
|
---|
5703 | if (RT_SUCCESS(rc))
|
---|
5704 | {
|
---|
5705 | rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
|
---|
5706 | if (RT_SUCCESS(rc))
|
---|
5707 | {
|
---|
5708 | rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
|
---|
5709 | if (RT_SUCCESS(rc))
|
---|
5710 | {
|
---|
5711 | rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
|
---|
5712 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5713 | if (RT_SUCCESS(rc))
|
---|
5714 | rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
|
---|
5715 | #endif
|
---|
5716 | }
|
---|
5717 | }
|
---|
5718 | }
|
---|
5719 | }
|
---|
5720 | return rc;
|
---|
5721 | }
|
---|
5722 |
|
---|
5723 |
|
---|
5724 | /**
|
---|
5725 | * Checks host-state as part of VM-entry.
|
---|
5726 | *
|
---|
5727 | * @returns VBox status code.
|
---|
5728 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5729 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5730 | */
|
---|
5731 | IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5732 | {
|
---|
5733 | /*
|
---|
5734 | * Host Control Registers and MSRs.
|
---|
5735 | * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
|
---|
5736 | */
|
---|
5737 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5738 | const char * const pszFailure = "VMFail";
|
---|
5739 |
|
---|
5740 | /* CR0 reserved bits. */
|
---|
5741 | {
|
---|
5742 | /* CR0 MB1 bits. */
|
---|
5743 | uint64_t const u64Cr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
|
---|
5744 | if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
|
---|
5745 | { /* likely */ }
|
---|
5746 | else
|
---|
5747 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
|
---|
5748 |
|
---|
5749 | /* CR0 MBZ bits. */
|
---|
5750 | uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
|
---|
5751 | if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
|
---|
5752 | { /* likely */ }
|
---|
5753 | else
|
---|
5754 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
|
---|
5755 | }
|
---|
5756 |
|
---|
5757 | /* CR4 reserved bits. */
|
---|
5758 | {
|
---|
5759 | /* CR4 MB1 bits. */
|
---|
5760 | uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
|
---|
5761 | if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
|
---|
5762 | { /* likely */ }
|
---|
5763 | else
|
---|
5764 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
|
---|
5765 |
|
---|
5766 | /* CR4 MBZ bits. */
|
---|
5767 | uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
|
---|
5768 | if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
|
---|
5769 | { /* likely */ }
|
---|
5770 | else
|
---|
5771 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
|
---|
5772 | }
|
---|
5773 |
|
---|
5774 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5775 | {
|
---|
5776 | /* CR3 reserved bits. */
|
---|
5777 | if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
|
---|
5778 | { /* likely */ }
|
---|
5779 | else
|
---|
5780 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
|
---|
5781 |
|
---|
5782 | /* SYSENTER ESP and SYSENTER EIP. */
|
---|
5783 | if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
|
---|
5784 | && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
|
---|
5785 | { /* likely */ }
|
---|
5786 | else
|
---|
5787 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
|
---|
5788 | }
|
---|
5789 |
|
---|
5790 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
5791 | Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
|
---|
5792 |
|
---|
5793 | /* PAT MSR. */
|
---|
5794 | if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
|
---|
5795 | || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
|
---|
5796 | { /* likely */ }
|
---|
5797 | else
|
---|
5798 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
|
---|
5799 |
|
---|
5800 | /* EFER MSR. */
|
---|
5801 | uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
|
---|
5802 | if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
5803 | || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
|
---|
5804 | { /* likely */ }
|
---|
5805 | else
|
---|
5806 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
|
---|
5807 |
|
---|
5808 | bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
|
---|
5809 | bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
|
---|
5810 | bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
|
---|
5811 | if ( fHostInLongMode == fHostLma
|
---|
5812 | && fHostInLongMode == fHostLme)
|
---|
5813 | { /* likely */ }
|
---|
5814 | else
|
---|
5815 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
|
---|
5816 |
|
---|
5817 | /*
|
---|
5818 | * Host Segment and Descriptor-Table Registers.
|
---|
5819 | * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
5820 | */
|
---|
5821 | /* Selector RPL and TI. */
|
---|
5822 | if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5823 | && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5824 | && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5825 | && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5826 | && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5827 | && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
5828 | && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
|
---|
5829 | { /* likely */ }
|
---|
5830 | else
|
---|
5831 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
|
---|
5832 |
|
---|
5833 | /* CS and TR selectors cannot be 0. */
|
---|
5834 | if ( pVmcs->HostCs
|
---|
5835 | && pVmcs->HostTr)
|
---|
5836 | { /* likely */ }
|
---|
5837 | else
|
---|
5838 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
|
---|
5839 |
|
---|
5840 | /* SS cannot be 0 if 32-bit host. */
|
---|
5841 | if ( fHostInLongMode
|
---|
5842 | || pVmcs->HostSs)
|
---|
5843 | { /* likely */ }
|
---|
5844 | else
|
---|
5845 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
|
---|
5846 |
|
---|
5847 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5848 | {
|
---|
5849 | /* FS, GS, GDTR, IDTR, TR base address. */
|
---|
5850 | if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
5851 | && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
|
---|
5852 | && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
|
---|
5853 | && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
|
---|
5854 | && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
|
---|
5855 | { /* likely */ }
|
---|
5856 | else
|
---|
5857 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
|
---|
5858 | }
|
---|
5859 |
|
---|
5860 | /*
|
---|
5861 | * Host address-space size for 64-bit CPUs.
|
---|
5862 | * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
|
---|
5863 | */
|
---|
5864 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
5865 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
5866 | {
|
---|
5867 | bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
|
---|
5868 |
|
---|
5869 | /* Logical processor in IA-32e mode. */
|
---|
5870 | if (fCpuInLongMode)
|
---|
5871 | {
|
---|
5872 | if (fHostInLongMode)
|
---|
5873 | {
|
---|
5874 | /* PAE must be set. */
|
---|
5875 | if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
|
---|
5876 | { /* likely */ }
|
---|
5877 | else
|
---|
5878 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
|
---|
5879 |
|
---|
5880 | /* RIP must be canonical. */
|
---|
5881 | if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
|
---|
5882 | { /* likely */ }
|
---|
5883 | else
|
---|
5884 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
|
---|
5885 | }
|
---|
5886 | else
|
---|
5887 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
|
---|
5888 | }
|
---|
5889 | else
|
---|
5890 | {
|
---|
5891 | /* Logical processor is outside IA-32e mode. */
|
---|
5892 | if ( !fGstInLongMode
|
---|
5893 | && !fHostInLongMode)
|
---|
5894 | {
|
---|
5895 | /* PCIDE should not be set. */
|
---|
5896 | if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
|
---|
5897 | { /* likely */ }
|
---|
5898 | else
|
---|
5899 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
|
---|
5900 |
|
---|
5901 | /* The high 32-bits of RIP MBZ. */
|
---|
5902 | if (!pVmcs->u64HostRip.s.Hi)
|
---|
5903 | { /* likely */ }
|
---|
5904 | else
|
---|
5905 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
|
---|
5906 | }
|
---|
5907 | else
|
---|
5908 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
|
---|
5909 | }
|
---|
5910 | }
|
---|
5911 | else
|
---|
5912 | {
|
---|
5913 | /* Host address-space size for 32-bit CPUs. */
|
---|
5914 | if ( !fGstInLongMode
|
---|
5915 | && !fHostInLongMode)
|
---|
5916 | { /* likely */ }
|
---|
5917 | else
|
---|
5918 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
|
---|
5919 | }
|
---|
5920 |
|
---|
5921 | NOREF(pszInstr);
|
---|
5922 | NOREF(pszFailure);
|
---|
5923 | return VINF_SUCCESS;
|
---|
5924 | }
|
---|
5925 |
|
---|
5926 |
|
---|
5927 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
5928 | /**
|
---|
5929 | * Checks the EPT pointer VMCS field as part of VM-entry.
|
---|
5930 | *
|
---|
5931 | * @returns VBox status code.
|
---|
5932 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5933 | * @param uEptPtr The EPT pointer to check.
|
---|
5934 | * @param penmVmxDiag Where to store the diagnostic reason on failure (not
|
---|
5935 | * updated on success). Optional, can be NULL.
|
---|
5936 | */
|
---|
5937 | IEM_STATIC int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag)
|
---|
5938 | {
|
---|
5939 | VMXVDIAG enmVmxDiag;
|
---|
5940 |
|
---|
5941 | /* Reserved bits. */
|
---|
5942 | uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
|
---|
5943 | uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
|
---|
5944 | if (uEptPtr & fValidMask)
|
---|
5945 | {
|
---|
5946 | /* Memory Type. */
|
---|
5947 | uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
|
---|
5948 | uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
|
---|
5949 | if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
|
---|
5950 | && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
|
---|
5951 | || ( fMemType == VMX_EPTP_MEMTYPE_UC
|
---|
5952 | && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
|
---|
5953 | {
|
---|
5954 | /*
|
---|
5955 | * Page walk length (PML4).
|
---|
5956 | * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
|
---|
5957 | * of 5 but that seems to be removed from the latest specs. leaving only PML4
|
---|
5958 | * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
|
---|
5959 | */
|
---|
5960 | Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
|
---|
5961 | if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
|
---|
5962 | {
|
---|
5963 | /* Access and dirty bits support in EPT structures. */
|
---|
5964 | if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
|
---|
5965 | || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
|
---|
5966 | return VINF_SUCCESS;
|
---|
5967 |
|
---|
5968 | enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
|
---|
5969 | }
|
---|
5970 | else
|
---|
5971 | enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
|
---|
5972 | }
|
---|
5973 | else
|
---|
5974 | enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
|
---|
5975 | }
|
---|
5976 | else
|
---|
5977 | enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
|
---|
5978 |
|
---|
5979 | if (penmVmxDiag)
|
---|
5980 | *penmVmxDiag = enmVmxDiag;
|
---|
5981 | return VERR_VMX_VMENTRY_FAILED;
|
---|
5982 | }
|
---|
5983 | #endif
|
---|
5984 |
|
---|
5985 |
|
---|
5986 | /**
|
---|
5987 | * Checks VMCS controls fields as part of VM-entry.
|
---|
5988 | *
|
---|
5989 | * @returns VBox status code.
|
---|
5990 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5991 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
5992 | *
|
---|
5993 | * @remarks This may update secondary-processor based VM-execution control fields
|
---|
5994 | * in the current VMCS if necessary.
|
---|
5995 | */
|
---|
5996 | IEM_STATIC int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
5997 | {
|
---|
5998 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
5999 | const char * const pszFailure = "VMFail";
|
---|
6000 |
|
---|
6001 | /*
|
---|
6002 | * VM-execution controls.
|
---|
6003 | * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
|
---|
6004 | */
|
---|
6005 | {
|
---|
6006 | /* Pin-based VM-execution controls. */
|
---|
6007 | {
|
---|
6008 | VMXCTLSMSR const PinCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
|
---|
6009 | if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
|
---|
6010 | { /* likely */ }
|
---|
6011 | else
|
---|
6012 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
|
---|
6013 |
|
---|
6014 | if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
|
---|
6015 | { /* likely */ }
|
---|
6016 | else
|
---|
6017 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
|
---|
6018 | }
|
---|
6019 |
|
---|
6020 | /* Processor-based VM-execution controls. */
|
---|
6021 | {
|
---|
6022 | VMXCTLSMSR const ProcCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
|
---|
6023 | if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
|
---|
6024 | { /* likely */ }
|
---|
6025 | else
|
---|
6026 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
|
---|
6027 |
|
---|
6028 | if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
|
---|
6029 | { /* likely */ }
|
---|
6030 | else
|
---|
6031 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
|
---|
6032 | }
|
---|
6033 |
|
---|
6034 | /* Secondary processor-based VM-execution controls. */
|
---|
6035 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
6036 | {
|
---|
6037 | VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
|
---|
6038 | if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
|
---|
6039 | { /* likely */ }
|
---|
6040 | else
|
---|
6041 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
|
---|
6042 |
|
---|
6043 | if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
|
---|
6044 | { /* likely */ }
|
---|
6045 | else
|
---|
6046 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
|
---|
6047 | }
|
---|
6048 | else
|
---|
6049 | Assert(!pVmcs->u32ProcCtls2);
|
---|
6050 |
|
---|
6051 | /* CR3-target count. */
|
---|
6052 | if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
|
---|
6053 | { /* likely */ }
|
---|
6054 | else
|
---|
6055 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
|
---|
6056 |
|
---|
6057 | /* I/O bitmaps physical addresses. */
|
---|
6058 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
6059 | {
|
---|
6060 | RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
|
---|
6061 | if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
|
---|
6062 | && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6063 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
|
---|
6064 | { /* likely */ }
|
---|
6065 | else
|
---|
6066 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
|
---|
6067 |
|
---|
6068 | RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
|
---|
6069 | if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
|
---|
6070 | && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6071 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
|
---|
6072 | { /* likely */ }
|
---|
6073 | else
|
---|
6074 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
|
---|
6075 | }
|
---|
6076 |
|
---|
6077 | /* MSR bitmap physical address. */
|
---|
6078 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
6079 | {
|
---|
6080 | RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
|
---|
6081 | if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
6082 | && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6083 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
|
---|
6084 | { /* likely */ }
|
---|
6085 | else
|
---|
6086 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
|
---|
6087 | }
|
---|
6088 |
|
---|
6089 | /* TPR shadow related controls. */
|
---|
6090 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
6091 | {
|
---|
6092 | /* Virtual-APIC page physical address. */
|
---|
6093 | RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
|
---|
6094 | if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
|
---|
6095 | && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6096 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
|
---|
6097 | { /* likely */ }
|
---|
6098 | else
|
---|
6099 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
|
---|
6100 |
|
---|
6101 | /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
|
---|
6102 | if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
|
---|
6103 | || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
6104 | { /* likely */ }
|
---|
6105 | else
|
---|
6106 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
|
---|
6107 |
|
---|
6108 | /* The rest done XXX document */
|
---|
6109 | }
|
---|
6110 | else
|
---|
6111 | {
|
---|
6112 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
6113 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
6114 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
6115 | { /* likely */ }
|
---|
6116 | else
|
---|
6117 | {
|
---|
6118 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
6119 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
|
---|
6120 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
|
---|
6121 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
|
---|
6122 | Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
|
---|
6123 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
|
---|
6124 | }
|
---|
6125 | }
|
---|
6126 |
|
---|
6127 | /* NMI exiting and virtual-NMIs. */
|
---|
6128 | if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
|
---|
6129 | || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
6130 | { /* likely */ }
|
---|
6131 | else
|
---|
6132 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
|
---|
6133 |
|
---|
6134 | /* Virtual-NMIs and NMI-window exiting. */
|
---|
6135 | if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
6136 | || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
6137 | { /* likely */ }
|
---|
6138 | else
|
---|
6139 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
|
---|
6140 |
|
---|
6141 | /* Virtualize APIC accesses. */
|
---|
6142 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6143 | {
|
---|
6144 | /* APIC-access physical address. */
|
---|
6145 | RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
|
---|
6146 | if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
|
---|
6147 | && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6148 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
|
---|
6149 | { /* likely */ }
|
---|
6150 | else
|
---|
6151 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
|
---|
6152 |
|
---|
6153 | /*
|
---|
6154 | * Disallow APIC-access page and virtual-APIC page from being the same address.
|
---|
6155 | * Note! This is not an Intel requirement, but one imposed by our implementation.
