VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp.h@ 94169

Last change on this file since 94169 was 94051, checked in by vboxsync, 3 years ago

VMM/IEM: Nested VMX: bugref:10092 Let the instruction specify the number of bytes it accesses in the VMX APIC-access page.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 370.4 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp.h 94051 2022-03-02 05:00:49Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Defined Constants And Macros *
21*********************************************************************************************************************************/
22#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
23/**
24 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
25 * relative offsets.
26 */
27# ifdef IEM_WITH_CODE_TLB
28# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { } while (0)
29# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { } while (0)
30# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
31# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { } while (0)
32# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
33# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { } while (0)
34# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
35# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { } while (0)
36# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
37# else /* !IEM_WITH_CODE_TLB */
38# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
39 do \
40 { \
41 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
42 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
43 } while (0)
44
45# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
46
47# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
48 do \
49 { \
50 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
51 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
52 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
53 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
54 } while (0)
55
56# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
57 do \
58 { \
59 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
60 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
61 } while (0)
62
63# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
64 do \
65 { \
66 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
67 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
68 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
69 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
70 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
71 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
72 } while (0)
73
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
75 do \
76 { \
77 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
78 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
79 } while (0)
80
81# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
82 do \
83 { \
84 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
86 } while (0)
87
88# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
89 do \
90 { \
91 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
92 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
93 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
94 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
95 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
96 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
97 } while (0)
98# endif /* !IEM_WITH_CODE_TLB */
99
100/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
101# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
102
103/** Whether a shadow VMCS is present for the given VCPU. */
104# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
105
106/** Gets the VMXON region pointer. */
107# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
108
109/** Gets the guest-physical address of the current VMCS for the given VCPU. */
110# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
111
112/** Whether a current VMCS is present for the given VCPU. */
113# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
114
115/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
116# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
117 do \
118 { \
119 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
120 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
121 } while (0)
122
123/** Clears any current VMCS for the given VCPU. */
124# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
125 do \
126 { \
127 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
128 } while (0)
129
130/** Check for VMX instructions requiring to be in VMX operation.
131 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
132# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
133 do \
134 { \
135 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
136 { /* likely */ } \
137 else \
138 { \
139 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
140 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
141 return iemRaiseUndefinedOpcode(a_pVCpu); \
142 } \
143 } while (0)
144
145/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
146# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
147 do \
148 { \
149 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
150 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
151 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
152 return VERR_VMX_VMENTRY_FAILED; \
153 } while (0)
154
155/** Marks a VM-exit failure with a diagnostic reason and logs. */
156# define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
157 do \
158 { \
159 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
160 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
161 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
162 } while (0)
163
164/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
165# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
166 do \
167 { \
168 IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
169 return VERR_VMX_VMEXIT_FAILED; \
170 } while (0)
171
172
173/*********************************************************************************************************************************
174* Global Variables *
175*********************************************************************************************************************************/
176/** @todo NSTVMX: The following VM-exit intercepts are pending:
177 * VMX_EXIT_IO_SMI
178 * VMX_EXIT_SMI
179 * VMX_EXIT_GETSEC
180 * VMX_EXIT_RSM
181 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
182 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
183 * VMX_EXIT_RDRAND
184 * VMX_EXIT_VMFUNC
185 * VMX_EXIT_ENCLS
186 * VMX_EXIT_RDSEED
187 * VMX_EXIT_PML_FULL
188 * VMX_EXIT_XSAVES
189 * VMX_EXIT_XRSTORS
190 */
191/**
192 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
193 *
194 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
195 * second dimension is the Index, see VMXVMCSFIELD.
196 */
197uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
198{
199 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
200 {
201 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
202 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
203 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
204 /* 3-10 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
205 /* 11-18 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
206 /* 19-26 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
207 /* 27 */ UINT16_MAX,
208 },
209 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
210 {
211 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
212 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
213 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
214 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
215 },
216 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
217 {
218 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
219 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
220 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
221 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
222 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
223 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
224 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
225 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
226 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
227 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
228 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
229 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
230 /* 26-27 */ UINT16_MAX, UINT16_MAX
231 },
232 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
233 {
234 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
235 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
236 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
237 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
238 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
239 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
240 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
241 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
242 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
243 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
244 },
245 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
246 {
247 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
248 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
249 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
250 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
251 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
252 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
253 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
254 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
255 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
256 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
257 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
258 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
259 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
260 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
261 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
262 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
263 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
264 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
265 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
266 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
267 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
268 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
269 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
270 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
271 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
272 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
273 /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
274 /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap)
275 },
276 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
277 {
278 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
279 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
280 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
281 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
282 /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
283 },
284 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
285 {
286 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
287 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
288 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
289 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
290 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
291 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
292 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
293 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
294 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
295 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
296 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
297 /* 11 */ UINT16_MAX,
298 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
299 /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
300 /* 21-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
301 },
302 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
303 {
304 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
305 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
306 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
307 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
308 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
309 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
310 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
311 },
312 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
313 {
314 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
315 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
316 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
317 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
318 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
319 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
320 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
321 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
322 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
323 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
324 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
325 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
326 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
327 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
328 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
329 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
330 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
331 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
332 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
333 /* 26-27 */ UINT16_MAX, UINT16_MAX
334 },
335 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
336 {
337 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
338 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
339 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
340 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
341 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
342 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
343 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
344 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
345 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
346 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
347 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
348 },
349 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
350 {
351 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
352 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
353 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
354 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
355 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
356 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
357 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
358 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
359 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
360 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
361 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
362 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
363 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
364 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
365 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
366 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
367 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
368 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
369 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
370 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
371 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
372 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
373 /* 22 */ UINT16_MAX,
374 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
375 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
376 },
377 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
378 {
379 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
380 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
381 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
382 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
383 /* 25-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
384 },
385 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
386 {
387 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
388 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
389 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
390 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
391 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
392 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
393 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
394 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
395 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
396 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
397 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
398 },
399 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
400 {
401 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
402 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
403 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
404 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
405 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
406 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
407 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
408 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
409 /* 22-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
410 },
411 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
412 {
413 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
414 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
415 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
416 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
417 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
418 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
419 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
420 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
421 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
422 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
423 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
424 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
425 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
426 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
427 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
428 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
429 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
430 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
431 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
432 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
433 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
434 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
435 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
436 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
437 },
438 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
439 {
440 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
441 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
442 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
443 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
444 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
445 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
446 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
447 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
448 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
449 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
450 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
451 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
452 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
453 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
454 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
455 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
456 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
457 }
458};
459
460
461/**
462 * Gets CR0 fixed-0 bits in VMX non-root mode.
463 *
464 * We do this rather than fetching what we report to the guest (in
465 * IA32_VMX_CR0_FIXED0 MSR) because real hardware (and so do we) report the same
466 * values regardless of whether unrestricted-guest feature is available on the CPU.
467 *
468 * @returns CR0 fixed-0 bits.
469 * @param pVCpu The cross context virtual CPU structure.
470 */
471DECLINLINE(uint64_t) iemVmxGetCr0Fixed0(PCVMCPUCC pVCpu)
472{
473 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
474 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
475
476 static uint64_t const s_auCr0Fixed0[2] = { VMX_V_CR0_FIXED0, VMX_V_CR0_FIXED0_UX };
477 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
478 uint8_t const fUnrestrictedGuest = !!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
479 uint64_t const uCr0Fixed0 = s_auCr0Fixed0[fUnrestrictedGuest];
480 Assert(!(uCr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
481 return uCr0Fixed0;
482}
483
484
485/**
486 * Gets a host selector from the VMCS.
487 *
488 * @param pVmcs Pointer to the virtual VMCS.
489 * @param iSelReg The index of the segment register (X86_SREG_XXX).
490 */
491DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
492{
493 Assert(iSegReg < X86_SREG_COUNT);
494 RTSEL HostSel;
495 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
496 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
497 uint8_t const uWidthType = (uWidth << 2) | uType;
498 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
499 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
500 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
501 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
502 uint8_t const *pbField = pbVmcs + offField;
503 HostSel = *(uint16_t *)pbField;
504 return HostSel;
505}
506
507
508/**
509 * Sets a guest segment register in the VMCS.
510 *
511 * @param pVmcs Pointer to the virtual VMCS.
512 * @param iSegReg The index of the segment register (X86_SREG_XXX).
513 * @param pSelReg Pointer to the segment register.
514 */
515IEM_STATIC void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg)
516{
517 Assert(pSelReg);
518 Assert(iSegReg < X86_SREG_COUNT);
519
520 /* Selector. */
521 {
522 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
523 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
524 uint8_t const uWidthType = (uWidth << 2) | uType;
525 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
526 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
527 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
528 uint8_t *pbVmcs = (uint8_t *)pVmcs;
529 uint8_t *pbField = pbVmcs + offField;
530 *(uint16_t *)pbField = pSelReg->Sel;
531 }
532
533 /* Limit. */
534 {
535 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
536 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
537 uint8_t const uWidthType = (uWidth << 2) | uType;
538 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
539 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
540 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
541 uint8_t *pbVmcs = (uint8_t *)pVmcs;
542 uint8_t *pbField = pbVmcs + offField;
543 *(uint32_t *)pbField = pSelReg->u32Limit;
544 }
545
546 /* Base. */
547 {
548 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
549 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
550 uint8_t const uWidthType = (uWidth << 2) | uType;
551 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
552 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
553 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
554 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
555 uint8_t const *pbField = pbVmcs + offField;
556 *(uint64_t *)pbField = pSelReg->u64Base;
557 }
558
559 /* Attributes. */
560 {
561 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
562 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
563 | X86DESCATTR_UNUSABLE;
564 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
565 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
566 uint8_t const uWidthType = (uWidth << 2) | uType;
567 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
568 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
569 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
570 uint8_t *pbVmcs = (uint8_t *)pVmcs;
571 uint8_t *pbField = pbVmcs + offField;
572 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
573 }
574}
575
576
577/**
578 * Gets a guest segment register from the VMCS.
579 *
580 * @returns VBox status code.
581 * @param pVmcs Pointer to the virtual VMCS.
582 * @param iSegReg The index of the segment register (X86_SREG_XXX).
583 * @param pSelReg Where to store the segment register (only updated when
584 * VINF_SUCCESS is returned).
585 *
586 * @remarks Warning! This does not validate the contents of the retrieved segment
587 * register.
588 */
589IEM_STATIC int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg)
590{
591 Assert(pSelReg);
592 Assert(iSegReg < X86_SREG_COUNT);
593
594 /* Selector. */
595 uint16_t u16Sel;
596 {
597 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
598 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
599 uint8_t const uWidthType = (uWidth << 2) | uType;
600 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
601 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
602 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
603 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
604 uint8_t const *pbField = pbVmcs + offField;
605 u16Sel = *(uint16_t *)pbField;
606 }
607
608 /* Limit. */
609 uint32_t u32Limit;
610 {
611 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
612 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
613 uint8_t const uWidthType = (uWidth << 2) | uType;
614 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
615 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
616 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
617 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
618 uint8_t const *pbField = pbVmcs + offField;
619 u32Limit = *(uint32_t *)pbField;
620 }
621
622 /* Base. */
623 uint64_t u64Base;
624 {
625 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
626 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
627 uint8_t const uWidthType = (uWidth << 2) | uType;
628 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
629 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
630 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
631 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
632 uint8_t const *pbField = pbVmcs + offField;
633 u64Base = *(uint64_t *)pbField;
634 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
635 }
636
637 /* Attributes. */
638 uint32_t u32Attr;
639 {
640 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
641 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
642 uint8_t const uWidthType = (uWidth << 2) | uType;
643 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
644 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
645 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
646 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
647 uint8_t const *pbField = pbVmcs + offField;
648 u32Attr = *(uint32_t *)pbField;
649 }
650
651 pSelReg->Sel = u16Sel;
652 pSelReg->ValidSel = u16Sel;
653 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
654 pSelReg->u32Limit = u32Limit;
655 pSelReg->u64Base = u64Base;
656 pSelReg->Attr.u = u32Attr;
657 return VINF_SUCCESS;
658}
659
660
661/**
662 * Converts an IEM exception event type to a VMX event type.
663 *
664 * @returns The VMX event type.
665 * @param uVector The interrupt / exception vector.
666 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
667 */
668DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
669{
670 /* Paranoia (callers may use these interchangeably). */
671 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
672 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
673 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
674 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
675 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
676 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
677 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
678 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
679 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
680 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
681 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
682 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
683
684 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
685 {
686 if (uVector == X86_XCPT_NMI)
687 return VMX_EXIT_INT_INFO_TYPE_NMI;
688 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
689 }
690
691 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
692 {
693 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
694 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
695 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
696 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
697 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
698 }
699
700 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
701 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
702}
703
704
705/**
706 * Determines whether the guest is using PAE paging given the VMCS.
707 *
708 * @returns @c true if PAE paging mode is used, @c false otherwise.
709 * @param pVmcs Pointer to the virtual VMCS.
710 */
711DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
712{
713 return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
714 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
715 && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
716}
717
718
719/**
720 * Sets the Exit qualification VMCS field.
721 *
722 * @param pVCpu The cross context virtual CPU structure.
723 * @param u64ExitQual The Exit qualification.
724 */
725DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
726{
727 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
728}
729
730
731/**
732 * Sets the VM-exit interruption information field.
733 *
734 * @param pVCpu The cross context virtual CPU structure.
735 * @param uExitIntInfo The VM-exit interruption information.
736 */
737DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
738{
739 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
740}
741
742
743/**
744 * Sets the VM-exit interruption error code.
745 *
746 * @param pVCpu The cross context virtual CPU structure.
747 * @param uErrCode The error code.
748 */
749DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
750{
751 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
752}
753
754
755/**
756 * Sets the IDT-vectoring information field.
757 *
758 * @param pVCpu The cross context virtual CPU structure.
759 * @param uIdtVectorInfo The IDT-vectoring information.
760 */
761DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
762{
763 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
764}
765
766
767/**
768 * Sets the IDT-vectoring error code field.
769 *
770 * @param pVCpu The cross context virtual CPU structure.
771 * @param uErrCode The error code.
772 */
773DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
774{
775 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
776}
777
778
779/**
780 * Sets the VM-exit guest-linear address VMCS field.
781 *
782 * @param pVCpu The cross context virtual CPU structure.
783 * @param uGuestLinearAddr The VM-exit guest-linear address.
784 */
785DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
786{
787 /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
788 Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
789 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
790}
791
792
793/**
794 * Sets the VM-exit guest-physical address VMCS field.
795 *
796 * @param pVCpu The cross context virtual CPU structure.
797 * @param uGuestPhysAddr The VM-exit guest-physical address.
798 */
799DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
800{
801 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
802}
803
804
805/**
806 * Sets the VM-exit instruction length VMCS field.
807 *
808 * @param pVCpu The cross context virtual CPU structure.
809 * @param cbInstr The VM-exit instruction length in bytes.
810 *
811 * @remarks Callers may clear this field to 0. Hence, this function does not check
812 * the validity of the instruction length.
813 */
814DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
815{
816 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
817}
818
819
820/**
821 * Sets the VM-exit instruction info. VMCS field.
822 *
823 * @param pVCpu The cross context virtual CPU structure.
824 * @param uExitInstrInfo The VM-exit instruction information.
825 */
826DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
827{
828 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
829}
830
831
832/**
833 * Sets the guest pending-debug exceptions field.
834 *
835 * @param pVCpu The cross context virtual CPU structure.
836 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
837 */
838DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
839{
840 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
841 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
842}
843
844
845/**
846 * Implements VMSucceed for VMX instruction success.
847 *
848 * @param pVCpu The cross context virtual CPU structure.
849 */
850DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
851{
852 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
853}
854
855
856/**
857 * Implements VMFailInvalid for VMX instruction failure.
858 *
859 * @param pVCpu The cross context virtual CPU structure.
860 */
861DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
862{
863 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
864}
865
866
867/**
868 * Implements VMFail for VMX instruction failure.
869 *
870 * @param pVCpu The cross context virtual CPU structure.
871 * @param enmInsErr The VM instruction error.
872 */
873DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
874{
875 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
876}
877
878
879/**
880 * Checks if the given auto-load/store MSR area count is valid for the
881 * implementation.
882 *
883 * @returns @c true if it's within the valid limit, @c false otherwise.
884 * @param pVCpu The cross context virtual CPU structure.
885 * @param uMsrCount The MSR area count to check.
886 */
887DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
888{
889 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
890 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
891 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
892 if (uMsrCount <= cMaxSupportedMsrs)
893 return true;
894 return false;
895}
896
897
898/**
899 * Flushes the current VMCS contents back to guest memory.
900 *
901 * @returns VBox status code.
902 * @param pVCpu The cross context virtual CPU structure.
903 */
904DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
905{
906 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
907 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
908 &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
909 return rc;
910}
911
912
913/**
914 * Populates the current VMCS contents from guest memory.
915 *
916 * @returns VBox status code.
917 * @param pVCpu The cross context virtual CPU structure.
918 */
919DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
920{
921 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
922 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
923 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
924 return rc;
925}
926
927
928/**
929 * Gets the instruction diagnostic for segment base checks during VM-entry of a
930 * nested-guest.
931 *
932 * @param iSegReg The segment index (X86_SREG_XXX).
933 */
934IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg)
935{
936 switch (iSegReg)
937 {
938 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
939 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
940 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
941 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
942 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
943 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
944 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
945 }
946}
947
948
949/**
950 * Gets the instruction diagnostic for segment base checks during VM-entry of a
951 * nested-guest that is in Virtual-8086 mode.
952 *
953 * @param iSegReg The segment index (X86_SREG_XXX).
954 */
955IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg)
956{
957 switch (iSegReg)
958 {
959 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
960 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
961 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
962 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
963 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
964 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
965 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
966 }
967}
968
969
970/**
971 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
972 * nested-guest that is in Virtual-8086 mode.
973 *
974 * @param iSegReg The segment index (X86_SREG_XXX).
975 */
976IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg)
977{
978 switch (iSegReg)
979 {
980 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
981 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
982 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
983 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
984 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
985 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
986 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
987 }
988}
989
990
991/**
992 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
993 * nested-guest that is in Virtual-8086 mode.
994 *
995 * @param iSegReg The segment index (X86_SREG_XXX).
996 */
997IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg)
998{
999 switch (iSegReg)
1000 {
1001 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
1002 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
1003 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
1004 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
1005 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
1006 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
1007 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
1008 }
1009}
1010
1011
1012/**
1013 * Gets the instruction diagnostic for segment attributes reserved bits failure
1014 * during VM-entry of a nested-guest.
1015 *
1016 * @param iSegReg The segment index (X86_SREG_XXX).
1017 */
1018IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg)
1019{
1020 switch (iSegReg)
1021 {
1022 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1023 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1024 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1025 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1026 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1027 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1028 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1029 }
1030}
1031
1032
1033/**
1034 * Gets the instruction diagnostic for segment attributes descriptor-type
1035 * (code/segment or system) failure during VM-entry of a nested-guest.
1036 *
1037 * @param iSegReg The segment index (X86_SREG_XXX).
1038 */
1039IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg)
1040{
1041 switch (iSegReg)
1042 {
1043 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1044 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1045 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1046 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1047 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1048 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1049 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1050 }
1051}
1052
1053
1054/**
1055 * Gets the instruction diagnostic for segment attributes descriptor-type
1056 * (code/segment or system) failure during VM-entry of a nested-guest.
1057 *
1058 * @param iSegReg The segment index (X86_SREG_XXX).
1059 */
1060IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg)
1061{
1062 switch (iSegReg)
1063 {
1064 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1065 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1066 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1067 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1068 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1069 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1070 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1071 }
1072}
1073
1074
1075/**
1076 * Gets the instruction diagnostic for segment attribute granularity failure during
1077 * VM-entry of a nested-guest.
1078 *
1079 * @param iSegReg The segment index (X86_SREG_XXX).
1080 */
1081IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg)
1082{
1083 switch (iSegReg)
1084 {
1085 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1086 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1087 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1088 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1089 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1090 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1091 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1092 }
1093}
1094
1095/**
1096 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1097 * VM-entry of a nested-guest.
1098 *
1099 * @param iSegReg The segment index (X86_SREG_XXX).
1100 */
1101IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg)
1102{
1103 switch (iSegReg)
1104 {
1105 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1106 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1107 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1108 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1109 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1110 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1111 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1112 }
1113}
1114
1115
1116/**
1117 * Gets the instruction diagnostic for segment attribute type accessed failure
1118 * during VM-entry of a nested-guest.
1119 *
1120 * @param iSegReg The segment index (X86_SREG_XXX).
1121 */
1122IEM_STATIC VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg)
1123{
1124 switch (iSegReg)
1125 {
1126 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1127 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1128 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1129 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1130 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1131 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1132 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1133 }
1134}
1135
1136
1137/**
1138 * Saves the guest control registers, debug registers and some MSRs are part of
1139 * VM-exit.
1140 *
1141 * @param pVCpu The cross context virtual CPU structure.
1142 */
1143IEM_STATIC void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu)
1144{
1145 /*
1146 * Saves the guest control registers, debug registers and some MSRs.
1147 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1148 */
1149 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1150
1151 /* Save control registers. */
1152 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1153 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1154 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1155
1156 /* Save SYSENTER CS, ESP, EIP. */
1157 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1158 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1159 {
1160 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1161 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1162 }
1163 else
1164 {
1165 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1166 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1167 }
1168
1169 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1170 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1171 {
1172 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1173 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1174 }
1175
1176 /* Save PAT MSR. */
1177 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1178 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1179
1180 /* Save EFER MSR. */
1181 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1182 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1183
1184 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1185 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1186
1187 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1188}
1189
1190
1191/**
1192 * Saves the guest force-flags in preparation of entering the nested-guest.
1193 *
1194 * @param pVCpu The cross context virtual CPU structure.
1195 */
1196IEM_STATIC void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu)
1197{
1198 /* We shouldn't be called multiple times during VM-entry. */
1199 Assert(pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions == 0);
1200
1201 /* MTF should not be set outside VMX non-root mode. */
1202 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1203
1204 /*
1205 * Preserve the required force-flags.
1206 *
1207 * We cache and clear force-flags that would affect the execution of the
1208 * nested-guest. Cached flags are then restored while returning to the guest
1209 * if necessary.
1210 *
1211 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1212 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1213 * instruction. Interrupt inhibition for any nested-guest instruction
1214 * is supplied by the guest-interruptibility state VMCS field and will
1215 * be set up as part of loading the guest state.
1216 *
1217 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1218 * successful VM-entry (due to invalid guest-state) need to continue
1219 * blocking NMIs if it was in effect before VM-entry.
1220 *
1221 * - MTF need not be preserved as it's used only in VMX non-root mode and
1222 * is supplied through the VM-execution controls.
1223 *
1224 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1225 * we will be able to generate interrupts that may cause VM-exits for
1226 * the nested-guest.
1227 */
1228 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
1229}
1230
1231
1232/**
1233 * Restores the guest force-flags in preparation of exiting the nested-guest.
1234 *
1235 * @param pVCpu The cross context virtual CPU structure.
1236 */
1237IEM_STATIC void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu)
1238{
1239 if (pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions)
1240 {
1241 VMCPU_FF_SET_MASK(pVCpu, pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions);
1242 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions = 0;
1243 }
1244}
1245
1246
1247/**
1248 * Performs the VMX transition to/from VMX non-root mode.
1249 *
1250 * @param pVCpu The cross context virtual CPU structure.
1251*/
1252IEM_STATIC int iemVmxTransition(PVMCPUCC pVCpu)
1253{
1254 /*
1255 * Inform PGM about paging mode changes.
1256 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1257 * see comment in iemMemPageTranslateAndCheckAccess().
1258 */
1259 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1260 true /* fForce */);
1261 AssertRCReturn(rc, rc);
1262
1263 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
1264 IEMTlbInvalidateAll(pVCpu, false /*fVmm*/);
1265
1266 /* Inform CPUM (recompiler), can later be removed. */
1267 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1268
1269 /* Re-initialize IEM cache/state after the drastic mode switch. */
1270 iemReInitExec(pVCpu);
1271 return rc;
1272}
1273
1274
1275/**
1276 * Calculates the current VMX-preemption timer value.
1277 *
1278 * @returns The current VMX-preemption timer value.
1279 * @param pVCpu The cross context virtual CPU structure.
1280 */
1281IEM_STATIC uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu)
1282{
1283 /*
1284 * Assume the following:
1285 * PreemptTimerShift = 5
1286 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1287 * EntryTick = 50000 (TSC at time of VM-entry)
1288 *
1289 * CurTick Delta PreemptTimerVal
1290 * ----------------------------------
1291 * 60000 10000 2
1292 * 80000 30000 1
1293 * 90000 40000 0 -> VM-exit.
1294 *
1295 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1296 * The saved VMX-preemption timer value is calculated as follows:
1297 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1298 * E.g.:
1299 * Delta = 10000
1300 * Tmp = 10000 / (2 * 10000) = 0.5
1301 * NewPt = 2 - 0.5 = 2
1302 * Delta = 30000
1303 * Tmp = 30000 / (2 * 10000) = 1.5
1304 * NewPt = 2 - 1.5 = 1
1305 * Delta = 40000
1306 * Tmp = 40000 / 20000 = 2
1307 * NewPt = 2 - 2 = 0
1308 */
1309 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1310 uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
1311 if (uVmcsPreemptVal > 0)
1312 {
1313 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1314 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1315 uint64_t const uDelta = uCurTick - uEntryTick;
1316 uint32_t const uPreemptTimer = uVmcsPreemptVal
1317 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1318 return uPreemptTimer;
1319 }
1320 return 0;
1321}
1322
1323
1324/**
1325 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1326 *
1327 * @param pVCpu The cross context virtual CPU structure.
1328 */
1329IEM_STATIC void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu)
1330{
1331 /*
1332 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1333 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1334 */
1335 /* CS, SS, ES, DS, FS, GS. */
1336 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1337 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1338 {
1339 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1340 if (!pSelReg->Attr.n.u1Unusable)
1341 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1342 else
1343 {
1344 /*
1345 * For unusable segments the attributes are undefined except for CS and SS.
1346 * For the rest we don't bother preserving anything but the unusable bit.
1347 */
1348 switch (iSegReg)
1349 {
1350 case X86_SREG_CS:
1351 pVmcs->GuestCs = pSelReg->Sel;
1352 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1353 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1354 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1355 | X86DESCATTR_UNUSABLE);
1356 break;
1357
1358 case X86_SREG_SS:
1359 pVmcs->GuestSs = pSelReg->Sel;
1360 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1361 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1362 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1363 break;
1364
1365 case X86_SREG_DS:
1366 pVmcs->GuestDs = pSelReg->Sel;
1367 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1368 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1369 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1370 break;
1371
1372 case X86_SREG_ES:
1373 pVmcs->GuestEs = pSelReg->Sel;
1374 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1375 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1376 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1377 break;
1378
1379 case X86_SREG_FS:
1380 pVmcs->GuestFs = pSelReg->Sel;
1381 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1382 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1383 break;
1384
1385 case X86_SREG_GS:
1386 pVmcs->GuestGs = pSelReg->Sel;
1387 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1388 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1389 break;
1390 }
1391 }
1392 }
1393
1394 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1395 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1396 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1397 | X86DESCATTR_UNUSABLE;
1398 /* LDTR. */
1399 {
1400 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1401 pVmcs->GuestLdtr = pSelReg->Sel;
1402 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1403 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1404 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1405 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1406 }
1407
1408 /* TR. */
1409 {
1410 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1411 pVmcs->GuestTr = pSelReg->Sel;
1412 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1413 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1414 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1415 }
1416
1417 /* GDTR. */
1418 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1419 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1420
1421 /* IDTR. */
1422 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1423 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1424}
1425
1426
1427/**
1428 * Saves guest non-register state as part of VM-exit.
1429 *
1430 * @param pVCpu The cross context virtual CPU structure.
1431 * @param uExitReason The VM-exit reason.
1432 */
1433IEM_STATIC void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason)
1434{
1435 /*
1436 * Save guest non-register state.
1437 * See Intel spec. 27.3.4 "Saving Non-Register State".
1438 */
1439 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1440
1441 /*
1442 * Activity state.
1443 * Most VM-exits will occur in the active state. However, if the first instruction
1444 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1445 * the VM-exit will be from the HLT activity state.
1446 *
1447 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1448 */
1449 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1450 * not? */
1451 EMSTATE const enmActivityState = EMGetState(pVCpu);
1452 switch (enmActivityState)
1453 {
1454 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1455 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1456 }
1457
1458 /*
1459 * Interruptibility-state.
1460 */
1461 /* NMI. */
1462 pVmcs->u32GuestIntrState = 0;
1463 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1464 {
1465 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1466 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1467 }
1468 else
1469 {
1470 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1471 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1472 }
1473
1474 /* Blocking-by-STI. */
1475 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1476 && pVCpu->cpum.GstCtx.rip == EMGetInhibitInterruptsPC(pVCpu))
1477 {
1478 /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
1479 * currently. */
1480 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1481 }
1482 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1483
1484 /*
1485 * Pending debug exceptions.
1486 *
1487 * For VM-exits where it is not applicable, we can safely zero out the field.
1488 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1489 */
1490 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1491 && uExitReason != VMX_EXIT_SMI
1492 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1493 && !VMXIsVmexitTrapLike(uExitReason))
1494 {
1495 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1496 * block-by-MovSS is in effect. */
1497 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1498 }
1499
1500 /*
1501 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1502 *
1503 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1504 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1505 */
1506 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1507 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1508 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1509
1510 /*
1511 * PAE PDPTEs.
1512 *
1513 * If EPT is enabled and PAE paging was used at the time of the VM-exit,
1514 * the PDPTEs are saved from the VMCS. Otherwise they're undefined but
1515 * we zero them for consistency.
1516 */
1517 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
1518 {
1519 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
1520 && (pVCpu->cpum.GstCtx.cr4 & X86_CR4_PAE)
1521 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PG))
1522 {
1523 pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
1524 pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
1525 pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
1526 pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
1527 }
1528 else
1529 {
1530 pVmcs->u64GuestPdpte0.u = 0;
1531 pVmcs->u64GuestPdpte1.u = 0;
1532 pVmcs->u64GuestPdpte2.u = 0;
1533 pVmcs->u64GuestPdpte3.u = 0;
1534 }
1535
1536 /* Clear PGM's copy of the EPT pointer for added safety. */
1537 PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
1538 }
1539 else
1540 {
1541 pVmcs->u64GuestPdpte0.u = 0;
1542 pVmcs->u64GuestPdpte1.u = 0;
1543 pVmcs->u64GuestPdpte2.u = 0;
1544 pVmcs->u64GuestPdpte3.u = 0;
1545 }
1546}
1547
1548
1549/**
1550 * Saves the guest-state as part of VM-exit.
1551 *
1552 * @returns VBox status code.
1553 * @param pVCpu The cross context virtual CPU structure.
1554 * @param uExitReason The VM-exit reason.
1555 */
1556IEM_STATIC void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason)
1557{
1558 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1559 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1560
1561 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1562 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1563 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1564
1565 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1566}
1567
1568
1569/**
1570 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1571 *
1572 * @returns VBox status code.
1573 * @param pVCpu The cross context virtual CPU structure.
1574 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1575 */
1576IEM_STATIC int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
1577{
1578 /*
1579 * Save guest MSRs.
1580 * See Intel spec. 27.4 "Saving MSRs".
1581 */
1582 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1583 const char * const pszFailure = "VMX-abort";
1584
1585 /*
1586 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1587 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1588 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1589 */
1590 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
1591 if (!cMsrs)
1592 return VINF_SUCCESS;
1593
1594 /*
1595 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1596 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1597 * implementation causes a VMX-abort followed by a triple-fault.
1598 */
1599 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1600 if (fIsMsrCountValid)
1601 { /* likely */ }
1602 else
1603 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1604
1605 /*
1606 * Optimization if the nested hypervisor is using the same guest-physical page for both
1607 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1608 */
1609 PVMXAUTOMSR pMsrArea;
1610 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1611 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1612 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1613 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
1614 else
1615 {
1616 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
1617 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1618 if (RT_SUCCESS(rc))
1619 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
1620 else
1621 {
1622 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1623 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1624 }
1625 }
1626
1627 /*
1628 * Update VM-exit MSR store area.
1629 */
1630 PVMXAUTOMSR pMsr = pMsrArea;
1631 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1632 {
1633 if ( !pMsr->u32Reserved
1634 && pMsr->u32Msr != MSR_IA32_SMBASE
1635 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1636 {
1637 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1638 if (rcStrict == VINF_SUCCESS)
1639 continue;
1640
1641 /*
1642 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1643 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1644 * recording the MSR index in the auxiliary info. field and indicated further by our
1645 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1646 * if possible, or come up with a better, generic solution.
1647 */
1648 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1649 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1650 ? kVmxVDiag_Vmexit_MsrStoreRing3
1651 : kVmxVDiag_Vmexit_MsrStore;
1652 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1653 }
1654 else
1655 {
1656 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1657 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1658 }
1659 }
1660
1661 /*
1662 * Commit the VM-exit MSR store are to guest memory.
1663 */
1664 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1665 if (RT_SUCCESS(rc))
1666 return VINF_SUCCESS;
1667
1668 NOREF(uExitReason);
1669 NOREF(pszFailure);
1670
1671 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1672 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1673}
1674
1675
1676/**
1677 * Performs a VMX abort (due to an fatal error during VM-exit).
1678 *
1679 * @returns Strict VBox status code.
1680 * @param pVCpu The cross context virtual CPU structure.
1681 * @param enmAbort The VMX abort reason.
1682 */
1683IEM_STATIC VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort)
1684{
1685 /*
1686 * Perform the VMX abort.
1687 * See Intel spec. 27.7 "VMX Aborts".
1688 */
1689 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1690
1691 /* We don't support SMX yet. */
1692 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1693 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1694 {
1695 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1696 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1697 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1698 }
1699
1700 return VINF_EM_TRIPLE_FAULT;
1701}
1702
1703
1704/**
1705 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1706 *
1707 * @param pVCpu The cross context virtual CPU structure.
1708 */
1709IEM_STATIC void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu)
1710{
1711 /*
1712 * Load host control registers, debug registers and MSRs.
1713 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1714 */
1715 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1716 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1717
1718 /* CR0. */
1719 {
1720 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1721 uint64_t const uCr0Mb1 = iemVmxGetCr0Fixed0(pVCpu);
1722 uint64_t const uCr0Mb0 = VMX_V_CR0_FIXED1;
1723 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK | uCr0Mb1 | ~uCr0Mb0;
1724 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1725 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1726 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1727
1728 /* Verify we have not modified CR0 fixed bits in VMX non-root operation. */
1729 Assert((uGuestCr0 & uCr0Mb1) == uCr0Mb1);
1730 Assert((uGuestCr0 & ~uCr0Mb0) == 0);
1731 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1732 }
1733
1734 /* CR4. */
1735 {
1736 /* CR4 fixed bits are not modified. */
1737 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1738 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1739 uint64_t const fCr4IgnMask = uCr4Mb1 | ~uCr4Mb0;
1740 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1741 uint64_t const uGuestCr4 = pVCpu->cpum.GstCtx.cr4;
1742 uint64_t uValidHostCr4 = (uHostCr4 & ~fCr4IgnMask) | (uGuestCr4 & fCr4IgnMask);
1743 if (fHostInLongMode)
1744 uValidHostCr4 |= X86_CR4_PAE;
1745 else
1746 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1747
1748 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1749 Assert((uGuestCr4 & uCr4Mb1) == uCr4Mb1);
1750 Assert((uGuestCr4 & ~uCr4Mb0) == 0);
1751 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1752 }
1753
1754 /* CR3 (host value validated while checking host-state during VM-entry). */
1755 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1756
1757 /* DR7. */
1758 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1759
1760 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1761
1762 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1763 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1764 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1765 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1766
1767 /* FS, GS bases are loaded later while we load host segment registers. */
1768
1769 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1770 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1771 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1772 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1773 {
1774 if (fHostInLongMode)
1775 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1776 else
1777 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1778 }
1779
1780 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1781
1782 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1783 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1784 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1785
1786 /* We don't support IA32_BNDCFGS MSR yet. */
1787}
1788
1789
1790/**
1791 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1792 *
1793 * @param pVCpu The cross context virtual CPU structure.
1794 */
1795IEM_STATIC void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu)
1796{
1797 /*
1798 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1799 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1800 *
1801 * Warning! Be careful to not touch fields that are reserved by VT-x,
1802 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1803 */
1804 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1805 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1806
1807 /* CS, SS, ES, DS, FS, GS. */
1808 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1809 {
1810 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1811 bool const fUnusable = RT_BOOL(HostSel == 0);
1812 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1813
1814 /* Selector. */
1815 pSelReg->Sel = HostSel;
1816 pSelReg->ValidSel = HostSel;
1817 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1818
1819 /* Limit. */
1820 pSelReg->u32Limit = 0xffffffff;
1821
1822 /* Base. */
1823 pSelReg->u64Base = 0;
1824
1825 /* Attributes. */
1826 if (iSegReg == X86_SREG_CS)
1827 {
1828 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1829 pSelReg->Attr.n.u1DescType = 1;
1830 pSelReg->Attr.n.u2Dpl = 0;
1831 pSelReg->Attr.n.u1Present = 1;
1832 pSelReg->Attr.n.u1Long = fHostInLongMode;
1833 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1834 pSelReg->Attr.n.u1Granularity = 1;
1835 Assert(!pSelReg->Attr.n.u1Unusable);
1836 Assert(!fUnusable);
1837 }
1838 else
1839 {
1840 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1841 pSelReg->Attr.n.u1DescType = 1;
1842 pSelReg->Attr.n.u2Dpl = 0;
1843 pSelReg->Attr.n.u1Present = 1;
1844 pSelReg->Attr.n.u1DefBig = 1;
1845 pSelReg->Attr.n.u1Granularity = 1;
1846 pSelReg->Attr.n.u1Unusable = fUnusable;
1847 }
1848 }
1849
1850 /* FS base. */
1851 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1852 || fHostInLongMode)
1853 {
1854 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1855 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1856 }
1857
1858 /* GS base. */
1859 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1860 || fHostInLongMode)
1861 {
1862 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1863 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1864 }
1865
1866 /* TR. */
1867 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1868 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1869 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1870 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1871 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1872 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1873 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1874 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1875 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1876 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1877 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1878 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1879 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1880
1881 /* LDTR (Warning! do not touch the base and limits here). */
1882 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1883 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1884 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1885 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1886
1887 /* GDTR. */
1888 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1889 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1890 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1891
1892 /* IDTR.*/
1893 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1894 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1895 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1896}
1897
1898
1899/**
1900 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1901 *
1902 * @returns VBox status code.
1903 * @param pVCpu The cross context virtual CPU structure.
1904 * @param uExitReason The VMX instruction name (for logging purposes).
1905 */
1906IEM_STATIC int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason)
1907{
1908 /*
1909 * Load host MSRs.
1910 * See Intel spec. 27.6 "Loading MSRs".
1911 */
1912 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1913 const char * const pszFailure = "VMX-abort";
1914
1915 /*
1916 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1917 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1918 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1919 */
1920 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
1921 if (!cMsrs)
1922 return VINF_SUCCESS;
1923
1924 /*
1925 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1926 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1927 * implementation causes a VMX-abort followed by a triple-fault.
1928 */
1929 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1930 if (fIsMsrCountValid)
1931 { /* likely */ }
1932 else
1933 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1934
1935 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1936 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
1937 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1938 if (RT_SUCCESS(rc))
1939 {
1940 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
1941 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1942 {
1943 if ( !pMsr->u32Reserved
1944 && pMsr->u32Msr != MSR_K8_FS_BASE
1945 && pMsr->u32Msr != MSR_K8_GS_BASE
1946 && pMsr->u32Msr != MSR_K6_EFER
1947 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1948 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1949 {
1950 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
1951 if (rcStrict == VINF_SUCCESS)
1952 continue;
1953
1954 /*
1955 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1956 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1957 * recording the MSR index in the auxiliary info. field and indicated further by our
1958 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1959 * if possible, or come up with a better, generic solution.
1960 */
1961 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1962 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
1963 ? kVmxVDiag_Vmexit_MsrLoadRing3
1964 : kVmxVDiag_Vmexit_MsrLoad;
1965 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1966 }
1967 else
1968 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
1969 }
1970 }
1971 else
1972 {
1973 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
1974 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
1975 }
1976
1977 NOREF(uExitReason);
1978 NOREF(pszFailure);
1979 return VINF_SUCCESS;
1980}
1981
1982
1983/**
1984 * Loads the host state as part of VM-exit.
1985 *
1986 * @returns Strict VBox status code.
1987 * @param pVCpu The cross context virtual CPU structure.
1988 * @param uExitReason The VM-exit reason (for logging purposes).
1989 */
1990IEM_STATIC VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason)
1991{
1992 /*
1993 * Load host state.
1994 * See Intel spec. 27.5 "Loading Host State".
1995 */
1996 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1997 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1998
1999 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2000 if ( CPUMIsGuestInLongMode(pVCpu)
2001 && !fHostInLongMode)
2002 {
2003 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2004 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2005 }
2006
2007 /*
2008 * Check host PAE PDPTEs prior to loading the host state.
2009 * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
2010 */
2011 if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
2012 && !fHostInLongMode
2013 && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
2014 || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
2015 {
2016 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
2017 if (RT_SUCCESS(rc))
2018 { /* likely*/ }
2019 else
2020 {
2021 IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
2022 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2023 }
2024 }
2025
2026 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2027 iemVmxVmexitLoadHostSegRegs(pVCpu);
2028
2029 /*
2030 * Load host RIP, RSP and RFLAGS.
2031 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2032 */
2033 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2034 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2035 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2036
2037 /* Clear address range monitoring. */
2038 EMMonitorWaitClear(pVCpu);
2039
2040 /* Perform the VMX transition (PGM updates). */
2041 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
2042 if (rcStrict == VINF_SUCCESS)
2043 { /* likely */ }
2044 else if (RT_SUCCESS(rcStrict))
2045 {
2046 Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2047 uExitReason));
2048 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2049 }
2050 else
2051 {
2052 Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2053 return VBOXSTRICTRC_VAL(rcStrict);
2054 }
2055
2056 Assert(rcStrict == VINF_SUCCESS);
2057
2058 /* Load MSRs from the VM-exit auto-load MSR area. */
2059 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2060 if (RT_FAILURE(rc))
2061 {
2062 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2063 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2064 }
2065 return VINF_SUCCESS;
2066}
2067
2068
2069/**
2070 * Gets VM-exit instruction information along with any displacement for an
2071 * instruction VM-exit.
2072 *
2073 * @returns The VM-exit instruction information.
2074 * @param pVCpu The cross context virtual CPU structure.
2075 * @param uExitReason The VM-exit reason.
2076 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2077 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2078 * NULL.
2079 */
2080IEM_STATIC uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp)
2081{
2082 RTGCPTR GCPtrDisp;
2083 VMXEXITINSTRINFO ExitInstrInfo;
2084 ExitInstrInfo.u = 0;
2085
2086 /*
2087 * Get and parse the ModR/M byte from our decoded opcodes.
2088 */
2089 uint8_t bRm;
2090 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2091 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2092 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2093 {
2094 /*
2095 * ModR/M indicates register addressing.
2096 *
2097 * The primary/secondary register operands are reported in the iReg1 or iReg2
2098 * fields depending on whether it is a read/write form.
2099 */
2100 uint8_t idxReg1;
2101 uint8_t idxReg2;
2102 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2103 {
2104 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2105 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2106 }
2107 else
2108 {
2109 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2110 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2111 }
2112 ExitInstrInfo.All.u2Scaling = 0;
2113 ExitInstrInfo.All.iReg1 = idxReg1;
2114 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2115 ExitInstrInfo.All.fIsRegOperand = 1;
2116 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2117 ExitInstrInfo.All.iSegReg = 0;
2118 ExitInstrInfo.All.iIdxReg = 0;
2119 ExitInstrInfo.All.fIdxRegInvalid = 1;
2120 ExitInstrInfo.All.iBaseReg = 0;
2121 ExitInstrInfo.All.fBaseRegInvalid = 1;
2122 ExitInstrInfo.All.iReg2 = idxReg2;
2123
2124 /* Displacement not applicable for register addressing. */
2125 GCPtrDisp = 0;
2126 }
2127 else
2128 {
2129 /*
2130 * ModR/M indicates memory addressing.
2131 */
2132 uint8_t uScale = 0;
2133 bool fBaseRegValid = false;
2134 bool fIdxRegValid = false;
2135 uint8_t iBaseReg = 0;
2136 uint8_t iIdxReg = 0;
2137 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2138 {
2139 /*
2140 * Parse the ModR/M, displacement for 16-bit addressing mode.
2141 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2142 */
2143 uint16_t u16Disp = 0;
2144 uint8_t const offDisp = offModRm + sizeof(bRm);
2145 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2146 {
2147 /* Displacement without any registers. */
2148 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2149 }
2150 else
2151 {
2152 /* Register (index and base). */
2153 switch (bRm & X86_MODRM_RM_MASK)
2154 {
2155 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2156 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2157 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2158 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2159 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2160 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2161 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2162 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2163 }
2164
2165 /* Register + displacement. */
2166 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2167 {
2168 case 0: break;
2169 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2170 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2171 default:
2172 {
2173 /* Register addressing, handled at the beginning. */
2174 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2175 break;
2176 }
2177 }
2178 }
2179
2180 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2181 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2182 }
2183 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2184 {
2185 /*
2186 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2187 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2188 */
2189 uint32_t u32Disp = 0;
2190 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2191 {
2192 /* Displacement without any registers. */
2193 uint8_t const offDisp = offModRm + sizeof(bRm);
2194 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2195 }
2196 else
2197 {
2198 /* Register (and perhaps scale, index and base). */
2199 uint8_t offDisp = offModRm + sizeof(bRm);
2200 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2201 if (iBaseReg == 4)
2202 {
2203 /* An SIB byte follows the ModR/M byte, parse it. */
2204 uint8_t bSib;
2205 uint8_t const offSib = offModRm + sizeof(bRm);
2206 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2207
2208 /* A displacement may follow SIB, update its offset. */
2209 offDisp += sizeof(bSib);
2210
2211 /* Get the scale. */
2212 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2213
2214 /* Get the index register. */
2215 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2216 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2217
2218 /* Get the base register. */
2219 iBaseReg = bSib & X86_SIB_BASE_MASK;
2220 fBaseRegValid = true;
2221 if (iBaseReg == 5)
2222 {
2223 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2224 {
2225 /* Mod is 0 implies a 32-bit displacement with no base. */
2226 fBaseRegValid = false;
2227 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2228 }
2229 else
2230 {
2231 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2232 iBaseReg = X86_GREG_xBP;
2233 }
2234 }
2235 }
2236
2237 /* Register + displacement. */
2238 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2239 {
2240 case 0: /* Handled above */ break;
2241 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2242 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2243 default:
2244 {
2245 /* Register addressing, handled at the beginning. */
2246 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2247 break;
2248 }
2249 }
2250 }
2251
2252 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2253 }
2254 else
2255 {
2256 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2257
2258 /*
2259 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2260 * See Intel instruction spec. 2.2 "IA-32e Mode".
2261 */
2262 uint64_t u64Disp = 0;
2263 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2264 if (fRipRelativeAddr)
2265 {
2266 /*
2267 * RIP-relative addressing mode.
2268 *
2269 * The displacement is 32-bit signed implying an offset range of +/-2G.
2270 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2271 */
2272 uint8_t const offDisp = offModRm + sizeof(bRm);
2273 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2274 }
2275 else
2276 {
2277 uint8_t offDisp = offModRm + sizeof(bRm);
2278
2279 /*
2280 * Register (and perhaps scale, index and base).
2281 *
2282 * REX.B extends the most-significant bit of the base register. However, REX.B
2283 * is ignored while determining whether an SIB follows the opcode. Hence, we
2284 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2285 *
2286 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2287 */
2288 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2289 if (iBaseReg == 4)
2290 {
2291 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2292 uint8_t bSib;
2293 uint8_t const offSib = offModRm + sizeof(bRm);
2294 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2295
2296 /* Displacement may follow SIB, update its offset. */
2297 offDisp += sizeof(bSib);
2298
2299 /* Get the scale. */
2300 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2301
2302 /* Get the index. */
2303 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2304 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2305
2306 /* Get the base. */
2307 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2308 fBaseRegValid = true;
2309 if (iBaseReg == 5)
2310 {
2311 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2312 {
2313 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2314 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2315 }
2316 else
2317 {
2318 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2319 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2320 }
2321 }
2322 }
2323 iBaseReg |= pVCpu->iem.s.uRexB;
2324
2325 /* Register + displacement. */
2326 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2327 {
2328 case 0: /* Handled above */ break;
2329 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2330 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2331 default:
2332 {
2333 /* Register addressing, handled at the beginning. */
2334 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2335 break;
2336 }
2337 }
2338 }
2339
2340 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2341 }
2342
2343 /*
2344 * The primary or secondary register operand is reported in iReg2 depending
2345 * on whether the primary operand is in read/write form.
2346 */
2347 uint8_t idxReg2;
2348 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2349 {
2350 idxReg2 = bRm & X86_MODRM_RM_MASK;
2351 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2352 idxReg2 |= pVCpu->iem.s.uRexB;
2353 }
2354 else
2355 {
2356 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2357 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2358 idxReg2 |= pVCpu->iem.s.uRexReg;
2359 }
2360 ExitInstrInfo.All.u2Scaling = uScale;
2361 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2362 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2363 ExitInstrInfo.All.fIsRegOperand = 0;
2364 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2365 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2366 ExitInstrInfo.All.iIdxReg = iIdxReg;
2367 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2368 ExitInstrInfo.All.iBaseReg = iBaseReg;
2369 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2370 ExitInstrInfo.All.iReg2 = idxReg2;
2371 }
2372
2373 /*
2374 * Handle exceptions to the norm for certain instructions.
2375 * (e.g. some instructions convey an instruction identity in place of iReg2).
2376 */
2377 switch (uExitReason)
2378 {
2379 case VMX_EXIT_GDTR_IDTR_ACCESS:
2380 {
2381 Assert(VMXINSTRID_IS_VALID(uInstrId));
2382 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2383 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2384 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2385 break;
2386 }
2387
2388 case VMX_EXIT_LDTR_TR_ACCESS:
2389 {
2390 Assert(VMXINSTRID_IS_VALID(uInstrId));
2391 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2392 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2393 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2394 break;
2395 }
2396
2397 case VMX_EXIT_RDRAND:
2398 case VMX_EXIT_RDSEED:
2399 {
2400 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2401 break;
2402 }
2403 }
2404
2405 /* Update displacement and return the constructed VM-exit instruction information field. */
2406 if (pGCPtrDisp)
2407 *pGCPtrDisp = GCPtrDisp;
2408
2409 return ExitInstrInfo.u;
2410}
2411
2412
2413/**
2414 * VMX VM-exit handler.
2415 *
2416 * @returns Strict VBox status code.
2417 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2418 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2419 * triple-fault.
2420 *
2421 * @param pVCpu The cross context virtual CPU structure.
2422 * @param uExitReason The VM-exit reason.
2423 * @param u64ExitQual The Exit qualification.
2424 *
2425 * @remarks We need not necessarily have completed VM-entry before a VM-exit is
2426 * called. Failures during VM-entry can cause VM-exits as well, so we
2427 * -cannot- assert we're in VMX non-root mode here.
2428 */
2429IEM_STATIC VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2430{
2431# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2432 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2433 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2434 return VERR_IEM_IPE_7;
2435# else
2436 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2437
2438 /*
2439 * Import all the guest-CPU state.
2440 *
2441 * HM on returning to guest execution would have to reset up a whole lot of state
2442 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2443 * the state and flag reloading the entire state on re-entry. So import the entire
2444 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2445 */
2446 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2447
2448 /*
2449 * Ensure VM-entry interruption information valid bit is cleared.
2450 *
2451 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2452 * by invalid-guest state or machine-check exceptions) also clear this bit.
2453 *
2454 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2455 */
2456 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2457 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2458
2459 /*
2460 * Update the VM-exit reason and Exit qualification.
2461 * Other VMCS read-only data fields are expected to be updated by the caller already.
2462 */
2463 pVmcs->u32RoExitReason = uExitReason;
2464 pVmcs->u64RoExitQual.u = u64ExitQual;
2465
2466 LogFlow(("vmexit: reason=%#RX32 qual=%#RX64 cs:rip=%04x:%#RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", uExitReason,
2467 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2468 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4));
2469
2470 /*
2471 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2472 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2473 */
2474 {
2475 uint8_t uVector;
2476 uint32_t fFlags;
2477 uint32_t uErrCode;
2478 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2479 if (fInEventDelivery)
2480 {
2481 /*
2482 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2483 * caused by a triple-fault or the original event results in a double-fault that
2484 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2485 * original event information into the IDT-vectoring information fields.
2486 *
2487 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2488 */
2489 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2490 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2491 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2492 {
2493 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2494 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2495 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2496 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2497 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2498 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2499 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2500 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2501 LogFlow(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2502 pVCpu->cpum.GstCtx.cr2));
2503 }
2504 }
2505 }
2506
2507 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2508 Assert(pVmcs->u64RoIoRcx.u == 0);
2509 Assert(pVmcs->u64RoIoRsi.u == 0);
2510 Assert(pVmcs->u64RoIoRdi.u == 0);
2511 Assert(pVmcs->u64RoIoRip.u == 0);
2512
2513 /*
2514 * Save the guest state back into the VMCS.
2515 * We only need to save the state when the VM-entry was successful.
2516 */
2517 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2518 if (!fVmentryFailed)
2519 {
2520 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2521 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2522 {
2523 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2524 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2525 }
2526
2527 /* For exception or NMI VM-exits the VM-exit interruption info. field must be valid. */
2528 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2529
2530 /*
2531 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2532 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2533 *
2534 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2535 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2536 * as guest-CPU state would not been modified. Hence for now, we do this only when
2537 * the VM-entry succeeded.
2538 */
2539 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2540 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2541 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2542 {
2543 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2544 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2545 else
2546 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2547 }
2548
2549 /*
2550 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2551 * occurs in enclave mode/SMM which we don't support yet.
2552 *
2553 * If we ever add support for it, we can pass just the lower bits to the functions
2554 * below, till then an assert should suffice.
2555 */
2556 Assert(!RT_HI_U16(uExitReason));
2557
2558 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2559 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2560 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2561 if (RT_SUCCESS(rc))
2562 { /* likely */ }
2563 else
2564 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2565
2566 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2567 pVCpu->cpum.GstCtx.hwvirt.fLocalForcedActions &= ~VMCPU_FF_BLOCK_NMIS;
2568 }
2569 else
2570 {
2571 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2572 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2573 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2574 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2575 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2576 }
2577
2578 /*
2579 * Stop any running VMX-preemption timer if necessary.
2580 */
2581 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2582 CPUMStopGuestVmxPremptTimer(pVCpu);
2583
2584 /*
2585 * Clear any pending VMX nested-guest force-flags.
2586 * These force-flags have no effect on (outer) guest execution and will
2587 * be re-evaluated and setup on the next nested-guest VM-entry.
2588 */
2589 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2590
2591 /*
2592 * We're no longer in nested-guest execution mode.
2593 *
2594 * It is important to do this prior to loading the host state because
2595 * PGM looks at fInVmxNonRootMode to determine if it needs to perform
2596 * second-level address translation while switching to host CR3.
2597 */
2598 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2599
2600 /* Restore the host (outer guest) state. */
2601 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2602 if (RT_SUCCESS(rcStrict))
2603 {
2604 Assert(rcStrict == VINF_SUCCESS);
2605 rcStrict = VINF_VMX_VMEXIT;
2606 }
2607 else
2608 Log3(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2609
2610 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
2611 {
2612 /* Notify HM that the current VMCS fields have been modified. */
2613 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2614
2615 /* Notify HM that we've completed the VM-exit. */
2616 HMNotifyVmxNstGstVmexit(pVCpu);
2617 }
2618
2619# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2620 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2621 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2622 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2623 if (rcSched != VINF_SUCCESS)
2624 iemSetPassUpStatus(pVCpu, rcSched);
2625# endif
2626 return rcStrict;
2627# endif
2628}
2629
2630
2631/**
2632 * VMX VM-exit handler for VM-exits due to instruction execution.
2633 *
2634 * This is intended for instructions where the caller provides all the relevant
2635 * VM-exit information.
2636 *
2637 * @returns Strict VBox status code.
2638 * @param pVCpu The cross context virtual CPU structure.
2639 * @param pExitInfo Pointer to the VM-exit information.
2640 */
2641IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2642{
2643 /*
2644 * For instructions where any of the following fields are not applicable:
2645 * - Exit qualification must be cleared.
2646 * - VM-exit instruction info. is undefined.
2647 * - Guest-linear address is undefined.
2648 * - Guest-physical address is undefined.
2649 *
2650 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2651 * instruction execution. For VM-exits that are not due to instruction execution this
2652 * field is undefined.
2653 *
2654 * In our implementation in IEM, all undefined fields are generally cleared. However,
2655 * if the caller supplies information (from say the physical CPU directly) it is
2656 * then possible that the undefined fields are not cleared.
2657 *
2658 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2659 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2660 */
2661 Assert(pExitInfo);
2662 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2663 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2664 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2665
2666 /* Update all the relevant fields from the VM-exit instruction information struct. */
2667 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2668 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2669 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2670 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2671
2672 /* Perform the VM-exit. */
2673 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2674}
2675
2676
2677/**
2678 * VMX VM-exit handler for VM-exits due to instruction execution.
2679 *
2680 * This is intended for instructions that only provide the VM-exit instruction
2681 * length.
2682 *
2683 * @param pVCpu The cross context virtual CPU structure.
2684 * @param uExitReason The VM-exit reason.
2685 * @param cbInstr The instruction length in bytes.
2686 */
2687IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2688{
2689 VMXVEXITINFO ExitInfo;
2690 RT_ZERO(ExitInfo);
2691 ExitInfo.uReason = uExitReason;
2692 ExitInfo.cbInstr = cbInstr;
2693
2694#ifdef VBOX_STRICT
2695 /*
2696 * To prevent us from shooting ourselves in the foot.
2697 * The follow instructions should convey more than just the instruction length.
2698 */
2699 switch (uExitReason)
2700 {
2701 case VMX_EXIT_INVEPT:
2702 case VMX_EXIT_INVPCID:
2703 case VMX_EXIT_INVVPID:
2704 case VMX_EXIT_LDTR_TR_ACCESS:
2705 case VMX_EXIT_GDTR_IDTR_ACCESS:
2706 case VMX_EXIT_VMCLEAR:
2707 case VMX_EXIT_VMPTRLD:
2708 case VMX_EXIT_VMPTRST:
2709 case VMX_EXIT_VMREAD:
2710 case VMX_EXIT_VMWRITE:
2711 case VMX_EXIT_VMXON:
2712 case VMX_EXIT_XRSTORS:
2713 case VMX_EXIT_XSAVES:
2714 case VMX_EXIT_RDRAND:
2715 case VMX_EXIT_RDSEED:
2716 case VMX_EXIT_IO_INSTR:
2717 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2718 break;
2719 }
2720#endif
2721
2722 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2723}
2724
2725
2726/**
2727 * VMX VM-exit handler for VM-exits due to instruction execution.
2728 *
2729 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2730 * instruction information and Exit qualification fields.
2731 *
2732 * @param pVCpu The cross context virtual CPU structure.
2733 * @param uExitReason The VM-exit reason.
2734 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2735 * @param cbInstr The instruction length in bytes.
2736 *
2737 * @remarks Do not use this for INS/OUTS instruction.
2738 */
2739IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr)
2740{
2741 VMXVEXITINFO ExitInfo;
2742 RT_ZERO(ExitInfo);
2743 ExitInfo.uReason = uExitReason;
2744 ExitInfo.cbInstr = cbInstr;
2745
2746 /*
2747 * Update the Exit qualification field with displacement bytes.
2748 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2749 */
2750 switch (uExitReason)
2751 {
2752 case VMX_EXIT_INVEPT:
2753 case VMX_EXIT_INVPCID:
2754 case VMX_EXIT_INVVPID:
2755 case VMX_EXIT_LDTR_TR_ACCESS:
2756 case VMX_EXIT_GDTR_IDTR_ACCESS:
2757 case VMX_EXIT_VMCLEAR:
2758 case VMX_EXIT_VMPTRLD:
2759 case VMX_EXIT_VMPTRST:
2760 case VMX_EXIT_VMREAD:
2761 case VMX_EXIT_VMWRITE:
2762 case VMX_EXIT_VMXON:
2763 case VMX_EXIT_XRSTORS:
2764 case VMX_EXIT_XSAVES:
2765 case VMX_EXIT_RDRAND:
2766 case VMX_EXIT_RDSEED:
2767 {
2768 /* Construct the VM-exit instruction information. */
2769 RTGCPTR GCPtrDisp;
2770 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2771
2772 /* Update the VM-exit instruction information. */
2773 ExitInfo.InstrInfo.u = uInstrInfo;
2774
2775 /* Update the Exit qualification. */
2776 ExitInfo.u64Qual = GCPtrDisp;
2777 break;
2778 }
2779
2780 default:
2781 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2782 break;
2783 }
2784
2785 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2786}
2787
2788
2789/**
2790 * VMX VM-exit handler for VM-exits due to INVLPG.
2791 *
2792 * @returns Strict VBox status code.
2793 * @param pVCpu The cross context virtual CPU structure.
2794 * @param GCPtrPage The guest-linear address of the page being invalidated.
2795 * @param cbInstr The instruction length in bytes.
2796 */
2797IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr)
2798{
2799 VMXVEXITINFO ExitInfo;
2800 RT_ZERO(ExitInfo);
2801 ExitInfo.uReason = VMX_EXIT_INVLPG;
2802 ExitInfo.cbInstr = cbInstr;
2803 ExitInfo.u64Qual = GCPtrPage;
2804 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2805
2806 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2807}
2808
2809
2810/**
2811 * VMX VM-exit handler for VM-exits due to LMSW.
2812 *
2813 * @returns Strict VBox status code.
2814 * @param pVCpu The cross context virtual CPU structure.
2815 * @param uGuestCr0 The current guest CR0.
2816 * @param pu16NewMsw The machine-status word specified in LMSW's source
2817 * operand. This will be updated depending on the VMX
2818 * guest/host CR0 mask if LMSW is not intercepted.
2819 * @param GCPtrEffDst The guest-linear address of the source operand in case
2820 * of a memory operand. For register operand, pass
2821 * NIL_RTGCPTR.
2822 * @param cbInstr The instruction length in bytes.
2823 */
2824IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw, RTGCPTR GCPtrEffDst,
2825 uint8_t cbInstr)
2826{
2827 Assert(pu16NewMsw);
2828
2829 uint16_t const uNewMsw = *pu16NewMsw;
2830 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2831 {
2832 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2833
2834 VMXVEXITINFO ExitInfo;
2835 RT_ZERO(ExitInfo);
2836 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2837 ExitInfo.cbInstr = cbInstr;
2838
2839 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2840 if (fMemOperand)
2841 {
2842 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2843 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
2844 }
2845
2846 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2847 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW)
2848 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2849 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw);
2850
2851 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2852 }
2853
2854 /*
2855 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
2856 * CR0 guest/host mask must be left unmodified.
2857 *
2858 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2859 */
2860 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2861 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
2862 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
2863
2864 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2865}
2866
2867
2868/**
2869 * VMX VM-exit handler for VM-exits due to CLTS.
2870 *
2871 * @returns Strict VBox status code.
2872 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
2873 * VM-exit but must not modify the guest CR0.TS bit.
2874 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
2875 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
2876 * CR0 fixed bits in VMX operation).
2877 * @param pVCpu The cross context virtual CPU structure.
2878 * @param cbInstr The instruction length in bytes.
2879 */
2880IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr)
2881{
2882 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2883 uint32_t const fReadShadow = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u;
2884
2885 /*
2886 * If CR0.TS is owned by the host:
2887 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
2888 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
2889 * CLTS instruction completes without clearing CR0.TS.
2890 *
2891 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2892 */
2893 if (fGstHostMask & X86_CR0_TS)
2894 {
2895 if (fReadShadow & X86_CR0_TS)
2896 {
2897 Log2(("clts: Guest intercept -> VM-exit\n"));
2898
2899 VMXVEXITINFO ExitInfo;
2900 RT_ZERO(ExitInfo);
2901 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2902 ExitInfo.cbInstr = cbInstr;
2903 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2904 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_CLTS);
2905 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2906 }
2907
2908 return VINF_VMX_MODIFIES_BEHAVIOR;
2909 }
2910
2911 /*
2912 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
2913 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
2914 */
2915 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2916}
2917
2918
2919/**
2920 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
2921 * (CR0/CR4 write).
2922 *
2923 * @returns Strict VBox status code.
2924 * @param pVCpu The cross context virtual CPU structure.
2925 * @param iCrReg The control register (either CR0 or CR4).
2926 * @param uGuestCrX The current guest CR0/CR4.
2927 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
2928 * VM-exit is caused.
2929 * @param iGReg The general register from which the CR0/CR4 value is being
2930 * loaded.
2931 * @param cbInstr The instruction length in bytes.
2932 */
2933IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg,
2934 uint8_t cbInstr)
2935{
2936 Assert(puNewCrX);
2937 Assert(iCrReg == 0 || iCrReg == 4);
2938 Assert(iGReg < X86_GREG_COUNT);
2939
2940 uint64_t const uNewCrX = *puNewCrX;
2941 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
2942 {
2943 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
2944
2945 VMXVEXITINFO ExitInfo;
2946 RT_ZERO(ExitInfo);
2947 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
2948 ExitInfo.cbInstr = cbInstr;
2949 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
2950 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
2951 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
2952 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2953 }
2954
2955 /*
2956 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
2957 * must not be modified the instruction.
2958 *
2959 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2960 */
2961 uint64_t uGuestCrX;
2962 uint64_t fGstHostMask;
2963 if (iCrReg == 0)
2964 {
2965 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
2966 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
2967 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2968 }
2969 else
2970 {
2971 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
2972 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
2973 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
2974 }
2975
2976 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
2977 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2978}
2979
2980
2981/**
2982 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
2983 *
2984 * @returns VBox strict status code.
2985 * @param pVCpu The cross context virtual CPU structure.
2986 * @param iGReg The general register to which the CR3 value is being stored.
2987 * @param cbInstr The instruction length in bytes.
2988 */
2989IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
2990{
2991 Assert(iGReg < X86_GREG_COUNT);
2992 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
2993
2994 /*
2995 * If the CR3-store exiting control is set, we must cause a VM-exit.
2996 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2997 */
2998 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
2999 {
3000 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3001
3002 VMXVEXITINFO ExitInfo;
3003 RT_ZERO(ExitInfo);
3004 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3005 ExitInfo.cbInstr = cbInstr;
3006 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3007 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3008 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3009 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3010 }
3011
3012 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3013}
3014
3015
3016/**
3017 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3018 *
3019 * @returns VBox strict status code.
3020 * @param pVCpu The cross context virtual CPU structure.
3021 * @param uNewCr3 The new CR3 value.
3022 * @param iGReg The general register from which the CR3 value is being
3023 * loaded.
3024 * @param cbInstr The instruction length in bytes.
3025 */
3026IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr)
3027{
3028 Assert(iGReg < X86_GREG_COUNT);
3029
3030 /*
3031 * If the CR3-load exiting control is set and the new CR3 value does not
3032 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3033 *
3034 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3035 */
3036 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3037 {
3038 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3039
3040 VMXVEXITINFO ExitInfo;
3041 RT_ZERO(ExitInfo);
3042 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3043 ExitInfo.cbInstr = cbInstr;
3044 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3045 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3046 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3047 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3048 }
3049
3050 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3051}
3052
3053
3054/**
3055 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3056 *
3057 * @returns VBox strict status code.
3058 * @param pVCpu The cross context virtual CPU structure.
3059 * @param iGReg The general register to which the CR8 value is being stored.
3060 * @param cbInstr The instruction length in bytes.
3061 */
3062IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
3063{
3064 Assert(iGReg < X86_GREG_COUNT);
3065
3066 /*
3067 * If the CR8-store exiting control is set, we must cause a VM-exit.
3068 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3069 */
3070 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3071 {
3072 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3073
3074 VMXVEXITINFO ExitInfo;
3075 RT_ZERO(ExitInfo);
3076 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3077 ExitInfo.cbInstr = cbInstr;
3078 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3079 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ)
3080 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3081 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3082 }
3083
3084 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3085}
3086
3087
3088/**
3089 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3090 *
3091 * @returns VBox strict status code.
3092 * @param pVCpu The cross context virtual CPU structure.
3093 * @param iGReg The general register from which the CR8 value is being
3094 * loaded.
3095 * @param cbInstr The instruction length in bytes.
3096 */
3097IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr)
3098{
3099 Assert(iGReg < X86_GREG_COUNT);
3100
3101 /*
3102 * If the CR8-load exiting control is set, we must cause a VM-exit.
3103 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3104 */
3105 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3106 {
3107 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3108
3109 VMXVEXITINFO ExitInfo;
3110 RT_ZERO(ExitInfo);
3111 ExitInfo.uReason = VMX_EXIT_MOV_CRX;
3112 ExitInfo.cbInstr = cbInstr;
3113 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3114 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE)
3115 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg);
3116 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3117 }
3118
3119 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3120}
3121
3122
3123/**
3124 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3125 * GReg,DRx' (DRx read).
3126 *
3127 * @returns VBox strict status code.
3128 * @param pVCpu The cross context virtual CPU structure.
3129 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3130 * VMXINSTRID_MOV_FROM_DRX).
3131 * @param iDrReg The debug register being accessed.
3132 * @param iGReg The general register to/from which the DRx value is being
3133 * store/loaded.
3134 * @param cbInstr The instruction length in bytes.
3135 */
3136IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg,
3137 uint8_t cbInstr)
3138{
3139 Assert(iDrReg <= 7);
3140 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3141 Assert(iGReg < X86_GREG_COUNT);
3142
3143 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3144 {
3145 uint32_t const uDirection = uInstrId == VMXINSTRID_MOV_TO_DRX ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3146 : VMX_EXIT_QUAL_DRX_DIRECTION_READ;
3147 VMXVEXITINFO ExitInfo;
3148 RT_ZERO(ExitInfo);
3149 ExitInfo.uReason = VMX_EXIT_MOV_DRX;
3150 ExitInfo.cbInstr = cbInstr;
3151 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3152 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION, uDirection)
3153 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg);
3154 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3155 }
3156
3157 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3158}
3159
3160
3161/**
3162 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3163 *
3164 * @returns VBox strict status code.
3165 * @param pVCpu The cross context virtual CPU structure.
3166 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3167 * VMXINSTRID_IO_OUT).
3168 * @param u16Port The I/O port being accessed.
3169 * @param fImm Whether the I/O port was encoded using an immediate operand
3170 * or the implicit DX register.
3171 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3172 * @param cbInstr The instruction length in bytes.
3173 */
3174IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, bool fImm, uint8_t cbAccess,
3175 uint8_t cbInstr)
3176{
3177 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3178 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3179
3180 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3181 if (fIntercept)
3182 {
3183 uint32_t const uDirection = uInstrId == VMXINSTRID_IO_IN ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3184 : VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3185 VMXVEXITINFO ExitInfo;
3186 RT_ZERO(ExitInfo);
3187 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3188 ExitInfo.cbInstr = cbInstr;
3189 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3190 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3191 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3192 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3193 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3194 }
3195
3196 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3197}
3198
3199
3200/**
3201 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3202 *
3203 * @returns VBox strict status code.
3204 * @param pVCpu The cross context virtual CPU structure.
3205 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3206 * VMXINSTRID_IO_OUTS).
3207 * @param u16Port The I/O port being accessed.
3208 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3209 * @param fRep Whether the instruction has a REP prefix or not.
3210 * @param ExitInstrInfo The VM-exit instruction info. field.
3211 * @param cbInstr The instruction length in bytes.
3212 */
3213IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess, bool fRep,
3214 VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr)
3215{
3216 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3217 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3218 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3219 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3220 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3221
3222 bool const fIntercept = CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess);
3223 if (fIntercept)
3224 {
3225 /*
3226 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3227 */
3228 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3229 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3230 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3231 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3232 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3233
3234 uint32_t uDirection;
3235 uint64_t uGuestLinearAddr;
3236 if (uInstrId == VMXINSTRID_IO_INS)
3237 {
3238 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3239 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3240 }
3241 else
3242 {
3243 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3244 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3245 }
3246
3247 /*
3248 * If the segment is unusable, the guest-linear address in undefined.
3249 * We shall clear it for consistency.
3250 *
3251 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3252 */
3253 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3254 uGuestLinearAddr = 0;
3255
3256 VMXVEXITINFO ExitInfo;
3257 RT_ZERO(ExitInfo);
3258 ExitInfo.uReason = VMX_EXIT_IO_INSTR;
3259 ExitInfo.cbInstr = cbInstr;
3260 ExitInfo.u64GuestLinearAddr = uGuestLinearAddr;
3261 ExitInfo.u64Qual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3262 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3263 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3264 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3265 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, VMX_EXIT_QUAL_IO_ENCODING_DX)
3266 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port);
3267 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo)
3268 ExitInfo.InstrInfo = ExitInstrInfo;
3269 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3270 }
3271
3272 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3273}
3274
3275
3276/**
3277 * VMX VM-exit handler for VM-exits due to MWAIT.
3278 *
3279 * @returns VBox strict status code.
3280 * @param pVCpu The cross context virtual CPU structure.
3281 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3282 * @param cbInstr The instruction length in bytes.
3283 */
3284IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr)
3285{
3286 VMXVEXITINFO ExitInfo;
3287 RT_ZERO(ExitInfo);
3288 ExitInfo.uReason = VMX_EXIT_MWAIT;
3289 ExitInfo.cbInstr = cbInstr;
3290 ExitInfo.u64Qual = fMonitorHwArmed;
3291 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3292}
3293
3294
3295/**
3296 * VMX VM-exit handler for VM-exits due to PAUSE.
3297 *
3298 * @returns VBox strict status code.
3299 * @param pVCpu The cross context virtual CPU structure.
3300 * @param cbInstr The instruction length in bytes.
3301 */
3302IEM_STATIC VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr)
3303{
3304 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
3305
3306 /*
3307 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3308 * "PAUSE-loop exiting" control.
3309 *
3310 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3311 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3312 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3313 * a VM-exit.
3314 *
3315 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3316 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3317 */
3318 bool fIntercept = false;
3319 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3320 fIntercept = true;
3321 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3322 && pVCpu->iem.s.uCpl == 0)
3323 {
3324 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3325
3326 /*
3327 * A previous-PAUSE-tick value of 0 is used to identify the first time
3328 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3329 * consider this to be the first execution of PAUSE in a loop according
3330 * to the Intel.
3331 *
3332 * All subsequent records for the previous-PAUSE-tick we ensure that it
3333 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3334 */
3335 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3336 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3337 uint64_t const uTick = TMCpuTickGet(pVCpu);
3338 uint32_t const uPleGap = pVmcs->u32PleGap;
3339 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3340 if ( *puPrevPauseTick == 0
3341 || uTick - *puPrevPauseTick > uPleGap)
3342 *puFirstPauseLoopTick = uTick;
3343 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3344 fIntercept = true;
3345
3346 *puPrevPauseTick = uTick | 1;
3347 }
3348
3349 if (fIntercept)
3350 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3351
3352 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3353}
3354
3355
3356/**
3357 * VMX VM-exit handler for VM-exits due to task switches.
3358 *
3359 * @returns VBox strict status code.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param enmTaskSwitch The cause of the task switch.
3362 * @param SelNewTss The selector of the new TSS.
3363 * @param cbInstr The instruction length in bytes.
3364 */
3365IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr)
3366{
3367 /*
3368 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3369 *
3370 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3371 * instruction or delivery of the exception generated by one of these instructions
3372 * lead to a task switch through a task gate in the IDT, we need to provide the
3373 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3374 * leaves the VM-exit instruction length field undefined.
3375 *
3376 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3377 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3378 */
3379 Assert(cbInstr <= 15);
3380
3381 uint8_t uType;
3382 switch (enmTaskSwitch)
3383 {
3384 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3385 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3386 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3387 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3388 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3389 }
3390
3391 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3392 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3393 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3394 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3395}
3396
3397
3398/**
3399 * VMX VM-exit handler for trap-like VM-exits.
3400 *
3401 * @returns VBox strict status code.
3402 * @param pVCpu The cross context virtual CPU structure.
3403 * @param pExitInfo Pointer to the VM-exit information.
3404 * @param pExitEventInfo Pointer to the VM-exit event information.
3405 */
3406IEM_STATIC VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3407{
3408 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3409 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3410 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3411}
3412
3413
3414/**
3415 * VMX VM-exit handler for VM-exits due to task switches.
3416 *
3417 * This is intended for task switches where the caller provides all the relevant
3418 * VM-exit information.
3419 *
3420 * @returns VBox strict status code.
3421 * @param pVCpu The cross context virtual CPU structure.
3422 * @param pExitInfo Pointer to the VM-exit information.
3423 * @param pExitEventInfo Pointer to the VM-exit event information.
3424 */
3425IEM_STATIC VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3426 PCVMXVEXITEVENTINFO pExitEventInfo)
3427{
3428 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3429 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3430 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3431 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3432 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3433}
3434
3435
3436/**
3437 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3438 *
3439 * @returns VBox strict status code.
3440 * @param pVCpu The cross context virtual CPU structure.
3441 */
3442IEM_STATIC VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3443{
3444 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3445 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3446
3447 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3448 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3449
3450 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3451 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3452 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
3453
3454 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3455 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3456}
3457
3458
3459/**
3460 * VMX VM-exit handler for VM-exits due to external interrupts.
3461 *
3462 * @returns VBox strict status code.
3463 * @param pVCpu The cross context virtual CPU structure.
3464 * @param uVector The external interrupt vector (pass 0 if the interrupt
3465 * is still pending since we typically won't know the
3466 * vector).
3467 * @param fIntPending Whether the external interrupt is pending or
3468 * acknowledged in the interrupt controller.
3469 */
3470IEM_STATIC VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3471{
3472 Assert(!fIntPending || uVector == 0);
3473
3474 /* The VM-exit is subject to "External interrupt exiting" being set. */
3475 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3476 {
3477 if (fIntPending)
3478 {
3479 /*
3480 * If the interrupt is pending and we don't need to acknowledge the
3481 * interrupt on VM-exit, cause the VM-exit immediately.
3482 *
3483 * See Intel spec 25.2 "Other Causes Of VM Exits".
3484 */
3485 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3486 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3487
3488 /*
3489 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3490 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3491 * acknowledged that the interrupt has been consumed. Callers would have to call
3492 * us again after getting the vector (and ofc, with fIntPending with false).
3493 */
3494 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3495 }
3496
3497 /*
3498 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3499 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3500 * all set, we need to record the vector of the external interrupt in the
3501 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3502 *
3503 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3504 */
3505 uint32_t uExitIntInfo;
3506 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3507 {
3508 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3509 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3510 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3511 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3512 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3513 }
3514 else
3515 uExitIntInfo = 0;
3516 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3517
3518 /*
3519 * Cause the VM-exit whether or not the vector has been stored
3520 * in the VM-exit interruption-information field.
3521 */
3522 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3523 }
3524
3525 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3526}
3527
3528
3529/**
3530 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3531 * an event.
3532 *
3533 * @returns VBox strict status code.
3534 * @param pVCpu The cross context virtual CPU structure.
3535 */
3536IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu)
3537{
3538 uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
3539 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3540 {
3541 /*
3542 * The NMI-unblocking due to IRET field need not be set for double faults.
3543 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3544 */
3545 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3546 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3547 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3548 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3549 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3550 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3551 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3552 }
3553
3554 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3555}
3556
3557
3558/**
3559 * VMX VM-exit handler for VM-exit due to delivery of an events.
3560 *
3561 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3562 * all the relevant VM-exit information.
3563 *
3564 * @returns VBox strict status code.
3565 * @param pVCpu The cross context virtual CPU structure.
3566 * @param pExitInfo Pointer to the VM-exit information.
3567 * @param pExitEventInfo Pointer to the VM-exit event information.
3568 */
3569IEM_STATIC VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3570{
3571 Assert(pExitInfo);
3572 Assert(pExitEventInfo);
3573 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3574 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3575
3576 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3577 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3578 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3579 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3580 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3581 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3582}
3583
3584
3585/**
3586 * VMX VM-exit handler for VM-exits due to delivery of an event.
3587 *
3588 * @returns VBox strict status code.
3589 * @param pVCpu The cross context virtual CPU structure.
3590 * @param uVector The interrupt / exception vector.
3591 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3592 * @param uErrCode The error code associated with the event.
3593 * @param uCr2 The CR2 value in case of a \#PF exception.
3594 * @param cbInstr The instruction length in bytes.
3595 */
3596IEM_STATIC VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2,
3597 uint8_t cbInstr)
3598{
3599 /*
3600 * If the event is being injected as part of VM-entry, it is -not- subject to event
3601 * intercepts in the nested-guest. However, secondary exceptions that occur during
3602 * injection of any event -are- subject to event interception.
3603 *
3604 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3605 */
3606 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3607 {
3608 /*
3609 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3610 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3611 *
3612 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3613 */
3614 if ( uVector == X86_XCPT_NMI
3615 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3616 && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3617 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3618 else
3619 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3620
3621 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3622 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3623 }
3624
3625 /*
3626 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3627 * If not, the caller will continue delivery of the external interrupt as it would
3628 * normally. The interrupt is no longer pending in the interrupt controller at this
3629 * point.
3630 */
3631 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3632 {
3633 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
3634 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3635 }
3636
3637 /*
3638 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3639 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3640 * interrupts.
3641 */
3642 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3643 bool fIntercept;
3644 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3645 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3646 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3647 else
3648 {
3649 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3650 fIntercept = false;
3651 }
3652
3653 /*
3654 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3655 * relevant VM-exit information and cause the VM-exit.
3656 */
3657 if (fIntercept)
3658 {
3659 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3660
3661 /* Construct the rest of the event related information fields and cause the VM-exit. */
3662 uint64_t u64ExitQual;
3663 if (uVector == X86_XCPT_PF)
3664 {
3665 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3666 u64ExitQual = uCr2;
3667 }
3668 else if (uVector == X86_XCPT_DB)
3669 {
3670 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3671 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3672 }
3673 else
3674 u64ExitQual = 0;
3675
3676 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3677 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3678 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3679 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3680 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3681 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3682 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3683 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3684 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3685 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3686
3687 /*
3688 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3689 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3690 * length.
3691 */
3692 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3693 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3694 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3695 else
3696 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3697
3698 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3699 }
3700
3701 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3702}
3703
3704
3705/**
3706 * VMX VM-exit handler for EPT misconfiguration.
3707 *
3708 * @param pVCpu The cross context virtual CPU structure.
3709 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3710 * This need not be page aligned (e.g. nested-guest in real
3711 * mode).
3712 */
3713IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr)
3714{
3715 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3716 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3717}
3718
3719
3720/**
3721 * VMX VM-exit handler for EPT misconfiguration.
3722 *
3723 * This is intended for EPT misconfigurations where the caller provides all the
3724 * relevant VM-exit information.
3725 *
3726 * @param pVCpu The cross context virtual CPU structure.
3727 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3728 * This need not be page aligned (e.g. nested-guest in real
3729 * mode).
3730 * @param pExitEventInfo Pointer to the VM-exit event information.
3731 */
3732IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptMisconfigWithInfo(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo)
3733{
3734 Assert(pExitEventInfo);
3735 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3736 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3737 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3738 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3739 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3740}
3741
3742
3743/**
3744 * VMX VM-exit handler for EPT violation.
3745 *
3746 * @param pVCpu The cross context virtual CPU structure.
3747 * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
3748 * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
3749 * @param fEptAccess The EPT paging structure bits.
3750 * @param GCPhysAddr The physical address causing the EPT violation. This
3751 * need not be page aligned (e.g. nested-guest in real
3752 * mode).
3753 * @param fIsLinearAddrValid Whether translation of a linear address caused this
3754 * EPT violation. If @c false, GCPtrAddr must be 0.
3755 * @param GCPtrAddr The linear address causing the EPT violation.
3756 * @param cbInstr The VM-exit instruction length.
3757 */
3758IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail, uint64_t fEptAccess,
3759 RTGCPHYS GCPhysAddr, bool fIsLinearAddrValid, uint64_t GCPtrAddr,
3760 uint8_t cbInstr)
3761{
3762 /*
3763 * If the linear address isn't valid (can happen when loading PDPTEs
3764 * as part of MOV CR execution) the linear address field is undefined.
3765 * While we can leave it this way, it's preferrable to zero it for consistency.
3766 */
3767 Assert(fIsLinearAddrValid || GCPtrAddr == 0);
3768
3769 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
3770 bool const fSupportsAccessDirty = RT_BOOL(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
3771
3772 uint32_t const fDataRdMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_READ;
3773 uint32_t const fDataWrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE;
3774 uint32_t const fInstrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_EXEC;
3775 bool const fDataRead = ((fAccess & fDataRdMask) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
3776 bool const fDataWrite = ((fAccess & fDataWrMask) == IEM_ACCESS_DATA_W) | fSupportsAccessDirty;
3777 bool const fInstrFetch = ((fAccess & fInstrMask) == IEM_ACCESS_INSTRUCTION);
3778 bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
3779 bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
3780 bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
3781 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3782 bool const fIsLinearToPhysAddr = fIsLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
3783
3784 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
3785 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
3786 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
3787 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
3788 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
3789 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
3790 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fIsLinearAddrValid)
3791 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fIsLinearToPhysAddr)
3792 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
3793
3794#ifdef VBOX_STRICT
3795 uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
3796 uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
3797 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
3798 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
3799 Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
3800 Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
3801#endif
3802
3803 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3804 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
3805 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3806
3807 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
3808}
3809
3810
3811/**
3812 * VMX VM-exit handler for EPT violation.
3813 *
3814 * This is intended for EPT violations where the caller provides all the
3815 * relevant VM-exit information.
3816 *
3817 * @returns VBox strict status code.
3818 * @param pVCpu The cross context virtual CPU structure.
3819 * @param pExitInfo Pointer to the VM-exit information.
3820 * @param pExitEventInfo Pointer to the VM-exit event information.
3821 */
3822IEM_STATIC VBOXSTRICTRC iemVmxVmexitEptViolationWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3823 PCVMXVEXITEVENTINFO pExitEventInfo)
3824{
3825 Assert(pExitInfo);
3826 Assert(pExitEventInfo);
3827 Assert(pExitInfo->uReason == VMX_EXIT_EPT_VIOLATION);
3828 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3829
3830 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3831 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3832
3833 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
3834 if (pExitInfo->u64Qual & VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID_MASK)
3835 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
3836 else
3837 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, 0);
3838 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3839 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, pExitInfo->u64Qual);
3840}
3841
3842
3843/**
3844 * VMX VM-exit handler for EPT-induced VM-exits.
3845 *
3846 * @param pVCpu The cross context virtual CPU structure.
3847 * @param pWalk The page walk info.
3848 * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
3849 * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
3850 * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
3851 * applicable.
3852 */
3853IEM_STATIC VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr)
3854{
3855 Assert(pWalk->fIsSlat);
3856 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
3857 Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
3858 Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
3859
3860 if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
3861 {
3862 Log(("EptViolation: cs:rip=%x:%#RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
3863 uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
3864 return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
3865 pWalk->GCPtr, cbInstr);
3866 }
3867
3868 Log(("EptMisconfig: cs:rip=%x:%#RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
3869 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
3870 return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
3871}
3872
3873
3874/**
3875 * VMX VM-exit handler for APIC accesses.
3876 *
3877 * @param pVCpu The cross context virtual CPU structure.
3878 * @param offAccess The offset of the register being accessed.
3879 * @param fAccess The type of access, see IEM_ACCESS_XXX.
3880 */
3881IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess)
3882{
3883 VMXAPICACCESS enmAccess;
3884 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
3885 if (fInEventDelivery)
3886 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
3887 else if ((fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == IEM_ACCESS_INSTRUCTION)
3888 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
3889 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
3890 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
3891 else
3892 enmAccess = VMXAPICACCESS_LINEAR_READ;
3893
3894 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
3895 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
3896 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
3897}
3898
3899
3900/**
3901 * VMX VM-exit handler for APIC accesses.
3902 *
3903 * This is intended for APIC accesses where the caller provides all the
3904 * relevant VM-exit information.
3905 *
3906 * @returns VBox strict status code.
3907 * @param pVCpu The cross context virtual CPU structure.
3908 * @param pExitInfo Pointer to the VM-exit information.
3909 * @param pExitEventInfo Pointer to the VM-exit event information.
3910 */
3911IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3912 PCVMXVEXITEVENTINFO pExitEventInfo)
3913{
3914 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
3915 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3916 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
3917 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
3918 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
3919 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3920 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3921 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3922 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
3923}
3924
3925
3926/**
3927 * VMX VM-exit handler for APIC-write VM-exits.
3928 *
3929 * @param pVCpu The cross context virtual CPU structure.
3930 * @param offApic The write to the virtual-APIC page offset that caused this
3931 * VM-exit.
3932 */
3933IEM_STATIC VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic)
3934{
3935 Assert(offApic < XAPIC_OFF_END + 4);
3936 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
3937 offApic &= UINT16_C(0xfff);
3938 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
3939}
3940
3941
3942/**
3943 * Sets virtual-APIC write emulation as pending.
3944 *
3945 * @param pVCpu The cross context virtual CPU structure.
3946 * @param offApic The offset in the virtual-APIC page that was written.
3947 */
3948DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic)
3949{
3950 Assert(offApic < XAPIC_OFF_END + 4);
3951
3952 /*
3953 * Record the currently updated APIC offset, as we need this later for figuring
3954 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
3955 * as for supplying the exit qualification when causing an APIC-write VM-exit.
3956 */
3957 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
3958
3959 /*
3960 * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
3961 * virtualization or APIC-write emulation).
3962 */
3963 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
3964 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
3965}
3966
3967
3968/**
3969 * Clears any pending virtual-APIC write emulation.
3970 *
3971 * @returns The virtual-APIC offset that was written before clearing it.
3972 * @param pVCpu The cross context virtual CPU structure.
3973 */
3974DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
3975{
3976 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3977 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
3978 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
3979 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
3980 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
3981 return offVirtApicWrite;
3982}
3983
3984
3985/**
3986 * Reads a 32-bit register from the virtual-APIC page at the given offset.
3987 *
3988 * @returns The register from the virtual-APIC page.
3989 * @param pVCpu The cross context virtual CPU structure.
3990 * @param offReg The offset of the register being read.
3991 */
3992IEM_STATIC uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg)
3993{
3994 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
3995
3996 uint32_t uReg = 0;
3997 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
3998 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
3999 AssertMsgStmt(RT_SUCCESS(rc),
4000 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4001 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4002 uReg = 0);
4003 return uReg;
4004}
4005
4006
4007/**
4008 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4009 *
4010 * @returns The register from the virtual-APIC page.
4011 * @param pVCpu The cross context virtual CPU structure.
4012 * @param offReg The offset of the register being read.
4013 */
4014IEM_STATIC uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg)
4015{
4016 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4017
4018 uint64_t uReg = 0;
4019 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4020 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4021 AssertMsgStmt(RT_SUCCESS(rc),
4022 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4023 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4024 uReg = 0);
4025 return uReg;
4026}
4027
4028
4029/**
4030 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4031 *
4032 * @param pVCpu The cross context virtual CPU structure.
4033 * @param offReg The offset of the register being written.
4034 * @param uReg The register value to write.
4035 */
4036IEM_STATIC void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg)
4037{
4038 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4039
4040 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4041 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4042 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4043 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4044}
4045
4046
4047/**
4048 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4049 *
4050 * @param pVCpu The cross context virtual CPU structure.
4051 * @param offReg The offset of the register being written.
4052 * @param uReg The register value to write.
4053 */
4054IEM_STATIC void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg)
4055{
4056 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4057
4058 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4059 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4060 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4061 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4062}
4063
4064
4065/**
4066 * Sets the vector in a virtual-APIC 256-bit sparse register.
4067 *
4068 * @param pVCpu The cross context virtual CPU structure.
4069 * @param offReg The offset of the 256-bit spare register.
4070 * @param uVector The vector to set.
4071 *
4072 * @remarks This is based on our APIC device code.
4073 */
4074IEM_STATIC void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
4075{
4076 /* Determine the vector offset within the chunk. */
4077 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4078
4079 /* Read the chunk at the offset. */
4080 uint32_t uReg;
4081 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4082 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4083 if (RT_SUCCESS(rc))
4084 {
4085 /* Modify the chunk. */
4086 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4087 uReg |= RT_BIT(idxVectorBit);
4088
4089 /* Write the chunk. */
4090 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4091 AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4092 uVector, offReg, GCPhysVirtApic, rc));
4093 }
4094 else
4095 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4096 uVector, offReg, GCPhysVirtApic, rc));
4097}
4098
4099
4100/**
4101 * Clears the vector in a virtual-APIC 256-bit sparse register.
4102 *
4103 * @param pVCpu The cross context virtual CPU structure.
4104 * @param offReg The offset of the 256-bit spare register.
4105 * @param uVector The vector to clear.
4106 *
4107 * @remarks This is based on our APIC device code.
4108 */
4109IEM_STATIC void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector)
4110{
4111 /* Determine the vector offset within the chunk. */
4112 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4113
4114 /* Read the chunk at the offset. */
4115 uint32_t uReg;
4116 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4117 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4118 if (RT_SUCCESS(rc))
4119 {
4120 /* Modify the chunk. */
4121 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4122 uReg &= ~RT_BIT(idxVectorBit);
4123
4124 /* Write the chunk. */
4125 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4126 AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4127 uVector, offReg, GCPhysVirtApic, rc));
4128 }
4129 else
4130 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4131 uVector, offReg, GCPhysVirtApic, rc));
4132}
4133
4134
4135/**
4136 * Checks if a memory access to the APIC-access page must causes an APIC-access
4137 * VM-exit.
4138 *
4139 * @param pVCpu The cross context virtual CPU structure.
4140 * @param offAccess The offset of the register being accessed.
4141 * @param cbAccess The size of the access in bytes.
4142 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4143 *
4144 * @remarks This must not be used for MSR-based APIC-access page accesses!
4145 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4146 */
4147IEM_STATIC bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess)
4148{
4149 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4150
4151 /*
4152 * We must cause a VM-exit if any of the following are true:
4153 * - TPR shadowing isn't active.
4154 * - The access size exceeds 32-bits.
4155 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4156 *
4157 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4158 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4159 */
4160 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4161 || cbAccess > sizeof(uint32_t)
4162 || ((offAccess + cbAccess - 1) & 0xc)
4163 || offAccess >= XAPIC_OFF_END + 4)
4164 return true;
4165
4166 /*
4167 * If the access is part of an operation where we have already
4168 * virtualized a virtual-APIC write, we must cause a VM-exit.
4169 */
4170 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4171 return true;
4172
4173 /*
4174 * Check write accesses to the APIC-access page that cause VM-exits.
4175 */
4176 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4177 {
4178 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4179 {
4180 /*
4181 * With APIC-register virtualization, a write access to any of the
4182 * following registers are virtualized. Accessing any other register
4183 * causes a VM-exit.
4184 */
4185 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4186 switch (offAlignedAccess)
4187 {
4188 case XAPIC_OFF_ID:
4189 case XAPIC_OFF_TPR:
4190 case XAPIC_OFF_EOI:
4191 case XAPIC_OFF_LDR:
4192 case XAPIC_OFF_DFR:
4193 case XAPIC_OFF_SVR:
4194 case XAPIC_OFF_ESR:
4195 case XAPIC_OFF_ICR_LO:
4196 case XAPIC_OFF_ICR_HI:
4197 case XAPIC_OFF_LVT_TIMER:
4198 case XAPIC_OFF_LVT_THERMAL:
4199 case XAPIC_OFF_LVT_PERF:
4200 case XAPIC_OFF_LVT_LINT0:
4201 case XAPIC_OFF_LVT_LINT1:
4202 case XAPIC_OFF_LVT_ERROR:
4203 case XAPIC_OFF_TIMER_ICR:
4204 case XAPIC_OFF_TIMER_DCR:
4205 break;
4206 default:
4207 return true;
4208 }
4209 }
4210 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4211 {
4212 /*
4213 * With virtual-interrupt delivery, a write access to any of the
4214 * following registers are virtualized. Accessing any other register
4215 * causes a VM-exit.
4216 *
4217 * Note! The specification does not allow writing to offsets in-between
4218 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4219 */
4220 switch (offAccess)
4221 {
4222 case XAPIC_OFF_TPR:
4223 case XAPIC_OFF_EOI:
4224 case XAPIC_OFF_ICR_LO:
4225 break;
4226 default:
4227 return true;
4228 }
4229 }
4230 else
4231 {
4232 /*
4233 * Without APIC-register virtualization or virtual-interrupt delivery,
4234 * only TPR accesses are virtualized.
4235 */
4236 if (offAccess == XAPIC_OFF_TPR)
4237 { /* likely */ }
4238 else
4239 return true;
4240 }
4241 }
4242 else
4243 {
4244 /*
4245 * Check read accesses to the APIC-access page that cause VM-exits.
4246 */
4247 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4248 {
4249 /*
4250 * With APIC-register virtualization, a read access to any of the
4251 * following registers are virtualized. Accessing any other register
4252 * causes a VM-exit.
4253 */
4254 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4255 switch (offAlignedAccess)
4256 {
4257 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4258 case XAPIC_OFF_ID:
4259 case XAPIC_OFF_VERSION:
4260 case XAPIC_OFF_TPR:
4261 case XAPIC_OFF_EOI:
4262 case XAPIC_OFF_LDR:
4263 case XAPIC_OFF_DFR:
4264 case XAPIC_OFF_SVR:
4265 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4266 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4267 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4268 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4269 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4270 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4271 case XAPIC_OFF_ESR:
4272 case XAPIC_OFF_ICR_LO:
4273 case XAPIC_OFF_ICR_HI:
4274 case XAPIC_OFF_LVT_TIMER:
4275 case XAPIC_OFF_LVT_THERMAL:
4276 case XAPIC_OFF_LVT_PERF:
4277 case XAPIC_OFF_LVT_LINT0:
4278 case XAPIC_OFF_LVT_LINT1:
4279 case XAPIC_OFF_LVT_ERROR:
4280 case XAPIC_OFF_TIMER_ICR:
4281 case XAPIC_OFF_TIMER_DCR:
4282 break;
4283 default:
4284 return true;
4285 }
4286 }
4287 else
4288 {
4289 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4290 if (offAccess == XAPIC_OFF_TPR)
4291 { /* likely */ }
4292 else
4293 return true;
4294 }
4295 }
4296
4297 /* The APIC access is virtualized, does not cause a VM-exit. */
4298 return false;
4299}
4300
4301
4302/**
4303 * Virtualizes a memory-based APIC access by certain instructions even though they
4304 * do not use the address to access memory.
4305 *
4306 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4307 * page-faults but do not use the address to access memory.
4308 *
4309 * @param pVCpu The cross context virtual CPU structure.
4310 * @param pGCPhysAccess Pointer to the guest-physical address accessed.
4311 * @param cbAccess The size of the access in bytes.
4312 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4313 */
4314IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess,
4315 uint32_t fAccess)
4316{
4317 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4318 Assert(pGCPhysAccess);
4319
4320 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
4321 RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
4322 Assert(!(GCPhysApic & GUEST_PAGE_OFFSET_MASK));
4323
4324 if (GCPhysAccess == GCPhysApic)
4325 {
4326 uint16_t const offAccess = *pGCPhysAccess & GUEST_PAGE_OFFSET_MASK;
4327 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4328 if (fIntercept)
4329 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4330
4331 *pGCPhysAccess = GCPhysApic | offAccess;
4332 return VINF_VMX_MODIFIES_BEHAVIOR;
4333 }
4334
4335 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4336}
4337
4338
4339/**
4340 * Virtualizes a memory-based APIC access.
4341 *
4342 * @returns VBox strict status code.
4343 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4344 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4345 *
4346 * @param pVCpu The cross context virtual CPU structure.
4347 * @param offAccess The offset of the register being accessed (within the
4348 * APIC-access page).
4349 * @param cbAccess The size of the access in bytes.
4350 * @param pvData Pointer to the data being written or where to store the data
4351 * being read.
4352 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4353 */
4354IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, void *pvData,
4355 uint32_t fAccess)
4356{
4357 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4358 Assert(pvData);
4359
4360 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4361 if (fIntercept)
4362 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4363
4364 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4365 {
4366 /*
4367 * A write access to the APIC-access page that is virtualized (rather than
4368 * causing a VM-exit) writes data to the virtual-APIC page.
4369 */
4370 uint32_t const u32Data = *(uint32_t *)pvData;
4371 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4372
4373 /*
4374 * Record the currently updated APIC offset, as we need this later for figuring
4375 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4376 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4377 *
4378 * After completion of the current operation, we need to perform TPR virtualization,
4379 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4380 *
4381 * The current operation may be a REP-prefixed string instruction, execution of any
4382 * other instruction, or delivery of an event through the IDT.
4383 *
4384 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4385 * performed now but later after completion of the current operation.
4386 *
4387 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4388 */
4389 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4390 }
4391 else
4392 {
4393 /*
4394 * A read access from the APIC-access page that is virtualized (rather than
4395 * causing a VM-exit) returns data from the virtual-APIC page.
4396 *
4397 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4398 */
4399 Assert(fAccess & IEM_ACCESS_TYPE_READ);
4400
4401 Assert(cbAccess <= 4);
4402 Assert(offAccess < XAPIC_OFF_END + 4);
4403 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4404
4405 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4406 u32Data &= s_auAccessSizeMasks[cbAccess];
4407 *(uint32_t *)pvData = u32Data;
4408 }
4409
4410 return VINF_VMX_MODIFIES_BEHAVIOR;
4411}
4412
4413
4414/**
4415 * Virtualizes an MSR-based APIC read access.
4416 *
4417 * @returns VBox strict status code.
4418 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4419 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4420 * handled by the x2APIC device.
4421 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4422 * not within the range of valid MSRs, caller must raise \#GP(0).
4423 * @param pVCpu The cross context virtual CPU structure.
4424 * @param idMsr The x2APIC MSR being read.
4425 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4426 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4427 */
4428IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value)
4429{
4430 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4431 Assert(pu64Value);
4432
4433 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4434 {
4435 if ( idMsr >= MSR_IA32_X2APIC_START
4436 && idMsr <= MSR_IA32_X2APIC_END)
4437 {
4438 uint16_t const offReg = (idMsr & 0xff) << 4;
4439 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4440 *pu64Value = u64Value;
4441 return VINF_VMX_MODIFIES_BEHAVIOR;
4442 }
4443 return VERR_OUT_OF_RANGE;
4444 }
4445
4446 if (idMsr == MSR_IA32_X2APIC_TPR)
4447 {
4448 uint16_t const offReg = (idMsr & 0xff) << 4;
4449 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4450 *pu64Value = u64Value;
4451 return VINF_VMX_MODIFIES_BEHAVIOR;
4452 }
4453
4454 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4455}
4456
4457
4458/**
4459 * Virtualizes an MSR-based APIC write access.
4460 *
4461 * @returns VBox strict status code.
4462 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4463 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4464 * not within the range of valid MSRs, caller must raise \#GP(0).
4465 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4466 *
4467 * @param pVCpu The cross context virtual CPU structure.
4468 * @param idMsr The x2APIC MSR being written.
4469 * @param u64Value The value of the x2APIC MSR being written.
4470 */
4471IEM_STATIC VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value)
4472{
4473 /*
4474 * Check if the access is to be virtualized.
4475 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4476 */
4477 if ( idMsr == MSR_IA32_X2APIC_TPR
4478 || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4479 && ( idMsr == MSR_IA32_X2APIC_EOI
4480 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4481 {
4482 /* Validate the MSR write depending on the register. */
4483 switch (idMsr)
4484 {
4485 case MSR_IA32_X2APIC_TPR:
4486 case MSR_IA32_X2APIC_SELF_IPI:
4487 {
4488 if (u64Value & UINT64_C(0xffffffffffffff00))
4489 return VERR_OUT_OF_RANGE;
4490 break;
4491 }
4492 case MSR_IA32_X2APIC_EOI:
4493 {
4494 if (u64Value != 0)
4495 return VERR_OUT_OF_RANGE;
4496 break;
4497 }
4498 }
4499
4500 /* Write the MSR to the virtual-APIC page. */
4501 uint16_t const offReg = (idMsr & 0xff) << 4;
4502 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4503
4504 /*
4505 * Record the currently updated APIC offset, as we need this later for figuring
4506 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4507 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4508 */
4509 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4510
4511 return VINF_VMX_MODIFIES_BEHAVIOR;
4512 }
4513
4514 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4515}
4516
4517
4518/**
4519 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4520 *
4521 * @returns VBox status code.
4522 * @retval VINF_SUCCESS when the highest set bit is found.
4523 * @retval VERR_NOT_FOUND when no bit is set.
4524 *
4525 * @param pVCpu The cross context virtual CPU structure.
4526 * @param offReg The offset of the APIC 256-bit sparse register.
4527 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4528 * set in the register. Only valid when VINF_SUCCESS is
4529 * returned.
4530 *
4531 * @remarks The format of the 256-bit sparse register here mirrors that found in
4532 * real APIC hardware.
4533 */
4534static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4535{
4536 Assert(offReg < XAPIC_OFF_END + 4);
4537 Assert(pidxHighestBit);
4538
4539 /*
4540 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4541 * However, in each fragment only the first 4 bytes are used.
4542 */
4543 uint8_t const cFrags = 8;
4544 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4545 {
4546 uint16_t const offFrag = iFrag * 16;
4547 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4548 if (!u32Frag)
4549 continue;
4550
4551 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4552 Assert(idxHighestBit > 0);
4553 --idxHighestBit;
4554 Assert(idxHighestBit <= UINT8_MAX);
4555 *pidxHighestBit = idxHighestBit;
4556 return VINF_SUCCESS;
4557 }
4558 return VERR_NOT_FOUND;
4559}
4560
4561
4562/**
4563 * Evaluates pending virtual interrupts.
4564 *
4565 * @param pVCpu The cross context virtual CPU structure.
4566 */
4567IEM_STATIC void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu)
4568{
4569 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4570
4571 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4572 {
4573 uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4574 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4575
4576 if ((uRvi >> 4) > (uPpr >> 4))
4577 {
4578 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4579 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4580 }
4581 else
4582 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4583 }
4584}
4585
4586
4587/**
4588 * Performs PPR virtualization.
4589 *
4590 * @returns VBox strict status code.
4591 * @param pVCpu The cross context virtual CPU structure.
4592 */
4593IEM_STATIC void iemVmxPprVirtualization(PVMCPUCC pVCpu)
4594{
4595 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4596 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4597
4598 /*
4599 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4600 * or EOI-virtualization.
4601 *
4602 * See Intel spec. 29.1.3 "PPR Virtualization".
4603 */
4604 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4605 uint32_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4606
4607 uint32_t uPpr;
4608 if (((uTpr >> 4) & 0xf) >= ((uSvi >> 4) & 0xf))
4609 uPpr = uTpr & 0xff;
4610 else
4611 uPpr = uSvi & 0xf0;
4612
4613 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4614 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4615}
4616
4617
4618/**
4619 * Performs VMX TPR virtualization.
4620 *
4621 * @returns VBox strict status code.
4622 * @param pVCpu The cross context virtual CPU structure.
4623 */
4624IEM_STATIC VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu)
4625{
4626 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4627
4628 /*
4629 * We should have already performed the virtual-APIC write to the TPR offset
4630 * in the virtual-APIC page. We now perform TPR virtualization.
4631 *
4632 * See Intel spec. 29.1.2 "TPR Virtualization".
4633 */
4634 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4635 {
4636 uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
4637 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4638
4639 /*
4640 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4641 * See Intel spec. 29.1.2 "TPR Virtualization".
4642 */
4643 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4644 {
4645 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4646 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4647 }
4648 }
4649 else
4650 {
4651 iemVmxPprVirtualization(pVCpu);
4652 iemVmxEvalPendingVirtIntrs(pVCpu);
4653 }
4654
4655 return VINF_SUCCESS;
4656}
4657
4658
4659/**
4660 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4661 * not.
4662 *
4663 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4664 * @param pVCpu The cross context virtual CPU structure.
4665 * @param uVector The interrupt that was acknowledged using an EOI.
4666 */
4667IEM_STATIC bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector)
4668{
4669 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4670 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4671
4672 if (uVector < 64)
4673 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4674 if (uVector < 128)
4675 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4676 if (uVector < 192)
4677 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4678 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4679}
4680
4681
4682/**
4683 * Performs EOI virtualization.
4684 *
4685 * @returns VBox strict status code.
4686 * @param pVCpu The cross context virtual CPU structure.
4687 */
4688IEM_STATIC VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu)
4689{
4690 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4691 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4692
4693 /*
4694 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
4695 * and get the next guest-interrupt that's in-service (if any).
4696 *
4697 * See Intel spec. 29.1.4 "EOI Virtualization".
4698 */
4699 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4700 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4701 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
4702
4703 uint8_t uVector = uSvi;
4704 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
4705
4706 uVector = 0;
4707 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
4708
4709 if (uVector)
4710 Log2(("eoi_virt: next interrupt %#x\n", uVector));
4711 else
4712 Log2(("eoi_virt: no interrupt pending in ISR\n"));
4713
4714 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
4715 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
4716
4717 iemVmxPprVirtualization(pVCpu);
4718 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
4719 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
4720 iemVmxEvalPendingVirtIntrs(pVCpu);
4721 return VINF_SUCCESS;
4722}
4723
4724
4725/**
4726 * Performs self-IPI virtualization.
4727 *
4728 * @returns VBox strict status code.
4729 * @param pVCpu The cross context virtual CPU structure.
4730 */
4731IEM_STATIC VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu)
4732{
4733 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4734 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4735
4736 /*
4737 * We should have already performed the virtual-APIC write to the self-IPI offset
4738 * in the virtual-APIC page. We now perform self-IPI virtualization.
4739 *
4740 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
4741 */
4742 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
4743 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
4744 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
4745 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4746 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4747 if (uVector > uRvi)
4748 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
4749 iemVmxEvalPendingVirtIntrs(pVCpu);
4750 return VINF_SUCCESS;
4751}
4752
4753
4754/**
4755 * Performs VMX APIC-write emulation.
4756 *
4757 * @returns VBox strict status code.
4758 * @param pVCpu The cross context virtual CPU structure.
4759 */
4760IEM_STATIC VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu)
4761{
4762 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4763
4764 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
4765 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4766
4767 /*
4768 * Perform APIC-write emulation based on the virtual-APIC register written.
4769 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4770 */
4771 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
4772 VBOXSTRICTRC rcStrict;
4773 switch (offApicWrite)
4774 {
4775 case XAPIC_OFF_TPR:
4776 {
4777 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
4778 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4779 uTpr &= UINT32_C(0x000000ff);
4780 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
4781 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
4782 rcStrict = iemVmxTprVirtualization(pVCpu);
4783 break;
4784 }
4785
4786 case XAPIC_OFF_EOI:
4787 {
4788 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4789 {
4790 /* Clear VEOI and perform EOI virtualization. */
4791 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
4792 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
4793 rcStrict = iemVmxEoiVirtualization(pVCpu);
4794 }
4795 else
4796 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4797 break;
4798 }
4799
4800 case XAPIC_OFF_ICR_LO:
4801 {
4802 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4803 {
4804 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
4805 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4806 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
4807 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
4808 if ( !(uIcrLo & fIcrLoMb0)
4809 && (uIcrLo & fIcrLoMb1))
4810 {
4811 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
4812 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
4813 }
4814 else
4815 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4816 }
4817 else
4818 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4819 break;
4820 }
4821
4822 case XAPIC_OFF_ICR_HI:
4823 {
4824 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
4825 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
4826 uIcrHi &= UINT32_C(0xff000000);
4827 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
4828 rcStrict = VINF_SUCCESS;
4829 break;
4830 }
4831
4832 default:
4833 {
4834 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
4835 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
4836 break;
4837 }
4838 }
4839
4840 return rcStrict;
4841}
4842
4843
4844/**
4845 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
4846 *
4847 * @param pVCpu The cross context virtual CPU structure.
4848 * @param pszInstr The VMX instruction name (for logging purposes).
4849 */
4850DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
4851{
4852 /*
4853 * Guest Control Registers, Debug Registers, and MSRs.
4854 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
4855 */
4856 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4857 const char * const pszFailure = "VM-exit";
4858 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
4859
4860 /* CR0 reserved bits. */
4861 {
4862 /* CR0 MB1 bits. */
4863 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu);
4864 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
4865 { /* likely */ }
4866 else
4867 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
4868
4869 /* CR0 MBZ bits. */
4870 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
4871 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
4872 { /* likely */ }
4873 else
4874 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
4875
4876 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
4877 if ( !fUnrestrictedGuest
4878 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
4879 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
4880 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
4881 }
4882
4883 /* CR4 reserved bits. */
4884 {
4885 /* CR4 MB1 bits. */
4886 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
4887 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
4888 { /* likely */ }
4889 else
4890 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
4891
4892 /* CR4 MBZ bits. */
4893 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
4894 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
4895 { /* likely */ }
4896 else
4897 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
4898 }
4899
4900 /* DEBUGCTL MSR. */
4901 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4902 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
4903 { /* likely */ }
4904 else
4905 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
4906
4907 /* 64-bit CPU checks. */
4908 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
4909 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
4910 {
4911 if (fGstInLongMode)
4912 {
4913 /* PAE must be set. */
4914 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
4915 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
4916 { /* likely */ }
4917 else
4918 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
4919 }
4920 else
4921 {
4922 /* PCIDE should not be set. */
4923 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
4924 { /* likely */ }
4925 else
4926 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
4927 }
4928
4929 /* CR3. */
4930 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
4931 { /* likely */ }
4932 else
4933 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
4934
4935 /* DR7. */
4936 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4937 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
4938 { /* likely */ }
4939 else
4940 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
4941
4942 /* SYSENTER ESP and SYSENTER EIP. */
4943 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
4944 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
4945 { /* likely */ }
4946 else
4947 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
4948 }
4949
4950 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
4951 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
4952
4953 /* PAT MSR. */
4954 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
4955 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
4956 { /* likely */ }
4957 else
4958 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
4959
4960 /* EFER MSR. */
4961 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4962 {
4963 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
4964 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
4965 { /* likely */ }
4966 else
4967 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
4968
4969 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
4970 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
4971 if ( fGstLma == fGstInLongMode
4972 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
4973 || fGstLma == fGstLme))
4974 { /* likely */ }
4975 else
4976 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
4977 }
4978
4979 /* We don't support IA32_BNDCFGS MSR yet. */
4980 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
4981
4982 NOREF(pszInstr);
4983 NOREF(pszFailure);
4984 return VINF_SUCCESS;
4985}
4986
4987
4988/**
4989 * Checks guest segment registers, LDTR and TR as part of VM-entry.
4990 *
4991 * @param pVCpu The cross context virtual CPU structure.
4992 * @param pszInstr The VMX instruction name (for logging purposes).
4993 */
4994DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
4995{
4996 /*
4997 * Segment registers.
4998 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4999 */
5000 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5001 const char * const pszFailure = "VM-exit";
5002 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5003 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5004 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5005
5006 /* Selectors. */
5007 if ( !fGstInV86Mode
5008 && !fUnrestrictedGuest
5009 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5010 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5011
5012 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5013 {
5014 CPUMSELREG SelReg;
5015 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5016 if (RT_LIKELY(rc == VINF_SUCCESS))
5017 { /* likely */ }
5018 else
5019 return rc;
5020
5021 /*
5022 * Virtual-8086 mode checks.
5023 */
5024 if (fGstInV86Mode)
5025 {
5026 /* Base address. */
5027 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5028 { /* likely */ }
5029 else
5030 {
5031 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5032 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5033 }
5034
5035 /* Limit. */
5036 if (SelReg.u32Limit == 0xffff)
5037 { /* likely */ }
5038 else
5039 {
5040 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5041 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5042 }
5043
5044 /* Attribute. */
5045 if (SelReg.Attr.u == 0xf3)
5046 { /* likely */ }
5047 else
5048 {
5049 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5050 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5051 }
5052
5053 /* We're done; move to checking the next segment. */
5054 continue;
5055 }
5056
5057 /* Checks done by 64-bit CPUs. */
5058 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5059 {
5060 /* Base address. */
5061 if ( iSegReg == X86_SREG_FS
5062 || iSegReg == X86_SREG_GS)
5063 {
5064 if (X86_IS_CANONICAL(SelReg.u64Base))
5065 { /* likely */ }
5066 else
5067 {
5068 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5069 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5070 }
5071 }
5072 else if (iSegReg == X86_SREG_CS)
5073 {
5074 if (!RT_HI_U32(SelReg.u64Base))
5075 { /* likely */ }
5076 else
5077 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5078 }
5079 else
5080 {
5081 if ( SelReg.Attr.n.u1Unusable
5082 || !RT_HI_U32(SelReg.u64Base))
5083 { /* likely */ }
5084 else
5085 {
5086 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5087 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5088 }
5089 }
5090 }
5091
5092 /*
5093 * Checks outside Virtual-8086 mode.
5094 */
5095 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5096 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5097 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5098 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5099 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5100 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5101 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5102 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5103
5104 /* Code or usable segment. */
5105 if ( iSegReg == X86_SREG_CS
5106 || fUsable)
5107 {
5108 /* Reserved bits (bits 31:17 and bits 11:8). */
5109 if (!(SelReg.Attr.u & 0xfffe0f00))
5110 { /* likely */ }
5111 else
5112 {
5113 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5114 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5115 }
5116
5117 /* Descriptor type. */
5118 if (fCodeDataSeg)
5119 { /* likely */ }
5120 else
5121 {
5122 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5123 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5124 }
5125
5126 /* Present. */
5127 if (fPresent)
5128 { /* likely */ }
5129 else
5130 {
5131 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5132 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5133 }
5134
5135 /* Granularity. */
5136 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5137 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5138 { /* likely */ }
5139 else
5140 {
5141 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5142 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5143 }
5144 }
5145
5146 if (iSegReg == X86_SREG_CS)
5147 {
5148 /* Segment Type and DPL. */
5149 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5150 && fUnrestrictedGuest)
5151 {
5152 if (uDpl == 0)
5153 { /* likely */ }
5154 else
5155 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5156 }
5157 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5158 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5159 {
5160 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5161 if (uDpl == AttrSs.n.u2Dpl)
5162 { /* likely */ }
5163 else
5164 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5165 }
5166 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5167 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5168 {
5169 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5170 if (uDpl <= AttrSs.n.u2Dpl)
5171 { /* likely */ }
5172 else
5173 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5174 }
5175 else
5176 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5177
5178 /* Def/Big. */
5179 if ( fGstInLongMode
5180 && fSegLong)
5181 {
5182 if (uDefBig == 0)
5183 { /* likely */ }
5184 else
5185 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5186 }
5187 }
5188 else if (iSegReg == X86_SREG_SS)
5189 {
5190 /* Segment Type. */
5191 if ( !fUsable
5192 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5193 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5194 { /* likely */ }
5195 else
5196 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5197
5198 /* DPL. */
5199 if (!fUnrestrictedGuest)
5200 {
5201 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5202 { /* likely */ }
5203 else
5204 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5205 }
5206 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5207 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5208 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5209 {
5210 if (uDpl == 0)
5211 { /* likely */ }
5212 else
5213 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5214 }
5215 }
5216 else
5217 {
5218 /* DS, ES, FS, GS. */
5219 if (fUsable)
5220 {
5221 /* Segment type. */
5222 if (uSegType & X86_SEL_TYPE_ACCESSED)
5223 { /* likely */ }
5224 else
5225 {
5226 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5227 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5228 }
5229
5230 if ( !(uSegType & X86_SEL_TYPE_CODE)
5231 || (uSegType & X86_SEL_TYPE_READ))
5232 { /* likely */ }
5233 else
5234 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5235
5236 /* DPL. */
5237 if ( !fUnrestrictedGuest
5238 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5239 {
5240 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5241 { /* likely */ }
5242 else
5243 {
5244 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5245 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5246 }
5247 }
5248 }
5249 }
5250 }
5251
5252 /*
5253 * LDTR.
5254 */
5255 {
5256 CPUMSELREG Ldtr;
5257 Ldtr.Sel = pVmcs->GuestLdtr;
5258 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5259 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5260 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5261
5262 if (!Ldtr.Attr.n.u1Unusable)
5263 {
5264 /* Selector. */
5265 if (!(Ldtr.Sel & X86_SEL_LDT))
5266 { /* likely */ }
5267 else
5268 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5269
5270 /* Base. */
5271 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5272 {
5273 if (X86_IS_CANONICAL(Ldtr.u64Base))
5274 { /* likely */ }
5275 else
5276 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5277 }
5278
5279 /* Attributes. */
5280 /* Reserved bits (bits 31:17 and bits 11:8). */
5281 if (!(Ldtr.Attr.u & 0xfffe0f00))
5282 { /* likely */ }
5283 else
5284 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5285
5286 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5287 { /* likely */ }
5288 else
5289 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5290
5291 if (!Ldtr.Attr.n.u1DescType)
5292 { /* likely */ }
5293 else
5294 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5295
5296 if (Ldtr.Attr.n.u1Present)
5297 { /* likely */ }
5298 else
5299 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5300
5301 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5302 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5303 { /* likely */ }
5304 else
5305 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5306 }
5307 }
5308
5309 /*
5310 * TR.
5311 */
5312 {
5313 CPUMSELREG Tr;
5314 Tr.Sel = pVmcs->GuestTr;
5315 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5316 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5317 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5318
5319 /* Selector. */
5320 if (!(Tr.Sel & X86_SEL_LDT))
5321 { /* likely */ }
5322 else
5323 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5324
5325 /* Base. */
5326 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5327 {
5328 if (X86_IS_CANONICAL(Tr.u64Base))
5329 { /* likely */ }
5330 else
5331 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5332 }
5333
5334 /* Attributes. */
5335 /* Reserved bits (bits 31:17 and bits 11:8). */
5336 if (!(Tr.Attr.u & 0xfffe0f00))
5337 { /* likely */ }
5338 else
5339 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5340
5341 if (!Tr.Attr.n.u1Unusable)
5342 { /* likely */ }
5343 else
5344 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5345
5346 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5347 || ( !fGstInLongMode
5348 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5349 { /* likely */ }
5350 else
5351 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5352
5353 if (!Tr.Attr.n.u1DescType)
5354 { /* likely */ }
5355 else
5356 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5357
5358 if (Tr.Attr.n.u1Present)
5359 { /* likely */ }
5360 else
5361 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5362
5363 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5364 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5365 { /* likely */ }
5366 else
5367 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5368 }
5369
5370 NOREF(pszInstr);
5371 NOREF(pszFailure);
5372 return VINF_SUCCESS;
5373}
5374
5375
5376/**
5377 * Checks guest GDTR and IDTR as part of VM-entry.
5378 *
5379 * @param pVCpu The cross context virtual CPU structure.
5380 * @param pszInstr The VMX instruction name (for logging purposes).
5381 */
5382DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5383{
5384 /*
5385 * GDTR and IDTR.
5386 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5387 */
5388 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5389 const char *const pszFailure = "VM-exit";
5390
5391 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5392 {
5393 /* Base. */
5394 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5395 { /* likely */ }
5396 else
5397 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5398
5399 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5400 { /* likely */ }
5401 else
5402 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5403 }
5404
5405 /* Limit. */
5406 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5407 { /* likely */ }
5408 else
5409 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5410
5411 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5412 { /* likely */ }
5413 else
5414 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5415
5416 NOREF(pszInstr);
5417 NOREF(pszFailure);
5418 return VINF_SUCCESS;
5419}
5420
5421
5422/**
5423 * Checks guest RIP and RFLAGS as part of VM-entry.
5424 *
5425 * @param pVCpu The cross context virtual CPU structure.
5426 * @param pszInstr The VMX instruction name (for logging purposes).
5427 */
5428DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5429{
5430 /*
5431 * RIP and RFLAGS.
5432 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5433 */
5434 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5435 const char *const pszFailure = "VM-exit";
5436 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5437
5438 /* RIP. */
5439 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5440 {
5441 X86DESCATTR AttrCs;
5442 AttrCs.u = pVmcs->u32GuestCsAttr;
5443 if ( !fGstInLongMode
5444 || !AttrCs.n.u1Long)
5445 {
5446 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5447 { /* likely */ }
5448 else
5449 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5450 }
5451
5452 if ( fGstInLongMode
5453 && AttrCs.n.u1Long)
5454 {
5455 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5456 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5457 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5458 { /* likely */ }
5459 else
5460 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5461 }
5462 }
5463
5464 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5465 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5466 : pVmcs->u64GuestRFlags.s.Lo;
5467 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5468 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5469 { /* likely */ }
5470 else
5471 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5472
5473 if (!(uGuestRFlags & X86_EFL_VM))
5474 { /* likely */ }
5475 else
5476 {
5477 if ( fGstInLongMode
5478 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5479 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5480 }
5481
5482 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5483 {
5484 if (uGuestRFlags & X86_EFL_IF)
5485 { /* likely */ }
5486 else
5487 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5488 }
5489
5490 NOREF(pszInstr);
5491 NOREF(pszFailure);
5492 return VINF_SUCCESS;
5493}
5494
5495
5496/**
5497 * Checks guest non-register state as part of VM-entry.
5498 *
5499 * @param pVCpu The cross context virtual CPU structure.
5500 * @param pszInstr The VMX instruction name (for logging purposes).
5501 */
5502DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5503{
5504 /*
5505 * Guest non-register state.
5506 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5507 */
5508 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5509 const char *const pszFailure = "VM-exit";
5510
5511 /*
5512 * Activity state.
5513 */
5514 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5515 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5516 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5517 { /* likely */ }
5518 else
5519 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5520
5521 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5522 if ( !AttrSs.n.u2Dpl
5523 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5524 { /* likely */ }
5525 else
5526 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5527
5528 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5529 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5530 {
5531 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5532 { /* likely */ }
5533 else
5534 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5535 }
5536
5537 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5538 {
5539 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5540 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5541 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5542 switch (pVmcs->u32GuestActivityState)
5543 {
5544 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5545 {
5546 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5547 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5548 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5549 && ( uVector == X86_XCPT_DB
5550 || uVector == X86_XCPT_MC))
5551 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5552 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5553 { /* likely */ }
5554 else
5555 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5556 break;
5557 }
5558
5559 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5560 {
5561 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5562 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5563 && uVector == X86_XCPT_MC))
5564 { /* likely */ }
5565 else
5566 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5567 break;
5568 }
5569
5570 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5571 default:
5572 break;
5573 }
5574 }
5575
5576 /*
5577 * Interruptibility state.
5578 */
5579 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5580 { /* likely */ }
5581 else
5582 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5583
5584 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5585 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5586 { /* likely */ }
5587 else
5588 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5589
5590 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5591 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5592 { /* likely */ }
5593 else
5594 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5595
5596 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5597 {
5598 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5599 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5600 {
5601 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5602 { /* likely */ }
5603 else
5604 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5605 }
5606 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5607 {
5608 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5609 { /* likely */ }
5610 else
5611 {
5612 /*
5613 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5614 * We update the Exit qualification only when blocking-by-STI is set
5615 * without blocking-by-MovSS being set. Although in practise it does not
5616 * make much difference since the order of checks are implementation defined.
5617 */
5618 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5619 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5620 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5621 }
5622
5623 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5624 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5625 { /* likely */ }
5626 else
5627 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5628 }
5629 }
5630
5631 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5632 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5633 { /* likely */ }
5634 else
5635 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5636
5637 /* We don't support SGX yet. So enclave-interruption must not be set. */
5638 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5639 { /* likely */ }
5640 else
5641 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5642
5643 /*
5644 * Pending debug exceptions.
5645 */
5646 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5647 ? pVmcs->u64GuestPendingDbgXcpts.u
5648 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5649 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5650 { /* likely */ }
5651 else
5652 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5653
5654 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5655 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5656 {
5657 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5658 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5659 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5660 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5661
5662 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5663 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5664 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5665 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5666 }
5667
5668 /* We don't support RTM (Real-time Transactional Memory) yet. */
5669 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5670 { /* likely */ }
5671 else
5672 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
5673
5674 /*
5675 * VMCS link pointer.
5676 */
5677 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
5678 {
5679 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
5680 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
5681 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
5682 { /* likely */ }
5683 else
5684 {
5685 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5686 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
5687 }
5688
5689 /* Validate the address. */
5690 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
5691 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
5692 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
5693 { /* likely */ }
5694 else
5695 {
5696 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5697 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
5698 }
5699 }
5700
5701 NOREF(pszInstr);
5702 NOREF(pszFailure);
5703 return VINF_SUCCESS;
5704}
5705
5706
5707#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5708/**
5709 * Checks guest PDPTEs as part of VM-entry.
5710 *
5711 * @param pVCpu The cross context virtual CPU structure.
5712 * @param pszInstr The VMX instruction name (for logging purposes).
5713 */
5714IEM_STATIC int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr)
5715{
5716 /*
5717 * Guest PDPTEs.
5718 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
5719 */
5720 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5721 const char * const pszFailure = "VM-exit";
5722
5723 /*
5724 * When EPT is used, we only validate the PAE PDPTEs provided in the VMCS.
5725 * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
5726 */
5727 if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
5728 && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
5729 {
5730 /* Get PDPTEs from the VMCS. */
5731 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
5732 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
5733 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
5734 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
5735 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
5736
5737 /* Check validity of the PDPTEs. */
5738 bool const fValid = PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]);
5739 if (fValid)
5740 { /* likely */ }
5741 else
5742 {
5743 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
5744 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
5745 }
5746 }
5747
5748 NOREF(pszFailure);
5749 NOREF(pszInstr);
5750 return VINF_SUCCESS;
5751}
5752#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
5753
5754
5755/**
5756 * Checks guest-state as part of VM-entry.
5757 *
5758 * @returns VBox status code.
5759 * @param pVCpu The cross context virtual CPU structure.
5760 * @param pszInstr The VMX instruction name (for logging purposes).
5761 */
5762IEM_STATIC int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr)
5763{
5764 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
5765 if (RT_SUCCESS(rc))
5766 {
5767 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
5768 if (RT_SUCCESS(rc))
5769 {
5770 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
5771 if (RT_SUCCESS(rc))
5772 {
5773 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
5774 if (RT_SUCCESS(rc))
5775 {
5776 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
5777#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5778 if (RT_SUCCESS(rc))
5779 rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
5780#endif
5781 }
5782 }
5783 }
5784 }
5785 return rc;
5786}
5787
5788
5789/**
5790 * Checks host-state as part of VM-entry.
5791 *
5792 * @returns VBox status code.
5793 * @param pVCpu The cross context virtual CPU structure.
5794 * @param pszInstr The VMX instruction name (for logging purposes).
5795 */
5796IEM_STATIC int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr)
5797{
5798 /*
5799 * Host Control Registers and MSRs.
5800 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
5801 */
5802 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5803 const char * const pszFailure = "VMFail";
5804
5805 /* CR0 reserved bits. */
5806 {
5807 /* CR0 MB1 bits. */
5808 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu);
5809 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5810 { /* likely */ }
5811 else
5812 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
5813
5814 /* CR0 MBZ bits. */
5815 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5816 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
5817 { /* likely */ }
5818 else
5819 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
5820 }
5821
5822 /* CR4 reserved bits. */
5823 {
5824 /* CR4 MB1 bits. */
5825 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5826 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5827 { /* likely */ }
5828 else
5829 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
5830
5831 /* CR4 MBZ bits. */
5832 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5833 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
5834 { /* likely */ }
5835 else
5836 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
5837 }
5838
5839 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5840 {
5841 /* CR3 reserved bits. */
5842 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5843 { /* likely */ }
5844 else
5845 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
5846
5847 /* SYSENTER ESP and SYSENTER EIP. */
5848 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
5849 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
5850 { /* likely */ }
5851 else
5852 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
5853 }
5854
5855 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5856 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
5857
5858 /* PAT MSR. */
5859 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
5860 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
5861 { /* likely */ }
5862 else
5863 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
5864
5865 /* EFER MSR. */
5866 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5867 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
5868 || !(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
5869 { /* likely */ }
5870 else
5871 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
5872
5873 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
5874 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
5875 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
5876 if ( fHostInLongMode == fHostLma
5877 && fHostInLongMode == fHostLme)
5878 { /* likely */ }
5879 else
5880 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
5881
5882 /*
5883 * Host Segment and Descriptor-Table Registers.
5884 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
5885 */
5886 /* Selector RPL and TI. */
5887 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
5888 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
5889 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
5890 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
5891 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
5892 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
5893 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
5894 { /* likely */ }
5895 else
5896 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
5897
5898 /* CS and TR selectors cannot be 0. */
5899 if ( pVmcs->HostCs
5900 && pVmcs->HostTr)
5901 { /* likely */ }
5902 else
5903 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
5904
5905 /* SS cannot be 0 if 32-bit host. */
5906 if ( fHostInLongMode
5907 || pVmcs->HostSs)
5908 { /* likely */ }
5909 else
5910 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
5911
5912 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5913 {
5914 /* FS, GS, GDTR, IDTR, TR base address. */
5915 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
5916 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
5917 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
5918 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
5919 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
5920 { /* likely */ }
5921 else
5922 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
5923 }
5924
5925 /*
5926 * Host address-space size for 64-bit CPUs.
5927 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
5928 */
5929 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5930 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5931 {
5932 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
5933
5934 /* Logical processor in IA-32e mode. */
5935 if (fCpuInLongMode)
5936 {
5937 if (fHostInLongMode)
5938 {
5939 /* PAE must be set. */
5940 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
5941 { /* likely */ }
5942 else
5943 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
5944
5945 /* RIP must be canonical. */
5946 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
5947 { /* likely */ }
5948 else
5949 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
5950 }
5951 else
5952 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
5953 }
5954 else
5955 {
5956 /* Logical processor is outside IA-32e mode. */
5957 if ( !fGstInLongMode
5958 && !fHostInLongMode)
5959 {
5960 /* PCIDE should not be set. */
5961 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
5962 { /* likely */ }
5963 else
5964 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
5965
5966 /* The high 32-bits of RIP MBZ. */
5967 if (!pVmcs->u64HostRip.s.Hi)
5968 { /* likely */ }
5969 else
5970 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
5971 }
5972 else
5973 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
5974 }
5975 }
5976 else
5977 {
5978 /* Host address-space size for 32-bit CPUs. */
5979 if ( !fGstInLongMode
5980 && !fHostInLongMode)
5981 { /* likely */ }
5982 else
5983 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
5984 }
5985
5986 NOREF(pszInstr);
5987 NOREF(pszFailure);
5988 return VINF_SUCCESS;
5989}
5990
5991
5992#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5993/**
5994 * Checks the EPT pointer VMCS field as part of VM-entry.
5995 *
5996 * @returns VBox status code.
5997 * @param pVCpu The cross context virtual CPU structure.
5998 * @param uEptPtr The EPT pointer to check.
5999 * @param penmVmxDiag Where to store the diagnostic reason on failure (not
6000 * updated on success). Optional, can be NULL.
6001 */
6002IEM_STATIC int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag)
6003{
6004 VMXVDIAG enmVmxDiag;
6005
6006 /* Reserved bits. */
6007 uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
6008 uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
6009 if (uEptPtr & fValidMask)
6010 {
6011 /* Memory Type. */
6012 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
6013 uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
6014 if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
6015 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
6016 || ( fMemType == VMX_EPTP_MEMTYPE_UC
6017 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
6018 {
6019 /*
6020 * Page walk length (PML4).
6021 * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
6022 * of 5 but that seems to be removed from the latest specs. leaving only PML4
6023 * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
6024 */
6025 Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
6026 if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
6027 {
6028 /* Access and dirty bits support in EPT structures. */
6029 if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
6030 || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
6031 return VINF_SUCCESS;
6032
6033 enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
6034 }
6035 else
6036 enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
6037 }
6038 else
6039 enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
6040 }
6041 else
6042 enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
6043
6044 if (penmVmxDiag)
6045 *penmVmxDiag = enmVmxDiag;
6046 return VERR_VMX_VMENTRY_FAILED;
6047}
6048#endif
6049
6050
6051/**
6052 * Checks VMCS controls fields as part of VM-entry.
6053 *
6054 * @returns VBox status code.
6055 * @param pVCpu The cross context virtual CPU structure.
6056 * @param pszInstr The VMX instruction name (for logging purposes).
6057 *
6058 * @remarks This may update secondary-processor based VM-execution control fields
6059 * in the current VMCS if necessary.
6060 */
6061IEM_STATIC int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr)
6062{
6063 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6064 const char * const pszFailure = "VMFail";
6065 bool const fVmxTrueMsrs = RT_BOOL(pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK);
6066
6067 /*
6068 * VM-execution controls.
6069 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6070 */
6071 {
6072 /* Pin-based VM-execution controls. */
6073 {
6074 VMXCTLSMSR const PinCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TruePinCtls
6075 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6076 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6077 { /* likely */ }
6078 else
6079 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6080
6081 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6082 { /* likely */ }
6083 else
6084 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6085 }
6086
6087 /* Processor-based VM-execution controls. */
6088 {
6089 VMXCTLSMSR const ProcCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueProcCtls
6090 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6091 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6092 { /* likely */ }
6093 else
6094 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6095
6096 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6097 { /* likely */ }
6098 else
6099 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6100 }
6101
6102 /* Secondary processor-based VM-execution controls. */
6103 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6104 {
6105 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6106 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6107 { /* likely */ }
6108 else
6109 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6110
6111 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6112 { /* likely */ }
6113 else
6114 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6115 }
6116 else
6117 Assert(!pVmcs->u32ProcCtls2);
6118
6119 /* CR3-target count. */
6120 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6121 { /* likely */ }
6122 else
6123 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6124
6125 /* I/O bitmaps physical addresses. */
6126 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6127 {
6128 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6129 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6130 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6131 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6132 { /* likely */ }
6133 else
6134 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6135
6136 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6137 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6138 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6139 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6140 { /* likely */ }
6141 else
6142 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6143 }
6144
6145 /* MSR bitmap physical address. */
6146 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6147 {
6148 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6149 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6150 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6151 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6152 { /* likely */ }
6153 else
6154 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6155 }
6156
6157 /* TPR shadow related controls. */
6158 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6159 {
6160 /* Virtual-APIC page physical address. */
6161 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6162 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6163 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6164 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6165 { /* likely */ }
6166 else
6167 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6168
6169 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6170 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6171 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6172 { /* likely */ }
6173 else
6174 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6175
6176 /* The rest done XXX document */
6177 }
6178 else
6179 {
6180 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6181 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6182 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6183 { /* likely */ }
6184 else
6185 {
6186 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6187 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6188 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6189 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6190 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6191 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6192 }
6193 }
6194
6195 /* NMI exiting and virtual-NMIs. */
6196 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6197 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6198 { /* likely */ }
6199 else
6200 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6201
6202 /* Virtual-NMIs and NMI-window exiting. */
6203 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6204 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6205 { /* likely */ }
6206 else
6207 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6208
6209 /* Virtualize APIC accesses. */
6210 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6211 {
6212 /* APIC-access physical address. */
6213 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6214 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6215 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6216 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6217 { /* likely */ }
6218 else
6219 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6220
6221 /*
6222 * Disallow APIC-access page and virtual-APIC page from being the same address.
6223 * Note! This is not an Intel requirement, but one imposed by our implementation.
6224 */
6225 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6226 * redirecting accesses between the APIC-access page and the virtual-APIC
6227 * page. If any nested hypervisor requires this, we can implement it later. */
6228 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6229 {
6230 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6231 if (GCPhysVirtApic != GCPhysApicAccess)
6232 { /* likely */ }
6233 else
6234 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6235 }
6236 }
6237
6238 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6239 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6240 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6241 { /* likely */ }
6242 else
6243 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6244
6245 /* Virtual-interrupt delivery requires external interrupt exiting. */
6246 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6247 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6248 { /* likely */ }
6249 else
6250 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6251
6252 /* VPID. */
6253 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6254 || pVmcs->u16Vpid != 0)
6255 { /* likely */ }
6256 else
6257 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6258
6259#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6260 /* Extended-Page-Table Pointer (EPTP). */
6261 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6262 {
6263 VMXVDIAG enmVmxDiag;
6264 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
6265 if (RT_SUCCESS(rc))
6266 { /* likely */ }
6267 else
6268 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmVmxDiag);
6269 }
6270#else
6271 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6272 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST));
6273#endif
6274 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6275 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6276 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6277 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
6278 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)); /* We don't support Pause-loop exiting yet. */
6279 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6280
6281 /* VMCS shadowing. */
6282 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6283 {
6284 /* VMREAD-bitmap physical address. */
6285 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6286 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6287 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6288 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6289 { /* likely */ }
6290 else
6291 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6292
6293 /* VMWRITE-bitmap physical address. */
6294 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6295 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6296 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6297 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6298 { /* likely */ }
6299 else
6300 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6301 }
6302 }
6303
6304 /*
6305 * VM-exit controls.
6306 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6307 */
6308 {
6309 VMXCTLSMSR const ExitCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueExitCtls
6310 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6311 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6312 { /* likely */ }
6313 else
6314 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6315
6316 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6317 { /* likely */ }
6318 else
6319 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6320
6321 /* Save preemption timer without activating it. */
6322 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6323 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6324 { /* likely */ }
6325 else
6326 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6327
6328 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6329 if (pVmcs->u32ExitMsrStoreCount)
6330 {
6331 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6332 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6333 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6334 { /* likely */ }
6335 else
6336 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6337 }
6338
6339 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6340 if (pVmcs->u32ExitMsrLoadCount)
6341 {
6342 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6343 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6344 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6345 { /* likely */ }
6346 else
6347 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6348 }
6349 }
6350
6351 /*
6352 * VM-entry controls.
6353 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6354 */
6355 {
6356 VMXCTLSMSR const EntryCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueEntryCtls
6357 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6358 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6359 { /* likely */ }
6360 else
6361 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6362
6363 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6364 { /* likely */ }
6365 else
6366 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6367
6368 /* Event injection. */
6369 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6370 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6371 {
6372 /* Type and vector. */
6373 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6374 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6375 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6376 if ( !uRsvd
6377 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6378 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6379 { /* likely */ }
6380 else
6381 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6382
6383 /* Exception error code. */
6384 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6385 {
6386 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6387 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6388 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6389 { /* likely */ }
6390 else
6391 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6392
6393 /* Exceptions that provide an error code. */
6394 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6395 && ( uVector == X86_XCPT_DF
6396 || uVector == X86_XCPT_TS
6397 || uVector == X86_XCPT_NP
6398 || uVector == X86_XCPT_SS
6399 || uVector == X86_XCPT_GP
6400 || uVector == X86_XCPT_PF
6401 || uVector == X86_XCPT_AC))
6402 { /* likely */ }
6403 else
6404 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6405
6406 /* Exception error-code reserved bits. */
6407 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6408 { /* likely */ }
6409 else
6410 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6411
6412 /* Injecting a software interrupt, software exception or privileged software exception. */
6413 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6414 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6415 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6416 {
6417 /* Instruction length must be in the range 0-15. */
6418 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6419 { /* likely */ }
6420 else
6421 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6422
6423 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6424 if ( pVmcs->u32EntryInstrLen != 0
6425 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6426 { /* likely */ }
6427 else
6428 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6429 }
6430 }
6431 }
6432
6433 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6434 if (pVmcs->u32EntryMsrLoadCount)
6435 {
6436 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6437 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6438 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6439 { /* likely */ }
6440 else
6441 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6442 }
6443
6444 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6445 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6446 }
6447
6448 NOREF(pszInstr);
6449 NOREF(pszFailure);
6450 return VINF_SUCCESS;
6451}
6452
6453
6454/**
6455 * Loads the guest control registers, debug register and some MSRs as part of
6456 * VM-entry.
6457 *
6458 * @param pVCpu The cross context virtual CPU structure.
6459 */
6460IEM_STATIC void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu)
6461{
6462 /*
6463 * Load guest control registers, debug registers and MSRs.
6464 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6465 */
6466 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6467
6468 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6469 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6470 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6471 pVCpu->cpum.GstCtx.cr0 = uGstCr0;
6472 pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
6473 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6474
6475 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6476 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6477
6478 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6479 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6480 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6481
6482 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6483 {
6484 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6485
6486 /* EFER MSR. */
6487 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6488 {
6489 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6490 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6491 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6492 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6493 if (fGstInLongMode)
6494 {
6495 /* If the nested-guest is in long mode, LMA and LME are both set. */
6496 Assert(fGstPaging);
6497 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6498 }
6499 else
6500 {
6501 /*
6502 * If the nested-guest is outside long mode:
6503 * - With paging: LMA is cleared, LME is cleared.
6504 * - Without paging: LMA is cleared, LME is left unmodified.
6505 */
6506 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6507 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6508 }
6509 }
6510 /* else: see below. */
6511 }
6512
6513 /* PAT MSR. */
6514 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6515 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6516
6517 /* EFER MSR. */
6518 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6519 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6520
6521 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6522 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6523
6524 /* We don't support IA32_BNDCFGS MSR yet. */
6525 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6526
6527 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6528}
6529
6530
6531/**
6532 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6533 *
6534 * @param pVCpu The cross context virtual CPU structure.
6535 */
6536IEM_STATIC void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu)
6537{
6538 /*
6539 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6540 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6541 */
6542 /* CS, SS, ES, DS, FS, GS. */
6543 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6544 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6545 {
6546 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6547 CPUMSELREG VmcsSelReg;
6548 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6549 AssertRC(rc); NOREF(rc);
6550 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6551 {
6552 pGstSelReg->Sel = VmcsSelReg.Sel;
6553 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6554 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6555 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6556 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6557 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6558 }
6559 else
6560 {
6561 pGstSelReg->Sel = VmcsSelReg.Sel;
6562 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6563 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6564 switch (iSegReg)
6565 {
6566 case X86_SREG_CS:
6567 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6568 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6569 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6570 break;
6571
6572 case X86_SREG_SS:
6573 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6574 pGstSelReg->u32Limit = 0;
6575 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6576 break;
6577
6578 case X86_SREG_ES:
6579 case X86_SREG_DS:
6580 pGstSelReg->u64Base = 0;
6581 pGstSelReg->u32Limit = 0;
6582 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6583 break;
6584
6585 case X86_SREG_FS:
6586 case X86_SREG_GS:
6587 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6588 pGstSelReg->u32Limit = 0;
6589 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6590 break;
6591 }
6592 Assert(pGstSelReg->Attr.n.u1Unusable);
6593 }
6594 }
6595
6596 /* LDTR. */
6597 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6598 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6599 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6600 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6601 {
6602 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6603 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6604 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6605 }
6606 else
6607 {
6608 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6609 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6610 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6611 }
6612
6613 /* TR. */
6614 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6615 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6616 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6617 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6618 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6619 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6620 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6621
6622 /* GDTR. */
6623 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6624 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6625
6626 /* IDTR. */
6627 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6628 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6629}
6630
6631
6632/**
6633 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6634 *
6635 * @returns VBox status code.
6636 * @param pVCpu The cross context virtual CPU structure.
6637 * @param pszInstr The VMX instruction name (for logging purposes).
6638 */
6639IEM_STATIC int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr)
6640{
6641 /*
6642 * Load guest MSRs.
6643 * See Intel spec. 26.4 "Loading MSRs".
6644 */
6645 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6646 const char *const pszFailure = "VM-exit";
6647
6648 /*
6649 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6650 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6651 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6652 */
6653 uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
6654 if (!cMsrs)
6655 return VINF_SUCCESS;
6656
6657 /*
6658 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
6659 * exceeded including possibly raising #MC exceptions during VMX transition. Our
6660 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
6661 */
6662 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
6663 if (fIsMsrCountValid)
6664 { /* likely */ }
6665 else
6666 {
6667 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
6668 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
6669 }
6670
6671 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
6672 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
6673 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
6674 if (RT_SUCCESS(rc))
6675 {
6676 PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
6677 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
6678 {
6679 if ( !pMsr->u32Reserved
6680 && pMsr->u32Msr != MSR_K8_FS_BASE
6681 && pMsr->u32Msr != MSR_K8_GS_BASE
6682 && pMsr->u32Msr != MSR_K6_EFER
6683 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
6684 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
6685 {
6686 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
6687 if (rcStrict == VINF_SUCCESS)
6688 continue;
6689
6690 /*
6691 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
6692 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
6693 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
6694 * further by our own, specific diagnostic code. Later, we can try implement handling of the
6695 * MSR in ring-0 if possible, or come up with a better, generic solution.
6696 */
6697 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6698 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
6699 ? kVmxVDiag_Vmentry_MsrLoadRing3
6700 : kVmxVDiag_Vmentry_MsrLoad;
6701 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
6702 }
6703 else
6704 {
6705 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6706 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
6707 }
6708 }
6709 }
6710 else
6711 {
6712 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
6713 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
6714 }
6715
6716 NOREF(pszInstr);
6717 NOREF(pszFailure);
6718 return VINF_SUCCESS;
6719}
6720
6721
6722/**
6723 * Loads the guest-state non-register state as part of VM-entry.
6724 *
6725 * @returns VBox status code.
6726 * @param pVCpu The cross context virtual CPU structure.
6727 * @param pszInstr The VMX instruction name (for logging purposes).
6728 *
6729 * @remarks This must be called only after loading the nested-guest register state
6730 * (especially nested-guest RIP).
6731 */
6732IEM_STATIC int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
6733{
6734 /*
6735 * Load guest non-register state.
6736 * See Intel spec. 26.6 "Special Features of VM Entry"
6737 */
6738 const char *const pszFailure = "VM-exit";
6739 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6740
6741 /*
6742 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
6743 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
6744 *
6745 * See Intel spec. 26.6.1 "Interruptibility State".
6746 */
6747 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
6748 if ( !fEntryVectoring
6749 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
6750 EMSetInhibitInterruptsPC(pVCpu, pVmcs->u64GuestRip.u);
6751 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6752 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6753
6754 /* NMI blocking. */
6755 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6756 {
6757 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6758 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
6759 else
6760 {
6761 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
6762 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6763 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6764 }
6765 }
6766 else
6767 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
6768
6769 /* SMI blocking is irrelevant. We don't support SMIs yet. */
6770
6771 /*
6772 * Set PGM's copy of the EPT pointer.
6773 * The EPTP has already been validated while checking guest state.
6774 *
6775 * It is important to do this prior to mapping PAE PDPTEs (below).
6776 */
6777 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6778 PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
6779
6780 /*
6781 * Load the guest's PAE PDPTEs.
6782 */
6783 if (iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
6784 {
6785 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6786 {
6787 /*
6788 * With EPT, we've already validated these while checking the guest state.
6789 * Just load them directly from the VMCS here.
6790 */
6791 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
6792 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
6793 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
6794 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
6795 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
6796 AssertCompile(RT_ELEMENTS(aPaePdptes) == RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes));
6797 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.GstCtx.aPaePdpes); i++)
6798 pVCpu->cpum.GstCtx.aPaePdpes[i].u = aPaePdptes[i].u;
6799 }
6800 else
6801 {
6802 /*
6803 * Without EPT, we must load the PAE PDPTEs referenced by CR3.
6804 * This involves loading (and mapping) CR3 and validating them now.
6805 */
6806 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
6807 if (RT_SUCCESS(rc))
6808 { /* likely */ }
6809 else
6810 {
6811 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6812 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
6813 }
6814 }
6815 }
6816
6817 /* VPID is irrelevant. We don't support VPID yet. */
6818
6819 /* Clear address-range monitoring. */
6820 EMMonitorWaitClear(pVCpu);
6821
6822 return VINF_SUCCESS;
6823}
6824
6825
6826/**
6827 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
6828 *
6829 * @param pVCpu The cross context virtual CPU structure.
6830 * @param pszInstr The VMX instruction name (for logging purposes).
6831 *
6832 * @remarks This assumes various VMCS related data structure pointers have already
6833 * been verified prior to calling this function.
6834 */
6835IEM_STATIC int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr)
6836{
6837 const char *const pszFailure = "VM-exit";
6838 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6839
6840 /*
6841 * Virtualize APIC accesses.
6842 */
6843 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6844 {
6845 /* APIC-access physical address. */
6846 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6847
6848 /*
6849 * Register the handler for the APIC-access page.
6850 *
6851 * We don't deregister the APIC-access page handler during the VM-exit as a different
6852 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
6853 *
6854 * We leave the page registered until the first access that happens outside VMX non-root
6855 * mode. Guest software is allowed to access structures such as the APIC-access page
6856 * only when no logical processor with a current VMCS references it in VMX non-root mode,
6857 * otherwise it can lead to unpredictable behavior including guest triple-faults.
6858 *
6859 * See Intel spec. 24.11.4 "Software Access to Related Structures".
6860 */
6861 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6862 {
6863 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6864 int rc = PGMHandlerPhysicalRegister(pVM, GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
6865 pVM->iem.s.hVmxApicAccessPage, 0 /*uUser*/, NULL /*pszDesc*/);
6866 if (RT_SUCCESS(rc))
6867 { /* likely */ }
6868 else
6869 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
6870 }
6871 }
6872
6873 /*
6874 * VMCS shadowing.
6875 */
6876 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6877 {
6878 /* Read the VMREAD-bitmap. */
6879 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6880 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
6881 GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
6882 if (RT_SUCCESS(rc))
6883 { /* likely */ }
6884 else
6885 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
6886
6887 /* Read the VMWRITE-bitmap. */
6888 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
6889 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
6890 GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
6891 if (RT_SUCCESS(rc))
6892 { /* likely */ }
6893 else
6894 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
6895 }
6896
6897 /*
6898 * I/O bitmaps.
6899 */
6900 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6901 {
6902 /* Read the IO bitmap A. */
6903 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6904 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
6905 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
6906 if (RT_SUCCESS(rc))
6907 { /* likely */ }
6908 else
6909 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys);
6910
6911 /* Read the IO bitmap B. */
6912 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6913 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
6914 GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
6915 if (RT_SUCCESS(rc))
6916 { /* likely */ }
6917 else
6918 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys);
6919 }
6920
6921 /*
6922 * TPR shadow and Virtual-APIC page.
6923 */
6924 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6925 {
6926 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
6927 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6928 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6929 {
6930 /* Read the VTPR from the virtual-APIC page. */
6931 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6932 uint8_t u8VTpr;
6933 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
6934 if (RT_SUCCESS(rc))
6935 { /* likely */ }
6936 else
6937 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
6938
6939 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
6940 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
6941 { /* likely */ }
6942 else
6943 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
6944 }
6945 }
6946
6947 /*
6948 * VMCS link pointer.
6949 */
6950 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
6951 {
6952 /* Read the VMCS-link pointer from guest memory. */
6953 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
6954 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
6955 GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
6956 if (RT_SUCCESS(rc))
6957 { /* likely */ }
6958 else
6959 {
6960 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6961 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
6962 }
6963
6964 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
6965 if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
6966 { /* likely */ }
6967 else
6968 {
6969 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6970 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
6971 }
6972
6973 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
6974 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6975 || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
6976 { /* likely */ }
6977 else
6978 {
6979 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6980 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
6981 }
6982
6983 /* Update our cache of the guest physical address of the shadow VMCS. */
6984 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
6985 }
6986
6987 /*
6988 * MSR bitmap.
6989 */
6990 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6991 {
6992 /* Read the MSR bitmap. */
6993 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6994 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
6995 GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
6996 if (RT_SUCCESS(rc))
6997 { /* likely */ }
6998 else
6999 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
7000 }
7001
7002 NOREF(pszFailure);
7003 NOREF(pszInstr);
7004 return VINF_SUCCESS;
7005}
7006
7007
7008/**
7009 * Loads the guest-state as part of VM-entry.
7010 *
7011 * @returns VBox status code.
7012 * @param pVCpu The cross context virtual CPU structure.
7013 * @param pszInstr The VMX instruction name (for logging purposes).
7014 *
7015 * @remarks This must be done after all the necessary steps prior to loading of
7016 * guest-state (e.g. checking various VMCS state).
7017 */
7018IEM_STATIC int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr)
7019{
7020 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
7021 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7022
7023 /* Load guest segment registers. */
7024 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7025
7026 /*
7027 * Load guest RIP, RSP and RFLAGS.
7028 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7029 */
7030 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7031 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7032 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7033 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7034
7035 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7036 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7037 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7038
7039 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
7040 int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
7041 if (rc == VINF_SUCCESS)
7042 { /* likely */ }
7043 else
7044 return rc;
7045
7046 /* Load VMX related structures and state referenced by the VMCS. */
7047 rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
7048 if (rc == VINF_SUCCESS)
7049 { /* likely */ }
7050 else
7051 return rc;
7052
7053 NOREF(pszInstr);
7054 return VINF_SUCCESS;
7055}
7056
7057
7058/**
7059 * Returns whether there are is a pending debug exception on VM-entry.
7060 *
7061 * @param pVCpu The cross context virtual CPU structure.
7062 * @param pszInstr The VMX instruction name (for logging purposes).
7063 */
7064IEM_STATIC bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr)
7065{
7066 /*
7067 * Pending debug exceptions.
7068 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7069 */
7070 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7071 Assert(pVmcs);
7072
7073 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7074 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7075 if (fPendingDbgXcpt)
7076 {
7077 uint8_t uEntryIntInfoType;
7078 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7079 if (fEntryVectoring)
7080 {
7081 switch (uEntryIntInfoType)
7082 {
7083 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7084 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7085 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7086 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7087 fPendingDbgXcpt = false;
7088 break;
7089
7090 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7091 {
7092 /*
7093 * Whether the pending debug exception for software exceptions other than
7094 * #BP and #OF is delivered after injecting the exception or is discard
7095 * is CPU implementation specific. We will discard them (easier).
7096 */
7097 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7098 if ( uVector != X86_XCPT_BP
7099 && uVector != X86_XCPT_OF)
7100 fPendingDbgXcpt = false;
7101 RT_FALL_THRU();
7102 }
7103 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7104 {
7105 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7106 fPendingDbgXcpt = false;
7107 break;
7108 }
7109 }
7110 }
7111 else
7112 {
7113 /*
7114 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7115 * pending debug exception is held pending or is discarded is CPU implementation
7116 * specific. We will discard them (easier).
7117 */
7118 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7119 fPendingDbgXcpt = false;
7120
7121 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7122 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7123 fPendingDbgXcpt = false;
7124 }
7125 }
7126
7127 NOREF(pszInstr);
7128 return fPendingDbgXcpt;
7129}
7130
7131
7132/**
7133 * Set up the monitor-trap flag (MTF).
7134 *
7135 * @param pVCpu The cross context virtual CPU structure.
7136 * @param pszInstr The VMX instruction name (for logging purposes).
7137 */
7138IEM_STATIC void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr)
7139{
7140 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7141 Assert(pVmcs);
7142 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7143 {
7144 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7145 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7146 }
7147 else
7148 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7149 NOREF(pszInstr);
7150}
7151
7152
7153/**
7154 * Sets up NMI-window exiting.
7155 *
7156 * @param pVCpu The cross context virtual CPU structure.
7157 * @param pszInstr The VMX instruction name (for logging purposes).
7158 */
7159IEM_STATIC void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr)
7160{
7161 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7162 Assert(pVmcs);
7163 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7164 {
7165 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7166 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7167 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7168 }
7169 else
7170 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7171 NOREF(pszInstr);
7172}
7173
7174
7175/**
7176 * Sets up interrupt-window exiting.
7177 *
7178 * @param pVCpu The cross context virtual CPU structure.
7179 * @param pszInstr The VMX instruction name (for logging purposes).
7180 */
7181IEM_STATIC void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr)
7182{
7183 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7184 Assert(pVmcs);
7185 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7186 {
7187 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7188 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7189 }
7190 else
7191 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7192 NOREF(pszInstr);
7193}
7194
7195
7196/**
7197 * Set up the VMX-preemption timer.
7198 *
7199 * @param pVCpu The cross context virtual CPU structure.
7200 * @param pszInstr The VMX instruction name (for logging purposes).
7201 */
7202IEM_STATIC void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr)
7203{
7204 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7205 Assert(pVmcs);
7206 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7207 {
7208 /*
7209 * If the timer is 0, we must cause a VM-exit before executing the first
7210 * nested-guest instruction. So we can flag as though the timer has already
7211 * expired and we will check and cause a VM-exit at the right priority elsewhere
7212 * in the code.
7213 */
7214 uint64_t uEntryTick;
7215 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7216 if (uPreemptTimer)
7217 {
7218 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7219 AssertRC(rc);
7220 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7221 }
7222 else
7223 {
7224 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7225 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7226 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7227 }
7228
7229 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7230 }
7231 else
7232 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7233
7234 NOREF(pszInstr);
7235}
7236
7237
7238/**
7239 * Injects an event using TRPM given a VM-entry interruption info. and related
7240 * fields.
7241 *
7242 * @param pVCpu The cross context virtual CPU structure.
7243 * @param pszInstr The VMX instruction name (for logging purposes).
7244 * @param uEntryIntInfo The VM-entry interruption info.
7245 * @param uErrCode The error code associated with the event if any.
7246 * @param cbInstr The VM-entry instruction length (for software
7247 * interrupts and software exceptions). Pass 0
7248 * otherwise.
7249 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7250 */
7251IEM_STATIC void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7252 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress)
7253{
7254 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7255
7256 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7257 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7258 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7259
7260 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7261
7262 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7263 AssertRC(rc);
7264 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7265
7266 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7267 {
7268 TRPMSetErrorCode(pVCpu, uErrCode);
7269 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7270 }
7271
7272 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7273 {
7274 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7275 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7276 }
7277 else
7278 {
7279 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
7280 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
7281 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7282 {
7283 TRPMSetInstrLength(pVCpu, cbInstr);
7284 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7285 }
7286 }
7287
7288 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7289 {
7290 TRPMSetTrapDueToIcebp(pVCpu);
7291 Log(("%s: Injecting: icebp\n", pszInstr));
7292 }
7293
7294 NOREF(pszInstr);
7295}
7296
7297
7298/**
7299 * Performs event injection (if any) as part of VM-entry.
7300 *
7301 * @param pVCpu The cross context virtual CPU structure.
7302 * @param pszInstr The VMX instruction name (for logging purposes).
7303 */
7304IEM_STATIC void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr)
7305{
7306 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7307
7308 /*
7309 * Inject events.
7310 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7311 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7312 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7313 * the actually delivery of this event.
7314 *
7315 * See Intel spec. 26.5 "Event Injection".
7316 */
7317 uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
7318 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7319
7320 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7321 if (fEntryIntInfoValid)
7322 {
7323 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7324 {
7325 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7326 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7327 }
7328 else
7329 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7330 pVCpu->cpum.GstCtx.cr2);
7331
7332 /*
7333 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7334 *
7335 * However, we do it here on VM-entry as well because while it isn't visible to guest
7336 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7337 * execution using hardware-assisted VMX, it will not be try to inject the event again.
7338 *
7339 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7340 */
7341 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7342 }
7343 else
7344 {
7345 /*
7346 * Inject any pending guest debug exception.
7347 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7348 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7349 */
7350 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7351 if (fPendingDbgXcpt)
7352 {
7353 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7354 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7355 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7356 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7357 0 /* GCPtrFaultAddress */);
7358 }
7359 }
7360
7361 NOREF(pszInstr);
7362}
7363
7364
7365/**
7366 * Initializes all read-only VMCS fields as part of VM-entry.
7367 *
7368 * @param pVCpu The cross context virtual CPU structure.
7369 */
7370IEM_STATIC void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu)
7371{
7372 /*
7373 * Any VMCS field which we do not establish on every VM-exit but may potentially
7374 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7375 * specified to be undefined, needs to be initialized here.
7376 *
7377 * Thus, it is especially important to clear the Exit qualification field
7378 * since it must be zero for VM-exits where it is not used. Similarly, the
7379 * VM-exit interruption information field's valid bit needs to be cleared for
7380 * the same reasons.
7381 */
7382 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7383 Assert(pVmcs);
7384
7385 /* 16-bit (none currently). */
7386 /* 32-bit. */
7387 pVmcs->u32RoVmInstrError = 0;
7388 pVmcs->u32RoExitReason = 0;
7389 pVmcs->u32RoExitIntInfo = 0;
7390 pVmcs->u32RoExitIntErrCode = 0;
7391 pVmcs->u32RoIdtVectoringInfo = 0;
7392 pVmcs->u32RoIdtVectoringErrCode = 0;
7393 pVmcs->u32RoExitInstrLen = 0;
7394 pVmcs->u32RoExitInstrInfo = 0;
7395
7396 /* 64-bit. */
7397 pVmcs->u64RoGuestPhysAddr.u = 0;
7398
7399 /* Natural-width. */
7400 pVmcs->u64RoExitQual.u = 0;
7401 pVmcs->u64RoIoRcx.u = 0;
7402 pVmcs->u64RoIoRsi.u = 0;
7403 pVmcs->u64RoIoRdi.u = 0;
7404 pVmcs->u64RoIoRip.u = 0;
7405 pVmcs->u64RoGuestLinearAddr.u = 0;
7406}
7407
7408
7409/**
7410 * VMLAUNCH/VMRESUME instruction execution worker.
7411 *
7412 * @returns Strict VBox status code.
7413 * @param pVCpu The cross context virtual CPU structure.
7414 * @param cbInstr The instruction length in bytes.
7415 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7416 * VMXINSTRID_VMRESUME).
7417 *
7418 * @remarks Common VMX instruction checks are already expected to by the caller,
7419 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7420 */
7421IEM_STATIC VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
7422{
7423# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7424 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7425 return VINF_EM_RAW_EMULATE_INSTR;
7426# else
7427 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7428 || uInstrId == VMXINSTRID_VMRESUME);
7429 const char *pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7430
7431 /* Nested-guest intercept. */
7432 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7433 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7434
7435 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7436
7437 /*
7438 * Basic VM-entry checks.
7439 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7440 * The checks following that do not have to follow a specific order.
7441 *
7442 * See Intel spec. 26.1 "Basic VM-entry Checks".
7443 */
7444
7445 /* CPL. */
7446 if (pVCpu->iem.s.uCpl == 0)
7447 { /* likely */ }
7448 else
7449 {
7450 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7451 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7452 return iemRaiseGeneralProtectionFault0(pVCpu);
7453 }
7454
7455 /* Current VMCS valid. */
7456 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7457 { /* likely */ }
7458 else
7459 {
7460 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7461 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7462 iemVmxVmFailInvalid(pVCpu);
7463 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7464 return VINF_SUCCESS;
7465 }
7466
7467 /* Current VMCS is not a shadow VMCS. */
7468 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
7469 { /* likely */ }
7470 else
7471 {
7472 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7473 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7474 iemVmxVmFailInvalid(pVCpu);
7475 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7476 return VINF_SUCCESS;
7477 }
7478
7479 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7480 * use block-by-STI here which is not quite correct. */
7481 if ( !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
7482 || pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
7483 { /* likely */ }
7484 else
7485 {
7486 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7487 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7488 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7489 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7490 return VINF_SUCCESS;
7491 }
7492
7493 if (uInstrId == VMXINSTRID_VMLAUNCH)
7494 {
7495 /* VMLAUNCH with non-clear VMCS. */
7496 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7497 { /* likely */ }
7498 else
7499 {
7500 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7501 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7502 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7503 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7504 return VINF_SUCCESS;
7505 }
7506 }
7507 else
7508 {
7509 /* VMRESUME with non-launched VMCS. */
7510 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7511 { /* likely */ }
7512 else
7513 {
7514 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7515 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7516 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7517 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7518 return VINF_SUCCESS;
7519 }
7520 }
7521
7522 /*
7523 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7524 * while entering VMX non-root mode. We do some of this while checking VM-execution
7525 * controls. The nested hypervisor should not make assumptions and cannot expect
7526 * predictable behavior if changes to these structures are made in guest memory while
7527 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7528 * modify them anyway as we cache them in host memory.
7529 *
7530 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7531 */
7532 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7533 Assert(pVmcs);
7534 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7535
7536 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7537 if (RT_SUCCESS(rc))
7538 {
7539 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7540 if (RT_SUCCESS(rc))
7541 {
7542 /*
7543 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7544 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7545 * ones that may occur during VM-entry below).
7546 */
7547 iemVmxVmentryInitReadOnlyFields(pVCpu);
7548
7549 /*
7550 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7551 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7552 * VM-exit when required.
7553 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7554 */
7555 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7556
7557 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7558 if (RT_SUCCESS(rc))
7559 {
7560 /*
7561 * We've now entered nested-guest execution.
7562 *
7563 * It is important do this prior to loading the guest state because
7564 * as part of loading the guest state, PGM (and perhaps other components
7565 * in the future) relies on detecting whether VMX non-root mode has been
7566 * entered.
7567 */
7568 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7569
7570 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7571 if (RT_SUCCESS(rc))
7572 {
7573 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7574 if (RT_SUCCESS(rc))
7575 {
7576 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7577
7578 /* VMLAUNCH instruction must update the VMCS launch state. */
7579 if (uInstrId == VMXINSTRID_VMLAUNCH)
7580 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7581
7582 /* Perform the VMX transition (PGM updates). */
7583 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
7584 if (rcStrict == VINF_SUCCESS)
7585 { /* likely */ }
7586 else if (RT_SUCCESS(rcStrict))
7587 {
7588 Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
7589 VBOXSTRICTRC_VAL(rcStrict)));
7590 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7591 }
7592 else
7593 {
7594 Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7595 return rcStrict;
7596 }
7597
7598 /* Paranoia. */
7599 Assert(rcStrict == VINF_SUCCESS);
7600
7601 /*
7602 * The priority of potential VM-exits during VM-entry is important.
7603 * The priorities of VM-exits and events are listed from highest
7604 * to lowest as follows:
7605 *
7606 * 1. Event injection.
7607 * 2. Trap on task-switch (T flag set in TSS).
7608 * 3. TPR below threshold / APIC-write.
7609 * 4. SMI, INIT.
7610 * 5. MTF exit.
7611 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7612 * 7. VMX-preemption timer.
7613 * 9. NMI-window exit.
7614 * 10. NMI injection.
7615 * 11. Interrupt-window exit.
7616 * 12. Virtual-interrupt injection.
7617 * 13. Interrupt injection.
7618 * 14. Process next instruction (fetch, decode, execute).
7619 */
7620
7621 /* Setup VMX-preemption timer. */
7622 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7623
7624 /* Setup monitor-trap flag. */
7625 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7626
7627 /* Setup NMI-window exiting. */
7628 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7629
7630 /* Setup interrupt-window exiting. */
7631 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7632
7633 /*
7634 * Inject any event that the nested hypervisor wants to inject.
7635 * Note! We cannot immediately perform the event injection here as we may have
7636 * pending PGM operations to perform due to switching page tables and/or
7637 * mode.
7638 */
7639 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7640
7641# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7642 /* Reschedule to IEM-only execution of the nested-guest. */
7643 LogFlow(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7644 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7645 if (rcSched != VINF_SUCCESS)
7646 iemSetPassUpStatus(pVCpu, rcSched);
7647# endif
7648
7649 /* Finally, done. */
7650 LogFlow(("%s: cs:rip=%#04x:%#RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64 (%#RX64)\n",
7651 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
7652 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
7653 pVCpu->cpum.GstCtx.msrEFER, pVmcs->u64GuestEferMsr.u));
7654 return VINF_SUCCESS;
7655 }
7656 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7657 }
7658 }
7659 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7660 }
7661
7662 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
7663 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7664 return VINF_SUCCESS;
7665 }
7666
7667 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
7668 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7669 return VINF_SUCCESS;
7670# endif
7671}
7672
7673
7674/**
7675 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
7676 * (causes a VM-exit) or not.
7677 *
7678 * @returns @c true if the instruction is intercepted, @c false otherwise.
7679 * @param pVCpu The cross context virtual CPU structure.
7680 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
7681 * VMX_EXIT_WRMSR).
7682 * @param idMsr The MSR.
7683 */
7684IEM_STATIC bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr)
7685{
7686 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7687 Assert( uExitReason == VMX_EXIT_RDMSR
7688 || uExitReason == VMX_EXIT_WRMSR);
7689
7690 /* Consult the MSR bitmap if the feature is supported. */
7691 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7692 Assert(pVmcs);
7693 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7694 {
7695 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
7696 if (uExitReason == VMX_EXIT_RDMSR)
7697 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
7698 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
7699 }
7700
7701 /* Without MSR bitmaps, all MSR accesses are intercepted. */
7702 return true;
7703}
7704
7705
7706/**
7707 * VMREAD instruction execution worker that does not perform any validation checks.
7708 *
7709 * Callers are expected to have performed the necessary checks and to ensure the
7710 * VMREAD will succeed.
7711 *
7712 * @param pVmcs Pointer to the virtual VMCS.
7713 * @param pu64Dst Where to write the VMCS value.
7714 * @param u64VmcsField The VMCS field.
7715 *
7716 * @remarks May be called with interrupts disabled.
7717 */
7718IEM_STATIC void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField)
7719{
7720 VMXVMCSFIELD VmcsField;
7721 VmcsField.u = u64VmcsField;
7722 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
7723 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
7724 uint8_t const uWidthType = (uWidth << 2) | uType;
7725 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
7726 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
7727 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
7728 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
7729 uWidth, uType, uIndex, uIndex));
7730 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
7731
7732 /*
7733 * Read the VMCS component based on the field's effective width.
7734 *
7735 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
7736 * indicates high bits (little endian).
7737 *
7738 * Note! The caller is responsible to trim the result and update registers
7739 * or memory locations are required. Here we just zero-extend to the largest
7740 * type (i.e. 64-bits).
7741 */
7742 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
7743 uint8_t const *pbField = pbVmcs + offField;
7744 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
7745 switch (uEffWidth)
7746 {
7747 case VMX_VMCSFIELD_WIDTH_64BIT:
7748 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
7749 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
7750 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
7751 }
7752}
7753
7754
7755/**
7756 * VMREAD common (memory/register) instruction execution worker.
7757 *
7758 * @returns Strict VBox status code.
7759 * @param pVCpu The cross context virtual CPU structure.
7760 * @param cbInstr The instruction length in bytes.
7761 * @param pu64Dst Where to write the VMCS value (only updated when
7762 * VINF_SUCCESS is returned).
7763 * @param u64VmcsField The VMCS field.
7764 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7765 * NULL.
7766 */
7767IEM_STATIC VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
7768 PCVMXVEXITINFO pExitInfo)
7769{
7770 /* Nested-guest intercept. */
7771 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7772 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
7773 {
7774 if (pExitInfo)
7775 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
7776 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
7777 }
7778
7779 /* CPL. */
7780 if (pVCpu->iem.s.uCpl == 0)
7781 { /* likely */ }
7782 else
7783 {
7784 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
7785 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
7786 return iemRaiseGeneralProtectionFault0(pVCpu);
7787 }
7788
7789 /* VMCS pointer in root mode. */
7790 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
7791 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7792 { /* likely */ }
7793 else
7794 {
7795 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7796 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
7797 iemVmxVmFailInvalid(pVCpu);
7798 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7799 return VINF_SUCCESS;
7800 }
7801
7802 /* VMCS-link pointer in non-root mode. */
7803 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7804 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
7805 { /* likely */ }
7806 else
7807 {
7808 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
7809 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
7810 iemVmxVmFailInvalid(pVCpu);
7811 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7812 return VINF_SUCCESS;
7813 }
7814
7815 /* Supported VMCS field. */
7816 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
7817 { /* likely */ }
7818 else
7819 {
7820 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
7821 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
7822 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
7823 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
7824 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7825 return VINF_SUCCESS;
7826 }
7827
7828 /*
7829 * Reading from the current or shadow VMCS.
7830 */
7831 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
7832 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
7833 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
7834 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
7835 return VINF_SUCCESS;
7836}
7837
7838
7839/**
7840 * VMREAD (64-bit register) instruction execution worker.
7841 *
7842 * @returns Strict VBox status code.
7843 * @param pVCpu The cross context virtual CPU structure.
7844 * @param cbInstr The instruction length in bytes.
7845 * @param pu64Dst Where to store the VMCS field's value.
7846 * @param u64VmcsField The VMCS field.
7847 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7848 * NULL.
7849 */
7850IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst, uint64_t u64VmcsField,
7851 PCVMXVEXITINFO pExitInfo)
7852{
7853 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
7854 if (rcStrict == VINF_SUCCESS)
7855 {
7856 iemVmxVmSucceed(pVCpu);
7857 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7858 return VINF_SUCCESS;
7859 }
7860
7861 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7862 return rcStrict;
7863}
7864
7865
7866/**
7867 * VMREAD (32-bit register) instruction execution worker.
7868 *
7869 * @returns Strict VBox status code.
7870 * @param pVCpu The cross context virtual CPU structure.
7871 * @param cbInstr The instruction length in bytes.
7872 * @param pu32Dst Where to store the VMCS field's value.
7873 * @param u32VmcsField The VMCS field.
7874 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7875 * NULL.
7876 */
7877IEM_STATIC VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst, uint64_t u32VmcsField,
7878 PCVMXVEXITINFO pExitInfo)
7879{
7880 uint64_t u64Dst;
7881 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
7882 if (rcStrict == VINF_SUCCESS)
7883 {
7884 *pu32Dst = u64Dst;
7885 iemVmxVmSucceed(pVCpu);
7886 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7887 return VINF_SUCCESS;
7888 }
7889
7890 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7891 return rcStrict;
7892}
7893
7894
7895/**
7896 * VMREAD (memory) instruction execution worker.
7897 *
7898 * @returns Strict VBox status code.
7899 * @param pVCpu The cross context virtual CPU structure.
7900 * @param cbInstr The instruction length in bytes.
7901 * @param iEffSeg The effective segment register to use with @a u64Val.
7902 * Pass UINT8_MAX if it is a register access.
7903 * @param GCPtrDst The guest linear address to store the VMCS field's
7904 * value.
7905 * @param u64VmcsField The VMCS field.
7906 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7907 * NULL.
7908 */
7909IEM_STATIC VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst, uint64_t u64VmcsField,
7910 PCVMXVEXITINFO pExitInfo)
7911{
7912 uint64_t u64Dst;
7913 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
7914 if (rcStrict == VINF_SUCCESS)
7915 {
7916 /*
7917 * Write the VMCS field's value to the location specified in guest-memory.
7918 */
7919 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
7920 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
7921 else
7922 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
7923 if (rcStrict == VINF_SUCCESS)
7924 {
7925 iemVmxVmSucceed(pVCpu);
7926 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
7927 return VINF_SUCCESS;
7928 }
7929
7930 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
7931 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
7932 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
7933 return rcStrict;
7934 }
7935
7936 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7937 return rcStrict;
7938}
7939
7940
7941/**
7942 * VMWRITE instruction execution worker that does not perform any validation
7943 * checks.
7944 *
7945 * Callers are expected to have performed the necessary checks and to ensure the
7946 * VMWRITE will succeed.
7947 *
7948 * @param pVmcs Pointer to the virtual VMCS.
7949 * @param u64Val The value to write.
7950 * @param u64VmcsField The VMCS field.
7951 *
7952 * @remarks May be called with interrupts disabled.
7953 */
7954IEM_STATIC void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField)
7955{
7956 VMXVMCSFIELD VmcsField;
7957 VmcsField.u = u64VmcsField;
7958 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
7959 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
7960 uint8_t const uWidthType = (uWidth << 2) | uType;
7961 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
7962 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
7963 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
7964 Assert(offField < VMX_V_VMCS_SIZE);
7965 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
7966
7967 /*
7968 * Write the VMCS component based on the field's effective width.
7969 *
7970 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
7971 * indicates high bits (little endian).
7972 */
7973 uint8_t *pbVmcs = (uint8_t *)pVmcs;
7974 uint8_t *pbField = pbVmcs + offField;
7975 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
7976 switch (uEffWidth)
7977 {
7978 case VMX_VMCSFIELD_WIDTH_64BIT:
7979 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
7980 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
7981 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
7982 }
7983}
7984
7985
7986/**
7987 * VMWRITE instruction execution worker.
7988 *
7989 * @returns Strict VBox status code.
7990 * @param pVCpu The cross context virtual CPU structure.
7991 * @param cbInstr The instruction length in bytes.
7992 * @param iEffSeg The effective segment register to use with @a u64Val.
7993 * Pass UINT8_MAX if it is a register access.
7994 * @param u64Val The value to write (or guest linear address to the
7995 * value), @a iEffSeg will indicate if it's a memory
7996 * operand.
7997 * @param u64VmcsField The VMCS field.
7998 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
7999 * NULL.
8000 */
8001IEM_STATIC VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val, uint64_t u64VmcsField,
8002 PCVMXVEXITINFO pExitInfo)
8003{
8004 /* Nested-guest intercept. */
8005 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8006 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
8007 {
8008 if (pExitInfo)
8009 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8010 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8011 }
8012
8013 /* CPL. */
8014 if (pVCpu->iem.s.uCpl == 0)
8015 { /* likely */ }
8016 else
8017 {
8018 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8019 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8020 return iemRaiseGeneralProtectionFault0(pVCpu);
8021 }
8022
8023 /* VMCS pointer in root mode. */
8024 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8025 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8026 { /* likely */ }
8027 else
8028 {
8029 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8030 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8031 iemVmxVmFailInvalid(pVCpu);
8032 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8033 return VINF_SUCCESS;
8034 }
8035
8036 /* VMCS-link pointer in non-root mode. */
8037 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8038 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8039 { /* likely */ }
8040 else
8041 {
8042 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8043 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8044 iemVmxVmFailInvalid(pVCpu);
8045 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8046 return VINF_SUCCESS;
8047 }
8048
8049 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8050 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8051 if (!fIsRegOperand)
8052 {
8053 /* Read the value from the specified guest memory location. */
8054 VBOXSTRICTRC rcStrict;
8055 RTGCPTR const GCPtrVal = u64Val;
8056 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8057 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8058 else
8059 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8060 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8061 {
8062 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8063 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8064 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
8065 return rcStrict;
8066 }
8067 }
8068 else
8069 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8070
8071 /* Supported VMCS field. */
8072 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8073 { /* likely */ }
8074 else
8075 {
8076 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8077 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8078 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8079 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8080 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8081 return VINF_SUCCESS;
8082 }
8083
8084 /* Read-only VMCS field. */
8085 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
8086 if ( !fIsFieldReadOnly
8087 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8088 { /* likely */ }
8089 else
8090 {
8091 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
8092 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8093 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8094 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8095 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8096 return VINF_SUCCESS;
8097 }
8098
8099 /*
8100 * Write to the current or shadow VMCS.
8101 */
8102 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
8103 PVMXVVMCS pVmcs = !fInVmxNonRootMode
8104 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8105 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8106 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8107
8108 if ( !fInVmxNonRootMode
8109 && VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8110 {
8111 /* Notify HM that the VMCS content might have changed. */
8112 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8113 }
8114
8115 iemVmxVmSucceed(pVCpu);
8116 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8117 return VINF_SUCCESS;
8118}
8119
8120
8121/**
8122 * VMCLEAR instruction execution worker.
8123 *
8124 * @returns Strict VBox status code.
8125 * @param pVCpu The cross context virtual CPU structure.
8126 * @param cbInstr The instruction length in bytes.
8127 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8128 * @param GCPtrVmcs The linear address of the VMCS pointer.
8129 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8130 *
8131 * @remarks Common VMX instruction checks are already expected to by the caller,
8132 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8133 */
8134IEM_STATIC VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8135 PCVMXVEXITINFO pExitInfo)
8136{
8137 /* Nested-guest intercept. */
8138 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8139 {
8140 if (pExitInfo)
8141 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8142 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8143 }
8144
8145 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8146
8147 /* CPL. */
8148 if (pVCpu->iem.s.uCpl == 0)
8149 { /* likely */ }
8150 else
8151 {
8152 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8153 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8154 return iemRaiseGeneralProtectionFault0(pVCpu);
8155 }
8156
8157 /* Get the VMCS pointer from the location specified by the source memory operand. */
8158 RTGCPHYS GCPhysVmcs;
8159 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8160 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8161 { /* likely */ }
8162 else
8163 {
8164 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8165 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8166 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8167 return rcStrict;
8168 }
8169
8170 /* VMCS pointer alignment. */
8171 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8172 { /* likely */ }
8173 else
8174 {
8175 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8176 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8177 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8178 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8179 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8180 return VINF_SUCCESS;
8181 }
8182
8183 /* VMCS physical-address width limits. */
8184 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8185 { /* likely */ }
8186 else
8187 {
8188 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8189 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8190 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8191 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8192 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8193 return VINF_SUCCESS;
8194 }
8195
8196 /* VMCS is not the VMXON region. */
8197 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8198 { /* likely */ }
8199 else
8200 {
8201 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8202 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8203 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8204 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8205 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8206 return VINF_SUCCESS;
8207 }
8208
8209 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8210 restriction imposed by our implementation. */
8211 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8212 { /* likely */ }
8213 else
8214 {
8215 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8216 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8217 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8218 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8219 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8220 return VINF_SUCCESS;
8221 }
8222
8223 /*
8224 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8225 *
8226 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8227 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8228 * to 'clear'.
8229 */
8230 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8231 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8232 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8233 {
8234 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
8235 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8236 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8237 }
8238 else
8239 {
8240 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8241 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8242 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8243 if (RT_FAILURE(rcStrict))
8244 return rcStrict;
8245 }
8246
8247 iemVmxVmSucceed(pVCpu);
8248 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8249 return VINF_SUCCESS;
8250}
8251
8252
8253/**
8254 * VMPTRST instruction execution worker.
8255 *
8256 * @returns Strict VBox status code.
8257 * @param pVCpu The cross context virtual CPU structure.
8258 * @param cbInstr The instruction length in bytes.
8259 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8260 * @param GCPtrVmcs The linear address of where to store the current VMCS
8261 * pointer.
8262 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8263 *
8264 * @remarks Common VMX instruction checks are already expected to by the caller,
8265 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8266 */
8267IEM_STATIC VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8268 PCVMXVEXITINFO pExitInfo)
8269{
8270 /* Nested-guest intercept. */
8271 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8272 {
8273 if (pExitInfo)
8274 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8275 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8276 }
8277
8278 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8279
8280 /* CPL. */
8281 if (pVCpu->iem.s.uCpl == 0)
8282 { /* likely */ }
8283 else
8284 {
8285 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8286 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8287 return iemRaiseGeneralProtectionFault0(pVCpu);
8288 }
8289
8290 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8291 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8292 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8293 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8294 {
8295 iemVmxVmSucceed(pVCpu);
8296 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8297 return rcStrict;
8298 }
8299
8300 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8301 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8302 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8303 return rcStrict;
8304}
8305
8306
8307/**
8308 * VMPTRLD instruction execution worker.
8309 *
8310 * @returns Strict VBox status code.
8311 * @param pVCpu The cross context virtual CPU structure.
8312 * @param cbInstr The instruction length in bytes.
8313 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8314 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8315 *
8316 * @remarks Common VMX instruction checks are already expected to by the caller,
8317 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8318 */
8319IEM_STATIC VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmcs,
8320 PCVMXVEXITINFO pExitInfo)
8321{
8322 /* Nested-guest intercept. */
8323 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8324 {
8325 if (pExitInfo)
8326 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8327 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8328 }
8329
8330 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8331
8332 /* CPL. */
8333 if (pVCpu->iem.s.uCpl == 0)
8334 { /* likely */ }
8335 else
8336 {
8337 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8338 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8339 return iemRaiseGeneralProtectionFault0(pVCpu);
8340 }
8341
8342 /* Get the VMCS pointer from the location specified by the source memory operand. */
8343 RTGCPHYS GCPhysVmcs;
8344 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8345 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8346 { /* likely */ }
8347 else
8348 {
8349 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8350 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8351 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8352 return rcStrict;
8353 }
8354
8355 /* VMCS pointer alignment. */
8356 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8357 { /* likely */ }
8358 else
8359 {
8360 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8361 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8362 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8363 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8364 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8365 return VINF_SUCCESS;
8366 }
8367
8368 /* VMCS physical-address width limits. */
8369 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8370 { /* likely */ }
8371 else
8372 {
8373 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8374 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8375 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8376 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8377 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8378 return VINF_SUCCESS;
8379 }
8380
8381 /* VMCS is not the VMXON region. */
8382 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8383 { /* likely */ }
8384 else
8385 {
8386 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8387 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8388 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8389 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8390 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8391 return VINF_SUCCESS;
8392 }
8393
8394 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8395 restriction imposed by our implementation. */
8396 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8397 { /* likely */ }
8398 else
8399 {
8400 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8401 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8402 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8403 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8404 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8405 return VINF_SUCCESS;
8406 }
8407
8408 /* Read just the VMCS revision from the VMCS. */
8409 VMXVMCSREVID VmcsRevId;
8410 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8411 if (RT_SUCCESS(rc))
8412 { /* likely */ }
8413 else
8414 {
8415 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8416 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8417 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8418 return rc;
8419 }
8420
8421 /*
8422 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8423 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8424 */
8425 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8426 && ( !VmcsRevId.n.fIsShadowVmcs
8427 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8428 { /* likely */ }
8429 else
8430 {
8431 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8432 {
8433 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8434 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8435 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8436 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8437 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8438 return VINF_SUCCESS;
8439 }
8440
8441 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8442 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8443 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8444 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8445 return VINF_SUCCESS;
8446 }
8447
8448 /*
8449 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8450 * the cache of an existing, current VMCS back to guest memory before loading a new,
8451 * different current VMCS.
8452 */
8453 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8454 {
8455 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8456 {
8457 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8458 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8459 }
8460
8461 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8462 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8463 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8464 if (RT_SUCCESS(rc))
8465 {
8466 /* Notify HM that a new, current VMCS is loaded. */
8467 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8468 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8469 }
8470 else
8471 {
8472 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8473 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8474 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8475 return rc;
8476 }
8477 }
8478
8479 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8480 iemVmxVmSucceed(pVCpu);
8481 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8482 return VINF_SUCCESS;
8483}
8484
8485
8486/**
8487 * INVVPID instruction execution worker.
8488 *
8489 * @returns Strict VBox status code.
8490 * @param pVCpu The cross context virtual CPU structure.
8491 * @param cbInstr The instruction length in bytes.
8492 * @param iEffSeg The segment of the invvpid descriptor.
8493 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
8494 * @param u64InvvpidType The invalidation type.
8495 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8496 * NULL.
8497 *
8498 * @remarks Common VMX instruction checks are already expected to by the caller,
8499 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8500 */
8501IEM_STATIC VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
8502 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo)
8503{
8504 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
8505 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
8506 return iemRaiseUndefinedOpcode(pVCpu);
8507
8508 /* Nested-guest intercept. */
8509 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8510 {
8511 if (pExitInfo)
8512 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8513 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
8514 }
8515
8516 /* CPL. */
8517 if (pVCpu->iem.s.uCpl != 0)
8518 {
8519 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
8520 return iemRaiseGeneralProtectionFault0(pVCpu);
8521 }
8522
8523 /*
8524 * Validate INVVPID invalidation type.
8525 *
8526 * The instruction specifies exactly ONE of the supported invalidation types.
8527 *
8528 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
8529 * supported. In theory, it's possible for a CPU to not support flushing individual
8530 * addresses but all the other types or any other combination. We do not take any
8531 * shortcuts here by assuming the types we currently expose to the guest.
8532 */
8533 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
8534 bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
8535 bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
8536 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
8537 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
8538 bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
8539
8540 bool afSupportedTypes[4];
8541 afSupportedTypes[0] = fTypeIndivAddr;
8542 afSupportedTypes[1] = fTypeSingleCtx;
8543 afSupportedTypes[2] = fTypeAllCtx;
8544 afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
8545
8546 if ( fInvvpidSupported
8547 && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
8548 && afSupportedTypes[u64InvvpidType & 3])
8549 { /* likely */ }
8550 else
8551 {
8552 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
8553 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
8554 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8555 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8556 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8557 return VINF_SUCCESS;
8558 }
8559
8560 /*
8561 * Fetch the invvpid descriptor from guest memory.
8562 */
8563 RTUINT128U uDesc;
8564 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
8565 if (rcStrict == VINF_SUCCESS)
8566 {
8567 /*
8568 * Validate the descriptor.
8569 */
8570 if (uDesc.s.Lo <= 0xffff)
8571 { /* likely */ }
8572 else
8573 {
8574 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
8575 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
8576 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
8577 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8578 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8579 return VINF_SUCCESS;
8580 }
8581
8582 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
8583 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
8584 uint8_t const uVpid = uDesc.s.Lo & UINT64_C(0xfff);
8585 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
8586 switch (u64InvvpidType)
8587 {
8588 case VMXTLBFLUSHVPID_INDIV_ADDR:
8589 {
8590 if (uVpid != 0)
8591 {
8592 if (IEM_IS_CANONICAL(GCPtrInvAddr))
8593 {
8594 /* Invalidate mappings for the linear address tagged with VPID. */
8595 /** @todo PGM support for VPID? Currently just flush everything. */
8596 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8597 iemVmxVmSucceed(pVCpu);
8598 }
8599 else
8600 {
8601 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
8602 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
8603 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
8604 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8605 }
8606 }
8607 else
8608 {
8609 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8610 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
8611 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8612 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8613 }
8614 break;
8615 }
8616
8617 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
8618 {
8619 if (uVpid != 0)
8620 {
8621 /* Invalidate all mappings with VPID. */
8622 /** @todo PGM support for VPID? Currently just flush everything. */
8623 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8624 iemVmxVmSucceed(pVCpu);
8625 }
8626 else
8627 {
8628 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8629 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
8630 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
8631 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8632 }
8633 break;
8634 }
8635
8636 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
8637 {
8638 /* Invalidate all mappings with non-zero VPIDs. */
8639 /** @todo PGM support for VPID? Currently just flush everything. */
8640 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8641 iemVmxVmSucceed(pVCpu);
8642 break;
8643 }
8644
8645 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
8646 {
8647 if (uVpid != 0)
8648 {
8649 /* Invalidate all mappings with VPID except global translations. */
8650 /** @todo PGM support for VPID? Currently just flush everything. */
8651 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8652 iemVmxVmSucceed(pVCpu);
8653 }
8654 else
8655 {
8656 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
8657 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
8658 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
8659 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8660 }
8661 break;
8662 }
8663 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8664 }
8665 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8666 }
8667 return rcStrict;
8668}
8669
8670
8671#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
8672/**
8673 * INVEPT instruction execution worker.
8674 *
8675 * @returns Strict VBox status code.
8676 * @param pVCpu The cross context virtual CPU structure.
8677 * @param cbInstr The instruction length in bytes.
8678 * @param iEffSeg The segment of the invept descriptor.
8679 * @param GCPtrInveptDesc The address of invept descriptor.
8680 * @param u64InveptType The invalidation type.
8681 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8682 * NULL.
8683 *
8684 * @remarks Common VMX instruction checks are already expected to by the caller,
8685 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8686 */
8687IEM_STATIC VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
8688 uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo)
8689{
8690 /* Check if EPT is supported, otherwise raise #UD. */
8691 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
8692 return iemRaiseUndefinedOpcode(pVCpu);
8693
8694 /* Nested-guest intercept. */
8695 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8696 {
8697 if (pExitInfo)
8698 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8699 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
8700 }
8701
8702 /* CPL. */
8703 if (pVCpu->iem.s.uCpl != 0)
8704 {
8705 Log(("invept: CPL != 0 -> #GP(0)\n"));
8706 return iemRaiseGeneralProtectionFault0(pVCpu);
8707 }
8708
8709 /*
8710 * Validate INVEPT invalidation type.
8711 *
8712 * The instruction specifies exactly ONE of the supported invalidation types.
8713 *
8714 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
8715 * supported. In theory, it's possible for a CPU to not support flushing individual
8716 * addresses but all the other types or any other combination. We do not take any
8717 * shortcuts here by assuming the types we currently expose to the guest.
8718 */
8719 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
8720 bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
8721 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
8722 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
8723
8724 bool afSupportedTypes[4];
8725 afSupportedTypes[0] = false;
8726 afSupportedTypes[1] = fTypeSingleCtx;
8727 afSupportedTypes[2] = fTypeAllCtx;
8728 afSupportedTypes[3] = false;
8729
8730 if ( fInveptSupported
8731 && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
8732 && afSupportedTypes[u64InveptType & 3])
8733 { /* likely */ }
8734 else
8735 {
8736 Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
8737 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
8738 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
8739 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8740 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8741 return VINF_SUCCESS;
8742 }
8743
8744 /*
8745 * Fetch the invept descriptor from guest memory.
8746 */
8747 RTUINT128U uDesc;
8748 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
8749 if (rcStrict == VINF_SUCCESS)
8750 {
8751 /*
8752 * Validate the descriptor.
8753 *
8754 * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
8755 * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
8756 * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
8757 * better to be strict in our emulation until proven otherwise.
8758 */
8759 if (uDesc.s.Hi)
8760 {
8761 Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
8762 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
8763 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
8764 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8765 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8766 return VINF_SUCCESS;
8767 }
8768
8769 /*
8770 * Flush TLB mappings based on the EPT type.
8771 */
8772 if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
8773 {
8774 uint64_t const GCPhysEptPtr = uDesc.s.Lo;
8775 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
8776 if (RT_SUCCESS(rc))
8777 { /* likely */ }
8778 else
8779 {
8780 Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
8781 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
8782 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
8783 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
8784 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8785 return VINF_SUCCESS;
8786 }
8787 }
8788
8789 /** @todo PGM support for EPT tags? Currently just flush everything. */
8790 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
8791 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
8792 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
8793
8794 iemVmxVmSucceed(pVCpu);
8795 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8796 }
8797
8798 return rcStrict;
8799}
8800#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
8801
8802
8803/**
8804 * VMXON instruction execution worker.
8805 *
8806 * @returns Strict VBox status code.
8807 * @param pVCpu The cross context virtual CPU structure.
8808 * @param cbInstr The instruction length in bytes.
8809 * @param iEffSeg The effective segment register to use with @a
8810 * GCPtrVmxon.
8811 * @param GCPtrVmxon The linear address of the VMXON pointer.
8812 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8813 *
8814 * @remarks Common VMX instruction checks are already expected to by the caller,
8815 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8816 */
8817IEM_STATIC VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPHYS GCPtrVmxon,
8818 PCVMXVEXITINFO pExitInfo)
8819{
8820 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
8821 {
8822 /* CPL. */
8823 if (pVCpu->iem.s.uCpl == 0)
8824 { /* likely */ }
8825 else
8826 {
8827 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8828 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
8829 return iemRaiseGeneralProtectionFault0(pVCpu);
8830 }
8831
8832 /* A20M (A20 Masked) mode. */
8833 if (PGMPhysIsA20Enabled(pVCpu))
8834 { /* likely */ }
8835 else
8836 {
8837 Log(("vmxon: A20M mode -> #GP(0)\n"));
8838 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
8839 return iemRaiseGeneralProtectionFault0(pVCpu);
8840 }
8841
8842 /* CR0. */
8843 {
8844 /*
8845 * CR0 MB1 bits.
8846 *
8847 * We use VMX_V_CR0_FIXED0 below to ensure CR0.PE and CR0.PG are always set
8848 * while executing VMXON. CR0.PE and CR0.PG are only allowed to be clear
8849 * when the guest running in VMX non-root mode with unrestricted-guest control
8850 * enabled in the VMCS.
8851 */
8852 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
8853 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
8854 { /* likely */ }
8855 else
8856 {
8857 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
8858 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
8859 return iemRaiseGeneralProtectionFault0(pVCpu);
8860 }
8861
8862 /* CR0 MBZ bits. */
8863 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
8864 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
8865 { /* likely */ }
8866 else
8867 {
8868 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
8869 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
8870 return iemRaiseGeneralProtectionFault0(pVCpu);
8871 }
8872 }
8873
8874 /* CR4. */
8875 {
8876 /* CR4 MB1 bits. */
8877 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
8878 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
8879 { /* likely */ }
8880 else
8881 {
8882 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
8883 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
8884 return iemRaiseGeneralProtectionFault0(pVCpu);
8885 }
8886
8887 /* CR4 MBZ bits. */
8888 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
8889 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
8890 { /* likely */ }
8891 else
8892 {
8893 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
8894 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
8895 return iemRaiseGeneralProtectionFault0(pVCpu);
8896 }
8897 }
8898
8899 /* Feature control MSR's LOCK and VMXON bits. */
8900 uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
8901 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8902 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
8903 { /* likely */ }
8904 else
8905 {
8906 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
8907 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
8908 return iemRaiseGeneralProtectionFault0(pVCpu);
8909 }
8910
8911 /* Get the VMXON pointer from the location specified by the source memory operand. */
8912 RTGCPHYS GCPhysVmxon;
8913 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
8914 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8915 { /* likely */ }
8916 else
8917 {
8918 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
8919 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
8920 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
8921 return rcStrict;
8922 }
8923
8924 /* VMXON region pointer alignment. */
8925 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
8926 { /* likely */ }
8927 else
8928 {
8929 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
8930 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
8931 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8932 iemVmxVmFailInvalid(pVCpu);
8933 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8934 return VINF_SUCCESS;
8935 }
8936
8937 /* VMXON physical-address width limits. */
8938 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8939 { /* likely */ }
8940 else
8941 {
8942 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
8943 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
8944 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8945 iemVmxVmFailInvalid(pVCpu);
8946 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8947 return VINF_SUCCESS;
8948 }
8949
8950 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
8951 restriction imposed by our implementation. */
8952 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
8953 { /* likely */ }
8954 else
8955 {
8956 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
8957 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
8958 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
8959 iemVmxVmFailInvalid(pVCpu);
8960 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8961 return VINF_SUCCESS;
8962 }
8963
8964 /* Read the VMCS revision ID from the VMXON region. */
8965 VMXVMCSREVID VmcsRevId;
8966 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
8967 if (RT_SUCCESS(rc))
8968 { /* likely */ }
8969 else
8970 {
8971 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
8972 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
8973 return rc;
8974 }
8975
8976 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
8977 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
8978 { /* likely */ }
8979 else
8980 {
8981 /* Revision ID mismatch. */
8982 if (!VmcsRevId.n.fIsShadowVmcs)
8983 {
8984 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
8985 VmcsRevId.n.u31RevisionId));
8986 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
8987 iemVmxVmFailInvalid(pVCpu);
8988 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8989 return VINF_SUCCESS;
8990 }
8991
8992 /* Shadow VMCS disallowed. */
8993 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
8994 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
8995 iemVmxVmFailInvalid(pVCpu);
8996 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
8997 return VINF_SUCCESS;
8998 }
8999
9000 /*
9001 * Record that we're in VMX operation, block INIT, block and disable A20M.
9002 */
9003 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
9004 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
9005 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
9006
9007 /* Clear address-range monitoring. */
9008 EMMonitorWaitClear(pVCpu);
9009 /** @todo NSTVMX: Intel PT. */
9010
9011 iemVmxVmSucceed(pVCpu);
9012 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9013 return VINF_SUCCESS;
9014 }
9015 else if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9016 {
9017 /* Nested-guest intercept. */
9018 if (pExitInfo)
9019 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9020 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
9021 }
9022
9023 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
9024
9025 /* CPL. */
9026 if (pVCpu->iem.s.uCpl > 0)
9027 {
9028 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9029 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
9030 return iemRaiseGeneralProtectionFault0(pVCpu);
9031 }
9032
9033 /* VMXON when already in VMX root mode. */
9034 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
9035 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
9036 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9037 return VINF_SUCCESS;
9038}
9039
9040
9041/**
9042 * Implements 'VMXOFF'.
9043 *
9044 * @remarks Common VMX instruction checks are already expected to by the caller,
9045 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9046 */
9047IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
9048{
9049 /* Nested-guest intercept. */
9050 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9051 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
9052
9053 /* CPL. */
9054 if (pVCpu->iem.s.uCpl == 0)
9055 { /* likely */ }
9056 else
9057 {
9058 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9059 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
9060 return iemRaiseGeneralProtectionFault0(pVCpu);
9061 }
9062
9063 /* Dual monitor treatment of SMIs and SMM. */
9064 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
9065 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
9066 { /* likely */ }
9067 else
9068 {
9069 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
9070 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9071 return VINF_SUCCESS;
9072 }
9073
9074 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
9075 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
9076 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
9077
9078 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
9079 { /** @todo NSTVMX: Unblock SMI. */ }
9080
9081 EMMonitorWaitClear(pVCpu);
9082 /** @todo NSTVMX: Unblock and enable A20M. */
9083
9084 iemVmxVmSucceed(pVCpu);
9085 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9086 return VINF_SUCCESS;
9087}
9088
9089
9090/**
9091 * Implements 'VMXON'.
9092 */
9093IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
9094{
9095 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
9096}
9097
9098
9099/**
9100 * Implements 'VMLAUNCH'.
9101 */
9102IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
9103{
9104 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
9105}
9106
9107
9108/**
9109 * Implements 'VMRESUME'.
9110 */
9111IEM_CIMPL_DEF_0(iemCImpl_vmresume)
9112{
9113 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
9114}
9115
9116
9117/**
9118 * Implements 'VMPTRLD'.
9119 */
9120IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9121{
9122 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9123}
9124
9125
9126/**
9127 * Implements 'VMPTRST'.
9128 */
9129IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9130{
9131 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9132}
9133
9134
9135/**
9136 * Implements 'VMCLEAR'.
9137 */
9138IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9139{
9140 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9141}
9142
9143
9144/**
9145 * Implements 'VMWRITE' register.
9146 */
9147IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
9148{
9149 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
9150}
9151
9152
9153/**
9154 * Implements 'VMWRITE' memory.
9155 */
9156IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
9157{
9158 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
9159}
9160
9161
9162/**
9163 * Implements 'VMREAD' register (64-bit).
9164 */
9165IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
9166{
9167 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
9168}
9169
9170
9171/**
9172 * Implements 'VMREAD' register (32-bit).
9173 */
9174IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField)
9175{
9176 return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32VmcsField, NULL /* pExitInfo */);
9177}
9178
9179
9180/**
9181 * Implements 'VMREAD' memory, 64-bit register.
9182 */
9183IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
9184{
9185 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
9186}
9187
9188
9189/**
9190 * Implements 'VMREAD' memory, 32-bit register.
9191 */
9192IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
9193{
9194 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
9195}
9196
9197
9198/**
9199 * Implements 'INVVPID'.
9200 */
9201IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
9202{
9203 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
9204}
9205
9206
9207#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9208/**
9209 * Implements 'INVEPT'.
9210 */
9211IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
9212{
9213 return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
9214}
9215#endif
9216
9217
9218/**
9219 * Implements VMX's implementation of PAUSE.
9220 */
9221IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
9222{
9223 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9224 {
9225 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
9226 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9227 return rcStrict;
9228 }
9229
9230 /*
9231 * Outside VMX non-root operation or if the PAUSE instruction does not cause
9232 * a VM-exit, the instruction operates normally.
9233 */
9234 iemRegAddToRipAndClearRF(pVCpu, cbInstr);
9235 return VINF_SUCCESS;
9236}
9237
9238#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
9239
9240
9241/**
9242 * Implements 'VMCALL'.
9243 */
9244IEM_CIMPL_DEF_0(iemCImpl_vmcall)
9245{
9246#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9247 /* Nested-guest intercept. */
9248 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9249 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
9250#endif
9251
9252 /* Join forces with vmmcall. */
9253 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
9254}
9255
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette