VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp@ 99748

Last change on this file since 99748 was 99650, checked in by vboxsync, 21 months ago

VMM/IEM: Nested VMX: bugref:10318 Clear "NMI unblocked due to IRET" state on VM-exit. Minor optimization while injecting an event. Comments, assertions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 411.0 KB
Line 
1/* $Id: IEMAllCImplVmxInstr.cpp 99650 2023-05-08 06:49:25Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM_VMX
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/apic.h>
36#include <VBox/vmm/cpum.h>
37#include <VBox/vmm/dbgf.h>
38#include <VBox/vmm/em.h>
39#include <VBox/vmm/gim.h>
40#include <VBox/vmm/hm.h>
41#include <VBox/vmm/pgm.h>
42#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
43# include <VBox/vmm/hmvmxinline.h>
44#endif
45#include <VBox/vmm/tm.h>
46#include "IEMInternal.h"
47#include <VBox/vmm/vmcc.h>
48#include <VBox/log.h>
49#include <VBox/err.h>
50#include <VBox/param.h>
51#include <VBox/disopcode-x86-amd64.h>
52#include <iprt/asm-math.h>
53#include <iprt/assert.h>
54#include <iprt/string.h>
55#include <iprt/x86.h>
56
57#include "IEMInline.h"
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
64/**
65 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
66 * relative offsets.
67 */
68# ifdef IEM_WITH_CODE_TLB /** @todo IEM TLB */
69# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { a_bModRm = 0; RT_NOREF(a_offModRm); } while (0)
70# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { a_bSib = 0; RT_NOREF(a_offSib); } while (0)
71# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
72# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
73# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
75# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
76# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
77# if 0
78# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
79# endif
80# else /* !IEM_WITH_CODE_TLB */
81# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
82 do \
83 { \
84 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
86 } while (0)
87
88# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
89
90# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
91 do \
92 { \
93 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
94 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
95 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
96 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
97 } while (0)
98
99# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
100 do \
101 { \
102 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
103 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
104 } while (0)
105
106# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
107 do \
108 { \
109 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
110 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
111 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
112 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
113 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
114 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
115 } while (0)
116
117# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
118 do \
119 { \
120 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
121 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
122 } while (0)
123
124# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
125 do \
126 { \
127 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
128 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
129 } while (0)
130
131# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
132 do \
133 { \
134 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
135 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
136 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
137 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
138 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
139 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
140 } while (0)
141# endif /* !IEM_WITH_CODE_TLB */
142
143/** Check for VMX instructions requiring to be in VMX operation.
144 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
145# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
146 do \
147 { \
148 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
149 { /* likely */ } \
150 else \
151 { \
152 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
153 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
154 return iemRaiseUndefinedOpcode(a_pVCpu); \
155 } \
156 } while (0)
157
158/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
159# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
160 do \
161 { \
162 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
163 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
164 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
165 return VERR_VMX_VMENTRY_FAILED; \
166 } while (0)
167
168/** Marks a VM-entry failure with an return code, diagnostic reason, logs and
169 * returns. */
170# define IEM_VMX_VMENTRY_FAILED_RET_2(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag, a_rc) \
171 do \
172 { \
173 LogRel(("%s: VM-entry failed! rc=%Rrc enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_rc), (a_VmxDiag), \
174 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
175 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
176 return VERR_VMX_VMENTRY_FAILED; \
177 } while (0)
178
179/** Marks a VM-exit failure with a diagnostic reason and logs. */
180# define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
181 do \
182 { \
183 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
184 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
185 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
186 } while (0)
187
188/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
189# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
190 do \
191 { \
192 IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
193 return VERR_VMX_VMEXIT_FAILED; \
194 } while (0)
195
196
197/*********************************************************************************************************************************
198* Global Variables *
199*********************************************************************************************************************************/
200/** @todo NSTVMX: The following VM-exit intercepts are pending:
201 * VMX_EXIT_IO_SMI
202 * VMX_EXIT_SMI
203 * VMX_EXIT_GETSEC
204 * VMX_EXIT_RSM
205 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
206 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
207 * VMX_EXIT_RDRAND
208 * VMX_EXIT_VMFUNC
209 * VMX_EXIT_ENCLS
210 * VMX_EXIT_RDSEED
211 * VMX_EXIT_PML_FULL
212 * VMX_EXIT_XSAVES
213 * VMX_EXIT_XRSTORS
214 */
215/**
216 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
217 *
218 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
219 * second dimension is the Index, see VMXVMCSFIELD.
220 */
221uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
222{
223 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
224 {
225 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
226 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
227 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
228 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u16HlatPrefixSize),
229 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
230 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
231 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
232 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
233 },
234 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
235 {
236 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
237 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
238 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
239 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
240 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
241 },
242 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
243 {
244 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
245 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
246 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
247 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
248 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
249 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
250 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
251 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
252 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
253 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
254 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
255 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
256 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
257 /* 34 */ UINT16_MAX
258 },
259 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
260 {
261 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
262 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
263 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
264 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
265 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
266 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
267 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
268 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
269 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
270 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
271 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
272 },
273 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
274 {
275 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
276 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
277 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
278 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
279 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
280 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
281 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
282 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
283 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
284 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
285 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
286 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
287 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
288 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
289 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
290 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
291 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
292 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
293 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
294 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
295 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
296 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
297 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
298 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
299 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
300 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
301 /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
302 /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap),
303 /* 28 */ UINT16_MAX,
304 /* 29 */ UINT16_MAX,
305 /* 30 */ UINT16_MAX,
306 /* 31 */ RT_UOFFSETOF(VMXVVMCS, u64PconfigExitBitmap),
307 /* 32 */ RT_UOFFSETOF(VMXVVMCS, u64HlatPtr),
308 /* 33 */ UINT16_MAX,
309 /* 34 */ RT_UOFFSETOF(VMXVVMCS, u64ExitCtls2)
310 },
311 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
312 {
313 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
314 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
315 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
316 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
317 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
318 /* 33-34*/ UINT16_MAX, UINT16_MAX
319 },
320 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
321 {
322 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
323 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
324 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
325 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
326 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
327 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
328 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
329 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
330 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
331 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
332 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
333 /* 11 */ UINT16_MAX,
334 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
335 /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
336 /* 21-28 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
337 /* 29-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
338 },
339 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
340 {
341 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
342 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
343 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
344 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
345 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
346 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
347 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
348 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
349 },
350 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
351 {
352 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
353 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
354 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
355 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
356 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
357 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
358 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
359 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
360 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
361 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
362 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
363 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
364 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
365 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
366 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
367 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
368 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
369 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
370 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
371 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
372 /* 34 */ UINT16_MAX
373 },
374 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
375 {
376 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
377 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
378 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
379 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
380 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
381 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
382 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
383 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
384 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
385 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
386 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
387 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
388 },
389 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
390 {
391 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
392 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
393 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
394 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
395 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
396 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
397 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
398 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
399 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
400 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
401 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
402 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
403 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
404 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
405 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
406 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
407 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
408 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
409 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
410 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
411 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
412 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
413 /* 22 */ UINT16_MAX,
414 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
415 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
416 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
417 },
418 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
419 {
420 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
421 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
422 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
423 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
424 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
425 /* 33-34 */ UINT16_MAX, UINT16_MAX
426 },
427 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
428 {
429 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
430 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
431 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
432 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
433 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
434 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
435 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
436 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
437 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
438 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
439 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
440 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
441 },
442 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
443 {
444 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
445 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
446 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
447 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
448 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
449 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
450 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
451 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
452 /* 22-29 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
453 /* 30-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
454 },
455 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
456 {
457 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
458 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
459 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
460 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
461 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
462 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
463 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
464 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
465 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
466 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
467 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
468 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
469 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
470 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
471 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
472 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
473 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
474 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
475 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
476 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
477 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
478 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
479 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
480 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
481 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
482 },
483 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
484 {
485 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
486 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
487 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
488 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
489 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
490 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
491 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
492 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
493 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
494 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
495 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
496 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
497 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
498 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
499 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
500 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
501 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
502 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
503 }
504};
505
506
507/**
508 * Gets a host selector from the VMCS.
509 *
510 * @param pVmcs Pointer to the virtual VMCS.
511 * @param iSelReg The index of the segment register (X86_SREG_XXX).
512 */
513DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
514{
515 Assert(iSegReg < X86_SREG_COUNT);
516 RTSEL HostSel;
517 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
518 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
519 uint8_t const uWidthType = (uWidth << 2) | uType;
520 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
521 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
522 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
523 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
524 uint8_t const *pbField = pbVmcs + offField;
525 HostSel = *(uint16_t *)pbField;
526 return HostSel;
527}
528
529
530/**
531 * Sets a guest segment register in the VMCS.
532 *
533 * @param pVmcs Pointer to the virtual VMCS.
534 * @param iSegReg The index of the segment register (X86_SREG_XXX).
535 * @param pSelReg Pointer to the segment register.
536 */
537static void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg) RT_NOEXCEPT
538{
539 Assert(pSelReg);
540 Assert(iSegReg < X86_SREG_COUNT);
541
542 /* Selector. */
543 {
544 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
545 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
546 uint8_t const uWidthType = (uWidth << 2) | uType;
547 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
548 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
549 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
550 uint8_t *pbVmcs = (uint8_t *)pVmcs;
551 uint8_t *pbField = pbVmcs + offField;
552 *(uint16_t *)pbField = pSelReg->Sel;
553 }
554
555 /* Limit. */
556 {
557 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
558 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
559 uint8_t const uWidthType = (uWidth << 2) | uType;
560 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
561 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
562 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
563 uint8_t *pbVmcs = (uint8_t *)pVmcs;
564 uint8_t *pbField = pbVmcs + offField;
565 *(uint32_t *)pbField = pSelReg->u32Limit;
566 }
567
568 /* Base. */
569 {
570 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
571 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
572 uint8_t const uWidthType = (uWidth << 2) | uType;
573 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
574 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
575 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
576 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
577 uint8_t const *pbField = pbVmcs + offField;
578 *(uint64_t *)pbField = pSelReg->u64Base;
579 }
580
581 /* Attributes. */
582 {
583 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
584 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
585 | X86DESCATTR_UNUSABLE;
586 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
587 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
588 uint8_t const uWidthType = (uWidth << 2) | uType;
589 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
590 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
591 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
592 uint8_t *pbVmcs = (uint8_t *)pVmcs;
593 uint8_t *pbField = pbVmcs + offField;
594 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
595 }
596}
597
598
599/**
600 * Gets a guest segment register from the VMCS.
601 *
602 * @returns VBox status code.
603 * @param pVmcs Pointer to the virtual VMCS.
604 * @param iSegReg The index of the segment register (X86_SREG_XXX).
605 * @param pSelReg Where to store the segment register (only updated when
606 * VINF_SUCCESS is returned).
607 *
608 * @remarks Warning! This does not validate the contents of the retrieved segment
609 * register.
610 */
611static int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg) RT_NOEXCEPT
612{
613 Assert(pSelReg);
614 Assert(iSegReg < X86_SREG_COUNT);
615
616 /* Selector. */
617 uint16_t u16Sel;
618 {
619 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
620 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
621 uint8_t const uWidthType = (uWidth << 2) | uType;
622 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
623 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
624 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
625 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
626 uint8_t const *pbField = pbVmcs + offField;
627 u16Sel = *(uint16_t *)pbField;
628 }
629
630 /* Limit. */
631 uint32_t u32Limit;
632 {
633 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
634 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
635 uint8_t const uWidthType = (uWidth << 2) | uType;
636 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
637 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
638 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
639 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
640 uint8_t const *pbField = pbVmcs + offField;
641 u32Limit = *(uint32_t *)pbField;
642 }
643
644 /* Base. */
645 uint64_t u64Base;
646 {
647 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
648 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
649 uint8_t const uWidthType = (uWidth << 2) | uType;
650 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
651 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
652 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
653 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
654 uint8_t const *pbField = pbVmcs + offField;
655 u64Base = *(uint64_t *)pbField;
656 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
657 }
658
659 /* Attributes. */
660 uint32_t u32Attr;
661 {
662 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
663 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
664 uint8_t const uWidthType = (uWidth << 2) | uType;
665 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
666 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
667 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
668 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
669 uint8_t const *pbField = pbVmcs + offField;
670 u32Attr = *(uint32_t *)pbField;
671 }
672
673 pSelReg->Sel = u16Sel;
674 pSelReg->ValidSel = u16Sel;
675 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
676 pSelReg->u32Limit = u32Limit;
677 pSelReg->u64Base = u64Base;
678 pSelReg->Attr.u = u32Attr;
679 return VINF_SUCCESS;
680}
681
682
683/**
684 * Converts an IEM exception event type to a VMX event type.
685 *
686 * @returns The VMX event type.
687 * @param uVector The interrupt / exception vector.
688 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
689 */
690DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
691{
692 /* Paranoia (callers may use these interchangeably). */
693 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
694 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
695 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
696 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
697 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
698 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
699 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
700 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
701 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
702 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
703 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
704 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
705
706 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
707 {
708 if (uVector == X86_XCPT_NMI)
709 return VMX_EXIT_INT_INFO_TYPE_NMI;
710 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
711 }
712
713 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
714 {
715 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
716 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
717 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
718 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
719 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
720 }
721
722 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
723 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
724}
725
726
727/**
728 * Determines whether the guest is using PAE paging given the VMCS.
729 *
730 * @returns @c true if PAE paging mode is used, @c false otherwise.
731 * @param pVmcs Pointer to the virtual VMCS.
732 *
733 * @warning Only use this prior to switching the guest-CPU state with the
734 * nested-guest CPU state!
735 */
736DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
737{
738 return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
739 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
740 && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
741}
742
743
744/**
745 * Sets the Exit qualification VMCS field.
746 *
747 * @param pVCpu The cross context virtual CPU structure.
748 * @param u64ExitQual The Exit qualification.
749 */
750DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
751{
752 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
753}
754
755
756/**
757 * Sets the VM-exit interruption information field.
758 *
759 * @param pVCpu The cross context virtual CPU structure.
760 * @param uExitIntInfo The VM-exit interruption information.
761 */
762DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
763{
764 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
765}
766
767
768/**
769 * Sets the VM-exit interruption error code.
770 *
771 * @param pVCpu The cross context virtual CPU structure.
772 * @param uErrCode The error code.
773 */
774DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
775{
776 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
777}
778
779
780/**
781 * Sets the IDT-vectoring information field.
782 *
783 * @param pVCpu The cross context virtual CPU structure.
784 * @param uIdtVectorInfo The IDT-vectoring information.
785 */
786DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
787{
788 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
789}
790
791
792/**
793 * Sets the IDT-vectoring error code field.
794 *
795 * @param pVCpu The cross context virtual CPU structure.
796 * @param uErrCode The error code.
797 */
798DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
799{
800 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
801}
802
803
804/**
805 * Sets the VM-exit guest-linear address VMCS field.
806 *
807 * @param pVCpu The cross context virtual CPU structure.
808 * @param uGuestLinearAddr The VM-exit guest-linear address.
809 */
810DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
811{
812 /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
813 Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
814 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
815}
816
817
818/**
819 * Sets the VM-exit guest-physical address VMCS field.
820 *
821 * @param pVCpu The cross context virtual CPU structure.
822 * @param uGuestPhysAddr The VM-exit guest-physical address.
823 */
824DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
825{
826 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
827}
828
829
830/**
831 * Sets the VM-exit instruction length VMCS field.
832 *
833 * @param pVCpu The cross context virtual CPU structure.
834 * @param cbInstr The VM-exit instruction length in bytes.
835 *
836 * @remarks Callers may clear this field to 0. Hence, this function does not check
837 * the validity of the instruction length.
838 */
839DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
840{
841 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
842}
843
844
845/**
846 * Sets the VM-exit instruction info. VMCS field.
847 *
848 * @param pVCpu The cross context virtual CPU structure.
849 * @param uExitInstrInfo The VM-exit instruction information.
850 */
851DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
852{
853 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
854}
855
856
857/**
858 * Sets the guest pending-debug exceptions field.
859 *
860 * @param pVCpu The cross context virtual CPU structure.
861 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
862 */
863DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
864{
865 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
866 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
867}
868
869
870/**
871 * Implements VMSucceed for VMX instruction success.
872 *
873 * @param pVCpu The cross context virtual CPU structure.
874 */
875DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
876{
877 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
878}
879
880
881/**
882 * Implements VMFailInvalid for VMX instruction failure.
883 *
884 * @param pVCpu The cross context virtual CPU structure.
885 */
886DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
887{
888 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
889}
890
891
892/**
893 * Implements VMFail for VMX instruction failure.
894 *
895 * @param pVCpu The cross context virtual CPU structure.
896 * @param enmInsErr The VM instruction error.
897 */
898DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
899{
900 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
901}
902
903
904/**
905 * Checks if the given auto-load/store MSR area count is valid for the
906 * implementation.
907 *
908 * @returns @c true if it's within the valid limit, @c false otherwise.
909 * @param pVCpu The cross context virtual CPU structure.
910 * @param uMsrCount The MSR area count to check.
911 */
912DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
913{
914 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
915 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
916 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
917 if (uMsrCount <= cMaxSupportedMsrs)
918 return true;
919 return false;
920}
921
922
923/**
924 * Flushes the current VMCS contents back to guest memory.
925 *
926 * @returns VBox status code.
927 * @param pVCpu The cross context virtual CPU structure.
928 */
929DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
930{
931 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
932 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
933 &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
934 return rc;
935}
936
937
938/**
939 * Populates the current VMCS contents from guest memory.
940 *
941 * @returns VBox status code.
942 * @param pVCpu The cross context virtual CPU structure.
943 */
944DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
945{
946 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
947 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
948 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
949 return rc;
950}
951
952
953/**
954 * Gets the instruction diagnostic for segment base checks during VM-entry of a
955 * nested-guest.
956 *
957 * @param iSegReg The segment index (X86_SREG_XXX).
958 */
959static VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg) RT_NOEXCEPT
960{
961 switch (iSegReg)
962 {
963 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
964 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
965 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
966 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
967 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
968 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
969 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
970 }
971}
972
973
974/**
975 * Gets the instruction diagnostic for segment base checks during VM-entry of a
976 * nested-guest that is in Virtual-8086 mode.
977 *
978 * @param iSegReg The segment index (X86_SREG_XXX).
979 */
980static VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg) RT_NOEXCEPT
981{
982 switch (iSegReg)
983 {
984 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
985 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
986 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
987 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
988 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
989 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
990 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
991 }
992}
993
994
995/**
996 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
997 * nested-guest that is in Virtual-8086 mode.
998 *
999 * @param iSegReg The segment index (X86_SREG_XXX).
1000 */
1001static VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg) RT_NOEXCEPT
1002{
1003 switch (iSegReg)
1004 {
1005 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
1006 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
1007 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
1008 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
1009 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
1010 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
1011 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
1012 }
1013}
1014
1015
1016/**
1017 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
1018 * nested-guest that is in Virtual-8086 mode.
1019 *
1020 * @param iSegReg The segment index (X86_SREG_XXX).
1021 */
1022static VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg) RT_NOEXCEPT
1023{
1024 switch (iSegReg)
1025 {
1026 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
1027 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
1028 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
1029 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
1030 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
1031 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
1032 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
1033 }
1034}
1035
1036
1037/**
1038 * Gets the instruction diagnostic for segment attributes reserved bits failure
1039 * during VM-entry of a nested-guest.
1040 *
1041 * @param iSegReg The segment index (X86_SREG_XXX).
1042 */
1043static VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg) RT_NOEXCEPT
1044{
1045 switch (iSegReg)
1046 {
1047 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1048 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1049 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1050 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1051 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1052 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1053 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1054 }
1055}
1056
1057
1058/**
1059 * Gets the instruction diagnostic for segment attributes descriptor-type
1060 * (code/segment or system) failure during VM-entry of a nested-guest.
1061 *
1062 * @param iSegReg The segment index (X86_SREG_XXX).
1063 */
1064static VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg) RT_NOEXCEPT
1065{
1066 switch (iSegReg)
1067 {
1068 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1069 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1070 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1071 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1072 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1073 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1074 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1075 }
1076}
1077
1078
1079/**
1080 * Gets the instruction diagnostic for segment attributes descriptor-type
1081 * (code/segment or system) failure during VM-entry of a nested-guest.
1082 *
1083 * @param iSegReg The segment index (X86_SREG_XXX).
1084 */
1085static VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg) RT_NOEXCEPT
1086{
1087 switch (iSegReg)
1088 {
1089 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1090 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1091 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1092 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1093 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1094 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1095 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1096 }
1097}
1098
1099
1100/**
1101 * Gets the instruction diagnostic for segment attribute granularity failure during
1102 * VM-entry of a nested-guest.
1103 *
1104 * @param iSegReg The segment index (X86_SREG_XXX).
1105 */
1106static VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg) RT_NOEXCEPT
1107{
1108 switch (iSegReg)
1109 {
1110 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1111 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1112 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1113 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1114 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1115 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1116 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1117 }
1118}
1119
1120/**
1121 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1122 * VM-entry of a nested-guest.
1123 *
1124 * @param iSegReg The segment index (X86_SREG_XXX).
1125 */
1126static VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg) RT_NOEXCEPT
1127{
1128 switch (iSegReg)
1129 {
1130 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1131 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1132 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1133 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1134 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1135 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1136 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1137 }
1138}
1139
1140
1141/**
1142 * Gets the instruction diagnostic for segment attribute type accessed failure
1143 * during VM-entry of a nested-guest.
1144 *
1145 * @param iSegReg The segment index (X86_SREG_XXX).
1146 */
1147static VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg) RT_NOEXCEPT
1148{
1149 switch (iSegReg)
1150 {
1151 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1152 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1153 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1154 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1155 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1156 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1157 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1158 }
1159}
1160
1161
1162/**
1163 * Saves the guest control registers, debug registers and some MSRs are part of
1164 * VM-exit.
1165 *
1166 * @param pVCpu The cross context virtual CPU structure.
1167 */
1168static void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1169{
1170 /*
1171 * Saves the guest control registers, debug registers and some MSRs.
1172 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1173 */
1174 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1175
1176 /* Save control registers. */
1177 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1178 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1179 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1180
1181 /* Save SYSENTER CS, ESP, EIP. */
1182 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1183 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1184 {
1185 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1186 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1187 }
1188 else
1189 {
1190 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1191 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1192 }
1193
1194 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1195 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1196 {
1197 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1198 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1199 }
1200
1201 /* Save PAT MSR. */
1202 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1203 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1204
1205 /* Save EFER MSR. */
1206 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1207 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1208
1209 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1210 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1211
1212 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1213}
1214
1215
1216/**
1217 * Saves the guest force-flags in preparation of entering the nested-guest.
1218 *
1219 * @param pVCpu The cross context virtual CPU structure.
1220 */
1221static void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1222{
1223 /* We shouldn't be called multiple times during VM-entry. */
1224 Assert(pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit == 0);
1225
1226 /* MTF should not be set outside VMX non-root mode. */
1227 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1228
1229 /*
1230 * Preserve the required force-flags.
1231 *
1232 * We cache and clear force-flags that would affect the execution of the
1233 * nested-guest. Cached flags are then restored while returning to the guest
1234 * if necessary.
1235 *
1236 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1237 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1238 * instruction. Interrupt inhibition for any nested-guest instruction
1239 * is supplied by the guest-interruptibility state VMCS field and will
1240 * be set up as part of loading the guest state. Technically
1241 * blocking-by-STI is possible with VMLAUNCH/VMRESUME but we currently
1242 * disallow it since we can't distinguish it from blocking-by-MovSS
1243 * and no nested-hypervisor we care about uses STI immediately
1244 * followed by VMLAUNCH/VMRESUME.
1245 *
1246 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1247 * successful VM-entry (due to invalid guest-state) need to continue
1248 * blocking NMIs if it was in effect before VM-entry.
1249 *
1250 * - MTF need not be preserved as it's used only in VMX non-root mode and
1251 * is supplied through the VM-execution controls.
1252 *
1253 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1254 * we will be able to generate interrupts that may cause VM-exits for
1255 * the nested-guest.
1256 */
1257 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI;
1258}
1259
1260
1261/**
1262 * Restores the guest force-flags in preparation of exiting the nested-guest.
1263 *
1264 * @param pVCpu The cross context virtual CPU structure.
1265 */
1266static void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1267{
1268 /** @todo r=bird: why aren't we clearing the nested guest flags first here?
1269 * If there is some other code doing that already, it would be great
1270 * to point to it here... */
1271 pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit;
1272 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = 0;
1273}
1274
1275
1276/**
1277 * Performs the VMX transition to/from VMX non-root mode.
1278 *
1279 * @param pVCpu The cross context virtual CPU structure.
1280*/
1281static int iemVmxTransition(PVMCPUCC pVCpu) RT_NOEXCEPT
1282{
1283 /*
1284 * Inform PGM about paging mode changes.
1285 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1286 * see comment in iemMemPageTranslateAndCheckAccess().
1287 */
1288 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1289 true /* fForce */);
1290 if (RT_SUCCESS(rc))
1291 { /* likely */ }
1292 else
1293 return rc;
1294
1295 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
1296 IEMTlbInvalidateAll(pVCpu);
1297
1298 /* Inform CPUM (recompiler), can later be removed. */
1299 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1300
1301 /* Re-initialize IEM cache/state after the drastic mode switch. */
1302 iemReInitExec(pVCpu);
1303 return rc;
1304}
1305
1306
1307/**
1308 * Calculates the current VMX-preemption timer value.
1309 *
1310 * @returns The current VMX-preemption timer value.
1311 * @param pVCpu The cross context virtual CPU structure.
1312 */
1313static uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
1314{
1315 /*
1316 * Assume the following:
1317 * PreemptTimerShift = 5
1318 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1319 * EntryTick = 50000 (TSC at time of VM-entry)
1320 *
1321 * CurTick Delta PreemptTimerVal
1322 * ----------------------------------
1323 * 60000 10000 2
1324 * 80000 30000 1
1325 * 90000 40000 0 -> VM-exit.
1326 *
1327 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1328 * The saved VMX-preemption timer value is calculated as follows:
1329 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1330 * E.g.:
1331 * Delta = 10000
1332 * Tmp = 10000 / (2 * 10000) = 0.5
1333 * NewPt = 2 - 0.5 = 2
1334 * Delta = 30000
1335 * Tmp = 30000 / (2 * 10000) = 1.5
1336 * NewPt = 2 - 1.5 = 1
1337 * Delta = 40000
1338 * Tmp = 40000 / 20000 = 2
1339 * NewPt = 2 - 2 = 0
1340 */
1341 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1342 uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
1343 if (uVmcsPreemptVal > 0)
1344 {
1345 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1346 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1347 uint64_t const uDelta = uCurTick - uEntryTick;
1348 uint32_t const uPreemptTimer = uVmcsPreemptVal
1349 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1350 return uPreemptTimer;
1351 }
1352 return 0;
1353}
1354
1355
1356/**
1357 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1358 *
1359 * @param pVCpu The cross context virtual CPU structure.
1360 */
1361static void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1362{
1363 /*
1364 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1365 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1366 */
1367 /* CS, SS, ES, DS, FS, GS. */
1368 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1369 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1370 {
1371 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1372 if (!pSelReg->Attr.n.u1Unusable)
1373 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1374 else
1375 {
1376 /*
1377 * For unusable segments the attributes are undefined except for CS and SS.
1378 * For the rest we don't bother preserving anything but the unusable bit.
1379 */
1380 switch (iSegReg)
1381 {
1382 case X86_SREG_CS:
1383 pVmcs->GuestCs = pSelReg->Sel;
1384 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1385 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1386 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1387 | X86DESCATTR_UNUSABLE);
1388 break;
1389
1390 case X86_SREG_SS:
1391 pVmcs->GuestSs = pSelReg->Sel;
1392 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1393 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1394 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1395 break;
1396
1397 case X86_SREG_DS:
1398 pVmcs->GuestDs = pSelReg->Sel;
1399 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1400 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1401 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1402 break;
1403
1404 case X86_SREG_ES:
1405 pVmcs->GuestEs = pSelReg->Sel;
1406 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1407 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1408 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1409 break;
1410
1411 case X86_SREG_FS:
1412 pVmcs->GuestFs = pSelReg->Sel;
1413 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1414 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1415 break;
1416
1417 case X86_SREG_GS:
1418 pVmcs->GuestGs = pSelReg->Sel;
1419 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1420 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1421 break;
1422 }
1423 }
1424 }
1425
1426 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1427 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1428 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1429 | X86DESCATTR_UNUSABLE;
1430 /* LDTR. */
1431 {
1432 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1433 pVmcs->GuestLdtr = pSelReg->Sel;
1434 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1435 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1436 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1437 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1438 }
1439
1440 /* TR. */
1441 {
1442 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1443 pVmcs->GuestTr = pSelReg->Sel;
1444 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1445 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1446 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1447 }
1448
1449 /* GDTR. */
1450 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1451 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1452
1453 /* IDTR. */
1454 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1455 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1456}
1457
1458
1459/**
1460 * Saves guest non-register state as part of VM-exit.
1461 *
1462 * @param pVCpu The cross context virtual CPU structure.
1463 * @param uExitReason The VM-exit reason.
1464 */
1465static void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1466{
1467 /*
1468 * Save guest non-register state.
1469 * See Intel spec. 27.3.4 "Saving Non-Register State".
1470 */
1471 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1472
1473 /*
1474 * Activity state.
1475 * Most VM-exits will occur in the active state. However, if the first instruction
1476 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1477 * the VM-exit will be from the HLT activity state.
1478 *
1479 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1480 */
1481 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1482 * not? */
1483 EMSTATE const enmActivityState = EMGetState(pVCpu);
1484 switch (enmActivityState)
1485 {
1486 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1487 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1488 }
1489
1490 /*
1491 * Interruptibility-state.
1492 */
1493 /* NMI. */
1494 pVmcs->u32GuestIntrState = 0;
1495 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1496 {
1497 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1498 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1499 }
1500 else
1501 {
1502 if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
1503 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1504 }
1505
1506 /* Blocking-by-STI or blocking-by-MovSS. */
1507 uint32_t fInhibitShw;
1508 if (!CPUMIsInInterruptShadowWithUpdateEx(&pVCpu->cpum.GstCtx, &fInhibitShw))
1509 { /* probable */}
1510 else
1511 {
1512 if (pVCpu->cpum.GstCtx.rip == pVCpu->cpum.GstCtx.uRipInhibitInt)
1513 {
1514 /*
1515 * We must ensure only one of these bits is set.
1516 * Our emulation can have both set (perhaps because AMD doesn't distinguish
1517 * between the two?). Hence, the 'else' with blocking-by-MovSS taking priority
1518 * since it blocks more. Nested Ubuntu 22.04.2 running inside a Hyper-V enabled
1519 * Windows Server 2008 R2 guest runs into this issue.
1520 *
1521 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1522 */
1523 if (fInhibitShw & CPUMCTX_INHIBIT_SHADOW_SS)
1524 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
1525 else
1526 {
1527 Assert(fInhibitShw & CPUMCTX_INHIBIT_SHADOW_STI);
1528 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
1529 }
1530 }
1531 }
1532 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1533
1534 /*
1535 * Pending debug exceptions.
1536 *
1537 * For VM-exits where it is not applicable, we can safely zero out the field.
1538 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1539 */
1540 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1541 && uExitReason != VMX_EXIT_SMI
1542 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1543 && !VMXIsVmexitTrapLike(uExitReason))
1544 {
1545 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1546 * block-by-MovSS is in effect. */
1547 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1548 }
1549
1550 /*
1551 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1552 *
1553 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1554 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1555 */
1556 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1557 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1558 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1559
1560 /*
1561 * Save the guest PAE PDPTEs.
1562 */
1563 if ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
1564 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
1565 {
1566 /*
1567 * Without EPT or when the nested-guest is not using PAE paging, the values saved
1568 * in the VMCS during VM-exit are undefined. We zero them here for consistency.
1569 */
1570 pVmcs->u64GuestPdpte0.u = 0;
1571 pVmcs->u64GuestPdpte1.u = 0;
1572 pVmcs->u64GuestPdpte2.u = 0;
1573 pVmcs->u64GuestPdpte3.u = 0;
1574 }
1575 else
1576 {
1577 /*
1578 * With EPT and when the nested-guest is using PAE paging, we update the PDPTEs from
1579 * the nested-guest CPU context. Both IEM (Mov CRx) and hardware-assisted execution
1580 * of the nested-guest is expected to have updated them.
1581 */
1582 pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
1583 pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
1584 pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
1585 pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
1586 }
1587
1588 /* Clear PGM's copy of the EPT pointer for added safety. */
1589 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
1590 PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
1591}
1592
1593
1594/**
1595 * Saves the guest-state as part of VM-exit.
1596 *
1597 * @returns VBox status code.
1598 * @param pVCpu The cross context virtual CPU structure.
1599 * @param uExitReason The VM-exit reason.
1600 */
1601static void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1602{
1603 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1604 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1605
1606 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1607 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1608 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1609
1610 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1611}
1612
1613
1614/**
1615 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1616 *
1617 * @returns VBox status code.
1618 * @param pVCpu The cross context virtual CPU structure.
1619 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1620 */
1621static int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1622{
1623 /*
1624 * Save guest MSRs.
1625 * See Intel spec. 27.4 "Saving MSRs".
1626 */
1627 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1628 const char * const pszFailure = "VMX-abort";
1629
1630 /*
1631 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1632 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1633 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1634 */
1635 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
1636 if (!cMsrs)
1637 return VINF_SUCCESS;
1638
1639 /*
1640 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1641 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1642 * implementation causes a VMX-abort followed by a triple-fault.
1643 */
1644 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1645 if (fIsMsrCountValid)
1646 { /* likely */ }
1647 else
1648 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1649
1650 /*
1651 * Optimization if the nested hypervisor is using the same guest-physical page for both
1652 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1653 */
1654 PVMXAUTOMSR pMsrArea;
1655 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1656 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1657 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1658 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
1659 else
1660 {
1661 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
1662 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1663 if (RT_SUCCESS(rc))
1664 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
1665 else
1666 {
1667 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1668 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1669 }
1670 }
1671
1672 /*
1673 * Update VM-exit MSR store area.
1674 */
1675 PVMXAUTOMSR pMsr = pMsrArea;
1676 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1677 {
1678 if ( !pMsr->u32Reserved
1679 && pMsr->u32Msr != MSR_IA32_SMBASE
1680 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1681 {
1682 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1683 if (rcStrict == VINF_SUCCESS)
1684 continue;
1685
1686 /*
1687 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1688 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1689 * recording the MSR index in the auxiliary info. field and indicated further by our
1690 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1691 * if possible, or come up with a better, generic solution.
1692 */
1693 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1694 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1695 ? kVmxVDiag_Vmexit_MsrStoreRing3
1696 : kVmxVDiag_Vmexit_MsrStore;
1697 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1698 }
1699 else
1700 {
1701 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1702 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1703 }
1704 }
1705
1706 /*
1707 * Commit the VM-exit MSR store are to guest memory.
1708 */
1709 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1710 if (RT_SUCCESS(rc))
1711 return VINF_SUCCESS;
1712
1713 NOREF(uExitReason);
1714 NOREF(pszFailure);
1715
1716 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1717 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1718}
1719
1720
1721/**
1722 * Performs a VMX abort (due to an fatal error during VM-exit).
1723 *
1724 * @returns Strict VBox status code.
1725 * @param pVCpu The cross context virtual CPU structure.
1726 * @param enmAbort The VMX abort reason.
1727 */
1728static VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort) RT_NOEXCEPT
1729{
1730 /*
1731 * Perform the VMX abort.
1732 * See Intel spec. 27.7 "VMX Aborts".
1733 */
1734 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1735
1736 /* We don't support SMX yet. */
1737 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1738 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1739 {
1740 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1741 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1742 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1743 }
1744
1745 return VINF_EM_TRIPLE_FAULT;
1746}
1747
1748
1749/**
1750 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1751 *
1752 * @param pVCpu The cross context virtual CPU structure.
1753 */
1754static void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1755{
1756 /*
1757 * Load host control registers, debug registers and MSRs.
1758 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1759 */
1760 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1761 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1762
1763 /* CR0. */
1764 {
1765 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1766 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK;
1767 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1768 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1769 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1770
1771 /* Verify we have not modified CR0 fixed bits in VMX operation. */
1772#ifdef VBOX_STRICT
1773 uint64_t const uCr0Mb1 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
1774 bool const fUx = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1775 AssertMsg( (uValidHostCr0 & uCr0Mb1) == uCr0Mb1
1776 && (uValidHostCr0 & ~VMX_V_CR0_FIXED1) == 0,
1777 ("host=%#RX64 guest=%#RX64 mb1=%#RX64 valid_host_cr0=%#RX64 fUx=%RTbool\n",
1778 uHostCr0, uGuestCr0, uCr0Mb1, uValidHostCr0, fUx));
1779#endif
1780 Assert(!(uValidHostCr0 >> 32));
1781 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1782 }
1783
1784 /* CR4. */
1785 {
1786 /* CR4 fixed bits are not modified. */
1787 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1788 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1789 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1790 uint64_t uValidHostCr4 = (uHostCr4 & uCr4Mb0) | uCr4Mb1;
1791 if (fHostInLongMode)
1792 uValidHostCr4 |= X86_CR4_PAE;
1793 else
1794 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1795
1796 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1797 AssertMsg( (uValidHostCr4 & uCr4Mb1) == uCr4Mb1
1798 && (uValidHostCr4 & ~uCr4Mb0) == 0,
1799 ("host=%#RX64 guest=%#RX64, uCr4Mb1=%#RX64 uCr4Mb0=%#RX64 valid_host_cr4=%#RX64\n",
1800 uHostCr4, pVCpu->cpum.GstCtx.cr4, uCr4Mb1, uCr4Mb0, uValidHostCr4));
1801 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1802 }
1803
1804 /* CR3 (host value validated while checking host-state during VM-entry). */
1805 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1806
1807 /* DR7. */
1808 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1809
1810 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1811
1812 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1813 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1814 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1815 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1816
1817 /* FS, GS bases are loaded later while we load host segment registers. */
1818
1819 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1820 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1821 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1822 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1823 {
1824 if (fHostInLongMode)
1825 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1826 else
1827 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1828 }
1829
1830 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1831
1832 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1833 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1834 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1835
1836 /* We don't support IA32_BNDCFGS MSR yet. */
1837}
1838
1839
1840/**
1841 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1842 *
1843 * @param pVCpu The cross context virtual CPU structure.
1844 */
1845static void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1846{
1847 /*
1848 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1849 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1850 *
1851 * Warning! Be careful to not touch fields that are reserved by VT-x,
1852 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1853 */
1854 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1855 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1856
1857 /* CS, SS, ES, DS, FS, GS. */
1858 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1859 {
1860 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1861 bool const fUnusable = RT_BOOL(HostSel == 0);
1862 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1863
1864 /* Selector. */
1865 pSelReg->Sel = HostSel;
1866 pSelReg->ValidSel = HostSel;
1867 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1868
1869 /* Limit. */
1870 pSelReg->u32Limit = 0xffffffff;
1871
1872 /* Base. */
1873 pSelReg->u64Base = 0;
1874
1875 /* Attributes. */
1876 if (iSegReg == X86_SREG_CS)
1877 {
1878 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1879 pSelReg->Attr.n.u1DescType = 1;
1880 pSelReg->Attr.n.u2Dpl = 0;
1881 pSelReg->Attr.n.u1Present = 1;
1882 pSelReg->Attr.n.u1Long = fHostInLongMode;
1883 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1884 pSelReg->Attr.n.u1Granularity = 1;
1885 Assert(!pSelReg->Attr.n.u1Unusable);
1886 Assert(!fUnusable);
1887 }
1888 else
1889 {
1890 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1891 pSelReg->Attr.n.u1DescType = 1;
1892 pSelReg->Attr.n.u2Dpl = 0;
1893 pSelReg->Attr.n.u1Present = 1;
1894 pSelReg->Attr.n.u1DefBig = 1;
1895 pSelReg->Attr.n.u1Granularity = 1;
1896 pSelReg->Attr.n.u1Unusable = fUnusable;
1897 }
1898 }
1899
1900 /* FS base. */
1901 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1902 || fHostInLongMode)
1903 {
1904 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1905 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1906 }
1907
1908 /* GS base. */
1909 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1910 || fHostInLongMode)
1911 {
1912 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1913 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1914 }
1915
1916 /* TR. */
1917 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1918 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1919 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1920 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1921 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1922 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1923 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1924 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1925 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1926 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1927 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1928 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1929 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1930
1931 /* LDTR (Warning! do not touch the base and limits here). */
1932 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1933 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1934 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1935 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1936
1937 /* GDTR. */
1938 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1939 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1940 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1941
1942 /* IDTR.*/
1943 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1944 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1945 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1946}
1947
1948
1949/**
1950 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1951 *
1952 * @returns VBox status code.
1953 * @param pVCpu The cross context virtual CPU structure.
1954 * @param uExitReason The VMX instruction name (for logging purposes).
1955 */
1956static int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1957{
1958 /*
1959 * Load host MSRs.
1960 * See Intel spec. 27.6 "Loading MSRs".
1961 */
1962 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1963 const char * const pszFailure = "VMX-abort";
1964
1965 /*
1966 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1967 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1968 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1969 */
1970 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
1971 if (!cMsrs)
1972 return VINF_SUCCESS;
1973
1974 /*
1975 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1976 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1977 * implementation causes a VMX-abort followed by a triple-fault.
1978 */
1979 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1980 if (fIsMsrCountValid)
1981 { /* likely */ }
1982 else
1983 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1984
1985 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1986 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
1987 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1988 if (RT_SUCCESS(rc))
1989 {
1990 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
1991 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1992 {
1993 if ( !pMsr->u32Reserved
1994 && pMsr->u32Msr != MSR_K8_FS_BASE
1995 && pMsr->u32Msr != MSR_K8_GS_BASE
1996 && pMsr->u32Msr != MSR_K6_EFER
1997 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1998 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1999 {
2000 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
2001 if (rcStrict == VINF_SUCCESS)
2002 continue;
2003
2004 /*
2005 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
2006 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
2007 * recording the MSR index in the auxiliary info. field and indicated further by our
2008 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
2009 * if possible, or come up with a better, generic solution.
2010 */
2011 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
2012 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
2013 ? kVmxVDiag_Vmexit_MsrLoadRing3
2014 : kVmxVDiag_Vmexit_MsrLoad;
2015 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
2016 }
2017 else
2018 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
2019 }
2020 }
2021 else
2022 {
2023 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
2024 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
2025 }
2026
2027 NOREF(uExitReason);
2028 NOREF(pszFailure);
2029 return VINF_SUCCESS;
2030}
2031
2032
2033/**
2034 * Loads the host state as part of VM-exit.
2035 *
2036 * @returns Strict VBox status code.
2037 * @param pVCpu The cross context virtual CPU structure.
2038 * @param uExitReason The VM-exit reason (for logging purposes).
2039 */
2040static VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
2041{
2042 /*
2043 * Load host state.
2044 * See Intel spec. 27.5 "Loading Host State".
2045 */
2046 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2047 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2048
2049 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2050 if ( CPUMIsGuestInLongMode(pVCpu)
2051 && !fHostInLongMode)
2052 {
2053 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2054 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2055 }
2056
2057 /*
2058 * Check host PAE PDPTEs prior to loading the host state.
2059 * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
2060 */
2061 if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
2062 && !fHostInLongMode
2063 && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
2064 || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
2065 {
2066 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
2067 if (RT_SUCCESS(rc))
2068 { /* likely*/ }
2069 else
2070 {
2071 IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
2072 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2073 }
2074 }
2075
2076 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2077 iemVmxVmexitLoadHostSegRegs(pVCpu);
2078
2079 /*
2080 * Load host RIP, RSP and RFLAGS.
2081 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2082 */
2083 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2084 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2085 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2086
2087 /* Clear address range monitoring. */
2088 EMMonitorWaitClear(pVCpu);
2089
2090 /* Perform the VMX transition (PGM updates). */
2091 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
2092 if (rcStrict == VINF_SUCCESS)
2093 { /* likely */ }
2094 else if (RT_SUCCESS(rcStrict))
2095 {
2096 Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2097 uExitReason));
2098 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2099 }
2100 else
2101 {
2102 Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2103 return VBOXSTRICTRC_VAL(rcStrict);
2104 }
2105
2106 Assert(rcStrict == VINF_SUCCESS);
2107
2108 /* Load MSRs from the VM-exit auto-load MSR area. */
2109 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2110 if (RT_FAILURE(rc))
2111 {
2112 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2113 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2114 }
2115 return VINF_SUCCESS;
2116}
2117
2118
2119/**
2120 * Gets VM-exit instruction information along with any displacement for an
2121 * instruction VM-exit.
2122 *
2123 * @returns The VM-exit instruction information.
2124 * @param pVCpu The cross context virtual CPU structure.
2125 * @param uExitReason The VM-exit reason.
2126 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2127 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2128 * NULL.
2129 */
2130static uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp) RT_NOEXCEPT
2131{
2132 RTGCPTR GCPtrDisp;
2133 VMXEXITINSTRINFO ExitInstrInfo;
2134 ExitInstrInfo.u = 0;
2135
2136 /*
2137 * Get and parse the ModR/M byte from our decoded opcodes.
2138 */
2139 uint8_t bRm;
2140 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2141 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2142 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2143 {
2144 /*
2145 * ModR/M indicates register addressing.
2146 *
2147 * The primary/secondary register operands are reported in the iReg1 or iReg2
2148 * fields depending on whether it is a read/write form.
2149 */
2150 uint8_t idxReg1;
2151 uint8_t idxReg2;
2152 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2153 {
2154 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2155 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2156 }
2157 else
2158 {
2159 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2160 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2161 }
2162 ExitInstrInfo.All.u2Scaling = 0;
2163 ExitInstrInfo.All.iReg1 = idxReg1;
2164 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2165 ExitInstrInfo.All.fIsRegOperand = 1;
2166 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2167 ExitInstrInfo.All.iSegReg = 0;
2168 ExitInstrInfo.All.iIdxReg = 0;
2169 ExitInstrInfo.All.fIdxRegInvalid = 1;
2170 ExitInstrInfo.All.iBaseReg = 0;
2171 ExitInstrInfo.All.fBaseRegInvalid = 1;
2172 ExitInstrInfo.All.iReg2 = idxReg2;
2173
2174 /* Displacement not applicable for register addressing. */
2175 GCPtrDisp = 0;
2176 }
2177 else
2178 {
2179 /*
2180 * ModR/M indicates memory addressing.
2181 */
2182 uint8_t uScale = 0;
2183 bool fBaseRegValid = false;
2184 bool fIdxRegValid = false;
2185 uint8_t iBaseReg = 0;
2186 uint8_t iIdxReg = 0;
2187 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2188 {
2189 /*
2190 * Parse the ModR/M, displacement for 16-bit addressing mode.
2191 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2192 */
2193 uint16_t u16Disp = 0;
2194 uint8_t const offDisp = offModRm + sizeof(bRm);
2195 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2196 {
2197 /* Displacement without any registers. */
2198 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2199 }
2200 else
2201 {
2202 /* Register (index and base). */
2203 switch (bRm & X86_MODRM_RM_MASK)
2204 {
2205 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2206 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2207 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2208 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2209 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2210 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2211 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2212 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2213 }
2214
2215 /* Register + displacement. */
2216 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2217 {
2218 case 0: break;
2219 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2220 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2221 default:
2222 {
2223 /* Register addressing, handled at the beginning. */
2224 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2225 break;
2226 }
2227 }
2228 }
2229
2230 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2231 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2232 }
2233 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2234 {
2235 /*
2236 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2237 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2238 */
2239 uint32_t u32Disp = 0;
2240 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2241 {
2242 /* Displacement without any registers. */
2243 uint8_t const offDisp = offModRm + sizeof(bRm);
2244 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2245 }
2246 else
2247 {
2248 /* Register (and perhaps scale, index and base). */
2249 uint8_t offDisp = offModRm + sizeof(bRm);
2250 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2251 if (iBaseReg == 4)
2252 {
2253 /* An SIB byte follows the ModR/M byte, parse it. */
2254 uint8_t bSib;
2255 uint8_t const offSib = offModRm + sizeof(bRm);
2256 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2257
2258 /* A displacement may follow SIB, update its offset. */
2259 offDisp += sizeof(bSib);
2260
2261 /* Get the scale. */
2262 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2263
2264 /* Get the index register. */
2265 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2266 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2267
2268 /* Get the base register. */
2269 iBaseReg = bSib & X86_SIB_BASE_MASK;
2270 fBaseRegValid = true;
2271 if (iBaseReg == 5)
2272 {
2273 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2274 {
2275 /* Mod is 0 implies a 32-bit displacement with no base. */
2276 fBaseRegValid = false;
2277 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2278 }
2279 else
2280 {
2281 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2282 iBaseReg = X86_GREG_xBP;
2283 }
2284 }
2285 }
2286
2287 /* Register + displacement. */
2288 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2289 {
2290 case 0: /* Handled above */ break;
2291 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2292 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2293 default:
2294 {
2295 /* Register addressing, handled at the beginning. */
2296 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2297 break;
2298 }
2299 }
2300 }
2301
2302 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2303 }
2304 else
2305 {
2306 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2307
2308 /*
2309 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2310 * See Intel instruction spec. 2.2 "IA-32e Mode".
2311 */
2312 uint64_t u64Disp = 0;
2313 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2314 if (fRipRelativeAddr)
2315 {
2316 /*
2317 * RIP-relative addressing mode.
2318 *
2319 * The displacement is 32-bit signed implying an offset range of +/-2G.
2320 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2321 */
2322 uint8_t const offDisp = offModRm + sizeof(bRm);
2323 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2324 }
2325 else
2326 {
2327 uint8_t offDisp = offModRm + sizeof(bRm);
2328
2329 /*
2330 * Register (and perhaps scale, index and base).
2331 *
2332 * REX.B extends the most-significant bit of the base register. However, REX.B
2333 * is ignored while determining whether an SIB follows the opcode. Hence, we
2334 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2335 *
2336 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2337 */
2338 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2339 if (iBaseReg == 4)
2340 {
2341 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2342 uint8_t bSib;
2343 uint8_t const offSib = offModRm + sizeof(bRm);
2344 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2345
2346 /* Displacement may follow SIB, update its offset. */
2347 offDisp += sizeof(bSib);
2348
2349 /* Get the scale. */
2350 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2351
2352 /* Get the index. */
2353 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2354 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2355
2356 /* Get the base. */
2357 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2358 fBaseRegValid = true;
2359 if (iBaseReg == 5)
2360 {
2361 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2362 {
2363 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2364 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2365 }
2366 else
2367 {
2368 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2369 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2370 }
2371 }
2372 }
2373 iBaseReg |= pVCpu->iem.s.uRexB;
2374
2375 /* Register + displacement. */
2376 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2377 {
2378 case 0: /* Handled above */ break;
2379 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2380 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2381 default:
2382 {
2383 /* Register addressing, handled at the beginning. */
2384 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2385 break;
2386 }
2387 }
2388 }
2389
2390 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2391 }
2392
2393 /*
2394 * The primary or secondary register operand is reported in iReg2 depending
2395 * on whether the primary operand is in read/write form.
2396 */
2397 uint8_t idxReg2;
2398 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2399 {
2400 idxReg2 = bRm & X86_MODRM_RM_MASK;
2401 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2402 idxReg2 |= pVCpu->iem.s.uRexB;
2403 }
2404 else
2405 {
2406 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2407 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2408 idxReg2 |= pVCpu->iem.s.uRexReg;
2409 }
2410 ExitInstrInfo.All.u2Scaling = uScale;
2411 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2412 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2413 ExitInstrInfo.All.fIsRegOperand = 0;
2414 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2415 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2416 ExitInstrInfo.All.iIdxReg = iIdxReg;
2417 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2418 ExitInstrInfo.All.iBaseReg = iBaseReg;
2419 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2420 ExitInstrInfo.All.iReg2 = idxReg2;
2421 }
2422
2423 /*
2424 * Handle exceptions to the norm for certain instructions.
2425 * (e.g. some instructions convey an instruction identity in place of iReg2).
2426 */
2427 switch (uExitReason)
2428 {
2429 case VMX_EXIT_GDTR_IDTR_ACCESS:
2430 {
2431 Assert(VMXINSTRID_IS_VALID(uInstrId));
2432 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2433 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2434 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2435 break;
2436 }
2437
2438 case VMX_EXIT_LDTR_TR_ACCESS:
2439 {
2440 Assert(VMXINSTRID_IS_VALID(uInstrId));
2441 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2442 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2443 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2444 break;
2445 }
2446
2447 case VMX_EXIT_RDRAND:
2448 case VMX_EXIT_RDSEED:
2449 {
2450 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2451 break;
2452 }
2453 }
2454
2455 /* Update displacement and return the constructed VM-exit instruction information field. */
2456 if (pGCPtrDisp)
2457 *pGCPtrDisp = GCPtrDisp;
2458
2459 return ExitInstrInfo.u;
2460}
2461
2462
2463/**
2464 * VMX VM-exit handler.
2465 *
2466 * @returns Strict VBox status code.
2467 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2468 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2469 * triple-fault.
2470 *
2471 * @param pVCpu The cross context virtual CPU structure.
2472 * @param uExitReason The VM-exit reason.
2473 * @param u64ExitQual The Exit qualification.
2474 *
2475 * @remarks We need not necessarily have completed VM-entry before a VM-exit is
2476 * called. Failures during VM-entry can cause VM-exits as well, so we
2477 * -cannot- assert we're in VMX non-root mode here.
2478 */
2479VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT
2480{
2481# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2482 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2483 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2484 return VERR_IEM_IPE_7;
2485# else
2486 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2487
2488 /* Just count this as an exit and be done with that. */
2489 pVCpu->iem.s.cPotentialExits++;
2490
2491 /*
2492 * Import all the guest-CPU state.
2493 *
2494 * HM on returning to guest execution would have to reset up a whole lot of state
2495 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2496 * the state and flag reloading the entire state on re-entry. So import the entire
2497 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2498 */
2499 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2500
2501 /*
2502 * Ensure VM-entry interruption information valid bit is cleared.
2503 *
2504 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2505 * by invalid-guest state or machine-check exceptions) also clear this bit.
2506 *
2507 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2508 */
2509 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2510 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2511
2512 /*
2513 * Update the VM-exit reason and Exit qualification.
2514 * Other VMCS read-only data fields are expected to be updated by the caller already.
2515 */
2516 pVmcs->u32RoExitReason = uExitReason;
2517 pVmcs->u64RoExitQual.u = u64ExitQual;
2518
2519 Log2(("vmexit: reason=%u qual=%#RX64 cs:rip=%04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 eflags=%#RX32\n", uExitReason,
2520 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2521 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.eflags.u));
2522
2523 /*
2524 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2525 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2526 */
2527 {
2528 uint8_t uVector;
2529 uint32_t fFlags;
2530 uint32_t uErrCode;
2531 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2532 if (fInEventDelivery)
2533 {
2534 /*
2535 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2536 * caused by a triple-fault or the original event results in a double-fault that
2537 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2538 * original event information into the IDT-vectoring information fields.
2539 *
2540 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2541 */
2542 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2543 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2544 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2545 {
2546 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2547 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2548 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2549 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2550 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2551 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2552 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2553 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2554 Log2(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2555 pVCpu->cpum.GstCtx.cr2));
2556 }
2557 }
2558 }
2559
2560 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2561 Assert(pVmcs->u64RoIoRcx.u == 0);
2562 Assert(pVmcs->u64RoIoRsi.u == 0);
2563 Assert(pVmcs->u64RoIoRdi.u == 0);
2564 Assert(pVmcs->u64RoIoRip.u == 0);
2565
2566 /*
2567 * Save the guest state back into the VMCS.
2568 * We only need to save the state when the VM-entry was successful.
2569 */
2570 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2571 if (!fVmentryFailed)
2572 {
2573 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2574 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2575 {
2576 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2577 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2578 }
2579
2580 /* For exception or NMI VM-exits, the VM-exit interruption info. field must be valid. */
2581 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2582
2583 /* For external interrupts that occur while "acknowledge interrupt on exit" VM-exit is set,
2584 the VM-exit interruption info. field must be valid. */
2585 Assert( uExitReason != VMX_EXIT_EXT_INT
2586 || !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
2587 || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2588
2589 /*
2590 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2591 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2592 *
2593 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2594 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2595 * as guest-CPU state would not been modified. Hence for now, we do this only when
2596 * the VM-entry succeeded.
2597 */
2598 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2599 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2600 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2601 {
2602 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2603 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2604 else
2605 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2606 }
2607
2608 /*
2609 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2610 * occurs in enclave mode/SMM which we don't support yet.
2611 *
2612 * If we ever add support for it, we can pass just the lower bits to the functions
2613 * below, till then an assert should suffice.
2614 */
2615 Assert(!RT_HI_U16(uExitReason));
2616
2617 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2618 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2619 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2620 if (RT_SUCCESS(rc))
2621 { /* likely */ }
2622 else
2623 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2624
2625 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2626 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit &= ~CPUMCTX_INHIBIT_NMI;
2627 }
2628 else
2629 {
2630 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2631 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2632 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2633 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2634 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2635 }
2636
2637 /*
2638 * Stop any running VMX-preemption timer if necessary.
2639 */
2640 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2641 CPUMStopGuestVmxPremptTimer(pVCpu);
2642
2643 /*
2644 * Clear the state of "NMI unblocked due to IRET" as otherwise we risk
2645 * reporting a stale state on a subsequent VM-exit. This state will be
2646 * re-established while emulating IRET in VMX non-root mode.
2647 */
2648 pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret = false;
2649
2650 /*
2651 * Clear any pending VMX nested-guest force-flags.
2652 * These force-flags have no effect on (outer) guest execution and will
2653 * be re-evaluated and setup on the next nested-guest VM-entry.
2654 */
2655 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2656
2657 /*
2658 * We're no longer in nested-guest execution mode.
2659 *
2660 * It is important to do this prior to loading the host state because
2661 * PGM looks at fInVmxNonRootMode to determine if it needs to perform
2662 * second-level address translation while switching to host CR3.
2663 */
2664 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2665
2666 /* Restore the host (outer guest) state. */
2667 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2668 if (RT_SUCCESS(rcStrict))
2669 {
2670 Assert(rcStrict == VINF_SUCCESS);
2671 rcStrict = VINF_VMX_VMEXIT;
2672 }
2673 else
2674 Log(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2675
2676 /*
2677 * Restore non-zero Secondary-processor based VM-execution controls
2678 * when the "activate secondary controls" bit was not set.
2679 */
2680 if (pVmcs->u32RestoreProcCtls2)
2681 {
2682 Assert(!(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS));
2683 pVmcs->u32ProcCtls2 = pVmcs->u32RestoreProcCtls2;
2684 pVmcs->u32RestoreProcCtls2 = 0;
2685 }
2686
2687 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
2688 {
2689 /* Notify HM that the current VMCS fields have been modified. */
2690 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2691
2692 /* Notify HM that we've completed the VM-exit. */
2693 HMNotifyVmxNstGstVmexit(pVCpu);
2694 }
2695
2696# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2697 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2698 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2699 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2700 if (rcSched != VINF_SUCCESS)
2701 iemSetPassUpStatus(pVCpu, rcSched);
2702# endif
2703 return rcStrict;
2704# endif
2705}
2706
2707
2708/**
2709 * VMX VM-exit handler for VM-exits due to instruction execution.
2710 *
2711 * This is intended for instructions where the caller provides all the relevant
2712 * VM-exit information.
2713 *
2714 * @returns Strict VBox status code.
2715 * @param pVCpu The cross context virtual CPU structure.
2716 * @param pExitInfo Pointer to the VM-exit information.
2717 */
2718static VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
2719{
2720 /*
2721 * For instructions where any of the following fields are not applicable:
2722 * - Exit qualification must be cleared.
2723 * - VM-exit instruction info. is undefined.
2724 * - Guest-linear address is undefined.
2725 * - Guest-physical address is undefined.
2726 *
2727 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2728 * instruction execution. For VM-exits that are not due to instruction execution this
2729 * field is undefined.
2730 *
2731 * In our implementation in IEM, all undefined fields are generally cleared. However,
2732 * if the caller supplies information (from say the physical CPU directly) it is
2733 * then possible that the undefined fields are not cleared.
2734 *
2735 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2736 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2737 */
2738 Assert(pExitInfo);
2739 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2740 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2741 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2742
2743 /* Update all the relevant fields from the VM-exit instruction information struct. */
2744 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2745 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2746 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2747 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2748
2749 /* Perform the VM-exit. */
2750 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2751}
2752
2753
2754/**
2755 * VMX VM-exit handler for VM-exits due to instruction execution.
2756 *
2757 * This is intended for instructions that only provide the VM-exit instruction
2758 * length.
2759 *
2760 * @param pVCpu The cross context virtual CPU structure.
2761 * @param uExitReason The VM-exit reason.
2762 * @param cbInstr The instruction length in bytes.
2763 */
2764VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT
2765{
2766#ifdef VBOX_STRICT
2767 /*
2768 * To prevent us from shooting ourselves in the foot.
2769 * The follow instructions should convey more than just the instruction length.
2770 */
2771 switch (uExitReason)
2772 {
2773 case VMX_EXIT_INVEPT:
2774 case VMX_EXIT_INVPCID:
2775 case VMX_EXIT_INVVPID:
2776 case VMX_EXIT_LDTR_TR_ACCESS:
2777 case VMX_EXIT_GDTR_IDTR_ACCESS:
2778 case VMX_EXIT_VMCLEAR:
2779 case VMX_EXIT_VMPTRLD:
2780 case VMX_EXIT_VMPTRST:
2781 case VMX_EXIT_VMREAD:
2782 case VMX_EXIT_VMWRITE:
2783 case VMX_EXIT_VMXON:
2784 case VMX_EXIT_XRSTORS:
2785 case VMX_EXIT_XSAVES:
2786 case VMX_EXIT_RDRAND:
2787 case VMX_EXIT_RDSEED:
2788 case VMX_EXIT_IO_INSTR:
2789 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2790 break;
2791 }
2792#endif
2793
2794 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_INSTR_LEN(uExitReason, cbInstr);
2795 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2796}
2797
2798
2799/**
2800 * Interface for HM and EM to emulate VM-exit due to a triple-fault.
2801 *
2802 * @returns Strict VBox status code.
2803 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2804 * @thread EMT(pVCpu)
2805 */
2806VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTripleFault(PVMCPUCC pVCpu)
2807{
2808 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
2809 Assert(!pVCpu->iem.s.cActiveMappings);
2810 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2811}
2812
2813
2814/**
2815 * Interface for HM and EM to emulate VM-exit due to startup-IPI (SIPI).
2816 *
2817 * @returns Strict VBox status code.
2818 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2819 * @param uVector The SIPI vector.
2820 * @thread EMT(pVCpu)
2821 */
2822VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitStartupIpi(PVMCPUCC pVCpu, uint8_t uVector)
2823{
2824 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_SIPI, uVector);
2825 Assert(!pVCpu->iem.s.cActiveMappings);
2826 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2827}
2828
2829
2830/**
2831 * Interface for HM and EM to emulate a VM-exit.
2832 *
2833 * If a specialized version of a VM-exit handler exists, that must be used instead.
2834 *
2835 * @returns Strict VBox status code.
2836 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2837 * @param uExitReason The VM-exit reason.
2838 * @param u64ExitQual The Exit qualification.
2839 * @thread EMT(pVCpu)
2840 */
2841VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2842{
2843 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, uExitReason, u64ExitQual);
2844 Assert(!pVCpu->iem.s.cActiveMappings);
2845 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2846}
2847
2848
2849/**
2850 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2851 *
2852 * This is meant to be used for those instructions that VMX provides additional
2853 * decoding information beyond just the instruction length!
2854 *
2855 * @returns Strict VBox status code.
2856 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2857 * @param pExitInfo Pointer to the VM-exit information.
2858 * @thread EMT(pVCpu)
2859 */
2860VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2861{
2862 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
2863 Assert(!pVCpu->iem.s.cActiveMappings);
2864 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2865}
2866
2867
2868/**
2869 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2870 *
2871 * This is meant to be used for those instructions that VMX provides only the
2872 * instruction length.
2873 *
2874 * @returns Strict VBox status code.
2875 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2876 * @param pExitInfo Pointer to the VM-exit information.
2877 * @param cbInstr The instruction length in bytes.
2878 * @thread EMT(pVCpu)
2879 */
2880VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2881{
2882 VBOXSTRICTRC rcStrict = iemVmxVmexitInstr(pVCpu, uExitReason, cbInstr);
2883 Assert(!pVCpu->iem.s.cActiveMappings);
2884 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2885}
2886
2887
2888/**
2889 * VMX VM-exit handler for VM-exits due to instruction execution.
2890 *
2891 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2892 * instruction information and Exit qualification fields.
2893 *
2894 * @param pVCpu The cross context virtual CPU structure.
2895 * @param uExitReason The VM-exit reason.
2896 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2897 * @param cbInstr The instruction length in bytes.
2898 *
2899 * @remarks Do not use this for INS/OUTS instruction.
2900 */
2901VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT
2902{
2903#ifdef VBOX_STRICT
2904 /*
2905 * To prevent us from shooting ourselves in the foot.
2906 * The follow instructions convey specific info that require using their respective handlers.
2907 */
2908 switch (uExitReason)
2909 {
2910 case VMX_EXIT_INVEPT:
2911 case VMX_EXIT_INVPCID:
2912 case VMX_EXIT_INVVPID:
2913 case VMX_EXIT_LDTR_TR_ACCESS:
2914 case VMX_EXIT_GDTR_IDTR_ACCESS:
2915 case VMX_EXIT_VMCLEAR:
2916 case VMX_EXIT_VMPTRLD:
2917 case VMX_EXIT_VMPTRST:
2918 case VMX_EXIT_VMREAD:
2919 case VMX_EXIT_VMWRITE:
2920 case VMX_EXIT_VMXON:
2921 case VMX_EXIT_XRSTORS:
2922 case VMX_EXIT_XSAVES:
2923 case VMX_EXIT_RDRAND:
2924 case VMX_EXIT_RDSEED:
2925 break;
2926 default:
2927 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2928 break;
2929 }
2930#endif
2931
2932 /*
2933 * Update the Exit qualification field with displacement bytes.
2934 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2935 */
2936 /* Construct the VM-exit instruction information. */
2937 RTGCPTR GCPtrDisp;
2938 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2939
2940 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO(uExitReason, GCPtrDisp, uInstrInfo, cbInstr);
2941 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2942}
2943
2944
2945/**
2946 * VMX VM-exit handler for VM-exits due to INVLPG.
2947 *
2948 * @returns Strict VBox status code.
2949 * @param pVCpu The cross context virtual CPU structure.
2950 * @param GCPtrPage The guest-linear address of the page being invalidated.
2951 * @param cbInstr The instruction length in bytes.
2952 */
2953VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT
2954{
2955 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_INVLPG, GCPtrPage, cbInstr);
2956 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2957 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2958}
2959
2960
2961/**
2962 * VMX VM-exit handler for VM-exits due to LMSW.
2963 *
2964 * @returns Strict VBox status code.
2965 * @param pVCpu The cross context virtual CPU structure.
2966 * @param uGuestCr0 The current guest CR0.
2967 * @param pu16NewMsw The machine-status word specified in LMSW's source
2968 * operand. This will be updated depending on the VMX
2969 * guest/host CR0 mask if LMSW is not intercepted.
2970 * @param GCPtrEffDst The guest-linear address of the source operand in case
2971 * of a memory operand. For register operand, pass
2972 * NIL_RTGCPTR.
2973 * @param cbInstr The instruction length in bytes.
2974 */
2975VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
2976 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT
2977{
2978 Assert(pu16NewMsw);
2979
2980 uint16_t const uNewMsw = *pu16NewMsw;
2981 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2982 {
2983 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2984 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2985 VMXVEXITINFO ExitInfo
2986 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
2987 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2988 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2989 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw)
2990 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW),
2991 cbInstr);
2992 if (fMemOperand)
2993 {
2994 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2995 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
2996 }
2997 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2998 }
2999
3000 /*
3001 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
3002 * CR0 guest/host mask must be left unmodified.
3003 *
3004 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3005 */
3006 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3007 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
3008 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
3009
3010 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3011}
3012
3013
3014/**
3015 * VMX VM-exit handler for VM-exits due to CLTS.
3016 *
3017 * @returns Strict VBox status code.
3018 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
3019 * VM-exit but must not modify the guest CR0.TS bit.
3020 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
3021 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
3022 * CR0 fixed bits in VMX operation).
3023 * @param pVCpu The cross context virtual CPU structure.
3024 * @param cbInstr The instruction length in bytes.
3025 */
3026VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3027{
3028 /*
3029 * If CR0.TS is owned by the host:
3030 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
3031 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
3032 * CLTS instruction completes without clearing CR0.TS.
3033 *
3034 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3035 */
3036 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3037 if (fGstHostMask & X86_CR0_TS)
3038 {
3039 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u & X86_CR0_TS)
3040 {
3041 Log2(("clts: Guest intercept -> VM-exit\n"));
3042 VMXVEXITINFO const ExitInfo
3043 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3044 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
3045 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
3046 VMX_EXIT_QUAL_CRX_ACCESS_CLTS),
3047 cbInstr);
3048 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3049 }
3050 return VINF_VMX_MODIFIES_BEHAVIOR;
3051 }
3052
3053 /*
3054 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
3055 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
3056 */
3057 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3058}
3059
3060
3061/**
3062 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
3063 * (CR0/CR4 write).
3064 *
3065 * @returns Strict VBox status code.
3066 * @param pVCpu The cross context virtual CPU structure.
3067 * @param iCrReg The control register (either CR0 or CR4).
3068 * @param uGuestCrX The current guest CR0/CR4.
3069 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
3070 * VM-exit is caused.
3071 * @param iGReg The general register from which the CR0/CR4 value is being
3072 * loaded.
3073 * @param cbInstr The instruction length in bytes.
3074 */
3075VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX,
3076 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3077{
3078 Assert(puNewCrX);
3079 Assert(iCrReg == 0 || iCrReg == 4);
3080 Assert(iGReg < X86_GREG_COUNT);
3081
3082 uint64_t const uNewCrX = *puNewCrX;
3083 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
3084 {
3085 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
3086 VMXVEXITINFO const ExitInfo
3087 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3088 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
3089 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3090 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3091 cbInstr);
3092 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3093 }
3094
3095 /*
3096 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
3097 * must not be modified the instruction.
3098 *
3099 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3100 */
3101 uint64_t uGuestCrX;
3102 uint64_t fGstHostMask;
3103 if (iCrReg == 0)
3104 {
3105 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3106 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
3107 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3108 }
3109 else
3110 {
3111 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3112 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
3113 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
3114 }
3115
3116 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3117 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3118}
3119
3120
3121/**
3122 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3123 *
3124 * @returns VBox strict status code.
3125 * @param pVCpu The cross context virtual CPU structure.
3126 * @param iGReg The general register to which the CR3 value is being stored.
3127 * @param cbInstr The instruction length in bytes.
3128 */
3129VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3130{
3131 Assert(iGReg < X86_GREG_COUNT);
3132 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3133
3134 /*
3135 * If the CR3-store exiting control is set, we must cause a VM-exit.
3136 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3137 */
3138 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3139 {
3140 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3141 VMXVEXITINFO const ExitInfo
3142 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3143 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3144 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3145 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3146 cbInstr);
3147 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3148 }
3149 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3150}
3151
3152
3153/**
3154 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3155 *
3156 * @returns VBox strict status code.
3157 * @param pVCpu The cross context virtual CPU structure.
3158 * @param uNewCr3 The new CR3 value.
3159 * @param iGReg The general register from which the CR3 value is being
3160 * loaded.
3161 * @param cbInstr The instruction length in bytes.
3162 */
3163VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3164{
3165 Assert(iGReg < X86_GREG_COUNT);
3166
3167 /*
3168 * If the CR3-load exiting control is set and the new CR3 value does not
3169 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3170 *
3171 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3172 */
3173 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3174 {
3175 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3176 VMXVEXITINFO const ExitInfo
3177 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3178 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3179 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3180 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
3181 VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3182 cbInstr);
3183 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3184 }
3185 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3186}
3187
3188
3189/**
3190 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3191 *
3192 * @returns VBox strict status code.
3193 * @param pVCpu The cross context virtual CPU structure.
3194 * @param iGReg The general register to which the CR8 value is being stored.
3195 * @param cbInstr The instruction length in bytes.
3196 */
3197VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3198{
3199 Assert(iGReg < X86_GREG_COUNT);
3200
3201 /*
3202 * If the CR8-store exiting control is set, we must cause a VM-exit.
3203 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3204 */
3205 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3206 {
3207 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3208 VMXVEXITINFO const ExitInfo
3209 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3210 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3211 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3212 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3213 cbInstr);
3214 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3215 }
3216 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3217}
3218
3219
3220/**
3221 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3222 *
3223 * @returns VBox strict status code.
3224 * @param pVCpu The cross context virtual CPU structure.
3225 * @param iGReg The general register from which the CR8 value is being
3226 * loaded.
3227 * @param cbInstr The instruction length in bytes.
3228 */
3229VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3230{
3231 Assert(iGReg < X86_GREG_COUNT);
3232
3233 /*
3234 * If the CR8-load exiting control is set, we must cause a VM-exit.
3235 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3236 */
3237 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3238 {
3239 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3240 VMXVEXITINFO const ExitInfo
3241 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3242 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3243 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3244 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3245 cbInstr);
3246 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3247 }
3248 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3249}
3250
3251
3252/**
3253 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3254 * GReg,DRx' (DRx read).
3255 *
3256 * @returns VBox strict status code.
3257 * @param pVCpu The cross context virtual CPU structure.
3258 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3259 * VMXINSTRID_MOV_FROM_DRX).
3260 * @param iDrReg The debug register being accessed.
3261 * @param iGReg The general register to/from which the DRx value is being
3262 * store/loaded.
3263 * @param cbInstr The instruction length in bytes.
3264 */
3265VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg,
3266 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3267{
3268 Assert(iDrReg <= 7);
3269 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3270 Assert(iGReg < X86_GREG_COUNT);
3271
3272 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3273 {
3274 VMXVEXITINFO const ExitInfo
3275 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_DRX,
3276 RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3277 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg)
3278 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION,
3279 uInstrId == VMXINSTRID_MOV_TO_DRX
3280 ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3281 : VMX_EXIT_QUAL_DRX_DIRECTION_READ),
3282 cbInstr);
3283 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3284 }
3285
3286 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3287}
3288
3289
3290/**
3291 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3292 *
3293 * @returns VBox strict status code.
3294 * @param pVCpu The cross context virtual CPU structure.
3295 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3296 * VMXINSTRID_IO_OUT).
3297 * @param u16Port The I/O port being accessed.
3298 * @param fImm Whether the I/O port was encoded using an immediate operand
3299 * or the implicit DX register.
3300 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3301 * @param cbInstr The instruction length in bytes.
3302 */
3303VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3304 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT
3305{
3306 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3307 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3308
3309 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3310 {
3311 VMXVEXITINFO const ExitInfo
3312 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_IO_INSTR,
3313 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3314 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3315 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port)
3316 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION,
3317 uInstrId == VMXINSTRID_IO_IN
3318 ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3319 : VMX_EXIT_QUAL_IO_DIRECTION_OUT),
3320 cbInstr);
3321 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3322 }
3323 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3324}
3325
3326
3327/**
3328 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3329 *
3330 * @returns VBox strict status code.
3331 * @param pVCpu The cross context virtual CPU structure.
3332 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3333 * VMXINSTRID_IO_OUTS).
3334 * @param u16Port The I/O port being accessed.
3335 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3336 * @param fRep Whether the instruction has a REP prefix or not.
3337 * @param ExitInstrInfo The VM-exit instruction info. field.
3338 * @param cbInstr The instruction length in bytes.
3339 */
3340VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3341 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT
3342{
3343 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3344 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3345 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3346 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3347 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3348
3349 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3350 {
3351 /*
3352 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3353 */
3354 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3355 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3356 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3357 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3358 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3359
3360 uint32_t uDirection;
3361 uint64_t uGuestLinearAddr;
3362 if (uInstrId == VMXINSTRID_IO_INS)
3363 {
3364 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3365 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3366 }
3367 else
3368 {
3369 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3370 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3371 }
3372
3373 /*
3374 * If the segment is unusable, the guest-linear address in undefined.
3375 * We shall clear it for consistency.
3376 *
3377 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3378 */
3379 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3380 uGuestLinearAddr = 0;
3381
3382 VMXVEXITINFO const ExitInfo
3383 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_AND_LIN_ADDR(VMX_EXIT_IO_INSTR,
3384 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3385 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3386 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3387 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3388 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING,
3389 VMX_EXIT_QUAL_IO_ENCODING_DX)
3390 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port),
3391 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo
3392 ? ExitInstrInfo.u : 0,
3393 cbInstr,
3394 uGuestLinearAddr);
3395 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3396 }
3397
3398 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3399}
3400
3401
3402/**
3403 * VMX VM-exit handler for VM-exits due to MWAIT.
3404 *
3405 * @returns VBox strict status code.
3406 * @param pVCpu The cross context virtual CPU structure.
3407 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3408 * @param cbInstr The instruction length in bytes.
3409 */
3410VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT
3411{
3412 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MWAIT, fMonitorHwArmed, cbInstr);
3413 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3414}
3415
3416
3417/**
3418 * VMX VM-exit handler for VM-exits due to PAUSE.
3419 *
3420 * @returns VBox strict status code.
3421 * @param pVCpu The cross context virtual CPU structure.
3422 * @param cbInstr The instruction length in bytes.
3423 */
3424static VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3425{
3426 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
3427
3428 /*
3429 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3430 * "PAUSE-loop exiting" control.
3431 *
3432 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3433 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3434 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3435 * a VM-exit.
3436 *
3437 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3438 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3439 */
3440 bool fIntercept = false;
3441 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3442 fIntercept = true;
3443 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3444 && pVCpu->iem.s.uCpl == 0)
3445 {
3446 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3447
3448 /*
3449 * A previous-PAUSE-tick value of 0 is used to identify the first time
3450 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3451 * consider this to be the first execution of PAUSE in a loop according
3452 * to the Intel.
3453 *
3454 * All subsequent records for the previous-PAUSE-tick we ensure that it
3455 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3456 */
3457 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3458 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3459 uint64_t const uTick = TMCpuTickGet(pVCpu);
3460 uint32_t const uPleGap = pVmcs->u32PleGap;
3461 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3462 if ( *puPrevPauseTick == 0
3463 || uTick - *puPrevPauseTick > uPleGap)
3464 *puFirstPauseLoopTick = uTick;
3465 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3466 fIntercept = true;
3467
3468 *puPrevPauseTick = uTick | 1;
3469 }
3470
3471 if (fIntercept)
3472 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3473
3474 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3475}
3476
3477
3478/**
3479 * VMX VM-exit handler for VM-exits due to task switches.
3480 *
3481 * @returns VBox strict status code.
3482 * @param pVCpu The cross context virtual CPU structure.
3483 * @param enmTaskSwitch The cause of the task switch.
3484 * @param SelNewTss The selector of the new TSS.
3485 * @param cbInstr The instruction length in bytes.
3486 */
3487VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT
3488{
3489 /*
3490 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3491 *
3492 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3493 * instruction or delivery of the exception generated by one of these instructions
3494 * lead to a task switch through a task gate in the IDT, we need to provide the
3495 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3496 * leaves the VM-exit instruction length field undefined.
3497 *
3498 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3499 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3500 */
3501 Assert(cbInstr <= 15);
3502
3503 uint8_t uType;
3504 switch (enmTaskSwitch)
3505 {
3506 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3507 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3508 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3509 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3510 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3511 }
3512
3513 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3514 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3515 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3516 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3517}
3518
3519
3520/**
3521 * VMX VM-exit handler for trap-like VM-exits.
3522 *
3523 * @returns VBox strict status code.
3524 * @param pVCpu The cross context virtual CPU structure.
3525 * @param pExitInfo Pointer to the VM-exit information.
3526 * @param pExitEventInfo Pointer to the VM-exit event information.
3527 */
3528static VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
3529{
3530 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3531 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3532 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3533}
3534
3535
3536/**
3537 * Interface for HM and EM to emulate a trap-like VM-exit (MTF, APIC-write,
3538 * Virtualized-EOI, TPR-below threshold).
3539 *
3540 * @returns Strict VBox status code.
3541 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3542 * @param pExitInfo Pointer to the VM-exit information.
3543 * @thread EMT(pVCpu)
3544 */
3545VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTrapLike(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3546{
3547 Assert(pExitInfo);
3548 VBOXSTRICTRC rcStrict = iemVmxVmexitTrapLikeWithInfo(pVCpu, pExitInfo);
3549 Assert(!pVCpu->iem.s.cActiveMappings);
3550 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3551}
3552
3553
3554/**
3555 * VMX VM-exit handler for VM-exits due to task switches.
3556 *
3557 * This is intended for task switches where the caller provides all the relevant
3558 * VM-exit information.
3559 *
3560 * @returns VBox strict status code.
3561 * @param pVCpu The cross context virtual CPU structure.
3562 * @param pExitInfo Pointer to the VM-exit information.
3563 * @param pExitEventInfo Pointer to the VM-exit event information.
3564 */
3565static VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3566 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3567{
3568 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3569 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3570 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3571 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3572 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3573}
3574
3575
3576/**
3577 * Interface for HM and EM to emulate a VM-exit due to a task switch.
3578 *
3579 * @returns Strict VBox status code.
3580 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3581 * @param pExitInfo Pointer to the VM-exit information.
3582 * @param pExitEventInfo Pointer to the VM-exit event information.
3583 * @thread EMT(pVCpu)
3584 */
3585VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTaskSwitch(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3586{
3587 Assert(pExitInfo);
3588 Assert(pExitEventInfo);
3589 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3590 VBOXSTRICTRC rcStrict = iemVmxVmexitTaskSwitchWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3591 Assert(!pVCpu->iem.s.cActiveMappings);
3592 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3593}
3594
3595
3596/**
3597 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3598 *
3599 * @returns VBox strict status code.
3600 * @param pVCpu The cross context virtual CPU structure.
3601 */
3602VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
3603{
3604 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3605 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3606
3607 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3608 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3609
3610 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3611 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3612 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
3613
3614 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3615 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3616}
3617
3618
3619/**
3620 * Interface for HM and EM to emulate VM-exit due to expiry of the preemption timer.
3621 *
3622 * @returns Strict VBox status code.
3623 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3624 * @thread EMT(pVCpu)
3625 */
3626VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3627{
3628 VBOXSTRICTRC rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
3629 Assert(!pVCpu->iem.s.cActiveMappings);
3630 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3631}
3632
3633
3634/**
3635 * VMX VM-exit handler for VM-exits due to external interrupts.
3636 *
3637 * @returns VBox strict status code.
3638 * @param pVCpu The cross context virtual CPU structure.
3639 * @param uVector The external interrupt vector (pass 0 if the interrupt
3640 * is still pending since we typically won't know the
3641 * vector).
3642 * @param fIntPending Whether the external interrupt is pending or
3643 * acknowledged in the interrupt controller.
3644 */
3645static VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending) RT_NOEXCEPT
3646{
3647 Assert(!fIntPending || uVector == 0);
3648
3649 /* The VM-exit is subject to "External interrupt exiting" being set. */
3650 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3651 {
3652 if (fIntPending)
3653 {
3654 /*
3655 * If the interrupt is pending and we don't need to acknowledge the
3656 * interrupt on VM-exit, cause the VM-exit immediately.
3657 *
3658 * See Intel spec 25.2 "Other Causes Of VM Exits".
3659 */
3660 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3661 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3662
3663 /*
3664 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3665 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3666 * acknowledged that the interrupt has been consumed. Callers would have to call
3667 * us again after getting the vector (and ofc, with fIntPending with false).
3668 */
3669 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3670 }
3671
3672 /*
3673 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3674 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3675 * all set, we need to record the vector of the external interrupt in the
3676 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3677 *
3678 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3679 */
3680 uint32_t uExitIntInfo;
3681 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3682 {
3683 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3684 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3685 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3686 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3687 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3688 }
3689 else
3690 uExitIntInfo = 0;
3691 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3692
3693 /*
3694 * Cause the VM-exit whether or not the vector has been stored
3695 * in the VM-exit interruption-information field.
3696 */
3697 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3698 }
3699
3700 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3701}
3702
3703
3704/**
3705 * Interface for HM and EM to emulate VM-exit due to external interrupts.
3706 *
3707 * @returns Strict VBox status code.
3708 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3709 * @param uVector The external interrupt vector (pass 0 if the external
3710 * interrupt is still pending).
3711 * @param fIntPending Whether the external interrupt is pending or
3712 * acknowledged in the interrupt controller.
3713 * @thread EMT(pVCpu)
3714 */
3715VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3716{
3717 VBOXSTRICTRC rcStrict = iemVmxVmexitExtInt(pVCpu, uVector, fIntPending);
3718 Assert(!pVCpu->iem.s.cActiveMappings);
3719 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3720}
3721
3722
3723/**
3724 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3725 * an event.
3726 *
3727 * @returns VBox strict status code.
3728 * @param pVCpu The cross context virtual CPU structure.
3729 */
3730VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT
3731{
3732 uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
3733 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3734 {
3735 /*
3736 * The NMI-unblocking due to IRET field need not be set for double faults.
3737 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3738 */
3739 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3740 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3741 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3742 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3743 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3744 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3745 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3746 }
3747
3748 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3749}
3750
3751
3752/**
3753 * VMX VM-exit handler for VM-exit due to delivery of an events.
3754 *
3755 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3756 * all the relevant VM-exit information.
3757 *
3758 * @returns VBox strict status code.
3759 * @param pVCpu The cross context virtual CPU structure.
3760 * @param pExitInfo Pointer to the VM-exit information.
3761 * @param pExitEventInfo Pointer to the VM-exit event information.
3762 */
3763static VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3764{
3765 Assert(pExitInfo);
3766 Assert(pExitEventInfo);
3767 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3768 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3769
3770 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3771 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3772 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3773 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3774 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3775 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3776}
3777
3778
3779/**
3780 * Interface for HM and EM to emulate VM-exit due to NMIs.
3781 *
3782 * @returns Strict VBox status code.
3783 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3784 * @thread EMT(pVCpu)
3785 */
3786VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcptNmi(PVMCPUCC pVCpu)
3787{
3788 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_ONLY_REASON(VMX_EXIT_XCPT_OR_NMI);
3789 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_INT( RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1)
3790 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE,
3791 VMX_EXIT_INT_INFO_TYPE_NMI)
3792 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR,
3793 X86_XCPT_NMI),
3794 0);
3795 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
3796 Assert(!pVCpu->iem.s.cActiveMappings);
3797 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3798}
3799
3800
3801/**
3802 * Interface for HM and EM to emulate VM-exit due to exceptions.
3803 *
3804 * Exception includes NMIs, software exceptions (those generated by INT3 or
3805 * INTO) and privileged software exceptions (those generated by INT1/ICEBP).
3806 *
3807 * @returns Strict VBox status code.
3808 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3809 * @param pExitInfo Pointer to the VM-exit information.
3810 * @param pExitEventInfo Pointer to the VM-exit event information.
3811 * @thread EMT(pVCpu)
3812 */
3813VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcpt(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3814{
3815 Assert(pExitInfo);
3816 Assert(pExitEventInfo);
3817 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3818 Assert(!pVCpu->iem.s.cActiveMappings);
3819 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3820}
3821
3822
3823/**
3824 * VMX VM-exit handler for VM-exits due to delivery of an event.
3825 *
3826 * @returns VBox strict status code.
3827 * @param pVCpu The cross context virtual CPU structure.
3828 * @param uVector The interrupt / exception vector.
3829 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3830 * @param uErrCode The error code associated with the event.
3831 * @param uCr2 The CR2 value in case of a \#PF exception.
3832 * @param cbInstr The instruction length in bytes.
3833 */
3834VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode,
3835 uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT
3836{
3837 /*
3838 * If the event is being injected as part of VM-entry, it is -not- subject to event
3839 * intercepts in the nested-guest. However, secondary exceptions that occur during
3840 * injection of any event -are- subject to event interception.
3841 *
3842 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3843 */
3844 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3845 {
3846 /*
3847 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3848 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3849 *
3850 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3851 */
3852 if ( uVector == X86_XCPT_NMI
3853 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3854 && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3855 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3856 else
3857 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3858
3859 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3860 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3861 }
3862
3863 /*
3864 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3865 * If not, the caller will continue delivery of the external interrupt as it would
3866 * normally. The interrupt is no longer pending in the interrupt controller at this
3867 * point.
3868 */
3869 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3870 {
3871 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
3872 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3873 }
3874
3875 /*
3876 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3877 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3878 * interrupts.
3879 */
3880 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3881 bool fIntercept;
3882 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3883 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3884 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3885 else
3886 {
3887 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3888 fIntercept = false;
3889 }
3890
3891 /*
3892 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3893 * relevant VM-exit information and cause the VM-exit.
3894 */
3895 if (fIntercept)
3896 {
3897 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3898
3899 /* Construct the rest of the event related information fields and cause the VM-exit. */
3900 uint64_t u64ExitQual;
3901 if (uVector == X86_XCPT_PF)
3902 {
3903 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3904 u64ExitQual = uCr2;
3905 }
3906 else if (uVector == X86_XCPT_DB)
3907 {
3908 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3909 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3910 }
3911 else
3912 u64ExitQual = 0;
3913
3914 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3915 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3916 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3917 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3918 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3919 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3920 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3921 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3922 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3923 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3924
3925 /*
3926 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3927 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3928 * length.
3929 */
3930 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3931 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3932 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3933 else
3934 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3935
3936 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3937 }
3938
3939 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3940}
3941
3942
3943/**
3944 * VMX VM-exit handler for EPT misconfiguration.
3945 *
3946 * @param pVCpu The cross context virtual CPU structure.
3947 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3948 * This need not be page aligned (e.g. nested-guest in real
3949 * mode).
3950 */
3951static VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr) RT_NOEXCEPT
3952{
3953 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3954 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3955}
3956
3957
3958/**
3959 * VMX VM-exit handler for EPT misconfiguration.
3960 *
3961 * This is intended for EPT misconfigurations where the caller provides all the
3962 * relevant VM-exit information.
3963 *
3964 * @param pVCpu The cross context virtual CPU structure.
3965 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3966 * This need not be page aligned (e.g. nested-guest in real
3967 * mode).
3968 * @param pExitEventInfo Pointer to the VM-exit event information.
3969 */
3970static VBOXSTRICTRC iemVmxVmexitEptMisconfigWithInfo(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3971{
3972 Assert(pExitEventInfo);
3973 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3974 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3975 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3976 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3977 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3978}
3979
3980
3981/**
3982 * Interface for HM and EM to emulate a VM-exit due to an EPT misconfiguration.
3983 *
3984 * @returns Strict VBox status code.
3985 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3986 * @param GCPhysAddr The nested-guest physical address causing the EPT
3987 * misconfiguration.
3988 * @param pExitEventInfo Pointer to the VM-exit event information.
3989 * @thread EMT(pVCpu)
3990 */
3991VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo)
3992{
3993 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
3994
3995 iemInitExec(pVCpu, false /*fBypassHandlers*/);
3996 VBOXSTRICTRC rcStrict = iemVmxVmexitEptMisconfigWithInfo(pVCpu, GCPhysAddr, pExitEventInfo);
3997 Assert(!pVCpu->iem.s.cActiveMappings);
3998 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
3999}
4000
4001
4002/**
4003 * VMX VM-exit handler for EPT violation.
4004 *
4005 * @param pVCpu The cross context virtual CPU structure.
4006 * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
4007 * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
4008 * @param fEptAccess The EPT paging structure bits.
4009 * @param GCPhysAddr The physical address causing the EPT violation. This
4010 * need not be page aligned (e.g. nested-guest in real
4011 * mode).
4012 * @param fIsLinearAddrValid Whether translation of a linear address caused this
4013 * EPT violation. If @c false, GCPtrAddr must be 0.
4014 * @param GCPtrAddr The linear address causing the EPT violation.
4015 * @param cbInstr The VM-exit instruction length.
4016 */
4017static VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail,
4018 uint64_t fEptAccess, RTGCPHYS GCPhysAddr, bool fIsLinearAddrValid,
4019 uint64_t GCPtrAddr, uint8_t cbInstr) RT_NOEXCEPT
4020{
4021 /*
4022 * If the linear address isn't valid (can happen when loading PDPTEs
4023 * as part of MOV CR execution) the linear address field is undefined.
4024 * While we can leave it this way, it's preferable to zero it for consistency.
4025 */
4026 Assert(fIsLinearAddrValid || GCPtrAddr == 0);
4027
4028 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
4029 bool const fSupportsAccessDirty = RT_BOOL(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
4030
4031 uint32_t const fDataRdMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_READ;
4032 uint32_t const fDataWrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE;
4033 uint32_t const fInstrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_EXEC;
4034 bool const fDataRead = ((fAccess & fDataRdMask) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
4035 bool const fDataWrite = ((fAccess & fDataWrMask) == IEM_ACCESS_DATA_W) | fSupportsAccessDirty;
4036 bool const fInstrFetch = ((fAccess & fInstrMask) == IEM_ACCESS_INSTRUCTION);
4037 bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
4038 bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
4039 bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
4040 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
4041 bool const fIsLinearToPhysAddr = fIsLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
4042
4043 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
4044 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
4045 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
4046 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
4047 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
4048 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
4049 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fIsLinearAddrValid)
4050 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fIsLinearToPhysAddr)
4051 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
4052
4053#ifdef VBOX_STRICT
4054 uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
4055 uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
4056 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
4057 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
4058 Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
4059 Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
4060#endif
4061
4062 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
4063 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
4064 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
4065
4066 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
4067}
4068
4069
4070/**
4071 * VMX VM-exit handler for EPT violation.
4072 *
4073 * This is intended for EPT violations where the caller provides all the
4074 * relevant VM-exit information.
4075 *
4076 * @returns VBox strict status code.
4077 * @param pVCpu The cross context virtual CPU structure.
4078 * @param pExitInfo Pointer to the VM-exit information.
4079 * @param pExitEventInfo Pointer to the VM-exit event information.
4080 */
4081static VBOXSTRICTRC iemVmxVmexitEptViolationWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4082 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4083{
4084 Assert(pExitInfo);
4085 Assert(pExitEventInfo);
4086 Assert(pExitInfo->uReason == VMX_EXIT_EPT_VIOLATION);
4087 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4088
4089 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4090 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4091
4092 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
4093 if (pExitInfo->u64Qual & VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID_MASK)
4094 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
4095 else
4096 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, 0);
4097 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4098 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, pExitInfo->u64Qual);
4099}
4100
4101
4102/**
4103 * Interface for HM and EM to emulate a VM-exit due to an EPT violation.
4104 *
4105 * @returns Strict VBox status code.
4106 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4107 * @param pExitInfo Pointer to the VM-exit information.
4108 * @param pExitEventInfo Pointer to the VM-exit event information.
4109 * @thread EMT(pVCpu)
4110 */
4111VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptViolation(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4112 PCVMXVEXITEVENTINFO pExitEventInfo)
4113{
4114 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
4115
4116 iemInitExec(pVCpu, false /*fBypassHandlers*/);
4117 VBOXSTRICTRC rcStrict = iemVmxVmexitEptViolationWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4118 Assert(!pVCpu->iem.s.cActiveMappings);
4119 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
4120}
4121
4122
4123/**
4124 * VMX VM-exit handler for EPT-induced VM-exits.
4125 *
4126 * @param pVCpu The cross context virtual CPU structure.
4127 * @param pWalk The page walk info.
4128 * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
4129 * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
4130 * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
4131 * applicable.
4132 */
4133VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT
4134{
4135 Assert(pWalk->fIsSlat);
4136 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
4137 Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
4138 Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
4139
4140 if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
4141 {
4142 LogFlow(("EptViolation: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4143 uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
4144 return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
4145 pWalk->GCPtr, cbInstr);
4146 }
4147
4148 LogFlow(("EptMisconfig: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4149 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
4150 return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
4151}
4152
4153
4154/**
4155 * VMX VM-exit handler for APIC accesses.
4156 *
4157 * @param pVCpu The cross context virtual CPU structure.
4158 * @param offAccess The offset of the register being accessed.
4159 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4160 */
4161static VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess) RT_NOEXCEPT
4162{
4163 VMXAPICACCESS enmAccess;
4164 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
4165 if (fInEventDelivery)
4166 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
4167 else if ((fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == IEM_ACCESS_INSTRUCTION)
4168 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
4169 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
4170 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4171 else
4172 enmAccess = VMXAPICACCESS_LINEAR_READ;
4173
4174 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
4175 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
4176 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
4177}
4178
4179
4180/**
4181 * VMX VM-exit handler for APIC accesses.
4182 *
4183 * This is intended for APIC accesses where the caller provides all the
4184 * relevant VM-exit information.
4185 *
4186 * @returns VBox strict status code.
4187 * @param pVCpu The cross context virtual CPU structure.
4188 * @param pExitInfo Pointer to the VM-exit information.
4189 * @param pExitEventInfo Pointer to the VM-exit event information.
4190 */
4191static VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4192 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4193{
4194 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
4195 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4196 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
4197 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
4198 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
4199 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4200 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4201 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4202 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
4203}
4204
4205
4206/**
4207 * Interface for HM and EM to virtualize memory-mapped APIC accesses.
4208 *
4209 * @returns Strict VBox status code.
4210 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the memory access was virtualized.
4211 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4212 *
4213 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4214 * @param pExitInfo Pointer to the VM-exit information.
4215 * @param pExitEventInfo Pointer to the VM-exit event information.
4216 * @thread EMT(pVCpu)
4217 */
4218VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicAccess(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
4219{
4220 Assert(pExitInfo);
4221 Assert(pExitEventInfo);
4222 VBOXSTRICTRC rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4223 Assert(!pVCpu->iem.s.cActiveMappings);
4224 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4225}
4226
4227
4228/**
4229 * VMX VM-exit handler for APIC-write VM-exits.
4230 *
4231 * @param pVCpu The cross context virtual CPU structure.
4232 * @param offApic The write to the virtual-APIC page offset that caused this
4233 * VM-exit.
4234 */
4235static VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
4236{
4237 Assert(offApic < XAPIC_OFF_END + 4);
4238 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
4239 offApic &= UINT16_C(0xfff);
4240 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
4241}
4242
4243
4244/**
4245 * Clears any pending virtual-APIC write emulation.
4246 *
4247 * @returns The virtual-APIC offset that was written before clearing it.
4248 * @param pVCpu The cross context virtual CPU structure.
4249 */
4250DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
4251{
4252 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4253 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
4254 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
4255 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
4256 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4257 return offVirtApicWrite;
4258}
4259
4260
4261/**
4262 * Reads a 32-bit register from the virtual-APIC page at the given offset.
4263 *
4264 * @returns The register from the virtual-APIC page.
4265 * @param pVCpu The cross context virtual CPU structure.
4266 * @param offReg The offset of the register being read.
4267 */
4268uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4269{
4270 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4271
4272 uint32_t uReg = 0;
4273 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4274 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4275 AssertMsgStmt(RT_SUCCESS(rc),
4276 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4277 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4278 uReg = 0);
4279 return uReg;
4280}
4281
4282
4283/**
4284 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4285 *
4286 * @returns The register from the virtual-APIC page.
4287 * @param pVCpu The cross context virtual CPU structure.
4288 * @param offReg The offset of the register being read.
4289 */
4290static uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4291{
4292 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4293
4294 uint64_t uReg = 0;
4295 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4296 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4297 AssertMsgStmt(RT_SUCCESS(rc),
4298 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4299 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4300 uReg = 0);
4301 return uReg;
4302}
4303
4304
4305/**
4306 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4307 *
4308 * @param pVCpu The cross context virtual CPU structure.
4309 * @param offReg The offset of the register being written.
4310 * @param uReg The register value to write.
4311 */
4312void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT
4313{
4314 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4315
4316 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4317 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4318 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4319 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4320}
4321
4322
4323/**
4324 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4325 *
4326 * @param pVCpu The cross context virtual CPU structure.
4327 * @param offReg The offset of the register being written.
4328 * @param uReg The register value to write.
4329 */
4330static void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg) RT_NOEXCEPT
4331{
4332 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4333
4334 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4335 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4336 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4337 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4338}
4339
4340
4341/**
4342 * Sets the vector in a virtual-APIC 256-bit sparse register.
4343 *
4344 * @param pVCpu The cross context virtual CPU structure.
4345 * @param offReg The offset of the 256-bit spare register.
4346 * @param uVector The vector to set.
4347 *
4348 * @remarks This is based on our APIC device code.
4349 */
4350static void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4351{
4352 /* Determine the vector offset within the chunk. */
4353 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4354
4355 /* Read the chunk at the offset. */
4356 uint32_t uReg;
4357 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4358 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4359 if (RT_SUCCESS(rc))
4360 {
4361 /* Modify the chunk. */
4362 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4363 uReg |= RT_BIT(idxVectorBit);
4364
4365 /* Write the chunk. */
4366 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4367 AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4368 uVector, offReg, GCPhysVirtApic, rc));
4369 }
4370 else
4371 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4372 uVector, offReg, GCPhysVirtApic, rc));
4373}
4374
4375
4376/**
4377 * Clears the vector in a virtual-APIC 256-bit sparse register.
4378 *
4379 * @param pVCpu The cross context virtual CPU structure.
4380 * @param offReg The offset of the 256-bit spare register.
4381 * @param uVector The vector to clear.
4382 *
4383 * @remarks This is based on our APIC device code.
4384 */
4385static void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4386{
4387 /* Determine the vector offset within the chunk. */
4388 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4389
4390 /* Read the chunk at the offset. */
4391 uint32_t uReg;
4392 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4393 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4394 if (RT_SUCCESS(rc))
4395 {
4396 /* Modify the chunk. */
4397 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4398 uReg &= ~RT_BIT(idxVectorBit);
4399
4400 /* Write the chunk. */
4401 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4402 AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4403 uVector, offReg, GCPhysVirtApic, rc));
4404 }
4405 else
4406 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4407 uVector, offReg, GCPhysVirtApic, rc));
4408}
4409
4410
4411/**
4412 * Checks if a memory access to the APIC-access page must causes an APIC-access
4413 * VM-exit.
4414 *
4415 * @param pVCpu The cross context virtual CPU structure.
4416 * @param offAccess The offset of the register being accessed.
4417 * @param cbAccess The size of the access in bytes.
4418 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4419 *
4420 * @remarks This must not be used for MSR-based APIC-access page accesses!
4421 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4422 */
4423static bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4424{
4425 Assert(cbAccess > 0);
4426 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4427
4428 /*
4429 * We must cause a VM-exit if any of the following are true:
4430 * - TPR shadowing isn't active.
4431 * - The access size exceeds 32-bits.
4432 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4433 *
4434 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4435 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4436 */
4437 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4438 || cbAccess > sizeof(uint32_t)
4439 || ((offAccess + cbAccess - 1) & 0xc)
4440 || offAccess >= XAPIC_OFF_END + 4)
4441 return true;
4442
4443 /*
4444 * If the access is part of an operation where we have already
4445 * virtualized a virtual-APIC write, we must cause a VM-exit.
4446 */
4447 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4448 return true;
4449
4450 /*
4451 * Check write accesses to the APIC-access page that cause VM-exits.
4452 */
4453 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4454 {
4455 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4456 {
4457 /*
4458 * With APIC-register virtualization, a write access to any of the
4459 * following registers are virtualized. Accessing any other register
4460 * causes a VM-exit.
4461 */
4462 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4463 switch (offAlignedAccess)
4464 {
4465 case XAPIC_OFF_ID:
4466 case XAPIC_OFF_TPR:
4467 case XAPIC_OFF_EOI:
4468 case XAPIC_OFF_LDR:
4469 case XAPIC_OFF_DFR:
4470 case XAPIC_OFF_SVR:
4471 case XAPIC_OFF_ESR:
4472 case XAPIC_OFF_ICR_LO:
4473 case XAPIC_OFF_ICR_HI:
4474 case XAPIC_OFF_LVT_TIMER:
4475 case XAPIC_OFF_LVT_THERMAL:
4476 case XAPIC_OFF_LVT_PERF:
4477 case XAPIC_OFF_LVT_LINT0:
4478 case XAPIC_OFF_LVT_LINT1:
4479 case XAPIC_OFF_LVT_ERROR:
4480 case XAPIC_OFF_TIMER_ICR:
4481 case XAPIC_OFF_TIMER_DCR:
4482 break;
4483 default:
4484 return true;
4485 }
4486 }
4487 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4488 {
4489 /*
4490 * With virtual-interrupt delivery, a write access to any of the
4491 * following registers are virtualized. Accessing any other register
4492 * causes a VM-exit.
4493 *
4494 * Note! The specification does not allow writing to offsets in-between
4495 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4496 */
4497 switch (offAccess)
4498 {
4499 case XAPIC_OFF_TPR:
4500 case XAPIC_OFF_EOI:
4501 case XAPIC_OFF_ICR_LO:
4502 break;
4503 default:
4504 return true;
4505 }
4506 }
4507 else
4508 {
4509 /*
4510 * Without APIC-register virtualization or virtual-interrupt delivery,
4511 * only TPR accesses are virtualized.
4512 */
4513 if (offAccess == XAPIC_OFF_TPR)
4514 { /* likely */ }
4515 else
4516 return true;
4517 }
4518 }
4519 else
4520 {
4521 /*
4522 * Check read accesses to the APIC-access page that cause VM-exits.
4523 */
4524 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4525 {
4526 /*
4527 * With APIC-register virtualization, a read access to any of the
4528 * following registers are virtualized. Accessing any other register
4529 * causes a VM-exit.
4530 */
4531 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4532 switch (offAlignedAccess)
4533 {
4534 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4535 case XAPIC_OFF_ID:
4536 case XAPIC_OFF_VERSION:
4537 case XAPIC_OFF_TPR:
4538 case XAPIC_OFF_EOI:
4539 case XAPIC_OFF_LDR:
4540 case XAPIC_OFF_DFR:
4541 case XAPIC_OFF_SVR:
4542 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4543 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4544 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4545 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4546 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4547 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4548 case XAPIC_OFF_ESR:
4549 case XAPIC_OFF_ICR_LO:
4550 case XAPIC_OFF_ICR_HI:
4551 case XAPIC_OFF_LVT_TIMER:
4552 case XAPIC_OFF_LVT_THERMAL:
4553 case XAPIC_OFF_LVT_PERF:
4554 case XAPIC_OFF_LVT_LINT0:
4555 case XAPIC_OFF_LVT_LINT1:
4556 case XAPIC_OFF_LVT_ERROR:
4557 case XAPIC_OFF_TIMER_ICR:
4558 case XAPIC_OFF_TIMER_DCR:
4559 break;
4560 default:
4561 return true;
4562 }
4563 }
4564 else
4565 {
4566 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4567 if (offAccess == XAPIC_OFF_TPR)
4568 { /* likely */ }
4569 else
4570 return true;
4571 }
4572 }
4573
4574 /* The APIC access is virtualized, does not cause a VM-exit. */
4575 return false;
4576}
4577
4578
4579/**
4580 * Virtualizes a memory-based APIC access by certain instructions even though they
4581 * do not use the address to access memory.
4582 *
4583 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4584 * page-faults but do not use the address to access memory.
4585 *
4586 * @param pVCpu The cross context virtual CPU structure.
4587 * @param pGCPhysAccess Pointer to the guest-physical address accessed.
4588 * @param cbAccess The size of the access in bytes.
4589 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4590 */
4591VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4592{
4593 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4594 Assert(pGCPhysAccess);
4595
4596 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
4597 RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
4598 Assert(!(GCPhysApic & GUEST_PAGE_OFFSET_MASK));
4599
4600 if (GCPhysAccess == GCPhysApic)
4601 {
4602 uint16_t const offAccess = *pGCPhysAccess & GUEST_PAGE_OFFSET_MASK;
4603 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4604 if (fIntercept)
4605 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4606
4607 *pGCPhysAccess = GCPhysApic | offAccess;
4608 return VINF_VMX_MODIFIES_BEHAVIOR;
4609 }
4610
4611 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4612}
4613
4614
4615/**
4616 * Virtualizes a memory-based APIC access.
4617 *
4618 * @returns VBox strict status code.
4619 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4620 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4621 *
4622 * @param pVCpu The cross context virtual CPU structure.
4623 * @param offAccess The offset of the register being accessed (within the
4624 * APIC-access page).
4625 * @param cbAccess The size of the access in bytes.
4626 * @param pvData Pointer to the data being written or where to store the data
4627 * being read.
4628 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4629 */
4630static VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess,
4631 void *pvData, uint32_t fAccess) RT_NOEXCEPT
4632{
4633 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4634 Assert(pvData);
4635
4636 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4637 if (fIntercept)
4638 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4639
4640 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4641 {
4642 /*
4643 * A write access to the APIC-access page that is virtualized (rather than
4644 * causing a VM-exit) writes data to the virtual-APIC page.
4645 */
4646 uint32_t const u32Data = *(uint32_t *)pvData;
4647 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4648
4649 /*
4650 * Record the currently updated APIC offset, as we need this later for figuring
4651 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4652 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4653 *
4654 * After completion of the current operation, we need to perform TPR virtualization,
4655 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4656 *
4657 * The current operation may be a REP-prefixed string instruction, execution of any
4658 * other instruction, or delivery of an event through the IDT.
4659 *
4660 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4661 * performed now but later after completion of the current operation.
4662 *
4663 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4664 */
4665 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4666
4667 LogFlowFunc(("Write access at offset %#x not intercepted -> Wrote %#RX32\n", offAccess, u32Data));
4668 }
4669 else
4670 {
4671 /*
4672 * A read access from the APIC-access page that is virtualized (rather than
4673 * causing a VM-exit) returns data from the virtual-APIC page.
4674 *
4675 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4676 */
4677 Assert(fAccess & IEM_ACCESS_TYPE_READ);
4678
4679 Assert(cbAccess <= 4);
4680 Assert(offAccess < XAPIC_OFF_END + 4);
4681 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4682
4683 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4684 u32Data &= s_auAccessSizeMasks[cbAccess];
4685 *(uint32_t *)pvData = u32Data;
4686
4687 LogFlowFunc(("Read access at offset %#x not intercepted -> Read %#RX32\n", offAccess, u32Data));
4688 }
4689
4690 return VINF_VMX_MODIFIES_BEHAVIOR;
4691}
4692
4693
4694/**
4695 * Virtualizes an MSR-based APIC read access.
4696 *
4697 * @returns VBox strict status code.
4698 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4699 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4700 * handled by the x2APIC device.
4701 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4702 * not within the range of valid MSRs, caller must raise \#GP(0).
4703 * @param pVCpu The cross context virtual CPU structure.
4704 * @param idMsr The x2APIC MSR being read.
4705 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4706 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4707 */
4708static VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value) RT_NOEXCEPT
4709{
4710 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4711 Assert(pu64Value);
4712
4713 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4714 {
4715 if ( idMsr >= MSR_IA32_X2APIC_START
4716 && idMsr <= MSR_IA32_X2APIC_END)
4717 {
4718 uint16_t const offReg = (idMsr & 0xff) << 4;
4719 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4720 *pu64Value = u64Value;
4721 return VINF_VMX_MODIFIES_BEHAVIOR;
4722 }
4723 return VERR_OUT_OF_RANGE;
4724 }
4725
4726 if (idMsr == MSR_IA32_X2APIC_TPR)
4727 {
4728 uint16_t const offReg = (idMsr & 0xff) << 4;
4729 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4730 *pu64Value = u64Value;
4731 return VINF_VMX_MODIFIES_BEHAVIOR;
4732 }
4733
4734 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4735}
4736
4737
4738/**
4739 * Virtualizes an MSR-based APIC write access.
4740 *
4741 * @returns VBox strict status code.
4742 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4743 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4744 * not within the range of valid MSRs, caller must raise \#GP(0).
4745 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4746 *
4747 * @param pVCpu The cross context virtual CPU structure.
4748 * @param idMsr The x2APIC MSR being written.
4749 * @param u64Value The value of the x2APIC MSR being written.
4750 */
4751static VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value) RT_NOEXCEPT
4752{
4753 /*
4754 * Check if the access is to be virtualized.
4755 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4756 */
4757 if ( idMsr == MSR_IA32_X2APIC_TPR
4758 || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4759 && ( idMsr == MSR_IA32_X2APIC_EOI
4760 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4761 {
4762 /* Validate the MSR write depending on the register. */
4763 switch (idMsr)
4764 {
4765 case MSR_IA32_X2APIC_TPR:
4766 case MSR_IA32_X2APIC_SELF_IPI:
4767 {
4768 if (u64Value & UINT64_C(0xffffffffffffff00))
4769 return VERR_OUT_OF_RANGE;
4770 break;
4771 }
4772 case MSR_IA32_X2APIC_EOI:
4773 {
4774 if (u64Value != 0)
4775 return VERR_OUT_OF_RANGE;
4776 break;
4777 }
4778 }
4779
4780 /* Write the MSR to the virtual-APIC page. */
4781 uint16_t const offReg = (idMsr & 0xff) << 4;
4782 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4783
4784 /*
4785 * Record the currently updated APIC offset, as we need this later for figuring
4786 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4787 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4788 */
4789 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4790
4791 return VINF_VMX_MODIFIES_BEHAVIOR;
4792 }
4793
4794 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4795}
4796
4797
4798/**
4799 * Interface for HM and EM to virtualize x2APIC MSR accesses.
4800 *
4801 * @returns Strict VBox status code.
4802 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR access was virtualized.
4803 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR access must be handled by
4804 * the x2APIC device.
4805 * @retval VERR_OUT_RANGE if the caller must raise \#GP(0).
4806 *
4807 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4808 * @param idMsr The MSR being read.
4809 * @param pu64Value Pointer to the value being written or where to store the
4810 * value being read.
4811 * @param fWrite Whether this is an MSR write or read access.
4812 * @thread EMT(pVCpu)
4813 */
4814VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVirtApicAccessMsr(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value, bool fWrite)
4815{
4816 Assert(pu64Value);
4817
4818 VBOXSTRICTRC rcStrict;
4819 if (fWrite)
4820 rcStrict = iemVmxVirtApicAccessMsrWrite(pVCpu, idMsr, *pu64Value);
4821 else
4822 rcStrict = iemVmxVirtApicAccessMsrRead(pVCpu, idMsr, pu64Value);
4823 Assert(!pVCpu->iem.s.cActiveMappings);
4824 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4825
4826}
4827
4828
4829/**
4830 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4831 *
4832 * @returns VBox status code.
4833 * @retval VINF_SUCCESS when the highest set bit is found.
4834 * @retval VERR_NOT_FOUND when no bit is set.
4835 *
4836 * @param pVCpu The cross context virtual CPU structure.
4837 * @param offReg The offset of the APIC 256-bit sparse register.
4838 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4839 * set in the register. Only valid when VINF_SUCCESS is
4840 * returned.
4841 *
4842 * @remarks The format of the 256-bit sparse register here mirrors that found in
4843 * real APIC hardware.
4844 */
4845static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4846{
4847 Assert(offReg < XAPIC_OFF_END + 4);
4848 Assert(pidxHighestBit);
4849
4850 /*
4851 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4852 * However, in each fragment only the first 4 bytes are used.
4853 */
4854 uint8_t const cFrags = 8;
4855 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4856 {
4857 uint16_t const offFrag = iFrag * 16;
4858 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4859 if (!u32Frag)
4860 continue;
4861
4862 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4863 Assert(idxHighestBit > 0);
4864 --idxHighestBit;
4865 Assert(idxHighestBit <= UINT8_MAX);
4866 *pidxHighestBit = idxHighestBit;
4867 return VINF_SUCCESS;
4868 }
4869 return VERR_NOT_FOUND;
4870}
4871
4872
4873/**
4874 * Evaluates pending virtual interrupts.
4875 *
4876 * @param pVCpu The cross context virtual CPU structure.
4877 */
4878static void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu) RT_NOEXCEPT
4879{
4880 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4881
4882 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4883 {
4884 uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4885 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4886
4887 if ((uRvi >> 4) > (uPpr >> 4))
4888 {
4889 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4890 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4891 }
4892 else
4893 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4894 }
4895}
4896
4897
4898/**
4899 * Performs PPR virtualization.
4900 *
4901 * @returns VBox strict status code.
4902 * @param pVCpu The cross context virtual CPU structure.
4903 */
4904static void iemVmxPprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4905{
4906 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4907 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4908
4909 /*
4910 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4911 * or EOI-virtualization.
4912 *
4913 * See Intel spec. 29.1.3 "PPR Virtualization".
4914 */
4915 uint8_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4916 uint8_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus) & 0xf0;
4917
4918 uint32_t uPpr;
4919 if ((uTpr & 0xf0) >= uSvi)
4920 uPpr = uTpr;
4921 else
4922 uPpr = uSvi;
4923
4924 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4925 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4926}
4927
4928
4929/**
4930 * Performs VMX TPR virtualization.
4931 *
4932 * @returns VBox strict status code.
4933 * @param pVCpu The cross context virtual CPU structure.
4934 */
4935static VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4936{
4937 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4938
4939 /*
4940 * We should have already performed the virtual-APIC write to the TPR offset
4941 * in the virtual-APIC page. We now perform TPR virtualization.
4942 *
4943 * See Intel spec. 29.1.2 "TPR Virtualization".
4944 */
4945 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4946 {
4947 uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
4948 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4949
4950 /*
4951 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4952 * See Intel spec. 29.1.2 "TPR Virtualization".
4953 */
4954 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4955 {
4956 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4957 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4958 }
4959 }
4960 else
4961 {
4962 iemVmxPprVirtualization(pVCpu);
4963 iemVmxEvalPendingVirtIntrs(pVCpu);
4964 }
4965
4966 return VINF_SUCCESS;
4967}
4968
4969
4970/**
4971 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4972 * not.
4973 *
4974 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4975 * @param pVCpu The cross context virtual CPU structure.
4976 * @param uVector The interrupt that was acknowledged using an EOI.
4977 */
4978static bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector) RT_NOEXCEPT
4979{
4980 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4981 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4982
4983 if (uVector < 64)
4984 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4985 if (uVector < 128)
4986 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4987 if (uVector < 192)
4988 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4989 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4990}
4991
4992
4993/**
4994 * Performs EOI virtualization.
4995 *
4996 * @returns VBox strict status code.
4997 * @param pVCpu The cross context virtual CPU structure.
4998 */
4999static VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
5000{
5001 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5002 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
5003
5004 /*
5005 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
5006 * and get the next guest-interrupt that's in-service (if any).
5007 *
5008 * See Intel spec. 29.1.4 "EOI Virtualization".
5009 */
5010 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5011 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5012 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
5013
5014 uint8_t uVector = uSvi;
5015 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
5016
5017 uVector = 0;
5018 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
5019
5020 if (uVector)
5021 Log2(("eoi_virt: next interrupt %#x\n", uVector));
5022 else
5023 Log2(("eoi_virt: no interrupt pending in ISR\n"));
5024
5025 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
5026 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
5027
5028 iemVmxPprVirtualization(pVCpu);
5029 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
5030 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
5031 iemVmxEvalPendingVirtIntrs(pVCpu);
5032 return VINF_SUCCESS;
5033}
5034
5035
5036/**
5037 * Performs self-IPI virtualization.
5038 *
5039 * @returns VBox strict status code.
5040 * @param pVCpu The cross context virtual CPU structure.
5041 */
5042static VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
5043{
5044 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5045 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5046
5047 /*
5048 * We should have already performed the virtual-APIC write to the self-IPI offset
5049 * in the virtual-APIC page. We now perform self-IPI virtualization.
5050 *
5051 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
5052 */
5053 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
5054 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
5055 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
5056 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5057 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5058 if (uVector > uRvi)
5059 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
5060 iemVmxEvalPendingVirtIntrs(pVCpu);
5061 return VINF_SUCCESS;
5062}
5063
5064
5065/**
5066 * Performs VMX APIC-write emulation.
5067 *
5068 * @returns VBox strict status code.
5069 * @param pVCpu The cross context virtual CPU structure.
5070 */
5071VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT
5072{
5073 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5074
5075 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
5076 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
5077
5078 /*
5079 * Perform APIC-write emulation based on the virtual-APIC register written.
5080 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
5081 */
5082 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
5083 VBOXSTRICTRC rcStrict;
5084 switch (offApicWrite)
5085 {
5086 case XAPIC_OFF_TPR:
5087 {
5088 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
5089 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5090 uTpr &= UINT32_C(0x000000ff);
5091 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5092 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
5093 rcStrict = iemVmxTprVirtualization(pVCpu);
5094 break;
5095 }
5096
5097 case XAPIC_OFF_EOI:
5098 {
5099 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5100 {
5101 /* Clear VEOI and perform EOI virtualization. */
5102 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
5103 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
5104 rcStrict = iemVmxEoiVirtualization(pVCpu);
5105 }
5106 else
5107 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5108 break;
5109 }
5110
5111 case XAPIC_OFF_ICR_LO:
5112 {
5113 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5114 {
5115 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
5116 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5117 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
5118 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
5119 if ( !(uIcrLo & fIcrLoMb0)
5120 && (uIcrLo & fIcrLoMb1))
5121 {
5122 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
5123 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
5124 }
5125 else
5126 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5127 }
5128 else
5129 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5130 break;
5131 }
5132
5133 case XAPIC_OFF_ICR_HI:
5134 {
5135 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
5136 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
5137 uIcrHi &= UINT32_C(0xff000000);
5138 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
5139 rcStrict = VINF_SUCCESS;
5140 break;
5141 }
5142
5143 default:
5144 {
5145 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
5146 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5147 break;
5148 }
5149 }
5150
5151 return rcStrict;
5152}
5153
5154
5155/**
5156 * Interface for HM and EM to perform an APIC-write emulation which may cause a
5157 * VM-exit.
5158 *
5159 * @returns Strict VBox status code.
5160 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
5161 * @thread EMT(pVCpu)
5162 */
5163VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicWrite(PVMCPUCC pVCpu)
5164{
5165 VBOXSTRICTRC rcStrict = iemVmxApicWriteEmulation(pVCpu);
5166 Assert(!pVCpu->iem.s.cActiveMappings);
5167 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
5168}
5169
5170
5171/**
5172 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
5173 *
5174 * @param pVCpu The cross context virtual CPU structure.
5175 * @param pszInstr The VMX instruction name (for logging purposes).
5176 */
5177DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
5178{
5179 /*
5180 * Guest Control Registers, Debug Registers, and MSRs.
5181 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
5182 */
5183 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5184 const char * const pszFailure = "VM-exit";
5185 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5186
5187 /* CR0 reserved bits. */
5188 {
5189 /* CR0 MB1 bits. */
5190 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
5191 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5192 { /* likely */ }
5193 else
5194 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
5195
5196 /* CR0 MBZ bits. */
5197 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5198 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
5199 { /* likely */ }
5200 else
5201 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
5202
5203 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
5204 if ( !fUnrestrictedGuest
5205 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5206 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5207 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
5208 }
5209
5210 /* CR4 reserved bits. */
5211 {
5212 /* CR4 MB1 bits. */
5213 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5214 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5215 { /* likely */ }
5216 else
5217 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
5218
5219 /* CR4 MBZ bits. */
5220 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5221 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
5222 { /* likely */ }
5223 else
5224 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
5225 }
5226
5227 /* DEBUGCTL MSR. */
5228 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5229 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
5230 { /* likely */ }
5231 else
5232 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
5233
5234 /* 64-bit CPU checks. */
5235 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5236 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5237 {
5238 if (fGstInLongMode)
5239 {
5240 /* PAE must be set. */
5241 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5242 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
5243 { /* likely */ }
5244 else
5245 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
5246 }
5247 else
5248 {
5249 /* PCIDE should not be set. */
5250 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
5251 { /* likely */ }
5252 else
5253 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
5254 }
5255
5256 /* CR3. */
5257 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5258 { /* likely */ }
5259 else
5260 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
5261
5262 /* DR7. */
5263 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5264 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
5265 { /* likely */ }
5266 else
5267 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
5268
5269 /* SYSENTER ESP and SYSENTER EIP. */
5270 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
5271 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
5272 { /* likely */ }
5273 else
5274 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
5275 }
5276
5277 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5278 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
5279
5280 /* PAT MSR. */
5281 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
5282 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
5283 { /* likely */ }
5284 else
5285 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
5286
5287 /* EFER MSR. */
5288 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
5289 {
5290 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5291 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
5292 { /* likely */ }
5293 else
5294 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
5295
5296 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
5297 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
5298 if ( fGstLma == fGstInLongMode
5299 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
5300 || fGstLma == fGstLme))
5301 { /* likely */ }
5302 else
5303 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
5304 }
5305
5306 /* We don't support IA32_BNDCFGS MSR yet. */
5307 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
5308
5309 NOREF(pszInstr);
5310 NOREF(pszFailure);
5311 return VINF_SUCCESS;
5312}
5313
5314
5315/**
5316 * Checks guest segment registers, LDTR and TR as part of VM-entry.
5317 *
5318 * @param pVCpu The cross context virtual CPU structure.
5319 * @param pszInstr The VMX instruction name (for logging purposes).
5320 */
5321DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
5322{
5323 /*
5324 * Segment registers.
5325 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5326 */
5327 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5328 const char * const pszFailure = "VM-exit";
5329 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5330 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5331 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5332
5333 /* Selectors. */
5334 if ( !fGstInV86Mode
5335 && !fUnrestrictedGuest
5336 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5337 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5338
5339 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5340 {
5341 CPUMSELREG SelReg;
5342 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5343 if (RT_LIKELY(rc == VINF_SUCCESS))
5344 { /* likely */ }
5345 else
5346 return rc;
5347
5348 /*
5349 * Virtual-8086 mode checks.
5350 */
5351 if (fGstInV86Mode)
5352 {
5353 /* Base address. */
5354 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5355 { /* likely */ }
5356 else
5357 {
5358 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5359 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5360 }
5361
5362 /* Limit. */
5363 if (SelReg.u32Limit == 0xffff)
5364 { /* likely */ }
5365 else
5366 {
5367 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5368 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5369 }
5370
5371 /* Attribute. */
5372 if (SelReg.Attr.u == 0xf3)
5373 { /* likely */ }
5374 else
5375 {
5376 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5377 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5378 }
5379
5380 /* We're done; move to checking the next segment. */
5381 continue;
5382 }
5383
5384 /* Checks done by 64-bit CPUs. */
5385 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5386 {
5387 /* Base address. */
5388 if ( iSegReg == X86_SREG_FS
5389 || iSegReg == X86_SREG_GS)
5390 {
5391 if (X86_IS_CANONICAL(SelReg.u64Base))
5392 { /* likely */ }
5393 else
5394 {
5395 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5396 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5397 }
5398 }
5399 else if (iSegReg == X86_SREG_CS)
5400 {
5401 if (!RT_HI_U32(SelReg.u64Base))
5402 { /* likely */ }
5403 else
5404 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5405 }
5406 else
5407 {
5408 if ( SelReg.Attr.n.u1Unusable
5409 || !RT_HI_U32(SelReg.u64Base))
5410 { /* likely */ }
5411 else
5412 {
5413 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5414 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5415 }
5416 }
5417 }
5418
5419 /*
5420 * Checks outside Virtual-8086 mode.
5421 */
5422 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5423 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5424 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5425 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5426 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5427 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5428 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5429 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5430
5431 /* Code or usable segment. */
5432 if ( iSegReg == X86_SREG_CS
5433 || fUsable)
5434 {
5435 /* Reserved bits (bits 31:17 and bits 11:8). */
5436 if (!(SelReg.Attr.u & 0xfffe0f00))
5437 { /* likely */ }
5438 else
5439 {
5440 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5441 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5442 }
5443
5444 /* Descriptor type. */
5445 if (fCodeDataSeg)
5446 { /* likely */ }
5447 else
5448 {
5449 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5450 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5451 }
5452
5453 /* Present. */
5454 if (fPresent)
5455 { /* likely */ }
5456 else
5457 {
5458 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5459 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5460 }
5461
5462 /* Granularity. */
5463 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5464 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5465 { /* likely */ }
5466 else
5467 {
5468 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5469 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5470 }
5471 }
5472
5473 if (iSegReg == X86_SREG_CS)
5474 {
5475 /* Segment Type and DPL. */
5476 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5477 && fUnrestrictedGuest)
5478 {
5479 if (uDpl == 0)
5480 { /* likely */ }
5481 else
5482 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5483 }
5484 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5485 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5486 {
5487 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5488 if (uDpl == AttrSs.n.u2Dpl)
5489 { /* likely */ }
5490 else
5491 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5492 }
5493 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5494 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5495 {
5496 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5497 if (uDpl <= AttrSs.n.u2Dpl)
5498 { /* likely */ }
5499 else
5500 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5501 }
5502 else
5503 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5504
5505 /* Def/Big. */
5506 if ( fGstInLongMode
5507 && fSegLong)
5508 {
5509 if (uDefBig == 0)
5510 { /* likely */ }
5511 else
5512 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5513 }
5514 }
5515 else if (iSegReg == X86_SREG_SS)
5516 {
5517 /* Segment Type. */
5518 if ( !fUsable
5519 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5520 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5521 { /* likely */ }
5522 else
5523 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5524
5525 /* DPL. */
5526 if (!fUnrestrictedGuest)
5527 {
5528 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5529 { /* likely */ }
5530 else
5531 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5532 }
5533 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5534 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5535 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5536 {
5537 if (uDpl == 0)
5538 { /* likely */ }
5539 else
5540 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5541 }
5542 }
5543 else
5544 {
5545 /* DS, ES, FS, GS. */
5546 if (fUsable)
5547 {
5548 /* Segment type. */
5549 if (uSegType & X86_SEL_TYPE_ACCESSED)
5550 { /* likely */ }
5551 else
5552 {
5553 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5554 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5555 }
5556
5557 if ( !(uSegType & X86_SEL_TYPE_CODE)
5558 || (uSegType & X86_SEL_TYPE_READ))
5559 { /* likely */ }
5560 else
5561 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5562
5563 /* DPL. */
5564 if ( !fUnrestrictedGuest
5565 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5566 {
5567 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5568 { /* likely */ }
5569 else
5570 {
5571 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5572 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5573 }
5574 }
5575 }
5576 }
5577 }
5578
5579 /*
5580 * LDTR.
5581 */
5582 {
5583 CPUMSELREG Ldtr;
5584 Ldtr.Sel = pVmcs->GuestLdtr;
5585 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5586 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5587 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5588
5589 if (!Ldtr.Attr.n.u1Unusable)
5590 {
5591 /* Selector. */
5592 if (!(Ldtr.Sel & X86_SEL_LDT))
5593 { /* likely */ }
5594 else
5595 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5596
5597 /* Base. */
5598 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5599 {
5600 if (X86_IS_CANONICAL(Ldtr.u64Base))
5601 { /* likely */ }
5602 else
5603 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5604 }
5605
5606 /* Attributes. */
5607 /* Reserved bits (bits 31:17 and bits 11:8). */
5608 if (!(Ldtr.Attr.u & 0xfffe0f00))
5609 { /* likely */ }
5610 else
5611 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5612
5613 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5614 { /* likely */ }
5615 else
5616 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5617
5618 if (!Ldtr.Attr.n.u1DescType)
5619 { /* likely */ }
5620 else
5621 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5622
5623 if (Ldtr.Attr.n.u1Present)
5624 { /* likely */ }
5625 else
5626 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5627
5628 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5629 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5630 { /* likely */ }
5631 else
5632 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5633 }
5634 }
5635
5636 /*
5637 * TR.
5638 */
5639 {
5640 CPUMSELREG Tr;
5641 Tr.Sel = pVmcs->GuestTr;
5642 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5643 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5644 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5645
5646 /* Selector. */
5647 if (!(Tr.Sel & X86_SEL_LDT))
5648 { /* likely */ }
5649 else
5650 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5651
5652 /* Base. */
5653 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5654 {
5655 if (X86_IS_CANONICAL(Tr.u64Base))
5656 { /* likely */ }
5657 else
5658 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5659 }
5660
5661 /* Attributes. */
5662 /* Reserved bits (bits 31:17 and bits 11:8). */
5663 if (!(Tr.Attr.u & 0xfffe0f00))
5664 { /* likely */ }
5665 else
5666 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5667
5668 if (!Tr.Attr.n.u1Unusable)
5669 { /* likely */ }
5670 else
5671 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5672
5673 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5674 || ( !fGstInLongMode
5675 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5676 { /* likely */ }
5677 else
5678 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5679
5680 if (!Tr.Attr.n.u1DescType)
5681 { /* likely */ }
5682 else
5683 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5684
5685 if (Tr.Attr.n.u1Present)
5686 { /* likely */ }
5687 else
5688 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5689
5690 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5691 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5692 { /* likely */ }
5693 else
5694 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5695 }
5696
5697 NOREF(pszInstr);
5698 NOREF(pszFailure);
5699 return VINF_SUCCESS;
5700}
5701
5702
5703/**
5704 * Checks guest GDTR and IDTR as part of VM-entry.
5705 *
5706 * @param pVCpu The cross context virtual CPU structure.
5707 * @param pszInstr The VMX instruction name (for logging purposes).
5708 */
5709DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5710{
5711 /*
5712 * GDTR and IDTR.
5713 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5714 */
5715 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5716 const char *const pszFailure = "VM-exit";
5717
5718 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5719 {
5720 /* Base. */
5721 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5722 { /* likely */ }
5723 else
5724 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5725
5726 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5727 { /* likely */ }
5728 else
5729 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5730 }
5731
5732 /* Limit. */
5733 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5734 { /* likely */ }
5735 else
5736 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5737
5738 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5739 { /* likely */ }
5740 else
5741 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5742
5743 NOREF(pszInstr);
5744 NOREF(pszFailure);
5745 return VINF_SUCCESS;
5746}
5747
5748
5749/**
5750 * Checks guest RIP and RFLAGS as part of VM-entry.
5751 *
5752 * @param pVCpu The cross context virtual CPU structure.
5753 * @param pszInstr The VMX instruction name (for logging purposes).
5754 */
5755DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5756{
5757 /*
5758 * RIP and RFLAGS.
5759 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5760 */
5761 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5762 const char *const pszFailure = "VM-exit";
5763 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5764
5765 /* RIP. */
5766 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5767 {
5768 X86DESCATTR AttrCs;
5769 AttrCs.u = pVmcs->u32GuestCsAttr;
5770 if ( !fGstInLongMode
5771 || !AttrCs.n.u1Long)
5772 {
5773 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5774 { /* likely */ }
5775 else
5776 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5777 }
5778
5779 if ( fGstInLongMode
5780 && AttrCs.n.u1Long)
5781 {
5782 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5783 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5784 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5785 { /* likely */ }
5786 else
5787 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5788 }
5789 }
5790
5791 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5792 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5793 : pVmcs->u64GuestRFlags.s.Lo;
5794 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5795 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5796 { /* likely */ }
5797 else
5798 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5799
5800 if (!(uGuestRFlags & X86_EFL_VM))
5801 { /* likely */ }
5802 else
5803 {
5804 if ( fGstInLongMode
5805 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5806 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5807 }
5808
5809 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5810 {
5811 if (uGuestRFlags & X86_EFL_IF)
5812 { /* likely */ }
5813 else
5814 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5815 }
5816
5817 NOREF(pszInstr);
5818 NOREF(pszFailure);
5819 return VINF_SUCCESS;
5820}
5821
5822
5823/**
5824 * Checks guest non-register state as part of VM-entry.
5825 *
5826 * @param pVCpu The cross context virtual CPU structure.
5827 * @param pszInstr The VMX instruction name (for logging purposes).
5828 */
5829DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5830{
5831 /*
5832 * Guest non-register state.
5833 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5834 */
5835 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5836 const char *const pszFailure = "VM-exit";
5837
5838 /*
5839 * Activity state.
5840 */
5841 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5842 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5843 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5844 { /* likely */ }
5845 else
5846 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5847
5848 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5849 if ( !AttrSs.n.u2Dpl
5850 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5851 { /* likely */ }
5852 else
5853 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5854
5855 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5856 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5857 {
5858 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5859 { /* likely */ }
5860 else
5861 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5862 }
5863
5864 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5865 {
5866 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5867 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5868 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5869 switch (pVmcs->u32GuestActivityState)
5870 {
5871 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5872 {
5873 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5874 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5875 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5876 && ( uVector == X86_XCPT_DB
5877 || uVector == X86_XCPT_MC))
5878 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5879 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5880 { /* likely */ }
5881 else
5882 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5883 break;
5884 }
5885
5886 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5887 {
5888 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5889 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5890 && uVector == X86_XCPT_MC))
5891 { /* likely */ }
5892 else
5893 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5894 break;
5895 }
5896
5897 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5898 default:
5899 break;
5900 }
5901 }
5902
5903 /*
5904 * Interruptibility state.
5905 */
5906 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5907 { /* likely */ }
5908 else
5909 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5910
5911 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5912 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5913 { /* likely */ }
5914 else
5915 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5916
5917 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5918 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5919 { /* likely */ }
5920 else
5921 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5922
5923 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5924 {
5925 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5926 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5927 {
5928 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5929 { /* likely */ }
5930 else
5931 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5932 }
5933 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5934 {
5935 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5936 { /* likely */ }
5937 else
5938 {
5939 /*
5940 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5941 * We update the Exit qualification only when blocking-by-STI is set
5942 * without blocking-by-MovSS being set. Although in practise it does not
5943 * make much difference since the order of checks are implementation defined.
5944 */
5945 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5946 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5947 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5948 }
5949
5950 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5951 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5952 { /* likely */ }
5953 else
5954 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5955 }
5956 }
5957
5958 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5959 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5960 { /* likely */ }
5961 else
5962 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5963
5964 /* We don't support SGX yet. So enclave-interruption must not be set. */
5965 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5966 { /* likely */ }
5967 else
5968 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5969
5970 /*
5971 * Pending debug exceptions.
5972 */
5973 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5974 ? pVmcs->u64GuestPendingDbgXcpts.u
5975 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5976 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5977 { /* likely */ }
5978 else
5979 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5980
5981 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5982 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5983 {
5984 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5985 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5986 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5987 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5988
5989 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5990 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5991 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5992 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5993 }
5994
5995 /* We don't support RTM (Real-time Transactional Memory) yet. */
5996 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5997 { /* likely */ }
5998 else
5999 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
6000
6001 /*
6002 * VMCS link pointer.
6003 */
6004 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
6005 {
6006 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
6007 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
6008 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
6009 { /* likely */ }
6010 else
6011 {
6012 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6013 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
6014 }
6015
6016 /* Validate the address. */
6017 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
6018 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6019 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
6020 { /* likely */ }
6021 else
6022 {
6023 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
6024 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
6025 }
6026 }
6027
6028 NOREF(pszInstr);
6029 NOREF(pszFailure);
6030 return VINF_SUCCESS;
6031}
6032
6033
6034#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6035/**
6036 * Checks guest PDPTEs as part of VM-entry.
6037 *
6038 * @param pVCpu The cross context virtual CPU structure.
6039 * @param pszInstr The VMX instruction name (for logging purposes).
6040 */
6041static int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6042{
6043 /*
6044 * Guest PDPTEs.
6045 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
6046 */
6047 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6048 const char * const pszFailure = "VM-exit";
6049
6050 /*
6051 * When EPT is used, we need to validate the PAE PDPTEs provided in the VMCS.
6052 * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
6053 */
6054 if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
6055 && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
6056 {
6057 /* Get PDPTEs from the VMCS. */
6058 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
6059 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
6060 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
6061 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
6062 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
6063
6064 /* Check validity of the PDPTEs. */
6065 if (PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]))
6066 { /* likely */ }
6067 else
6068 {
6069 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6070 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
6071 }
6072 }
6073
6074 NOREF(pszFailure);
6075 NOREF(pszInstr);
6076 return VINF_SUCCESS;
6077}
6078#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
6079
6080
6081/**
6082 * Checks guest-state as part of VM-entry.
6083 *
6084 * @returns VBox status code.
6085 * @param pVCpu The cross context virtual CPU structure.
6086 * @param pszInstr The VMX instruction name (for logging purposes).
6087 */
6088static int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6089{
6090 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
6091 if (RT_SUCCESS(rc))
6092 {
6093 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
6094 if (RT_SUCCESS(rc))
6095 {
6096 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
6097 if (RT_SUCCESS(rc))
6098 {
6099 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
6100 if (RT_SUCCESS(rc))
6101 {
6102 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
6103#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6104 if (RT_SUCCESS(rc))
6105 rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
6106#endif
6107 }
6108 }
6109 }
6110 }
6111 return rc;
6112}
6113
6114
6115/**
6116 * Checks host-state as part of VM-entry.
6117 *
6118 * @returns VBox status code.
6119 * @param pVCpu The cross context virtual CPU structure.
6120 * @param pszInstr The VMX instruction name (for logging purposes).
6121 */
6122static int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6123{
6124 /*
6125 * Host Control Registers and MSRs.
6126 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
6127 */
6128 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6129 const char * const pszFailure = "VMFail";
6130
6131 /* CR0 reserved bits. */
6132 {
6133 /* CR0 MB1 bits. */
6134 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
6135 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
6136 { /* likely */ }
6137 else
6138 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
6139
6140 /* CR0 MBZ bits. */
6141 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
6142 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
6143 { /* likely */ }
6144 else
6145 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
6146 }
6147
6148 /* CR4 reserved bits. */
6149 {
6150 /* CR4 MB1 bits. */
6151 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6152 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
6153 { /* likely */ }
6154 else
6155 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
6156
6157 /* CR4 MBZ bits. */
6158 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6159 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
6160 { /* likely */ }
6161 else
6162 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
6163 }
6164
6165 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6166 {
6167 /* CR3 reserved bits. */
6168 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
6169 { /* likely */ }
6170 else
6171 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
6172
6173 /* SYSENTER ESP and SYSENTER EIP. */
6174 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
6175 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
6176 { /* likely */ }
6177 else
6178 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
6179 }
6180
6181 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6182 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
6183
6184 /* PAT MSR. */
6185 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
6186 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
6187 { /* likely */ }
6188 else
6189 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
6190
6191 /* EFER MSR. */
6192 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
6193 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
6194 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
6195 {
6196 if (!(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
6197 { /* likely */ }
6198 else
6199 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
6200
6201 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
6202 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
6203 if ( fHostInLongMode == fHostLma
6204 && fHostInLongMode == fHostLme)
6205 { /* likely */ }
6206 else
6207 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
6208 }
6209
6210 /*
6211 * Host Segment and Descriptor-Table Registers.
6212 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
6213 */
6214 /* Selector RPL and TI. */
6215 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
6216 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
6217 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
6218 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
6219 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
6220 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
6221 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
6222 { /* likely */ }
6223 else
6224 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
6225
6226 /* CS and TR selectors cannot be 0. */
6227 if ( pVmcs->HostCs
6228 && pVmcs->HostTr)
6229 { /* likely */ }
6230 else
6231 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
6232
6233 /* SS cannot be 0 if 32-bit host. */
6234 if ( fHostInLongMode
6235 || pVmcs->HostSs)
6236 { /* likely */ }
6237 else
6238 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
6239
6240 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6241 {
6242 /* FS, GS, GDTR, IDTR, TR base address. */
6243 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6244 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6245 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
6246 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
6247 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
6248 { /* likely */ }
6249 else
6250 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
6251 }
6252
6253 /*
6254 * Host address-space size for 64-bit CPUs.
6255 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
6256 */
6257 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6258 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6259 {
6260 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
6261
6262 /* Logical processor in IA-32e mode. */
6263 if (fCpuInLongMode)
6264 {
6265 if (fHostInLongMode)
6266 {
6267 /* PAE must be set. */
6268 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
6269 { /* likely */ }
6270 else
6271 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
6272
6273 /* RIP must be canonical. */
6274 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
6275 { /* likely */ }
6276 else
6277 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
6278 }
6279 else
6280 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
6281 }
6282 else
6283 {
6284 /* Logical processor is outside IA-32e mode. */
6285 if ( !fGstInLongMode
6286 && !fHostInLongMode)
6287 {
6288 /* PCIDE should not be set. */
6289 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
6290 { /* likely */ }
6291 else
6292 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
6293
6294 /* The high 32-bits of RIP MBZ. */
6295 if (!pVmcs->u64HostRip.s.Hi)
6296 { /* likely */ }
6297 else
6298 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
6299 }
6300 else
6301 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
6302 }
6303 }
6304 else
6305 {
6306 /* Host address-space size for 32-bit CPUs. */
6307 if ( !fGstInLongMode
6308 && !fHostInLongMode)
6309 { /* likely */ }
6310 else
6311 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
6312 }
6313
6314 NOREF(pszInstr);
6315 NOREF(pszFailure);
6316 return VINF_SUCCESS;
6317}
6318
6319
6320#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6321/**
6322 * Checks the EPT pointer VMCS field as part of VM-entry.
6323 *
6324 * @returns VBox status code.
6325 * @param pVCpu The cross context virtual CPU structure.
6326 * @param uEptPtr The EPT pointer to check.
6327 * @param penmVmxDiag Where to store the diagnostic reason on failure (not
6328 * updated on success). Optional, can be NULL.
6329 */
6330static int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag) RT_NOEXCEPT
6331{
6332 VMXVDIAG enmVmxDiag;
6333
6334 /* Reserved bits. */
6335 uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
6336 uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
6337 if (uEptPtr & fValidMask)
6338 {
6339 /* Memory Type. */
6340 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
6341 uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
6342 if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
6343 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
6344 || ( fMemType == VMX_EPTP_MEMTYPE_UC
6345 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
6346 {
6347 /*
6348 * Page walk length (PML4).
6349 * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
6350 * of 5 but that seems to be removed from the latest specs. leaving only PML4
6351 * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
6352 */
6353 Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
6354 if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
6355 {
6356 /* Access and dirty bits support in EPT structures. */
6357 if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
6358 || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
6359 return VINF_SUCCESS;
6360
6361 enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
6362 }
6363 else
6364 enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
6365 }
6366 else
6367 enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
6368 }
6369 else
6370 enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
6371
6372 if (penmVmxDiag)
6373 *penmVmxDiag = enmVmxDiag;
6374 return VERR_VMX_VMENTRY_FAILED;
6375}
6376#endif
6377
6378
6379/**
6380 * Checks VMCS controls fields as part of VM-entry.
6381 *
6382 * @returns VBox status code.
6383 * @param pVCpu The cross context virtual CPU structure.
6384 * @param pszInstr The VMX instruction name (for logging purposes).
6385 *
6386 * @remarks This may update secondary-processor based VM-execution control fields
6387 * in the current VMCS if necessary.
6388 */
6389static int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6390{
6391 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6392 const char * const pszFailure = "VMFail";
6393 bool const fVmxTrueMsrs = RT_BOOL(pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK);
6394
6395 /*
6396 * VM-execution controls.
6397 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6398 */
6399 {
6400 /* Pin-based VM-execution controls. */
6401 {
6402 VMXCTLSMSR const PinCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TruePinCtls
6403 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6404 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6405 { /* likely */ }
6406 else
6407 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6408
6409 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6410 { /* likely */ }
6411 else
6412 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6413 }
6414
6415 /* Processor-based VM-execution controls. */
6416 {
6417 VMXCTLSMSR const ProcCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueProcCtls
6418 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6419 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6420 { /* likely */ }
6421 else
6422 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6423
6424 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6425 { /* likely */ }
6426 else
6427 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6428 }
6429
6430 /* Secondary processor-based VM-execution controls. */
6431 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6432 {
6433 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6434 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6435 { /* likely */ }
6436 else
6437 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6438
6439 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6440 { /* likely */ }
6441 else
6442 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6443 }
6444 else if (pVmcs->u32ProcCtls2)
6445 {
6446 /*
6447 * If the "activate secondary controls" is clear, then the secondary processor-based VM-execution controls
6448 * is treated as 0.
6449 *
6450 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6451 *
6452 * Since this is a rather rare occurrence (only observed for a few VM-entries with Microsoft Hyper-V
6453 * enabled Windows Server 2008 R2 guest), it's not worth changing every place that reads this control to
6454 * also check the "activate secondary controls" bit. Instead, we temporarily save the guest programmed
6455 * control here, zero out the value the rest of our code uses and restore the guest programmed value
6456 * on VM-exit.
6457 */
6458 pVmcs->u32RestoreProcCtls2 = pVmcs->u32ProcCtls2;
6459 pVmcs->u32ProcCtls2 = 0;
6460 }
6461
6462 /* CR3-target count. */
6463 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6464 { /* likely */ }
6465 else
6466 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6467
6468 /* I/O bitmaps physical addresses. */
6469 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6470 {
6471 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6472 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6473 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6474 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6475 { /* likely */ }
6476 else
6477 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6478
6479 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6480 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6481 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6482 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6483 { /* likely */ }
6484 else
6485 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6486 }
6487
6488 /* MSR bitmap physical address. */
6489 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6490 {
6491 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6492 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6493 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6494 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6495 { /* likely */ }
6496 else
6497 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6498 }
6499
6500 /* TPR shadow related controls. */
6501 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6502 {
6503 /* Virtual-APIC page physical address. */
6504 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6505 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6506 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6507 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6508 { /* likely */ }
6509 else
6510 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6511
6512 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6513 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6514 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6515 { /* likely */ }
6516 else
6517 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6518
6519 /* The rest done XXX document */
6520 }
6521 else
6522 {
6523 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6524 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6525 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6526 { /* likely */ }
6527 else
6528 {
6529 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6530 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6531 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6532 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6533 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6534 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6535 }
6536 }
6537
6538 /* NMI exiting and virtual-NMIs. */
6539 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6540 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6541 { /* likely */ }
6542 else
6543 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6544
6545 /* Virtual-NMIs and NMI-window exiting. */
6546 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6547 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6548 { /* likely */ }
6549 else
6550 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6551
6552 /* Virtualize APIC accesses. */
6553 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6554 {
6555 /* APIC-access physical address. */
6556 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6557 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6558 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6559 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6560 { /* likely */ }
6561 else
6562 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6563
6564 /*
6565 * Disallow APIC-access page and virtual-APIC page from being the same address.
6566 * Note! This is not an Intel requirement, but one imposed by our implementation.
6567 */
6568 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6569 * redirecting accesses between the APIC-access page and the virtual-APIC
6570 * page. If any nested hypervisor requires this, we can implement it later. */
6571 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6572 {
6573 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6574 if (GCPhysVirtApic != GCPhysApicAccess)
6575 { /* likely */ }
6576 else
6577 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6578 }
6579 }
6580
6581 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6582 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6583 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6584 { /* likely */ }
6585 else
6586 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6587
6588 /* Virtual-interrupt delivery requires external interrupt exiting. */
6589 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6590 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6591 { /* likely */ }
6592 else
6593 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6594
6595 /* VPID. */
6596 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6597 || pVmcs->u16Vpid != 0)
6598 { /* likely */ }
6599 else
6600 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6601
6602#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6603 /* Extended-Page-Table Pointer (EPTP). */
6604 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6605 {
6606 VMXVDIAG enmVmxDiag;
6607 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
6608 if (RT_SUCCESS(rc))
6609 { /* likely */ }
6610 else
6611 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, enmVmxDiag, rc);
6612 }
6613#else
6614 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6615 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST));
6616#endif
6617 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6618 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6619 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6620 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
6621 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6622
6623 /* VMCS shadowing. */
6624 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6625 {
6626 /* VMREAD-bitmap physical address. */
6627 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6628 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6629 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6630 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6631 { /* likely */ }
6632 else
6633 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6634
6635 /* VMWRITE-bitmap physical address. */
6636 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6637 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6638 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6639 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6640 { /* likely */ }
6641 else
6642 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6643 }
6644 }
6645
6646 /*
6647 * VM-exit controls.
6648 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6649 */
6650 {
6651 VMXCTLSMSR const ExitCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueExitCtls
6652 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6653 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6654 { /* likely */ }
6655 else
6656 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6657
6658 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6659 { /* likely */ }
6660 else
6661 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6662
6663 /* Save preemption timer without activating it. */
6664 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6665 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6666 { /* likely */ }
6667 else
6668 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6669
6670 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6671 if (pVmcs->u32ExitMsrStoreCount)
6672 {
6673 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6674 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6675 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6676 { /* likely */ }
6677 else
6678 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6679 }
6680
6681 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6682 if (pVmcs->u32ExitMsrLoadCount)
6683 {
6684 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6685 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6686 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6687 { /* likely */ }
6688 else
6689 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6690 }
6691 }
6692
6693 /*
6694 * VM-entry controls.
6695 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6696 */
6697 {
6698 VMXCTLSMSR const EntryCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueEntryCtls
6699 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6700 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6701 { /* likely */ }
6702 else
6703 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6704
6705 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6706 { /* likely */ }
6707 else
6708 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6709
6710 /* Event injection. */
6711 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6712 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6713 {
6714 /* Type and vector. */
6715 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6716 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6717 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6718 if ( !uRsvd
6719 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6720 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6721 { /* likely */ }
6722 else
6723 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6724
6725 /* Exception error code. */
6726 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6727 {
6728 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6729 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6730 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6731 { /* likely */ }
6732 else
6733 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6734
6735 /* Exceptions that provide an error code. */
6736 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6737 && ( uVector == X86_XCPT_DF
6738 || uVector == X86_XCPT_TS
6739 || uVector == X86_XCPT_NP
6740 || uVector == X86_XCPT_SS
6741 || uVector == X86_XCPT_GP
6742 || uVector == X86_XCPT_PF
6743 || uVector == X86_XCPT_AC))
6744 { /* likely */ }
6745 else
6746 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6747
6748 /* Exception error-code reserved bits. */
6749 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6750 { /* likely */ }
6751 else
6752 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6753
6754 /* Injecting a software interrupt, software exception or privileged software exception. */
6755 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6756 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6757 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6758 {
6759 /* Instruction length must be in the range 0-15. */
6760 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6761 { /* likely */ }
6762 else
6763 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6764
6765 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6766 if ( pVmcs->u32EntryInstrLen != 0
6767 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6768 { /* likely */ }
6769 else
6770 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6771 }
6772 }
6773 }
6774
6775 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6776 if (pVmcs->u32EntryMsrLoadCount)
6777 {
6778 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6779 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6780 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6781 { /* likely */ }
6782 else
6783 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6784 }
6785
6786 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6787 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6788 }
6789
6790 NOREF(pszInstr);
6791 NOREF(pszFailure);
6792 return VINF_SUCCESS;
6793}
6794
6795
6796/**
6797 * Loads the guest control registers, debug register and some MSRs as part of
6798 * VM-entry.
6799 *
6800 * @param pVCpu The cross context virtual CPU structure.
6801 */
6802static void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
6803{
6804 /*
6805 * Load guest control registers, debug registers and MSRs.
6806 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6807 */
6808 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6809
6810 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6811 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6812 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6813 pVCpu->cpum.GstCtx.cr0 = uGstCr0;
6814 pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
6815 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6816
6817 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6818 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6819
6820 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6821 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6822 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6823
6824 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6825 {
6826 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6827
6828 /* EFER MSR. */
6829 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6830 {
6831 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6832 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6833 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6834 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6835 if (fGstInLongMode)
6836 {
6837 /* If the nested-guest is in long mode, LMA and LME are both set. */
6838 Assert(fGstPaging);
6839 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6840 }
6841 else
6842 {
6843 /*
6844 * If the nested-guest is outside long mode:
6845 * - With paging: LMA is cleared, LME is cleared.
6846 * - Without paging: LMA is cleared, LME is left unmodified.
6847 */
6848 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6849 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6850 }
6851 }
6852 /* else: see below. */
6853 }
6854
6855 /* PAT MSR. */
6856 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6857 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6858
6859 /* EFER MSR. */
6860 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6861 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6862
6863 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6864 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6865
6866 /* We don't support IA32_BNDCFGS MSR yet. */
6867 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6868
6869 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6870}
6871
6872
6873/**
6874 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6875 *
6876 * @param pVCpu The cross context virtual CPU structure.
6877 */
6878static void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
6879{
6880 /*
6881 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6882 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6883 */
6884 /* CS, SS, ES, DS, FS, GS. */
6885 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6886 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6887 {
6888 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6889 CPUMSELREG VmcsSelReg;
6890 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6891 AssertRC(rc); NOREF(rc);
6892 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6893 {
6894 pGstSelReg->Sel = VmcsSelReg.Sel;
6895 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6896 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6897 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6898 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6899 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6900 }
6901 else
6902 {
6903 pGstSelReg->Sel = VmcsSelReg.Sel;
6904 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6905 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6906 switch (iSegReg)
6907 {
6908 case X86_SREG_CS:
6909 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6910 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6911 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6912 break;
6913
6914 case X86_SREG_SS:
6915 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6916 pGstSelReg->u32Limit = 0;
6917 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6918 break;
6919
6920 case X86_SREG_ES:
6921 case X86_SREG_DS:
6922 pGstSelReg->u64Base = 0;
6923 pGstSelReg->u32Limit = 0;
6924 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6925 break;
6926
6927 case X86_SREG_FS:
6928 case X86_SREG_GS:
6929 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6930 pGstSelReg->u32Limit = 0;
6931 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6932 break;
6933 }
6934 Assert(pGstSelReg->Attr.n.u1Unusable);
6935 }
6936 }
6937
6938 /* LDTR. */
6939 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6940 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6941 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6942 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6943 {
6944 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6945 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6946 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6947 }
6948 else
6949 {
6950 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6951 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6952 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6953 }
6954
6955 /* TR. */
6956 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6957 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6958 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6959 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6960 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6961 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6962 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6963
6964 /* GDTR. */
6965 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6966 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6967
6968 /* IDTR. */
6969 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6970 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6971}
6972
6973
6974/**
6975 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6976 *
6977 * @returns VBox status code.
6978 * @param pVCpu The cross context virtual CPU structure.
6979 * @param pszInstr The VMX instruction name (for logging purposes).
6980 */
6981static int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6982{
6983 /*
6984 * Load guest MSRs.
6985 * See Intel spec. 26.4 "Loading MSRs".
6986 */
6987 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6988 const char *const pszFailure = "VM-exit";
6989
6990 /*
6991 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6992 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6993 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6994 */
6995 uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
6996 if (!cMsrs)
6997 return VINF_SUCCESS;
6998
6999 /*
7000 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
7001 * exceeded including possibly raising #MC exceptions during VMX transition. Our
7002 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
7003 */
7004 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
7005 if (fIsMsrCountValid)
7006 { /* likely */ }
7007 else
7008 {
7009 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
7010 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
7011 }
7012
7013 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
7014 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
7015 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
7016 if (RT_SUCCESS(rc))
7017 {
7018 PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
7019 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
7020 {
7021 if ( !pMsr->u32Reserved
7022 && pMsr->u32Msr != MSR_K8_FS_BASE
7023 && pMsr->u32Msr != MSR_K8_GS_BASE
7024 && pMsr->u32Msr != MSR_K6_EFER
7025 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
7026 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
7027 {
7028 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
7029 if (rcStrict == VINF_SUCCESS)
7030 continue;
7031
7032 /*
7033 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
7034 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
7035 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
7036 * further by our own, specific diagnostic code. Later, we can try implement handling of the
7037 * MSR in ring-0 if possible, or come up with a better, generic solution.
7038 */
7039 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7040 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
7041 ? kVmxVDiag_Vmentry_MsrLoadRing3
7042 : kVmxVDiag_Vmentry_MsrLoad;
7043 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
7044 }
7045 else
7046 {
7047 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
7048 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
7049 }
7050 }
7051 }
7052 else
7053 {
7054 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
7055 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys, rc);
7056 }
7057
7058 NOREF(pszInstr);
7059 NOREF(pszFailure);
7060 return VINF_SUCCESS;
7061}
7062
7063
7064/**
7065 * Loads the guest-state non-register state as part of VM-entry.
7066 *
7067 * @returns VBox status code.
7068 * @param pVCpu The cross context virtual CPU structure.
7069 * @param pszInstr The VMX instruction name (for logging purposes).
7070 *
7071 * @remarks This must be called only after loading the nested-guest register state
7072 * (especially nested-guest RIP).
7073 */
7074static int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7075{
7076 /*
7077 * Load guest non-register state.
7078 * See Intel spec. 26.6 "Special Features of VM Entry"
7079 */
7080 const char *const pszFailure = "VM-exit";
7081 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7082
7083 /*
7084 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
7085 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
7086 *
7087 * See Intel spec. 26.6.1 "Interruptibility State".
7088 */
7089 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
7090 if ( !fEntryVectoring
7091 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
7092 CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcs->u64GuestRip.u);
7093 else
7094 Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
7095
7096 /* NMI blocking. */
7097 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7098 {
7099 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
7100 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
7101 else
7102 {
7103 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7104 CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
7105 }
7106 }
7107 else
7108 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7109
7110 /* SMI blocking is irrelevant. We don't support SMIs yet. */
7111
7112 /*
7113 * Set PGM's copy of the EPT pointer.
7114 * The EPTP has already been validated while checking guest state.
7115 *
7116 * It is important to do this prior to mapping PAE PDPTEs (below).
7117 */
7118 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7119 PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
7120
7121 /*
7122 * Load the guest's PAE PDPTEs.
7123 */
7124 if (!iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
7125 {
7126 /*
7127 * When PAE paging is not used we clear the PAE PDPTEs for safety
7128 * in case we might be switching from a PAE host to a non-PAE guest.
7129 */
7130 pVCpu->cpum.GstCtx.aPaePdpes[0].u = 0;
7131 pVCpu->cpum.GstCtx.aPaePdpes[1].u = 0;
7132 pVCpu->cpum.GstCtx.aPaePdpes[2].u = 0;
7133 pVCpu->cpum.GstCtx.aPaePdpes[3].u = 0;
7134 }
7135 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7136 {
7137 /*
7138 * With EPT and the nested-guest using PAE paging, we've already validated the PAE PDPTEs
7139 * while checking the guest state. We can load them into the nested-guest CPU state now.
7140 * They'll later be used while mapping CR3 and the PAE PDPTEs.
7141 */
7142 pVCpu->cpum.GstCtx.aPaePdpes[0].u = pVmcs->u64GuestPdpte0.u;
7143 pVCpu->cpum.GstCtx.aPaePdpes[1].u = pVmcs->u64GuestPdpte1.u;
7144 pVCpu->cpum.GstCtx.aPaePdpes[2].u = pVmcs->u64GuestPdpte2.u;
7145 pVCpu->cpum.GstCtx.aPaePdpes[3].u = pVmcs->u64GuestPdpte3.u;
7146 }
7147 else
7148 {
7149 /*
7150 * Without EPT and the nested-guest using PAE paging, we must load the PAE PDPTEs
7151 * referenced by CR3. This involves loading (and mapping) CR3 and validating them now.
7152 */
7153 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
7154 if (RT_SUCCESS(rc))
7155 { /* likely */ }
7156 else
7157 {
7158 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
7159 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte, rc);
7160 }
7161 }
7162
7163 /* VPID is irrelevant. We don't support VPID yet. */
7164
7165 /* Clear address-range monitoring. */
7166 EMMonitorWaitClear(pVCpu);
7167
7168 return VINF_SUCCESS;
7169}
7170
7171
7172/**
7173 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
7174 *
7175 * @param pVCpu The cross context virtual CPU structure.
7176 * @param pszInstr The VMX instruction name (for logging purposes).
7177 *
7178 * @remarks This assumes various VMCS related data structure pointers have already
7179 * been verified prior to calling this function.
7180 */
7181static int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7182{
7183 const char *const pszFailure = "VM-exit";
7184 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7185
7186 /*
7187 * Virtualize APIC accesses.
7188 */
7189 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7190 {
7191 /* APIC-access physical address. */
7192 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
7193
7194 /*
7195 * Register the handler for the APIC-access page.
7196 *
7197 * We don't deregister the APIC-access page handler during the VM-exit as a different
7198 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
7199 *
7200 * We leave the page registered until the first access that happens outside VMX non-root
7201 * mode. Guest software is allowed to access structures such as the APIC-access page
7202 * only when no logical processor with a current VMCS references it in VMX non-root mode,
7203 * otherwise it can lead to unpredictable behavior including guest triple-faults.
7204 *
7205 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7206 */
7207 /** @todo r=bird: The lazy deregistration of the page is potentially slightly
7208 * problematic, as the guest may cause us to create lots of access
7209 * handler entries. However, any slowdown or similar effects should
7210 * only ever affect the guest itself, so not a big issue. Though, I
7211 * wish there was most recently used approach or something to tracking
7212 * these... */
7213 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7214 int rc = PGMHandlerPhysicalRegisterVmxApicAccessPage(pVM, GCPhysApicAccess, pVM->iem.s.hVmxApicAccessPage);
7215 if (RT_SUCCESS(rc))
7216 { /* likely */ }
7217 else
7218 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg, rc);
7219 }
7220
7221 /*
7222 * VMCS shadowing.
7223 */
7224 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7225 {
7226 /* Read the VMREAD-bitmap. */
7227 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
7228 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
7229 GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
7230 if (RT_SUCCESS(rc))
7231 { /* likely */ }
7232 else
7233 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys, rc);
7234
7235 /* Read the VMWRITE-bitmap. */
7236 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
7237 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
7238 GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
7239 if (RT_SUCCESS(rc))
7240 { /* likely */ }
7241 else
7242 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys, rc);
7243 }
7244
7245 /*
7246 * I/O bitmaps.
7247 */
7248 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
7249 {
7250 /* Read the IO bitmap A. */
7251 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
7252 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
7253 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
7254 if (RT_SUCCESS(rc))
7255 { /* likely */ }
7256 else
7257 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys, rc);
7258
7259 /* Read the IO bitmap B. */
7260 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
7261 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
7262 GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
7263 if (RT_SUCCESS(rc))
7264 { /* likely */ }
7265 else
7266 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys, rc);
7267 }
7268
7269 /*
7270 * TPR shadow and Virtual-APIC page.
7271 */
7272 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7273 {
7274 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
7275 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7276 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
7277 {
7278 /* Read the VTPR from the virtual-APIC page. */
7279 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
7280 uint8_t u8VTpr;
7281 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
7282 if (RT_SUCCESS(rc))
7283 { /* likely */ }
7284 else
7285 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys, rc);
7286
7287 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
7288 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
7289 { /* likely */ }
7290 else
7291 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
7292 }
7293 }
7294
7295 /*
7296 * VMCS link pointer.
7297 */
7298 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
7299 {
7300 /* Read the VMCS-link pointer from guest memory. */
7301 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
7302 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
7303 GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
7304 if (RT_SUCCESS(rc))
7305 { /* likely */ }
7306 else
7307 {
7308 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7309 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys, rc);
7310 }
7311
7312 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
7313 if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
7314 { /* likely */ }
7315 else
7316 {
7317 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7318 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
7319 }
7320
7321 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
7322 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7323 || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
7324 { /* likely */ }
7325 else
7326 {
7327 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7328 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
7329 }
7330
7331 /* Update our cache of the guest physical address of the shadow VMCS. */
7332 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
7333 }
7334
7335 /*
7336 * MSR bitmap.
7337 */
7338 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7339 {
7340 /* Read the MSR bitmap. */
7341 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
7342 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
7343 GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
7344 if (RT_SUCCESS(rc))
7345 { /* likely */ }
7346 else
7347 IEM_VMX_VMENTRY_FAILED_RET_2(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys, rc);
7348 }
7349
7350 NOREF(pszFailure);
7351 NOREF(pszInstr);
7352 return VINF_SUCCESS;
7353}
7354
7355
7356/**
7357 * Loads the guest-state as part of VM-entry.
7358 *
7359 * @returns VBox status code.
7360 * @param pVCpu The cross context virtual CPU structure.
7361 * @param pszInstr The VMX instruction name (for logging purposes).
7362 *
7363 * @remarks This must be done after all the necessary steps prior to loading of
7364 * guest-state (e.g. checking various VMCS state).
7365 */
7366static int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7367{
7368 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
7369 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7370
7371 /* Load guest segment registers. */
7372 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7373
7374 /*
7375 * Load guest RIP, RSP and RFLAGS.
7376 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7377 */
7378 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7379 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7380 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7381 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7382
7383 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7384 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7385 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7386
7387 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
7388 int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
7389 if (rc == VINF_SUCCESS)
7390 { /* likely */ }
7391 else
7392 return rc;
7393
7394 /* Load VMX related structures and state referenced by the VMCS. */
7395 rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
7396 if (rc == VINF_SUCCESS)
7397 { /* likely */ }
7398 else
7399 return rc;
7400
7401 NOREF(pszInstr);
7402 return VINF_SUCCESS;
7403}
7404
7405
7406/**
7407 * Returns whether there are is a pending debug exception on VM-entry.
7408 *
7409 * @param pVCpu The cross context virtual CPU structure.
7410 * @param pszInstr The VMX instruction name (for logging purposes).
7411 */
7412static bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7413{
7414 /*
7415 * Pending debug exceptions.
7416 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7417 */
7418 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7419 Assert(pVmcs);
7420
7421 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7422 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7423 if (fPendingDbgXcpt)
7424 {
7425 uint8_t uEntryIntInfoType;
7426 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7427 if (fEntryVectoring)
7428 {
7429 switch (uEntryIntInfoType)
7430 {
7431 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7432 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7433 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7434 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7435 fPendingDbgXcpt = false;
7436 break;
7437
7438 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7439 {
7440 /*
7441 * Whether the pending debug exception for software exceptions other than
7442 * #BP and #OF is delivered after injecting the exception or is discard
7443 * is CPU implementation specific. We will discard them (easier).
7444 */
7445 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7446 if ( uVector != X86_XCPT_BP
7447 && uVector != X86_XCPT_OF)
7448 fPendingDbgXcpt = false;
7449 RT_FALL_THRU();
7450 }
7451 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7452 {
7453 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7454 fPendingDbgXcpt = false;
7455 break;
7456 }
7457 }
7458 }
7459 else
7460 {
7461 /*
7462 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7463 * pending debug exception is held pending or is discarded is CPU implementation
7464 * specific. We will discard them (easier).
7465 */
7466 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7467 fPendingDbgXcpt = false;
7468
7469 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7470 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7471 fPendingDbgXcpt = false;
7472 }
7473 }
7474
7475 NOREF(pszInstr);
7476 return fPendingDbgXcpt;
7477}
7478
7479
7480/**
7481 * Set up the monitor-trap flag (MTF).
7482 *
7483 * @param pVCpu The cross context virtual CPU structure.
7484 * @param pszInstr The VMX instruction name (for logging purposes).
7485 */
7486static void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7487{
7488 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7489 Assert(pVmcs);
7490 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7491 {
7492 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7493 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7494 }
7495 else
7496 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7497 NOREF(pszInstr);
7498}
7499
7500
7501/**
7502 * Sets up NMI-window exiting.
7503 *
7504 * @param pVCpu The cross context virtual CPU structure.
7505 * @param pszInstr The VMX instruction name (for logging purposes).
7506 */
7507static void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7508{
7509 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7510 Assert(pVmcs);
7511 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7512 {
7513 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7514 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7515 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7516 }
7517 else
7518 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7519 NOREF(pszInstr);
7520}
7521
7522
7523/**
7524 * Sets up interrupt-window exiting.
7525 *
7526 * @param pVCpu The cross context virtual CPU structure.
7527 * @param pszInstr The VMX instruction name (for logging purposes).
7528 */
7529static void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7530{
7531 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7532 Assert(pVmcs);
7533 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7534 {
7535 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7536 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7537 }
7538 else
7539 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7540 NOREF(pszInstr);
7541}
7542
7543
7544/**
7545 * Set up the VMX-preemption timer.
7546 *
7547 * @param pVCpu The cross context virtual CPU structure.
7548 * @param pszInstr The VMX instruction name (for logging purposes).
7549 */
7550static void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7551{
7552 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7553 Assert(pVmcs);
7554 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7555 {
7556 /*
7557 * If the timer is 0, we must cause a VM-exit before executing the first
7558 * nested-guest instruction. So we can flag as though the timer has already
7559 * expired and we will check and cause a VM-exit at the right priority elsewhere
7560 * in the code.
7561 */
7562 uint64_t uEntryTick;
7563 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7564 if (uPreemptTimer)
7565 {
7566 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7567 AssertRC(rc);
7568 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7569 }
7570 else
7571 {
7572 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7573 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7574 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7575 }
7576
7577 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7578 }
7579 else
7580 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7581
7582 NOREF(pszInstr);
7583}
7584
7585
7586/**
7587 * Injects an event using TRPM given a VM-entry interruption info and related
7588 * fields.
7589 *
7590 * @param pVCpu The cross context virtual CPU structure.
7591 * @param pszInstr The VMX instruction name (for logging purposes).
7592 * @param uEntryIntInfo The VM-entry interruption info.
7593 * @param uErrCode The error code associated with the event if any.
7594 * @param cbInstr The VM-entry instruction length (for software
7595 * interrupts and software exceptions). Pass 0
7596 * otherwise.
7597 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7598 */
7599static void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7600 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress) RT_NOEXCEPT
7601{
7602 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7603
7604 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7605 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7606 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7607
7608 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7609
7610 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7611 AssertRC(rc);
7612 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7613
7614 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7615 {
7616 TRPMSetErrorCode(pVCpu, uErrCode);
7617 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7618 }
7619
7620 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7621 {
7622 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7623 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7624 }
7625 else
7626 {
7627 switch (uType)
7628 {
7629 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7630 TRPMSetTrapDueToIcebp(pVCpu);
7631 Log(("%s: Injecting: icebp\n", pszInstr));
7632 RT_FALL_THRU();
7633 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7634 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7635 TRPMSetInstrLength(pVCpu, cbInstr);
7636 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7637 break;
7638 }
7639 }
7640
7641 NOREF(pszInstr);
7642}
7643
7644
7645/**
7646 * Performs event injection (if any) as part of VM-entry.
7647 *
7648 * @param pVCpu The cross context virtual CPU structure.
7649 * @param pszInstr The VMX instruction name (for logging purposes).
7650 */
7651static void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7652{
7653 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7654
7655 /*
7656 * Inject events.
7657 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7658 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7659 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7660 * the actually delivery of this event.
7661 *
7662 * See Intel spec. 26.5 "Event Injection".
7663 */
7664 uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
7665 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7666
7667 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7668 if (fEntryIntInfoValid)
7669 {
7670 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7671 {
7672 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7673 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7674 }
7675 else
7676 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7677 pVCpu->cpum.GstCtx.cr2);
7678
7679 /*
7680 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7681 *
7682 * However, we do it here on VM-entry as well because while it isn't visible to guest
7683 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7684 * execution using hardware-assisted VMX, it will not try to inject the event again.
7685 *
7686 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7687 */
7688 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7689 }
7690 else
7691 {
7692 /*
7693 * Inject any pending guest debug exception.
7694 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7695 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7696 */
7697 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7698 if (fPendingDbgXcpt)
7699 {
7700 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7701 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7702 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7703 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7704 0 /* GCPtrFaultAddress */);
7705 }
7706 }
7707
7708 NOREF(pszInstr);
7709}
7710
7711
7712/**
7713 * Initializes all read-only VMCS fields as part of VM-entry.
7714 *
7715 * @param pVCpu The cross context virtual CPU structure.
7716 */
7717static void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu) RT_NOEXCEPT
7718{
7719 /*
7720 * Any VMCS field which we do not establish on every VM-exit but may potentially
7721 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7722 * specified to be undefined, needs to be initialized here.
7723 *
7724 * Thus, it is especially important to clear the Exit qualification field
7725 * since it must be zero for VM-exits where it is not used. Similarly, the
7726 * VM-exit interruption information field's valid bit needs to be cleared for
7727 * the same reasons.
7728 */
7729 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7730 Assert(pVmcs);
7731
7732 /* 16-bit (none currently). */
7733 /* 32-bit. */
7734 pVmcs->u32RoVmInstrError = 0;
7735 pVmcs->u32RoExitReason = 0;
7736 pVmcs->u32RoExitIntInfo = 0;
7737 pVmcs->u32RoExitIntErrCode = 0;
7738 pVmcs->u32RoIdtVectoringInfo = 0;
7739 pVmcs->u32RoIdtVectoringErrCode = 0;
7740 pVmcs->u32RoExitInstrLen = 0;
7741 pVmcs->u32RoExitInstrInfo = 0;
7742
7743 /* 64-bit. */
7744 pVmcs->u64RoGuestPhysAddr.u = 0;
7745
7746 /* Natural-width. */
7747 pVmcs->u64RoExitQual.u = 0;
7748 pVmcs->u64RoIoRcx.u = 0;
7749 pVmcs->u64RoIoRsi.u = 0;
7750 pVmcs->u64RoIoRdi.u = 0;
7751 pVmcs->u64RoIoRip.u = 0;
7752 pVmcs->u64RoGuestLinearAddr.u = 0;
7753}
7754
7755
7756/**
7757 * VMLAUNCH/VMRESUME instruction execution worker.
7758 *
7759 * @returns Strict VBox status code.
7760 * @param pVCpu The cross context virtual CPU structure.
7761 * @param cbInstr The instruction length in bytes.
7762 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7763 * VMXINSTRID_VMRESUME).
7764 *
7765 * @remarks Common VMX instruction checks are already expected to by the caller,
7766 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7767 */
7768static VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId) RT_NOEXCEPT
7769{
7770# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7771 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7772 return VINF_EM_RAW_EMULATE_INSTR;
7773# else
7774 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7775 || uInstrId == VMXINSTRID_VMRESUME);
7776 const char * const pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7777
7778 /* Nested-guest intercept. */
7779 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7780 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7781
7782 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7783
7784 /*
7785 * Basic VM-entry checks.
7786 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7787 * The checks following that do not have to follow a specific order.
7788 *
7789 * See Intel spec. 26.1 "Basic VM-entry Checks".
7790 */
7791
7792 /* CPL. */
7793 if (pVCpu->iem.s.uCpl == 0)
7794 { /* likely */ }
7795 else
7796 {
7797 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7798 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7799 return iemRaiseGeneralProtectionFault0(pVCpu);
7800 }
7801
7802 /* Current VMCS valid. */
7803 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7804 { /* likely */ }
7805 else
7806 {
7807 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7808 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7809 iemVmxVmFailInvalid(pVCpu);
7810 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7811 }
7812
7813 /* Current VMCS is not a shadow VMCS. */
7814 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
7815 { /* likely */ }
7816 else
7817 {
7818 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7819 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7820 iemVmxVmFailInvalid(pVCpu);
7821 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7822 }
7823
7824 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7825 * use block-by-STI here which is not quite correct. */
7826 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
7827 { /* likely */ }
7828 else
7829 {
7830 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7831 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7832 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7833 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7834 }
7835
7836 if (uInstrId == VMXINSTRID_VMLAUNCH)
7837 {
7838 /* VMLAUNCH with non-clear VMCS. */
7839 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7840 { /* likely */ }
7841 else
7842 {
7843 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7844 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7845 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7846 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7847 }
7848 }
7849 else
7850 {
7851 /* VMRESUME with non-launched VMCS. */
7852 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7853 { /* likely */ }
7854 else
7855 {
7856 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7857 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7858 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7859 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7860 }
7861 }
7862
7863 /*
7864 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7865 * while entering VMX non-root mode. We do some of this while checking VM-execution
7866 * controls. The nested hypervisor should not make assumptions and cannot expect
7867 * predictable behavior if changes to these structures are made in guest memory while
7868 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7869 * modify them anyway as we cache them in host memory.
7870 *
7871 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7872 */
7873 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7874
7875 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7876 if (RT_SUCCESS(rc))
7877 {
7878 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7879 if (RT_SUCCESS(rc))
7880 {
7881 /*
7882 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7883 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7884 * ones that may occur during VM-entry below).
7885 */
7886 iemVmxVmentryInitReadOnlyFields(pVCpu);
7887
7888 /*
7889 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7890 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7891 * VM-exit when required.
7892 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7893 */
7894 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7895
7896 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7897 Assert(pVmcs);
7898
7899 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7900 if (RT_SUCCESS(rc))
7901 {
7902 /*
7903 * We've now entered nested-guest execution.
7904 *
7905 * It is important do this prior to loading the guest state because
7906 * as part of loading the guest state, PGM (and perhaps other components
7907 * in the future) relies on detecting whether VMX non-root mode has been
7908 * entered.
7909 */
7910 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7911
7912 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7913 if (RT_SUCCESS(rc))
7914 {
7915 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7916 if (RT_SUCCESS(rc))
7917 {
7918 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7919
7920 /* VMLAUNCH instruction must update the VMCS launch state. */
7921 if (uInstrId == VMXINSTRID_VMLAUNCH)
7922 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7923
7924 /* Perform the VMX transition (PGM updates). */
7925 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
7926 if (rcStrict == VINF_SUCCESS)
7927 { /* likely */ }
7928 else if (RT_SUCCESS(rcStrict))
7929 {
7930 Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
7931 VBOXSTRICTRC_VAL(rcStrict)));
7932 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7933 }
7934 else
7935 {
7936 Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7937 return rcStrict;
7938 }
7939
7940 /* Paranoia. */
7941 Assert(rcStrict == VINF_SUCCESS);
7942
7943 /*
7944 * The priority of potential VM-exits during VM-entry is important.
7945 * The priorities of VM-exits and events are listed from highest
7946 * to lowest as follows:
7947 *
7948 * 1. Event injection.
7949 * 2. Trap on task-switch (T flag set in TSS).
7950 * 3. TPR below threshold / APIC-write.
7951 * 4. SMI, INIT.
7952 * 5. MTF exit.
7953 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7954 * 7. VMX-preemption timer.
7955 * 9. NMI-window exit.
7956 * 10. NMI injection.
7957 * 11. Interrupt-window exit.
7958 * 12. Virtual-interrupt injection.
7959 * 13. Interrupt injection.
7960 * 14. Process next instruction (fetch, decode, execute).
7961 */
7962
7963 /* Setup VMX-preemption timer. */
7964 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7965
7966 /* Setup monitor-trap flag. */
7967 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7968
7969 /* Setup NMI-window exiting. */
7970 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7971
7972 /* Setup interrupt-window exiting. */
7973 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7974
7975 /*
7976 * Inject any event that the nested hypervisor wants to inject.
7977 * Note! We cannot immediately perform the event injection here as we may have
7978 * pending PGM operations to perform due to switching page tables and/or
7979 * mode.
7980 */
7981 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7982
7983# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7984 /* Reschedule to IEM-only execution of the nested-guest. */
7985 LogFlow(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7986 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7987 if (rcSched != VINF_SUCCESS)
7988 iemSetPassUpStatus(pVCpu, rcSched);
7989# endif
7990
7991 /* Finally, done. */
7992 Log2(("vmentry: %s: cs:rip=%04x:%08RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64 (%#RX64)\n",
7993 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
7994 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
7995 pVCpu->cpum.GstCtx.msrEFER, pVmcs->u64GuestEferMsr.u));
7996 return VINF_SUCCESS;
7997 }
7998 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7999 }
8000 }
8001 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
8002 }
8003
8004 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
8005 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8006 }
8007
8008 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
8009 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8010# endif
8011}
8012
8013
8014/**
8015 * Interface for HM and EM to emulate the VMLAUNCH/VMRESUME instruction.
8016 *
8017 * @returns Strict VBox status code.
8018 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8019 * @param cbInstr The instruction length in bytes.
8020 * @param uInstrId The instruction ID (VMXINSTRID_VMLAUNCH or
8021 * VMXINSTRID_VMRESUME).
8022 * @thread EMT(pVCpu)
8023 */
8024VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
8025{
8026 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
8027 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
8028
8029 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8030 VBOXSTRICTRC rcStrict = iemVmxVmlaunchVmresume(pVCpu, cbInstr, uInstrId);
8031 Assert(!pVCpu->iem.s.cActiveMappings);
8032 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8033}
8034
8035
8036/**
8037 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
8038 * (causes a VM-exit) or not.
8039 *
8040 * @returns @c true if the instruction is intercepted, @c false otherwise.
8041 * @param pVCpu The cross context virtual CPU structure.
8042 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
8043 * VMX_EXIT_WRMSR).
8044 * @param idMsr The MSR.
8045 */
8046bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT
8047{
8048 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
8049 Assert( uExitReason == VMX_EXIT_RDMSR
8050 || uExitReason == VMX_EXIT_WRMSR);
8051
8052 /* Consult the MSR bitmap if the feature is supported. */
8053 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
8054 Assert(pVmcs);
8055 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
8056 {
8057 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
8058 if (uExitReason == VMX_EXIT_RDMSR)
8059 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
8060 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
8061 }
8062
8063 /* Without MSR bitmaps, all MSR accesses are intercepted. */
8064 return true;
8065}
8066
8067
8068/**
8069 * VMREAD instruction execution worker that does not perform any validation checks.
8070 *
8071 * Callers are expected to have performed the necessary checks and to ensure the
8072 * VMREAD will succeed.
8073 *
8074 * @param pVmcs Pointer to the virtual VMCS.
8075 * @param pu64Dst Where to write the VMCS value.
8076 * @param u64VmcsField The VMCS field.
8077 *
8078 * @remarks May be called with interrupts disabled.
8079 */
8080static void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField) RT_NOEXCEPT
8081{
8082 VMXVMCSFIELD VmcsField;
8083 VmcsField.u = u64VmcsField;
8084 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8085 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8086 uint8_t const uWidthType = (uWidth << 2) | uType;
8087 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8088 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8089 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8090 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
8091 uWidth, uType, uIndex, uIndex));
8092 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8093
8094 /*
8095 * Read the VMCS component based on the field's effective width.
8096 *
8097 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8098 * indicates high bits (little endian).
8099 *
8100 * Note! The caller is responsible to trim the result and update registers
8101 * or memory locations are required. Here we just zero-extend to the largest
8102 * type (i.e. 64-bits).
8103 */
8104 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
8105 uint8_t const *pbField = pbVmcs + offField;
8106 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8107 switch (uEffWidth)
8108 {
8109 case VMX_VMCSFIELD_WIDTH_64BIT:
8110 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
8111 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
8112 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
8113 }
8114}
8115
8116
8117/**
8118 * Interface for HM and EM to read a VMCS field from the nested-guest VMCS.
8119 *
8120 * It is ASSUMED the caller knows what they're doing. No VMREAD instruction checks
8121 * are performed. Bounds checks are strict builds only.
8122 *
8123 * @param pVmcs Pointer to the virtual VMCS.
8124 * @param u64VmcsField The VMCS field.
8125 * @param pu64Dst Where to store the VMCS value.
8126 *
8127 * @remarks May be called with interrupts disabled.
8128 * @todo This should probably be moved to CPUM someday.
8129 */
8130VMM_INT_DECL(void) IEMReadVmxVmcsField(PCVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t *pu64Dst)
8131{
8132 AssertPtr(pVmcs);
8133 AssertPtr(pu64Dst);
8134 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8135}
8136
8137
8138/**
8139 * VMREAD common (memory/register) instruction execution worker.
8140 *
8141 * @returns Strict VBox status code.
8142 * @param pVCpu The cross context virtual CPU structure.
8143 * @param cbInstr The instruction length in bytes.
8144 * @param pu64Dst Where to write the VMCS value (only updated when
8145 * VINF_SUCCESS is returned).
8146 * @param u64VmcsField The VMCS field.
8147 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8148 * NULL.
8149 */
8150static VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8151 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8152{
8153 /* Nested-guest intercept. */
8154 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8155 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
8156 {
8157 if (pExitInfo)
8158 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8159 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
8160 }
8161
8162 /* CPL. */
8163 if (pVCpu->iem.s.uCpl == 0)
8164 { /* likely */ }
8165 else
8166 {
8167 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8168 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
8169 return iemRaiseGeneralProtectionFault0(pVCpu);
8170 }
8171
8172 pVCpu->iem.s.cPotentialExits++;
8173
8174 /* VMCS pointer in root mode. */
8175 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8176 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8177 { /* likely */ }
8178 else
8179 {
8180 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8181 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
8182 iemVmxVmFailInvalid(pVCpu);
8183 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8184 }
8185
8186 /* VMCS-link pointer in non-root mode. */
8187 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8188 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8189 { /* likely */ }
8190 else
8191 {
8192 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8193 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
8194 iemVmxVmFailInvalid(pVCpu);
8195 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8196 }
8197
8198 /* Supported VMCS field. */
8199 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8200 { /* likely */ }
8201 else
8202 {
8203 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8204 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
8205 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8206 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
8207 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8208 }
8209
8210 /*
8211 * Reading from the current or shadow VMCS.
8212 */
8213 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8214 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8215 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8216 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8217 Log4(("vmread %#RX64 => %#RX64\n", u64VmcsField, *pu64Dst));
8218 return VINF_SUCCESS;
8219}
8220
8221
8222/**
8223 * VMREAD (64-bit register) instruction execution worker.
8224 *
8225 * @returns Strict VBox status code.
8226 * @param pVCpu The cross context virtual CPU structure.
8227 * @param cbInstr The instruction length in bytes.
8228 * @param pu64Dst Where to store the VMCS field's value.
8229 * @param u64VmcsField The VMCS field.
8230 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8231 * NULL.
8232 */
8233static VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8234 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8235{
8236 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
8237 if (rcStrict == VINF_SUCCESS)
8238 {
8239 iemVmxVmSucceed(pVCpu);
8240 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8241 }
8242
8243 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8244 return rcStrict;
8245}
8246
8247
8248/**
8249 * VMREAD (32-bit register) instruction execution worker.
8250 *
8251 * @returns Strict VBox status code.
8252 * @param pVCpu The cross context virtual CPU structure.
8253 * @param cbInstr The instruction length in bytes.
8254 * @param pu32Dst Where to store the VMCS field's value.
8255 * @param u32VmcsField The VMCS field.
8256 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8257 * NULL.
8258 */
8259static VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst,
8260 uint64_t u32VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8261{
8262 uint64_t u64Dst;
8263 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
8264 if (rcStrict == VINF_SUCCESS)
8265 {
8266 *pu32Dst = u64Dst;
8267 iemVmxVmSucceed(pVCpu);
8268 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8269 }
8270
8271 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8272 return rcStrict;
8273}
8274
8275
8276/**
8277 * VMREAD (memory) instruction execution worker.
8278 *
8279 * @returns Strict VBox status code.
8280 * @param pVCpu The cross context virtual CPU structure.
8281 * @param cbInstr The instruction length in bytes.
8282 * @param iEffSeg The effective segment register to use with @a u64Val.
8283 * Pass UINT8_MAX if it is a register access.
8284 * @param GCPtrDst The guest linear address to store the VMCS field's
8285 * value.
8286 * @param u64VmcsField The VMCS field.
8287 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8288 * NULL.
8289 */
8290static VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst,
8291 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8292{
8293 uint64_t u64Dst;
8294 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
8295 if (rcStrict == VINF_SUCCESS)
8296 {
8297 /*
8298 * Write the VMCS field's value to the location specified in guest-memory.
8299 */
8300 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8301 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8302 else
8303 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8304 if (rcStrict == VINF_SUCCESS)
8305 {
8306 iemVmxVmSucceed(pVCpu);
8307 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8308 }
8309
8310 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
8311 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
8312 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
8313 return rcStrict;
8314 }
8315
8316 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8317 return rcStrict;
8318}
8319
8320
8321/**
8322 * Interface for HM and EM to emulate the VMREAD instruction.
8323 *
8324 * @returns Strict VBox status code.
8325 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8326 * @param pExitInfo Pointer to the VM-exit information.
8327 * @thread EMT(pVCpu)
8328 */
8329VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmread(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8330{
8331 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8332 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8333 Assert(pExitInfo);
8334
8335 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8336
8337 VBOXSTRICTRC rcStrict;
8338 uint8_t const cbInstr = pExitInfo->cbInstr;
8339 bool const fIs64BitMode = RT_BOOL(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
8340 uint64_t const u64FieldEnc = fIs64BitMode
8341 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8342 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8343 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8344 {
8345 if (fIs64BitMode)
8346 {
8347 uint64_t *pu64Dst = iemGRegRefU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8348 rcStrict = iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
8349 }
8350 else
8351 {
8352 uint32_t *pu32Dst = iemGRegRefU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8353 rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u64FieldEnc, pExitInfo);
8354 }
8355 }
8356 else
8357 {
8358 RTGCPTR const GCPtrDst = pExitInfo->GCPtrEffAddr;
8359 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8360 rcStrict = iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64FieldEnc, pExitInfo);
8361 }
8362 Assert(!pVCpu->iem.s.cActiveMappings);
8363 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8364}
8365
8366
8367/**
8368 * VMWRITE instruction execution worker that does not perform any validation
8369 * checks.
8370 *
8371 * Callers are expected to have performed the necessary checks and to ensure the
8372 * VMWRITE will succeed.
8373 *
8374 * @param pVmcs Pointer to the virtual VMCS.
8375 * @param u64Val The value to write.
8376 * @param u64VmcsField The VMCS field.
8377 *
8378 * @remarks May be called with interrupts disabled.
8379 */
8380static void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField) RT_NOEXCEPT
8381{
8382 VMXVMCSFIELD VmcsField;
8383 VmcsField.u = u64VmcsField;
8384 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8385 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8386 uint8_t const uWidthType = (uWidth << 2) | uType;
8387 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8388 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8389 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8390 Assert(offField < VMX_V_VMCS_SIZE);
8391 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8392
8393 /*
8394 * Write the VMCS component based on the field's effective width.
8395 *
8396 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8397 * indicates high bits (little endian).
8398 */
8399 uint8_t *pbVmcs = (uint8_t *)pVmcs;
8400 uint8_t *pbField = pbVmcs + offField;
8401 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8402 switch (uEffWidth)
8403 {
8404 case VMX_VMCSFIELD_WIDTH_64BIT:
8405 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
8406 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
8407 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
8408 }
8409}
8410
8411
8412/**
8413 * Interface for HM and EM to write a VMCS field in the nested-guest VMCS.
8414 *
8415 * It is ASSUMED the caller knows what they're doing. No VMWRITE instruction checks
8416 * are performed. Bounds checks are strict builds only.
8417 *
8418 * @param pVmcs Pointer to the virtual VMCS.
8419 * @param u64VmcsField The VMCS field.
8420 * @param u64Val The value to write.
8421 *
8422 * @remarks May be called with interrupts disabled.
8423 * @todo This should probably be moved to CPUM someday.
8424 */
8425VMM_INT_DECL(void) IEMWriteVmxVmcsField(PVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t u64Val)
8426{
8427 AssertPtr(pVmcs);
8428 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8429}
8430
8431
8432/**
8433 * VMWRITE instruction execution worker.
8434 *
8435 * @returns Strict VBox status code.
8436 * @param pVCpu The cross context virtual CPU structure.
8437 * @param cbInstr The instruction length in bytes.
8438 * @param iEffSeg The effective segment register to use with @a u64Val.
8439 * Pass UINT8_MAX if it is a register access.
8440 * @param u64Val The value to write (or guest linear address to the
8441 * value), @a iEffSeg will indicate if it's a memory
8442 * operand.
8443 * @param u64VmcsField The VMCS field.
8444 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8445 * NULL.
8446 */
8447static VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val,
8448 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8449{
8450 /* Nested-guest intercept. */
8451 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8452 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
8453 {
8454 if (pExitInfo)
8455 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8456 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8457 }
8458
8459 /* CPL. */
8460 if (pVCpu->iem.s.uCpl == 0)
8461 { /* likely */ }
8462 else
8463 {
8464 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8465 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8466 return iemRaiseGeneralProtectionFault0(pVCpu);
8467 }
8468
8469 pVCpu->iem.s.cPotentialExits++;
8470
8471 /* VMCS pointer in root mode. */
8472 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8473 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8474 { /* likely */ }
8475 else
8476 {
8477 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8478 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8479 iemVmxVmFailInvalid(pVCpu);
8480 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8481 }
8482
8483 /* VMCS-link pointer in non-root mode. */
8484 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8485 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8486 { /* likely */ }
8487 else
8488 {
8489 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8490 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8491 iemVmxVmFailInvalid(pVCpu);
8492 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8493 }
8494
8495 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8496 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8497 if (!fIsRegOperand)
8498 {
8499 /* Read the value from the specified guest memory location. */
8500 VBOXSTRICTRC rcStrict;
8501 RTGCPTR const GCPtrVal = u64Val;
8502 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8503 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8504 else
8505 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8506 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8507 {
8508 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8509 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8510 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
8511 return rcStrict;
8512 }
8513 }
8514 else
8515 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8516
8517 /* Supported VMCS field. */
8518 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8519 { /* likely */ }
8520 else
8521 {
8522 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8523 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8524 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8525 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8526 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8527 }
8528
8529 /* Read-only VMCS field. */
8530 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
8531 if ( !fIsFieldReadOnly
8532 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8533 { /* likely */ }
8534 else
8535 {
8536 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
8537 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8538 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8539 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8540 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8541 }
8542
8543 /*
8544 * Write to the current or shadow VMCS.
8545 */
8546 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
8547 PVMXVVMCS pVmcs = !fInVmxNonRootMode
8548 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8549 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8550 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8551 Log4(("vmwrite %#RX64 <= %#RX64\n", u64VmcsField, u64Val));
8552
8553 if ( !fInVmxNonRootMode
8554 && VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8555 {
8556 /* Notify HM that the VMCS content might have changed. */
8557 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8558 }
8559
8560 iemVmxVmSucceed(pVCpu);
8561 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8562}
8563
8564
8565/**
8566 * Interface for HM and EM to emulate the VMWRITE instruction.
8567 *
8568 * @returns Strict VBox status code.
8569 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8570 * @param pExitInfo Pointer to the VM-exit information.
8571 * @thread EMT(pVCpu)
8572 */
8573VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmwrite(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8574{
8575 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8576 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8577 Assert(pExitInfo);
8578
8579 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8580
8581 uint64_t u64Val;
8582 uint8_t iEffSeg;
8583 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8584 {
8585 u64Val = iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8586 iEffSeg = UINT8_MAX;
8587 }
8588 else
8589 {
8590 u64Val = pExitInfo->GCPtrEffAddr;
8591 iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8592 }
8593 uint8_t const cbInstr = pExitInfo->cbInstr;
8594 uint64_t const u64FieldEnc = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
8595 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8596 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8597 VBOXSTRICTRC rcStrict = iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, u64Val, u64FieldEnc, pExitInfo);
8598 Assert(!pVCpu->iem.s.cActiveMappings);
8599 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8600}
8601
8602
8603/**
8604 * VMCLEAR instruction execution worker.
8605 *
8606 * @returns Strict VBox status code.
8607 * @param pVCpu The cross context virtual CPU structure.
8608 * @param cbInstr The instruction length in bytes.
8609 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8610 * @param GCPtrVmcs The linear address of the VMCS pointer.
8611 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8612 *
8613 * @remarks Common VMX instruction checks are already expected to by the caller,
8614 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8615 */
8616static VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8617 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8618{
8619 /* Nested-guest intercept. */
8620 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8621 {
8622 if (pExitInfo)
8623 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8624 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8625 }
8626
8627 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8628
8629 /* CPL. */
8630 if (pVCpu->iem.s.uCpl == 0)
8631 { /* likely */ }
8632 else
8633 {
8634 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8635 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8636 return iemRaiseGeneralProtectionFault0(pVCpu);
8637 }
8638
8639 /* Get the VMCS pointer from the location specified by the source memory operand. */
8640 RTGCPHYS GCPhysVmcs;
8641 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8642 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8643 { /* likely */ }
8644 else
8645 {
8646 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8647 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8648 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8649 return rcStrict;
8650 }
8651
8652 /* VMCS pointer alignment. */
8653 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8654 { /* likely */ }
8655 else
8656 {
8657 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8658 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8659 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8660 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8661 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8662 }
8663
8664 /* VMCS physical-address width limits. */
8665 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8666 { /* likely */ }
8667 else
8668 {
8669 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8670 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8671 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8672 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8673 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8674 }
8675
8676 /* VMCS is not the VMXON region. */
8677 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8678 { /* likely */ }
8679 else
8680 {
8681 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8682 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8683 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8684 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8685 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8686 }
8687
8688 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8689 restriction imposed by our implementation. */
8690 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8691 { /* likely */ }
8692 else
8693 {
8694 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8695 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8696 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8697 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8698 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8699 }
8700
8701 /*
8702 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8703 *
8704 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8705 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8706 * to 'clear'.
8707 */
8708 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8709 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8710 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8711 {
8712 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
8713 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8714 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8715 }
8716 else
8717 {
8718 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8719 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8720 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8721 if (RT_FAILURE(rcStrict))
8722 return rcStrict;
8723 }
8724
8725 iemVmxVmSucceed(pVCpu);
8726 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8727}
8728
8729
8730/**
8731 * Interface for HM and EM to emulate the VMCLEAR instruction.
8732 *
8733 * @returns Strict VBox status code.
8734 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8735 * @param pExitInfo Pointer to the VM-exit information.
8736 * @thread EMT(pVCpu)
8737 */
8738VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmclear(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8739{
8740 Assert(pExitInfo);
8741 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8742 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8743
8744 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8745
8746 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8747 uint8_t const cbInstr = pExitInfo->cbInstr;
8748 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8749 VBOXSTRICTRC rcStrict = iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8750 Assert(!pVCpu->iem.s.cActiveMappings);
8751 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8752}
8753
8754
8755/**
8756 * VMPTRST instruction execution worker.
8757 *
8758 * @returns Strict VBox status code.
8759 * @param pVCpu The cross context virtual CPU structure.
8760 * @param cbInstr The instruction length in bytes.
8761 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8762 * @param GCPtrVmcs The linear address of where to store the current VMCS
8763 * pointer.
8764 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8765 *
8766 * @remarks Common VMX instruction checks are already expected to by the caller,
8767 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8768 */
8769static VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8770 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8771{
8772 /* Nested-guest intercept. */
8773 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8774 {
8775 if (pExitInfo)
8776 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8777 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8778 }
8779
8780 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8781
8782 /* CPL. */
8783 if (pVCpu->iem.s.uCpl == 0)
8784 { /* likely */ }
8785 else
8786 {
8787 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8788 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8789 return iemRaiseGeneralProtectionFault0(pVCpu);
8790 }
8791
8792 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8793 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8794 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8795 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8796 {
8797 iemVmxVmSucceed(pVCpu);
8798 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8799 }
8800
8801 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8802 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8803 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8804 return rcStrict;
8805}
8806
8807
8808/**
8809 * Interface for HM and EM to emulate the VMPTRST instruction.
8810 *
8811 * @returns Strict VBox status code.
8812 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8813 * @param pExitInfo Pointer to the VM-exit information.
8814 * @thread EMT(pVCpu)
8815 */
8816VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrst(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8817{
8818 Assert(pExitInfo);
8819 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8820 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8821
8822 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8823
8824 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8825 uint8_t const cbInstr = pExitInfo->cbInstr;
8826 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8827 VBOXSTRICTRC rcStrict = iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8828 Assert(!pVCpu->iem.s.cActiveMappings);
8829 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8830}
8831
8832
8833/**
8834 * VMPTRLD instruction execution worker.
8835 *
8836 * @returns Strict VBox status code.
8837 * @param pVCpu The cross context virtual CPU structure.
8838 * @param cbInstr The instruction length in bytes.
8839 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8840 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8841 *
8842 * @remarks Common VMX instruction checks are already expected to by the caller,
8843 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8844 */
8845static VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8846 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8847{
8848 /* Nested-guest intercept. */
8849 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8850 {
8851 if (pExitInfo)
8852 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8853 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8854 }
8855
8856 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8857
8858 /* CPL. */
8859 if (pVCpu->iem.s.uCpl == 0)
8860 { /* likely */ }
8861 else
8862 {
8863 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8864 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8865 return iemRaiseGeneralProtectionFault0(pVCpu);
8866 }
8867
8868 /* Get the VMCS pointer from the location specified by the source memory operand. */
8869 RTGCPHYS GCPhysVmcs;
8870 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8871 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8872 { /* likely */ }
8873 else
8874 {
8875 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8876 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8877 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8878 return rcStrict;
8879 }
8880
8881 /* VMCS pointer alignment. */
8882 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8883 { /* likely */ }
8884 else
8885 {
8886 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8887 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8888 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8889 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8890 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8891 }
8892
8893 /* VMCS physical-address width limits. */
8894 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8895 { /* likely */ }
8896 else
8897 {
8898 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8899 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8900 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8901 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8902 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8903 }
8904
8905 /* VMCS is not the VMXON region. */
8906 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8907 { /* likely */ }
8908 else
8909 {
8910 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8911 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8912 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8913 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8914 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8915 }
8916
8917 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8918 restriction imposed by our implementation. */
8919 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8920 { /* likely */ }
8921 else
8922 {
8923 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8924 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8925 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8926 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8927 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8928 }
8929
8930 /* Read just the VMCS revision from the VMCS. */
8931 VMXVMCSREVID VmcsRevId;
8932 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8933 if (RT_SUCCESS(rc))
8934 { /* likely */ }
8935 else
8936 {
8937 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8938 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8939 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8940 return rc;
8941 }
8942
8943 /*
8944 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8945 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8946 */
8947 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8948 && ( !VmcsRevId.n.fIsShadowVmcs
8949 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8950 { /* likely */ }
8951 else
8952 {
8953 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8954 {
8955 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8956 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8957 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8958 }
8959 else
8960 {
8961 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8962 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8963 }
8964 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8965 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8966 }
8967
8968 /*
8969 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8970 * the cache of an existing, current VMCS back to guest memory before loading a new,
8971 * different current VMCS.
8972 */
8973 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8974 {
8975 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8976 {
8977 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8978 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8979 }
8980
8981 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8982 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8983 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8984 if (RT_SUCCESS(rc))
8985 {
8986 /* Notify HM that a new, current VMCS is loaded. */
8987 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8988 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8989 }
8990 else
8991 {
8992 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8993 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8994 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8995 return rc;
8996 }
8997 }
8998
8999 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
9000 iemVmxVmSucceed(pVCpu);
9001 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9002}
9003
9004
9005/**
9006 * Interface for HM and EM to emulate the VMPTRLD instruction.
9007 *
9008 * @returns Strict VBox status code.
9009 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9010 * @param pExitInfo Pointer to the VM-exit information.
9011 * @thread EMT(pVCpu)
9012 */
9013VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrld(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9014{
9015 Assert(pExitInfo);
9016 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9017 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9018
9019 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9020
9021 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9022 uint8_t const cbInstr = pExitInfo->cbInstr;
9023 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
9024 VBOXSTRICTRC rcStrict = iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
9025 Assert(!pVCpu->iem.s.cActiveMappings);
9026 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9027}
9028
9029
9030/**
9031 * INVVPID instruction execution worker.
9032 *
9033 * @returns Strict VBox status code.
9034 * @param pVCpu The cross context virtual CPU structure.
9035 * @param cbInstr The instruction length in bytes.
9036 * @param iEffSeg The segment of the invvpid descriptor.
9037 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
9038 * @param u64InvvpidType The invalidation type.
9039 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9040 * NULL.
9041 *
9042 * @remarks Common VMX instruction checks are already expected to by the caller,
9043 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9044 */
9045VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
9046 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9047{
9048 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
9049 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
9050 return iemRaiseUndefinedOpcode(pVCpu);
9051
9052 /* Nested-guest intercept. */
9053 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9054 {
9055 if (pExitInfo)
9056 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9057 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
9058 }
9059
9060 /* CPL. */
9061 if (pVCpu->iem.s.uCpl != 0)
9062 {
9063 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
9064 return iemRaiseGeneralProtectionFault0(pVCpu);
9065 }
9066
9067 /*
9068 * Validate INVVPID invalidation type.
9069 *
9070 * The instruction specifies exactly ONE of the supported invalidation types.
9071 *
9072 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9073 * supported. In theory, it's possible for a CPU to not support flushing individual
9074 * addresses but all the other types or any other combination. We do not take any
9075 * shortcuts here by assuming the types we currently expose to the guest.
9076 */
9077 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9078 bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
9079 bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
9080 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
9081 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
9082 bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
9083
9084 bool afSupportedTypes[4];
9085 afSupportedTypes[0] = fTypeIndivAddr;
9086 afSupportedTypes[1] = fTypeSingleCtx;
9087 afSupportedTypes[2] = fTypeAllCtx;
9088 afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
9089
9090 if ( fInvvpidSupported
9091 && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
9092 && afSupportedTypes[u64InvvpidType & 3])
9093 { /* likely */ }
9094 else
9095 {
9096 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
9097 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
9098 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9099 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9100 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9101 }
9102
9103 /*
9104 * Fetch the invvpid descriptor from guest memory.
9105 */
9106 RTUINT128U uDesc;
9107 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
9108 if (rcStrict == VINF_SUCCESS)
9109 {
9110 /*
9111 * Validate the descriptor.
9112 */
9113 if (uDesc.s.Lo <= 0xffff)
9114 { /* likely */ }
9115 else
9116 {
9117 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
9118 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
9119 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
9120 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9121 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9122 }
9123
9124 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9125 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
9126 uint16_t const uVpid = uDesc.Words.w0;
9127 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9128 switch (u64InvvpidType)
9129 {
9130 case VMXTLBFLUSHVPID_INDIV_ADDR:
9131 {
9132 if (uVpid != 0)
9133 {
9134 if (IEM_IS_CANONICAL(GCPtrInvAddr))
9135 {
9136 /* Invalidate mappings for the linear address tagged with VPID. */
9137 /** @todo PGM support for VPID? Currently just flush everything. */
9138 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9139 iemVmxVmSucceed(pVCpu);
9140 }
9141 else
9142 {
9143 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
9144 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
9145 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
9146 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9147 }
9148 }
9149 else
9150 {
9151 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9152 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
9153 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9154 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9155 }
9156 break;
9157 }
9158
9159 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
9160 {
9161 if (uVpid != 0)
9162 {
9163 /* Invalidate all mappings with VPID. */
9164 /** @todo PGM support for VPID? Currently just flush everything. */
9165 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9166 iemVmxVmSucceed(pVCpu);
9167 }
9168 else
9169 {
9170 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9171 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
9172 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9173 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9174 }
9175 break;
9176 }
9177
9178 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
9179 {
9180 /* Invalidate all mappings with non-zero VPIDs. */
9181 /** @todo PGM support for VPID? Currently just flush everything. */
9182 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9183 iemVmxVmSucceed(pVCpu);
9184 break;
9185 }
9186
9187 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
9188 {
9189 if (uVpid != 0)
9190 {
9191 /* Invalidate all mappings with VPID except global translations. */
9192 /** @todo PGM support for VPID? Currently just flush everything. */
9193 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9194 iemVmxVmSucceed(pVCpu);
9195 }
9196 else
9197 {
9198 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9199 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
9200 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
9201 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9202 }
9203 break;
9204 }
9205 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9206 }
9207 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9208 }
9209 return rcStrict;
9210}
9211
9212
9213/**
9214 * Interface for HM and EM to emulate the INVVPID instruction.
9215 *
9216 * @returns Strict VBox status code.
9217 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9218 * @param pExitInfo Pointer to the VM-exit information.
9219 * @thread EMT(pVCpu)
9220 */
9221VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvvpid(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9222{
9223 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9224 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9225 Assert(pExitInfo);
9226
9227 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9228
9229 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9230 uint8_t const cbInstr = pExitInfo->cbInstr;
9231 RTGCPTR const GCPtrInvvpidDesc = pExitInfo->GCPtrEffAddr;
9232 uint64_t const u64InvvpidType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9233 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9234 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9235 VBOXSTRICTRC rcStrict = iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, u64InvvpidType, pExitInfo);
9236 Assert(!pVCpu->iem.s.cActiveMappings);
9237 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9238}
9239
9240#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9241
9242/**
9243 * INVEPT instruction execution worker.
9244 *
9245 * @returns Strict VBox status code.
9246 * @param pVCpu The cross context virtual CPU structure.
9247 * @param cbInstr The instruction length in bytes.
9248 * @param iEffSeg The segment of the invept descriptor.
9249 * @param GCPtrInveptDesc The address of invept descriptor.
9250 * @param u64InveptType The invalidation type.
9251 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9252 * NULL.
9253 *
9254 * @remarks Common VMX instruction checks are already expected to by the caller,
9255 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9256 */
9257static VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
9258 uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9259{
9260 /* Check if EPT is supported, otherwise raise #UD. */
9261 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
9262 return iemRaiseUndefinedOpcode(pVCpu);
9263
9264 /* Nested-guest intercept. */
9265 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9266 {
9267 if (pExitInfo)
9268 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9269 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
9270 }
9271
9272 /* CPL. */
9273 if (pVCpu->iem.s.uCpl != 0)
9274 {
9275 Log(("invept: CPL != 0 -> #GP(0)\n"));
9276 return iemRaiseGeneralProtectionFault0(pVCpu);
9277 }
9278
9279 /*
9280 * Validate INVEPT invalidation type.
9281 *
9282 * The instruction specifies exactly ONE of the supported invalidation types.
9283 *
9284 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9285 * supported. In theory, it's possible for a CPU to not support flushing individual
9286 * addresses but all the other types or any other combination. We do not take any
9287 * shortcuts here by assuming the types we currently expose to the guest.
9288 */
9289 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9290 bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
9291 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
9292 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
9293
9294 bool afSupportedTypes[4];
9295 afSupportedTypes[0] = false;
9296 afSupportedTypes[1] = fTypeSingleCtx;
9297 afSupportedTypes[2] = fTypeAllCtx;
9298 afSupportedTypes[3] = false;
9299
9300 if ( fInveptSupported
9301 && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
9302 && afSupportedTypes[u64InveptType & 3])
9303 { /* likely */ }
9304 else
9305 {
9306 Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
9307 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
9308 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
9309 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9310 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9311 }
9312
9313 /*
9314 * Fetch the invept descriptor from guest memory.
9315 */
9316 RTUINT128U uDesc;
9317 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
9318 if (rcStrict == VINF_SUCCESS)
9319 {
9320 /*
9321 * Validate the descriptor.
9322 *
9323 * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
9324 * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
9325 * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
9326 * better to be strict in our emulation until proven otherwise.
9327 */
9328 if (uDesc.s.Hi)
9329 {
9330 Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
9331 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
9332 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
9333 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9334 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9335 }
9336
9337 /*
9338 * Flush TLB mappings based on the EPT type.
9339 */
9340 if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
9341 {
9342 uint64_t const GCPhysEptPtr = uDesc.s.Lo;
9343 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
9344 if (RT_SUCCESS(rc))
9345 { /* likely */ }
9346 else
9347 {
9348 Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
9349 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
9350 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
9351 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9352 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9353 }
9354 }
9355
9356 /** @todo PGM support for EPT tags? Currently just flush everything. */
9357 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9358 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9359 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9360
9361 iemVmxVmSucceed(pVCpu);
9362 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9363 }
9364
9365 return rcStrict;
9366}
9367
9368
9369/**
9370 * Interface for HM and EM to emulate the INVEPT instruction.
9371 *
9372 * @returns Strict VBox status code.
9373 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9374 * @param pExitInfo Pointer to the VM-exit information.
9375 * @thread EMT(pVCpu)
9376 */
9377VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvept(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9378{
9379 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9380 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9381 Assert(pExitInfo);
9382
9383 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9384
9385 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9386 uint8_t const cbInstr = pExitInfo->cbInstr;
9387 RTGCPTR const GCPtrInveptDesc = pExitInfo->GCPtrEffAddr;
9388 uint64_t const u64InveptType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9389 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9390 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9391 VBOXSTRICTRC rcStrict = iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, u64InveptType, pExitInfo);
9392 Assert(!pVCpu->iem.s.cActiveMappings);
9393 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9394}
9395
9396#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
9397
9398/**
9399 * VMXON instruction execution worker.
9400 *
9401 * @returns Strict VBox status code.
9402 * @param pVCpu The cross context virtual CPU structure.
9403 * @param cbInstr The instruction length in bytes.
9404 * @param iEffSeg The effective segment register to use with @a
9405 * GCPtrVmxon.
9406 * @param GCPtrVmxon The linear address of the VMXON pointer.
9407 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
9408 *
9409 * @remarks Common VMX instruction checks are already expected to by the caller,
9410 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9411 */
9412static VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
9413 RTGCPHYS GCPtrVmxon, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9414{
9415 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
9416 {
9417 /* CPL. */
9418 if (pVCpu->iem.s.uCpl == 0)
9419 { /* likely */ }
9420 else
9421 {
9422 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9423 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
9424 return iemRaiseGeneralProtectionFault0(pVCpu);
9425 }
9426
9427 /* A20M (A20 Masked) mode. */
9428 if (PGMPhysIsA20Enabled(pVCpu))
9429 { /* likely */ }
9430 else
9431 {
9432 Log(("vmxon: A20M mode -> #GP(0)\n"));
9433 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
9434 return iemRaiseGeneralProtectionFault0(pVCpu);
9435 }
9436
9437 /* CR0. */
9438 {
9439 /*
9440 * CR0 MB1 bits.
9441 *
9442 * We use VMX_V_CR0_FIXED0 below to ensure CR0.PE and CR0.PG are always set
9443 * while executing VMXON. CR0.PE and CR0.PG are only allowed to be clear
9444 * when the guest running in VMX non-root mode with unrestricted-guest control
9445 * enabled in the VMCS.
9446 */
9447 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
9448 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
9449 { /* likely */ }
9450 else
9451 {
9452 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
9453 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
9454 return iemRaiseGeneralProtectionFault0(pVCpu);
9455 }
9456
9457 /* CR0 MBZ bits. */
9458 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
9459 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
9460 { /* likely */ }
9461 else
9462 {
9463 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
9464 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
9465 return iemRaiseGeneralProtectionFault0(pVCpu);
9466 }
9467 }
9468
9469 /* CR4. */
9470 {
9471 /* CR4 MB1 bits. */
9472 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
9473 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
9474 { /* likely */ }
9475 else
9476 {
9477 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
9478 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
9479 return iemRaiseGeneralProtectionFault0(pVCpu);
9480 }
9481
9482 /* CR4 MBZ bits. */
9483 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
9484 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
9485 { /* likely */ }
9486 else
9487 {
9488 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
9489 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
9490 return iemRaiseGeneralProtectionFault0(pVCpu);
9491 }
9492 }
9493
9494 /* Feature control MSR's LOCK and VMXON bits. */
9495 uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
9496 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9497 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9498 { /* likely */ }
9499 else
9500 {
9501 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
9502 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
9503 return iemRaiseGeneralProtectionFault0(pVCpu);
9504 }
9505
9506 /* Get the VMXON pointer from the location specified by the source memory operand. */
9507 RTGCPHYS GCPhysVmxon;
9508 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
9509 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9510 { /* likely */ }
9511 else
9512 {
9513 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
9514 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
9515 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
9516 return rcStrict;
9517 }
9518
9519 /* VMXON region pointer alignment. */
9520 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
9521 { /* likely */ }
9522 else
9523 {
9524 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
9525 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
9526 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9527 iemVmxVmFailInvalid(pVCpu);
9528 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9529 }
9530
9531 /* VMXON physical-address width limits. */
9532 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
9533 { /* likely */ }
9534 else
9535 {
9536 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
9537 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
9538 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9539 iemVmxVmFailInvalid(pVCpu);
9540 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9541 }
9542
9543 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
9544 restriction imposed by our implementation. */
9545 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
9546 { /* likely */ }
9547 else
9548 {
9549 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
9550 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
9551 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9552 iemVmxVmFailInvalid(pVCpu);
9553 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9554 }
9555
9556 /* Read the VMCS revision ID from the VMXON region. */
9557 VMXVMCSREVID VmcsRevId;
9558 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
9559 if (RT_SUCCESS(rc))
9560 { /* likely */ }
9561 else
9562 {
9563 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
9564 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
9565 return rc;
9566 }
9567
9568 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
9569 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
9570 { /* likely */ }
9571 else
9572 {
9573 /* Revision ID mismatch. */
9574 if (!VmcsRevId.n.fIsShadowVmcs)
9575 {
9576 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
9577 VmcsRevId.n.u31RevisionId));
9578 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
9579 iemVmxVmFailInvalid(pVCpu);
9580 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9581 }
9582
9583 /* Shadow VMCS disallowed. */
9584 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
9585 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
9586 iemVmxVmFailInvalid(pVCpu);
9587 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9588 }
9589
9590 /*
9591 * Record that we're in VMX operation, block INIT, block and disable A20M.
9592 */
9593 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
9594 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
9595 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
9596
9597 /* Clear address-range monitoring. */
9598 EMMonitorWaitClear(pVCpu);
9599 /** @todo NSTVMX: Intel PT. */
9600
9601 iemVmxVmSucceed(pVCpu);
9602 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9603 }
9604 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9605 {
9606 /* Nested-guest intercept. */
9607 if (pExitInfo)
9608 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9609 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
9610 }
9611
9612 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
9613
9614 /* CPL. */
9615 if (pVCpu->iem.s.uCpl > 0)
9616 {
9617 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9618 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
9619 return iemRaiseGeneralProtectionFault0(pVCpu);
9620 }
9621
9622 /* VMXON when already in VMX root mode. */
9623 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
9624 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
9625 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9626}
9627
9628
9629/**
9630 * Interface for HM and EM to emulate the VMXON instruction.
9631 *
9632 * @returns Strict VBox status code.
9633 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9634 * @param pExitInfo Pointer to the VM-exit information.
9635 * @thread EMT(pVCpu)
9636 */
9637VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxon(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9638{
9639 Assert(pExitInfo);
9640 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9641 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9642
9643 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9644
9645 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9646 uint8_t const cbInstr = pExitInfo->cbInstr;
9647 RTGCPTR const GCPtrVmxon = pExitInfo->GCPtrEffAddr;
9648 VBOXSTRICTRC rcStrict = iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
9649 Assert(!pVCpu->iem.s.cActiveMappings);
9650 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9651}
9652
9653
9654/**
9655 * Implements 'VMXOFF'.
9656 *
9657 * @remarks Common VMX instruction checks are already expected to by the caller,
9658 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9659 */
9660IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
9661{
9662 /* Nested-guest intercept. */
9663 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9664 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
9665
9666 /* CPL. */
9667 if (pVCpu->iem.s.uCpl == 0)
9668 { /* likely */ }
9669 else
9670 {
9671 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9672 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
9673 return iemRaiseGeneralProtectionFault0(pVCpu);
9674 }
9675
9676 /* Dual monitor treatment of SMIs and SMM. */
9677 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
9678 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
9679 { /* likely */ }
9680 else
9681 {
9682 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
9683 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9684 }
9685
9686 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
9687 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
9688 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
9689
9690 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
9691 { /** @todo NSTVMX: Unblock SMI. */ }
9692
9693 EMMonitorWaitClear(pVCpu);
9694 /** @todo NSTVMX: Unblock and enable A20M. */
9695
9696 iemVmxVmSucceed(pVCpu);
9697 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9698}
9699
9700
9701/**
9702 * Interface for HM and EM to emulate the VMXOFF instruction.
9703 *
9704 * @returns Strict VBox status code.
9705 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9706 * @param cbInstr The instruction length in bytes.
9707 * @thread EMT(pVCpu)
9708 */
9709VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxoff(PVMCPUCC pVCpu, uint8_t cbInstr)
9710{
9711 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
9712 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9713
9714 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9715 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmxoff);
9716 Assert(!pVCpu->iem.s.cActiveMappings);
9717 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9718}
9719
9720
9721/**
9722 * Implements 'VMXON'.
9723 */
9724IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
9725{
9726 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
9727}
9728
9729
9730/**
9731 * Implements 'VMLAUNCH'.
9732 */
9733IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
9734{
9735 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
9736}
9737
9738
9739/**
9740 * Implements 'VMRESUME'.
9741 */
9742IEM_CIMPL_DEF_0(iemCImpl_vmresume)
9743{
9744 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
9745}
9746
9747
9748/**
9749 * Implements 'VMPTRLD'.
9750 */
9751IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9752{
9753 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9754}
9755
9756
9757/**
9758 * Implements 'VMPTRST'.
9759 */
9760IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9761{
9762 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9763}
9764
9765
9766/**
9767 * Implements 'VMCLEAR'.
9768 */
9769IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9770{
9771 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9772}
9773
9774
9775/**
9776 * Implements 'VMWRITE' register.
9777 */
9778IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
9779{
9780 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
9781}
9782
9783
9784/**
9785 * Implements 'VMWRITE' memory.
9786 */
9787IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
9788{
9789 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
9790}
9791
9792
9793/**
9794 * Implements 'VMREAD' register (64-bit).
9795 */
9796IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
9797{
9798 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
9799}
9800
9801
9802/**
9803 * Implements 'VMREAD' register (32-bit).
9804 */
9805IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint64_t *, pu64Dst, uint32_t, u32VmcsField)
9806{
9807 VBOXSTRICTRC const rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, (uint32_t *)pu64Dst, u32VmcsField, NULL /* pExitInfo */);
9808 /* Zero the high part of the register on success. */
9809 if (rcStrict == VINF_SUCCESS)
9810 *pu64Dst = (uint32_t)*pu64Dst;
9811 return rcStrict;
9812}
9813
9814
9815/**
9816 * Implements 'VMREAD' memory, 64-bit register.
9817 */
9818IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
9819{
9820 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
9821}
9822
9823
9824/**
9825 * Implements 'VMREAD' memory, 32-bit register.
9826 */
9827IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
9828{
9829 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
9830}
9831
9832
9833/**
9834 * Implements 'INVVPID'.
9835 */
9836IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
9837{
9838 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
9839}
9840
9841
9842#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9843/**
9844 * Implements 'INVEPT'.
9845 */
9846IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
9847{
9848 return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
9849}
9850#endif
9851
9852
9853/**
9854 * Implements VMX's implementation of PAUSE.
9855 */
9856IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
9857{
9858 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9859 {
9860 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
9861 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9862 return rcStrict;
9863 }
9864
9865 /*
9866 * Outside VMX non-root operation or if the PAUSE instruction does not cause
9867 * a VM-exit, the instruction operates normally.
9868 */
9869 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9870}
9871
9872#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
9873
9874
9875/**
9876 * Implements 'VMCALL'.
9877 */
9878IEM_CIMPL_DEF_0(iemCImpl_vmcall)
9879{
9880 pVCpu->iem.s.cPotentialExits++;
9881
9882#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9883 /* Nested-guest intercept. */
9884 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9885 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
9886#endif
9887
9888 /* Join forces with vmmcall. */
9889 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
9890}
9891
9892
9893#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9894
9895/**
9896 * @callback_method_impl{FNPGMPHYSHANDLER, VMX APIC-access page accesses}
9897 *
9898 * @remarks The @a uUser argument is currently unused.
9899 */
9900DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPageHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysFault, void *pvPhys,
9901 void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType,
9902 PGMACCESSORIGIN enmOrigin, uint64_t uUser)
9903{
9904 RT_NOREF3(pvPhys, enmOrigin, uUser);
9905
9906 RTGCPHYS const GCPhysAccessBase = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9907 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9908 {
9909 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9910 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysAccessBase);
9911
9912 uint32_t const fAccess = enmAccessType == PGMACCESSTYPE_WRITE ? IEM_ACCESS_DATA_W : IEM_ACCESS_DATA_R;
9913 uint16_t const offAccess = GCPhysFault & GUEST_PAGE_OFFSET_MASK;
9914
9915 LogFlowFunc(("Fault at %#RGp (cbBuf=%u fAccess=%#x)\n", GCPhysFault, cbBuf, fAccess));
9916 VBOXSTRICTRC rcStrict = iemVmxVirtApicAccessMem(pVCpu, offAccess, cbBuf, pvBuf, fAccess);
9917 if (RT_FAILURE(rcStrict))
9918 return rcStrict;
9919
9920 /* Any access on this APIC-access page has been handled, caller should not carry out the access. */
9921 return VINF_SUCCESS;
9922 }
9923
9924 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysAccessBase));
9925 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhysAccessBase);
9926 if (RT_FAILURE(rc))
9927 return rc;
9928
9929 /* Instruct the caller of this handler to perform the read/write as normal memory. */
9930 return VINF_PGM_HANDLER_DO_DEFAULT;
9931}
9932
9933
9934# ifndef IN_RING3
9935/**
9936 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
9937 * \#PF access handler callback for guest VMX APIC-access page.}
9938 */
9939DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPagePfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx,
9940 RTGCPTR pvFault, RTGCPHYS GCPhysFault, uint64_t uUser)
9941
9942{
9943 RT_NOREF3(pVM, pCtx, uUser);
9944
9945 /*
9946 * Handle the VMX APIC-access page only when the guest is in VMX non-root mode.
9947 * Otherwise we must deregister the page and allow regular RAM access.
9948 * Failing to do so lands us with endless EPT VM-exits.
9949 */
9950 RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9951 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9952 {
9953 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9954 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysPage);
9955
9956 /*
9957 * Check if the access causes an APIC-access VM-exit.
9958 */
9959 uint32_t fAccess;
9960 if (uErr & X86_TRAP_PF_ID)
9961 fAccess = IEM_ACCESS_INSTRUCTION;
9962 else if (uErr & X86_TRAP_PF_RW)
9963 fAccess = IEM_ACCESS_DATA_W;
9964 else
9965 fAccess = IEM_ACCESS_DATA_R;
9966
9967 RTGCPHYS const GCPhysNestedFault = (RTGCPHYS)pvFault;
9968 uint16_t const offAccess = GCPhysNestedFault & GUEST_PAGE_OFFSET_MASK;
9969 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, 1 /* cbAccess */, fAccess);
9970 LogFlowFunc(("#PF at %#RGp (GCPhysNestedFault=%#RGp offAccess=%#x)\n", GCPhysFault, GCPhysNestedFault, offAccess));
9971 if (fIntercept)
9972 {
9973 /*
9974 * Query the source VM-exit (from the execution engine) that caused this access
9975 * within the APIC-access page. Currently only HM is supported.
9976 */
9977 AssertMsg(VM_IS_HM_ENABLED(pVM),
9978 ("VM-exit auxiliary info. fetching not supported for execution engine %d\n", pVM->bMainExecutionEngine));
9979
9980 HMEXITAUX HmExitAux;
9981 RT_ZERO(HmExitAux);
9982 int const rc = HMR0GetExitAuxInfo(pVCpu, &HmExitAux, HMVMX_READ_EXIT_INSTR_LEN
9983 | HMVMX_READ_EXIT_QUALIFICATION
9984 | HMVMX_READ_IDT_VECTORING_INFO
9985 | HMVMX_READ_IDT_VECTORING_ERROR_CODE);
9986 AssertRC(rc);
9987
9988 /*
9989 * Verify the VM-exit reason must be an EPT violation.
9990 * Other accesses should go through the other handler (iemVmxApicAccessPageHandler).
9991 * Refer to @bugref{10092#c33s} for a more detailed explanation.
9992 */
9993 AssertMsgReturn(HmExitAux.Vmx.uReason == VMX_EXIT_EPT_VIOLATION,
9994 ("Unexpected call to APIC-access page #PF handler for %#RGp offAcesss=%u uErr=%#RGx uReason=%u\n",
9995 GCPhysPage, offAccess, uErr, HmExitAux.Vmx.uReason), VERR_IEM_IPE_7);
9996
9997 /*
9998 * Construct the virtual APIC-access VM-exit.
9999 */
10000 VMXAPICACCESS enmAccess;
10001 if (HmExitAux.Vmx.u64Qual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID)
10002 {
10003 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
10004 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
10005 else if (fAccess == IEM_ACCESS_INSTRUCTION)
10006 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
10007 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
10008 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
10009 else
10010 enmAccess = VMXAPICACCESS_LINEAR_READ;
10011
10012 /* For linear-address accesss the instruction length must be valid. */
10013 AssertMsg(HmExitAux.Vmx.cbInstr > 0,
10014 ("Invalid APIC-access VM-exit instruction length. cbInstr=%u\n", HmExitAux.Vmx.cbInstr));
10015 }
10016 else
10017 {
10018 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
10019 enmAccess = VMXAPICACCESS_PHYSICAL_EVENT_DELIVERY;
10020 else
10021 {
10022 /** @todo How to distinguish between monitoring/trace vs other instructions
10023 * here? */
10024 enmAccess = VMXAPICACCESS_PHYSICAL_INSTR;
10025 }
10026
10027 /* For physical accesses the instruction length is undefined, we zero it for safety and consistency. */
10028 HmExitAux.Vmx.cbInstr = 0;
10029 }
10030
10031 /*
10032 * Raise the APIC-access VM-exit.
10033 */
10034 LogFlowFunc(("Raising APIC-access VM-exit from #PF handler at offset %#x\n", offAccess));
10035 VMXVEXITINFO const ExitInfo
10036 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_APIC_ACCESS,
10037 RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
10038 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess),
10039 HmExitAux.Vmx.cbInstr);
10040 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(HmExitAux.Vmx.uIdtVectoringInfo,
10041 HmExitAux.Vmx.uIdtVectoringErrCode);
10042 VBOXSTRICTRC const rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
10043 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
10044 }
10045
10046 /*
10047 * The access isn't intercepted, which means it needs to be virtualized.
10048 *
10049 * This requires emulating the instruction because we need the bytes being
10050 * read/written by the instruction not just the offset being accessed within
10051 * the APIC-access page (which we derive from the faulting address).
10052 */
10053 LogFlowFunc(("Access at offset %#x not intercepted -> VINF_EM_RAW_EMULATE_INSTR\n", offAccess));
10054 return VINF_EM_RAW_EMULATE_INSTR;
10055 }
10056
10057 /** @todo This isn't ideal but works for now as nested-hypervisors generally play
10058 * nice because the spec states that this page should be modified only when
10059 * no CPU refers to it VMX non-root mode. Nonetheless, we could use an atomic
10060 * reference counter to ensure the aforementioned condition before
10061 * de-registering the page. */
10062 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysPage));
10063 int const rc = PGMHandlerPhysicalDeregister(pVM, GCPhysPage);
10064 if (RT_FAILURE(rc))
10065 return rc;
10066
10067 return VINF_SUCCESS;
10068}
10069# endif /* !IN_RING3 */
10070
10071#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10072
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette