VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp@ 101704

Last change on this file since 101704 was 101487, checked in by vboxsync, 15 months ago

VMM/IEM: Nested VMX: bugref:10318 Add assertions to verify NMI inhibition state (esp. since virtual NMIs are supported)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 411.5 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp 101487 2023-10-18 06:57:30Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM_VMX
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/apic.h>
36#include <VBox/vmm/cpum.h>
37#include <VBox/vmm/dbgf.h>
38#include <VBox/vmm/em.h>
39#include <VBox/vmm/gim.h>
40#include <VBox/vmm/hm.h>
41#include <VBox/vmm/pgm.h>
42#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
43# include <VBox/vmm/hmvmxinline.h>
44#endif
45#include <VBox/vmm/tm.h>
46#include "IEMInternal.h"
47#include <VBox/vmm/vmcc.h>
48#include <VBox/log.h>
49#include <VBox/err.h>
50#include <VBox/param.h>
51#include <VBox/disopcode-x86-amd64.h>
52#include <iprt/asm-math.h>
53#include <iprt/assert.h>
54#include <iprt/string.h>
55#include <iprt/x86.h>
56
57#include "IEMInline.h"
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
64/**
65 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
66 * relative offsets.
67 */
68# ifdef IEM_WITH_CODE_TLB /** @todo IEM TLB */
69# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { a_bModRm = 0; RT_NOREF(a_offModRm); } while (0)
70# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { a_bSib = 0; RT_NOREF(a_offSib); } while (0)
71# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
72# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
73# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
75# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
76# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
77# if 0
78# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
79# endif
80# else /* !IEM_WITH_CODE_TLB */
81# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
82 do \
83 { \
84 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
86 } while (0)
87
88# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
89
90# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
91 do \
92 { \
93 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
94 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
95 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
96 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
97 } while (0)
98
99# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
100 do \
101 { \
102 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
103 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
104 } while (0)
105
106# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
107 do \
108 { \
109 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
110 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
111 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
112 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
113 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
114 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
115 } while (0)
116
117# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
118 do \
119 { \
120 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
121 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
122 } while (0)
123
124# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
125 do \
126 { \
127 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
128 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
129 } while (0)
130
131# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
132 do \
133 { \
134 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
135 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
136 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
137 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
138 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
139 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
140 } while (0)
141# endif /* !IEM_WITH_CODE_TLB */
142
143/** Check for VMX instructions requiring to be in VMX operation.
144 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
145# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
146 do \
147 { \
148 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
149 { /* likely */ } \
150 else \
151 { \
152 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
153 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
154 return iemRaiseUndefinedOpcode(a_pVCpu); \
155 } \
156 } while (0)
157
158/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
159# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
160 do \
161 { \
162 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
163 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
164 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
165 return VERR_VMX_VMENTRY_FAILED; \
166 } while (0)
167
168/** Marks a VM-entry failure with an return code, diagnostic reason, logs and
169 * returns. */
170# define IEM_VMX_VMENTRY_FAILED_RET_2(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag, a_rc) \
171 do \
172 { \
173 LogRel(("%s: VM-entry failed! rc=%Rrc enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_rc), (a_VmxDiag), \
174 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
175 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
176 return VERR_VMX_VMENTRY_FAILED; \
177 } while (0)
178
179/** Marks a VM-exit failure with a diagnostic reason and logs. */
180# define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
181 do \
182 { \
183 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
184 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
185 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
186 } while (0)
187
188/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
189# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
190 do \
191 { \
192 IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
193 return VERR_VMX_VMEXIT_FAILED; \
194 } while (0)
195
196
197/*********************************************************************************************************************************
198* Global Variables *
199*********************************************************************************************************************************/
200/** @todo NSTVMX: The following VM-exit intercepts are pending:
201 * VMX_EXIT_IO_SMI
202 * VMX_EXIT_SMI
203 * VMX_EXIT_GETSEC
204 * VMX_EXIT_RSM
205 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
206 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
207 * VMX_EXIT_VMFUNC
208 * VMX_EXIT_ENCLS
209 * VMX_EXIT_PML_FULL
210 * VMX_EXIT_XSAVES
211 * VMX_EXIT_XRSTORS
212 */
213/**
214 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
215 *
216 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
217 * second dimension is the Index, see VMXVMCSFIELD.
218 */
219uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
220{
221 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
222 {
223 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
224 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
225 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
226 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u16HlatPrefixSize),
227 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
228 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
229 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
230 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
231 },
232 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
233 {
234 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
235 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
236 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
237 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
238 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
239 },
240 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
241 {
242 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
243 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
244 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
245 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
246 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
247 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
248 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
249 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
250 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
251 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
252 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
253 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
254 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
255 /* 34 */ UINT16_MAX
256 },
257 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
258 {
259 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
260 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
261 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
262 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
263 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
264 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
265 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
266 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
267 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
268 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
269 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
270 },
271 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
272 {
273 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
274 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
275 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
276 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
277 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
278 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
279 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
280 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
281 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
282 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
283 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
284 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
285 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
286 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
287 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
288 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
289 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
290 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
291 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
292 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
293 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
294 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
295 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
296 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
297 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
298 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
299 /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
300 /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap),
301 /* 28 */ UINT16_MAX,
302 /* 29 */ UINT16_MAX,
303 /* 30 */ UINT16_MAX,
304 /* 31 */ RT_UOFFSETOF(VMXVVMCS, u64PconfigExitBitmap),
305 /* 32 */ RT_UOFFSETOF(VMXVVMCS, u64HlatPtr),
306 /* 33 */ UINT16_MAX,
307 /* 34 */ RT_UOFFSETOF(VMXVVMCS, u64ExitCtls2)
308 },
309 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
310 {
311 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
312 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
313 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
314 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
315 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
316 /* 33-34*/ UINT16_MAX, UINT16_MAX
317 },
318 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
319 {
320 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
321 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
322 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
323 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
324 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
325 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
326 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
327 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
328 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
329 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
330 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
331 /* 11 */ UINT16_MAX,
332 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
333 /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
334 /* 21-28 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
335 /* 29-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
336 },
337 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
338 {
339 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
340 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
341 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
342 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
343 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
344 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
345 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
346 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
347 },
348 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
349 {
350 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
351 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
352 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
353 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
354 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
355 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
356 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
357 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
358 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
359 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
360 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
361 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
362 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
363 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
364 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
365 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
366 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
367 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
368 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
369 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
370 /* 34 */ UINT16_MAX
371 },
372 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
373 {
374 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
375 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
376 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
377 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
378 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
379 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
380 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
381 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
382 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
383 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
384 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
385 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
386 },
387 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
388 {
389 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
390 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
391 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
392 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
393 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
394 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
395 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
396 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
397 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
398 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
399 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
400 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
401 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
402 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
403 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
404 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
405 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
406 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
407 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
408 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
409 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
410 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
411 /* 22 */ UINT16_MAX,
412 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
413 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
414 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
415 },
416 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
417 {
418 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
419 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
420 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
421 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
422 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
423 /* 33-34 */ UINT16_MAX, UINT16_MAX
424 },
425 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
426 {
427 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
428 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
429 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
430 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
431 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
432 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
433 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
434 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
435 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
436 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
437 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
438 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
439 },
440 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
441 {
442 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
443 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
444 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
445 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
446 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
447 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
448 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
449 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
450 /* 22-29 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
451 /* 30-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
452 },
453 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
454 {
455 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
456 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
457 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
458 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
459 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
460 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
461 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
462 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
463 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
464 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
465 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
466 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
467 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
468 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
469 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
470 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
471 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
472 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
473 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
474 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
475 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
476 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
477 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
478 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
479 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
480 },
481 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
482 {
483 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
484 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
485 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
486 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
487 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
488 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
489 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
490 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
491 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
492 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
493 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
494 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
495 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
496 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
497 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
498 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
499 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
500 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
501 }
502};
503
504
505/**
506 * Gets a host selector from the VMCS.
507 *
508 * @param pVmcs Pointer to the virtual VMCS.
509 * @param iSelReg The index of the segment register (X86_SREG_XXX).
510 */
511DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
512{
513 Assert(iSegReg < X86_SREG_COUNT);
514 RTSEL HostSel;
515 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
516 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
517 uint8_t const uWidthType = (uWidth << 2) | uType;
518 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
519 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
520 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
521 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
522 uint8_t const *pbField = pbVmcs + offField;
523 HostSel = *(uint16_t *)pbField;
524 return HostSel;
525}
526
527
528/**
529 * Sets a guest segment register in the VMCS.
530 *
531 * @param pVmcs Pointer to the virtual VMCS.
532 * @param iSegReg The index of the segment register (X86_SREG_XXX).
533 * @param pSelReg Pointer to the segment register.
534 */
535static void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg) RT_NOEXCEPT
536{
537 Assert(pSelReg);
538 Assert(iSegReg < X86_SREG_COUNT);
539
540 /* Selector. */
541 {
542 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
543 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
544 uint8_t const uWidthType = (uWidth << 2) | uType;
545 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
546 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
547 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
548 uint8_t *pbVmcs = (uint8_t *)pVmcs;
549 uint8_t *pbField = pbVmcs + offField;
550 *(uint16_t *)pbField = pSelReg->Sel;
551 }
552
553 /* Limit. */
554 {
555 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
556 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
557 uint8_t const uWidthType = (uWidth << 2) | uType;
558 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
559 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
560 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
561 uint8_t *pbVmcs = (uint8_t *)pVmcs;
562 uint8_t *pbField = pbVmcs + offField;
563 *(uint32_t *)pbField = pSelReg->u32Limit;
564 }
565
566 /* Base. */
567 {
568 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
569 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
570 uint8_t const uWidthType = (uWidth << 2) | uType;
571 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
572 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
573 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
574 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
575 uint8_t const *pbField = pbVmcs + offField;
576 *(uint64_t *)pbField = pSelReg->u64Base;
577 }
578
579 /* Attributes. */
580 {
581 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
582 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
583 | X86DESCATTR_UNUSABLE;
584 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
585 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
586 uint8_t const uWidthType = (uWidth << 2) | uType;
587 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
588 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
589 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
590 uint8_t *pbVmcs = (uint8_t *)pVmcs;
591 uint8_t *pbField = pbVmcs + offField;
592 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
593 }
594}
595
596
597/**
598 * Gets a guest segment register from the VMCS.
599 *
600 * @returns VBox status code.
601 * @param pVmcs Pointer to the virtual VMCS.
602 * @param iSegReg The index of the segment register (X86_SREG_XXX).
603 * @param pSelReg Where to store the segment register (only updated when
604 * VINF_SUCCESS is returned).
605 *
606 * @remarks Warning! This does not validate the contents of the retrieved segment
607 * register.
608 */
609static int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg) RT_NOEXCEPT
610{
611 Assert(pSelReg);
612 Assert(iSegReg < X86_SREG_COUNT);
613
614 /* Selector. */
615 uint16_t u16Sel;
616 {
617 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
618 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
619 uint8_t const uWidthType = (uWidth << 2) | uType;
620 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
621 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
622 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
623 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
624 uint8_t const *pbField = pbVmcs + offField;
625 u16Sel = *(uint16_t *)pbField;
626 }
627
628 /* Limit. */
629 uint32_t u32Limit;
630 {
631 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
632 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
633 uint8_t const uWidthType = (uWidth << 2) | uType;
634 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
635 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
636 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
637 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
638 uint8_t const *pbField = pbVmcs + offField;
639 u32Limit = *(uint32_t *)pbField;
640 }
641
642 /* Base. */
643 uint64_t u64Base;
644 {
645 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
646 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
647 uint8_t const uWidthType = (uWidth << 2) | uType;
648 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
649 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
650 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
651 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
652 uint8_t const *pbField = pbVmcs + offField;
653 u64Base = *(uint64_t *)pbField;
654 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
655 }
656
657 /* Attributes. */
658 uint32_t u32Attr;
659 {
660 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
661 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
662 uint8_t const uWidthType = (uWidth << 2) | uType;
663 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
664 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
665 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
666 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
667 uint8_t const *pbField = pbVmcs + offField;
668 u32Attr = *(uint32_t *)pbField;
669 }
670
671 pSelReg->Sel = u16Sel;
672 pSelReg->ValidSel = u16Sel;
673 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
674 pSelReg->u32Limit = u32Limit;
675 pSelReg->u64Base = u64Base;
676 pSelReg->Attr.u = u32Attr;
677 return VINF_SUCCESS;
678}
679
680
681/**
682 * Converts an IEM exception event type to a VMX event type.
683 *
684 * @returns The VMX event type.
685 * @param uVector The interrupt / exception vector.
686 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
687 */
688DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
689{
690 /* Paranoia (callers may use these interchangeably). */
691 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
692 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
693 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
694 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
695 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
696 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
697 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
698 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
699 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
700 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
701 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
702 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
703
704 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
705 {
706 if (uVector == X86_XCPT_NMI)
707 return VMX_EXIT_INT_INFO_TYPE_NMI;
708 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
709 }
710
711 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
712 {
713 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
714 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
715 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
716 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
717 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
718 }
719
720 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
721 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
722}
723
724
725/**
726 * Determines whether the guest is using PAE paging given the VMCS.
727 *
728 * @returns @c true if PAE paging mode is used, @c false otherwise.
729 * @param pVmcs Pointer to the virtual VMCS.
730 *
731 * @warning Only use this prior to switching the guest-CPU state with the
732 * nested-guest CPU state!
733 */
734DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
735{
736 return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
737 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
738 && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
739}
740
741
742/**
743 * Sets the Exit qualification VMCS field.
744 *
745 * @param pVCpu The cross context virtual CPU structure.
746 * @param u64ExitQual The Exit qualification.
747 */
748DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
749{
750 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
751}
752
753
754/**
755 * Sets the VM-exit interruption information field.
756 *
757 * @param pVCpu The cross context virtual CPU structure.
758 * @param uExitIntInfo The VM-exit interruption information.
759 */
760DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
761{
762 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
763}
764
765
766/**
767 * Sets the VM-exit interruption error code.
768 *
769 * @param pVCpu The cross context virtual CPU structure.
770 * @param uErrCode The error code.
771 */
772DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
773{
774 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
775}
776
777
778/**
779 * Sets the IDT-vectoring information field.
780 *
781 * @param pVCpu The cross context virtual CPU structure.
782 * @param uIdtVectorInfo The IDT-vectoring information.
783 */
784DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
785{
786 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
787}
788
789
790/**
791 * Sets the IDT-vectoring error code field.
792 *
793 * @param pVCpu The cross context virtual CPU structure.
794 * @param uErrCode The error code.
795 */
796DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
797{
798 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
799}
800
801
802/**
803 * Sets the VM-exit guest-linear address VMCS field.
804 *
805 * @param pVCpu The cross context virtual CPU structure.
806 * @param uGuestLinearAddr The VM-exit guest-linear address.
807 */
808DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
809{
810 /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
811 Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
812 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
813}
814
815
816/**
817 * Sets the VM-exit guest-physical address VMCS field.
818 *
819 * @param pVCpu The cross context virtual CPU structure.
820 * @param uGuestPhysAddr The VM-exit guest-physical address.
821 */
822DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
823{
824 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
825}
826
827
828/**
829 * Sets the VM-exit instruction length VMCS field.
830 *
831 * @param pVCpu The cross context virtual CPU structure.
832 * @param cbInstr The VM-exit instruction length in bytes.
833 *
834 * @remarks Callers may clear this field to 0. Hence, this function does not check
835 * the validity of the instruction length.
836 */
837DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
838{
839 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
840}
841
842
843/**
844 * Sets the VM-exit instruction info. VMCS field.
845 *
846 * @param pVCpu The cross context virtual CPU structure.
847 * @param uExitInstrInfo The VM-exit instruction information.
848 */
849DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
850{
851 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
852}
853
854
855/**
856 * Sets the guest pending-debug exceptions field.
857 *
858 * @param pVCpu The cross context virtual CPU structure.
859 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
860 */
861DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
862{
863 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
864 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
865}
866
867
868/**
869 * Implements VMSucceed for VMX instruction success.
870 *
871 * @param pVCpu The cross context virtual CPU structure.
872 */
873DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
874{
875 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
876}
877
878
879/**
880 * Implements VMFailInvalid for VMX instruction failure.
881 *
882 * @param pVCpu The cross context virtual CPU structure.
883 */
884DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
885{
886 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
887}
888
889
890/**
891 * Implements VMFail for VMX instruction failure.
892 *
893 * @param pVCpu The cross context virtual CPU structure.
894 * @param enmInsErr The VM instruction error.
895 */
896DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
897{
898 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
899}
900
901
902/**
903 * Checks if the given auto-load/store MSR area count is valid for the
904 * implementation.
905 *
906 * @returns @c true if it's within the valid limit, @c false otherwise.
907 * @param pVCpu The cross context virtual CPU structure.
908 * @param uMsrCount The MSR area count to check.
909 */
910DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
911{
912 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
913 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
914 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
915 if (uMsrCount <= cMaxSupportedMsrs)
916 return true;
917 return false;
918}
919
920
921/**
922 * Flushes the current VMCS contents back to guest memory.
923 *
924 * @returns VBox status code.
925 * @param pVCpu The cross context virtual CPU structure.
926 */
927DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
928{
929 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
930 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
931 &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
932 return rc;
933}
934
935
936/**
937 * Populates the current VMCS contents from guest memory.
938 *
939 * @returns VBox status code.
940 * @param pVCpu The cross context virtual CPU structure.
941 */
942DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
943{
944 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
945 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
946 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
947 return rc;
948}
949
950
951/**
952 * Gets the instruction diagnostic for segment base checks during VM-entry of a
953 * nested-guest.
954 *
955 * @param iSegReg The segment index (X86_SREG_XXX).
956 */
957static VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg) RT_NOEXCEPT
958{
959 switch (iSegReg)
960 {
961 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
962 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
963 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
964 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
965 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
966 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
967 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
968 }
969}
970
971
972/**
973 * Gets the instruction diagnostic for segment base checks during VM-entry of a
974 * nested-guest that is in Virtual-8086 mode.
975 *
976 * @param iSegReg The segment index (X86_SREG_XXX).
977 */
978static VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg) RT_NOEXCEPT
979{
980 switch (iSegReg)
981 {
982 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
983 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
984 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
985 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
986 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
987 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
988 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
989 }
990}
991
992
993/**
994 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
995 * nested-guest that is in Virtual-8086 mode.
996 *
997 * @param iSegReg The segment index (X86_SREG_XXX).
998 */
999static VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg) RT_NOEXCEPT
1000{
1001 switch (iSegReg)
1002 {
1003 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
1004 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
1005 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
1006 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
1007 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
1008 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
1009 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
1010 }
1011}
1012
1013
1014/**
1015 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
1016 * nested-guest that is in Virtual-8086 mode.
1017 *
1018 * @param iSegReg The segment index (X86_SREG_XXX).
1019 */
1020static VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg) RT_NOEXCEPT
1021{
1022 switch (iSegReg)
1023 {
1024 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
1025 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
1026 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
1027 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
1028 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
1029 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
1030 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
1031 }
1032}
1033
1034
1035/**
1036 * Gets the instruction diagnostic for segment attributes reserved bits failure
1037 * during VM-entry of a nested-guest.
1038 *
1039 * @param iSegReg The segment index (X86_SREG_XXX).
1040 */
1041static VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg) RT_NOEXCEPT
1042{
1043 switch (iSegReg)
1044 {
1045 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1046 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1047 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1048 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1049 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1050 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1051 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1052 }
1053}
1054
1055
1056/**
1057 * Gets the instruction diagnostic for segment attributes descriptor-type
1058 * (code/segment or system) failure during VM-entry of a nested-guest.
1059 *
1060 * @param iSegReg The segment index (X86_SREG_XXX).
1061 */
1062static VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg) RT_NOEXCEPT
1063{
1064 switch (iSegReg)
1065 {
1066 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1067 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1068 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1069 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1070 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1071 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1072 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1073 }
1074}
1075
1076
1077/**
1078 * Gets the instruction diagnostic for segment attributes descriptor-type
1079 * (code/segment or system) failure during VM-entry of a nested-guest.
1080 *
1081 * @param iSegReg The segment index (X86_SREG_XXX).
1082 */
1083static VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg) RT_NOEXCEPT
1084{
1085 switch (iSegReg)
1086 {
1087 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1088 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1089 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1090 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1091 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1092 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1093 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1094 }
1095}
1096
1097
1098/**
1099 * Gets the instruction diagnostic for segment attribute granularity failure during
1100 * VM-entry of a nested-guest.
1101 *
1102 * @param iSegReg The segment index (X86_SREG_XXX).
1103 */
1104static VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg) RT_NOEXCEPT
1105{
1106 switch (iSegReg)
1107 {
1108 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1109 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1110 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1111 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1112 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1113 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1114 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1115 }
1116}
1117
1118/**
1119 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1120 * VM-entry of a nested-guest.
1121 *
1122 * @param iSegReg The segment index (X86_SREG_XXX).
1123 */
1124static VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg) RT_NOEXCEPT
1125{
1126 switch (iSegReg)
1127 {
1128 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1129 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1130 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1131 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1132 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1133 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1134 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1135 }
1136}
1137
1138
1139/**
1140 * Gets the instruction diagnostic for segment attribute type accessed failure
1141 * during VM-entry of a nested-guest.
1142 *
1143 * @param iSegReg The segment index (X86_SREG_XXX).
1144 */
1145static VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg) RT_NOEXCEPT
1146{
1147 switch (iSegReg)
1148 {
1149 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1150 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1151 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1152 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1153 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1154 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1155 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1156 }
1157}
1158
1159
1160/**
1161 * Saves the guest control registers, debug registers and some MSRs are part of
1162 * VM-exit.
1163 *
1164 * @param pVCpu The cross context virtual CPU structure.
1165 */
1166static void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1167{
1168 /*
1169 * Saves the guest control registers, debug registers and some MSRs.
1170 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1171 */
1172 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1173
1174 /* Save control registers. */
1175 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1176 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1177 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1178
1179 /* Save SYSENTER CS, ESP, EIP. */
1180 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1181 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1182 {
1183 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1184 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1185 }
1186 else
1187 {
1188 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1189 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1190 }
1191
1192 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1193 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1194 {
1195 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1196 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1197 }
1198
1199 /* Save PAT MSR. */
1200 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1201 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1202
1203 /* Save EFER MSR. */
1204 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1205 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1206
1207 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1208 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1209
1210 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1211}
1212
1213
1214/**
1215 * Saves the guest force-flags in preparation of entering the nested-guest.
1216 *
1217 * @param pVCpu The cross context virtual CPU structure.
1218 */
1219static void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1220{
1221 /* We shouldn't be called multiple times during VM-entry. */
1222 Assert(pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit == 0);
1223
1224 /* MTF should not be set outside VMX non-root mode. */
1225 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1226
1227 /*
1228 * Preserve the required force-flags.
1229 *
1230 * We cache and clear force-flags that would affect the execution of the
1231 * nested-guest. Cached flags are then restored while returning to the guest
1232 * if necessary.
1233 *
1234 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1235 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1236 * instruction. Interrupt inhibition for any nested-guest instruction
1237 * is supplied by the guest-interruptibility state VMCS field and will
1238 * be set up as part of loading the guest state. Technically
1239 * blocking-by-STI is possible with VMLAUNCH/VMRESUME but we currently
1240 * disallow it since we can't distinguish it from blocking-by-MovSS
1241 * and no nested-hypervisor we care about uses STI immediately
1242 * followed by VMLAUNCH/VMRESUME.
1243 *
1244 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1245 * successful VM-entry (due to invalid guest-state) need to continue
1246 * blocking NMIs if it was in effect before VM-entry.
1247 *
1248 * - MTF need not be preserved as it's used only in VMX non-root mode and
1249 * is supplied through the VM-execution controls.
1250 *
1251 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1252 * we will be able to generate interrupts that may cause VM-exits for
1253 * the nested-guest.
1254 */
1255 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI;
1256}
1257
1258
1259/**
1260 * Restores the guest force-flags in preparation of exiting the nested-guest.
1261 *
1262 * @param pVCpu The cross context virtual CPU structure.
1263 */
1264static void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1265{
1266 /** @todo r=bird: why aren't we clearing the nested guest flags first here?
1267 * If there is some other code doing that already, it would be great
1268 * to point to it here... */
1269 pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit;
1270 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = 0;
1271}
1272
1273
1274/**
1275 * Performs the VMX transition to/from VMX non-root mode.
1276 *
1277 * @param pVCpu The cross context virtual CPU structure.
1278 * @param cbInstr The length of the current instruction.
1279 */
1280static int iemVmxTransition(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
1281{
1282 /*
1283 * Inform PGM about paging mode changes.
1284 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1285 * see comment in iemMemPageTranslateAndCheckAccess().
1286 */
1287 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1288 true /* fForce */);
1289 if (RT_SUCCESS(rc))
1290 { /* likely */ }
1291 else
1292 return rc;
1293
1294 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
1295 IEMTlbInvalidateAll(pVCpu);
1296
1297 /* Inform CPUM (recompiler), can later be removed. */
1298 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1299
1300 /* Re-initialize IEM cache/state after the drastic mode switch. */
1301 iemReInitExec(pVCpu, cbInstr);
1302 return rc;
1303}
1304
1305
1306/**
1307 * Calculates the current VMX-preemption timer value.
1308 *
1309 * @returns The current VMX-preemption timer value.
1310 * @param pVCpu The cross context virtual CPU structure.
1311 */
1312static uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
1313{
1314 /*
1315 * Assume the following:
1316 * PreemptTimerShift = 5
1317 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1318 * EntryTick = 50000 (TSC at time of VM-entry)
1319 *
1320 * CurTick Delta PreemptTimerVal
1321 * ----------------------------------
1322 * 60000 10000 2
1323 * 80000 30000 1
1324 * 90000 40000 0 -> VM-exit.
1325 *
1326 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1327 * The saved VMX-preemption timer value is calculated as follows:
1328 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1329 * E.g.:
1330 * Delta = 10000
1331 * Tmp = 10000 / (2 * 10000) = 0.5
1332 * NewPt = 2 - 0.5 = 2
1333 * Delta = 30000
1334 * Tmp = 30000 / (2 * 10000) = 1.5
1335 * NewPt = 2 - 1.5 = 1
1336 * Delta = 40000
1337 * Tmp = 40000 / 20000 = 2
1338 * NewPt = 2 - 2 = 0
1339 */
1340 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1341 uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
1342 if (uVmcsPreemptVal > 0)
1343 {
1344 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1345 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1346 uint64_t const uDelta = uCurTick - uEntryTick;
1347 uint32_t const uPreemptTimer = uVmcsPreemptVal
1348 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1349 return uPreemptTimer;
1350 }
1351 return 0;
1352}
1353
1354
1355/**
1356 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1357 *
1358 * @param pVCpu The cross context virtual CPU structure.
1359 */
1360static void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1361{
1362 /*
1363 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1364 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1365 */
1366 /* CS, SS, ES, DS, FS, GS. */
1367 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1368 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1369 {
1370 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1371 if (!pSelReg->Attr.n.u1Unusable)
1372 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1373 else
1374 {
1375 /*
1376 * For unusable segments the attributes are undefined except for CS and SS.
1377 * For the rest we don't bother preserving anything but the unusable bit.
1378 */
1379 switch (iSegReg)
1380 {
1381 case X86_SREG_CS:
1382 pVmcs->GuestCs = pSelReg->Sel;
1383 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1384 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1385 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1386 | X86DESCATTR_UNUSABLE);
1387 break;
1388
1389 case X86_SREG_SS:
1390 pVmcs->GuestSs = pSelReg->Sel;
1391 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1392 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1393 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1394 break;
1395
1396 case X86_SREG_DS:
1397 pVmcs->GuestDs = pSelReg->Sel;
1398 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1399 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1400 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1401 break;
1402
1403 case X86_SREG_ES:
1404 pVmcs->GuestEs = pSelReg->Sel;
1405 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1406 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1407 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1408 break;
1409
1410 case X86_SREG_FS:
1411 pVmcs->GuestFs = pSelReg->Sel;
1412 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1413 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1414 break;
1415
1416 case X86_SREG_GS:
1417 pVmcs->GuestGs = pSelReg->Sel;
1418 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1419 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1420 break;
1421 }
1422 }
1423 }
1424
1425 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1426 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1427 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1428 | X86DESCATTR_UNUSABLE;
1429 /* LDTR. */
1430 {
1431 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1432 pVmcs->GuestLdtr = pSelReg->Sel;
1433 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1434 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1435 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1436 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1437 }
1438
1439 /* TR. */
1440 {
1441 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1442 pVmcs->GuestTr = pSelReg->Sel;
1443 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1444 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1445 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1446 }
1447
1448 /* GDTR. */
1449 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1450 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1451
1452 /* IDTR. */
1453 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1454 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1455}
1456
1457
1458/**
1459 * Saves guest non-register state as part of VM-exit.
1460 *
1461 * @param pVCpu The cross context virtual CPU structure.
1462 * @param uExitReason The VM-exit reason.
1463 */
1464static void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1465{
1466 /*
1467 * Save guest non-register state.
1468 * See Intel spec. 27.3.4 "Saving Non-Register State".
1469 */
1470 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1471
1472 /*
1473 * Activity state.
1474 * Most VM-exits will occur in the active state. However, if the first instruction
1475 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1476 * the VM-exit will be from the HLT activity state.
1477 *
1478 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1479 */
1480 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1481 * not? */
1482 EMSTATE const enmActivityState = EMGetState(pVCpu);
1483 switch (enmActivityState)
1484 {
1485 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1486 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1487 }
1488
1489 /*
1490 * Interruptibility-state.
1491 */
1492 /* NMI. */
1493 pVmcs->u32GuestIntrState = 0;
1494 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1495 {
1496 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1497 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1498 }
1499 else
1500 {
1501 if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
1502 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1503 }
1504
1505 /* Blocking-by-STI or blocking-by-MovSS. */
1506 uint32_t fInhibitShw;
1507 if (!CPUMIsInInterruptShadowWithUpdateEx(&pVCpu->cpum.GstCtx, &fInhibitShw))
1508 { /* probable */}
1509 else
1510 {
1511 if (pVCpu->cpum.GstCtx.rip == pVCpu->cpum.GstCtx.uRipInhibitInt)
1512 {
1513 /*
1514 * We must ensure only one of these bits is set.
1515 * Our emulation can have both set (perhaps because AMD doesn't distinguish
1516 * between the two?). Hence, the 'else' with blocking-by-MovSS taking priority
1517 * since it blocks more. Nested Ubuntu 22.04.2 running inside a Hyper-V enabled
1518 * Windows Server 2008 R2 guest runs into this issue.
1519 *
1520 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1521 */
1522 if (fInhibitShw & CPUMCTX_INHIBIT_SHADOW_SS)
1523 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
1524 else
1525 {
1526 Assert(fInhibitShw & CPUMCTX_INHIBIT_SHADOW_STI);
1527 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1528 }
1529 }
1530 }
1531 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1532
1533 /*
1534 * Pending debug exceptions.
1535 *
1536 * For VM-exits where it is not applicable, we can safely zero out the field.
1537 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1538 */
1539 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1540 && uExitReason != VMX_EXIT_SMI
1541 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1542 && !VMXIsVmexitTrapLike(uExitReason))
1543 {
1544 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1545 * block-by-MovSS is in effect. */
1546 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1547 }
1548
1549 /*
1550 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1551 *
1552 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1553 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1554 */
1555 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1556 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1557 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1558
1559 /*
1560 * Save the guest PAE PDPTEs.
1561 */
1562 if ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
1563 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
1564 {
1565 /*
1566 * Without EPT or when the nested-guest is not using PAE paging, the values saved
1567 * in the VMCS during VM-exit are undefined. We zero them here for consistency.
1568 */
1569 pVmcs->u64GuestPdpte0.u = 0;
1570 pVmcs->u64GuestPdpte1.u = 0;
1571 pVmcs->u64GuestPdpte2.u = 0;
1572 pVmcs->u64GuestPdpte3.u = 0;
1573 }
1574 else
1575 {
1576 /*
1577 * With EPT and when the nested-guest is using PAE paging, we update the PDPTEs from
1578 * the nested-guest CPU context. Both IEM (Mov CRx) and hardware-assisted execution
1579 * of the nested-guest is expected to have updated them.
1580 */
1581 pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
1582 pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
1583 pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
1584 pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
1585 }
1586
1587 /* Clear PGM's copy of the EPT pointer for added safety. */
1588 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
1589 PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
1590}
1591
1592
1593/**
1594 * Saves the guest-state as part of VM-exit.
1595 *
1596 * @returns VBox status code.
1597 * @param pVCpu The cross context virtual CPU structure.
1598 * @param uExitReason The VM-exit reason.
1599 */
1600static void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1601{
1602 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1603 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1604
1605 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1606 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1607 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1608
1609 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1610}
1611
1612
1613/**
1614 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1615 *
1616 * @returns VBox status code.
1617 * @param pVCpu The cross context virtual CPU structure.
1618 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1619 */
1620static int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1621{
1622 /*
1623 * Save guest MSRs.
1624 * See Intel spec. 27.4 "Saving MSRs".
1625 */
1626 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1627 const char * const pszFailure = "VMX-abort";
1628
1629 /*
1630 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1631 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1632 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1633 */
1634 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
1635 if (!cMsrs)
1636 return VINF_SUCCESS;
1637
1638 /*
1639 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1640 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1641 * implementation causes a VMX-abort followed by a triple-fault.
1642 */
1643 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1644 if (fIsMsrCountValid)
1645 { /* likely */ }
1646 else
1647 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1648
1649 /*
1650 * Optimization if the nested hypervisor is using the same guest-physical page for both
1651 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1652 */
1653 PVMXAUTOMSR pMsrArea;
1654 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1655 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1656 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1657 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
1658 else
1659 {
1660 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
1661 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1662 if (RT_SUCCESS(rc))
1663 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
1664 else
1665 {
1666 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1667 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1668 }
1669 }
1670
1671 /*
1672 * Update VM-exit MSR store area.
1673 */
1674 PVMXAUTOMSR pMsr = pMsrArea;
1675 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1676 {
1677 if ( !pMsr->u32Reserved
1678 && pMsr->u32Msr != MSR_IA32_SMBASE
1679 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1680 {
1681 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1682 if (rcStrict == VINF_SUCCESS)
1683 continue;
1684
1685 /*
1686 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1687 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1688 * recording the MSR index in the auxiliary info. field and indicated further by our
1689 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1690 * if possible, or come up with a better, generic solution.
1691 */
1692 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1693 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1694 ? kVmxVDiag_Vmexit_MsrStoreRing3
1695 : kVmxVDiag_Vmexit_MsrStore;
1696 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1697 }
1698 else
1699 {
1700 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1701 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1702 }
1703 }
1704
1705 /*
1706 * Commit the VM-exit MSR store are to guest memory.
1707 */
1708 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1709 if (RT_SUCCESS(rc))
1710 return VINF_SUCCESS;
1711
1712 NOREF(uExitReason);
1713 NOREF(pszFailure);
1714
1715 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1716 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1717}
1718
1719
1720/**
1721 * Performs a VMX abort (due to an fatal error during VM-exit).
1722 *
1723 * @returns Strict VBox status code.
1724 * @param pVCpu The cross context virtual CPU structure.
1725 * @param enmAbort The VMX abort reason.
1726 */
1727static VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort) RT_NOEXCEPT
1728{
1729 /*
1730 * Perform the VMX abort.
1731 * See Intel spec. 27.7 "VMX Aborts".
1732 */
1733 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1734
1735 /* We don't support SMX yet. */
1736 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1737 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1738 {
1739 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1740 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1741 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1742 }
1743
1744 return VINF_EM_TRIPLE_FAULT;
1745}
1746
1747
1748/**
1749 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1750 *
1751 * @param pVCpu The cross context virtual CPU structure.
1752 */
1753static void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1754{
1755 /*
1756 * Load host control registers, debug registers and MSRs.
1757 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1758 */
1759 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1760 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1761
1762 /* CR0. */
1763 {
1764 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1765 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK;
1766 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1767 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1768 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1769
1770 /* Verify we have not modified CR0 fixed bits in VMX operation. */
1771#ifdef VBOX_STRICT
1772 uint64_t const uCr0Mb1 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
1773 bool const fUx = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1774 AssertMsg( (uValidHostCr0 & uCr0Mb1) == uCr0Mb1
1775 && (uValidHostCr0 & ~VMX_V_CR0_FIXED1) == 0,
1776 ("host=%#RX64 guest=%#RX64 mb1=%#RX64 valid_host_cr0=%#RX64 fUx=%RTbool\n",
1777 uHostCr0, uGuestCr0, uCr0Mb1, uValidHostCr0, fUx));
1778#endif
1779 Assert(!(uValidHostCr0 >> 32));
1780 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1781 }
1782
1783 /* CR4. */
1784 {
1785 /* CR4 fixed bits are not modified. */
1786 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1787 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1788 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1789 uint64_t uValidHostCr4 = (uHostCr4 & uCr4Mb0) | uCr4Mb1;
1790 if (fHostInLongMode)
1791 uValidHostCr4 |= X86_CR4_PAE;
1792 else
1793 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1794
1795 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1796 AssertMsg( (uValidHostCr4 & uCr4Mb1) == uCr4Mb1
1797 && (uValidHostCr4 & ~uCr4Mb0) == 0,
1798 ("host=%#RX64 guest=%#RX64, uCr4Mb1=%#RX64 uCr4Mb0=%#RX64 valid_host_cr4=%#RX64\n",
1799 uHostCr4, pVCpu->cpum.GstCtx.cr4, uCr4Mb1, uCr4Mb0, uValidHostCr4));
1800 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1801 }
1802
1803 /* CR3 (host value validated while checking host-state during VM-entry). */
1804 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1805
1806 /* DR7. */
1807 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1808
1809 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1810
1811 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1812 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1813 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1814 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1815
1816 /* FS, GS bases are loaded later while we load host segment registers. */
1817
1818 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1819 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1820 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1821 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1822 {
1823 if (fHostInLongMode)
1824 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1825 else
1826 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1827 }
1828
1829 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1830
1831 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1832 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1833 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1834
1835 /* We don't support IA32_BNDCFGS MSR yet. */
1836}
1837
1838
1839/**
1840 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1841 *
1842 * @param pVCpu The cross context virtual CPU structure.
1843 */
1844static void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1845{
1846 /*
1847 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1848 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1849 *
1850 * Warning! Be careful to not touch fields that are reserved by VT-x,
1851 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1852 */
1853 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1854 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1855
1856 /* CS, SS, ES, DS, FS, GS. */
1857 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1858 {
1859 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1860 bool const fUnusable = RT_BOOL(HostSel == 0);
1861 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1862
1863 /* Selector. */
1864 pSelReg->Sel = HostSel;
1865 pSelReg->ValidSel = HostSel;
1866 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1867
1868 /* Limit. */
1869 pSelReg->u32Limit = 0xffffffff;
1870
1871 /* Base. */
1872 pSelReg->u64Base = 0;
1873
1874 /* Attributes. */
1875 if (iSegReg == X86_SREG_CS)
1876 {
1877 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1878 pSelReg->Attr.n.u1DescType = 1;
1879 pSelReg->Attr.n.u2Dpl = 0;
1880 pSelReg->Attr.n.u1Present = 1;
1881 pSelReg->Attr.n.u1Long = fHostInLongMode;
1882 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1883 pSelReg->Attr.n.u1Granularity = 1;
1884 Assert(!pSelReg->Attr.n.u1Unusable);
1885 Assert(!fUnusable);
1886 }
1887 else
1888 {
1889 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1890 pSelReg->Attr.n.u1DescType = 1;
1891 pSelReg->Attr.n.u2Dpl = 0;
1892 pSelReg->Attr.n.u1Present = 1;
1893 pSelReg->Attr.n.u1DefBig = 1;
1894 pSelReg->Attr.n.u1Granularity = 1;
1895 pSelReg->Attr.n.u1Unusable = fUnusable;
1896 }
1897 }
1898
1899 /* FS base. */
1900 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1901 || fHostInLongMode)
1902 {
1903 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1904 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1905 }
1906
1907 /* GS base. */
1908 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1909 || fHostInLongMode)
1910 {
1911 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1912 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1913 }
1914
1915 /* TR. */
1916 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1917 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1918 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1919 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1920 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1921 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1922 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1923 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1924 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1925 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1926 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1927 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1928 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1929
1930 /* LDTR (Warning! do not touch the base and limits here). */
1931 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1932 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1933 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1934 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1935
1936 /* GDTR. */
1937 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1938 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1939 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1940
1941 /* IDTR.*/
1942 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1943 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1944 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1945}
1946
1947
1948/**
1949 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1950 *
1951 * @returns VBox status code.
1952 * @param pVCpu The cross context virtual CPU structure.
1953 * @param uExitReason The VMX instruction name (for logging purposes).
1954 */
1955static int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1956{
1957 /*
1958 * Load host MSRs.
1959 * See Intel spec. 27.6 "Loading MSRs".
1960 */
1961 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1962 const char * const pszFailure = "VMX-abort";
1963
1964 /*
1965 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1966 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1967 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1968 */
1969 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
1970 if (!cMsrs)
1971 return VINF_SUCCESS;
1972
1973 /*
1974 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1975 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1976 * implementation causes a VMX-abort followed by a triple-fault.
1977 */
1978 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1979 if (fIsMsrCountValid)
1980 { /* likely */ }
1981 else
1982 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1983
1984 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1985 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
1986 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1987 if (RT_SUCCESS(rc))
1988 {
1989 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
1990 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1991 {
1992 if ( !pMsr->u32Reserved
1993 && pMsr->u32Msr != MSR_K8_FS_BASE
1994 && pMsr->u32Msr != MSR_K8_GS_BASE
1995 && pMsr->u32Msr != MSR_K6_EFER
1996 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1997 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1998 {
1999 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
2000 if (rcStrict == VINF_SUCCESS)
2001 continue;
2002
2003 /*
2004 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
2005 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
2006 * recording the MSR index in the auxiliary info. field and indicated further by our
2007 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
2008 * if possible, or come up with a better, generic solution.
2009 */
2010 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
2011 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
2012 ? kVmxVDiag_Vmexit_MsrLoadRing3
2013 : kVmxVDiag_Vmexit_MsrLoad;
2014 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
2015 }
2016 else
2017 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
2018 }
2019 }
2020 else
2021 {
2022 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
2023 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
2024 }
2025
2026 NOREF(uExitReason);
2027 NOREF(pszFailure);
2028 return VINF_SUCCESS;
2029}
2030
2031
2032/**
2033 * Loads the host state as part of VM-exit.
2034 *
2035 * @returns Strict VBox status code.
2036 * @param pVCpu The cross context virtual CPU structure.
2037 * @param uExitReason The VM-exit reason (for logging purposes).
2038 */
2039static VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
2040{
2041 /*
2042 * Load host state.
2043 * See Intel spec. 27.5 "Loading Host State".
2044 */
2045 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2046 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2047
2048 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2049 if ( CPUMIsGuestInLongMode(pVCpu)
2050 && !fHostInLongMode)
2051 {
2052 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2053 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2054 }
2055
2056 /*
2057 * Check host PAE PDPTEs prior to loading the host state.
2058 * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
2059 */
2060 if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
2061 && !fHostInLongMode
2062 && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
2063 || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
2064 {
2065 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
2066 if (RT_SUCCESS(rc))
2067 { /* likely*/ }
2068 else
2069 {
2070 IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
2071 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2072 }
2073 }
2074
2075 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2076 iemVmxVmexitLoadHostSegRegs(pVCpu);
2077
2078 /*
2079 * Load host RIP, RSP and RFLAGS.
2080 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2081 */
2082 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2083 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2084 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2085
2086 /* Clear address range monitoring. */
2087 EMMonitorWaitClear(pVCpu);
2088
2089 /* Perform the VMX transition (PGM updates). */
2090 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu, 0 /*cbInstr - whatever*/);
2091 if (rcStrict == VINF_SUCCESS)
2092 { /* likely */ }
2093 else if (RT_SUCCESS(rcStrict))
2094 {
2095 Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2096 uExitReason));
2097 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2098 }
2099 else
2100 {
2101 Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2102 return VBOXSTRICTRC_VAL(rcStrict);
2103 }
2104
2105 Assert(rcStrict == VINF_SUCCESS);
2106
2107 /* Load MSRs from the VM-exit auto-load MSR area. */
2108 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2109 if (RT_FAILURE(rc))
2110 {
2111 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2112 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2113 }
2114 return VINF_SUCCESS;
2115}
2116
2117
2118/**
2119 * Gets VM-exit instruction information along with any displacement for an
2120 * instruction VM-exit.
2121 *
2122 * @returns The VM-exit instruction information.
2123 * @param pVCpu The cross context virtual CPU structure.
2124 * @param uExitReason The VM-exit reason.
2125 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2126 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2127 * NULL.
2128 */
2129static uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp) RT_NOEXCEPT
2130{
2131 RTGCPTR GCPtrDisp;
2132 VMXEXITINSTRINFO ExitInstrInfo;
2133 ExitInstrInfo.u = 0;
2134
2135 /*
2136 * Get and parse the ModR/M byte from our decoded opcodes.
2137 */
2138 uint8_t bRm;
2139 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2140 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2141 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2142 {
2143 /*
2144 * ModR/M indicates register addressing.
2145 *
2146 * The primary/secondary register operands are reported in the iReg1 or iReg2
2147 * fields depending on whether it is a read/write form.
2148 */
2149 uint8_t idxReg1;
2150 uint8_t idxReg2;
2151 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2152 {
2153 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2154 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2155 }
2156 else
2157 {
2158 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2159 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2160 }
2161 ExitInstrInfo.All.u2Scaling = 0;
2162 ExitInstrInfo.All.iReg1 = idxReg1;
2163 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2164 ExitInstrInfo.All.fIsRegOperand = 1;
2165 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2166 ExitInstrInfo.All.iSegReg = 0;
2167 ExitInstrInfo.All.iIdxReg = 0;
2168 ExitInstrInfo.All.fIdxRegInvalid = 1;
2169 ExitInstrInfo.All.iBaseReg = 0;
2170 ExitInstrInfo.All.fBaseRegInvalid = 1;
2171 ExitInstrInfo.All.iReg2 = idxReg2;
2172
2173 /* Displacement not applicable for register addressing. */
2174 GCPtrDisp = 0;
2175 }
2176 else
2177 {
2178 /*
2179 * ModR/M indicates memory addressing.
2180 */
2181 uint8_t uScale = 0;
2182 bool fBaseRegValid = false;
2183 bool fIdxRegValid = false;
2184 uint8_t iBaseReg = 0;
2185 uint8_t iIdxReg = 0;
2186 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2187 {
2188 /*
2189 * Parse the ModR/M, displacement for 16-bit addressing mode.
2190 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2191 */
2192 uint16_t u16Disp = 0;
2193 uint8_t const offDisp = offModRm + sizeof(bRm);
2194 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2195 {
2196 /* Displacement without any registers. */
2197 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2198 }
2199 else
2200 {
2201 /* Register (index and base). */
2202 switch (bRm & X86_MODRM_RM_MASK)
2203 {
2204 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2205 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2206 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2207 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2208 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2209 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2210 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2211 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2212 }
2213
2214 /* Register + displacement. */
2215 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2216 {
2217 case 0: break;
2218 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2219 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2220 default:
2221 {
2222 /* Register addressing, handled at the beginning. */
2223 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2224 break;
2225 }
2226 }
2227 }
2228
2229 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2230 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2231 }
2232 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2233 {
2234 /*
2235 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2236 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2237 */
2238 uint32_t u32Disp = 0;
2239 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2240 {
2241 /* Displacement without any registers. */
2242 uint8_t const offDisp = offModRm + sizeof(bRm);
2243 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2244 }
2245 else
2246 {
2247 /* Register (and perhaps scale, index and base). */
2248 uint8_t offDisp = offModRm + sizeof(bRm);
2249 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2250 if (iBaseReg == 4)
2251 {
2252 /* An SIB byte follows the ModR/M byte, parse it. */
2253 uint8_t bSib;
2254 uint8_t const offSib = offModRm + sizeof(bRm);
2255 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2256
2257 /* A displacement may follow SIB, update its offset. */
2258 offDisp += sizeof(bSib);
2259
2260 /* Get the scale. */
2261 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2262
2263 /* Get the index register. */
2264 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2265 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2266
2267 /* Get the base register. */
2268 iBaseReg = bSib & X86_SIB_BASE_MASK;
2269 fBaseRegValid = true;
2270 if (iBaseReg == 5)
2271 {
2272 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2273 {
2274 /* Mod is 0 implies a 32-bit displacement with no base. */
2275 fBaseRegValid = false;
2276 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2277 }
2278 else
2279 {
2280 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2281 iBaseReg = X86_GREG_xBP;
2282 }
2283 }
2284 }
2285
2286 /* Register + displacement. */
2287 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2288 {
2289 case 0: /* Handled above */ break;
2290 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2291 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2292 default:
2293 {
2294 /* Register addressing, handled at the beginning. */
2295 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2296 break;
2297 }
2298 }
2299 }
2300
2301 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2302 }
2303 else
2304 {
2305 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2306
2307 /*
2308 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2309 * See Intel instruction spec. 2.2 "IA-32e Mode".
2310 */
2311 uint64_t u64Disp = 0;
2312 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2313 if (fRipRelativeAddr)
2314 {
2315 /*
2316 * RIP-relative addressing mode.
2317 *
2318 * The displacement is 32-bit signed implying an offset range of +/-2G.
2319 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2320 */
2321 uint8_t const offDisp = offModRm + sizeof(bRm);
2322 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2323 }
2324 else
2325 {
2326 uint8_t offDisp = offModRm + sizeof(bRm);
2327
2328 /*
2329 * Register (and perhaps scale, index and base).
2330 *
2331 * REX.B extends the most-significant bit of the base register. However, REX.B
2332 * is ignored while determining whether an SIB follows the opcode. Hence, we
2333 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2334 *
2335 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2336 */
2337 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2338 if (iBaseReg == 4)
2339 {
2340 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2341 uint8_t bSib;
2342 uint8_t const offSib = offModRm + sizeof(bRm);
2343 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2344
2345 /* Displacement may follow SIB, update its offset. */
2346 offDisp += sizeof(bSib);
2347
2348 /* Get the scale. */
2349 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2350
2351 /* Get the index. */
2352 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2353 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2354
2355 /* Get the base. */
2356 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2357 fBaseRegValid = true;
2358 if (iBaseReg == 5)
2359 {
2360 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2361 {
2362 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2363 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2364 }
2365 else
2366 {
2367 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2368 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2369 }
2370 }
2371 }
2372 iBaseReg |= pVCpu->iem.s.uRexB;
2373
2374 /* Register + displacement. */
2375 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2376 {
2377 case 0: /* Handled above */ break;
2378 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2379 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2380 default:
2381 {
2382 /* Register addressing, handled at the beginning. */
2383 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2384 break;
2385 }
2386 }
2387 }
2388
2389 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2390 }
2391
2392 /*
2393 * The primary or secondary register operand is reported in iReg2 depending
2394 * on whether the primary operand is in read/write form.
2395 */
2396 uint8_t idxReg2;
2397 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2398 {
2399 idxReg2 = bRm & X86_MODRM_RM_MASK;
2400 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2401 idxReg2 |= pVCpu->iem.s.uRexB;
2402 }
2403 else
2404 {
2405 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2406 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2407 idxReg2 |= pVCpu->iem.s.uRexReg;
2408 }
2409 ExitInstrInfo.All.u2Scaling = uScale;
2410 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2411 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2412 ExitInstrInfo.All.fIsRegOperand = 0;
2413 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2414 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2415 ExitInstrInfo.All.iIdxReg = iIdxReg;
2416 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2417 ExitInstrInfo.All.iBaseReg = iBaseReg;
2418 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2419 ExitInstrInfo.All.iReg2 = idxReg2;
2420 }
2421
2422 /*
2423 * Handle exceptions to the norm for certain instructions.
2424 * (e.g. some instructions convey an instruction identity in place of iReg2).
2425 */
2426 switch (uExitReason)
2427 {
2428 case VMX_EXIT_GDTR_IDTR_ACCESS:
2429 {
2430 Assert(VMXINSTRID_IS_VALID(uInstrId));
2431 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2432 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2433 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2434 break;
2435 }
2436
2437 case VMX_EXIT_LDTR_TR_ACCESS:
2438 {
2439 Assert(VMXINSTRID_IS_VALID(uInstrId));
2440 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2441 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2442 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2443 break;
2444 }
2445
2446 case VMX_EXIT_RDRAND:
2447 case VMX_EXIT_RDSEED:
2448 {
2449 Assert(VMXINSTRID_IS_VALID(uInstrId));
2450 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2451 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2452 ExitInstrInfo.RdrandRdseed.u3Undef0 = 0;
2453 ExitInstrInfo.RdrandRdseed.u4Undef0 = 0;
2454 ExitInstrInfo.RdrandRdseed.u19Undef0 = 0;
2455 break;
2456 }
2457 }
2458
2459 /* Update displacement and return the constructed VM-exit instruction information field. */
2460 if (pGCPtrDisp)
2461 *pGCPtrDisp = GCPtrDisp;
2462
2463 return ExitInstrInfo.u;
2464}
2465
2466
2467/**
2468 * VMX VM-exit handler.
2469 *
2470 * @returns Strict VBox status code.
2471 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2472 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2473 * triple-fault.
2474 *
2475 * @param pVCpu The cross context virtual CPU structure.
2476 * @param uExitReason The VM-exit reason.
2477 * @param u64ExitQual The Exit qualification.
2478 *
2479 * @remarks We need not necessarily have completed VM-entry before a VM-exit is
2480 * called. Failures during VM-entry can cause VM-exits as well, so we
2481 * -cannot- assert we're in VMX non-root mode here.
2482 */
2483VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT
2484{
2485# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2486 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2487 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2488 return VERR_IEM_IPE_7;
2489# else
2490 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2491
2492 /* Just count this as an exit and be done with that. */
2493 pVCpu->iem.s.cPotentialExits++;
2494
2495 /*
2496 * Import all the guest-CPU state.
2497 *
2498 * HM on returning to guest execution would have to reset up a whole lot of state
2499 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2500 * the state and flag reloading the entire state on re-entry. So import the entire
2501 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2502 */
2503 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2504
2505 /*
2506 * Ensure VM-entry interruption information valid bit is cleared.
2507 *
2508 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2509 * by invalid-guest state or machine-check exceptions) also clear this bit.
2510 *
2511 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2512 */
2513 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2514 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2515
2516 /*
2517 * Update the VM-exit reason and Exit qualification.
2518 * Other VMCS read-only data fields are expected to be updated by the caller already.
2519 */
2520 pVmcs->u32RoExitReason = uExitReason;
2521 pVmcs->u64RoExitQual.u = u64ExitQual;
2522
2523 Log2(("vmexit: reason=%u qual=%#RX64 cs:rip=%04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 eflags=%#RX32\n", uExitReason,
2524 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2525 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.eflags.u));
2526
2527 /*
2528 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2529 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2530 */
2531 {
2532 uint8_t uVector;
2533 uint32_t fFlags;
2534 uint32_t uErrCode;
2535 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2536 if (fInEventDelivery)
2537 {
2538 /*
2539 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2540 * caused by a triple-fault or the original event results in a double-fault that
2541 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2542 * original event information into the IDT-vectoring information fields.
2543 *
2544 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2545 */
2546 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2547 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2548 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2549 {
2550 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2551 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2552 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2553 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2554 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2555 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2556 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2557 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2558 Log2(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2559 pVCpu->cpum.GstCtx.cr2));
2560 }
2561 }
2562 }
2563
2564 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2565 Assert(pVmcs->u64RoIoRcx.u == 0);
2566 Assert(pVmcs->u64RoIoRsi.u == 0);
2567 Assert(pVmcs->u64RoIoRdi.u == 0);
2568 Assert(pVmcs->u64RoIoRip.u == 0);
2569
2570 /*
2571 * Save the guest state back into the VMCS.
2572 * We only need to save the state when the VM-entry was successful.
2573 */
2574 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2575 if (!fVmentryFailed)
2576 {
2577 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2578 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2579 {
2580 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2581 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2582 }
2583
2584 /* For exception or NMI VM-exits, the VM-exit interruption info. field must be valid. */
2585 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2586
2587 /* For external interrupts that occur while "acknowledge interrupt on exit" VM-exit is set,
2588 the VM-exit interruption info. field must be valid. */
2589 Assert( uExitReason != VMX_EXIT_EXT_INT
2590 || !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
2591 || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2592
2593 /*
2594 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2595 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2596 *
2597 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2598 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2599 * as guest-CPU state would not been modified. Hence for now, we do this only when
2600 * the VM-entry succeeded.
2601 */
2602 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2603 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2604 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2605 {
2606 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2607 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2608 else
2609 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2610 }
2611
2612 /*
2613 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2614 * occurs in enclave mode/SMM which we don't support yet.
2615 *
2616 * If we ever add support for it, we can pass just the lower bits to the functions
2617 * below, till then an assert should suffice.
2618 */
2619 Assert(!RT_HI_U16(uExitReason));
2620
2621 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2622 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2623 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2624 if (RT_SUCCESS(rc))
2625 { /* likely */ }
2626 else
2627 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2628
2629 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2630 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit &= ~CPUMCTX_INHIBIT_NMI;
2631 }
2632 else
2633 {
2634 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2635 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2636 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2637 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2638 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2639 }
2640
2641 /*
2642 * Stop any running VMX-preemption timer if necessary.
2643 */
2644 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2645 CPUMStopGuestVmxPremptTimer(pVCpu);
2646
2647 /*
2648 * Clear the state of "NMI unblocked due to IRET" as otherwise we risk
2649 * reporting a stale state on a subsequent VM-exit. This state will be
2650 * re-established while emulating IRET in VMX non-root mode.
2651 */
2652 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = false;
2653
2654 /*
2655 * Clear any pending VMX nested-guest force-flags.
2656 * These force-flags have no effect on (outer) guest execution and will
2657 * be re-evaluated and setup on the next nested-guest VM-entry.
2658 */
2659 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2660
2661 /*
2662 * We're no longer in nested-guest execution mode.
2663 *
2664 * It is important to do this prior to loading the host state because
2665 * PGM looks at fInVmxNonRootMode to determine if it needs to perform
2666 * second-level address translation while switching to host CR3.
2667 */
2668 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2669
2670 /* Restore the host (outer guest) state. */
2671 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2672 if (RT_SUCCESS(rcStrict))
2673 {
2674 Assert(rcStrict == VINF_SUCCESS);
2675 rcStrict = VINF_VMX_VMEXIT;
2676 }
2677 else
2678 Log(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2679
2680 /*
2681 * Restore non-zero Secondary-processor based VM-execution controls
2682 * when the "activate secondary controls" bit was not set.