|
---|
6156 | */
|
---|
6157 | /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
|
---|
6158 | * redirecting accesses between the APIC-access page and the virtual-APIC
|
---|
6159 | * page. If any nested hypervisor requires this, we can implement it later. */
|
---|
6160 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
6161 | {
|
---|
6162 | RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
|
---|
6163 | if (GCPhysVirtApic != GCPhysApicAccess)
|
---|
6164 | { /* likely */ }
|
---|
6165 | else
|
---|
6166 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
|
---|
6167 | }
|
---|
6168 | }
|
---|
6169 |
|
---|
6170 | /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
|
---|
6171 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
|
---|
6172 | || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
|
---|
6173 | { /* likely */ }
|
---|
6174 | else
|
---|
6175 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
|
---|
6176 |
|
---|
6177 | /* Virtual-interrupt delivery requires external interrupt exiting. */
|
---|
6178 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
|
---|
6179 | || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
6180 | { /* likely */ }
|
---|
6181 | else
|
---|
6182 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
|
---|
6183 |
|
---|
6184 | /* VPID. */
|
---|
6185 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
|
---|
6186 | || pVmcs->u16Vpid != 0)
|
---|
6187 | { /* likely */ }
|
---|
6188 | else
|
---|
6189 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
|
---|
6190 |
|
---|
6191 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
6192 | /* Extended-Page-Table Pointer (EPTP). */
|
---|
6193 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
|
---|
6194 | {
|
---|
6195 | VMXVDIAG enmVmxDiag;
|
---|
6196 | int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
|
---|
6197 | if (RT_SUCCESS(rc))
|
---|
6198 | { /* likely */ }
|
---|
6199 | else
|
---|
6200 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmVmxDiag);
|
---|
6201 | }
|
---|
6202 | #else
|
---|
6203 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)); /* We don't support EPT yet. */
|
---|
6204 | #endif
|
---|
6205 |
|
---|
6206 | Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
|
---|
6207 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
|
---|
6208 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)); /* We don't support Unrestricted-guests yet. */
|
---|
6209 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
|
---|
6210 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
|
---|
6211 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
|
---|
6212 | Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
|
---|
6213 |
|
---|
6214 | /* VMCS shadowing. */
|
---|
6215 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
6216 | {
|
---|
6217 | /* VMREAD-bitmap physical address. */
|
---|
6218 | RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
6219 | if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
6220 | && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6221 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
|
---|
6222 | { /* likely */ }
|
---|
6223 | else
|
---|
6224 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
|
---|
6225 |
|
---|
6226 | /* VMWRITE-bitmap physical address. */
|
---|
6227 | RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
6228 | if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
|
---|
6229 | && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6230 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
|
---|
6231 | { /* likely */ }
|
---|
6232 | else
|
---|
6233 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
|
---|
6234 | }
|
---|
6235 | }
|
---|
6236 |
|
---|
6237 | /*
|
---|
6238 | * VM-exit controls.
|
---|
6239 | * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
|
---|
6240 | */
|
---|
6241 | {
|
---|
6242 | VMXCTLSMSR const ExitCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
|
---|
6243 | if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
|
---|
6244 | { /* likely */ }
|
---|
6245 | else
|
---|
6246 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
|
---|
6247 |
|
---|
6248 | if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
|
---|
6249 | { /* likely */ }
|
---|
6250 | else
|
---|
6251 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
|
---|
6252 |
|
---|
6253 | /* Save preemption timer without activating it. */
|
---|
6254 | if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
|
---|
6255 | || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
|
---|
6256 | { /* likely */ }
|
---|
6257 | else
|
---|
6258 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
|
---|
6259 |
|
---|
6260 | /* VM-exit MSR-store count and VM-exit MSR-store area address. */
|
---|
6261 | if (pVmcs->u32ExitMsrStoreCount)
|
---|
6262 | {
|
---|
6263 | if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
6264 | && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6265 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
|
---|
6266 | { /* likely */ }
|
---|
6267 | else
|
---|
6268 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
|
---|
6269 | }
|
---|
6270 |
|
---|
6271 | /* VM-exit MSR-load count and VM-exit MSR-load area address. */
|
---|
6272 | if (pVmcs->u32ExitMsrLoadCount)
|
---|
6273 | {
|
---|
6274 | if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
6275 | && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6276 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
|
---|
6277 | { /* likely */ }
|
---|
6278 | else
|
---|
6279 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
|
---|
6280 | }
|
---|
6281 | }
|
---|
6282 |
|
---|
6283 | /*
|
---|
6284 | * VM-entry controls.
|
---|
6285 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
6286 | */
|
---|
6287 | {
|
---|
6288 | VMXCTLSMSR const EntryCtls = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
|
---|
6289 | if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
|
---|
6290 | { /* likely */ }
|
---|
6291 | else
|
---|
6292 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
|
---|
6293 |
|
---|
6294 | if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
|
---|
6295 | { /* likely */ }
|
---|
6296 | else
|
---|
6297 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
|
---|
6298 |
|
---|
6299 | /* Event injection. */
|
---|
6300 | uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
|
---|
6301 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
|
---|
6302 | {
|
---|
6303 | /* Type and vector. */
|
---|
6304 | uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
|
---|
6305 | uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
|
---|
6306 | uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
|
---|
6307 | if ( !uRsvd
|
---|
6308 | && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
|
---|
6309 | && VMXIsEntryIntInfoVectorValid(uVector, uType))
|
---|
6310 | { /* likely */ }
|
---|
6311 | else
|
---|
6312 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
|
---|
6313 |
|
---|
6314 | /* Exception error code. */
|
---|
6315 | if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
|
---|
6316 | {
|
---|
6317 | /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
|
---|
6318 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
|
---|
6319 | || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
|
---|
6320 | { /* likely */ }
|
---|
6321 | else
|
---|
6322 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
|
---|
6323 |
|
---|
6324 | /* Exceptions that provide an error code. */
|
---|
6325 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
6326 | && ( uVector == X86_XCPT_DF
|
---|
6327 | || uVector == X86_XCPT_TS
|
---|
6328 | || uVector == X86_XCPT_NP
|
---|
6329 | || uVector == X86_XCPT_SS
|
---|
6330 | || uVector == X86_XCPT_GP
|
---|
6331 | || uVector == X86_XCPT_PF
|
---|
6332 | || uVector == X86_XCPT_AC))
|
---|
6333 | { /* likely */ }
|
---|
6334 | else
|
---|
6335 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
|
---|
6336 |
|
---|
6337 | /* Exception error-code reserved bits. */
|
---|
6338 | if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
|
---|
6339 | { /* likely */ }
|
---|
6340 | else
|
---|
6341 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
|
---|
6342 |
|
---|
6343 | /* Injecting a software interrupt, software exception or privileged software exception. */
|
---|
6344 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
|
---|
6345 | || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
|
---|
6346 | || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
|
---|
6347 | {
|
---|
6348 | /* Instruction length must be in the range 0-15. */
|
---|
6349 | if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
|
---|
6350 | { /* likely */ }
|
---|
6351 | else
|
---|
6352 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
|
---|
6353 |
|
---|
6354 | /* However, instruction length of 0 is allowed only when its CPU feature is present. */
|
---|
6355 | if ( pVmcs->u32EntryInstrLen != 0
|
---|
6356 | || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
|
---|
6357 | { /* likely */ }
|
---|
6358 | else
|
---|
6359 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
|
---|
6360 | }
|
---|
6361 | }
|
---|
6362 | }
|
---|
6363 |
|
---|
6364 | /* VM-entry MSR-load count and VM-entry MSR-load area address. */
|
---|
6365 | if (pVmcs->u32EntryMsrLoadCount)
|
---|
6366 | {
|
---|
6367 | if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
|
---|
6368 | && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
|
---|
6369 | && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
|
---|
6370 | { /* likely */ }
|
---|
6371 | else
|
---|
6372 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
|
---|
6373 | }
|
---|
6374 |
|
---|
6375 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
|
---|
6376 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
|
---|
6377 | }
|
---|
6378 |
|
---|
6379 | NOREF(pszInstr);
|
---|
6380 | NOREF(pszFailure);
|
---|
6381 | return VINF_SUCCESS;
|
---|
6382 | }
|
---|
6383 |
|
---|
6384 |
|
---|
6385 | /**
|
---|
6386 | * Loads the guest control registers, debug register and some MSRs as part of
|
---|
6387 | * VM-entry.
|
---|
6388 | *
|
---|
6389 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6390 | */
|
---|
6391 | IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu)
|
---|
6392 | {
|
---|
6393 | /*
|
---|
6394 | * Load guest control registers, debug registers and MSRs.
|
---|
6395 | * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
|
---|
6396 | */
|
---|
6397 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6398 |
|
---|
6399 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
6400 | uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
|
---|
6401 | | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
|
---|
6402 | pVCpu->cpum.GstCtx.cr0 = uGstCr0;
|
---|
6403 | pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
|
---|
6404 | pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
|
---|
6405 |
|
---|
6406 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
6407 | pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
|
---|
6408 |
|
---|
6409 | pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
|
---|
6410 | pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
|
---|
6411 | pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
|
---|
6412 |
|
---|
6413 | if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
|
---|
6414 | {
|
---|
6415 | /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
|
---|
6416 |
|
---|
6417 | /* EFER MSR. */
|
---|
6418 | if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
|
---|
6419 | {
|
---|
6420 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
6421 | uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
|
---|
6422 | bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
6423 | bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
|
---|
6424 | if (fGstInLongMode)
|
---|
6425 | {
|
---|
6426 | /* If the nested-guest is in long mode, LMA and LME are both set. */
|
---|
6427 | Assert(fGstPaging);
|
---|
6428 | pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
|
---|
6429 | }
|
---|
6430 | else
|
---|
6431 | {
|
---|
6432 | /*
|
---|
6433 | * If the nested-guest is outside long mode:
|
---|
6434 | * - With paging: LMA is cleared, LME is cleared.
|
---|
6435 | * - Without paging: LMA is cleared, LME is left unmodified.
|
---|
6436 | */
|
---|
6437 | uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
|
---|
6438 | pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
|
---|
6439 | }
|
---|
6440 | }
|
---|
6441 | /* else: see below. */
|
---|
6442 | }
|
---|
6443 |
|
---|
6444 | /* PAT MSR. */
|
---|
6445 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
6446 | pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
|
---|
6447 |
|
---|
6448 | /* EFER MSR. */
|
---|
6449 | if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
6450 | pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
|
---|
6451 |
|
---|
6452 | /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
|
---|
6453 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
|
---|
6454 |
|
---|
6455 | /* We don't support IA32_BNDCFGS MSR yet. */
|
---|
6456 | Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
|
---|
6457 |
|
---|
6458 | /* Nothing to do for SMBASE register - We don't support SMM yet. */
|
---|
6459 | }
|
---|
6460 |
|
---|
6461 |
|
---|
6462 | /**
|
---|
6463 | * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
|
---|
6464 | *
|
---|
6465 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6466 | */
|
---|
6467 | IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu)
|
---|
6468 | {
|
---|
6469 | /*
|
---|
6470 | * Load guest segment registers, GDTR, IDTR, LDTR and TR.
|
---|
6471 | * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
|
---|
6472 | */
|
---|
6473 | /* CS, SS, ES, DS, FS, GS. */
|
---|
6474 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6475 | for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
|
---|
6476 | {
|
---|
6477 | PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
6478 | CPUMSELREG VmcsSelReg;
|
---|
6479 | int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
|
---|
6480 | AssertRC(rc); NOREF(rc);
|
---|
6481 | if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
6482 | {
|
---|
6483 | pGstSelReg->Sel = VmcsSelReg.Sel;
|
---|
6484 | pGstSelReg->ValidSel = VmcsSelReg.Sel;
|
---|
6485 | pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
6486 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
6487 | pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
|
---|
6488 | pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
|
---|
6489 | }
|
---|
6490 | else
|
---|
6491 | {
|
---|
6492 | pGstSelReg->Sel = VmcsSelReg.Sel;
|
---|
6493 | pGstSelReg->ValidSel = VmcsSelReg.Sel;
|
---|
6494 | pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
6495 | switch (iSegReg)
|
---|
6496 | {
|
---|
6497 | case X86_SREG_CS:
|
---|
6498 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
6499 | pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
|
---|
6500 | pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
|
---|
6501 | break;
|
---|
6502 |
|
---|
6503 | case X86_SREG_SS:
|
---|
6504 | pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
|
---|
6505 | pGstSelReg->u32Limit = 0;
|
---|
6506 | pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
|
---|
6507 | break;
|
---|
6508 |
|
---|
6509 | case X86_SREG_ES:
|
---|
6510 | case X86_SREG_DS:
|
---|
6511 | pGstSelReg->u64Base = 0;
|
---|
6512 | pGstSelReg->u32Limit = 0;
|
---|
6513 | pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
6514 | break;
|
---|
6515 |
|
---|
6516 | case X86_SREG_FS:
|
---|
6517 | case X86_SREG_GS:
|
---|
6518 | pGstSelReg->u64Base = VmcsSelReg.u64Base;
|
---|
6519 | pGstSelReg->u32Limit = 0;
|
---|
6520 | pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
6521 | break;
|
---|
6522 | }
|
---|
6523 | Assert(pGstSelReg->Attr.n.u1Unusable);
|
---|
6524 | }
|
---|
6525 | }
|
---|
6526 |
|
---|
6527 | /* LDTR. */
|
---|
6528 | pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
|
---|
6529 | pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
|
---|
6530 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
6531 | if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
|
---|
6532 | {
|
---|
6533 | pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
|
---|
6534 | pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
|
---|
6535 | pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
|
---|
6536 | }
|
---|
6537 | else
|
---|
6538 | {
|
---|
6539 | pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
|
---|
6540 | pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
|
---|
6541 | pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
|
---|
6542 | }
|
---|
6543 |
|
---|
6544 | /* TR. */
|
---|
6545 | Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
|
---|
6546 | pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
|
---|
6547 | pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
|
---|
6548 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
6549 | pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
|
---|
6550 | pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
|
---|
6551 | pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
|
---|
6552 |
|
---|
6553 | /* GDTR. */
|
---|
6554 | pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
|
---|
6555 | pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
|
---|
6556 |
|
---|
6557 | /* IDTR. */
|
---|
6558 | pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
|
---|
6559 | pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
|
---|
6560 | }
|
---|
6561 |
|
---|
6562 |
|
---|
6563 | /**
|
---|
6564 | * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
|
---|
6565 | *
|
---|
6566 | * @returns VBox status code.
|
---|
6567 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6568 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
6569 | */
|
---|
6570 | IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
6571 | {
|
---|
6572 | /*
|
---|
6573 | * Load guest MSRs.
|
---|
6574 | * See Intel spec. 26.4 "Loading MSRs".
|
---|
6575 | */
|
---|
6576 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6577 | const char *const pszFailure = "VM-exit";
|
---|
6578 |
|
---|
6579 | /*
|
---|
6580 | * The VM-entry MSR-load area address need not be a valid guest-physical address if the
|
---|
6581 | * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
|
---|
6582 | * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
|
---|
6583 | */
|
---|
6584 | uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
|
---|
6585 | if (!cMsrs)
|
---|
6586 | return VINF_SUCCESS;
|
---|
6587 |
|
---|
6588 | /*
|
---|
6589 | * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
|
---|
6590 | * exceeded including possibly raising #MC exceptions during VMX transition. Our
|
---|
6591 | * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
|
---|
6592 | */
|
---|
6593 | bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
|
---|
6594 | if (fIsMsrCountValid)
|
---|
6595 | { /* likely */ }
|
---|
6596 | else
|
---|
6597 | {
|
---|
6598 | iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
|
---|
6599 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
|
---|
6600 | }
|
---|
6601 |
|
---|
6602 | RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
|
---|
6603 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
|
---|
6604 | GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
|
---|
6605 | if (RT_SUCCESS(rc))
|
---|
6606 | {
|
---|
6607 | PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
|
---|
6608 | for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
|
---|
6609 | {
|
---|
6610 | if ( !pMsr->u32Reserved
|
---|
6611 | && pMsr->u32Msr != MSR_K8_FS_BASE
|
---|
6612 | && pMsr->u32Msr != MSR_K8_GS_BASE
|
---|
6613 | && pMsr->u32Msr != MSR_K6_EFER
|
---|
6614 | && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
|
---|
6615 | && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
|
---|
6616 | {
|
---|
6617 | VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
|
---|
6618 | if (rcStrict == VINF_SUCCESS)
|
---|
6619 | continue;
|
---|
6620 |
|
---|
6621 | /*
|
---|
6622 | * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
|
---|
6623 | * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
|
---|
6624 | * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
|
---|
6625 | * further by our own, specific diagnostic code. Later, we can try implement handling of the
|
---|
6626 | * MSR in ring-0 if possible, or come up with a better, generic solution.
|
---|
6627 | */
|
---|
6628 | iemVmxVmcsSetExitQual(pVCpu, idxMsr);
|
---|
6629 | VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
6630 | ? kVmxVDiag_Vmentry_MsrLoadRing3
|
---|
6631 | : kVmxVDiag_Vmentry_MsrLoad;
|
---|
6632 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
|
---|
6633 | }
|
---|
6634 | else
|
---|
6635 | {
|
---|
6636 | iemVmxVmcsSetExitQual(pVCpu, idxMsr);
|
---|
6637 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
|
---|
6638 | }
|
---|
6639 | }
|
---|
6640 | }
|
---|
6641 | else
|
---|
6642 | {
|
---|
6643 | AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
|
---|
6644 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
|
---|
6645 | }
|
---|
6646 |
|
---|
6647 | NOREF(pszInstr);
|
---|
6648 | NOREF(pszFailure);
|
---|
6649 | return VINF_SUCCESS;
|
---|
6650 | }
|
---|
6651 |
|
---|
6652 |
|
---|
6653 | /**
|
---|
6654 | * Loads the guest-state non-register state as part of VM-entry.
|
---|
6655 | *
|
---|
6656 | * @returns VBox status code.
|
---|
6657 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6658 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
6659 | *
|
---|
6660 | * @remarks This must be called only after loading the nested-guest register state
|
---|
6661 | * (especially nested-guest RIP).
|
---|
6662 | */
|
---|
6663 | IEM_STATIC int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
6664 | {
|
---|
6665 | /*
|
---|
6666 | * Load guest non-register state.
|
---|
6667 | * See Intel spec. 26.6 "Special Features of VM Entry"
|
---|
6668 | */
|
---|
6669 | const char *const pszFailure = "VM-exit";
|
---|
6670 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6671 |
|
---|
6672 | /*
|
---|
6673 | * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
|
---|
6674 | * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
|
---|
6675 | *
|
---|
6676 | * See Intel spec. 26.6.1 "Interruptibility State".
|
---|
6677 | */
|
---|
6678 | bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
|
---|
6679 | if ( !fEntryVectoring
|
---|
6680 | && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
|
---|
6681 | EMSetInhibitInterruptsPC(pVCpu, pVmcs->u64GuestRip.u);
|
---|
6682 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
6683 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
6684 |
|
---|
6685 | /* NMI blocking. */
|
---|
6686 | if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
|
---|
6687 | {
|
---|
6688 | if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
6689 | pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
|
---|
6690 | else
|
---|
6691 | {
|
---|
6692 | pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
|
---|
6693 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6694 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6695 | }
|
---|
6696 | }
|
---|
6697 | else
|
---|
6698 | pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
|
---|
6699 |
|
---|
6700 | /* SMI blocking is irrelevant. We don't support SMIs yet. */
|
---|
6701 |
|
---|
6702 | /*
|
---|
6703 | * Set PGM's copy of the EPT pointer.
|
---|
6704 | * The EPTP has already been validated while checking guest state.
|
---|
6705 | *
|
---|
6706 | * It is important to do this prior to mapping PAE PDPTEs (below).
|
---|
6707 | */
|
---|
6708 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
|
---|
6709 | PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
|
---|
6710 |
|
---|
6711 | /*
|
---|
6712 | * Load the guest's PAE PDPTEs.
|
---|
6713 | */
|
---|
6714 | if (iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
|
---|
6715 | {
|
---|
6716 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
|
---|
6717 | {
|
---|
6718 | /*
|
---|
6719 | * With EPT, we've already validated these while checking the guest state.
|
---|
6720 | * Just load them directly from the VMCS here.
|
---|
6721 | */
|
---|
6722 | X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
|
---|
6723 | aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
|
---|
6724 | aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
|
---|
6725 | aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
|
---|
6726 | aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
|
---|
6727 | AssertCompile(RT_ELEMENTS(aPaePdptes) == RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes));
|
---|
6728 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes); i++)
|
---|
6729 | pVCpu->cpum.GstCtx.aPaePdpes[i].u = aPaePdptes[i].u;
|
---|
6730 | }
|
---|
6731 | else
|
---|
6732 | {
|
---|
6733 | /*
|
---|
6734 | * Without EPT, we must load the PAE PDPTEs referenced by CR3.
|
---|
6735 | * This involves loading (and mapping) CR3 and validating them now.
|
---|
6736 | */
|
---|
6737 | int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
|
---|
6738 | if (RT_SUCCESS(rc))
|
---|
6739 | { /* likely */ }
|
---|
6740 | else
|
---|
6741 | {
|
---|
6742 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
|
---|
6743 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
|
---|
6744 | }
|
---|
6745 | }
|
---|
6746 | }
|
---|
6747 |
|
---|
6748 | /* VPID is irrelevant. We don't support VPID yet. */
|
---|
6749 |
|
---|
6750 | /* Clear address-range monitoring. */
|
---|
6751 | EMMonitorWaitClear(pVCpu);
|
---|
6752 |
|
---|
6753 | return VINF_SUCCESS;
|
---|
6754 | }
|
---|
6755 |
|
---|
6756 |
|
---|
6757 | /**
|
---|
6758 | * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
|
---|
6759 | *
|
---|
6760 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6761 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
6762 | *
|
---|
6763 | * @remarks This assumes various VMCS related data structure pointers have already
|
---|
6764 | * been verified prior to calling this function.
|
---|
6765 | */
|
---|
6766 | IEM_STATIC int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
6767 | {
|
---|
6768 | const char *const pszFailure = "VM-exit";
|
---|
6769 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6770 |
|
---|
6771 | /*
|
---|
6772 | * Virtualize APIC accesses.
|
---|
6773 | */
|
---|
6774 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6775 | {
|
---|
6776 | /* APIC-access physical address. */
|
---|
6777 | RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
|
---|
6778 |
|
---|
6779 | /*
|
---|
6780 | * Register the handler for the APIC-access page.
|
---|
6781 | *
|
---|
6782 | * We don't deregister the APIC-access page handler during the VM-exit as a different
|
---|
6783 | * nested-VCPU might be using the same guest-physical address for its APIC-access page.
|
---|
6784 | *
|
---|
6785 | * We leave the page registered until the first access that happens outside VMX non-root
|
---|
6786 | * mode. Guest software is allowed to access structures such as the APIC-access page
|
---|
6787 | * only when no logical processor with a current VMCS references it in VMX non-root mode,
|
---|
6788 | * otherwise it can lead to unpredictable behavior including guest triple-faults.
|
---|
6789 | *
|
---|
6790 | * See Intel spec. 24.11.4 "Software Access to Related Structures".
|
---|
6791 | */
|
---|
6792 | if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
|
---|
6793 | {
|
---|
6794 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6795 | PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
|
---|
6796 | int rc = PGMHandlerPhysicalRegister(pVM, GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
|
---|
6797 | pVCpu0->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
|
---|
6798 | NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
|
---|
6799 | if (RT_SUCCESS(rc))
|
---|
6800 | { /* likely */ }
|
---|
6801 | else
|
---|
6802 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
|
---|
6803 | }
|
---|
6804 | }
|
---|
6805 |
|
---|
6806 | /*
|
---|
6807 | * VMCS shadowing.
|
---|
6808 | */
|
---|
6809 | if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
6810 | {
|
---|
6811 | /* Read the VMREAD-bitmap. */
|
---|
6812 | RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
|
---|
6813 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
|
---|
6814 | GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
|
---|
6815 | if (RT_SUCCESS(rc))
|
---|
6816 | { /* likely */ }
|
---|
6817 | else
|
---|
6818 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
|
---|
6819 |
|
---|
6820 | /* Read the VMWRITE-bitmap. */
|
---|
6821 | RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
|
---|
6822 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
|
---|
6823 | GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
|
---|
6824 | if (RT_SUCCESS(rc))
|
---|
6825 | { /* likely */ }
|
---|
6826 | else
|
---|
6827 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
|
---|
6828 | }
|
---|
6829 |
|
---|
6830 | /*
|
---|
6831 | * I/O bitmaps.
|
---|
6832 | */
|
---|
6833 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
6834 | {
|
---|
6835 | /* Read the IO bitmap A. */
|
---|
6836 | RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
|
---|
6837 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
|
---|
6838 | GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
|
---|
6839 | if (RT_SUCCESS(rc))
|
---|
6840 | { /* likely */ }
|
---|
6841 | else
|
---|
6842 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys);
|
---|
6843 |
|
---|
6844 | /* Read the IO bitmap B. */
|
---|
6845 | RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
|
---|
6846 | rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
|
---|
6847 | GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
|
---|
6848 | if (RT_SUCCESS(rc))
|
---|
6849 | { /* likely */ }
|
---|
6850 | else
|
---|
6851 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys);
|
---|
6852 | }
|
---|
6853 |
|
---|
6854 | /*
|
---|
6855 | * TPR shadow and Virtual-APIC page.
|
---|
6856 | */
|
---|
6857 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
6858 | {
|
---|
6859 | /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
|
---|
6860 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
6861 | && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
|
---|
6862 | {
|
---|
6863 | /* Read the VTPR from the virtual-APIC page. */
|
---|
6864 | RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
|
---|
6865 | uint8_t u8VTpr;
|
---|
6866 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
|
---|
6867 | if (RT_SUCCESS(rc))
|
---|
6868 | { /* likely */ }
|
---|
6869 | else
|
---|
6870 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
|
---|
6871 |
|
---|
6872 | /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
|
---|
6873 | if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
|
---|
6874 | { /* likely */ }
|
---|
6875 | else
|
---|
6876 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
|
---|
6877 | }
|
---|
6878 | }
|
---|
6879 |
|
---|
6880 | /*
|
---|
6881 | * VMCS link pointer.
|
---|
6882 | */
|
---|
6883 | if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
|
---|
6884 | {
|
---|
6885 | /* Read the VMCS-link pointer from guest memory. */
|
---|
6886 | RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
|
---|
6887 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
|
---|
6888 | GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
|
---|
6889 | if (RT_SUCCESS(rc))
|
---|
6890 | { /* likely */ }
|
---|
6891 | else
|
---|
6892 | {
|
---|
6893 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
6894 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
|
---|
6895 | }
|
---|
6896 |
|
---|
6897 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
6898 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
|
---|
6899 | { /* likely */ }
|
---|
6900 | else
|
---|
6901 | {
|
---|
6902 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
6903 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
|
---|
6904 | }
|
---|
6905 |
|
---|
6906 | /* Verify the shadow bit is set if VMCS shadowing is enabled . */
|
---|
6907 | if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
6908 | || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
|
---|
6909 | { /* likely */ }
|
---|
6910 | else
|
---|
6911 | {
|
---|
6912 | iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
|
---|
6913 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
|
---|
6914 | }
|
---|
6915 |
|
---|
6916 | /* Update our cache of the guest physical address of the shadow VMCS. */
|
---|
6917 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
|
---|
6918 | }
|
---|
6919 |
|
---|
6920 | /*
|
---|
6921 | * MSR bitmap.
|
---|
6922 | */
|
---|
6923 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
6924 | {
|
---|
6925 | /* Read the MSR bitmap. */
|
---|
6926 | RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
|
---|
6927 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
|
---|
6928 | GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
|
---|
6929 | if (RT_SUCCESS(rc))
|
---|
6930 | { /* likely */ }
|
---|
6931 | else
|
---|
6932 | IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
|
---|
6933 | }
|
---|
6934 |
|
---|
6935 | NOREF(pszFailure);
|
---|
6936 | NOREF(pszInstr);
|
---|
6937 | return VINF_SUCCESS;
|
---|
6938 | }
|
---|
6939 |
|
---|
6940 |
|
---|
6941 | /**
|
---|
6942 | * Loads the guest-state as part of VM-entry.
|
---|
6943 | *
|
---|
6944 | * @returns VBox status code.
|
---|
6945 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6946 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
6947 | *
|
---|
6948 | * @remarks This must be done after all the necessary steps prior to loading of
|
---|
6949 | * guest-state (e.g. checking various VMCS state).
|
---|
6950 | */
|
---|
6951 | IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
6952 | {
|
---|
6953 | /* Load guest control registers, MSRs (that are directly part of the VMCS). */
|
---|
6954 | iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
|
---|
6955 |
|
---|
6956 | /* Load guest segment registers. */
|
---|
6957 | iemVmxVmentryLoadGuestSegRegs(pVCpu);
|
---|
6958 |
|
---|
6959 | /*
|
---|
6960 | * Load guest RIP, RSP and RFLAGS.
|
---|
6961 | * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
|
---|
6962 | */
|
---|
6963 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
6964 | pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
|
---|
6965 | pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
|
---|
6966 | pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
|
---|
6967 |
|
---|
6968 | /* Initialize the PAUSE-loop controls as part of VM-entry. */
|
---|
6969 | pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
|
---|
6970 | pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
|
---|
6971 |
|
---|
6972 | /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
|
---|
6973 | int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
|
---|
6974 | if (rc == VINF_SUCCESS)
|
---|
6975 | { /* likely */ }
|
---|
6976 | else
|
---|
6977 | return rc;
|
---|
6978 |
|
---|
6979 | /* Load VMX related structures and state referenced by the VMCS. */
|
---|
6980 | rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
|
---|
6981 | if (rc == VINF_SUCCESS)
|
---|
6982 | { /* likely */ }
|
---|
6983 | else
|
---|
6984 | return rc;
|
---|
6985 |
|
---|
6986 | NOREF(pszInstr);
|
---|
6987 | return VINF_SUCCESS;
|
---|
6988 | }
|
---|
6989 |
|
---|
6990 |
|
---|
6991 | /**
|
---|
6992 | * Returns whether there are is a pending debug exception on VM-entry.
|
---|
6993 | *
|
---|
6994 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6995 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
6996 | */
|
---|
6997 | IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
6998 | {
|
---|
6999 | /*
|
---|
7000 | * Pending debug exceptions.
|
---|
7001 | * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
|
---|
7002 | */
|
---|
7003 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7004 | Assert(pVmcs);
|
---|
7005 |
|
---|
7006 | bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
|
---|
7007 | | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
|
---|
7008 | if (fPendingDbgXcpt)
|
---|
7009 | {
|
---|
7010 | uint8_t uEntryIntInfoType;
|
---|
7011 | bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
|
---|
7012 | if (fEntryVectoring)
|
---|
7013 | {
|
---|
7014 | switch (uEntryIntInfoType)
|
---|
7015 | {
|
---|
7016 | case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
|
---|
7017 | case VMX_ENTRY_INT_INFO_TYPE_NMI:
|
---|
7018 | case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
|
---|
7019 | case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
|
---|
7020 | fPendingDbgXcpt = false;
|
---|
7021 | break;
|
---|
7022 |
|
---|
7023 | case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
|
---|
7024 | {
|
---|
7025 | /*
|
---|
7026 | * Whether the pending debug exception for software exceptions other than
|
---|
7027 | * #BP and #OF is delivered after injecting the exception or is discard
|
---|
7028 | * is CPU implementation specific. We will discard them (easier).
|
---|
7029 | */
|
---|
7030 | uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
|
---|
7031 | if ( uVector != X86_XCPT_BP
|
---|
7032 | && uVector != X86_XCPT_OF)
|
---|
7033 | fPendingDbgXcpt = false;
|
---|
7034 | RT_FALL_THRU();
|
---|
7035 | }
|
---|
7036 | case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
|
---|
7037 | {
|
---|
7038 | if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
7039 | fPendingDbgXcpt = false;
|
---|
7040 | break;
|
---|
7041 | }
|
---|
7042 | }
|
---|
7043 | }
|
---|
7044 | else
|
---|
7045 | {
|
---|
7046 | /*
|
---|
7047 | * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
|
---|
7048 | * pending debug exception is held pending or is discarded is CPU implementation
|
---|
7049 | * specific. We will discard them (easier).
|
---|
7050 | */
|
---|
7051 | if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
|
---|
7052 | fPendingDbgXcpt = false;
|
---|
7053 |
|
---|
7054 | /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
|
---|
7055 | if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
|
---|
7056 | fPendingDbgXcpt = false;
|
---|
7057 | }
|
---|
7058 | }
|
---|
7059 |
|
---|
7060 | NOREF(pszInstr);
|
---|
7061 | return fPendingDbgXcpt;
|
---|
7062 | }
|
---|
7063 |
|
---|
7064 |
|
---|
7065 | /**
|
---|
7066 | * Set up the monitor-trap flag (MTF).
|
---|
7067 | *
|
---|
7068 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7069 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7070 | */
|
---|
7071 | IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
7072 | {
|
---|
7073 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7074 | Assert(pVmcs);
|
---|
7075 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
|
---|
7076 | {
|
---|
7077 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
|
---|
7078 | Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
|
---|
7079 | }
|
---|
7080 | else
|
---|
7081 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
|
---|
7082 | NOREF(pszInstr);
|
---|
7083 | }
|
---|
7084 |
|
---|
7085 |
|
---|
7086 | /**
|
---|
7087 | * Sets up NMI-window exiting.
|
---|
7088 | *
|
---|
7089 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7090 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7091 | */
|
---|
7092 | IEM_STATIC void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
7093 | {
|
---|
7094 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7095 | Assert(pVmcs);
|
---|
7096 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
|
---|
7097 | {
|
---|
7098 | Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
|
---|
7099 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
|
---|
7100 | Log(("%s: NMI-window set on VM-entry\n", pszInstr));
|
---|
7101 | }
|
---|
7102 | else
|
---|
7103 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
|
---|
7104 | NOREF(pszInstr);
|
---|
7105 | }
|
---|
7106 |
|
---|
7107 |
|
---|
7108 | /**
|
---|
7109 | * Sets up interrupt-window exiting.
|
---|
7110 | *
|
---|
7111 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7112 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7113 | */
|
---|
7114 | IEM_STATIC void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
7115 | {
|
---|
7116 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7117 | Assert(pVmcs);
|
---|
7118 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
|
---|
7119 | {
|
---|
7120 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
|
---|
7121 | Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
|
---|
7122 | }
|
---|
7123 | else
|
---|
7124 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
|
---|
7125 | NOREF(pszInstr);
|
---|
7126 | }
|
---|
7127 |
|
---|
7128 |
|
---|
7129 | /**
|
---|
7130 | * Set up the VMX-preemption timer.
|
---|
7131 | *
|
---|
7132 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7133 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7134 | */
|
---|
7135 | IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
7136 | {
|
---|
7137 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7138 | Assert(pVmcs);
|
---|
7139 | if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
|
---|
7140 | {
|
---|
7141 | /*
|
---|
7142 | * If the timer is 0, we must cause a VM-exit before executing the first
|
---|
7143 | * nested-guest instruction. So we can flag as though the timer has already
|
---|
7144 | * expired and we will check and cause a VM-exit at the right priority elsewhere
|
---|
7145 | * in the code.
|
---|
7146 | */
|
---|
7147 | uint64_t uEntryTick;
|
---|
7148 | uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
|
---|
7149 | if (uPreemptTimer)
|
---|
7150 | {
|
---|
7151 | int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
|
---|
7152 | AssertRC(rc);
|
---|
7153 | Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
|
---|
7154 | }
|
---|
7155 | else
|
---|
7156 | {
|
---|
7157 | uEntryTick = TMCpuTickGetNoCheck(pVCpu);
|
---|
7158 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
|
---|
7159 | Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
|
---|
7160 | }
|
---|
7161 |
|
---|
7162 | pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
|
---|
7163 | }
|
---|
7164 | else
|
---|
7165 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
|
---|
7166 |
|
---|
7167 | NOREF(pszInstr);
|
---|
7168 | }
|
---|
7169 |
|
---|
7170 |
|
---|
7171 | /**
|
---|
7172 | * Injects an event using TRPM given a VM-entry interruption info. and related
|
---|
7173 | * fields.
|
---|
7174 | *
|
---|
7175 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7176 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7177 | * @param uEntryIntInfo The VM-entry interruption info.
|
---|
7178 | * @param uErrCode The error code associated with the event if any.
|
---|
7179 | * @param cbInstr The VM-entry instruction length (for software
|
---|
7180 | * interrupts and software exceptions). Pass 0
|
---|
7181 | * otherwise.
|
---|
7182 | * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
|
---|
7183 | */
|
---|
7184 | IEM_STATIC void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
|
---|
7185 | uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress)
|
---|
7186 | {
|
---|
7187 | Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
|
---|
7188 |
|
---|
7189 | uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
|
---|
7190 | uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
|
---|
7191 | TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
|
---|
7192 |
|
---|
7193 | Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
|
---|
7194 |
|
---|
7195 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
|
---|
7196 | AssertRC(rc);
|
---|
7197 | Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
|
---|
7198 |
|
---|
7199 | if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
|
---|
7200 | {
|
---|
7201 | TRPMSetErrorCode(pVCpu, uErrCode);
|
---|
7202 | Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
|
---|
7203 | }
|
---|
7204 |
|
---|
7205 | if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
|
---|
7206 | {
|
---|
7207 | TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
|
---|
7208 | Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
|
---|
7209 | }
|
---|
7210 | else
|
---|
7211 | {
|
---|
7212 | if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
|
---|
7213 | || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
|
---|
7214 | || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
|
---|
7215 | {
|
---|
7216 | TRPMSetInstrLength(pVCpu, cbInstr);
|
---|
7217 | Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
|
---|
7218 | }
|
---|
7219 | }
|
---|
7220 |
|
---|
7221 | if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
|
---|
7222 | {
|
---|
7223 | TRPMSetTrapDueToIcebp(pVCpu);
|
---|
7224 | Log(("%s: Injecting: icebp\n", pszInstr));
|
---|
7225 | }
|
---|
7226 |
|
---|
7227 | NOREF(pszInstr);
|
---|
7228 | }
|
---|
7229 |
|
---|
7230 |
|
---|
7231 | /**
|
---|
7232 | * Performs event injection (if any) as part of VM-entry.
|
---|
7233 | *
|
---|
7234 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7235 | * @param pszInstr The VMX instruction name (for logging purposes).
|
---|
7236 | */
|
---|
7237 | IEM_STATIC void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr)
|
---|
7238 | {
|
---|
7239 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7240 |
|
---|
7241 | /*
|
---|
7242 | * Inject events.
|
---|
7243 | * The event that is going to be made pending for injection is not subject to VMX intercepts,
|
---|
7244 | * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
|
---|
7245 | * of the current event -are- subject to intercepts, hence this flag will be flipped during
|
---|
7246 | * the actually delivery of this event.
|
---|
7247 | *
|
---|
7248 | * See Intel spec. 26.5 "Event Injection".
|
---|
7249 | */
|
---|
7250 | uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
|
---|
7251 | bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
|
---|
7252 |
|
---|
7253 | CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
|
---|
7254 | if (fEntryIntInfoValid)
|
---|
7255 | {
|
---|
7256 | if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
|
---|
7257 | {
|
---|
7258 | Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
|
---|
7259 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
|
---|
7260 | }
|
---|
7261 | else
|
---|
7262 | iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
|
---|
7263 | pVCpu->cpum.GstCtx.cr2);
|
---|
7264 |
|
---|
7265 | /*
|
---|
7266 | * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
|
---|
7267 | *
|
---|
7268 | * However, we do it here on VM-entry as well because while it isn't visible to guest
|
---|
7269 | * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
|
---|
7270 | * execution using hardware-assisted VMX, it will not be try to inject the event again.
|
---|
7271 | *
|
---|
7272 | * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
7273 | */
|
---|
7274 | pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
|
---|
7275 | }
|
---|
7276 | else
|
---|
7277 | {
|
---|
7278 | /*
|
---|
7279 | * Inject any pending guest debug exception.
|
---|
7280 | * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
|
---|
7281 | * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
|
---|
7282 | */
|
---|
7283 | bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
|
---|
7284 | if (fPendingDbgXcpt)
|
---|
7285 | {
|
---|
7286 | uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
|
---|
7287 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
|
---|
7288 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
7289 | iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
|
---|
7290 | 0 /* GCPtrFaultAddress */);
|
---|
7291 | }
|
---|
7292 | }
|
---|
7293 |
|
---|
7294 | NOREF(pszInstr);
|
---|
7295 | }
|
---|
7296 |
|
---|
7297 |
|
---|
7298 | /**
|
---|
7299 | * Initializes all read-only VMCS fields as part of VM-entry.
|
---|
7300 | *
|
---|
7301 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7302 | */
|
---|
7303 | IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu)
|
---|
7304 | {
|
---|
7305 | /*
|
---|
7306 | * Any VMCS field which we do not establish on every VM-exit but may potentially
|
---|
7307 | * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
|
---|
7308 | * specified to be undefined, needs to be initialized here.
|
---|
7309 | *
|
---|
7310 | * Thus, it is especially important to clear the Exit qualification field
|
---|
7311 | * since it must be zero for VM-exits where it is not used. Similarly, the
|
---|
7312 | * VM-exit interruption information field's valid bit needs to be cleared for
|
---|
7313 | * the same reasons.
|
---|
7314 | */
|
---|
7315 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7316 | Assert(pVmcs);
|
---|
7317 |
|
---|
7318 | /* 16-bit (none currently). */
|
---|
7319 | /* 32-bit. */
|
---|
7320 | pVmcs->u32RoVmInstrError = 0;
|
---|
7321 | pVmcs->u32RoExitReason = 0;
|
---|
7322 | pVmcs->u32RoExitIntInfo = 0;
|
---|
7323 | pVmcs->u32RoExitIntErrCode = 0;
|
---|
7324 | pVmcs->u32RoIdtVectoringInfo = 0;
|
---|
7325 | pVmcs->u32RoIdtVectoringErrCode = 0;
|
---|
7326 | pVmcs->u32RoExitInstrLen = 0;
|
---|
7327 | pVmcs->u32RoExitInstrInfo = 0;
|
---|
7328 |
|
---|
7329 | /* 64-bit. */
|
---|
7330 | pVmcs->u64RoGuestPhysAddr.u = 0;
|
---|
7331 |
|
---|
7332 | /* Natural-width. */
|
---|
7333 | pVmcs->u64RoExitQual.u = 0;
|
---|
7334 | pVmcs->u64RoIoRcx.u = 0;
|
---|
7335 | pVmcs->u64RoIoRsi.u = 0;
|
---|
7336 | pVmcs->u64RoIoRdi.u = 0;
|
---|
7337 | pVmcs->u64RoIoRip.u = 0;
|
---|
7338 | pVmcs->u64RoGuestLinearAddr.u = 0;
|
---|
7339 | }
|
---|
7340 |
|
---|
7341 |
|
---|
7342 | /**
|
---|
7343 | * VMLAUNCH/VMRESUME instruction execution worker.
|
---|
7344 | *
|
---|
7345 | * @returns Strict VBox status code.
|
---|
7346 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7347 | * @param cbInstr The instruction length in bytes.
|
---|
7348 | * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
|
---|
7349 | * VMXINSTRID_VMRESUME).
|
---|
7350 | *
|
---|
7351 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
7352 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
7353 | */
|
---|
7354 | IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
|
---|
7355 | {
|
---|
7356 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
|
---|
7357 | RT_NOREF3(pVCpu, cbInstr, uInstrId);
|
---|
7358 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
7359 | # else
|
---|
7360 | Assert( uInstrId == VMXINSTRID_VMLAUNCH
|
---|
7361 | || uInstrId == VMXINSTRID_VMRESUME);
|
---|
7362 | const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
|
---|
7363 |
|
---|
7364 | /* Nested-guest intercept. */
|
---|
7365 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
7366 | return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
|
---|
7367 |
|
---|
7368 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
7369 |
|
---|
7370 | /*
|
---|
7371 | * Basic VM-entry checks.
|
---|
7372 | * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
|
---|
7373 | * The checks following that do not have to follow a specific order.
|
---|
7374 | *
|
---|
7375 | * See Intel spec. 26.1 "Basic VM-entry Checks".
|
---|
7376 | */
|
---|
7377 |
|
---|
7378 | /* CPL. */
|
---|
7379 | if (pVCpu->iem.s.uCpl == 0)
|
---|
7380 | { /* likely */ }
|
---|
7381 | else
|
---|
7382 | {
|
---|
7383 | Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
|
---|
7384 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
|
---|
7385 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7386 | }
|
---|
7387 |
|
---|
7388 | /* Current VMCS valid. */
|
---|
7389 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
7390 | { /* likely */ }
|
---|
7391 | else
|
---|
7392 | {
|
---|
7393 | Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
7394 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
|
---|
7395 | iemVmxVmFailInvalid(pVCpu);
|
---|
7396 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7397 | return VINF_SUCCESS;
|
---|
7398 | }
|
---|
7399 |
|
---|
7400 | /* Current VMCS is not a shadow VMCS. */
|
---|
7401 | if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
|
---|
7402 | { /* likely */ }
|
---|
7403 | else
|
---|
7404 | {
|
---|
7405 | Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
7406 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
|
---|
7407 | iemVmxVmFailInvalid(pVCpu);
|
---|
7408 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7409 | return VINF_SUCCESS;
|
---|
7410 | }
|
---|
7411 |
|
---|
7412 | /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
|
---|
7413 | * use block-by-STI here which is not quite correct. */
|
---|
7414 | if ( !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
7415 | || pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
7416 | { /* likely */ }
|
---|
7417 | else
|
---|
7418 | {
|
---|
7419 | Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
|
---|
7420 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
|
---|
7421 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
|
---|
7422 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7423 | return VINF_SUCCESS;
|
---|
7424 | }
|
---|
7425 |
|
---|
7426 | if (uInstrId == VMXINSTRID_VMLAUNCH)
|
---|
7427 | {
|
---|
7428 | /* VMLAUNCH with non-clear VMCS. */
|
---|
7429 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
7430 | { /* likely */ }
|
---|
7431 | else
|
---|
7432 | {
|
---|
7433 | Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
|
---|
7434 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
|
---|
7435 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
|
---|
7436 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7437 | return VINF_SUCCESS;
|
---|
7438 | }
|
---|
7439 | }
|
---|
7440 | else
|
---|
7441 | {
|
---|
7442 | /* VMRESUME with non-launched VMCS. */
|
---|
7443 | if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
|
---|
7444 | { /* likely */ }
|
---|
7445 | else
|
---|
7446 | {
|
---|
7447 | Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
|
---|
7448 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
|
---|
7449 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
|
---|
7450 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7451 | return VINF_SUCCESS;
|
---|
7452 | }
|
---|
7453 | }
|
---|
7454 |
|
---|
7455 | /*
|
---|
7456 | * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
|
---|
7457 | * while entering VMX non-root mode. We do some of this while checking VM-execution
|
---|
7458 | * controls. The nested hypervisor should not make assumptions and cannot expect
|
---|
7459 | * predictable behavior if changes to these structures are made in guest memory while
|
---|
7460 | * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
|
---|
7461 | * modify them anyway as we cache them in host memory.
|
---|
7462 | *
|
---|
7463 | * See Intel spec. 24.11.4 "Software Access to Related Structures".
|
---|
7464 | */
|
---|
7465 | PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7466 | Assert(pVmcs);
|
---|
7467 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
7468 |
|
---|
7469 | int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
|
---|
7470 | if (RT_SUCCESS(rc))
|
---|
7471 | {
|
---|
7472 | rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
|
---|
7473 | if (RT_SUCCESS(rc))
|
---|
7474 | {
|
---|
7475 | /*
|
---|
7476 | * Initialize read-only VMCS fields before VM-entry since we don't update all of them
|
---|
7477 | * for every VM-exit. This needs to be done before invoking a VM-exit (even those
|
---|
7478 | * ones that may occur during VM-entry below).
|
---|
7479 | */
|
---|
7480 | iemVmxVmentryInitReadOnlyFields(pVCpu);
|
---|
7481 |
|
---|
7482 | /*
|
---|
7483 | * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
|
---|
7484 | * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
|
---|
7485 | * VM-exit when required.
|
---|
7486 | * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
|
---|
7487 | */
|
---|
7488 | iemVmxVmentrySaveNmiBlockingFF(pVCpu);
|
---|
7489 |
|
---|
7490 | rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
|
---|
7491 | if (RT_SUCCESS(rc))
|
---|
7492 | {
|
---|
7493 | /*
|
---|
7494 | * We've now entered nested-guest execution.
|
---|
7495 | *
|
---|
7496 | * It is important do this prior to loading the guest state because
|
---|
7497 | * as part of loading the guest state, PGM (and perhaps other components
|
---|
7498 | * in the future) relies on detecting whether VMX non-root mode has been
|
---|
7499 | * entered.
|
---|
7500 | */
|
---|
7501 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
|
---|
7502 |
|
---|
7503 | rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
|
---|
7504 | if (RT_SUCCESS(rc))
|
---|
7505 | {
|
---|
7506 | rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
|
---|
7507 | if (RT_SUCCESS(rc))
|
---|
7508 | {
|
---|
7509 | Assert(rc != VINF_CPUM_R3_MSR_WRITE);
|
---|
7510 |
|
---|
7511 | /* VMLAUNCH instruction must update the VMCS launch state. */
|
---|
7512 | if (uInstrId == VMXINSTRID_VMLAUNCH)
|
---|
7513 | pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
|
---|
7514 |
|
---|
7515 | /* Perform the VMX transition (PGM updates). */
|
---|
7516 | VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
|
---|
7517 | if (rcStrict == VINF_SUCCESS)
|
---|
7518 | { /* likely */ }
|
---|
7519 | else if (RT_SUCCESS(rcStrict))
|
---|
7520 | {
|
---|
7521 | Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
|
---|
7522 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7523 | rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
|
---|
7524 | }
|
---|
7525 | else
|
---|
7526 | {
|
---|
7527 | Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7528 | return rcStrict;
|
---|
7529 | }
|
---|
7530 |
|
---|
7531 | /* Paranoia. */
|
---|
7532 | Assert(rcStrict == VINF_SUCCESS);
|
---|
7533 |
|
---|
7534 | /*
|
---|
7535 | * The priority of potential VM-exits during VM-entry is important.
|
---|
7536 | * The priorities of VM-exits and events are listed from highest
|
---|
7537 | * to lowest as follows:
|
---|
7538 | *
|
---|
7539 | * 1. Event injection.
|
---|
7540 | * 2. Trap on task-switch (T flag set in TSS).
|
---|
7541 | * 3. TPR below threshold / APIC-write.
|
---|
7542 | * 4. SMI, INIT.
|
---|
7543 | * 5. MTF exit.
|
---|
7544 | * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
|
---|
7545 | * 7. VMX-preemption timer.
|
---|
7546 | * 9. NMI-window exit.
|
---|
7547 | * 10. NMI injection.
|
---|
7548 | * 11. Interrupt-window exit.
|
---|
7549 | * 12. Virtual-interrupt injection.
|
---|
7550 | * 13. Interrupt injection.
|
---|
7551 | * 14. Process next instruction (fetch, decode, execute).
|
---|
7552 | */
|
---|
7553 |
|
---|
7554 | /* Setup VMX-preemption timer. */
|
---|
7555 | iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
|
---|
7556 |
|
---|
7557 | /* Setup monitor-trap flag. */
|
---|
7558 | iemVmxVmentrySetupMtf(pVCpu, pszInstr);
|
---|
7559 |
|
---|
7560 | /* Setup NMI-window exiting. */
|
---|
7561 | iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
|
---|
7562 |
|
---|
7563 | /* Setup interrupt-window exiting. */
|
---|
7564 | iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
|
---|
7565 |
|
---|
7566 | /*
|
---|
7567 | * Inject any event that the nested hypervisor wants to inject.
|
---|
7568 | * Note! We cannot immediately perform the event injection here as we may have
|
---|
7569 | * pending PGM operations to perform due to switching page tables and/or
|
---|
7570 | * mode.
|
---|
7571 | */
|
---|
7572 | iemVmxVmentryInjectEvent(pVCpu, pszInstr);
|
---|
7573 |
|
---|
7574 | # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
|
---|
7575 | /* Reschedule to IEM-only execution of the nested-guest. */
|
---|
7576 | Log(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
|
---|
7577 | int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
|
---|
7578 | if (rcSched != VINF_SUCCESS)
|
---|
7579 | iemSetPassUpStatus(pVCpu, rcSched);
|
---|
7580 | # endif
|
---|
7581 |
|
---|
7582 | /* Finally, done. */
|
---|
7583 | Log3(("%s: cs:rip=%#04x:%#RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64\n",
|
---|
7584 | pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
|
---|
7585 | pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
|
---|
7586 | pVCpu->cpum.GstCtx.msrEFER));
|
---|
7587 | return VINF_SUCCESS;
|
---|
7588 | }
|
---|
7589 | return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
|
---|
7590 | }
|
---|
7591 | }
|
---|
7592 | return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
|
---|
7593 | }
|
---|
7594 |
|
---|
7595 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
|
---|
7596 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7597 | return VINF_SUCCESS;
|
---|
7598 | }
|
---|
7599 |
|
---|
7600 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
|
---|
7601 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7602 | return VINF_SUCCESS;
|
---|
7603 | # endif
|
---|
7604 | }
|
---|
7605 |
|
---|
7606 |
|
---|
7607 | /**
|
---|
7608 | * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
|
---|
7609 | * (causes a VM-exit) or not.
|
---|
7610 | *
|
---|
7611 | * @returns @c true if the instruction is intercepted, @c false otherwise.
|
---|
7612 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7613 | * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
|
---|
7614 | * VMX_EXIT_WRMSR).
|
---|
7615 | * @param idMsr The MSR.
|
---|
7616 | */
|
---|
7617 | IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
|
---|
7618 | {
|
---|
7619 | Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
|
---|
7620 | Assert( uExitReason == VMX_EXIT_RDMSR
|
---|
7621 | || uExitReason == VMX_EXIT_WRMSR);
|
---|
7622 |
|
---|
7623 | /* Consult the MSR bitmap if the feature is supported. */
|
---|
7624 | PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
7625 | Assert(pVmcs);
|
---|
7626 | if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
7627 | {
|
---|
7628 | uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
|
---|
7629 | if (uExitReason == VMX_EXIT_RDMSR)
|
---|
7630 | return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
|
---|
7631 | return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
|
---|
7632 | }
|
---|
7633 |
|
---|
7634 | /* Without MSR bitmaps, all MSR accesses are intercepted. */
|
---|
7635 | return true;
|
---|
7636 | }
|
---|
7637 |
|
---|
7638 |
|
---|
7639 | /**
|
---|
7640 | * VMREAD instruction execution worker that does not perform any validation checks.
|
---|
7641 | *
|
---|
7642 | * Callers are expected to have performed the necessary checks and to ensure the
|
---|
7643 | * VMREAD will succeed.
|
---|
7644 | *
|
---|
7645 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
7646 | * @param pu64Dst Where to write the VMCS value.
|
---|
7647 | * @param u64VmcsField The VMCS field.
|
---|
7648 | *
|
---|
7649 | * @remarks May be called with interrupts disabled.
|
---|
7650 | */
|
---|
7651 | IEM_STATIC void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField)
|
---|
7652 | {
|
---|
7653 | VMXVMCSFIELD VmcsField;
|
---|
7654 | VmcsField.u = u64VmcsField;
|
---|
7655 | uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
|
---|
7656 | uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
|
---|
7657 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
7658 | uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
|
---|
7659 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
7660 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
7661 | AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
|
---|
7662 | uWidth, uType, uIndex, uIndex));
|
---|
7663 | AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
|
---|
7664 |
|
---|
7665 | /*
|
---|
7666 | * Read the VMCS component based on the field's effective width.
|
---|
7667 | *
|
---|
7668 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
7669 | * indicates high bits (little endian).
|
---|
7670 | *
|
---|
7671 | * Note! The caller is responsible to trim the result and update registers
|
---|
7672 | * or memory locations are required. Here we just zero-extend to the largest
|
---|
7673 | * type (i.e. 64-bits).
|
---|
7674 | */
|
---|
7675 | uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
|
---|
7676 | uint8_t const *pbField = pbVmcs + offField;
|
---|
7677 | uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
|
---|
7678 | switch (uEffWidth)
|
---|
7679 | {
|
---|
7680 | case VMX_VMCSFIELD_WIDTH_64BIT:
|
---|
7681 | case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
|
---|
7682 | case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
|
---|
7683 | case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
|
---|
7684 | }
|
---|
7685 | }
|
---|
7686 |
|
---|
7687 |
|
---|
7688 | /**
|
---|
7689 | * VMREAD common (memory/register) instruction execution worker.
|
---|
7690 | *
|
---|
7691 | * @returns Strict VBox status code.
|
---|
7692 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7693 | * @param cbInstr The instruction length in bytes.
|
---|
7694 | * @param pu64Dst Where to write the VMCS value (only updated when
|
---|
7695 | * VINF_SUCCESS is returned).
|
---|
7696 | * @param u64VmcsField The VMCS field.
|
---|
7697 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
7698 | * NULL.
|
---|
7699 | */
|
---|
7700 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
|
---|
7701 | PCVMXVEXITINFO pExitInfo)
|
---|
7702 | {
|
---|
7703 | /* Nested-guest intercept. */
|
---|
7704 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
7705 | && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
|
---|
7706 | {
|
---|
7707 | if (pExitInfo)
|
---|
7708 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
7709 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
|
---|
7710 | }
|
---|
7711 |
|
---|
7712 | /* CPL. */
|
---|
7713 | if (pVCpu->iem.s.uCpl == 0)
|
---|
7714 | { /* likely */ }
|
---|
7715 | else
|
---|
7716 | {
|
---|
7717 | Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
7718 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
|
---|
7719 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7720 | }
|
---|
7721 |
|
---|
7722 | /* VMCS pointer in root mode. */
|
---|
7723 | if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
|
---|
7724 | || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
7725 | { /* likely */ }
|
---|
7726 | else
|
---|
7727 | {
|
---|
7728 | Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
7729 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
|
---|
7730 | iemVmxVmFailInvalid(pVCpu);
|
---|
7731 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7732 | return VINF_SUCCESS;
|
---|
7733 | }
|
---|
7734 |
|
---|
7735 | /* VMCS-link pointer in non-root mode. */
|
---|
7736 | if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
7737 | || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
7738 | { /* likely */ }
|
---|
7739 | else
|
---|
7740 | {
|
---|
7741 | Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
7742 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
|
---|
7743 | iemVmxVmFailInvalid(pVCpu);
|
---|
7744 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7745 | return VINF_SUCCESS;
|
---|
7746 | }
|
---|
7747 |
|
---|
7748 | /* Supported VMCS field. */
|
---|
7749 | if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
|
---|
7750 | { /* likely */ }
|
---|
7751 | else
|
---|
7752 | {
|
---|
7753 | Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
|
---|
7754 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
|
---|
7755 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
|
---|
7756 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
|
---|
7757 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7758 | return VINF_SUCCESS;
|
---|
7759 | }
|
---|
7760 |
|
---|
7761 | /*
|
---|
7762 | * Reading from the current or shadow VMCS.
|
---|
7763 | */
|
---|
7764 | PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
7765 | ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
|
---|
7766 | : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
|
---|
7767 | iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
|
---|
7768 | return VINF_SUCCESS;
|
---|
7769 | }
|
---|
7770 |
|
---|
7771 |
|
---|
7772 | /**
|
---|
7773 | * VMREAD (64-bit register) instruction execution worker.
|
---|
7774 | *
|
---|
7775 | * @returns Strict VBox status code.
|
---|
7776 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7777 | * @param cbInstr The instruction length in bytes.
|
---|
7778 | * @param pu64Dst Where to store the VMCS field's value.
|
---|
7779 | * @param u64VmcsField The VMCS field.
|
---|
7780 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
7781 | * NULL.
|
---|
7782 | */
|
---|
7783 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
|
---|
7784 | PCVMXVEXITINFO pExitInfo)
|
---|
7785 | {
|
---|
7786 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
|
---|
7787 | if (rcStrict == VINF_SUCCESS)
|
---|
7788 | {
|
---|
7789 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
7790 | return VINF_SUCCESS;
|
---|
7791 | }
|
---|
7792 |
|
---|
7793 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7794 | return rcStrict;
|
---|
7795 | }
|
---|
7796 |
|
---|
7797 |
|
---|
7798 | /**
|
---|
7799 | * VMREAD (32-bit register) instruction execution worker.
|
---|
7800 | *
|
---|
7801 | * @returns Strict VBox status code.
|
---|
7802 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7803 | * @param cbInstr The instruction length in bytes.
|
---|
7804 | * @param pu32Dst Where to store the VMCS field's value.
|
---|
7805 | * @param u32VmcsField The VMCS field.
|
---|
7806 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
7807 | * NULL.
|
---|
7808 | */
|
---|
7809 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32VmcsField,
|
---|
7810 | PCVMXVEXITINFO pExitInfo)
|
---|
7811 | {
|
---|
7812 | uint64_t u64Dst;
|
---|
7813 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
|
---|
7814 | if (rcStrict == VINF_SUCCESS)
|
---|
7815 | {
|
---|
7816 | *pu32Dst = u64Dst;
|
---|
7817 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
7818 | return VINF_SUCCESS;
|
---|
7819 | }
|
---|
7820 |
|
---|
7821 | Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7822 | return rcStrict;
|
---|
7823 | }
|
---|
7824 |
|
---|
7825 |
|
---|
7826 | /**
|
---|
7827 | * VMREAD (memory) instruction execution worker.
|
---|
7828 | *
|
---|
7829 | * @returns Strict VBox status code.
|
---|
7830 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7831 | * @param cbInstr The instruction length in bytes.
|
---|
7832 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
7833 | * Pass UINT8_MAX if it is a register access.
|
---|
7834 | * @param GCPtrDst The guest linear address to store the VMCS field's
|
---|
7835 | * value.
|
---|
7836 | * @param u64VmcsField The VMCS field.
|
---|
7837 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
7838 | * NULL.
|
---|
7839 | */
|
---|
7840 | IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst, uint64_t u64VmcsField,
|
---|
7841 | PCVMXVEXITINFO pExitInfo)
|
---|
7842 | {
|
---|
7843 | uint64_t u64Dst;
|
---|
7844 | VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
|
---|
7845 | if (rcStrict == VINF_SUCCESS)
|
---|
7846 | {
|
---|
7847 | /*
|
---|
7848 | * Write the VMCS field's value to the location specified in guest-memory.
|
---|
7849 | */
|
---|
7850 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
7851 | rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
7852 | else
|
---|
7853 | rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
|
---|
7854 | if (rcStrict == VINF_SUCCESS)
|
---|
7855 | {
|
---|
7856 | iemVmxVmreadSuccess(pVCpu, cbInstr);
|
---|
7857 | return VINF_SUCCESS;
|
---|
7858 | }
|
---|
7859 |
|
---|
7860 | Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7861 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
|
---|
7862 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
|
---|
7863 | return rcStrict;
|
---|
7864 | }
|
---|
7865 |
|
---|
7866 | Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7867 | return rcStrict;
|
---|
7868 | }
|
---|
7869 |
|
---|
7870 |
|
---|
7871 | /**
|
---|
7872 | * VMWRITE instruction execution worker that does not perform any validation
|
---|
7873 | * checks.
|
---|
7874 | *
|
---|
7875 | * Callers are expected to have performed the necessary checks and to ensure the
|
---|
7876 | * VMWRITE will succeed.
|
---|
7877 | *
|
---|
7878 | * @param pVmcs Pointer to the virtual VMCS.
|
---|
7879 | * @param u64Val The value to write.
|
---|
7880 | * @param u64VmcsField The VMCS field.
|
---|
7881 | *
|
---|
7882 | * @remarks May be called with interrupts disabled.
|
---|
7883 | */
|
---|
7884 | IEM_STATIC void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField)
|
---|
7885 | {
|
---|
7886 | VMXVMCSFIELD VmcsField;
|
---|
7887 | VmcsField.u = u64VmcsField;
|
---|
7888 | uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
|
---|
7889 | uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
|
---|
7890 | uint8_t const uWidthType = (uWidth << 2) | uType;
|
---|
7891 | uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
|
---|
7892 | Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
|
---|
7893 | uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
|
---|
7894 | Assert(offField < VMX_V_VMCS_SIZE);
|
---|
7895 | AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
|
---|
7896 |
|
---|
7897 | /*
|
---|
7898 | * Write the VMCS component based on the field's effective width.
|
---|
7899 | *
|
---|
7900 | * The effective width is 64-bit fields adjusted to 32-bits if the access-type
|
---|
7901 | * indicates high bits (little endian).
|
---|
7902 | */
|
---|
7903 | uint8_t *pbVmcs = (uint8_t *)pVmcs;
|
---|
7904 | uint8_t *pbField = pbVmcs + offField;
|
---|
7905 | uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
|
---|
7906 | switch (uEffWidth)
|
---|
7907 | {
|
---|
7908 | case VMX_VMCSFIELD_WIDTH_64BIT:
|
---|
7909 | case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
|
---|
7910 | case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
|
---|
7911 | case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
|
---|
7912 | }
|
---|
7913 | }
|
---|
7914 |
|
---|
7915 |
|
---|
7916 | /**
|
---|
7917 | * VMWRITE instruction execution worker.
|
---|
7918 | *
|
---|
7919 | * @returns Strict VBox status code.
|
---|
7920 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7921 | * @param cbInstr The instruction length in bytes.
|
---|
7922 | * @param iEffSeg The effective segment register to use with @a u64Val.
|
---|
7923 | * Pass UINT8_MAX if it is a register access.
|
---|
7924 | * @param u64Val The value to write (or guest linear address to the
|
---|
7925 | * value), @a iEffSeg will indicate if it's a memory
|
---|
7926 | * operand.
|
---|
7927 | * @param u64VmcsField The VMCS field.
|
---|
7928 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
7929 | * NULL.
|
---|
7930 | */
|
---|
7931 | IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val, uint64_t u64VmcsField,
|
---|
7932 | PCVMXVEXITINFO pExitInfo)
|
---|
7933 | {
|
---|
7934 | /* Nested-guest intercept. */
|
---|
7935 | if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
7936 | && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
|
---|
7937 | {
|
---|
7938 | if (pExitInfo)
|
---|
7939 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
7940 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
|
---|
7941 | }
|
---|
7942 |
|
---|
7943 | /* CPL. */
|
---|
7944 | if (pVCpu->iem.s.uCpl == 0)
|
---|
7945 | { /* likely */ }
|
---|
7946 | else
|
---|
7947 | {
|
---|
7948 | Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
7949 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
|
---|
7950 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
7951 | }
|
---|
7952 |
|
---|
7953 | /* VMCS pointer in root mode. */
|
---|
7954 | if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
|
---|
7955 | || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
7956 | { /* likely */ }
|
---|
7957 | else
|
---|
7958 | {
|
---|
7959 | Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
|
---|
7960 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
|
---|
7961 | iemVmxVmFailInvalid(pVCpu);
|
---|
7962 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7963 | return VINF_SUCCESS;
|
---|
7964 | }
|
---|
7965 |
|
---|
7966 | /* VMCS-link pointer in non-root mode. */
|
---|
7967 | if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
|
---|
7968 | || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
|
---|
7969 | { /* likely */ }
|
---|
7970 | else
|
---|
7971 | {
|
---|
7972 | Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
|
---|
7973 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
|
---|
7974 | iemVmxVmFailInvalid(pVCpu);
|
---|
7975 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
7976 | return VINF_SUCCESS;
|
---|
7977 | }
|
---|
7978 |
|
---|
7979 | /* If the VMWRITE instruction references memory, access the specified memory operand. */
|
---|
7980 | bool const fIsRegOperand = iEffSeg == UINT8_MAX;
|
---|
7981 | if (!fIsRegOperand)
|
---|
7982 | {
|
---|
7983 | /* Read the value from the specified guest memory location. */
|
---|
7984 | VBOXSTRICTRC rcStrict;
|
---|
7985 | RTGCPTR const GCPtrVal = u64Val;
|
---|
7986 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
7987 | rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
|
---|
7988 | else
|
---|
7989 | rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
|
---|
7990 | if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
|
---|
7991 | {
|
---|
7992 | Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7993 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
|
---|
7994 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
|
---|
7995 | return rcStrict;
|
---|
7996 | }
|
---|
7997 | }
|
---|
7998 | else
|
---|
7999 | Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
|
---|
8000 |
|
---|
8001 | /* Supported VMCS field. */
|
---|
8002 | if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
|
---|
8003 | { /* likely */ }
|
---|
8004 | else
|
---|
8005 | {
|
---|
8006 | Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
|
---|
8007 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
|
---|
8008 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
|
---|
8009 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
|
---|
8010 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8011 | return VINF_SUCCESS;
|
---|
8012 | }
|
---|
8013 |
|
---|
8014 | /* Read-only VMCS field. */
|
---|
8015 | bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
|
---|
8016 | if ( !fIsFieldReadOnly
|
---|
8017 | || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
|
---|
8018 | { /* likely */ }
|
---|
8019 | else
|
---|
8020 | {
|
---|
8021 | Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
|
---|
8022 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
|
---|
8023 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
|
---|
8024 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
|
---|
8025 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8026 | return VINF_SUCCESS;
|
---|
8027 | }
|
---|
8028 |
|
---|
8029 | /*
|
---|
8030 | * Write to the current or shadow VMCS.
|
---|
8031 | */
|
---|
8032 | bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
|
---|
8033 | PVMXVVMCS pVmcs = !fInVmxNonRootMode
|
---|
8034 | ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
|
---|
8035 | : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
|
---|
8036 | iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
|
---|
8037 |
|
---|
8038 | /* Notify HM that the VMCS content might have changed. */
|
---|
8039 | if (!fInVmxNonRootMode)
|
---|
8040 | HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
|
---|
8041 |
|
---|
8042 | iemVmxVmSucceed(pVCpu);
|
---|
8043 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8044 | return VINF_SUCCESS;
|
---|
8045 | }
|
---|
8046 |
|
---|
8047 |
|
---|
8048 | /**
|
---|
8049 | * VMCLEAR instruction execution worker.
|
---|
8050 | *
|
---|
8051 | * @returns Strict VBox status code.
|
---|
8052 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8053 | * @param cbInstr The instruction length in bytes.
|
---|
8054 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
8055 | * @param GCPtrVmcs The linear address of the VMCS pointer.
|
---|
8056 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
|
---|
8057 | *
|
---|
8058 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8059 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8060 | */
|
---|
8061 | IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
8062 | PCVMXVEXITINFO pExitInfo)
|
---|
8063 | {
|
---|
8064 | /* Nested-guest intercept. */
|
---|
8065 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8066 | {
|
---|
8067 | if (pExitInfo)
|
---|
8068 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8069 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
|
---|
8070 | }
|
---|
8071 |
|
---|
8072 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
8073 |
|
---|
8074 | /* CPL. */
|
---|
8075 | if (pVCpu->iem.s.uCpl == 0)
|
---|
8076 | { /* likely */ }
|
---|
8077 | else
|
---|
8078 | {
|
---|
8079 | Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8080 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
|
---|
8081 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8082 | }
|
---|
8083 |
|
---|
8084 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
8085 | RTGCPHYS GCPhysVmcs;
|
---|
8086 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
8087 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8088 | { /* likely */ }
|
---|
8089 | else
|
---|
8090 | {
|
---|
8091 | Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8092 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
|
---|
8093 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
|
---|
8094 | return rcStrict;
|
---|
8095 | }
|
---|
8096 |
|
---|
8097 | /* VMCS pointer alignment. */
|
---|
8098 | if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
|
---|
8099 | { /* likely */ }
|
---|
8100 | else
|
---|
8101 | {
|
---|
8102 | Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
8103 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
|
---|
8104 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8105 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
8106 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8107 | return VINF_SUCCESS;
|
---|
8108 | }
|
---|
8109 |
|
---|
8110 | /* VMCS physical-address width limits. */
|
---|
8111 | if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
|
---|
8112 | { /* likely */ }
|
---|
8113 | else
|
---|
8114 | {
|
---|
8115 | Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
8116 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
|
---|
8117 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8118 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
8119 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8120 | return VINF_SUCCESS;
|
---|
8121 | }
|
---|
8122 |
|
---|
8123 | /* VMCS is not the VMXON region. */
|
---|
8124 | if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
8125 | { /* likely */ }
|
---|
8126 | else
|
---|
8127 | {
|
---|
8128 | Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
8129 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
|
---|
8130 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8131 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
|
---|
8132 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8133 | return VINF_SUCCESS;
|
---|
8134 | }
|
---|
8135 |
|
---|
8136 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
8137 | restriction imposed by our implementation. */
|
---|
8138 | if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
8139 | { /* likely */ }
|
---|
8140 | else
|
---|
8141 | {
|
---|
8142 | Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
|
---|
8143 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
|
---|
8144 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8145 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
|
---|
8146 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8147 | return VINF_SUCCESS;
|
---|
8148 | }
|
---|
8149 |
|
---|
8150 | /*
|
---|
8151 | * VMCLEAR allows committing and clearing any valid VMCS pointer.
|
---|
8152 | *
|
---|
8153 | * If the current VMCS is the one being cleared, set its state to 'clear' and commit
|
---|
8154 | * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
|
---|
8155 | * to 'clear'.
|
---|
8156 | */
|
---|
8157 | uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
|
---|
8158 | if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
|
---|
8159 | && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
|
---|
8160 | {
|
---|
8161 | pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
|
---|
8162 | iemVmxWriteCurrentVmcsToGstMem(pVCpu);
|
---|
8163 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
8164 | }
|
---|
8165 | else
|
---|
8166 | {
|
---|
8167 | AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
|
---|
8168 | rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
|
---|
8169 | (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
|
---|
8170 | if (RT_FAILURE(rcStrict))
|
---|
8171 | return rcStrict;
|
---|
8172 | }
|
---|
8173 |
|
---|
8174 | iemVmxVmSucceed(pVCpu);
|
---|
8175 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8176 | return VINF_SUCCESS;
|
---|
8177 | }
|
---|
8178 |
|
---|
8179 |
|
---|
8180 | /**
|
---|
8181 | * VMPTRST instruction execution worker.
|
---|
8182 | *
|
---|
8183 | * @returns Strict VBox status code.
|
---|
8184 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8185 | * @param cbInstr The instruction length in bytes.
|
---|
8186 | * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
|
---|
8187 | * @param GCPtrVmcs The linear address of where to store the current VMCS
|
---|
8188 | * pointer.
|
---|
8189 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
|
---|
8190 | *
|
---|
8191 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8192 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8193 | */
|
---|
8194 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
8195 | PCVMXVEXITINFO pExitInfo)
|
---|
8196 | {
|
---|
8197 | /* Nested-guest intercept. */
|
---|
8198 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8199 | {
|
---|
8200 | if (pExitInfo)
|
---|
8201 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8202 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
|
---|
8203 | }
|
---|
8204 |
|
---|
8205 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
8206 |
|
---|
8207 | /* CPL. */
|
---|
8208 | if (pVCpu->iem.s.uCpl == 0)
|
---|
8209 | { /* likely */ }
|
---|
8210 | else
|
---|
8211 | {
|
---|
8212 | Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8213 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
|
---|
8214 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8215 | }
|
---|
8216 |
|
---|
8217 | /* Set the VMCS pointer to the location specified by the destination memory operand. */
|
---|
8218 | AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
|
---|
8219 | VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
|
---|
8220 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8221 | {
|
---|
8222 | iemVmxVmSucceed(pVCpu);
|
---|
8223 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8224 | return rcStrict;
|
---|
8225 | }
|
---|
8226 |
|
---|
8227 | Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8228 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
|
---|
8229 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
|
---|
8230 | return rcStrict;
|
---|
8231 | }
|
---|
8232 |
|
---|
8233 |
|
---|
8234 | /**
|
---|
8235 | * VMPTRLD instruction execution worker.
|
---|
8236 | *
|
---|
8237 | * @returns Strict VBox status code.
|
---|
8238 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8239 | * @param cbInstr The instruction length in bytes.
|
---|
8240 | * @param GCPtrVmcs The linear address of the current VMCS pointer.
|
---|
8241 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
|
---|
8242 | *
|
---|
8243 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8244 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8245 | */
|
---|
8246 | IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
|
---|
8247 | PCVMXVEXITINFO pExitInfo)
|
---|
8248 | {
|
---|
8249 | /* Nested-guest intercept. */
|
---|
8250 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8251 | {
|
---|
8252 | if (pExitInfo)
|
---|
8253 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8254 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
|
---|
8255 | }
|
---|
8256 |
|
---|
8257 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
8258 |
|
---|
8259 | /* CPL. */
|
---|
8260 | if (pVCpu->iem.s.uCpl == 0)
|
---|
8261 | { /* likely */ }
|
---|
8262 | else
|
---|
8263 | {
|
---|
8264 | Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8265 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
|
---|
8266 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8267 | }
|
---|
8268 |
|
---|
8269 | /* Get the VMCS pointer from the location specified by the source memory operand. */
|
---|
8270 | RTGCPHYS GCPhysVmcs;
|
---|
8271 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
|
---|
8272 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8273 | { /* likely */ }
|
---|
8274 | else
|
---|
8275 | {
|
---|
8276 | Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8277 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
|
---|
8278 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
|
---|
8279 | return rcStrict;
|
---|
8280 | }
|
---|
8281 |
|
---|
8282 | /* VMCS pointer alignment. */
|
---|
8283 | if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
|
---|
8284 | { /* likely */ }
|
---|
8285 | else
|
---|
8286 | {
|
---|
8287 | Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
|
---|
8288 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
|
---|
8289 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8290 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
8291 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8292 | return VINF_SUCCESS;
|
---|
8293 | }
|
---|
8294 |
|
---|
8295 | /* VMCS physical-address width limits. */
|
---|
8296 | if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
|
---|
8297 | { /* likely */ }
|
---|
8298 | else
|
---|
8299 | {
|
---|
8300 | Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
|
---|
8301 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
|
---|
8302 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8303 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
8304 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8305 | return VINF_SUCCESS;
|
---|
8306 | }
|
---|
8307 |
|
---|
8308 | /* VMCS is not the VMXON region. */
|
---|
8309 | if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
|
---|
8310 | { /* likely */ }
|
---|
8311 | else
|
---|
8312 | {
|
---|
8313 | Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
|
---|
8314 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
|
---|
8315 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8316 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
|
---|
8317 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8318 | return VINF_SUCCESS;
|
---|
8319 | }
|
---|
8320 |
|
---|
8321 | /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
8322 | restriction imposed by our implementation. */
|
---|
8323 | if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
|
---|
8324 | { /* likely */ }
|
---|
8325 | else
|
---|
8326 | {
|
---|
8327 | Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
|
---|
8328 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
|
---|
8329 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8330 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
|
---|
8331 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8332 | return VINF_SUCCESS;
|
---|
8333 | }
|
---|
8334 |
|
---|
8335 | /* Read just the VMCS revision from the VMCS. */
|
---|
8336 | VMXVMCSREVID VmcsRevId;
|
---|
8337 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
|
---|
8338 | if (RT_SUCCESS(rc))
|
---|
8339 | { /* likely */ }
|
---|
8340 | else
|
---|
8341 | {
|
---|
8342 | Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
8343 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
|
---|
8344 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8345 | return rc;
|
---|
8346 | }
|
---|
8347 |
|
---|
8348 | /*
|
---|
8349 | * Verify the VMCS revision specified by the guest matches what we reported to the guest.
|
---|
8350 | * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
|
---|
8351 | */
|
---|
8352 | if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
|
---|
8353 | && ( !VmcsRevId.n.fIsShadowVmcs
|
---|
8354 | || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
|
---|
8355 | { /* likely */ }
|
---|
8356 | else
|
---|
8357 | {
|
---|
8358 | if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
|
---|
8359 | {
|
---|
8360 | Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
|
---|
8361 | VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
|
---|
8362 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
|
---|
8363 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
8364 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8365 | return VINF_SUCCESS;
|
---|
8366 | }
|
---|
8367 |
|
---|
8368 | Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
|
---|
8369 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
|
---|
8370 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
|
---|
8371 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8372 | return VINF_SUCCESS;
|
---|
8373 | }
|
---|
8374 |
|
---|
8375 | /*
|
---|
8376 | * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
|
---|
8377 | * the cache of an existing, current VMCS back to guest memory before loading a new,
|
---|
8378 | * different current VMCS.
|
---|
8379 | */
|
---|
8380 | if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
|
---|
8381 | {
|
---|
8382 | if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
|
---|
8383 | {
|
---|
8384 | iemVmxWriteCurrentVmcsToGstMem(pVCpu);
|
---|
8385 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
8386 | }
|
---|
8387 |
|
---|
8388 | /* Set the new VMCS as the current VMCS and read it from guest memory. */
|
---|
8389 | IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
|
---|
8390 | rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
|
---|
8391 | if (RT_SUCCESS(rc))
|
---|
8392 | {
|
---|
8393 | /* Notify HM that a new, current VMCS is loaded. */
|
---|
8394 | HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
|
---|
8395 | }
|
---|
8396 | else
|
---|
8397 | {
|
---|
8398 | Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
|
---|
8399 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
|
---|
8400 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
|
---|
8401 | return rc;
|
---|
8402 | }
|
---|
8403 | }
|
---|
8404 |
|
---|
8405 | Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
|
---|
8406 | iemVmxVmSucceed(pVCpu);
|
---|
8407 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8408 | return VINF_SUCCESS;
|
---|
8409 | }
|
---|
8410 |
|
---|
8411 |
|
---|
8412 | /**
|
---|
8413 | * INVVPID instruction execution worker.
|
---|
8414 | *
|
---|
8415 | * @returns Strict VBox status code.
|
---|
8416 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8417 | * @param cbInstr The instruction length in bytes.
|
---|
8418 | * @param iEffSeg The segment of the invvpid descriptor.
|
---|
8419 | * @param GCPtrInvvpidDesc The address of invvpid descriptor.
|
---|
8420 | * @param u64InvvpidType The invalidation type.
|
---|
8421 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
8422 | * NULL.
|
---|
8423 | *
|
---|
8424 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8425 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8426 | */
|
---|
8427 | IEM_STATIC VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
|
---|
8428 | uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo)
|
---|
8429 | {
|
---|
8430 | /* Check if INVVPID instruction is supported, otherwise raise #UD. */
|
---|
8431 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
|
---|
8432 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
8433 |
|
---|
8434 | /* Nested-guest intercept. */
|
---|
8435 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8436 | {
|
---|
8437 | if (pExitInfo)
|
---|
8438 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8439 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
|
---|
8440 | }
|
---|
8441 |
|
---|
8442 | /* CPL. */
|
---|
8443 | if (pVCpu->iem.s.uCpl != 0)
|
---|
8444 | {
|
---|
8445 | Log(("invvpid: CPL != 0 -> #GP(0)\n"));
|
---|
8446 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8447 | }
|
---|
8448 |
|
---|
8449 | /*
|
---|
8450 | * Validate INVVPID invalidation type.
|
---|
8451 | *
|
---|
8452 | * The instruction specifies exactly ONE of the supported invalidation types.
|
---|
8453 | *
|
---|
8454 | * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
|
---|
8455 | * supported. In theory, it's possible for a CPU to not support flushing individual
|
---|
8456 | * addresses but all the other types or any other combination. We do not take any
|
---|
8457 | * shortcuts here by assuming the types we currently expose to the guest.
|
---|
8458 | */
|
---|
8459 | uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
|
---|
8460 | bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
|
---|
8461 | bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
|
---|
8462 | bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
|
---|
8463 | bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
|
---|
8464 | bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
|
---|
8465 |
|
---|
8466 | bool afSupportedTypes[4];
|
---|
8467 | afSupportedTypes[0] = fTypeIndivAddr;
|
---|
8468 | afSupportedTypes[1] = fTypeSingleCtx;
|
---|
8469 | afSupportedTypes[2] = fTypeAllCtx;
|
---|
8470 | afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
|
---|
8471 |
|
---|
8472 | if ( fInvvpidSupported
|
---|
8473 | && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
|
---|
8474 | && afSupportedTypes[u64InvvpidType & 3])
|
---|
8475 | { /* likely */ }
|
---|
8476 | else
|
---|
8477 | {
|
---|
8478 | Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
|
---|
8479 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
|
---|
8480 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
|
---|
8481 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8482 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8483 | return VINF_SUCCESS;
|
---|
8484 | }
|
---|
8485 |
|
---|
8486 | /*
|
---|
8487 | * Fetch the invvpid descriptor from guest memory.
|
---|
8488 | */
|
---|
8489 | RTUINT128U uDesc;
|
---|
8490 | VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
|
---|
8491 | if (rcStrict == VINF_SUCCESS)
|
---|
8492 | {
|
---|
8493 | /*
|
---|
8494 | * Validate the descriptor.
|
---|
8495 | */
|
---|
8496 | if (uDesc.s.Lo > 0xfff)
|
---|
8497 | {
|
---|
8498 | Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
|
---|
8499 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
|
---|
8500 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
|
---|
8501 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8502 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8503 | return VINF_SUCCESS;
|
---|
8504 | }
|
---|
8505 |
|
---|
8506 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
8507 | RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
|
---|
8508 | uint8_t const uVpid = uDesc.s.Lo & UINT64_C(0xfff);
|
---|
8509 | uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
|
---|
8510 | switch (u64InvvpidType)
|
---|
8511 | {
|
---|
8512 | case VMXTLBFLUSHVPID_INDIV_ADDR:
|
---|
8513 | {
|
---|
8514 | if (uVpid != 0)
|
---|
8515 | {
|
---|
8516 | if (IEM_IS_CANONICAL(GCPtrInvAddr))
|
---|
8517 | {
|
---|
8518 | /* Invalidate mappings for the linear address tagged with VPID. */
|
---|
8519 | /** @todo PGM support for VPID? Currently just flush everything. */
|
---|
8520 | PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
|
---|
8521 | iemVmxVmSucceed(pVCpu);
|
---|
8522 | }
|
---|
8523 | else
|
---|
8524 | {
|
---|
8525 | Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
|
---|
8526 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
|
---|
8527 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
|
---|
8528 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8529 | }
|
---|
8530 | }
|
---|
8531 | else
|
---|
8532 | {
|
---|
8533 | Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
|
---|
8534 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
|
---|
8535 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
|
---|
8536 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8537 | }
|
---|
8538 | break;
|
---|
8539 | }
|
---|
8540 |
|
---|
8541 | case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
|
---|
8542 | {
|
---|
8543 | if (uVpid != 0)
|
---|
8544 | {
|
---|
8545 | /* Invalidate all mappings with VPID. */
|
---|
8546 | /** @todo PGM support for VPID? Currently just flush everything. */
|
---|
8547 | PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
|
---|
8548 | iemVmxVmSucceed(pVCpu);
|
---|
8549 | }
|
---|
8550 | else
|
---|
8551 | {
|
---|
8552 | Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
|
---|
8553 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
|
---|
8554 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
|
---|
8555 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8556 | }
|
---|
8557 | break;
|
---|
8558 | }
|
---|
8559 |
|
---|
8560 | case VMXTLBFLUSHVPID_ALL_CONTEXTS:
|
---|
8561 | {
|
---|
8562 | /* Invalidate all mappings with non-zero VPIDs. */
|
---|
8563 | /** @todo PGM support for VPID? Currently just flush everything. */
|
---|
8564 | PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
|
---|
8565 | iemVmxVmSucceed(pVCpu);
|
---|
8566 | break;
|
---|
8567 | }
|
---|
8568 |
|
---|
8569 | case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
|
---|
8570 | {
|
---|
8571 | if (uVpid != 0)
|
---|
8572 | {
|
---|
8573 | /* Invalidate all mappings with VPID except global translations. */
|
---|
8574 | /** @todo PGM support for VPID? Currently just flush everything. */
|
---|
8575 | PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
|
---|
8576 | iemVmxVmSucceed(pVCpu);
|
---|
8577 | }
|
---|
8578 | else
|
---|
8579 | {
|
---|
8580 | Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
|
---|
8581 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
|
---|
8582 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
|
---|
8583 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8584 | }
|
---|
8585 | break;
|
---|
8586 | }
|
---|
8587 | IEM_NOT_REACHED_DEFAULT_CASE_RET();
|
---|
8588 | }
|
---|
8589 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8590 | }
|
---|
8591 | return rcStrict;
|
---|
8592 | }
|
---|
8593 |
|
---|
8594 |
|
---|
8595 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
8596 | /**
|
---|
8597 | * INVEPT instruction execution worker.
|
---|
8598 | *
|
---|
8599 | * @returns Strict VBox status code.
|
---|
8600 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8601 | * @param cbInstr The instruction length in bytes.
|
---|
8602 | * @param iEffSeg The segment of the invept descriptor.
|
---|
8603 | * @param GCPtrInveptDesc The address of invept descriptor.
|
---|
8604 | * @param u64InveptType The invalidation type.
|
---|
8605 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be
|
---|
8606 | * NULL.
|
---|
8607 | *
|
---|
8608 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8609 | * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8610 | */
|
---|
8611 | IEM_STATIC VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
|
---|
8612 | uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo)
|
---|
8613 | {
|
---|
8614 | /* Check if EPT is supported, otherwise raise #UD. */
|
---|
8615 | if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
|
---|
8616 | return iemRaiseUndefinedOpcode(pVCpu);
|
---|
8617 |
|
---|
8618 | /* Nested-guest intercept. */
|
---|
8619 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8620 | {
|
---|
8621 | if (pExitInfo)
|
---|
8622 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8623 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
|
---|
8624 | }
|
---|
8625 |
|
---|
8626 | /* CPL. */
|
---|
8627 | if (pVCpu->iem.s.uCpl != 0)
|
---|
8628 | {
|
---|
8629 | Log(("invept: CPL != 0 -> #GP(0)\n"));
|
---|
8630 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8631 | }
|
---|
8632 |
|
---|
8633 | /*
|
---|
8634 | * Validate INVEPT invalidation type.
|
---|
8635 | *
|
---|
8636 | * The instruction specifies exactly ONE of the supported invalidation types.
|
---|
8637 | *
|
---|
8638 | * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
|
---|
8639 | * supported. In theory, it's possible for a CPU to not support flushing individual
|
---|
8640 | * addresses but all the other types or any other combination. We do not take any
|
---|
8641 | * shortcuts here by assuming the types we currently expose to the guest.
|
---|
8642 | */
|
---|
8643 | uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
|
---|
8644 | bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
|
---|
8645 | bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
|
---|
8646 | bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
|
---|
8647 |
|
---|
8648 | bool afSupportedTypes[4];
|
---|
8649 | afSupportedTypes[0] = false;
|
---|
8650 | afSupportedTypes[1] = fTypeSingleCtx;
|
---|
8651 | afSupportedTypes[2] = fTypeAllCtx;
|
---|
8652 | afSupportedTypes[3] = false;
|
---|
8653 |
|
---|
8654 | if ( fInveptSupported
|
---|
8655 | && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
|
---|
8656 | && afSupportedTypes[u64InveptType & 3])
|
---|
8657 | { /* likely */ }
|
---|
8658 | else
|
---|
8659 | {
|
---|
8660 | Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
|
---|
8661 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
|
---|
8662 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
|
---|
8663 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8664 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8665 | return VINF_SUCCESS;
|
---|
8666 | }
|
---|
8667 |
|
---|
8668 | /*
|
---|
8669 | * Fetch the invept descriptor from guest memory.
|
---|
8670 | */
|
---|
8671 | RTUINT128U uDesc;
|
---|
8672 | VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
|
---|
8673 | if (rcStrict == VINF_SUCCESS)
|
---|
8674 | {
|
---|
8675 | /*
|
---|
8676 | * Validate the descriptor.
|
---|
8677 | *
|
---|
8678 | * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
|
---|
8679 | * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
|
---|
8680 | * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
|
---|
8681 | * better to be strict in our emulation until proven otherwise.
|
---|
8682 | */
|
---|
8683 | if (uDesc.s.Hi)
|
---|
8684 | {
|
---|
8685 | Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
|
---|
8686 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
|
---|
8687 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
|
---|
8688 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8689 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8690 | return VINF_SUCCESS;
|
---|
8691 | }
|
---|
8692 |
|
---|
8693 | /*
|
---|
8694 | * Flush TLB mappings based on the EPT type.
|
---|
8695 | */
|
---|
8696 | if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
|
---|
8697 | {
|
---|
8698 | uint64_t const GCPhysEptPtr = uDesc.s.Lo;
|
---|
8699 | int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
|
---|
8700 | if (RT_SUCCESS(rc))
|
---|
8701 | { /* likely */ }
|
---|
8702 | else
|
---|
8703 | {
|
---|
8704 | Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
|
---|
8705 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
|
---|
8706 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
|
---|
8707 | iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
|
---|
8708 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8709 | return VINF_SUCCESS;
|
---|
8710 | }
|
---|
8711 | }
|
---|
8712 |
|
---|
8713 | /** @todo PGM support for EPT tags? Currently just flush everything. */
|
---|
8714 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
8715 | uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
|
---|
8716 | PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
|
---|
8717 | }
|
---|
8718 |
|
---|
8719 | return rcStrict;
|
---|
8720 | }
|
---|
8721 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
|
---|
8722 |
|
---|
8723 |
|
---|
8724 | /**
|
---|
8725 | * VMXON instruction execution worker.
|
---|
8726 | *
|
---|
8727 | * @returns Strict VBox status code.
|
---|
8728 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8729 | * @param cbInstr The instruction length in bytes.
|
---|
8730 | * @param iEffSeg The effective segment register to use with @a
|
---|
8731 | * GCPtrVmxon.
|
---|
8732 | * @param GCPtrVmxon The linear address of the VMXON pointer.
|
---|
8733 | * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
|
---|
8734 | *
|
---|
8735 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8736 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8737 | */
|
---|
8738 | IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
|
---|
8739 | PCVMXVEXITINFO pExitInfo)
|
---|
8740 | {
|
---|
8741 | if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
|
---|
8742 | {
|
---|
8743 | /* CPL. */
|
---|
8744 | if (pVCpu->iem.s.uCpl == 0)
|
---|
8745 | { /* likely */ }
|
---|
8746 | else
|
---|
8747 | {
|
---|
8748 | Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8749 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
|
---|
8750 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8751 | }
|
---|
8752 |
|
---|
8753 | /* A20M (A20 Masked) mode. */
|
---|
8754 | if (PGMPhysIsA20Enabled(pVCpu))
|
---|
8755 | { /* likely */ }
|
---|
8756 | else
|
---|
8757 | {
|
---|
8758 | Log(("vmxon: A20M mode -> #GP(0)\n"));
|
---|
8759 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
|
---|
8760 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8761 | }
|
---|
8762 |
|
---|
8763 | /* CR0. */
|
---|
8764 | {
|
---|
8765 | /* CR0 MB1 bits. */
|
---|
8766 | uint64_t const uCr0Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed0;
|
---|
8767 | if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
|
---|
8768 | { /* likely */ }
|
---|
8769 | else
|
---|
8770 | {
|
---|
8771 | Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
|
---|
8772 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
|
---|
8773 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8774 | }
|
---|
8775 |
|
---|
8776 | /* CR0 MBZ bits. */
|
---|
8777 | uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
|
---|
8778 | if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
|
---|
8779 | { /* likely */ }
|
---|
8780 | else
|
---|
8781 | {
|
---|
8782 | Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
|
---|
8783 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
|
---|
8784 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8785 | }
|
---|
8786 | }
|
---|
8787 |
|
---|
8788 | /* CR4. */
|
---|
8789 | {
|
---|
8790 | /* CR4 MB1 bits. */
|
---|
8791 | uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
|
---|
8792 | if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
|
---|
8793 | { /* likely */ }
|
---|
8794 | else
|
---|
8795 | {
|
---|
8796 | Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
|
---|
8797 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
|
---|
8798 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8799 | }
|
---|
8800 |
|
---|
8801 | /* CR4 MBZ bits. */
|
---|
8802 | uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
|
---|
8803 | if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
|
---|
8804 | { /* likely */ }
|
---|
8805 | else
|
---|
8806 | {
|
---|
8807 | Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
|
---|
8808 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
|
---|
8809 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8810 | }
|
---|
8811 | }
|
---|
8812 |
|
---|
8813 | /* Feature control MSR's LOCK and VMXON bits. */
|
---|
8814 | uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
|
---|
8815 | if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
|
---|
8816 | == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
|
---|
8817 | { /* likely */ }
|
---|
8818 | else
|
---|
8819 | {
|
---|
8820 | Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
|
---|
8821 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
|
---|
8822 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8823 | }
|
---|
8824 |
|
---|
8825 | /* Get the VMXON pointer from the location specified by the source memory operand. */
|
---|
8826 | RTGCPHYS GCPhysVmxon;
|
---|
8827 | VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
|
---|
8828 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8829 | { /* likely */ }
|
---|
8830 | else
|
---|
8831 | {
|
---|
8832 | Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8833 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
|
---|
8834 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
|
---|
8835 | return rcStrict;
|
---|
8836 | }
|
---|
8837 |
|
---|
8838 | /* VMXON region pointer alignment. */
|
---|
8839 | if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
|
---|
8840 | { /* likely */ }
|
---|
8841 | else
|
---|
8842 | {
|
---|
8843 | Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
|
---|
8844 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
|
---|
8845 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
|
---|
8846 | iemVmxVmFailInvalid(pVCpu);
|
---|
8847 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8848 | return VINF_SUCCESS;
|
---|
8849 | }
|
---|
8850 |
|
---|
8851 | /* VMXON physical-address width limits. */
|
---|
8852 | if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
|
---|
8853 | { /* likely */ }
|
---|
8854 | else
|
---|
8855 | {
|
---|
8856 | Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
|
---|
8857 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
|
---|
8858 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
|
---|
8859 | iemVmxVmFailInvalid(pVCpu);
|
---|
8860 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8861 | return VINF_SUCCESS;
|
---|
8862 | }
|
---|
8863 |
|
---|
8864 | /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
|
---|
8865 | restriction imposed by our implementation. */
|
---|
8866 | if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
|
---|
8867 | { /* likely */ }
|
---|
8868 | else
|
---|
8869 | {
|
---|
8870 | Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
|
---|
8871 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
|
---|
8872 | pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
|
---|
8873 | iemVmxVmFailInvalid(pVCpu);
|
---|
8874 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8875 | return VINF_SUCCESS;
|
---|
8876 | }
|
---|
8877 |
|
---|
8878 | /* Read the VMCS revision ID from the VMXON region. */
|
---|
8879 | VMXVMCSREVID VmcsRevId;
|
---|
8880 | int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
|
---|
8881 | if (RT_SUCCESS(rc))
|
---|
8882 | { /* likely */ }
|
---|
8883 | else
|
---|
8884 | {
|
---|
8885 | Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
|
---|
8886 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
|
---|
8887 | return rc;
|
---|
8888 | }
|
---|
8889 |
|
---|
8890 | /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
|
---|
8891 | if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
|
---|
8892 | { /* likely */ }
|
---|
8893 | else
|
---|
8894 | {
|
---|
8895 | /* Revision ID mismatch. */
|
---|
8896 | if (!VmcsRevId.n.fIsShadowVmcs)
|
---|
8897 | {
|
---|
8898 | Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
|
---|
8899 | VmcsRevId.n.u31RevisionId));
|
---|
8900 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
|
---|
8901 | iemVmxVmFailInvalid(pVCpu);
|
---|
8902 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8903 | return VINF_SUCCESS;
|
---|
8904 | }
|
---|
8905 |
|
---|
8906 | /* Shadow VMCS disallowed. */
|
---|
8907 | Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
|
---|
8908 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
|
---|
8909 | iemVmxVmFailInvalid(pVCpu);
|
---|
8910 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8911 | return VINF_SUCCESS;
|
---|
8912 | }
|
---|
8913 |
|
---|
8914 | /*
|
---|
8915 | * Record that we're in VMX operation, block INIT, block and disable A20M.
|
---|
8916 | */
|
---|
8917 | pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
|
---|
8918 | IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
|
---|
8919 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
|
---|
8920 |
|
---|
8921 | /* Clear address-range monitoring. */
|
---|
8922 | EMMonitorWaitClear(pVCpu);
|
---|
8923 | /** @todo NSTVMX: Intel PT. */
|
---|
8924 |
|
---|
8925 | iemVmxVmSucceed(pVCpu);
|
---|
8926 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8927 | return VINF_SUCCESS;
|
---|
8928 | }
|
---|
8929 | else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8930 | {
|
---|
8931 | /* Nested-guest intercept. */
|
---|
8932 | if (pExitInfo)
|
---|
8933 | return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
|
---|
8934 | return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
|
---|
8935 | }
|
---|
8936 |
|
---|
8937 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
8938 |
|
---|
8939 | /* CPL. */
|
---|
8940 | if (pVCpu->iem.s.uCpl > 0)
|
---|
8941 | {
|
---|
8942 | Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8943 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
|
---|
8944 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8945 | }
|
---|
8946 |
|
---|
8947 | /* VMXON when already in VMX root mode. */
|
---|
8948 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
|
---|
8949 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
|
---|
8950 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8951 | return VINF_SUCCESS;
|
---|
8952 | }
|
---|
8953 |
|
---|
8954 |
|
---|
8955 | /**
|
---|
8956 | * Implements 'VMXOFF'.
|
---|
8957 | *
|
---|
8958 | * @remarks Common VMX instruction checks are already expected to by the caller,
|
---|
8959 | * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
|
---|
8960 | */
|
---|
8961 | IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
|
---|
8962 | {
|
---|
8963 | /* Nested-guest intercept. */
|
---|
8964 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
8965 | return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
|
---|
8966 |
|
---|
8967 | /* CPL. */
|
---|
8968 | if (pVCpu->iem.s.uCpl == 0)
|
---|
8969 | { /* likely */ }
|
---|
8970 | else
|
---|
8971 | {
|
---|
8972 | Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
|
---|
8973 | pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
|
---|
8974 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
8975 | }
|
---|
8976 |
|
---|
8977 | /* Dual monitor treatment of SMIs and SMM. */
|
---|
8978 | uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
|
---|
8979 | if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
|
---|
8980 | { /* likely */ }
|
---|
8981 | else
|
---|
8982 | {
|
---|
8983 | iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
|
---|
8984 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
8985 | return VINF_SUCCESS;
|
---|
8986 | }
|
---|
8987 |
|
---|
8988 | /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
|
---|
8989 | pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
|
---|
8990 | Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
|
---|
8991 |
|
---|
8992 | if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
|
---|
8993 | { /** @todo NSTVMX: Unblock SMI. */ }
|
---|
8994 |
|
---|
8995 | EMMonitorWaitClear(pVCpu);
|
---|
8996 | /** @todo NSTVMX: Unblock and enable A20M. */
|
---|
8997 |
|
---|
8998 | iemVmxVmSucceed(pVCpu);
|
---|
8999 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
9000 | return VINF_SUCCESS;
|
---|
9001 | }
|
---|
9002 |
|
---|
9003 |
|
---|
9004 | /**
|
---|
9005 | * Implements 'VMXON'.
|
---|
9006 | */
|
---|
9007 | IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
|
---|
9008 | {
|
---|
9009 | return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
|
---|
9010 | }
|
---|
9011 |
|
---|
9012 |
|
---|
9013 | /**
|
---|
9014 | * Implements 'VMLAUNCH'.
|
---|
9015 | */
|
---|
9016 | IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
|
---|
9017 | {
|
---|
9018 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
|
---|
9019 | }
|
---|
9020 |
|
---|
9021 |
|
---|
9022 | /**
|
---|
9023 | * Implements 'VMRESUME'.
|
---|
9024 | */
|
---|
9025 | IEM_CIMPL_DEF_0(iemCImpl_vmresume)
|
---|
9026 | {
|
---|
9027 | return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
|
---|
9028 | }
|
---|
9029 |
|
---|
9030 |
|
---|
9031 | /**
|
---|
9032 | * Implements 'VMPTRLD'.
|
---|
9033 | */
|
---|
9034 | IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
9035 | {
|
---|
9036 | return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
9037 | }
|
---|
9038 |
|
---|
9039 |
|
---|
9040 | /**
|
---|
9041 | * Implements 'VMPTRST'.
|
---|
9042 | */
|
---|
9043 | IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
9044 | {
|
---|
9045 | return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
9046 | }
|
---|
9047 |
|
---|
9048 |
|
---|
9049 | /**
|
---|
9050 | * Implements 'VMCLEAR'.
|
---|
9051 | */
|
---|
9052 | IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
|
---|
9053 | {
|
---|
9054 | return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
|
---|
9055 | }
|
---|
9056 |
|
---|
9057 |
|
---|
9058 | /**
|
---|
9059 | * Implements 'VMWRITE' register.
|
---|
9060 | */
|
---|
9061 | IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
|
---|
9062 | {
|
---|
9063 | return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
|
---|
9064 | }
|
---|
9065 |
|
---|
9066 |
|
---|
9067 | /**
|
---|
9068 | * Implements 'VMWRITE' memory.
|
---|
9069 | */
|
---|
9070 | IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
|
---|
9071 | {
|
---|
9072 | return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
|
---|
9073 | }
|
---|
9074 |
|
---|
9075 |
|
---|
9076 | /**
|
---|
9077 | * Implements 'VMREAD' register (64-bit).
|
---|
9078 | */
|
---|
9079 | IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
|
---|
9080 | {
|
---|
9081 | return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
|
---|
9082 | }
|
---|
9083 |
|
---|
9084 |
|
---|
9085 | /**
|
---|
9086 | * Implements 'VMREAD' register (32-bit).
|
---|
9087 | */
|
---|
9088 | IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField)
|
---|
9089 | {
|
---|
9090 | return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32VmcsField, NULL /* pExitInfo */);
|
---|
9091 | }
|
---|
9092 |
|
---|
9093 |
|
---|
9094 | /**
|
---|
9095 | * Implements 'VMREAD' memory, 64-bit register.
|
---|
9096 | */
|
---|
9097 | IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
|
---|
9098 | {
|
---|
9099 | return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
|
---|
9100 | }
|
---|
9101 |
|
---|
9102 |
|
---|
9103 | /**
|
---|
9104 | * Implements 'VMREAD' memory, 32-bit register.
|
---|
9105 | */
|
---|
9106 | IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
|
---|
9107 | {
|
---|
9108 | return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
|
---|
9109 | }
|
---|
9110 |
|
---|
9111 |
|
---|
9112 | /**
|
---|
9113 | * Implements 'INVVPID'.
|
---|
9114 | */
|
---|
9115 | IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
|
---|
9116 | {
|
---|
9117 | return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
|
---|
9118 | }
|
---|
9119 |
|
---|
9120 |
|
---|
9121 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
9122 | /**
|
---|
9123 | * Implements 'INVEPT'.
|
---|
9124 | */
|
---|
9125 | IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
|
---|
9126 | {
|
---|
9127 | return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
|
---|
9128 | }
|
---|
9129 | #endif
|
---|
9130 |
|
---|
9131 |
|
---|
9132 | /**
|
---|
9133 | * Implements VMX's implementation of PAUSE.
|
---|
9134 | */
|
---|
9135 | IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
|
---|
9136 | {
|
---|
9137 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
9138 | {
|
---|
9139 | VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
|
---|
9140 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
9141 | return rcStrict;
|
---|
9142 | }
|
---|
9143 |
|
---|
9144 | /*
|
---|
9145 | * Outside VMX non-root operation or if the PAUSE instruction does not cause
|
---|
9146 | * a VM-exit, the instruction operates normally.
|
---|
9147 | */
|
---|
9148 | iemRegAddToRipAndClearRF(pVCpu, cbInstr);
|
---|
9149 | return VINF_SUCCESS;
|
---|
9150 | }
|
---|
9151 |
|
---|
9152 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
9153 |
|
---|
9154 |
|
---|
9155 | /**
|
---|
9156 | * Implements 'VMCALL'.
|
---|
9157 | */
|
---|
9158 | IEM_CIMPL_DEF_0(iemCImpl_vmcall)
|
---|
9159 | {
|
---|
9160 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9161 | /* Nested-guest intercept. */
|
---|
9162 | if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
|
---|
9163 | return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
|
---|
9164 | #endif
|
---|
9165 |
|
---|
9166 | /* Join forces with vmmcall. */
|
---|
9167 | return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
|
---|
9168 | }
|
---|
9169 |
|
---|