2683 */
2684 if (pVmcs->u32RestoreProcCtls2)
2685 {
2686 Assert(!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS));
2687 pVmcs->u32ProcCtls2 = pVmcs->u32RestoreProcCtls2;
2688 pVmcs->u32RestoreProcCtls2 = 0;
2689 }
2690
2691 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
2692 {
2693 /* Notify HM that the current VMCS fields have been modified. */
2694 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2695
2696 /* Notify HM that we've completed the VM-exit. */
2697 HMNotifyVmxNstGstVmexit(pVCpu);
2698 }
2699
2700# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2701 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2702 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2703 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2704 if (rcSched != VINF_SUCCESS)
2705 iemSetPassUpStatus(pVCpu, rcSched);
2706# endif
2707 return rcStrict;
2708# endif
2709}
2710
2711
2712/**
2713 * VMX VM-exit handler for VM-exits due to instruction execution.
2714 *
2715 * This is intended for instructions where the caller provides all the relevant
2716 * VM-exit information.
2717 *
2718 * @returns Strict VBox status code.
2719 * @param pVCpu The cross context virtual CPU structure.
2720 * @param pExitInfo Pointer to the VM-exit information.
2721 */
2722static VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
2723{
2724 /*
2725 * For instructions where any of the following fields are not applicable:
2726 * - Exit qualification must be cleared.
2727 * - VM-exit instruction info. is undefined.
2728 * - Guest-linear address is undefined.
2729 * - Guest-physical address is undefined.
2730 *
2731 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2732 * instruction execution. For VM-exits that are not due to instruction execution this
2733 * field is undefined.
2734 *
2735 * In our implementation in IEM, all undefined fields are generally cleared. However,
2736 * if the caller supplies information (from say the physical CPU directly) it is
2737 * then possible that the undefined fields are not cleared.
2738 *
2739 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2740 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2741 */
2742 Assert(pExitInfo);
2743 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2744 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2745 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2746
2747 /* Update all the relevant fields from the VM-exit instruction information struct. */
2748 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2749 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2750 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2751 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2752
2753 /* Perform the VM-exit. */
2754 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2755}
2756
2757
2758/**
2759 * VMX VM-exit handler for VM-exits due to instruction execution.
2760 *
2761 * This is intended for instructions that only provide the VM-exit instruction
2762 * length.
2763 *
2764 * @param pVCpu The cross context virtual CPU structure.
2765 * @param uExitReason The VM-exit reason.
2766 * @param cbInstr The instruction length in bytes.
2767 */
2768VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT
2769{
2770#ifdef VBOX_STRICT
2771 /*
2772 * To prevent us from shooting ourselves in the foot.
2773 * The follow instructions should convey more than just the instruction length.
2774 */
2775 switch (uExitReason)
2776 {
2777 case VMX_EXIT_INVEPT:
2778 case VMX_EXIT_INVPCID:
2779 case VMX_EXIT_INVVPID:
2780 case VMX_EXIT_LDTR_TR_ACCESS:
2781 case VMX_EXIT_GDTR_IDTR_ACCESS:
2782 case VMX_EXIT_VMCLEAR:
2783 case VMX_EXIT_VMPTRLD:
2784 case VMX_EXIT_VMPTRST:
2785 case VMX_EXIT_VMREAD:
2786 case VMX_EXIT_VMWRITE:
2787 case VMX_EXIT_VMXON:
2788 case VMX_EXIT_XRSTORS:
2789 case VMX_EXIT_XSAVES:
2790 case VMX_EXIT_RDRAND:
2791 case VMX_EXIT_RDSEED:
2792 case VMX_EXIT_IO_INSTR:
2793 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2794 break;
2795 }
2796#endif
2797
2798 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_INSTR_LEN(uExitReason, cbInstr);
2799 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2800}
2801
2802
2803/**
2804 * Interface for HM and EM to emulate VM-exit due to a triple-fault.
2805 *
2806 * @returns Strict VBox status code.
2807 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2808 * @thread EMT(pVCpu)
2809 */
2810VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTripleFault(PVMCPUCC pVCpu)
2811{
2812 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
2813 Assert(!pVCpu->iem.s.cActiveMappings);
2814 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2815}
2816
2817
2818/**
2819 * Interface for HM and EM to emulate VM-exit due to startup-IPI (SIPI).
2820 *
2821 * @returns Strict VBox status code.
2822 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2823 * @param uVector The SIPI vector.
2824 * @thread EMT(pVCpu)
2825 */
2826VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitStartupIpi(PVMCPUCC pVCpu, uint8_t uVector)
2827{
2828 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_SIPI, uVector);
2829 Assert(!pVCpu->iem.s.cActiveMappings);
2830 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2831}
2832
2833
2834/**
2835 * Interface for HM and EM to emulate a VM-exit.
2836 *
2837 * If a specialized version of a VM-exit handler exists, that must be used instead.
2838 *
2839 * @returns Strict VBox status code.
2840 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2841 * @param uExitReason The VM-exit reason.
2842 * @param u64ExitQual The Exit qualification.
2843 * @thread EMT(pVCpu)
2844 */
2845VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2846{
2847 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, uExitReason, u64ExitQual);
2848 Assert(!pVCpu->iem.s.cActiveMappings);
2849 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2850}
2851
2852
2853/**
2854 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2855 *
2856 * This is meant to be used for those instructions that VMX provides additional
2857 * decoding information beyond just the instruction length!
2858 *
2859 * @returns Strict VBox status code.
2860 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2861 * @param pExitInfo Pointer to the VM-exit information.
2862 * @thread EMT(pVCpu)
2863 */
2864VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2865{
2866 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
2867 Assert(!pVCpu->iem.s.cActiveMappings);
2868 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2869}
2870
2871
2872/**
2873 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2874 *
2875 * This is meant to be used for those instructions that VMX provides only the
2876 * instruction length.
2877 *
2878 * @returns Strict VBox status code.
2879 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2880 * @param pExitInfo Pointer to the VM-exit information.
2881 * @param cbInstr The instruction length in bytes.
2882 * @thread EMT(pVCpu)
2883 */
2884VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2885{
2886 VBOXSTRICTRC rcStrict = iemVmxVmexitInstr(pVCpu, uExitReason, cbInstr);
2887 Assert(!pVCpu->iem.s.cActiveMappings);
2888 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2889}
2890
2891
2892/**
2893 * VMX VM-exit handler for VM-exits due to instruction execution.
2894 *
2895 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2896 * instruction information and Exit qualification fields.
2897 *
2898 * @param pVCpu The cross context virtual CPU structure.
2899 * @param uExitReason The VM-exit reason.
2900 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2901 * @param cbInstr The instruction length in bytes.
2902 *
2903 * @remarks Do not use this for INS/OUTS instruction.
2904 */
2905VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT
2906{
2907#ifdef VBOX_STRICT
2908 /*
2909 * To prevent us from shooting ourselves in the foot.
2910 * The follow instructions convey specific info that require using their respective handlers.
2911 */
2912 switch (uExitReason)
2913 {
2914 case VMX_EXIT_INVEPT:
2915 case VMX_EXIT_INVPCID:
2916 case VMX_EXIT_INVVPID:
2917 case VMX_EXIT_LDTR_TR_ACCESS:
2918 case VMX_EXIT_GDTR_IDTR_ACCESS:
2919 case VMX_EXIT_VMCLEAR:
2920 case VMX_EXIT_VMPTRLD:
2921 case VMX_EXIT_VMPTRST:
2922 case VMX_EXIT_VMREAD:
2923 case VMX_EXIT_VMWRITE:
2924 case VMX_EXIT_VMXON:
2925 case VMX_EXIT_XRSTORS:
2926 case VMX_EXIT_XSAVES:
2927 case VMX_EXIT_RDRAND:
2928 case VMX_EXIT_RDSEED:
2929 break;
2930 default:
2931 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2932 break;
2933 }
2934#endif
2935
2936 /*
2937 * Update the Exit qualification field with displacement bytes.
2938 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2939 */
2940 /* Construct the VM-exit instruction information. */
2941 RTGCPTR GCPtrDisp;
2942 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2943
2944 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO(uExitReason, GCPtrDisp, uInstrInfo, cbInstr);
2945 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2946}
2947
2948
2949/**
2950 * VMX VM-exit handler for VM-exits due to INVLPG.
2951 *
2952 * @returns Strict VBox status code.
2953 * @param pVCpu The cross context virtual CPU structure.
2954 * @param GCPtrPage The guest-linear address of the page being invalidated.
2955 * @param cbInstr The instruction length in bytes.
2956 */
2957VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT
2958{
2959 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_INVLPG, GCPtrPage, cbInstr);
2960 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2961 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2962}
2963
2964
2965/**
2966 * VMX VM-exit handler for VM-exits due to LMSW.
2967 *
2968 * @returns Strict VBox status code.
2969 * @param pVCpu The cross context virtual CPU structure.
2970 * @param uGuestCr0 The current guest CR0.
2971 * @param pu16NewMsw The machine-status word specified in LMSW's source
2972 * operand. This will be updated depending on the VMX
2973 * guest/host CR0 mask if LMSW is not intercepted.
2974 * @param GCPtrEffDst The guest-linear address of the source operand in case
2975 * of a memory operand. For register operand, pass
2976 * NIL_RTGCPTR.
2977 * @param cbInstr The instruction length in bytes.
2978 */
2979VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
2980 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT
2981{
2982 Assert(pu16NewMsw);
2983
2984 uint16_t const uNewMsw = *pu16NewMsw;
2985 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2986 {
2987 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2988 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2989 VMXVEXITINFO ExitInfo
2990 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
2991 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2992 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2993 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw)
2994 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW),
2995 cbInstr);
2996 if (fMemOperand)
2997 {
2998 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2999 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
3000 }
3001 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3002 }
3003
3004 /*
3005 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
3006 * CR0 guest/host mask must be left unmodified.
3007 *
3008 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3009 */
3010 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3011 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3012 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
3013
3014 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3015}
3016
3017
3018/**
3019 * VMX VM-exit handler for VM-exits due to CLTS.
3020 *
3021 * @returns Strict VBox status code.
3022 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
3023 * VM-exit but must not modify the guest CR0.TS bit.
3024 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
3025 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
3026 * CR0 fixed bits in VMX operation).
3027 * @param pVCpu The cross context virtual CPU structure.
3028 * @param cbInstr The instruction length in bytes.
3029 */
3030VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3031{
3032 /*
3033 * If CR0.TS is owned by the host:
3034 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
3035 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
3036 * CLTS instruction completes without clearing CR0.TS.
3037 *
3038 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3039 */
3040 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3041 if (fGstHostMask & X86_CR0_TS)
3042 {
3043 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u & X86_CR0_TS)
3044 {
3045 Log2(("clts: Guest intercept -> VM-exit\n"));
3046 VMXVEXITINFO const ExitInfo
3047 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3048 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
3049 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
3050 VMX_EXIT_QUAL_CRX_ACCESS_CLTS),
3051 cbInstr);
3052 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3053 }
3054 return VINF_VMX_MODIFIES_BEHAVIOR;
3055 }
3056
3057 /*
3058 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
3059 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
3060 */
3061 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3062}
3063
3064
3065/**
3066 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
3067 * (CR0/CR4 write).
3068 *
3069 * @returns Strict VBox status code.
3070 * @param pVCpu The cross context virtual CPU structure.
3071 * @param iCrReg The control register (either CR0 or CR4).
3072 * @param uGuestCrX The current guest CR0/CR4.
3073 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
3074 * VM-exit is caused.
3075 * @param iGReg The general register from which the CR0/CR4 value is being
3076 * loaded.
3077 * @param cbInstr The instruction length in bytes.
3078 */
3079VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX,
3080 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3081{
3082 Assert(puNewCrX);
3083 Assert(iCrReg == 0 || iCrReg == 4);
3084 Assert(iGReg < X86_GREG_COUNT);
3085
3086 uint64_t const uNewCrX = *puNewCrX;
3087 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
3088 {
3089 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
3090 VMXVEXITINFO const ExitInfo
3091 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3092 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
3093 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3094 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3095 cbInstr);
3096 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3097 }
3098
3099 /*
3100 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
3101 * must not be modified the instruction.
3102 *
3103 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3104 */
3105 uint64_t uGuestCrX;
3106 uint64_t fGstHostMask;
3107 if (iCrReg == 0)
3108 {
3109 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3110 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
3111 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3112 }
3113 else
3114 {
3115 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3116 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
3117 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
3118 }
3119
3120 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3121 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3122}
3123
3124
3125/**
3126 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3127 *
3128 * @returns VBox strict status code.
3129 * @param pVCpu The cross context virtual CPU structure.
3130 * @param iGReg The general register to which the CR3 value is being stored.
3131 * @param cbInstr The instruction length in bytes.
3132 */
3133VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3134{
3135 Assert(iGReg < X86_GREG_COUNT);
3136 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3137
3138 /*
3139 * If the CR3-store exiting control is set, we must cause a VM-exit.
3140 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3141 */
3142 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3143 {
3144 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3145 VMXVEXITINFO const ExitInfo
3146 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3147 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3148 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3149 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3150 cbInstr);
3151 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3152 }
3153 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3154}
3155
3156
3157/**
3158 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3159 *
3160 * @returns VBox strict status code.
3161 * @param pVCpu The cross context virtual CPU structure.
3162 * @param uNewCr3 The new CR3 value.
3163 * @param iGReg The general register from which the CR3 value is being
3164 * loaded.
3165 * @param cbInstr The instruction length in bytes.
3166 */
3167VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3168{
3169 Assert(iGReg < X86_GREG_COUNT);
3170
3171 /*
3172 * If the CR3-load exiting control is set and the new CR3 value does not
3173 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3174 *
3175 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3176 */
3177 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3178 {
3179 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3180 VMXVEXITINFO const ExitInfo
3181 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3182 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3183 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3184 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
3185 VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3186 cbInstr);
3187 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3188 }
3189 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3190}
3191
3192
3193/**
3194 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3195 *
3196 * @returns VBox strict status code.
3197 * @param pVCpu The cross context virtual CPU structure.
3198 * @param iGReg The general register to which the CR8 value is being stored.
3199 * @param cbInstr The instruction length in bytes.
3200 */
3201VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3202{
3203 Assert(iGReg < X86_GREG_COUNT);
3204
3205 /*
3206 * If the CR8-store exiting control is set, we must cause a VM-exit.
3207 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3208 */
3209 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3210 {
3211 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3212 VMXVEXITINFO const ExitInfo
3213 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3214 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3215 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3216 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3217 cbInstr);
3218 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3219 }
3220 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3221}
3222
3223
3224/**
3225 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3226 *
3227 * @returns VBox strict status code.
3228 * @param pVCpu The cross context virtual CPU structure.
3229 * @param iGReg The general register from which the CR8 value is being
3230 * loaded.
3231 * @param cbInstr The instruction length in bytes.
3232 */
3233VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3234{
3235 Assert(iGReg < X86_GREG_COUNT);
3236
3237 /*
3238 * If the CR8-load exiting control is set, we must cause a VM-exit.
3239 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3240 */
3241 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3242 {
3243 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3244 VMXVEXITINFO const ExitInfo
3245 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3246 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3247 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3248 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3249 cbInstr);
3250 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3251 }
3252 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3253}
3254
3255
3256/**
3257 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3258 * GReg,DRx' (DRx read).
3259 *
3260 * @returns VBox strict status code.
3261 * @param pVCpu The cross context virtual CPU structure.
3262 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3263 * VMXINSTRID_MOV_FROM_DRX).
3264 * @param iDrReg The debug register being accessed.
3265 * @param iGReg The general register to/from which the DRx value is being
3266 * store/loaded.
3267 * @param cbInstr The instruction length in bytes.
3268 */
3269VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg,
3270 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3271{
3272 Assert(iDrReg <= 7);
3273 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3274 Assert(iGReg < X86_GREG_COUNT);
3275
3276 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3277 {
3278 VMXVEXITINFO const ExitInfo
3279 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_DRX,
3280 RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3281 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg)
3282 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION,
3283 uInstrId == VMXINSTRID_MOV_TO_DRX
3284 ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3285 : VMX_EXIT_QUAL_DRX_DIRECTION_READ),
3286 cbInstr);
3287 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3288 }
3289
3290 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3291}
3292
3293
3294/**
3295 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3296 *
3297 * @returns VBox strict status code.
3298 * @param pVCpu The cross context virtual CPU structure.
3299 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3300 * VMXINSTRID_IO_OUT).
3301 * @param u16Port The I/O port being accessed.
3302 * @param fImm Whether the I/O port was encoded using an immediate operand
3303 * or the implicit DX register.
3304 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3305 * @param cbInstr The instruction length in bytes.
3306 */
3307VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3308 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT
3309{
3310 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3311 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3312
3313 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3314 {
3315 VMXVEXITINFO const ExitInfo
3316 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_IO_INSTR,
3317 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3318 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3319 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port)
3320 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION,
3321 uInstrId == VMXINSTRID_IO_IN
3322 ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3323 : VMX_EXIT_QUAL_IO_DIRECTION_OUT),
3324 cbInstr);
3325 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3326 }
3327 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3328}
3329
3330
3331/**
3332 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3333 *
3334 * @returns VBox strict status code.
3335 * @param pVCpu The cross context virtual CPU structure.
3336 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3337 * VMXINSTRID_IO_OUTS).
3338 * @param u16Port The I/O port being accessed.
3339 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3340 * @param fRep Whether the instruction has a REP prefix or not.
3341 * @param ExitInstrInfo The VM-exit instruction info. field.
3342 * @param cbInstr The instruction length in bytes.
3343 */
3344VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3345 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT
3346{
3347 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3348 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3349 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3350 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3351 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3352
3353 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3354 {
3355 /*
3356 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3357 */
3358 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3359 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3360 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3361 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3362 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3363
3364 uint32_t uDirection;
3365 uint64_t uGuestLinearAddr;
3366 if (uInstrId == VMXINSTRID_IO_INS)
3367 {
3368 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3369 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3370 }
3371 else
3372 {
3373 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3374 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3375 }
3376
3377 /*
3378 * If the segment is unusable, the guest-linear address in undefined.
3379 * We shall clear it for consistency.
3380 *
3381 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3382 */
3383 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3384 uGuestLinearAddr = 0;
3385
3386 VMXVEXITINFO const ExitInfo
3387 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_AND_LIN_ADDR(VMX_EXIT_IO_INSTR,
3388 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3389 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3390 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3391 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3392 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING,
3393 VMX_EXIT_QUAL_IO_ENCODING_DX)
3394 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port),
3395 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo
3396 ? ExitInstrInfo.u : 0,
3397 cbInstr,
3398 uGuestLinearAddr);
3399 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3400 }
3401
3402 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3403}
3404
3405
3406/**
3407 * VMX VM-exit handler for VM-exits due to MWAIT.
3408 *
3409 * @returns VBox strict status code.
3410 * @param pVCpu The cross context virtual CPU structure.
3411 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3412 * @param cbInstr The instruction length in bytes.
3413 */
3414VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT
3415{
3416 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MWAIT, fMonitorHwArmed, cbInstr);
3417 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3418}
3419
3420
3421/**
3422 * VMX VM-exit handler for VM-exits due to PAUSE.
3423 *
3424 * @returns VBox strict status code.
3425 * @param pVCpu The cross context virtual CPU structure.
3426 * @param cbInstr The instruction length in bytes.
3427 */
3428static VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3429{
3430 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
3431
3432 /*
3433 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3434 * "PAUSE-loop exiting" control.
3435 *
3436 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3437 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3438 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3439 * a VM-exit.
3440 *
3441 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3442 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3443 */
3444 bool fIntercept = false;
3445 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3446 fIntercept = true;
3447 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3448 && IEM_GET_CPL(pVCpu) == 0)
3449 {
3450 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3451
3452 /*
3453 * A previous-PAUSE-tick value of 0 is used to identify the first time
3454 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3455 * consider this to be the first execution of PAUSE in a loop according
3456 * to the Intel.
3457 *
3458 * All subsequent records for the previous-PAUSE-tick we ensure that it
3459 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3460 */
3461 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3462 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3463 uint64_t const uTick = TMCpuTickGet(pVCpu);
3464 uint32_t const uPleGap = pVmcs->u32PleGap;
3465 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3466 if ( *puPrevPauseTick == 0
3467 || uTick - *puPrevPauseTick > uPleGap)
3468 *puFirstPauseLoopTick = uTick;
3469 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3470 fIntercept = true;
3471
3472 *puPrevPauseTick = uTick | 1;
3473 }
3474
3475 if (fIntercept)
3476 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3477
3478 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3479}
3480
3481
3482/**
3483 * VMX VM-exit handler for VM-exits due to task switches.
3484 *
3485 * @returns VBox strict status code.
3486 * @param pVCpu The cross context virtual CPU structure.
3487 * @param enmTaskSwitch The cause of the task switch.
3488 * @param SelNewTss The selector of the new TSS.
3489 * @param cbInstr The instruction length in bytes.
3490 */
3491VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT
3492{
3493 /*
3494 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3495 *
3496 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3497 * instruction or delivery of the exception generated by one of these instructions
3498 * lead to a task switch through a task gate in the IDT, we need to provide the
3499 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3500 * leaves the VM-exit instruction length field undefined.
3501 *
3502 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3503 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3504 */
3505 Assert(cbInstr <= 15);
3506
3507 uint8_t uType;
3508 switch (enmTaskSwitch)
3509 {
3510 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3511 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3512 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3513 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3514 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3515 }
3516
3517 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3518 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3519 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3520 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3521}
3522
3523
3524/**
3525 * VMX VM-exit handler for trap-like VM-exits.
3526 *
3527 * @returns VBox strict status code.
3528 * @param pVCpu The cross context virtual CPU structure.
3529 * @param pExitInfo Pointer to the VM-exit information.
3530 * @param pExitEventInfo Pointer to the VM-exit event information.
3531 */
3532static VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
3533{
3534 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3535 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3536 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3537}
3538
3539
3540/**
3541 * Interface for HM and EM to emulate a trap-like VM-exit (MTF, APIC-write,
3542 * Virtualized-EOI, TPR-below threshold).
3543 *
3544 * @returns Strict VBox status code.
3545 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3546 * @param pExitInfo Pointer to the VM-exit information.
3547 * @thread EMT(pVCpu)
3548 */
3549VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTrapLike(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3550{
3551 Assert(pExitInfo);
3552 VBOXSTRICTRC rcStrict = iemVmxVmexitTrapLikeWithInfo(pVCpu, pExitInfo);
3553 Assert(!pVCpu->iem.s.cActiveMappings);
3554 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3555}
3556
3557
3558/**
3559 * VMX VM-exit handler for VM-exits due to task switches.
3560 *
3561 * This is intended for task switches where the caller provides all the relevant
3562 * VM-exit information.
3563 *
3564 * @returns VBox strict status code.
3565 * @param pVCpu The cross context virtual CPU structure.
3566 * @param pExitInfo Pointer to the VM-exit information.
3567 * @param pExitEventInfo Pointer to the VM-exit event information.
3568 */
3569static VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3570 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3571{
3572 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3573 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3574 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3575 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3576 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3577}
3578
3579
3580/**
3581 * Interface for HM and EM to emulate a VM-exit due to a task switch.
3582 *
3583 * @returns Strict VBox status code.
3584 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3585 * @param pExitInfo Pointer to the VM-exit information.
3586 * @param pExitEventInfo Pointer to the VM-exit event information.
3587 * @thread EMT(pVCpu)
3588 */
3589VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTaskSwitch(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3590{
3591 Assert(pExitInfo);
3592 Assert(pExitEventInfo);
3593 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3594 VBOXSTRICTRC rcStrict = iemVmxVmexitTaskSwitchWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3595 Assert(!pVCpu->iem.s.cActiveMappings);
3596 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3597}
3598
3599
3600/**
3601 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3602 *
3603 * @returns VBox strict status code.
3604 * @param pVCpu The cross context virtual CPU structure.
3605 */
3606VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
3607{
3608 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3609 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3610
3611 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3612 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3613
3614 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3615 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3616 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
3617
3618 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3619 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3620}
3621
3622
3623/**
3624 * Interface for HM and EM to emulate VM-exit due to expiry of the preemption timer.
3625 *
3626 * @returns Strict VBox status code.
3627 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3628 * @thread EMT(pVCpu)
3629 */
3630VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3631{
3632 VBOXSTRICTRC rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
3633 Assert(!pVCpu->iem.s.cActiveMappings);
3634 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3635}
3636
3637
3638/**
3639 * VMX VM-exit handler for VM-exits due to external interrupts.
3640 *
3641 * @returns VBox strict status code.
3642 * @param pVCpu The cross context virtual CPU structure.
3643 * @param uVector The external interrupt vector (pass 0 if the interrupt
3644 * is still pending since we typically won't know the
3645 * vector).
3646 * @param fIntPending Whether the external interrupt is pending or
3647 * acknowledged in the interrupt controller.
3648 */
3649static VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending) RT_NOEXCEPT
3650{
3651 Assert(!fIntPending || uVector == 0);
3652
3653 /* The VM-exit is subject to "External interrupt exiting" being set. */
3654 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3655 {
3656 if (fIntPending)
3657 {
3658 /*
3659 * If the interrupt is pending and we don't need to acknowledge the
3660 * interrupt on VM-exit, cause the VM-exit immediately.
3661 *
3662 * See Intel spec 25.2 "Other Causes Of VM Exits".
3663 */
3664 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3665 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3666
3667 /*
3668 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3669 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3670 * acknowledged that the interrupt has been consumed. Callers would have to call
3671 * us again after getting the vector (and ofc, with fIntPending with false).
3672 */
3673 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3674 }
3675
3676 /*
3677 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3678 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3679 * all set, we need to record the vector of the external interrupt in the
3680 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3681 *
3682 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3683 */
3684 uint32_t uExitIntInfo;
3685 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3686 {
3687 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3688 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3689 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3690 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3691 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3692 }
3693 else
3694 uExitIntInfo = 0;
3695 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3696
3697 /*
3698 * Cause the VM-exit whether or not the vector has been stored
3699 * in the VM-exit interruption-information field.
3700 */
3701 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3702 }
3703
3704 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3705}
3706
3707
3708/**
3709 * Interface for HM and EM to emulate VM-exit due to external interrupts.
3710 *
3711 * @returns Strict VBox status code.
3712 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3713 * @param uVector The external interrupt vector (pass 0 if the external
3714 * interrupt is still pending).
3715 * @param fIntPending Whether the external interrupt is pending or
3716 * acknowledged in the interrupt controller.
3717 * @thread EMT(pVCpu)
3718 */
3719VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3720{
3721 VBOXSTRICTRC rcStrict = iemVmxVmexitExtInt(pVCpu, uVector, fIntPending);
3722 Assert(!pVCpu->iem.s.cActiveMappings);
3723 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3724}
3725
3726
3727/**
3728 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3729 * an event.
3730 *
3731 * @returns VBox strict status code.
3732 * @param pVCpu The cross context virtual CPU structure.
3733 */
3734VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT
3735{
3736 uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
3737 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3738 {
3739 /*
3740 * The NMI-unblocking due to IRET field need not be set for double faults.
3741 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3742 */
3743 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3744 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3745 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3746 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3747 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3748 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3749 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3750 }
3751
3752 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3753}
3754
3755
3756/**
3757 * VMX VM-exit handler for VM-exit due to delivery of an events.
3758 *
3759 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3760 * all the relevant VM-exit information.
3761 *
3762 * @returns VBox strict status code.
3763 * @param pVCpu The cross context virtual CPU structure.
3764 * @param pExitInfo Pointer to the VM-exit information.
3765 * @param pExitEventInfo Pointer to the VM-exit event information.
3766 */
3767static VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3768{
3769 Assert(pExitInfo);
3770 Assert(pExitEventInfo);
3771 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3772 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3773
3774 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3775 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3776 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3777 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3778 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3779 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3780}
3781
3782
3783/**
3784 * Interface for HM and EM to emulate VM-exit due to NMIs.
3785 *
3786 * @returns Strict VBox status code.
3787 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3788 * @thread EMT(pVCpu)
3789 */
3790VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcptNmi(PVMCPUCC pVCpu)
3791{
3792 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_ONLY_REASON(VMX_EXIT_XCPT_OR_NMI);
3793 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_INT( RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1)
3794 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE,
3795 VMX_EXIT_INT_INFO_TYPE_NMI)
3796 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR,
3797 X86_XCPT_NMI),
3798 0);
3799 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
3800 Assert(!pVCpu->iem.s.cActiveMappings);
3801 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3802}
3803
3804
3805/**
3806 * Interface for HM and EM to emulate VM-exit due to exceptions.
3807 *
3808 * Exception includes NMIs, software exceptions (those generated by INT3 or
3809 * INTO) and privileged software exceptions (those generated by INT1/ICEBP).
3810 *
3811 * @returns Strict VBox status code.
3812 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3813 * @param pExitInfo Pointer to the VM-exit information.
3814 * @param pExitEventInfo Pointer to the VM-exit event information.
3815 * @thread EMT(pVCpu)
3816 */
3817VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcpt(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3818{
3819 Assert(pExitInfo);
3820 Assert(pExitEventInfo);
3821 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3822 Assert(!pVCpu->iem.s.cActiveMappings);
3823 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3824}
3825
3826
3827/**
3828 * VMX VM-exit handler for VM-exits due to delivery of an event.
3829 *
3830 * @returns VBox strict status code.
3831 * @param pVCpu The cross context virtual CPU structure.
3832 * @param uVector The interrupt / exception vector.
3833 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3834 * @param uErrCode The error code associated with the event.
3835 * @param uCr2 The CR2 value in case of a \#PF exception.
3836 * @param cbInstr The instruction length in bytes.
3837 */
3838VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode,
3839 uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT
3840{
3841 /*
3842 * If the event is being injected as part of VM-entry, it is -not- subject to event
3843 * intercepts in the nested-guest. However, secondary exceptions that occur during
3844 * injection of any event -are- subject to event interception.
3845 *
3846 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3847 */
3848 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3849 {
3850 /*
3851 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3852 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3853 *
3854 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3855 */
3856 if ( uVector == X86_XCPT_NMI
3857 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3858 && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3859 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3860 else
3861 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3862
3863 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3864 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3865 }
3866
3867 /*
3868 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3869 * If not, the caller will continue delivery of the external interrupt as it would
3870 * normally. The interrupt is no longer pending in the interrupt controller at this
3871 * point.
3872 */
3873 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3874 {
3875 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
3876 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3877 }
3878
3879 /*
3880 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3881 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3882 * interrupts.
3883 */
3884 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3885 bool fIntercept;
3886 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3887 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3888 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3889 else
3890 {
3891 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3892 fIntercept = false;
3893 }
3894
3895 /*
3896 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3897 * relevant VM-exit information and cause the VM-exit.
3898 */
3899 if (fIntercept)
3900 {
3901 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3902
3903 /* Construct the rest of the event related information fields and cause the VM-exit. */
3904 uint64_t u64ExitQual;
3905 if (uVector == X86_XCPT_PF)
3906 {
3907 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3908 u64ExitQual = uCr2;
3909 }
3910 else if (uVector == X86_XCPT_DB)
3911 {
3912 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3913 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3914 }
3915 else
3916 u64ExitQual = 0;
3917
3918 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3919 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3920 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3921 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3922 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3923 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3924 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3925 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3926 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3927 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3928
3929 /*
3930 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3931 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3932 * length.
3933 */
3934 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3935 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3936 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3937 else
3938 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3939
3940 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3941 }
3942
3943 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3944}
3945
3946
3947/**
3948 * VMX VM-exit handler for EPT misconfiguration.
3949 *
3950 * @param pVCpu The cross context virtual CPU structure.
3951 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3952 * This need not be page aligned (e.g. nested-guest in real
3953 * mode).
3954 */
3955static VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr) RT_NOEXCEPT
3956{
3957 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3958 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3959}
3960
3961
3962/**
3963 * VMX VM-exit handler for EPT misconfiguration.
3964 *
3965 * This is intended for EPT misconfigurations where the caller provides all the
3966 * relevant VM-exit information.
3967 *
3968 * @param pVCpu The cross context virtual CPU structure.
3969 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3970 * This need not be page aligned (e.g. nested-guest in real
3971 * mode).
3972 * @param pExitEventInfo Pointer to the VM-exit event information.
3973 */
3974static VBOXSTRICTRC iemVmxVmexitEptMisconfigWithInfo(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3975{
3976 Assert(pExitEventInfo);
3977 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3978 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3979 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3980 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3981 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3982}
3983
3984
3985/**
3986 * Interface for HM and EM to emulate a VM-exit due to an EPT misconfiguration.
3987 *
3988 * @returns Strict VBox status code.
3989 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3990 * @param GCPhysAddr The nested-guest physical address causing the EPT
3991 * misconfiguration.
3992 * @param pExitEventInfo Pointer to the VM-exit event information.
3993 * @thread EMT(pVCpu)
3994 */
3995VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo)
3996{
3997 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
3998
3999 iemInitExec(pVCpu, 0 /*fExecOpts*/);
4000 VBOXSTRICTRC rcStrict = iemVmxVmexitEptMisconfigWithInfo(pVCpu, GCPhysAddr, pExitEventInfo);
4001 Assert(!pVCpu->iem.s.cActiveMappings);
4002 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
4003}
4004
4005
4006/**
4007 * VMX VM-exit handler for EPT violation.
4008 *
4009 * @param pVCpu The cross context virtual CPU structure.
4010 * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
4011 * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
4012 * @param fEptAccess The EPT paging structure bits.
4013 * @param GCPhysAddr The physical address causing the EPT violation. This
4014 * need not be page aligned (e.g. nested-guest in real
4015 * mode).
4016 * @param fIsLinearAddrValid Whether translation of a linear address caused this
4017 * EPT violation. If @c false, GCPtrAddr must be 0.
4018 * @param GCPtrAddr The linear address causing the EPT violation.
4019 * @param cbInstr The VM-exit instruction length.
4020 */
4021static VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail,
4022 uint64_t fEptAccess, RTGCPHYS GCPhysAddr, bool fIsLinearAddrValid,
4023 uint64_t GCPtrAddr, uint8_t cbInstr) RT_NOEXCEPT
4024{
4025 /*
4026 * If the linear address isn't valid (can happen when loading PDPTEs
4027 * as part of MOV CR execution) the linear address field is undefined.
4028 * While we can leave it this way, it's preferable to zero it for consistency.
4029 */
4030 Assert(fIsLinearAddrValid || GCPtrAddr == 0);
4031
4032 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
4033 bool const fSupportsAccessDirty = RT_BOOL(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
4034
4035 uint32_t const fDataRdMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_READ;
4036 uint32_t const fDataWrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE;
4037 uint32_t const fInstrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_EXEC;
4038 bool const fDataRead = ((fAccess & fDataRdMask) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
4039 bool const fDataWrite = ((fAccess & fDataWrMask) == IEM_ACCESS_DATA_W) | fSupportsAccessDirty;
4040 bool const fInstrFetch = ((fAccess & fInstrMask) == IEM_ACCESS_INSTRUCTION);
4041 bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
4042 bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
4043 bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
4044 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
4045 bool const fIsLinearToPhysAddr = fIsLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
4046
4047 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
4048 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
4049 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
4050 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
4051 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
4052 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
4053 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fIsLinearAddrValid)
4054 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fIsLinearToPhysAddr)
4055 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
4056
4057#ifdef VBOX_STRICT
4058 uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
4059 uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
4060 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
4061 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
4062 Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
4063 Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
4064#endif
4065
4066 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
4067 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
4068 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
4069
4070 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
4071}
4072
4073
4074/**
4075 * VMX VM-exit handler for EPT violation.
4076 *
4077 * This is intended for EPT violations where the caller provides all the
4078 * relevant VM-exit information.
4079 *
4080 * @returns VBox strict status code.
4081 * @param pVCpu The cross context virtual CPU structure.
4082 * @param pExitInfo Pointer to the VM-exit information.
4083 * @param pExitEventInfo Pointer to the VM-exit event information.
4084 */
4085static VBOXSTRICTRC iemVmxVmexitEptViolationWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4086 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4087{
4088 Assert(pExitInfo);
4089 Assert(pExitEventInfo);
4090 Assert(pExitInfo->uReason == VMX_EXIT_EPT_VIOLATION);
4091 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4092
4093 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4094 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4095
4096 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
4097 if (pExitInfo->u64Qual & VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID_MASK)
4098 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
4099 else
4100 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, 0);
4101 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4102 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, pExitInfo->u64Qual);
4103}
4104
4105
4106/**
4107 * Interface for HM and EM to emulate a VM-exit due to an EPT violation.
4108 *
4109 * @returns Strict VBox status code.
4110 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4111 * @param pExitInfo Pointer to the VM-exit information.
4112 * @param pExitEventInfo Pointer to the VM-exit event information.
4113 * @thread EMT(pVCpu)
4114 */
4115VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptViolation(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4116 PCVMXVEXITEVENTINFO pExitEventInfo)
4117{
4118 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
4119
4120 iemInitExec(pVCpu, 0 /*fExecOpts*/);
4121 VBOXSTRICTRC rcStrict = iemVmxVmexitEptViolationWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4122 Assert(!pVCpu->iem.s.cActiveMappings);
4123 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
4124}
4125
4126
4127/**
4128 * VMX VM-exit handler for EPT-induced VM-exits.
4129 *
4130 * @param pVCpu The cross context virtual CPU structure.
4131 * @param pWalk The page walk info.
4132 * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
4133 * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
4134 * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
4135 * applicable.
4136 */
4137VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT
4138{
4139 Assert(pWalk->fIsSlat);
4140 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
4141 Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
4142 Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
4143
4144 if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
4145 {
4146 LogFlow(("EptViolation: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4147 uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
4148 return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
4149 pWalk->GCPtr, cbInstr);
4150 }
4151
4152 LogFlow(("EptMisconfig: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4153 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
4154 return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
4155}
4156
4157
4158/**
4159 * VMX VM-exit handler for APIC accesses.
4160 *
4161 * @param pVCpu The cross context virtual CPU structure.
4162 * @param offAccess The offset of the register being accessed.
4163 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4164 */
4165static VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess) RT_NOEXCEPT
4166{
4167 VMXAPICACCESS enmAccess;
4168 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
4169 if (fInEventDelivery)
4170 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
4171 else if ((fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == IEM_ACCESS_INSTRUCTION)
4172 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
4173 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
4174 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4175 else
4176 enmAccess = VMXAPICACCESS_LINEAR_READ;
4177
4178 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
4179 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
4180 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
4181}
4182
4183
4184/**
4185 * VMX VM-exit handler for APIC accesses.
4186 *
4187 * This is intended for APIC accesses where the caller provides all the
4188 * relevant VM-exit information.
4189 *
4190 * @returns VBox strict status code.
4191 * @param pVCpu The cross context virtual CPU structure.
4192 * @param pExitInfo Pointer to the VM-exit information.
4193 * @param pExitEventInfo Pointer to the VM-exit event information.
4194 */
4195static VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4196 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4197{
4198 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
4199 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4200 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
4201 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
4202 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
4203 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4204 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4205 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4206 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
4207}
4208
4209
4210/**
4211 * Interface for HM and EM to virtualize memory-mapped APIC accesses.
4212 *
4213 * @returns Strict VBox status code.
4214 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the memory access was virtualized.
4215 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4216 *
4217 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4218 * @param pExitInfo Pointer to the VM-exit information.
4219 * @param pExitEventInfo Pointer to the VM-exit event information.
4220 * @thread EMT(pVCpu)
4221 */
4222VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicAccess(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
4223{
4224 Assert(pExitInfo);
4225 Assert(pExitEventInfo);
4226 VBOXSTRICTRC rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4227 Assert(!pVCpu->iem.s.cActiveMappings);
4228 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4229}
4230
4231
4232/**
4233 * VMX VM-exit handler for APIC-write VM-exits.
4234 *
4235 * @param pVCpu The cross context virtual CPU structure.
4236 * @param offApic The write to the virtual-APIC page offset that caused this
4237 * VM-exit.
4238 */
4239static VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
4240{
4241 Assert(offApic < XAPIC_OFF_END + 4);
4242 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
4243 offApic &= UINT16_C(0xfff);
4244 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
4245}
4246
4247
4248/**
4249 * Clears any pending virtual-APIC write emulation.
4250 *
4251 * @returns The virtual-APIC offset that was written before clearing it.
4252 * @param pVCpu The cross context virtual CPU structure.
4253 */
4254DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
4255{
4256 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4257 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
4258 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
4259 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
4260 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4261 return offVirtApicWrite;
4262}
4263
4264
4265/**
4266 * Reads a 32-bit register from the virtual-APIC page at the given offset.
4267 *
4268 * @returns The register from the virtual-APIC page.
4269 * @param pVCpu The cross context virtual CPU structure.
4270 * @param offReg The offset of the register being read.
4271 */
4272uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4273{
4274 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4275
4276 uint32_t uReg = 0;
4277 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4278 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4279 AssertMsgStmt(RT_SUCCESS(rc),
4280 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4281 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4282 uReg = 0);
4283 return uReg;
4284}
4285
4286
4287/**
4288 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4289 *
4290 * @returns The register from the virtual-APIC page.
4291 * @param pVCpu The cross context virtual CPU structure.
4292 * @param offReg The offset of the register being read.
4293 */
4294static uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4295{
4296 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4297
4298 uint64_t uReg = 0;
4299 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4300 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4301 AssertMsgStmt(RT_SUCCESS(rc),
4302 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4303 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4304 uReg = 0);
4305 return uReg;
4306}
4307
4308
4309/**
4310 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4311 *
4312 * @param pVCpu The cross context virtual CPU structure.
4313 * @param offReg The offset of the register being written.
4314 * @param uReg The register value to write.
4315 */
4316void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT
4317{
4318 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4319
4320 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4321 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4322 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4323 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4324}
4325
4326
4327/**
4328 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4329 *
4330 * @param pVCpu The cross context virtual CPU structure.
4331 * @param offReg The offset of the register being written.
4332 * @param uReg The register value to write.
4333 */
4334static void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg) RT_NOEXCEPT
4335{
4336 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4337
4338 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4339 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4340 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4341 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4342}
4343
4344
4345/**
4346 * Sets the vector in a virtual-APIC 256-bit sparse register.
4347 *
4348 * @param pVCpu The cross context virtual CPU structure.
4349 * @param offReg The offset of the 256-bit spare register.
4350 * @param uVector The vector to set.
4351 *
4352 * @remarks This is based on our APIC device code.
4353 */
4354static void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4355{
4356 /* Determine the vector offset within the chunk. */
4357 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4358
4359 /* Read the chunk at the offset. */
4360 uint32_t uReg;
4361 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4362 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4363 if (RT_SUCCESS(rc))
4364 {
4365 /* Modify the chunk. */
4366 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4367 uReg |= RT_BIT(idxVectorBit);
4368
4369 /* Write the chunk. */
4370 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4371 AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4372 uVector, offReg, GCPhysVirtApic, rc));
4373 }
4374 else
4375 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4376 uVector, offReg, GCPhysVirtApic, rc));
4377}
4378
4379
4380/**
4381 * Clears the vector in a virtual-APIC 256-bit sparse register.
4382 *
4383 * @param pVCpu The cross context virtual CPU structure.
4384 * @param offReg The offset of the 256-bit spare register.
4385 * @param uVector The vector to clear.
4386 *
4387 * @remarks This is based on our APIC device code.
4388 */
4389static void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4390{
4391 /* Determine the vector offset within the chunk. */
4392 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4393
4394 /* Read the chunk at the offset. */
4395 uint32_t uReg;
4396 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4397 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4398 if (RT_SUCCESS(rc))
4399 {
4400 /* Modify the chunk. */
4401 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4402 uReg &= ~RT_BIT(idxVectorBit);
4403
4404 /* Write the chunk. */
4405 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4406 AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4407 uVector, offReg, GCPhysVirtApic, rc));
4408 }
4409 else
4410 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4411 uVector, offReg, GCPhysVirtApic, rc));
4412}
4413
4414
4415/**
4416 * Checks if a memory access to the APIC-access page must causes an APIC-access
4417 * VM-exit.
4418 *
4419 * @param pVCpu The cross context virtual CPU structure.
4420 * @param offAccess The offset of the register being accessed.
4421 * @param cbAccess The size of the access in bytes.
4422 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4423 *
4424 * @remarks This must not be used for MSR-based APIC-access page accesses!
4425 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4426 */
4427static bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4428{
4429 Assert(cbAccess > 0);
4430 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4431
4432 /*
4433 * We must cause a VM-exit if any of the following are true:
4434 * - TPR shadowing isn't active.
4435 * - The access size exceeds 32-bits.
4436 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4437 *
4438 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4439 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4440 */
4441 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4442 || cbAccess > sizeof(uint32_t)
4443 || ((offAccess + cbAccess - 1) & 0xc)
4444 || offAccess >= XAPIC_OFF_END + 4)
4445 return true;
4446
4447 /*
4448 * If the access is part of an operation where we have already
4449 * virtualized a virtual-APIC write, we must cause a VM-exit.
4450 */
4451 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4452 return true;
4453
4454 /*
4455 * Check write accesses to the APIC-access page that cause VM-exits.
4456 */
4457 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4458 {
4459 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4460 {
4461 /*
4462 * With APIC-register virtualization, a write access to any of the
4463 * following registers are virtualized. Accessing any other register
4464 * causes a VM-exit.
4465 */
4466 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4467 switch (offAlignedAccess)
4468 {
4469 case XAPIC_OFF_ID:
4470 case XAPIC_OFF_TPR:
4471 case XAPIC_OFF_EOI:
4472 case XAPIC_OFF_LDR:
4473 case XAPIC_OFF_DFR:
4474 case XAPIC_OFF_SVR:
4475 case XAPIC_OFF_ESR:
4476 case XAPIC_OFF_ICR_LO:
4477 case XAPIC_OFF_ICR_HI:
4478 case XAPIC_OFF_LVT_TIMER:
4479 case XAPIC_OFF_LVT_THERMAL:
4480 case XAPIC_OFF_LVT_PERF:
4481 case XAPIC_OFF_LVT_LINT0:
4482 case XAPIC_OFF_LVT_LINT1:
4483 case XAPIC_OFF_LVT_ERROR:
4484 case XAPIC_OFF_TIMER_ICR:
4485 case XAPIC_OFF_TIMER_DCR:
4486 break;
4487 default:
4488 return true;
4489 }
4490 }
4491 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4492 {
4493 /*
4494 * With virtual-interrupt delivery, a write access to any of the
4495 * following registers are virtualized. Accessing any other register
4496 * causes a VM-exit.
4497 *
4498 * Note! The specification does not allow writing to offsets in-between
4499 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4500 */
4501 switch (offAccess)
4502 {
4503 case XAPIC_OFF_TPR:
4504 case XAPIC_OFF_EOI:
4505 case XAPIC_OFF_ICR_LO:
4506 break;
4507 default:
4508 return true;
4509 }
4510 }
4511 else
4512 {
4513 /*
4514 * Without APIC-register virtualization or virtual-interrupt delivery,
4515 * only TPR accesses are virtualized.
4516 */
4517 if (offAccess == XAPIC_OFF_TPR)
4518 { /* likely */ }
4519 else
4520 return true;
4521 }
4522 }
4523 else
4524 {
4525 /*
4526 * Check read accesses to the APIC-access page that cause VM-exits.
4527 */
4528 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4529 {
4530 /*
4531 * With APIC-register virtualization, a read access to any of the
4532 * following registers are virtualized. Accessing any other register
4533 * causes a VM-exit.
4534 */
4535 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4536 switch (offAlignedAccess)
4537 {
4538 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4539 case XAPIC_OFF_ID:
4540 case XAPIC_OFF_VERSION:
4541 case XAPIC_OFF_TPR:
4542 case XAPIC_OFF_EOI:
4543 case XAPIC_OFF_LDR:
4544 case XAPIC_OFF_DFR:
4545 case XAPIC_OFF_SVR:
4546 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4547 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4548 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4549 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4550 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4551 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4552 case XAPIC_OFF_ESR:
4553 case XAPIC_OFF_ICR_LO:
4554 case XAPIC_OFF_ICR_HI:
4555 case XAPIC_OFF_LVT_TIMER:
4556 case XAPIC_OFF_LVT_THERMAL:
4557 case XAPIC_OFF_LVT_PERF:
4558 case XAPIC_OFF_LVT_LINT0:
4559 case XAPIC_OFF_LVT_LINT1:
4560 case XAPIC_OFF_LVT_ERROR:
4561 case XAPIC_OFF_TIMER_ICR:
4562 case XAPIC_OFF_TIMER_DCR:
4563 break;
4564 default:
4565 return true;
4566 }
4567 }
4568 else
4569 {
4570 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4571 if (offAccess == XAPIC_OFF_TPR)
4572 { /* likely */ }
4573 else
4574 return true;
4575 }
4576 }
4577
4578 /* The APIC access is virtualized, does not cause a VM-exit. */
4579 return false;
4580}
4581
4582
4583/**
4584 * Virtualizes a memory-based APIC access by certain instructions even though they
4585 * do not use the address to access memory.
4586 *
4587 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4588 * page-faults but do not use the address to access memory.
4589 *
4590 * @param pVCpu The cross context virtual CPU structure.
4591 * @param pGCPhysAccess Pointer to the guest-physical address accessed.
4592 * @param cbAccess The size of the access in bytes.
4593 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4594 */
4595VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4596{
4597 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4598 Assert(pGCPhysAccess);
4599
4600 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
4601 RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
4602 Assert(!(GCPhysApic & GUEST_PAGE_OFFSET_MASK));
4603
4604 if (GCPhysAccess == GCPhysApic)
4605 {
4606 uint16_t const offAccess = *pGCPhysAccess & GUEST_PAGE_OFFSET_MASK;
4607 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4608 if (fIntercept)
4609 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4610
4611 *pGCPhysAccess = GCPhysApic | offAccess;
4612 return VINF_VMX_MODIFIES_BEHAVIOR;
4613 }
4614
4615 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4616}
4617
4618
4619/**
4620 * Virtualizes a memory-based APIC access.
4621 *
4622 * @returns VBox strict status code.
4623 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4624 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4625 *
4626 * @param pVCpu The cross context virtual CPU structure.
4627 * @param offAccess The offset of the register being accessed (within the
4628 * APIC-access page).
4629 * @param cbAccess The size of the access in bytes.
4630 * @param pvData Pointer to the data being written or where to store the data
4631 * being read.
4632 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4633 */
4634static VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess,
4635 void *pvData, uint32_t fAccess) RT_NOEXCEPT
4636{
4637 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4638 Assert(pvData);
4639
4640 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4641 if (fIntercept)
4642 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4643
4644 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4645 {
4646 /*
4647 * A write access to the APIC-access page that is virtualized (rather than
4648 * causing a VM-exit) writes data to the virtual-APIC page.
4649 */
4650 uint32_t const u32Data = *(uint32_t *)pvData;
4651 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4652
4653 /*
4654 * Record the currently updated APIC offset, as we need this later for figuring
4655 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4656 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4657 *
4658 * After completion of the current operation, we need to perform TPR virtualization,
4659 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4660 *
4661 * The current operation may be a REP-prefixed string instruction, execution of any
4662 * other instruction, or delivery of an event through the IDT.
4663 *
4664 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4665 * performed now but later after completion of the current operation.
4666 *
4667 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4668 */
4669 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4670
4671 LogFlowFunc(("Write access at offset %#x not intercepted -> Wrote %#RX32\n", offAccess, u32Data));
4672 }
4673 else
4674 {
4675 /*
4676 * A read access from the APIC-access page that is virtualized (rather than
4677 * causing a VM-exit) returns data from the virtual-APIC page.
4678 *
4679 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4680 */
4681 Assert(fAccess & IEM_ACCESS_TYPE_READ);
4682
4683 Assert(cbAccess <= 4);
4684 Assert(offAccess < XAPIC_OFF_END + 4);
4685 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4686
4687 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4688 u32Data &= s_auAccessSizeMasks[cbAccess];
4689 *(uint32_t *)pvData = u32Data;
4690
4691 LogFlowFunc(("Read access at offset %#x not intercepted -> Read %#RX32\n", offAccess, u32Data));
4692 }
4693
4694 return VINF_VMX_MODIFIES_BEHAVIOR;
4695}
4696
4697
4698/**
4699 * Virtualizes an MSR-based APIC read access.
4700 *
4701 * @returns VBox strict status code.
4702 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4703 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4704 * handled by the x2APIC device.
4705 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4706 * not within the range of valid MSRs, caller must raise \#GP(0).
4707 * @param pVCpu The cross context virtual CPU structure.
4708 * @param idMsr The x2APIC MSR being read.
4709 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4710 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4711 */
4712static VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value) RT_NOEXCEPT
4713{
4714 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4715 Assert(pu64Value);
4716
4717 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4718 {
4719 if ( idMsr >= MSR_IA32_X2APIC_START
4720 && idMsr <= MSR_IA32_X2APIC_END)
4721 {
4722 uint16_t const offReg = (idMsr & 0xff) << 4;
4723 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4724 *pu64Value = u64Value;
4725 return VINF_VMX_MODIFIES_BEHAVIOR;
4726 }
4727 return VERR_OUT_OF_RANGE;
4728 }
4729
4730 if (idMsr == MSR_IA32_X2APIC_TPR)
4731 {
4732 uint16_t const offReg = (idMsr & 0xff) << 4;
4733 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4734 *pu64Value = u64Value;
4735 return VINF_VMX_MODIFIES_BEHAVIOR;
4736 }
4737
4738 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4739}
4740
4741
4742/**
4743 * Virtualizes an MSR-based APIC write access.
4744 *
4745 * @returns VBox strict status code.
4746 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4747 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4748 * not within the range of valid MSRs, caller must raise \#GP(0).
4749 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4750 *
4751 * @param pVCpu The cross context virtual CPU structure.
4752 * @param idMsr The x2APIC MSR being written.
4753 * @param u64Value The value of the x2APIC MSR being written.
4754 */
4755static VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value) RT_NOEXCEPT
4756{
4757 /*
4758 * Check if the access is to be virtualized.
4759 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4760 */
4761 if ( idMsr == MSR_IA32_X2APIC_TPR
4762 || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4763 && ( idMsr == MSR_IA32_X2APIC_EOI
4764 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4765 {
4766 /* Validate the MSR write depending on the register. */
4767 switch (idMsr)
4768 {
4769 case MSR_IA32_X2APIC_TPR:
4770 case MSR_IA32_X2APIC_SELF_IPI:
4771 {
4772 if (u64Value & UINT64_C(0xffffffffffffff00))
4773 return VERR_OUT_OF_RANGE;
4774 break;
4775 }
4776 case MSR_IA32_X2APIC_EOI:
4777 {
4778 if (u64Value != 0)
4779 return VERR_OUT_OF_RANGE;
4780 break;
4781 }
4782 }
4783
4784 /* Write the MSR to the virtual-APIC page. */
4785 uint16_t const offReg = (idMsr & 0xff) << 4;
4786 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4787
4788 /*
4789 * Record the currently updated APIC offset, as we need this later for figuring
4790 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4791 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4792 */
4793 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4794
4795 return VINF_VMX_MODIFIES_BEHAVIOR;
4796 }
4797
4798 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4799}
4800
4801
4802/**
4803 * Interface for HM and EM to virtualize x2APIC MSR accesses.
4804 *
4805 * @returns Strict VBox status code.
4806 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR access was virtualized.
4807 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR access must be handled by
4808 * the x2APIC device.
4809 * @retval VERR_OUT_RANGE if the caller must raise \#GP(0).
4810 *
4811 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4812 * @param idMsr The MSR being read.
4813 * @param pu64Value Pointer to the value being written or where to store the
4814 * value being read.
4815 * @param fWrite Whether this is an MSR write or read access.
4816 * @thread EMT(pVCpu)
4817 */
4818VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVirtApicAccessMsr(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value, bool fWrite)
4819{
4820 Assert(pu64Value);
4821
4822 VBOXSTRICTRC rcStrict;
4823 if (fWrite)
4824 rcStrict = iemVmxVirtApicAccessMsrWrite(pVCpu, idMsr, *pu64Value);
4825 else
4826 rcStrict = iemVmxVirtApicAccessMsrRead(pVCpu, idMsr, pu64Value);
4827 Assert(!pVCpu->iem.s.cActiveMappings);
4828 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4829
4830}
4831
4832
4833/**
4834 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4835 *
4836 * @returns VBox status code.
4837 * @retval VINF_SUCCESS when the highest set bit is found.
4838 * @retval VERR_NOT_FOUND when no bit is set.
4839 *
4840 * @param pVCpu The cross context virtual CPU structure.
4841 * @param offReg The offset of the APIC 256-bit sparse register.
4842 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4843 * set in the register. Only valid when VINF_SUCCESS is
4844 * returned.
4845 *
4846 * @remarks The format of the 256-bit sparse register here mirrors that found in
4847 * real APIC hardware.
4848 */
4849static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4850{
4851 Assert(offReg < XAPIC_OFF_END + 4);
4852 Assert(pidxHighestBit);
4853
4854 /*
4855 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4856 * However, in each fragment only the first 4 bytes are used.
4857 */
4858 uint8_t const cFrags = 8;
4859 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4860 {
4861 uint16_t const offFrag = iFrag * 16;
4862 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4863 if (!u32Frag)
4864 continue;
4865
4866 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4867 Assert(idxHighestBit > 0);
4868 --idxHighestBit;
4869 Assert(idxHighestBit <= UINT8_MAX);
4870 *pidxHighestBit = idxHighestBit;
4871 return VINF_SUCCESS;
4872 }
4873 return VERR_NOT_FOUND;
4874}
4875
4876
4877/**
4878 * Evaluates pending virtual interrupts.
4879 *
4880 * @param pVCpu The cross context virtual CPU structure.
4881 */
4882static void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu) RT_NOEXCEPT
4883{
4884 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4885
4886 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4887 {
4888 uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4889 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4890
4891 if ((uRvi >> 4) > (uPpr >> 4))
4892 {
4893 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4894 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4895 }
4896 else
4897 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4898 }
4899}
4900
4901
4902/**
4903 * Performs PPR virtualization.
4904 *
4905 * @returns VBox strict status code.
4906 * @param pVCpu The cross context virtual CPU structure.
4907 */
4908static void iemVmxPprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4909{
4910 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4911 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4912
4913 /*
4914 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4915 * or EOI-virtualization.
4916 *
4917 * See Intel spec. 29.1.3 "PPR Virtualization".
4918 */
4919 uint8_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4920 uint8_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus) & 0xf0;
4921
4922 uint32_t uPpr;
4923 if ((uTpr & 0xf0) >= uSvi)
4924 uPpr = uTpr;
4925 else
4926 uPpr = uSvi;
4927
4928 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4929 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4930}
4931
4932
4933/**
4934 * Performs VMX TPR virtualization.
4935 *
4936 * @returns VBox strict status code.
4937 * @param pVCpu The cross context virtual CPU structure.
4938 */
4939static VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4940{
4941 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4942
4943 /*
4944 * We should have already performed the virtual-APIC write to the TPR offset
4945 * in the virtual-APIC page. We now perform TPR virtualization.
4946 *
4947 * See Intel spec. 29.1.2 "TPR Virtualization".
4948 */
4949 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4950 {
4951 uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
4952 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4953
4954 /*
4955 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4956 * See Intel spec. 29.1.2 "TPR Virtualization".
4957 */
4958 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4959 {
4960 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4961 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4962 }
4963 }
4964 else
4965 {
4966 iemVmxPprVirtualization(pVCpu);
4967 iemVmxEvalPendingVirtIntrs(pVCpu);
4968 }
4969
4970 return VINF_SUCCESS;
4971}
4972
4973
4974/**
4975 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4976 * not.
4977 *
4978 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4979 * @param pVCpu The cross context virtual CPU structure.
4980 * @param uVector The interrupt that was acknowledged using an EOI.
4981 */
4982static bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector) RT_NOEXCEPT
4983{
4984 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4985 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4986
4987 if (uVector < 64)
4988 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4989 if (uVector < 128)
4990 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4991 if (uVector < 192)
4992 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4993 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4994}
4995
4996
4997/**
4998 * Performs EOI virtualization.
4999 *
5000 * @returns VBox strict status code.
5001 * @param pVCpu The cross context virtual CPU structure.
5002 */
5003static VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
5004{
5005 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5006 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
5007
5008 /*
5009 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
5010 * and get the next guest-interrupt that's in-service (if any).
5011 *
5012 * See Intel spec. 29.1.4 "EOI Virtualization".
5013 */
5014 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5015 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5016 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
5017
5018 uint8_t uVector = uSvi;
5019 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
5020
5021 uVector = 0;
5022 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
5023
5024 if (uVector)
5025 Log2(("eoi_virt: next interrupt %#x\n", uVector));
5026 else
5027 Log2(("eoi_virt: no interrupt pending in ISR\n"));
5028
5029 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
5030 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
5031
5032 iemVmxPprVirtualization(pVCpu);
5033 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
5034 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
5035 iemVmxEvalPendingVirtIntrs(pVCpu);
5036 return VINF_SUCCESS;
5037}
5038
5039
5040/**
5041 * Performs self-IPI virtualization.
5042 *
5043 * @returns VBox strict status code.
5044 * @param pVCpu The cross context virtual CPU structure.
5045 */
5046static VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
5047{
5048 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5049 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5050
5051 /*
5052 * We should have already performed the virtual-APIC write to the self-IPI offset
5053 * in the virtual-APIC page. We now perform self-IPI virtualization.
5054 *
5055 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
5056 */
5057 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
5058 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
5059 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
5060 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5061 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5062 if (uVector > uRvi)
5063 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
5064 iemVmxEvalPendingVirtIntrs(pVCpu);
5065 return VINF_SUCCESS;
5066}
5067
5068
5069/**
5070 * Performs VMX APIC-write emulation.
5071 *
5072 * @returns VBox strict status code.
5073 * @param pVCpu The cross context virtual CPU structure.
5074 */
5075VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT
5076{
5077 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5078
5079 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
5080 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
5081
5082 /*
5083 * Perform APIC-write emulation based on the virtual-APIC register written.
5084 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
5085 */
5086 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
5087 VBOXSTRICTRC rcStrict;
5088 switch (offApicWrite)
5089 {
5090 case XAPIC_OFF_TPR:
5091 {
5092 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
5093 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5094 uTpr &= UINT32_C(0x000000ff);
5095 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5096 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
5097 rcStrict = iemVmxTprVirtualization(pVCpu);
5098 break;
5099 }
5100
5101 case XAPIC_OFF_EOI:
5102 {
5103 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5104 {
5105 /* Clear VEOI and perform EOI virtualization. */
5106 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
5107 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
5108 rcStrict = iemVmxEoiVirtualization(pVCpu);
5109 }
5110 else
5111 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5112 break;
5113 }
5114
5115 case XAPIC_OFF_ICR_LO:
5116 {
5117 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5118 {
5119 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
5120 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5121 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
5122 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
5123 if ( !(uIcrLo & fIcrLoMb0)
5124 && (uIcrLo & fIcrLoMb1))
5125 {
5126 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
5127 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
5128 }
5129 else
5130 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5131 }
5132 else
5133 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5134 break;
5135 }
5136
5137 case XAPIC_OFF_ICR_HI:
5138 {
5139 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
5140 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
5141 uIcrHi &= UINT32_C(0xff000000);
5142 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
5143 rcStrict = VINF_SUCCESS;
5144 break;
5145 }
5146
5147 default:
5148 {
5149 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
5150 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5151 break;
5152 }
5153 }
5154
5155 return rcStrict;
5156}
5157
5158
5159/**
5160 * Interface for HM and EM to perform an APIC-write emulation which may cause a
5161 * VM-exit.
5162 *
5163 * @returns Strict VBox status code.
5164 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
5165 * @thread EMT(pVCpu)
5166 */
5167VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicWrite(PVMCPUCC pVCpu)
5168{
5169 VBOXSTRICTRC rcStrict = iemVmxApicWriteEmulation(pVCpu);
5170 Assert(!pVCpu->iem.s.cActiveMappings);
5171 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
5172}
5173
5174
5175/**
5176 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
5177 *
5178 * @param pVCpu The cross context virtual CPU structure.
5179 * @param pszInstr The VMX instruction name (for logging purposes).
5180 */
5181DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
5182{
5183 /*
5184 * Guest Control Registers, Debug Registers, and MSRs.
5185 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
5186 */
5187 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5188 const char * const pszFailure = "VM-exit";
5189 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5190
5191 /* CR0 reserved bits. */
5192 {
5193 /* CR0 MB1 bits. */
5194 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
5195 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5196 { /* likely */ }
5197 else
5198 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
5199
5200 /* CR0 MBZ bits. */
5201 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5202 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
5203 { /* likely */ }
5204 else
5205 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
5206
5207 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
5208 if ( !fUnrestrictedGuest
5209 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5210 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5211 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
5212 }
5213
5214 /* CR4 reserved bits. */
5215 {
5216 /* CR4 MB1 bits. */
5217 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5218 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5219 { /* likely */ }
5220 else
5221 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
5222
5223 /* CR4 MBZ bits. */
5224 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5225 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
5226 { /* likely */ }
5227 else
5228 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
5229 }
5230
5231 /* DEBUGCTL MSR. */
5232 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5233 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
5234 { /* likely */ }
5235 else
5236 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
5237
5238 /* 64-bit CPU checks. */
5239 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5240 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5241 {
5242 if (fGstInLongMode)
5243 {
5244 /* PAE must be set. */
5245 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5246 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
5247 { /* likely */ }
5248 else
5249 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
5250 }
5251 else
5252 {
5253 /* PCIDE should not be set. */
5254 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
5255 { /* likely */ }
5256 else
5257 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
5258 }
5259
5260 /* CR3. */
5261 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5262 { /* likely */ }
5263 else
5264 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
5265
5266 /* DR7. */
5267 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5268 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
5269 { /* likely */ }
5270 else
5271 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
5272
5273 /* SYSENTER ESP and SYSENTER EIP. */
5274 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
5275 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
5276 { /* likely */ }
5277 else
5278 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
5279 }
5280
5281 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5282 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
5283
5284 /* PAT MSR. */
5285 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
5286 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
5287 { /* likely */ }
5288 else
5289 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
5290
5291 /* EFER MSR. */
5292 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
5293 {
5294 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5295 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
5296 { /* likely */ }
5297 else
5298 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
5299
5300 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
5301 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
5302 if ( fGstLma == fGstInLongMode
5303 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
5304 || fGstLma == fGstLme))
5305 { /* likely */ }
5306 else
5307 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
5308 }
5309
5310 /* We don't support IA32_BNDCFGS MSR yet. */
5311 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
5312
5313 NOREF(pszInstr);
5314 NOREF(pszFailure);
5315 return VINF_SUCCESS;
5316}
5317
5318
5319/**
5320 * Checks guest segment registers, LDTR and TR as part of VM-entry.
5321 *
5322 * @param pVCpu The cross context virtual CPU structure.
5323 * @param pszInstr The VMX instruction name (for logging purposes).
5324 */
5325DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
5326{
5327 /*
5328 * Segment registers.
5329 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5330 */
5331 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5332 const char * const pszFailure = "VM-exit";
5333 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5334 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5335 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5336
5337 /* Selectors. */
5338 if ( !fGstInV86Mode
5339 && !fUnrestrictedGuest
5340 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5341 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5342
5343 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5344 {
5345 CPUMSELREG SelReg;
5346 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5347 if (RT_LIKELY(rc == VINF_SUCCESS))
5348 { /* likely */ }
5349 else
5350 return rc;
5351
5352 /*
5353 * Virtual-8086 mode checks.
5354 */
5355 if (fGstInV86Mode)
5356 {
5357 /* Base address. */
5358 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5359 { /* likely */ }
5360 else
5361 {
5362 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5363 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5364 }
5365
5366 /* Limit. */
5367 if (SelReg.u32Limit == 0xffff)
5368 { /* likely */ }
5369 else
5370 {
5371 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5372 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5373 }
5374
5375 /* Attribute. */
5376 if (SelReg.Attr.u == 0xf3)
5377 { /* likely */ }
5378 else
5379 {
5380 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5381 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5382 }
5383
5384 /* We're done; move to checking the next segment. */
5385 continue;
5386 }
5387
5388 /* Checks done by 64-bit CPUs. */
5389 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5390 {
5391 /* Base address. */
5392 if ( iSegReg == X86_SREG_FS
5393 || iSegReg == X86_SREG_GS)
5394 {
5395 if (X86_IS_CANONICAL(SelReg.u64Base))
5396 { /* likely */ }
5397 else
5398 {
5399 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5400 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5401 }
5402 }
5403 else if (iSegReg == X86_SREG_CS)
5404 {
5405 if (!RT_HI_U32(SelReg.u64Base))
5406 { /* likely */ }
5407 else
5408 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5409 }
5410 else
5411 {
5412 if ( SelReg.Attr.n.u1Unusable
5413 || !RT_HI_U32(SelReg.u64Base))
5414 { /* likely */ }
5415 else
5416 {
5417 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5418 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5419 }
5420 }
5421 }
5422
5423 /*
5424 * Checks outside Virtual-8086 mode.
5425 */
5426 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5427 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5428 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5429 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5430 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5431 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5432 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5433 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5434
5435 /* Code or usable segment. */
5436 if ( iSegReg == X86_SREG_CS
5437 || fUsable)
5438 {
5439 /* Reserved bits (bits 31:17 and bits 11:8). */
5440 if (!(SelReg.Attr.u & 0xfffe0f00))
5441 { /* likely */ }
5442 else
5443 {
5444 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5445 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5446 }
5447
5448 /* Descriptor type. */
5449 if (fCodeDataSeg)
5450 { /* likely */ }
5451 else
5452 {
5453 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5454 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5455 }
5456
5457 /* Present. */
5458 if (fPresent)
5459 { /* likely */ }
5460 else
5461 {
5462 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5463 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5464 }
5465
5466 /* Granularity. */
5467 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5468 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5469 { /* likely */ }
5470 else
5471 {
5472 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5473 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5474 }
5475 }
5476
5477 if (iSegReg == X86_SREG_CS)
5478 {
5479 /* Segment Type and DPL. */
5480 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5481 && fUnrestrictedGuest)
5482 {
5483 if (uDpl == 0)
5484 { /* likely */ }
5485 else
5486 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5487 }
5488 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5489 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5490 {
5491 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5492 if (uDpl == AttrSs.n.u2Dpl)
5493 { /* likely */ }
5494 else
5495 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5496 }
5497 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5498 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5499 {
5500 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5501 if (uDpl <= AttrSs.n.u2Dpl)
5502 { /* likely */ }
5503 else
5504 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5505 }
5506 else
5507 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5508
5509 /* Def/Big. */
5510 if ( fGstInLongMode
5511 && fSegLong)
5512 {
5513 if (uDefBig == 0)
5514 { /* likely */ }
5515 else
5516 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5517 }
5518 }
5519 else if (iSegReg == X86_SREG_SS)
5520 {
5521 /* Segment Type. */
5522 if ( !fUsable
5523 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5524 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5525 { /* likely */ }
5526 else
5527 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5528
5529 /* DPL. */
5530 if (!fUnrestrictedGuest)
5531 {
5532 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5533 { /* likely */ }
5534 else
5535 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5536 }
5537 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5538 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5539 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5540 {
5541 if (uDpl == 0)
5542 { /* likely */ }
5543 else
5544 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5545 }
5546 }
5547 else
5548 {
5549 /* DS, ES, FS, GS. */
5550 if (fUsable)
5551 {
5552 /* Segment type. */
5553 if (uSegType & X86_SEL_TYPE_ACCESSED)
5554 { /* likely */ }
5555 else
5556 {
5557 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5558 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5559 }
5560
5561 if ( !(uSegType & X86_SEL_TYPE_CODE)
5562 || (uSegType & X86_SEL_TYPE_READ))
5563 { /* likely */ }
5564 else
5565 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5566
5567 /* DPL. */
5568 if ( !fUnrestrictedGuest
5569 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5570 {
5571 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5572 { /* likely */ }
5573 else
5574 {
5575 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5576 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5577 }
5578 }
5579 }
5580 }
5581 }
5582
5583 /*
5584 * LDTR.
5585 */
5586 {
5587 CPUMSELREG Ldtr;
5588 Ldtr.Sel = pVmcs->GuestLdtr;
5589 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5590 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5591 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5592
5593 if (!Ldtr.Attr.n.u1Unusable)
5594 {
5595 /* Selector. */
5596 if (!(Ldtr.Sel & X86_SEL_LDT))
5597 { /* likely */ }
5598 else
5599 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5600
5601 /* Base. */
5602 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5603 {
5604 if (X86_IS_CANONICAL(Ldtr.u64Base))
5605 { /* likely */ }
5606 else
5607 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5608 }
5609
5610 /* Attributes. */
5611 /* Reserved bits (bits 31:17 and bits 11:8). */
5612 if (!(Ldtr.Attr.u & 0xfffe0f00))
5613 { /* likely */ }
5614 else
5615 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5616
5617 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5618 { /* likely */ }
5619 else
5620 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5621
5622 if (!Ldtr.Attr.n.u1DescType)
5623 { /* likely */ }
5624 else
5625 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5626
5627 if (Ldtr.Attr.n.u1Present)
5628 { /* likely */ }
5629 else
5630 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5631
5632 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5633 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5634 { /* likely */ }
5635 else
5636 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5637 }
5638 }
5639
5640 /*
5641 * TR.
5642 */
5643 {
5644 CPUMSELREG Tr;
5645 Tr.Sel = pVmcs->GuestTr;
5646 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5647 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5648 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5649
5650 /* Selector. */
5651 if (!(Tr.Sel & X86_SEL_LDT))
5652 { /* likely */ }
5653 else
5654 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5655
5656 /* Base. */
5657 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5658 {
5659 if (X86_IS_CANONICAL(Tr.u64Base))
5660 { /* likely */ }
5661 else
5662 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5663 }
5664
5665 /* Attributes. */
5666 /* Reserved bits (bits 31:17 and bits 11:8). */
5667 if (!(Tr.Attr.u & 0xfffe0f00))
5668 { /* likely */ }
5669 else
5670 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5671
5672 if (!Tr.Attr.n.u1Unusable)
5673 { /* likely */ }
5674 else
5675 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5676
5677 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5678 || ( !fGstInLongMode
5679 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5680 { /* likely */ }
5681 else
5682 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5683
5684 if (!Tr.Attr.n.u1DescType)
5685 { /* likely */ }
5686 else
5687 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5688
5689 if (Tr.Attr.n.u1Present)
5690 { /* likely */ }
5691 else
5692 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5693
5694 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5695 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5696 { /* likely */ }
5697 else
5698 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5699 }
5700
5701 NOREF(pszInstr);
5702 NOREF(pszFailure);
5703 return VINF_SUCCESS;
5704}
5705
5706
5707/**
5708 * Checks guest GDTR and IDTR as part of VM-entry.
5709 *
5710 * @param pVCpu The cross context virtual CPU structure.
5711 * @param pszInstr The VMX instruction name (for logging purposes).
5712 */
5713DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5714{
5715 /*
5716 * GDTR and IDTR.
5717 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5718 */
5719 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5720 const char *const pszFailure = "VM-exit";
5721
5722 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5723 {
5724 /* Base. */
5725 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5726 { /* likely */ }
5727 else
5728 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5729
5730 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5731 { /* likely */ }
5732 else
5733 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5734 }
5735
5736 /* Limit. */
5737 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5738 { /* likely */ }
5739 else
5740 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5741
5742 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5743 { /* likely */ }
5744 else
5745 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5746
5747 NOREF(pszInstr);
5748 NOREF(pszFailure);
5749 return VINF_SUCCESS;
5750}
5751
5752
5753/**
5754 * Checks guest RIP and RFLAGS as part of VM-entry.
5755 *
5756 * @param pVCpu The cross context virtual CPU structure.
5757 * @param pszInstr The VMX instruction name (for logging purposes).
5758 */
5759DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5760{
5761 /*
5762 * RIP and RFLAGS.
5763 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5764 */
5765 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5766 const char *const pszFailure = "VM-exit";
5767 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5768
5769 /* RIP. */
5770 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5771 {
5772 X86DESCATTR AttrCs;
5773 AttrCs.u = pVmcs->u32GuestCsAttr;
5774 if ( !fGstInLongMode
5775 || !AttrCs.n.u1Long)
5776 {
5777 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5778 { /* likely */ }
5779 else
5780 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5781 }
5782
5783 if ( fGstInLongMode
5784 && AttrCs.n.u1Long)
5785 {
5786 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5787 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5788 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5789 { /* likely */ }
5790 else
5791 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5792 }
5793 }
5794
5795 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5796 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5797 : pVmcs->u64GuestRFlags.s.Lo;
5798 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5799 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5800 { /* likely */ }
5801 else
5802 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5803
5804 if (!(uGuestRFlags & X86_EFL_VM))
5805 { /* likely */ }
5806 else
5807 {
5808 if ( fGstInLongMode
5809 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5810 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5811 }
5812
5813 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5814 {
5815 if (uGuestRFlags & X86_EFL_IF)
5816 { /* likely */ }
5817 else
5818 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5819 }
5820
5821 NOREF(pszInstr);
5822 NOREF(pszFailure);
5823 return VINF_SUCCESS;
5824}
5825
5826
5827/**
5828 * Checks guest non-register state as part of VM-entry.
5829 *
5830 * @param pVCpu The cross context virtual CPU structure.
5831 * @param pszInstr The VMX instruction name (for logging purposes).
5832 */
5833DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5834{
5835 /*
5836 * Guest non-register state.
5837 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5838 */
5839 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5840 const char *const pszFailure = "VM-exit";
5841
5842 /*
5843 * Activity state.
5844 */
5845 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5846 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5847 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5848 { /* likely */ }
5849 else
5850 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5851
5852 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5853 if ( !AttrSs.n.u2Dpl
5854 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5855 { /* likely */ }
5856 else
5857 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5858
5859 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5860 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5861 {
5862 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5863 { /* likely */ }
5864 else
5865 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5866 }
5867
5868 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5869 {
5870 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5871 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5872 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5873 switch (pVmcs->u32GuestActivityState)
5874 {
5875 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5876 {
5877 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5878 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5879 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5880 && ( uVector == X86_XCPT_DB
5881 || uVector == X86_XCPT_MC))
5882 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5883 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5884 { /* likely */ }
5885 else
5886 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5887 break;
5888 }
5889
5890 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5891 {
5892 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5893 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5894 && uVector == X86_XCPT_MC))
5895 { /* likely */ }
5896 else
5897 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5898 break;
5899 }
5900
5901 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5902 default:
5903 break;
5904 }
5905 }
5906
5907 /*
5908 * Interruptibility state.
5909 */
5910 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5911 { /* likely */ }
5912 else
5913 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5914
5915 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5916 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5917 { /* likely */ }
5918 else
5919 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5920
5921 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5922 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5923 { /* likely */ }
5924 else
5925 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5926
5927 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5928 {
5929 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5930 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5931 {
5932 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5933 { /* likely */ }
5934 else
5935 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5936 }
5937 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5938 {
5939 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5940 { /* likely */ }
5941 else
5942 {
5943 /*
5944 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5945 * We update the Exit qualification only when blocking-by-STI is set
5946 * without blocking-by-MovSS being set. Although in practise it does not
5947 * make much difference since the order of checks are implementation defined.
5948 */
5949 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5950 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5951 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5952 }
5953
5954 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5955 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5956 { /* likely */ }
5957 else
5958 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5959 }
5960 }
5961
5962 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5963 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5964 { /* likely */ }
5965 else
5966 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5967
5968 /* We don't support SGX yet. So enclave-interruption must not be set. */
5969 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5970 { /* likely */ }
5971 else
5972 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5973
5974 /*
5975 * Pending debug exceptions.
5976 */
5977 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5978 ? pVmcs->u64GuestPendingDbgXcpts.u
5979 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5980 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5981 { /* likely */ }
5982 else
5983 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5984
5985 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5986 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5987 {
5988 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5989 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5990 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5991 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5992
5993 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5994 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5995 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5996 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5997 }
5998
5999 /* We don't support RTM (Real-time Transactional Memory) yet. */
6000 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
6001 { /* likely */ }
6002 else
6003 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
6004
6005 /*
6006 * VMCS link pointer.
6007 */
6008 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
6009 {
6010 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
6011 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
6012 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
6013 { /* likely */ }
6014 else
6015 {
6016 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6017 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
6018 }
6019
6020 /* Validate the address. */
6021 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
6022 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6023 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
6024 { /* likely */ }
6025 else
6026 {
6027 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6028 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
6029 }
6030 }
6031
6032 NOREF(pszInstr);
6033 NOREF(pszFailure);
6034 return VINF_SUCCESS;
6035}
6036
6037
6038#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6039/**
6040 * Checks guest PDPTEs as part of VM-entry.
6041 *
6042 * @param pVCpu The cross context virtual CPU structure.
6043 * @param pszInstr The VMX instruction name (for logging purposes).
6044 */
6045static int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6046{
6047 /*
6048 * Guest PDPTEs.
6049 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
6050 */
6051 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6052 const char * const pszFailure = "VM-exit";
6053
6054 /*
6055 * When EPT is used, we need to validate the PAE PDPTEs provided in the VMCS.
6056 * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
6057 */
6058 if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
6059 && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
6060 {
6061 /* Get PDPTEs from the VMCS. */
6062 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
6063 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
6064 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
6065 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
6066 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
6067
6068 /* Check validity of the PDPTEs. */
6069 if (PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]))
6070 { /* likely */ }
6071 else
6072 {
6073 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6074 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
6075 }
6076 }
6077
6078 NOREF(pszFailure);
6079 NOREF(pszInstr);
6080 return VINF_SUCCESS;
6081}
6082#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
6083
6084
6085/**
6086 * Checks guest-state as part of VM-entry.
6087 *
6088 * @returns VBox status code.
6089 * @param pVCpu The cross context virtual CPU structure.
6090 * @param pszInstr The VMX instruction name (for logging purposes).
6091 */
6092static int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6093{
6094 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
6095 if (RT_SUCCESS(rc))
6096 {
6097 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
6098 if (RT_SUCCESS(rc))
6099 {
6100 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
6101 if (RT_SUCCESS(rc))
6102 {
6103 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
6104 if (RT_SUCCESS(rc))
6105 {
6106 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
6107#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6108 if (RT_SUCCESS(rc))
6109 rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
6110#endif
6111 }
6112 }
6113 }
6114 }
6115 return rc;
6116}
6117
6118
6119/**
6120 * Checks host-state as part of VM-entry.
6121 *
6122 * @returns VBox status code.
6123 * @param pVCpu The cross context virtual CPU structure.
6124 * @param pszInstr The VMX instruction name (for logging purposes).
6125 */
6126static int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6127{
6128 /*
6129 * Host Control Registers and MSRs.
6130 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
6131 */
6132 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6133 const char * const pszFailure = "VMFail";
6134
6135 /* CR0 reserved bits. */
6136 {
6137 /* CR0 MB1 bits. */
6138 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
6139 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
6140 { /* likely */ }
6141 else
6142 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
6143
6144 /* CR0 MBZ bits. */
6145 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
6146 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
6147 { /* likely */ }
6148 else
6149 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
6150 }
6151
6152 /* CR4 reserved bits. */
6153 {
6154 /* CR4 MB1 bits. */
6155 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6156 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
6157 { /* likely */ }
6158 else
6159 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
6160
6161 /* CR4 MBZ bits. */
6162 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6163 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
6164 { /* likely */ }
6165 else
6166 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
6167 }
6168
6169 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6170 {
6171 /* CR3 reserved bits. */
6172 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
6173 { /* likely */ }
6174 else
6175 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
6176
6177 /* SYSENTER ESP and SYSENTER EIP. */
6178 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
6179 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
6180 { /* likely */ }
6181 else
6182 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
6183 }
6184
6185 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6186 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
6187
6188 /* PAT MSR. */
6189 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
6190 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
6191 { /* likely */ }
6192 else
6193 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
6194
6195 /* EFER MSR. */
6196 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
6197 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
6198 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
6199 {
6200 if (!(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
6201 { /* likely */ }
6202 else
6203 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
6204
6205 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
6206 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
6207 if ( fHostInLongMode == fHostLma
6208 && fHostInLongMode == fHostLme)
6209 { /* likely */ }
6210 else
6211 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
6212 }
6213
6214 /*
6215 * Host Segment and Descriptor-Table Registers.
6216 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
6217 */
6218 /* Selector RPL and TI. */
6219 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
6220 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
6221 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
6222 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
6223 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
6224 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
6225 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
6226 { /* likely */ }
6227 else
6228 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
6229
6230 /* CS and TR selectors cannot be 0. */
6231 if ( pVmcs->HostCs
6232 && pVmcs->HostTr)
6233 { /* likely */ }
6234 else
6235 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
6236
6237 /* SS cannot be 0 if 32-bit host. */
6238 if ( fHostInLongMode
6239 || pVmcs->HostSs)
6240 { /* likely */ }
6241 else
6242 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
6243
6244 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6245 {
6246 /* FS, GS, GDTR, IDTR, TR base address. */
6247 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6248 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6249 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
6250 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
6251 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
6252 { /* likely */ }
6253 else
6254 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
6255 }
6256
6257 /*
6258 * Host address-space size for 64-bit CPUs.
6259 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
6260 */
6261 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6262 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6263 {
6264 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
6265
6266 /* Logical processor in IA-32e mode. */
6267 if (fCpuInLongMode)
6268 {
6269 if (fHostInLongMode)
6270 {
6271 /* PAE must be set. */
6272 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
6273 { /* likely */ }
6274 else
6275 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
6276
6277 /* RIP must be canonical. */
6278 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
6279 { /* likely */ }
6280 else
6281 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
6282 }
6283 else
6284 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
6285 }
6286 else
6287 {
6288 /* Logical processor is outside IA-32e mode. */
6289 if ( !fGstInLongMode
6290 && !fHostInLongMode)
6291 {
6292 /* PCIDE should not be set. */
6293 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
6294 { /* likely */ }
6295 else
6296 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
6297
6298 /* The high 32-bits of RIP MBZ. */
6299 if (!pVmcs->u64HostRip.s.Hi)
6300 { /* likely */ }
6301 else
6302 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
6303 }
6304 else
6305 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
6306 }
6307 }
6308 else
6309 {
6310 /* Host address-space size for 32-bit CPUs. */
6311 if ( !fGstInLongMode
6312 && !fHostInLongMode)
6313 { /* likely */ }
6314 else
6315 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
6316 }
6317
6318 NOREF(pszInstr);
6319 NOREF(pszFailure);
6320 return VINF_SUCCESS;
6321}
6322
6323
6324#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6325/**
6326 * Checks the EPT pointer VMCS field as part of VM-entry.
6327 *
6328 * @returns VBox status code.
6329 * @param pVCpu The cross context virtual CPU structure.
6330 * @param uEptPtr The EPT pointer to check.
6331 * @param penmVmxDiag Where to store the diagnostic reason on failure (not
6332 * updated on success). Optional, can be NULL.
6333 */
6334static int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag) RT_NOEXCEPT
6335{
6336 VMXVDIAG enmVmxDiag;
6337
6338 /* Reserved bits. */
6339 uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
6340 uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
6341 if (uEptPtr & fValidMask)
6342 {
6343 /* Memory Type. */
6344 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
6345 uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
6346 if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
6347 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
6348 || ( fMemType == VMX_EPTP_MEMTYPE_UC
6349 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
6350 {
6351 /*
6352 * Page walk length (PML4).
6353 * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
6354 * of 5 but that seems to be removed from the latest specs. leaving only PML4
6355 * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
6356 */
6357 Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
6358 if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
6359 {
6360 /* Access and dirty bits support in EPT structures. */
6361 if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
6362 || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
6363 return VINF_SUCCESS;
6364
6365 enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
6366 }
6367 else
6368 enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
6369 }
6370 else
6371 enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
6372 }
6373 else
6374 enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
6375
6376 if (penmVmxDiag)
6377 *penmVmxDiag = enmVmxDiag;
6378 return VERR_VMX_VMENTRY_FAILED;
6379}
6380#endif
6381
6382
6383/**
6384 * Checks VMCS controls fields as part of VM-entry.
6385 *
6386 * @returns VBox status code.
6387 * @param pVCpu The cross context virtual CPU structure.
6388 * @param pszInstr The VMX instruction name (for logging purposes).
6389 *
6390 * @remarks This may update secondary-processor based VM-execution control fields
6391 * in the current VMCS if necessary.
6392 */
6393static int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6394{
6395 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6396 const char * const pszFailure = "VMFail";
6397 bool const fVmxTrueMsrs = RT_BOOL(pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK);
6398
6399 /*
6400 * VM-execution controls.
6401 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6402 */
6403 {
6404 /* Pin-based VM-execution controls. */
6405 {
6406 VMXCTLSMSR const PinCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TruePinCtls
6407 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6408 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6409 { /* likely */ }
6410 else
6411 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6412
6413 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6414 { /* likely */ }
6415 else
6416 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6417 }
6418
6419 /* Processor-based VM-execution controls. */
6420 {
6421 VMXCTLSMSR const ProcCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueProcCtls
6422 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6423 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6424 { /* likely */ }
6425 else
6426 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6427
6428 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6429 { /* likely */ }
6430 else
6431 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6432 }
6433
6434 /* Secondary processor-based VM-execution controls. */
6435 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6436 {
6437 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6438 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6439 { /* likely */ }
6440 else
6441 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6442
6443 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6444 { /* likely */ }
6445 else
6446 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6447 }
6448 else if (pVmcs->u32ProcCtls2)
6449 {
6450 /*
6451 * If the "activate secondary controls" is clear, then the secondary processor-based VM-execution controls
6452 * is treated as 0.
6453 *
6454 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6455 *
6456 * Since this is a rather rare occurrence (only observed for a few VM-entries with Microsoft Hyper-V
6457 * enabled Windows Server 2008 R2 guest), it's not worth changing every place that reads this control to
6458 * also check the "activate secondary controls" bit. Instead, we temporarily save the guest programmed
6459 * control here, zero out the value the rest of our code uses and restore the guest programmed value
6460 * on VM-exit.
6461 */
6462 pVmcs->u32RestoreProcCtls2 = pVmcs->u32ProcCtls2;
6463 pVmcs->u32ProcCtls2 = 0;
6464 }
6465
6466 /* CR3-target count. */
6467 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6468 { /* likely */ }
6469 else
6470 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6471
6472 /* I/O bitmaps physical addresses. */
6473 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6474 {
6475 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6476 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6477 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6478 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6479 { /* likely */ }
6480 else
6481 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6482
6483 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6484 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6485 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6486 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6487 { /* likely */ }
6488 else
6489 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6490 }
6491
6492 /* MSR bitmap physical address. */
6493 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6494 {
6495 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6496 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6497 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6498 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6499 { /* likely */ }
6500 else
6501 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6502 }
6503
6504 /* TPR shadow related controls. */
6505 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6506 {
6507 /* Virtual-APIC page physical address. */
6508 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6509 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6510 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6511 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6512 { /* likely */ }
6513 else
6514 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6515
6516 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6517 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6518 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6519 { /* likely */ }
6520 else
6521 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6522
6523 /* The rest done XXX document */
6524 }
6525 else
6526 {
6527 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6528 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6529 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6530 { /* likely */ }
6531 else
6532 {
6533 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6534 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6535 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6536 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6537 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6538 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6539 }
6540 }
6541
6542 /* NMI exiting and virtual-NMIs. */
6543 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6544 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6545 { /* likely */ }
6546 else
6547 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6548
6549 /* Virtual-NMIs and NMI-window exiting. */
6550 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6551 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6552 { /* likely */ }
6553 else
6554 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6555
6556 /* Virtualize APIC accesses. */
6557 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6558 {
6559 /* APIC-access physical address. */
6560 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6561 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6562 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6563 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6564 { /* likely */ }
6565 else
6566 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6567
6568 /*
6569 * Disallow APIC-access page and virtual-APIC page from being the same address.
6570 * Note! This is not an Intel requirement, but one imposed by our implementation.
6571 * This is done primarily to simplify recursion scenarios while redirecting accesses
6572 * between the APIC-access page and the virtual-APIC page. If any nested hypervisor
6573 * requires this, we can implement it later
6574 */
6575 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6576 {
6577 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6578 if (GCPhysVirtApic != GCPhysApicAccess)
6579 { /* likely */ }
6580 else
6581 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6582 }
6583 }
6584
6585 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6586 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6587 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6588 { /* likely */ }
6589 else
6590 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6591
6592 /* Virtual-interrupt delivery requires external interrupt exiting. */
6593 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6594 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6595 { /* likely */ }
6596 else
6597 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6598
6599 /* VPID. */
6600 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6601 || pVmcs->u16Vpid != 0)
6602 { /* likely */ }
6603 else
6604 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6605
6606#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6607 /* Extended-Page-Table Pointer (EPTP). */
6608 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6609 {
6610 VMXVDIAG enmVmxDiag;
6611 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
6612 if (RT_SUCCESS(rc))
6613 { /* likely */ }
6614 else
6615 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, enmVmxDiag, rc);
6616 }
6617#else
6618 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6619 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST));
6620#endif
6621 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6622 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6623 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6624 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
6625 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6626
6627 /* VMCS shadowing. */
6628 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6629 {
6630 /* VMREAD-bitmap physical address. */
6631 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6632 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6633 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6634 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6635 { /* likely */ }
6636 else
6637 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6638
6639 /* VMWRITE-bitmap physical address. */
6640 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6641 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6642 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6643 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6644 { /* likely */ }
6645 else
6646 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6647 }
6648 }
6649
6650 /*
6651 * VM-exit controls.
6652 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6653 */
6654 {
6655 VMXCTLSMSR const ExitCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueExitCtls
6656 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6657 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6658 { /* likely */ }
6659 else
6660 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6661
6662 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6663 { /* likely */ }
6664 else
6665 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6666
6667 /* Save preemption timer without activating it. */
6668 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6669 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6670 { /* likely */ }
6671 else
6672 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6673
6674 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6675 if (pVmcs->u32ExitMsrStoreCount)
6676 {
6677 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6678 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6679 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6680 { /* likely */ }
6681 else
6682 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6683 }
6684
6685 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6686 if (pVmcs->u32ExitMsrLoadCount)
6687 {
6688 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6689 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6690 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6691 { /* likely */ }
6692 else
6693 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6694 }
6695 }
6696
6697 /*
6698 * VM-entry controls.
6699 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6700 */
6701 {
6702 VMXCTLSMSR const EntryCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueEntryCtls
6703 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6704 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6705 { /* likely */ }
6706 else
6707 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6708
6709 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6710 { /* likely */ }
6711 else
6712 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6713
6714 /* Event injection. */
6715 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6716 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6717 {
6718 /* Type and vector. */
6719 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6720 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6721 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6722 if ( !uRsvd
6723 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6724 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6725 { /* likely */ }
6726 else
6727 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6728
6729 /* Exception error code. */
6730 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6731 {
6732 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6733 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6734 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6735 { /* likely */ }
6736 else
6737 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6738
6739 /* Exceptions that provide an error code. */
6740 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6741 && ( uVector == X86_XCPT_DF
6742 || uVector == X86_XCPT_TS
6743 || uVector == X86_XCPT_NP
6744 || uVector == X86_XCPT_SS
6745 || uVector == X86_XCPT_GP
6746 || uVector == X86_XCPT_PF
6747 || uVector == X86_XCPT_AC))
6748 { /* likely */ }
6749 else
6750 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6751
6752 /* Exception error-code reserved bits. */
6753 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6754 { /* likely */ }
6755 else
6756 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6757
6758 /* Injecting a software interrupt, software exception or privileged software exception. */
6759 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6760 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6761 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6762 {
6763 /* Instruction length must be in the range 0-15. */
6764 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6765 { /* likely */ }
6766 else
6767 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6768
6769 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6770 if ( pVmcs->u32EntryInstrLen != 0
6771 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6772 { /* likely */ }
6773 else
6774 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6775 }
6776 }
6777 }
6778
6779 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6780 if (pVmcs->u32EntryMsrLoadCount)
6781 {
6782 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6783 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6784 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6785 { /* likely */ }
6786 else
6787 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6788 }
6789
6790 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6791 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6792 }
6793
6794 NOREF(pszInstr);
6795 NOREF(pszFailure);
6796 return VINF_SUCCESS;
6797}
6798
6799
6800/**
6801 * Loads the guest control registers, debug register and some MSRs as part of
6802 * VM-entry.
6803 *
6804 * @param pVCpu The cross context virtual CPU structure.
6805 */
6806static void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
6807{
6808 /*
6809 * Load guest control registers, debug registers and MSRs.
6810 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6811 */
6812 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6813
6814 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6815 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6816 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6817 pVCpu->cpum.GstCtx.cr0 = uGstCr0;
6818 pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
6819 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6820
6821 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6822 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6823
6824 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6825 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6826 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6827
6828 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6829 {
6830 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6831
6832 /* EFER MSR. */
6833 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6834 {
6835 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6836 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6837 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6838 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6839 if (fGstInLongMode)
6840 {
6841 /* If the nested-guest is in long mode, LMA and LME are both set. */
6842 Assert(fGstPaging);
6843 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6844 }
6845 else
6846 {
6847 /*
6848 * If the nested-guest is outside long mode:
6849 * - With paging: LMA is cleared, LME is cleared.
6850 * - Without paging: LMA is cleared, LME is left unmodified.
6851 */
6852 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6853 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6854 }
6855 }
6856 /* else: see below. */
6857 }
6858
6859 /* PAT MSR. */
6860 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6861 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6862
6863 /* EFER MSR. */
6864 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6865 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6866
6867 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6868 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6869
6870 /* We don't support IA32_BNDCFGS MSR yet. */
6871 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6872
6873 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6874}
6875
6876
6877/**
6878 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6879 *
6880 * @param pVCpu The cross context virtual CPU structure.
6881 */
6882static void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
6883{
6884 /*
6885 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6886 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6887 */
6888 /* CS, SS, ES, DS, FS, GS. */
6889 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6890 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6891 {
6892 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6893 CPUMSELREG VmcsSelReg;
6894 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6895 AssertRC(rc); NOREF(rc);
6896 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6897 {
6898 pGstSelReg->Sel = VmcsSelReg.Sel;
6899 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6900 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6901 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6902 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6903 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6904 }
6905 else
6906 {
6907 pGstSelReg->Sel = VmcsSelReg.Sel;
6908 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6909 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6910 switch (iSegReg)
6911 {
6912 case X86_SREG_CS:
6913 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6914 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6915 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6916 break;
6917
6918 case X86_SREG_SS:
6919 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6920 pGstSelReg->u32Limit = 0;
6921 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6922 break;
6923
6924 case X86_SREG_ES:
6925 case X86_SREG_DS:
6926 pGstSelReg->u64Base = 0;
6927 pGstSelReg->u32Limit = 0;
6928 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6929 break;
6930
6931 case X86_SREG_FS:
6932 case X86_SREG_GS:
6933 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6934 pGstSelReg->u32Limit = 0;
6935 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6936 break;
6937 }
6938 Assert(pGstSelReg->Attr.n.u1Unusable);
6939 }
6940 }
6941
6942 /* LDTR. */
6943 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6944 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6945 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6946 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6947 {
6948 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6949 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6950 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6951 }
6952 else
6953 {
6954 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6955 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6956 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6957 }
6958
6959 /* TR. */
6960 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6961 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6962 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6963 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6964 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6965 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6966 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6967
6968 /* GDTR. */
6969 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6970 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6971
6972 /* IDTR. */
6973 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6974 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6975}
6976
6977
6978/**
6979 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6980 *
6981 * @returns VBox status code.
6982 * @param pVCpu The cross context virtual CPU structure.
6983 * @param pszInstr The VMX instruction name (for logging purposes).
6984 */
6985static int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6986{
6987 /*
6988 * Load guest MSRs.
6989 * See Intel spec. 26.4 "Loading MSRs".
6990 */
6991 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6992 const char *const pszFailure = "VM-exit";
6993
6994 /*
6995 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6996 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6997 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6998 */
6999 uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
7000 if (!cMsrs)
7001 return VINF_SUCCESS;
7002
7003 /*
7004 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
7005 * exceeded including possibly raising #MC exceptions during VMX transition. Our
7006 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
7007 */
7008 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
7009 if (fIsMsrCountValid)
7010 { /* likely */ }
7011 else
7012 {
7013 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
7014 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
7015 }
7016
7017 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
7018 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
7019 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
7020 if (RT_SUCCESS(rc))
7021 {
7022 PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
7023 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
7024 {
7025 if ( !pMsr->u32Reserved
7026 && pMsr->u32Msr != MSR_K8_FS_BASE
7027 && pMsr->u32Msr != MSR_K8_GS_BASE
7028 && pMsr->u32Msr != MSR_K6_EFER
7029 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
7030 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
7031 {
7032 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
7033 if (rcStrict == VINF_SUCCESS)
7034 continue;
7035
7036 /*
7037 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
7038 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
7039 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
7040 * further by our own, specific diagnostic code. Later, we can try implement handling of the
7041 * MSR in ring-0 if possible, or come up with a better, generic solution.
7042 */
7043 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7044 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
7045 ? kVmxVDiag_Vmentry_MsrLoadRing3
7046 : kVmxVDiag_Vmentry_MsrLoad;
7047 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
7048 }
7049 else
7050 {
7051 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7052 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
7053 }
7054 }
7055 }
7056 else
7057 {
7058 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
7059 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys, rc);
7060 }
7061
7062 NOREF(pszInstr);
7063 NOREF(pszFailure);
7064 return VINF_SUCCESS;
7065}
7066
7067
7068/**
7069 * Loads the guest-state non-register state as part of VM-entry.
7070 *
7071 * @returns VBox status code.
7072 * @param pVCpu The cross context virtual CPU structure.
7073 * @param pszInstr The VMX instruction name (for logging purposes).
7074 *
7075 * @remarks This must be called only after loading the nested-guest register state
7076 * (especially nested-guest RIP).
7077 */
7078static int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7079{
7080 /*
7081 * Load guest non-register state.
7082 * See Intel spec. 26.6 "Special Features of VM Entry"
7083 */
7084 const char *const pszFailure = "VM-exit";
7085 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7086
7087 /*
7088 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
7089 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
7090 *
7091 * See Intel spec. 26.6.1 "Interruptibility State".
7092 */
7093 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
7094 if ( !fEntryVectoring
7095 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
7096 CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcs->u64GuestRip.u);
7097 else
7098 Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
7099
7100 /* NMI blocking. */
7101 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7102 {
7103 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
7104 {
7105 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
7106 Assert(!CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx));
7107 }
7108 else
7109 {
7110 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7111 CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
7112 }
7113 }
7114 else
7115 {
7116 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7117 Assert(!CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx));
7118 }
7119
7120 /* SMI blocking is irrelevant. We don't support SMIs yet. */
7121
7122 /*
7123 * Set PGM's copy of the EPT pointer.
7124 * The EPTP has already been validated while checking guest state.
7125 *
7126 * It is important to do this prior to mapping PAE PDPTEs (below).
7127 */
7128 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7129 PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
7130
7131 /*
7132 * Load the guest's PAE PDPTEs.
7133 */
7134 if (!iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
7135 {
7136 /*
7137 * When PAE paging is not used we clear the PAE PDPTEs for safety
7138 * in case we might be switching from a PAE host to a non-PAE guest.
7139 */
7140 pVCpu->cpum.GstCtx.aPaePdpes[0].u = 0;
7141 pVCpu->cpum.GstCtx.aPaePdpes[1].u = 0;
7142 pVCpu->cpum.GstCtx.aPaePdpes[2].u = 0;
7143 pVCpu->cpum.GstCtx.aPaePdpes[3].u = 0;
7144 }
7145 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7146 {
7147 /*
7148 * With EPT and the nested-guest using PAE paging, we've already validated the PAE PDPTEs
7149 * while checking the guest state. We can load them into the nested-guest CPU state now.
7150 * They'll later be used while mapping CR3 and the PAE PDPTEs.
7151 */
7152 pVCpu->cpum.GstCtx.aPaePdpes[0].u = pVmcs->u64GuestPdpte0.u;
7153 pVCpu->cpum.GstCtx.aPaePdpes[1].u = pVmcs->u64GuestPdpte1.u;
7154 pVCpu->cpum.GstCtx.aPaePdpes[2].u = pVmcs->u64GuestPdpte2.u;
7155 pVCpu->cpum.GstCtx.aPaePdpes[3].u = pVmcs->u64GuestPdpte3.u;
7156 }
7157 else
7158 {
7159 /*
7160 * Without EPT and the nested-guest using PAE paging, we must load the PAE PDPTEs
7161 * referenced by CR3. This involves loading (and mapping) CR3 and validating them now.
7162 */
7163 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
7164 if (RT_SUCCESS(rc))
7165 { /* likely */ }
7166 else
7167 {
7168 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
7169 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte, rc);
7170 }
7171 }
7172
7173 /* VPID is irrelevant. We don't support VPID yet. */
7174
7175 /* Clear address-range monitoring. */
7176 EMMonitorWaitClear(pVCpu);
7177
7178 return VINF_SUCCESS;
7179}
7180
7181
7182/**
7183 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
7184 *
7185 * @param pVCpu The cross context virtual CPU structure.
7186 * @param pszInstr The VMX instruction name (for logging purposes).
7187 *
7188 * @remarks This assumes various VMCS related data structure pointers have already
7189 * been verified prior to calling this function.
7190 */
7191static int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7192{
7193 const char *const pszFailure = "VM-exit";
7194 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7195
7196 /*
7197 * Virtualize APIC accesses.
7198 */
7199 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7200 {
7201 /* APIC-access physical address. */
7202 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
7203
7204 /*
7205 * Register the handler for the APIC-access page.
7206 *
7207 * We don't deregister the APIC-access page handler during the VM-exit as a different
7208 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
7209 *
7210 * We leave the page registered until the first access that happens outside VMX non-root
7211 * mode. Guest software is allowed to access structures such as the APIC-access page
7212 * only when no logical processor with a current VMCS references it in VMX non-root mode,
7213 * otherwise it can lead to unpredictable behavior including guest triple-faults.
7214 *
7215 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7216 */
7217 /** @todo r=bird: The lazy deregistration of the page is potentially slightly
7218 * problematic, as the guest may cause us to create lots of access
7219 * handler entries. However, any slowdown or similar effects should
7220 * only ever affect the guest itself, so not a big issue. Though, I
7221 * wish there was most recently used approach or something to tracking
7222 * these... */
7223 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7224 int rc = PGMHandlerPhysicalRegisterVmxApicAccessPage(pVM, GCPhysApicAccess, pVM->iem.s.hVmxApicAccessPage);
7225 if (RT_SUCCESS(rc))
7226 { /* likely */ }
7227 else
7228 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg, rc);
7229 }
7230
7231 /*
7232 * VMCS shadowing.
7233 */
7234 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7235 {
7236 /* Read the VMREAD-bitmap. */
7237 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
7238 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
7239 GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
7240 if (RT_SUCCESS(rc))
7241 { /* likely */ }
7242 else
7243 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys, rc);
7244
7245 /* Read the VMWRITE-bitmap. */
7246 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
7247 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
7248 GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
7249 if (RT_SUCCESS(rc))
7250 { /* likely */ }
7251 else
7252 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys, rc);
7253 }
7254
7255 /*
7256 * I/O bitmaps.
7257 */
7258 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
7259 {
7260 /* Read the IO bitmap A. */
7261 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
7262 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
7263 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
7264 if (RT_SUCCESS(rc))
7265 { /* likely */ }
7266 else
7267 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys, rc);
7268
7269 /* Read the IO bitmap B. */
7270 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
7271 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
7272 GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
7273 if (RT_SUCCESS(rc))
7274 { /* likely */ }
7275 else
7276 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys, rc);
7277 }
7278
7279 /*
7280 * TPR shadow and Virtual-APIC page.
7281 */
7282 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7283 {
7284 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
7285 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7286 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
7287 {
7288 /* Read the VTPR from the virtual-APIC page. */
7289 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
7290 uint8_t u8VTpr;
7291 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
7292 if (RT_SUCCESS(rc))
7293 { /* likely */ }
7294 else
7295 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys, rc);
7296
7297 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
7298 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
7299 { /* likely */ }
7300 else
7301 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
7302 }
7303 }
7304
7305 /*
7306 * VMCS link pointer.
7307 */
7308 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
7309 {
7310 /* Read the VMCS-link pointer from guest memory. */
7311 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
7312 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
7313 GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
7314 if (RT_SUCCESS(rc))
7315 { /* likely */ }
7316 else
7317 {
7318 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7319 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys, rc);
7320 }
7321
7322 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
7323 if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
7324 { /* likely */ }
7325 else
7326 {
7327 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7328 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
7329 }
7330
7331 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
7332 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7333 || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
7334 { /* likely */ }
7335 else
7336 {
7337 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7338 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
7339 }
7340
7341 /* Update our cache of the guest physical address of the shadow VMCS. */
7342 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
7343 }
7344
7345 /*
7346 * MSR bitmap.
7347 */
7348 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7349 {
7350 /* Read the MSR bitmap. */
7351 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
7352 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
7353 GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
7354 if (RT_SUCCESS(rc))
7355 { /* likely */ }
7356 else
7357 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys, rc);
7358 }
7359
7360 NOREF(pszFailure);
7361 NOREF(pszInstr);
7362 return VINF_SUCCESS;
7363}
7364
7365
7366/**
7367 * Loads the guest-state as part of VM-entry.
7368 *
7369 * @returns VBox status code.
7370 * @param pVCpu The cross context virtual CPU structure.
7371 * @param pszInstr The VMX instruction name (for logging purposes).
7372 *
7373 * @remarks This must be done after all the necessary steps prior to loading of
7374 * guest-state (e.g. checking various VMCS state).
7375 */
7376static int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7377{
7378 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
7379 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7380
7381 /* Load guest segment registers. */
7382 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7383
7384 /*
7385 * Load guest RIP, RSP and RFLAGS.
7386 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7387 */
7388 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7389 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7390 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7391 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7392
7393 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7394 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7395 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7396
7397 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
7398 int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
7399 if (rc == VINF_SUCCESS)
7400 { /* likely */ }
7401 else
7402 return rc;
7403
7404 /* Load VMX related structures and state referenced by the VMCS. */
7405 rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
7406 if (rc == VINF_SUCCESS)
7407 { /* likely */ }
7408 else
7409 return rc;
7410
7411 NOREF(pszInstr);
7412 return VINF_SUCCESS;
7413}
7414
7415
7416/**
7417 * Returns whether there are is a pending debug exception on VM-entry.
7418 *
7419 * @param pVCpu The cross context virtual CPU structure.
7420 * @param pszInstr The VMX instruction name (for logging purposes).
7421 */
7422static bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7423{
7424 /*
7425 * Pending debug exceptions.
7426 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7427 */
7428 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7429 Assert(pVmcs);
7430
7431 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7432 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7433 if (fPendingDbgXcpt)
7434 {
7435 uint8_t uEntryIntInfoType;
7436 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7437 if (fEntryVectoring)
7438 {
7439 switch (uEntryIntInfoType)
7440 {
7441 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7442 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7443 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7444 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7445 fPendingDbgXcpt = false;
7446 break;
7447
7448 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7449 {
7450 /*
7451 * Whether the pending debug exception for software exceptions other than
7452 * #BP and #OF is delivered after injecting the exception or is discard
7453 * is CPU implementation specific. We will discard them (easier).
7454 */
7455 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7456 if ( uVector != X86_XCPT_BP
7457 && uVector != X86_XCPT_OF)
7458 fPendingDbgXcpt = false;
7459 RT_FALL_THRU();
7460 }
7461 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7462 {
7463 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7464 fPendingDbgXcpt = false;
7465 break;
7466 }
7467 }
7468 }
7469 else
7470 {
7471 /*
7472 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7473 * pending debug exception is held pending or is discarded is CPU implementation
7474 * specific. We will discard them (easier).
7475 */
7476 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7477 fPendingDbgXcpt = false;
7478
7479 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7480 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7481 fPendingDbgXcpt = false;
7482 }
7483 }
7484
7485 NOREF(pszInstr);
7486 return fPendingDbgXcpt;
7487}
7488
7489
7490/**
7491 * Set up the monitor-trap flag (MTF).
7492 *
7493 * @param pVCpu The cross context virtual CPU structure.
7494 * @param pszInstr The VMX instruction name (for logging purposes).
7495 */
7496static void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7497{
7498 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7499 Assert(pVmcs);
7500 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7501 {
7502 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7503 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7504 }
7505 else
7506 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7507 NOREF(pszInstr);
7508}
7509
7510
7511/**
7512 * Sets up NMI-window exiting.
7513 *
7514 * @param pVCpu The cross context virtual CPU structure.
7515 * @param pszInstr The VMX instruction name (for logging purposes).
7516 */
7517static void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7518{
7519 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7520 Assert(pVmcs);
7521 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7522 {
7523 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7524 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7525 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7526 }
7527 else
7528 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7529 NOREF(pszInstr);
7530}
7531
7532
7533/**
7534 * Sets up interrupt-window exiting.
7535 *
7536 * @param pVCpu The cross context virtual CPU structure.
7537 * @param pszInstr The VMX instruction name (for logging purposes).
7538 */
7539static void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7540{
7541 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7542 Assert(pVmcs);
7543 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7544 {
7545 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7546 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7547 }
7548 else
7549 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7550 NOREF(pszInstr);
7551}
7552
7553
7554/**
7555 * Set up the VMX-preemption timer.
7556 *
7557 * @param pVCpu The cross context virtual CPU structure.
7558 * @param pszInstr The VMX instruction name (for logging purposes).
7559 */
7560static void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7561{
7562 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7563 Assert(pVmcs);
7564 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7565 {
7566 /*
7567 * If the timer is 0, we must cause a VM-exit before executing the first
7568 * nested-guest instruction. So we can flag as though the timer has already
7569 * expired and we will check and cause a VM-exit at the right priority elsewhere
7570 * in the code.
7571 */
7572 uint64_t uEntryTick;
7573 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7574 if (uPreemptTimer)
7575 {
7576 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7577 AssertRC(rc);
7578 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7579 }
7580 else
7581 {
7582 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7583 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7584 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7585 }
7586
7587 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7588 }
7589 else
7590 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7591
7592 NOREF(pszInstr);
7593}
7594
7595
7596/**
7597 * Injects an event using TRPM given a VM-entry interruption info and related
7598 * fields.
7599 *
7600 * @param pVCpu The cross context virtual CPU structure.
7601 * @param pszInstr The VMX instruction name (for logging purposes).
7602 * @param uEntryIntInfo The VM-entry interruption info.
7603 * @param uErrCode The error code associated with the event if any.
7604 * @param cbInstr The VM-entry instruction length (for software
7605 * interrupts and software exceptions). Pass 0
7606 * otherwise.
7607 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7608 */
7609static void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7610 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress) RT_NOEXCEPT
7611{
7612 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7613
7614 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7615 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7616 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7617
7618 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7619
7620 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7621 AssertRC(rc);
7622 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7623
7624 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7625 {
7626 TRPMSetErrorCode(pVCpu, uErrCode);
7627 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7628 }
7629
7630 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7631 {
7632 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7633 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7634 }
7635 else
7636 {
7637 switch (uType)
7638 {
7639 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7640 TRPMSetTrapDueToIcebp(pVCpu);
7641 Log(("%s: Injecting: icebp\n", pszInstr));
7642 RT_FALL_THRU();
7643 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7644 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7645 TRPMSetInstrLength(pVCpu, cbInstr);
7646 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7647 break;
7648 }
7649 }
7650
7651 NOREF(pszInstr);
7652}
7653
7654
7655/**
7656 * Performs event injection (if any) as part of VM-entry.
7657 *
7658 * @param pVCpu The cross context virtual CPU structure.
7659 * @param pszInstr The VMX instruction name (for logging purposes).
7660 */
7661static void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7662{
7663 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7664
7665 /*
7666 * Inject events.
7667 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7668 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7669 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7670 * the actually delivery of this event.
7671 *
7672 * See Intel spec. 26.5 "Event Injection".
7673 */
7674 uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
7675 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7676
7677 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7678 if (fEntryIntInfoValid)
7679 {
7680 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7681 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7682 pVCpu->cpum.GstCtx.cr2);
7683 else
7684 {
7685 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7686 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7687 }
7688
7689 /*
7690 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7691 *
7692 * However, we do it here on VM-entry as well because while it isn't visible to guest
7693 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7694 * execution using hardware-assisted VMX, it will not try to inject the event again.
7695 *
7696 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7697 */
7698 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7699 }
7700 else
7701 {
7702 /*
7703 * Inject any pending guest debug exception.
7704 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7705 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7706 */
7707 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7708 if (fPendingDbgXcpt)
7709 {
7710 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7711 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7712 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7713 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7714 0 /* GCPtrFaultAddress */);
7715 }
7716 }
7717
7718 NOREF(pszInstr);
7719}
7720
7721
7722/**
7723 * Initializes all read-only VMCS fields as part of VM-entry.
7724 *
7725 * @param pVCpu The cross context virtual CPU structure.
7726 */
7727static void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu) RT_NOEXCEPT
7728{
7729 /*
7730 * Any VMCS field which we do not establish on every VM-exit but may potentially
7731 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7732 * specified to be undefined, needs to be initialized here.
7733 *
7734 * Thus, it is especially important to clear the Exit qualification field
7735 * since it must be zero for VM-exits where it is not used. Similarly, the
7736 * VM-exit interruption information field's valid bit needs to be cleared for
7737 * the same reasons.
7738 */
7739 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7740 Assert(pVmcs);
7741
7742 /* 16-bit (none currently). */
7743 /* 32-bit. */
7744 pVmcs->u32RoVmInstrError = 0;
7745 pVmcs->u32RoExitReason = 0;
7746 pVmcs->u32RoExitIntInfo = 0;
7747 pVmcs->u32RoExitIntErrCode = 0;
7748 pVmcs->u32RoIdtVectoringInfo = 0;
7749 pVmcs->u32RoIdtVectoringErrCode = 0;
7750 pVmcs->u32RoExitInstrLen = 0;
7751 pVmcs->u32RoExitInstrInfo = 0;
7752
7753 /* 64-bit. */
7754 pVmcs->u64RoGuestPhysAddr.u = 0;
7755
7756 /* Natural-width. */
7757 pVmcs->u64RoExitQual.u = 0;
7758 pVmcs->u64RoIoRcx.u = 0;
7759 pVmcs->u64RoIoRsi.u = 0;
7760 pVmcs->u64RoIoRdi.u = 0;
7761 pVmcs->u64RoIoRip.u = 0;
7762 pVmcs->u64RoGuestLinearAddr.u = 0;
7763}
7764
7765
7766/**
7767 * VMLAUNCH/VMRESUME instruction execution worker.
7768 *
7769 * @returns Strict VBox status code.
7770 * @param pVCpu The cross context virtual CPU structure.
7771 * @param cbInstr The instruction length in bytes.
7772 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7773 * VMXINSTRID_VMRESUME).
7774 *
7775 * @remarks Common VMX instruction checks are already expected to by the caller,
7776 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7777 */
7778static VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId) RT_NOEXCEPT
7779{
7780# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7781 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7782 return VINF_EM_RAW_EMULATE_INSTR;
7783# else
7784 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7785 || uInstrId == VMXINSTRID_VMRESUME);
7786 const char * const pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7787
7788 /* Nested-guest intercept. */
7789 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7790 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7791
7792 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7793
7794 /*
7795 * Basic VM-entry checks.
7796 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7797 * The checks following that do not have to follow a specific order.
7798 *
7799 * See Intel spec. 26.1 "Basic VM-entry Checks".
7800 */
7801
7802 /* CPL. */
7803 if (IEM_GET_CPL(pVCpu) == 0)
7804 { /* likely */ }
7805 else
7806 {
7807 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, IEM_GET_CPL(pVCpu)));
7808 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7809 return iemRaiseGeneralProtectionFault0(pVCpu);
7810 }
7811
7812 /* Current VMCS valid. */
7813 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7814 { /* likely */ }
7815 else
7816 {
7817 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7818 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7819 iemVmxVmFailInvalid(pVCpu);
7820 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7821 }
7822
7823 /* Current VMCS is not a shadow VMCS. */
7824 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
7825 { /* likely */ }
7826 else
7827 {
7828 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7829 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7830 iemVmxVmFailInvalid(pVCpu);
7831 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7832 }
7833
7834 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7835 * use block-by-STI here which is not quite correct. */
7836 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
7837 { /* likely */ }
7838 else
7839 {
7840 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7841 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7842 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7843 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7844 }
7845
7846 if (uInstrId == VMXINSTRID_VMLAUNCH)
7847 {
7848 /* VMLAUNCH with non-clear VMCS. */
7849 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7850 { /* likely */ }
7851 else
7852 {
7853 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7854 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7855 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7856 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7857 }
7858 }
7859 else
7860 {
7861 /* VMRESUME with non-launched VMCS. */
7862 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7863 { /* likely */ }
7864 else
7865 {
7866 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7867 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7868 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7869 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7870 }
7871 }
7872
7873 /*
7874 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7875 * while entering VMX non-root mode. We do some of this while checking VM-execution
7876 * controls. The nested hypervisor should not make assumptions and cannot expect
7877 * predictable behavior if changes to these structures are made in guest memory while
7878 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7879 * modify them anyway as we cache them in host memory.
7880 *
7881 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7882 */
7883 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7884
7885 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7886 if (RT_SUCCESS(rc))
7887 {
7888 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7889 if (RT_SUCCESS(rc))
7890 {
7891 /*
7892 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7893 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7894 * ones that may occur during VM-entry below).
7895 */
7896 iemVmxVmentryInitReadOnlyFields(pVCpu);
7897
7898 /*
7899 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7900 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7901 * VM-exit when required.
7902 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7903 */
7904 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7905
7906 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7907 Assert(pVmcs);
7908
7909 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7910 if (RT_SUCCESS(rc))
7911 {
7912 /*
7913 * We've now entered nested-guest execution.
7914 *
7915 * It is important do this prior to loading the guest state because
7916 * as part of loading the guest state, PGM (and perhaps other components
7917 * in the future) relies on detecting whether VMX non-root mode has been
7918 * entered.
7919 */
7920 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7921
7922 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7923 if (RT_SUCCESS(rc))
7924 {
7925 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7926 if (RT_SUCCESS(rc))
7927 {
7928 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7929
7930 /* VMLAUNCH instruction must update the VMCS launch state. */
7931 if (uInstrId == VMXINSTRID_VMLAUNCH)
7932 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7933
7934 /* Perform the VMX transition (PGM updates). */
7935 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu, cbInstr);
7936 if (rcStrict == VINF_SUCCESS)
7937 { /* likely */ }
7938 else if (RT_SUCCESS(rcStrict))
7939 {
7940 Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
7941 VBOXSTRICTRC_VAL(rcStrict)));
7942 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7943 }
7944 else
7945 {
7946 Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7947 return rcStrict;
7948 }
7949
7950 /* Paranoia. */
7951 Assert(rcStrict == VINF_SUCCESS);
7952
7953 /*
7954 * The priority of potential VM-exits during VM-entry is important.
7955 * The priorities of VM-exits and events are listed from highest
7956 * to lowest as follows:
7957 *
7958 * 1. Event injection.
7959 * 2. Trap on task-switch (T flag set in TSS).
7960 * 3. TPR below threshold / APIC-write.
7961 * 4. SMI, INIT.
7962 * 5. MTF exit.
7963 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7964 * 7. VMX-preemption timer.
7965 * 9. NMI-window exit.
7966 * 10. NMI injection.
7967 * 11. Interrupt-window exit.
7968 * 12. Virtual-interrupt injection.
7969 * 13. Interrupt injection.
7970 * 14. Process next instruction (fetch, decode, execute).
7971 */
7972
7973 /* Setup VMX-preemption timer. */
7974 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7975
7976 /* Setup monitor-trap flag. */
7977 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7978
7979 /* Setup NMI-window exiting. */
7980 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7981
7982 /* Setup interrupt-window exiting. */
7983 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7984
7985 /*
7986 * Inject any event that the nested hypervisor wants to inject.
7987 * Note! We cannot immediately perform the event injection here as we may have
7988 * pending PGM operations to perform due to switching page tables and/or
7989 * mode.
7990 */
7991 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7992
7993# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7994 /* Reschedule to IEM-only execution of the nested-guest. */
7995 LogFlow(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7996 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7997 if (rcSched != VINF_SUCCESS)
7998 iemSetPassUpStatus(pVCpu, rcSched);
7999# endif
8000
8001 /* Finally, done. */
8002 Log2(("vmentry: %s: cs:rip=%04x:%08RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64 (%#RX64)\n",
8003 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
8004 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
8005 pVCpu->cpum.GstCtx.msrEFER, pVmcs->u64GuestEferMsr.u));
8006 return VINF_SUCCESS;
8007 }
8008 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
8009 }
8010 }
8011 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
8012 }
8013
8014 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
8015 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8016 }
8017
8018 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
8019 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8020# endif
8021}
8022
8023
8024/**
8025 * Interface for HM and EM to emulate the VMLAUNCH/VMRESUME instruction.
8026 *
8027 * @returns Strict VBox status code.
8028 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8029 * @param cbInstr The instruction length in bytes.
8030 * @param uInstrId The instruction ID (VMXINSTRID_VMLAUNCH or
8031 * VMXINSTRID_VMRESUME).
8032 * @thread EMT(pVCpu)
8033 */
8034VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
8035{
8036 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
8037 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
8038
8039 iemInitExec(pVCpu, 0 /*fExecOpts*/);
8040 VBOXSTRICTRC rcStrict = iemVmxVmlaunchVmresume(pVCpu, cbInstr, uInstrId);
8041 Assert(!pVCpu->iem.s.cActiveMappings);
8042 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8043}
8044
8045
8046/**
8047 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
8048 * (causes a VM-exit) or not.
8049 *
8050 * @returns @c true if the instruction is intercepted, @c false otherwise.
8051 * @param pVCpu The cross context virtual CPU structure.
8052 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
8053 * VMX_EXIT_WRMSR).
8054 * @param idMsr The MSR.
8055 */
8056bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT
8057{
8058 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
8059 Assert( uExitReason == VMX_EXIT_RDMSR
8060 || uExitReason == VMX_EXIT_WRMSR);
8061
8062 /* Consult the MSR bitmap if the feature is supported. */
8063 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
8064 Assert(pVmcs);
8065 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
8066 {
8067 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
8068 if (uExitReason == VMX_EXIT_RDMSR)
8069 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
8070 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
8071 }
8072
8073 /* Without MSR bitmaps, all MSR accesses are intercepted. */
8074 return true;
8075}
8076
8077
8078/**
8079 * VMREAD instruction execution worker that does not perform any validation checks.
8080 *
8081 * Callers are expected to have performed the necessary checks and to ensure the
8082 * VMREAD will succeed.
8083 *
8084 * @param pVmcs Pointer to the virtual VMCS.
8085 * @param pu64Dst Where to write the VMCS value.
8086 * @param u64VmcsField The VMCS field.
8087 *
8088 * @remarks May be called with interrupts disabled.
8089 */
8090static void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField) RT_NOEXCEPT
8091{
8092 VMXVMCSFIELD VmcsField;
8093 VmcsField.u = u64VmcsField;
8094 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8095 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8096 uint8_t const uWidthType = (uWidth << 2) | uType;
8097 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8098 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8099 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8100 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
8101 uWidth, uType, uIndex, uIndex));
8102 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8103
8104 /*
8105 * Read the VMCS component based on the field's effective width.
8106 *
8107 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8108 * indicates high bits (little endian).
8109 *
8110 * Note! The caller is responsible to trim the result and update registers
8111 * or memory locations are required. Here we just zero-extend to the largest
8112 * type (i.e. 64-bits).
8113 */
8114 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
8115 uint8_t const *pbField = pbVmcs + offField;
8116 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8117 switch (uEffWidth)
8118 {
8119 case VMX_VMCSFIELD_WIDTH_64BIT:
8120 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
8121 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
8122 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
8123 }
8124}
8125
8126
8127/**
8128 * Interface for HM and EM to read a VMCS field from the nested-guest VMCS.
8129 *
8130 * It is ASSUMED the caller knows what they're doing. No VMREAD instruction checks
8131 * are performed. Bounds checks are strict builds only.
8132 *
8133 * @param pVmcs Pointer to the virtual VMCS.
8134 * @param u64VmcsField The VMCS field.
8135 * @param pu64Dst Where to store the VMCS value.
8136 *
8137 * @remarks May be called with interrupts disabled.
8138 * @todo This should probably be moved to CPUM someday.
8139 */
8140VMM_INT_DECL(void) IEMReadVmxVmcsField(PCVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t *pu64Dst)
8141{
8142 AssertPtr(pVmcs);
8143 AssertPtr(pu64Dst);
8144 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8145}
8146
8147
8148/**
8149 * VMREAD common (memory/register) instruction execution worker.
8150 *
8151 * @returns Strict VBox status code.
8152 * @param pVCpu The cross context virtual CPU structure.
8153 * @param cbInstr The instruction length in bytes.
8154 * @param pu64Dst Where to write the VMCS value (only updated when
8155 * VINF_SUCCESS is returned).
8156 * @param u64VmcsField The VMCS field.
8157 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8158 * NULL.
8159 */
8160static VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8161 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8162{
8163 /* Nested-guest intercept. */
8164 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8165 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
8166 {
8167 if (pExitInfo)
8168 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8169 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
8170 }
8171
8172 /* CPL. */
8173 if (IEM_GET_CPL(pVCpu) == 0)
8174 { /* likely */ }
8175 else
8176 {
8177 Log(("vmread: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
8178 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
8179 return iemRaiseGeneralProtectionFault0(pVCpu);
8180 }
8181
8182 pVCpu->iem.s.cPotentialExits++;
8183
8184 /* VMCS pointer in root mode. */
8185 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8186 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8187 { /* likely */ }
8188 else
8189 {
8190 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8191 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
8192 iemVmxVmFailInvalid(pVCpu);
8193 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8194 }
8195
8196 /* VMCS-link pointer in non-root mode. */
8197 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8198 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8199 { /* likely */ }
8200 else
8201 {
8202 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8203 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
8204 iemVmxVmFailInvalid(pVCpu);
8205 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8206 }
8207
8208 /* Supported VMCS field. */
8209 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8210 { /* likely */ }
8211 else
8212 {
8213 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8214 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
8215 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8216 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
8217 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8218 }
8219
8220 /*
8221 * Reading from the current or shadow VMCS.
8222 */
8223 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8224 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8225 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8226 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8227 Log4(("vmread %#RX64 => %#RX64\n", u64VmcsField, *pu64Dst));
8228 return VINF_SUCCESS;
8229}
8230
8231
8232/**
8233 * VMREAD (64-bit register) instruction execution worker.
8234 *
8235 * @returns Strict VBox status code.
8236 * @param pVCpu The cross context virtual CPU structure.
8237 * @param cbInstr The instruction length in bytes.
8238 * @param pu64Dst Where to store the VMCS field's value.
8239 * @param u64VmcsField The VMCS field.
8240 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8241 * NULL.
8242 */
8243static VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8244 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8245{
8246 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
8247 if (rcStrict == VINF_SUCCESS)
8248 {
8249 iemVmxVmSucceed(pVCpu);
8250 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8251 }
8252
8253 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8254 return rcStrict;
8255}
8256
8257
8258/**
8259 * VMREAD (32-bit register) instruction execution worker.
8260 *
8261 * @returns Strict VBox status code.
8262 * @param pVCpu The cross context virtual CPU structure.
8263 * @param cbInstr The instruction length in bytes.
8264 * @param pu32Dst Where to store the VMCS field's value.
8265 * @param u32VmcsField The VMCS field.
8266 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8267 * NULL.
8268 */
8269static VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst,
8270 uint64_t u32VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8271{
8272 uint64_t u64Dst;
8273 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
8274 if (rcStrict == VINF_SUCCESS)
8275 {
8276 *pu32Dst = u64Dst;
8277 iemVmxVmSucceed(pVCpu);
8278 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8279 }
8280
8281 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8282 return rcStrict;
8283}
8284
8285
8286/**
8287 * VMREAD (memory) instruction execution worker.
8288 *
8289 * @returns Strict VBox status code.
8290 * @param pVCpu The cross context virtual CPU structure.
8291 * @param cbInstr The instruction length in bytes.
8292 * @param iEffSeg The effective segment register to use with @a u64Val.
8293 * Pass UINT8_MAX if it is a register access.
8294 * @param GCPtrDst The guest linear address to store the VMCS field's
8295 * value.
8296 * @param u64VmcsField The VMCS field.
8297 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8298 * NULL.
8299 */
8300static VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst,
8301 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8302{
8303 uint64_t u64Dst;
8304 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
8305 if (rcStrict == VINF_SUCCESS)
8306 {
8307 /*
8308 * Write the VMCS field's value to the location specified in guest-memory.
8309 */
8310 if (IEM_IS_64BIT_CODE(pVCpu))
8311 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8312 else
8313 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8314 if (rcStrict == VINF_SUCCESS)
8315 {
8316 iemVmxVmSucceed(pVCpu);
8317 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8318 }
8319
8320 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
8321 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
8322 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
8323 return rcStrict;
8324 }
8325
8326 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8327 return rcStrict;
8328}
8329
8330
8331/**
8332 * Interface for HM and EM to emulate the VMREAD instruction.
8333 *
8334 * @returns Strict VBox status code.
8335 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8336 * @param pExitInfo Pointer to the VM-exit information.
8337 * @thread EMT(pVCpu)
8338 */
8339VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmread(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8340{
8341 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8342 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8343 Assert(pExitInfo);
8344
8345 iemInitExec(pVCpu, 0 /*fExecOpts*/);
8346
8347 VBOXSTRICTRC rcStrict;
8348 uint8_t const cbInstr = pExitInfo->cbInstr;
8349 bool const fIs64BitMode = RT_BOOL(IEM_IS_64BIT_CODE(pVCpu));
8350 uint64_t const u64FieldEnc = fIs64BitMode
8351 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8352 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8353 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8354 {
8355 if (fIs64BitMode)
8356 {
8357 uint64_t *pu64Dst = iemGRegRefU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8358 rcStrict = iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
8359 }
8360 else
8361 {
8362 uint32_t *pu32Dst = iemGRegRefU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8363 rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u64FieldEnc, pExitInfo);
8364 }
8365 }
8366 else
8367 {
8368 RTGCPTR const GCPtrDst = pExitInfo->GCPtrEffAddr;
8369 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8370 rcStrict = iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64FieldEnc, pExitInfo);
8371 }
8372 Assert(!pVCpu->iem.s.cActiveMappings);
8373 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8374}
8375
8376
8377/**
8378 * VMWRITE instruction execution worker that does not perform any validation
8379 * checks.
8380 *
8381 * Callers are expected to have performed the necessary checks and to ensure the
8382 * VMWRITE will succeed.
8383 *
8384 * @param pVmcs Pointer to the virtual VMCS.
8385 * @param u64Val The value to write.
8386 * @param u64VmcsField The VMCS field.
8387 *
8388 * @remarks May be called with interrupts disabled.
8389 */
8390static void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField) RT_NOEXCEPT
8391{
8392 VMXVMCSFIELD VmcsField;
8393 VmcsField.u = u64VmcsField;
8394 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8395 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8396 uint8_t const uWidthType = (uWidth << 2) | uType;
8397 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8398 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8399 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8400 Assert(offField < VMX_V_VMCS_SIZE);
8401 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8402
8403 /*
8404 * Write the VMCS component based on the field's effective width.
8405 *
8406 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8407 * indicates high bits (little endian).
8408 */
8409 uint8_t *pbVmcs = (uint8_t *)pVmcs;
8410 uint8_t *pbField = pbVmcs + offField;
8411 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8412 switch (uEffWidth)
8413 {
8414 case VMX_VMCSFIELD_WIDTH_64BIT:
8415 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
8416 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
8417 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
8418 }
8419}
8420
8421
8422/**
8423 * Interface for HM and EM to write a VMCS field in the nested-guest VMCS.
8424 *
8425 * It is ASSUMED the caller knows what they're doing. No VMWRITE instruction checks
8426 * are performed. Bounds checks are strict builds only.
8427 *
8428 * @param pVmcs Pointer to the virtual VMCS.
8429 * @param u64VmcsField The VMCS field.
8430 * @param u64Val The value to write.
8431 *
8432 * @remarks May be called with interrupts disabled.
8433 * @todo This should probably be moved to CPUM someday.
8434 */
8435VMM_INT_DECL(void) IEMWriteVmxVmcsField(PVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t u64Val)
8436{
8437 AssertPtr(pVmcs);
8438 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8439}
8440
8441
8442/**
8443 * VMWRITE instruction execution worker.
8444 *
8445 * @returns Strict VBox status code.
8446 * @param pVCpu The cross context virtual CPU structure.
8447 * @param cbInstr The instruction length in bytes.
8448 * @param iEffSeg The effective segment register to use with @a u64Val.
8449 * Pass UINT8_MAX if it is a register access.
8450 * @param u64Val The value to write (or guest linear address to the
8451 * value), @a iEffSeg will indicate if it's a memory
8452 * operand.
8453 * @param u64VmcsField The VMCS field.
8454 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8455 * NULL.
8456 */
8457static VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val,
8458 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8459{
8460 /* Nested-guest intercept. */
8461 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8462 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
8463 {
8464 if (pExitInfo)
8465 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8466 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8467 }
8468
8469 /* CPL. */
8470 if (IEM_GET_CPL(pVCpu) == 0)
8471 { /* likely */ }
8472 else
8473 {
8474 Log(("vmwrite: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
8475 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8476 return iemRaiseGeneralProtectionFault0(pVCpu);
8477 }
8478
8479 pVCpu->iem.s.cPotentialExits++;
8480
8481 /* VMCS pointer in root mode. */
8482 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8483 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8484 { /* likely */ }
8485 else
8486 {
8487 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8488 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8489 iemVmxVmFailInvalid(pVCpu);
8490 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8491 }
8492
8493 /* VMCS-link pointer in non-root mode. */
8494 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8495 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8496 { /* likely */ }
8497 else
8498 {
8499 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8500 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8501 iemVmxVmFailInvalid(pVCpu);
8502 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8503 }
8504
8505 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8506 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8507 if (!fIsRegOperand)
8508 {
8509 /* Read the value from the specified guest memory location. */
8510 VBOXSTRICTRC rcStrict;
8511 RTGCPTR const GCPtrVal = u64Val;
8512 if (IEM_IS_64BIT_CODE(pVCpu))
8513 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8514 else
8515 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8516 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8517 {
8518 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8519 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8520 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
8521 return rcStrict;
8522 }
8523 }
8524 else
8525 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8526
8527 /* Supported VMCS field. */
8528 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8529 { /* likely */ }
8530 else
8531 {
8532 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8533 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8534 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8535 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8536 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8537 }
8538
8539 /* Read-only VMCS field. */
8540 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
8541 if ( !fIsFieldReadOnly
8542 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8543 { /* likely */ }
8544 else
8545 {
8546 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
8547 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8548 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8549 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8550 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8551 }
8552
8553 /*
8554 * Write to the current or shadow VMCS.
8555 */
8556 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
8557 PVMXVVMCS pVmcs = !fInVmxNonRootMode
8558 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8559 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8560 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8561 Log4(("vmwrite %#RX64 <= %#RX64\n", u64VmcsField, u64Val));
8562
8563 if ( !fInVmxNonRootMode
8564 && VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8565 {
8566 /* Notify HM that the VMCS content might have changed. */
8567 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8568 }
8569
8570 iemVmxVmSucceed(pVCpu);
8571 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8572}
8573
8574
8575/**
8576 * Interface for HM and EM to emulate the VMWRITE instruction.
8577 *
8578 * @returns Strict VBox status code.
8579 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8580 * @param pExitInfo Pointer to the VM-exit information.
8581 * @thread EMT(pVCpu)
8582 */
8583VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmwrite(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8584{
8585 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8586 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8587 Assert(pExitInfo);
8588
8589 iemInitExec(pVCpu, 0 /*fExecOpts*/);
8590
8591 uint64_t u64Val;
8592 uint8_t iEffSeg;
8593 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8594 {
8595 u64Val = iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8596 iEffSeg = UINT8_MAX;
8597 }
8598 else
8599 {
8600 u64Val = pExitInfo->GCPtrEffAddr;
8601 iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8602 }
8603 uint8_t const cbInstr = pExitInfo->cbInstr;
8604 uint64_t const u64FieldEnc = IEM_IS_64BIT_CODE(pVCpu)
8605 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8606 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8607 VBOXSTRICTRC rcStrict = iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, u64Val, u64FieldEnc, pExitInfo);
8608 Assert(!pVCpu->iem.s.cActiveMappings);
8609 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8610}
8611
8612
8613/**
8614 * VMCLEAR instruction execution worker.
8615 *
8616 * @returns Strict VBox status code.
8617 * @param pVCpu The cross context virtual CPU structure.
8618 * @param cbInstr The instruction length in bytes.
8619 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8620 * @param GCPtrVmcs The linear address of the VMCS pointer.
8621 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8622 *
8623 * @remarks Common VMX instruction checks are already expected to by the caller,
8624 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8625 */
8626static VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8627 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8628{
8629 /* Nested-guest intercept. */
8630 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8631 {
8632 if (pExitInfo)
8633 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8634 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8635 }
8636
8637 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8638
8639 /* CPL. */
8640 if (IEM_GET_CPL(pVCpu) == 0)
8641 { /* likely */ }
8642 else
8643 {
8644 Log(("vmclear: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
8645 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8646 return iemRaiseGeneralProtectionFault0(pVCpu);
8647 }
8648
8649 /* Get the VMCS pointer from the location specified by the source memory operand. */
8650 RTGCPHYS GCPhysVmcs;
8651 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8652 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8653 { /* likely */ }
8654 else
8655 {
8656 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8657 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8658 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8659 return rcStrict;
8660 }
8661
8662 /* VMCS pointer alignment. */
8663 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8664 { /* likely */ }
8665 else
8666 {
8667 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8668 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8669 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8670 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8671 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8672 }
8673
8674 /* VMCS physical-address width limits. */
8675 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8676 { /* likely */ }
8677 else
8678 {
8679 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8680 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8681 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8682 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8683 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8684 }
8685
8686 /* VMCS is not the VMXON region. */
8687 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8688 { /* likely */ }
8689 else
8690 {
8691 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8692 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8693 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8694 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8695 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8696 }
8697
8698 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8699 restriction imposed by our implementation. */
8700 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8701 { /* likely */ }
8702 else
8703 {
8704 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8705 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8706 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8707 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8708 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8709 }
8710
8711 /*
8712 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8713 *
8714 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8715 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8716 * to 'clear'.
8717 */
8718 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8719 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8720 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8721 {
8722 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
8723 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8724 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8725 }
8726 else
8727 {
8728 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8729 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8730 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8731 if (RT_FAILURE(rcStrict))
8732 return rcStrict;
8733 }
8734
8735 iemVmxVmSucceed(pVCpu);
8736 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8737}
8738
8739
8740/**
8741 * Interface for HM and EM to emulate the VMCLEAR instruction.
8742 *
8743 * @returns Strict VBox status code.
8744 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8745 * @param pExitInfo Pointer to the VM-exit information.
8746 * @thread EMT(pVCpu)
8747 */
8748VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmclear(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8749{
8750 Assert(pExitInfo);
8751 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8752 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8753
8754 iemInitExec(pVCpu, 0 /*fExecOpts*/);
8755
8756 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8757 uint8_t const cbInstr = pExitInfo->cbInstr;
8758 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8759 VBOXSTRICTRC rcStrict = iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8760 Assert(!pVCpu->iem.s.cActiveMappings);
8761 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8762}
8763
8764
8765/**
8766 * VMPTRST instruction execution worker.
8767 *
8768 * @returns Strict VBox status code.
8769 * @param pVCpu The cross context virtual CPU structure.
8770 * @param cbInstr The instruction length in bytes.
8771 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8772 * @param GCPtrVmcs The linear address of where to store the current VMCS
8773 * pointer.
8774 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8775 *
8776 * @remarks Common VMX instruction checks are already expected to by the caller,
8777 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8778 */
8779static VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8780 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8781{
8782 /* Nested-guest intercept. */
8783 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8784 {
8785 if (pExitInfo)
8786 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8787 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8788 }
8789
8790 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8791
8792 /* CPL. */
8793 if (IEM_GET_CPL(pVCpu) == 0)
8794 { /* likely */ }
8795 else
8796 {
8797 Log(("vmptrst: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
8798 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8799 return iemRaiseGeneralProtectionFault0(pVCpu);
8800 }
8801
8802 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8803 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8804 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8805 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8806 {
8807 iemVmxVmSucceed(pVCpu);
8808 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8809 }
8810
8811 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8812 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8813 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8814 return rcStrict;
8815}
8816
8817
8818/**
8819 * Interface for HM and EM to emulate the VMPTRST instruction.
8820 *
8821 * @returns Strict VBox status code.
8822 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8823 * @param pExitInfo Pointer to the VM-exit information.
8824 * @thread EMT(pVCpu)
8825 */
8826VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrst(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8827{
8828 Assert(pExitInfo);
8829 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8830 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8831
8832 iemInitExec(pVCpu, 0 /*fExecOpts*/);
8833
8834 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8835 uint8_t const cbInstr = pExitInfo->cbInstr;
8836 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8837 VBOXSTRICTRC rcStrict = iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8838 Assert(!pVCpu->iem.s.cActiveMappings);
8839 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8840}
8841
8842
8843/**
8844 * VMPTRLD instruction execution worker.
8845 *
8846 * @returns Strict VBox status code.
8847 * @param pVCpu The cross context virtual CPU structure.
8848 * @param cbInstr The instruction length in bytes.
8849 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8850 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8851 *
8852 * @remarks Common VMX instruction checks are already expected to by the caller,
8853 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8854 */
8855static VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8856 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8857{
8858 /* Nested-guest intercept. */
8859 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8860 {
8861 if (pExitInfo)
8862 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8863 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8864 }
8865
8866 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8867
8868 /* CPL. */
8869 if (IEM_GET_CPL(pVCpu) == 0)
8870 { /* likely */ }
8871 else
8872 {
8873 Log(("vmptrld: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
8874 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8875 return iemRaiseGeneralProtectionFault0(pVCpu);
8876 }
8877
8878 /* Get the VMCS pointer from the location specified by the source memory operand. */
8879 RTGCPHYS GCPhysVmcs;
8880 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8881 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8882 { /* likely */ }
8883 else
8884 {
8885 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8886 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8887 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8888 return rcStrict;
8889 }
8890
8891 /* VMCS pointer alignment. */
8892 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8893 { /* likely */ }
8894 else
8895 {
8896 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8897 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8898 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8899 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8900 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8901 }
8902
8903 /* VMCS physical-address width limits. */
8904 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8905 { /* likely */ }
8906 else
8907 {
8908 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8909 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8910 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8911 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8912 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8913 }
8914
8915 /* VMCS is not the VMXON region. */
8916 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8917 { /* likely */ }
8918 else
8919 {
8920 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8921 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8922 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8923 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8924 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8925 }
8926
8927 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8928 restriction imposed by our implementation. */
8929 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8930 { /* likely */ }
8931 else
8932 {
8933 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8934 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8935 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8936 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8937 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8938 }
8939
8940 /* Read just the VMCS revision from the VMCS. */
8941 VMXVMCSREVID VmcsRevId;
8942 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8943 if (RT_SUCCESS(rc))
8944 { /* likely */ }
8945 else
8946 {
8947 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8948 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8949 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8950 return rc;
8951 }
8952
8953 /*
8954 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8955 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8956 */
8957 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8958 && ( !VmcsRevId.n.fIsShadowVmcs
8959 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8960 { /* likely */ }
8961 else
8962 {
8963 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8964 {
8965 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8966 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8967 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8968 }
8969 else
8970 {
8971 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8972 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8973 }
8974 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8975 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8976 }
8977
8978 /*
8979 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8980 * the cache of an existing, current VMCS back to guest memory before loading a new,
8981 * different current VMCS.
8982 */
8983 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8984 {
8985 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8986 {
8987 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8988 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8989 }
8990
8991 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8992 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8993 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8994 if (RT_SUCCESS(rc))
8995 {
8996 /* Notify HM that a new, current VMCS is loaded. */
8997 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8998 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8999 }
9000 else
9001 {
9002 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
9003 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
9004 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
9005 return rc;
9006 }
9007 }
9008
9009 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
9010 iemVmxVmSucceed(pVCpu);
9011 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9012}
9013
9014
9015/**
9016 * Interface for HM and EM to emulate the VMPTRLD instruction.
9017 *
9018 * @returns Strict VBox status code.
9019 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9020 * @param pExitInfo Pointer to the VM-exit information.
9021 * @thread EMT(pVCpu)
9022 */
9023VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrld(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9024{
9025 Assert(pExitInfo);
9026 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9027 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9028
9029 iemInitExec(pVCpu, 0 /*fExecOpts*/);
9030
9031 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9032 uint8_t const cbInstr = pExitInfo->cbInstr;
9033 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
9034 VBOXSTRICTRC rcStrict = iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
9035 Assert(!pVCpu->iem.s.cActiveMappings);
9036 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9037}
9038
9039
9040/**
9041 * INVVPID instruction execution worker.
9042 *
9043 * @returns Strict VBox status code.
9044 * @param pVCpu The cross context virtual CPU structure.
9045 * @param cbInstr The instruction length in bytes.
9046 * @param iEffSeg The segment of the invvpid descriptor.
9047 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
9048 * @param u64InvvpidType The invalidation type.
9049 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9050 * NULL.
9051 *
9052 * @remarks Common VMX instruction checks are already expected to by the caller,
9053 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9054 */
9055VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
9056 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9057{
9058 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
9059 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
9060 return iemRaiseUndefinedOpcode(pVCpu);
9061
9062 /* Nested-guest intercept. */
9063 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9064 {
9065 if (pExitInfo)
9066 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9067 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
9068 }
9069
9070 /* CPL. */
9071 if (IEM_GET_CPL(pVCpu) != 0)
9072 {
9073 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
9074 return iemRaiseGeneralProtectionFault0(pVCpu);
9075 }
9076
9077 /*
9078 * Validate INVVPID invalidation type.
9079 *
9080 * The instruction specifies exactly ONE of the supported invalidation types.
9081 *
9082 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9083 * supported. In theory, it's possible for a CPU to not support flushing individual
9084 * addresses but all the other types or any other combination. We do not take any
9085 * shortcuts here by assuming the types we currently expose to the guest.
9086 */
9087 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9088 bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
9089 bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
9090 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
9091 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
9092 bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
9093
9094 bool afSupportedTypes[4];
9095 afSupportedTypes[0] = fTypeIndivAddr;
9096 afSupportedTypes[1] = fTypeSingleCtx;
9097 afSupportedTypes[2] = fTypeAllCtx;
9098 afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
9099
9100 if ( fInvvpidSupported
9101 && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
9102 && afSupportedTypes[u64InvvpidType & 3])
9103 { /* likely */ }
9104 else
9105 {
9106 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
9107 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
9108 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9109 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9110 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9111 }
9112
9113 /*
9114 * Fetch the invvpid descriptor from guest memory.
9115 */
9116 RTUINT128U uDesc;
9117 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
9118 if (rcStrict == VINF_SUCCESS)
9119 {
9120 /*
9121 * Validate the descriptor.
9122 */
9123 if (uDesc.s.Lo <= 0xffff)
9124 { /* likely */ }
9125 else
9126 {
9127 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
9128 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
9129 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
9130 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9131 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9132 }
9133
9134 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9135 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
9136 uint16_t const uVpid = uDesc.Words.w0;
9137 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9138 switch (u64InvvpidType)
9139 {
9140 case VMXTLBFLUSHVPID_INDIV_ADDR:
9141 {
9142 if (uVpid != 0)
9143 {
9144 if (IEM_IS_CANONICAL(GCPtrInvAddr))
9145 {
9146 /* Invalidate mappings for the linear address tagged with VPID. */
9147 /** @todo PGM support for VPID? Currently just flush everything. */
9148 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9149 iemVmxVmSucceed(pVCpu);
9150 }
9151 else
9152 {
9153 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
9154 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
9155 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
9156 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9157 }
9158 }
9159 else
9160 {
9161 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9162 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
9163 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9164 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9165 }
9166 break;
9167 }
9168
9169 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
9170 {
9171 if (uVpid != 0)
9172 {
9173 /* Invalidate all mappings with VPID. */
9174 /** @todo PGM support for VPID? Currently just flush everything. */
9175 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9176 iemVmxVmSucceed(pVCpu);
9177 }
9178 else
9179 {
9180 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9181 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
9182 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9183 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9184 }
9185 break;
9186 }
9187
9188 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
9189 {
9190 /* Invalidate all mappings with non-zero VPIDs. */
9191 /** @todo PGM support for VPID? Currently just flush everything. */
9192 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9193 iemVmxVmSucceed(pVCpu);
9194 break;
9195 }
9196
9197 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
9198 {
9199 if (uVpid != 0)
9200 {
9201 /* Invalidate all mappings with VPID except global translations. */
9202 /** @todo PGM support for VPID? Currently just flush everything. */
9203 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9204 iemVmxVmSucceed(pVCpu);
9205 }
9206 else
9207 {
9208 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9209 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
9210 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
9211 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9212 }
9213 break;
9214 }
9215 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9216 }
9217 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9218 }
9219 return rcStrict;
9220}
9221
9222
9223/**
9224 * Interface for HM and EM to emulate the INVVPID instruction.
9225 *
9226 * @returns Strict VBox status code.
9227 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9228 * @param pExitInfo Pointer to the VM-exit information.
9229 * @thread EMT(pVCpu)
9230 */
9231VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvvpid(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9232{
9233 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9234 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9235 Assert(pExitInfo);
9236
9237 iemInitExec(pVCpu, 0 /*fExecOpts*/);
9238
9239 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9240 uint8_t const cbInstr = pExitInfo->cbInstr;
9241 RTGCPTR const GCPtrInvvpidDesc = pExitInfo->GCPtrEffAddr;
9242 uint64_t const u64InvvpidType = IEM_IS_64BIT_CODE(pVCpu)
9243 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9244 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9245 VBOXSTRICTRC rcStrict = iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, u64InvvpidType, pExitInfo);
9246 Assert(!pVCpu->iem.s.cActiveMappings);
9247 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9248}
9249
9250#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9251
9252/**
9253 * INVEPT instruction execution worker.
9254 *
9255 * @returns Strict VBox status code.
9256 * @param pVCpu The cross context virtual CPU structure.
9257 * @param cbInstr The instruction length in bytes.
9258 * @param iEffSeg The segment of the invept descriptor.
9259 * @param GCPtrInveptDesc The address of invept descriptor.
9260 * @param u64InveptType The invalidation type.
9261 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9262 * NULL.
9263 *
9264 * @remarks Common VMX instruction checks are already expected to by the caller,
9265 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9266 */
9267static VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
9268 uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9269{
9270 /* Check if EPT is supported, otherwise raise #UD. */
9271 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
9272 return iemRaiseUndefinedOpcode(pVCpu);
9273
9274 /* Nested-guest intercept. */
9275 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9276 {
9277 if (pExitInfo)
9278 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9279 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
9280 }
9281
9282 /* CPL. */
9283 if (IEM_GET_CPL(pVCpu) != 0)
9284 {
9285 Log(("invept: CPL != 0 -> #GP(0)\n"));
9286 return iemRaiseGeneralProtectionFault0(pVCpu);
9287 }
9288
9289 /*
9290 * Validate INVEPT invalidation type.
9291 *
9292 * The instruction specifies exactly ONE of the supported invalidation types.
9293 *
9294 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9295 * supported. In theory, it's possible for a CPU to not support flushing individual
9296 * addresses but all the other types or any other combination. We do not take any
9297 * shortcuts here by assuming the types we currently expose to the guest.
9298 */
9299 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9300 bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
9301 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
9302 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
9303
9304 bool afSupportedTypes[4];
9305 afSupportedTypes[0] = false;
9306 afSupportedTypes[1] = fTypeSingleCtx;
9307 afSupportedTypes[2] = fTypeAllCtx;
9308 afSupportedTypes[3] = false;
9309
9310 if ( fInveptSupported
9311 && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
9312 && afSupportedTypes[u64InveptType & 3])
9313 { /* likely */ }
9314 else
9315 {
9316 Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
9317 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
9318 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
9319 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9320 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9321 }
9322
9323 /*
9324 * Fetch the invept descriptor from guest memory.
9325 */
9326 RTUINT128U uDesc;
9327 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
9328 if (rcStrict == VINF_SUCCESS)
9329 {
9330 /*
9331 * Validate the descriptor.
9332 *
9333 * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
9334 * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
9335 * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
9336 * better to be strict in our emulation until proven otherwise.
9337 */
9338 if (uDesc.s.Hi)
9339 {
9340 Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
9341 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
9342 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
9343 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9344 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9345 }
9346
9347 /*
9348 * Flush TLB mappings based on the EPT type.
9349 */
9350 if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
9351 {
9352 uint64_t const GCPhysEptPtr = uDesc.s.Lo;
9353 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
9354 if (RT_SUCCESS(rc))
9355 { /* likely */ }
9356 else
9357 {
9358 Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
9359 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
9360 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
9361 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9362 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9363 }
9364 }
9365
9366 /** @todo PGM support for EPT tags? Currently just flush everything. */
9367 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9368 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9369 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9370
9371 iemVmxVmSucceed(pVCpu);
9372 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9373 }
9374
9375 return rcStrict;
9376}
9377
9378
9379/**
9380 * Interface for HM and EM to emulate the INVEPT instruction.
9381 *
9382 * @returns Strict VBox status code.
9383 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9384 * @param pExitInfo Pointer to the VM-exit information.
9385 * @thread EMT(pVCpu)
9386 */
9387VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvept(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9388{
9389 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9390 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9391 Assert(pExitInfo);
9392
9393 iemInitExec(pVCpu, 0 /*fExecOpts*/);
9394
9395 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9396 uint8_t const cbInstr = pExitInfo->cbInstr;
9397 RTGCPTR const GCPtrInveptDesc = pExitInfo->GCPtrEffAddr;
9398 uint64_t const u64InveptType = IEM_IS_64BIT_CODE(pVCpu)
9399 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9400 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9401 VBOXSTRICTRC rcStrict = iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, u64InveptType, pExitInfo);
9402 Assert(!pVCpu->iem.s.cActiveMappings);
9403 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9404}
9405
9406#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
9407
9408/**
9409 * VMXON instruction execution worker.
9410 *
9411 * @returns Strict VBox status code.
9412 * @param pVCpu The cross context virtual CPU structure.
9413 * @param cbInstr The instruction length in bytes.
9414 * @param iEffSeg The effective segment register to use with @a
9415 * GCPtrVmxon.
9416 * @param GCPtrVmxon The linear address of the VMXON pointer.
9417 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
9418 *
9419 * @remarks Common VMX instruction checks are already expected to by the caller,
9420 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9421 */
9422static VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
9423 RTGCPHYS GCPtrVmxon, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9424{
9425 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
9426 {
9427 /* CPL. */
9428 if (IEM_GET_CPL(pVCpu) == 0)
9429 { /* likely */ }
9430 else
9431 {
9432 Log(("vmxon: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
9433 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
9434 return iemRaiseGeneralProtectionFault0(pVCpu);
9435 }
9436
9437 /* A20M (A20 Masked) mode. */
9438 if (PGMPhysIsA20Enabled(pVCpu))
9439 { /* likely */ }
9440 else
9441 {
9442 Log(("vmxon: A20M mode -> #GP(0)\n"));
9443 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
9444 return iemRaiseGeneralProtectionFault0(pVCpu);
9445 }
9446
9447 /* CR0. */
9448 {
9449 /*
9450 * CR0 MB1 bits.
9451 *
9452 * We use VMX_V_CR0_FIXED0 below to ensure CR0.PE and CR0.PG are always set
9453 * while executing VMXON. CR0.PE and CR0.PG are only allowed to be clear
9454 * when the guest running in VMX non-root mode with unrestricted-guest control
9455 * enabled in the VMCS.
9456 */
9457 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
9458 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
9459 { /* likely */ }
9460 else
9461 {
9462 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
9463 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
9464 return iemRaiseGeneralProtectionFault0(pVCpu);
9465 }
9466
9467 /* CR0 MBZ bits. */
9468 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
9469 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
9470 { /* likely */ }
9471 else
9472 {
9473 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
9474 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
9475 return iemRaiseGeneralProtectionFault0(pVCpu);
9476 }
9477 }
9478
9479 /* CR4. */
9480 {
9481 /* CR4 MB1 bits. */
9482 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
9483 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
9484 { /* likely */ }
9485 else
9486 {
9487 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
9488 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
9489 return iemRaiseGeneralProtectionFault0(pVCpu);
9490 }
9491
9492 /* CR4 MBZ bits. */
9493 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
9494 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
9495 { /* likely */ }
9496 else
9497 {
9498 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
9499 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
9500 return iemRaiseGeneralProtectionFault0(pVCpu);
9501 }
9502 }
9503
9504 /* Feature control MSR's LOCK and VMXON bits. */
9505 uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
9506 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9507 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9508 { /* likely */ }
9509 else
9510 {
9511 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
9512 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
9513 return iemRaiseGeneralProtectionFault0(pVCpu);
9514 }
9515
9516 /* Get the VMXON pointer from the location specified by the source memory operand. */
9517 RTGCPHYS GCPhysVmxon;
9518 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
9519 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9520 { /* likely */ }
9521 else
9522 {
9523 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
9524 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
9525 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
9526 return rcStrict;
9527 }
9528
9529 /* VMXON region pointer alignment. */
9530 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
9531 { /* likely */ }
9532 else
9533 {
9534 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
9535 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
9536 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9537 iemVmxVmFailInvalid(pVCpu);
9538 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9539 }
9540
9541 /* VMXON physical-address width limits. */
9542 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
9543 { /* likely */ }
9544 else
9545 {
9546 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
9547 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
9548 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9549 iemVmxVmFailInvalid(pVCpu);
9550 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9551 }
9552
9553 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
9554 restriction imposed by our implementation. */
9555 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
9556 { /* likely */ }
9557 else
9558 {
9559 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
9560 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
9561 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9562 iemVmxVmFailInvalid(pVCpu);
9563 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9564 }
9565
9566 /* Read the VMCS revision ID from the VMXON region. */
9567 VMXVMCSREVID VmcsRevId;
9568 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
9569 if (RT_SUCCESS(rc))
9570 { /* likely */ }
9571 else
9572 {
9573 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
9574 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
9575 return rc;
9576 }
9577
9578 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
9579 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
9580 { /* likely */ }
9581 else
9582 {
9583 /* Revision ID mismatch. */
9584 if (!VmcsRevId.n.fIsShadowVmcs)
9585 {
9586 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
9587 VmcsRevId.n.u31RevisionId));
9588 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
9589 iemVmxVmFailInvalid(pVCpu);
9590 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9591 }
9592
9593 /* Shadow VMCS disallowed. */
9594 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
9595 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
9596 iemVmxVmFailInvalid(pVCpu);
9597 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9598 }
9599
9600 /*
9601 * Record that we're in VMX operation, block INIT, block and disable A20M.
9602 */
9603 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
9604 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
9605 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
9606
9607 /* Clear address-range monitoring. */
9608 EMMonitorWaitClear(pVCpu);
9609 /** @todo NSTVMX: Intel PT. */
9610
9611 iemVmxVmSucceed(pVCpu);
9612 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9613 }
9614 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9615 {
9616 /* Nested-guest intercept. */
9617 if (pExitInfo)
9618 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9619 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
9620 }
9621
9622 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
9623
9624 /* CPL. */
9625 if (IEM_GET_CPL(pVCpu) > 0)
9626 {
9627 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
9628 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
9629 return iemRaiseGeneralProtectionFault0(pVCpu);
9630 }
9631
9632 /* VMXON when already in VMX root mode. */
9633 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
9634 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
9635 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9636}
9637
9638
9639/**
9640 * Interface for HM and EM to emulate the VMXON instruction.
9641 *
9642 * @returns Strict VBox status code.
9643 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9644 * @param pExitInfo Pointer to the VM-exit information.
9645 * @thread EMT(pVCpu)
9646 */
9647VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxon(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9648{
9649 Assert(pExitInfo);
9650 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9651 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9652
9653 iemInitExec(pVCpu, 0 /*fExecOpts*/);
9654
9655 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9656 uint8_t const cbInstr = pExitInfo->cbInstr;
9657 RTGCPTR const GCPtrVmxon = pExitInfo->GCPtrEffAddr;
9658 VBOXSTRICTRC rcStrict = iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
9659 Assert(!pVCpu->iem.s.cActiveMappings);
9660 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9661}
9662
9663
9664/**
9665 * Implements 'VMXOFF'.
9666 *
9667 * @remarks Common VMX instruction checks are already expected to by the caller,
9668 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9669 */
9670IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
9671{
9672 /* Nested-guest intercept. */
9673 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9674 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
9675
9676 /* CPL. */
9677 if (IEM_GET_CPL(pVCpu) == 0)
9678 { /* likely */ }
9679 else
9680 {
9681 Log(("vmxoff: CPL %u -> #GP(0)\n", IEM_GET_CPL(pVCpu)));
9682 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
9683 return iemRaiseGeneralProtectionFault0(pVCpu);
9684 }
9685
9686 /* Dual monitor treatment of SMIs and SMM. */
9687 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
9688 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
9689 { /* likely */ }
9690 else
9691 {
9692 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
9693 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9694 }
9695
9696 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
9697 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
9698 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
9699
9700 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
9701 { /** @todo NSTVMX: Unblock SMI. */ }
9702
9703 EMMonitorWaitClear(pVCpu);
9704 /** @todo NSTVMX: Unblock and enable A20M. */
9705
9706 iemVmxVmSucceed(pVCpu);
9707 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9708}
9709
9710
9711/**
9712 * Interface for HM and EM to emulate the VMXOFF instruction.
9713 *
9714 * @returns Strict VBox status code.
9715 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9716 * @param cbInstr The instruction length in bytes.
9717 * @thread EMT(pVCpu)
9718 */
9719VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxoff(PVMCPUCC pVCpu, uint8_t cbInstr)
9720{
9721 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
9722 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9723
9724 iemInitExec(pVCpu, 0 /*fExecOpts*/);
9725 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmxoff);
9726 Assert(!pVCpu->iem.s.cActiveMappings);
9727 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9728}
9729
9730
9731/**
9732 * Implements 'VMXON'.
9733 */
9734IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
9735{
9736 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
9737}
9738
9739
9740/**
9741 * Implements 'VMLAUNCH'.
9742 */
9743IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
9744{
9745 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
9746}
9747
9748
9749/**
9750 * Implements 'VMRESUME'.
9751 */
9752IEM_CIMPL_DEF_0(iemCImpl_vmresume)
9753{
9754 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
9755}
9756
9757
9758/**
9759 * Implements 'VMPTRLD'.
9760 */
9761IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9762{
9763 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9764}
9765
9766
9767/**
9768 * Implements 'VMPTRST'.
9769 */
9770IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9771{
9772 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9773}
9774
9775
9776/**
9777 * Implements 'VMCLEAR'.
9778 */
9779IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9780{
9781 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9782}
9783
9784
9785/**
9786 * Implements 'VMWRITE' register.
9787 */
9788IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
9789{
9790 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
9791}
9792
9793
9794/**
9795 * Implements 'VMWRITE' memory.
9796 */
9797IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
9798{
9799 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
9800}
9801
9802
9803/**
9804 * Implements 'VMREAD' register (64-bit).
9805 */
9806IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
9807{
9808 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
9809}
9810
9811
9812/**
9813 * Implements 'VMREAD' register (32-bit).
9814 */
9815IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint64_t *, pu64Dst, uint32_t, u32VmcsField)
9816{
9817 VBOXSTRICTRC const rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, (uint32_t *)pu64Dst, u32VmcsField, NULL /* pExitInfo */);
9818 /* Zero the high part of the register on success. */
9819 if (rcStrict == VINF_SUCCESS)
9820 *pu64Dst = (uint32_t)*pu64Dst;
9821 return rcStrict;
9822}
9823
9824
9825/**
9826 * Implements 'VMREAD' memory, 64-bit register.
9827 */
9828IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
9829{
9830 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
9831}
9832
9833
9834/**
9835 * Implements 'VMREAD' memory, 32-bit register.
9836 */
9837IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
9838{
9839 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
9840}
9841
9842
9843/**
9844 * Implements 'INVVPID'.
9845 */
9846IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
9847{
9848 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
9849}
9850
9851
9852#if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) || defined(VBOX_WITH_IEM_RECOMPILER) /* HACK ALERT: Linking trick. */
9853/**
9854 * Implements 'INVEPT'.
9855 */
9856IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
9857{
9858# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9859 return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
9860# else
9861 RT_NOREF(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType);
9862 AssertFailedReturn(VERR_IEM_ASPECT_NOT_IMPLEMENTED);
9863# endif
9864}
9865#endif
9866
9867
9868/**
9869 * Implements VMX's implementation of PAUSE.
9870 */
9871IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
9872{
9873 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9874 {
9875 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
9876 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9877 return rcStrict;
9878 }
9879
9880 /*
9881 * Outside VMX non-root operation or if the PAUSE instruction does not cause
9882 * a VM-exit, the instruction operates normally.
9883 */
9884 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9885}
9886
9887#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
9888
9889
9890/**
9891 * Implements 'VMCALL'.
9892 */
9893IEM_CIMPL_DEF_0(iemCImpl_vmcall)
9894{
9895 pVCpu->iem.s.cPotentialExits++;
9896
9897#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9898 /* Nested-guest intercept. */
9899 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9900 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
9901#endif
9902
9903 /* Join forces with vmmcall. */
9904 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
9905}
9906
9907
9908#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9909
9910/**
9911 * @callback_method_impl{FNPGMPHYSHANDLER, VMX APIC-access page accesses}
9912 *
9913 * @remarks The @a uUser argument is currently unused.
9914 */
9915DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPageHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysFault, void *pvPhys,
9916 void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType,
9917 PGMACCESSORIGIN enmOrigin, uint64_t uUser)
9918{
9919 RT_NOREF3(pvPhys, enmOrigin, uUser);
9920
9921 RTGCPHYS const GCPhysAccessBase = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9922 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9923 {
9924 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9925 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysAccessBase);
9926
9927 uint32_t const fAccess = enmAccessType == PGMACCESSTYPE_WRITE ? IEM_ACCESS_DATA_W : IEM_ACCESS_DATA_R;
9928 uint16_t const offAccess = GCPhysFault & GUEST_PAGE_OFFSET_MASK;
9929
9930 LogFlowFunc(("Fault at %#RGp (cbBuf=%u fAccess=%#x)\n", GCPhysFault, cbBuf, fAccess));
9931 VBOXSTRICTRC rcStrict = iemVmxVirtApicAccessMem(pVCpu, offAccess, cbBuf, pvBuf, fAccess);
9932 if (RT_FAILURE(rcStrict))
9933 return rcStrict;
9934
9935 /* Any access on this APIC-access page has been handled, caller should not carry out the access. */
9936 return VINF_SUCCESS;
9937 }
9938
9939 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysAccessBase));
9940 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhysAccessBase);
9941 if (RT_FAILURE(rc))
9942 return rc;
9943
9944 /* Instruct the caller of this handler to perform the read/write as normal memory. */
9945 return VINF_PGM_HANDLER_DO_DEFAULT;
9946}
9947
9948
9949# ifndef IN_RING3
9950/**
9951 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
9952 * \#PF access handler callback for guest VMX APIC-access page.}
9953 */
9954DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPagePfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx,
9955 RTGCPTR pvFault, RTGCPHYS GCPhysFault, uint64_t uUser)
9956
9957{
9958 RT_NOREF3(pVM, pCtx, uUser);
9959
9960 /*
9961 * Handle the VMX APIC-access page only when the guest is in VMX non-root mode.
9962 * Otherwise we must deregister the page and allow regular RAM access.
9963 * Failing to do so lands us with endless EPT VM-exits.
9964 */
9965 RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9966 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9967 {
9968 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9969 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysPage);
9970
9971 /*
9972 * Check if the access causes an APIC-access VM-exit.
9973 */
9974 uint32_t fAccess;
9975 if (uErr & X86_TRAP_PF_ID)
9976 fAccess = IEM_ACCESS_INSTRUCTION;
9977 else if (uErr & X86_TRAP_PF_RW)
9978 fAccess = IEM_ACCESS_DATA_W;
9979 else
9980 fAccess = IEM_ACCESS_DATA_R;
9981
9982 RTGCPHYS const GCPhysNestedFault = (RTGCPHYS)pvFault;
9983 uint16_t const offAccess = GCPhysNestedFault & GUEST_PAGE_OFFSET_MASK;
9984 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, 1 /* cbAccess */, fAccess);
9985 LogFlowFunc(("#PF at %#RGp (GCPhysNestedFault=%#RGp offAccess=%#x)\n", GCPhysFault, GCPhysNestedFault, offAccess));
9986 if (fIntercept)
9987 {
9988 /*
9989 * Query the source VM-exit (from the execution engine) that caused this access
9990 * within the APIC-access page. Currently only HM is supported.
9991 */
9992 AssertMsg(VM_IS_HM_ENABLED(pVM),
9993 ("VM-exit auxiliary info. fetching not supported for execution engine %d\n", pVM->bMainExecutionEngine));
9994
9995 HMEXITAUX HmExitAux;
9996 RT_ZERO(HmExitAux);
9997 int const rc = HMR0GetExitAuxInfo(pVCpu, &HmExitAux, HMVMX_READ_EXIT_INSTR_LEN
9998 | HMVMX_READ_EXIT_QUALIFICATION
9999 | HMVMX_READ_IDT_VECTORING_INFO
10000 | HMVMX_READ_IDT_VECTORING_ERROR_CODE);
10001 AssertRC(rc);
10002
10003 /*
10004 * Verify the VM-exit reason must be an EPT violation.
10005 * Other accesses should go through the other handler (iemVmxApicAccessPageHandler).
10006 * Refer to @bugref{10092#c33s} for a more detailed explanation.
10007 */
10008 AssertMsgReturn(HmExitAux.Vmx.uReason == VMX_EXIT_EPT_VIOLATION,
10009 ("Unexpected call to APIC-access page #PF handler for %#RGp offAcesss=%u uErr=%#RGx uReason=%u\n",
10010 GCPhysPage, offAccess, uErr, HmExitAux.Vmx.uReason), VERR_IEM_IPE_7);
10011
10012 /*
10013 * Construct the virtual APIC-access VM-exit.
10014 */
10015 VMXAPICACCESS enmAccess;
10016 if (HmExitAux.Vmx.u64Qual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID)
10017 {
10018 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
10019 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
10020 else if (fAccess == IEM_ACCESS_INSTRUCTION)
10021 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
10022 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
10023 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
10024 else
10025 enmAccess = VMXAPICACCESS_LINEAR_READ;
10026
10027 /* For linear-address accesss the instruction length must be valid. */
10028 AssertMsg(HmExitAux.Vmx.cbInstr > 0,
10029 ("Invalid APIC-access VM-exit instruction length. cbInstr=%u\n", HmExitAux.Vmx.cbInstr));
10030 }
10031 else
10032 {
10033 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
10034 enmAccess = VMXAPICACCESS_PHYSICAL_EVENT_DELIVERY;
10035 else
10036 {
10037 /** @todo How to distinguish between monitoring/trace vs other instructions
10038 * here? */
10039 enmAccess = VMXAPICACCESS_PHYSICAL_INSTR;
10040 }
10041
10042 /* For physical accesses the instruction length is undefined, we zero it for safety and consistency. */
10043 HmExitAux.Vmx.cbInstr = 0;
10044 }
10045
10046 /*
10047 * Raise the APIC-access VM-exit.
10048 */
10049 LogFlowFunc(("Raising APIC-access VM-exit from #PF handler at offset %#x\n", offAccess));
10050 VMXVEXITINFO const ExitInfo
10051 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_APIC_ACCESS,
10052 RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
10053 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess),
10054 HmExitAux.Vmx.cbInstr);
10055 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(HmExitAux.Vmx.uIdtVectoringInfo,
10056 HmExitAux.Vmx.uIdtVectoringErrCode);
10057 VBOXSTRICTRC const rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
10058 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
10059 }
10060
10061 /*
10062 * The access isn't intercepted, which means it needs to be virtualized.
10063 *
10064 * This requires emulating the instruction because we need the bytes being
10065 * read/written by the instruction not just the offset being accessed within
10066 * the APIC-access page (which we derive from the faulting address).
10067 */
10068 LogFlowFunc(("Access at offset %#x not intercepted -> VINF_EM_RAW_EMULATE_INSTR\n", offAccess));
10069 return VINF_EM_RAW_EMULATE_INSTR;
10070 }
10071
10072 /** @todo This isn't ideal but works for now as nested-hypervisors generally play
10073 * nice because the spec states that this page should be modified only when
10074 * no CPU refers to it VMX non-root mode. Nonetheless, we could use an atomic
10075 * reference counter to ensure the aforementioned condition before
10076 * de-registering the page. */
10077 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysPage));
10078 int const rc = PGMHandlerPhysicalDeregister(pVM, GCPhysPage);
10079 if (RT_FAILURE(rc))
10080 return rc;
10081
10082 return VINF_SUCCESS;
10083}
10084# endif /* !IN_RING3 */
10085
10086#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10087
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette