1 | /* $Id: IEMAllN8veRecompiler.cpp 102071 2023-11-12 22:46:20Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Native Recompiler
|
---|
4 | *
|
---|
5 | * Logging group IEM_RE_NATIVE assignments:
|
---|
6 | * - Level 1 (Log) : ...
|
---|
7 | * - Flow (LogFlow) : ...
|
---|
8 | * - Level 2 (Log2) : ...
|
---|
9 | * - Level 3 (Log3) : Disassemble native code after recompiling.
|
---|
10 | * - Level 4 (Log4) : ...
|
---|
11 | * - Level 5 (Log5) : ...
|
---|
12 | * - Level 6 (Log6) : ...
|
---|
13 | * - Level 7 (Log7) : ...
|
---|
14 | * - Level 8 (Log8) : ...
|
---|
15 | * - Level 9 (Log9) : ...
|
---|
16 | * - Level 10 (Log10): ...
|
---|
17 | * - Level 11 (Log11): Variable allocator.
|
---|
18 | * - Level 12 (Log12): Register allocator.
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Copyright (C) 2023 Oracle and/or its affiliates.
|
---|
23 | *
|
---|
24 | * This file is part of VirtualBox base platform packages, as
|
---|
25 | * available from https://www.virtualbox.org.
|
---|
26 | *
|
---|
27 | * This program is free software; you can redistribute it and/or
|
---|
28 | * modify it under the terms of the GNU General Public License
|
---|
29 | * as published by the Free Software Foundation, in version 3 of the
|
---|
30 | * License.
|
---|
31 | *
|
---|
32 | * This program is distributed in the hope that it will be useful, but
|
---|
33 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
34 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
35 | * General Public License for more details.
|
---|
36 | *
|
---|
37 | * You should have received a copy of the GNU General Public License
|
---|
38 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
39 | *
|
---|
40 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
41 | */
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Header Files *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | #define LOG_GROUP LOG_GROUP_IEM_RE_NATIVE
|
---|
48 | #define IEM_WITH_OPAQUE_DECODER_STATE
|
---|
49 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
50 | #define VMM_INCLUDED_SRC_include_IEMMc_h /* block IEMMc.h inclusion. */
|
---|
51 | #include <VBox/vmm/iem.h>
|
---|
52 | #include <VBox/vmm/cpum.h>
|
---|
53 | #include <VBox/vmm/dbgf.h>
|
---|
54 | #include "IEMInternal.h"
|
---|
55 | #include <VBox/vmm/vmcc.h>
|
---|
56 | #include <VBox/log.h>
|
---|
57 | #include <VBox/err.h>
|
---|
58 | #include <VBox/dis.h>
|
---|
59 | #include <VBox/param.h>
|
---|
60 | #include <iprt/assert.h>
|
---|
61 | #include <iprt/heap.h>
|
---|
62 | #include <iprt/mem.h>
|
---|
63 | #include <iprt/string.h>
|
---|
64 | #if defined(RT_ARCH_AMD64)
|
---|
65 | # include <iprt/x86.h>
|
---|
66 | #elif defined(RT_ARCH_ARM64)
|
---|
67 | # include <iprt/armv8.h>
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | #ifdef RT_OS_WINDOWS
|
---|
71 | # include <iprt/formats/pecoff.h> /* this is incomaptible with windows.h, thus: */
|
---|
72 | extern "C" DECLIMPORT(uint8_t) __cdecl RtlAddFunctionTable(void *pvFunctionTable, uint32_t cEntries, uintptr_t uBaseAddress);
|
---|
73 | extern "C" DECLIMPORT(uint8_t) __cdecl RtlDelFunctionTable(void *pvFunctionTable);
|
---|
74 | #else
|
---|
75 | # include <iprt/formats/dwarf.h>
|
---|
76 | # if defined(RT_OS_DARWIN)
|
---|
77 | # include <libkern/OSCacheControl.h>
|
---|
78 | # define IEMNATIVE_USE_LIBUNWIND
|
---|
79 | extern "C" void __register_frame(const void *pvFde);
|
---|
80 | extern "C" void __deregister_frame(const void *pvFde);
|
---|
81 | # else
|
---|
82 | # ifdef DEBUG_bird /** @todo not thread safe yet */
|
---|
83 | # define IEMNATIVE_USE_GDB_JIT
|
---|
84 | # endif
|
---|
85 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
86 | # include <iprt/critsect.h>
|
---|
87 | # include <iprt/once.h>
|
---|
88 | # include <iprt/formats/elf64.h>
|
---|
89 | # endif
|
---|
90 | extern "C" void __register_frame_info(void *pvBegin, void *pvObj); /* found no header for these two */
|
---|
91 | extern "C" void *__deregister_frame_info(void *pvBegin); /* (returns pvObj from __register_frame_info call) */
|
---|
92 | # endif
|
---|
93 | #endif
|
---|
94 | #ifdef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
95 | # include "/opt/local/include/capstone/capstone.h"
|
---|
96 | #endif
|
---|
97 |
|
---|
98 | #include "IEMInline.h"
|
---|
99 | #include "IEMThreadedFunctions.h"
|
---|
100 | #include "IEMN8veRecompiler.h"
|
---|
101 | #include "IEMN8veRecompilerEmit.h"
|
---|
102 | #include "IEMNativeFunctions.h"
|
---|
103 |
|
---|
104 |
|
---|
105 | /*
|
---|
106 | * Narrow down configs here to avoid wasting time on unused configs here.
|
---|
107 | * Note! Same checks in IEMAllThrdRecompiler.cpp.
|
---|
108 | */
|
---|
109 |
|
---|
110 | #ifndef IEM_WITH_CODE_TLB
|
---|
111 | # error The code TLB must be enabled for the recompiler.
|
---|
112 | #endif
|
---|
113 |
|
---|
114 | #ifndef IEM_WITH_DATA_TLB
|
---|
115 | # error The data TLB must be enabled for the recompiler.
|
---|
116 | #endif
|
---|
117 |
|
---|
118 | #ifndef IEM_WITH_SETJMP
|
---|
119 | # error The setjmp approach must be enabled for the recompiler.
|
---|
120 | #endif
|
---|
121 |
|
---|
122 | /** @todo eliminate this clang build hack. */
|
---|
123 | #if RT_CLANG_PREREQ(4, 0)
|
---|
124 | # pragma GCC diagnostic ignored "-Wunused-function"
|
---|
125 | #endif
|
---|
126 |
|
---|
127 |
|
---|
128 |
|
---|
129 | /*********************************************************************************************************************************
|
---|
130 | * Defined Constants And Macros *
|
---|
131 | *********************************************************************************************************************************/
|
---|
132 | /** Always count instructions for now. */
|
---|
133 | #define IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
134 |
|
---|
135 |
|
---|
136 | /*********************************************************************************************************************************
|
---|
137 | * Internal Functions *
|
---|
138 | *********************************************************************************************************************************/
|
---|
139 | #ifdef VBOX_STRICT
|
---|
140 | static uint32_t iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
141 | uint8_t idxReg, IEMNATIVEGSTREG enmGstReg);
|
---|
142 | static void iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
|
---|
143 | #endif
|
---|
144 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
145 | static void iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
|
---|
146 | static void iemNativeDbgInfoAddLabel(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint16_t uData);
|
---|
147 | #endif
|
---|
148 | DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off);
|
---|
149 | DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg,
|
---|
150 | IEMNATIVEGSTREG enmGstReg, uint32_t off);
|
---|
151 |
|
---|
152 |
|
---|
153 | /*********************************************************************************************************************************
|
---|
154 | * Executable Memory Allocator *
|
---|
155 | *********************************************************************************************************************************/
|
---|
156 | /** @def IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
157 | * Use an alternative chunk sub-allocator that does store internal data
|
---|
158 | * in the chunk.
|
---|
159 | *
|
---|
160 | * Using the RTHeapSimple is not practial on newer darwin systems where
|
---|
161 | * RTMEM_PROT_WRITE and RTMEM_PROT_EXEC are mutually exclusive in process
|
---|
162 | * memory. We would have to change the protection of the whole chunk for
|
---|
163 | * every call to RTHeapSimple, which would be rather expensive.
|
---|
164 | *
|
---|
165 | * This alternative implemenation let restrict page protection modifications
|
---|
166 | * to the pages backing the executable memory we just allocated.
|
---|
167 | */
|
---|
168 | #define IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
169 | /** The chunk sub-allocation unit size in bytes. */
|
---|
170 | #define IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE 128
|
---|
171 | /** The chunk sub-allocation unit size as a shift factor. */
|
---|
172 | #define IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT 7
|
---|
173 |
|
---|
174 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
175 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
176 | # define IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
177 |
|
---|
178 | /** GDB JIT: Code entry. */
|
---|
179 | typedef struct GDBJITCODEENTRY
|
---|
180 | {
|
---|
181 | struct GDBJITCODEENTRY *pNext;
|
---|
182 | struct GDBJITCODEENTRY *pPrev;
|
---|
183 | uint8_t *pbSymFile;
|
---|
184 | uint64_t cbSymFile;
|
---|
185 | } GDBJITCODEENTRY;
|
---|
186 |
|
---|
187 | /** GDB JIT: Actions. */
|
---|
188 | typedef enum GDBJITACTIONS : uint32_t
|
---|
189 | {
|
---|
190 | kGdbJitaction_NoAction = 0, kGdbJitaction_Register, kGdbJitaction_Unregister
|
---|
191 | } GDBJITACTIONS;
|
---|
192 |
|
---|
193 | /** GDB JIT: Descriptor. */
|
---|
194 | typedef struct GDBJITDESCRIPTOR
|
---|
195 | {
|
---|
196 | uint32_t uVersion;
|
---|
197 | GDBJITACTIONS enmAction;
|
---|
198 | GDBJITCODEENTRY *pRelevant;
|
---|
199 | GDBJITCODEENTRY *pHead;
|
---|
200 | /** Our addition: */
|
---|
201 | GDBJITCODEENTRY *pTail;
|
---|
202 | } GDBJITDESCRIPTOR;
|
---|
203 |
|
---|
204 | /** GDB JIT: Our simple symbol file data. */
|
---|
205 | typedef struct GDBJITSYMFILE
|
---|
206 | {
|
---|
207 | Elf64_Ehdr EHdr;
|
---|
208 | # ifndef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
209 | Elf64_Shdr aShdrs[5];
|
---|
210 | # else
|
---|
211 | Elf64_Shdr aShdrs[7];
|
---|
212 | Elf64_Phdr aPhdrs[2];
|
---|
213 | # endif
|
---|
214 | /** The dwarf ehframe data for the chunk. */
|
---|
215 | uint8_t abEhFrame[512];
|
---|
216 | char szzStrTab[128];
|
---|
217 | Elf64_Sym aSymbols[3];
|
---|
218 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
219 | Elf64_Sym aDynSyms[2];
|
---|
220 | Elf64_Dyn aDyn[6];
|
---|
221 | # endif
|
---|
222 | } GDBJITSYMFILE;
|
---|
223 |
|
---|
224 | extern "C" GDBJITDESCRIPTOR __jit_debug_descriptor;
|
---|
225 | extern "C" DECLEXPORT(void) __jit_debug_register_code(void);
|
---|
226 |
|
---|
227 | /** Init once for g_IemNativeGdbJitLock. */
|
---|
228 | static RTONCE g_IemNativeGdbJitOnce = RTONCE_INITIALIZER;
|
---|
229 | /** Init once for the critical section. */
|
---|
230 | static RTCRITSECT g_IemNativeGdbJitLock;
|
---|
231 |
|
---|
232 | /** GDB reads the info here. */
|
---|
233 | GDBJITDESCRIPTOR __jit_debug_descriptor = { 1, kGdbJitaction_NoAction, NULL, NULL };
|
---|
234 |
|
---|
235 | /** GDB sets a breakpoint on this and checks __jit_debug_descriptor when hit. */
|
---|
236 | DECL_NO_INLINE(RT_NOTHING, DECLEXPORT(void)) __jit_debug_register_code(void)
|
---|
237 | {
|
---|
238 | ASMNopPause();
|
---|
239 | }
|
---|
240 |
|
---|
241 | /** @callback_method_impl{FNRTONCE} */
|
---|
242 | static DECLCALLBACK(int32_t) iemNativeGdbJitInitOnce(void *pvUser)
|
---|
243 | {
|
---|
244 | RT_NOREF(pvUser);
|
---|
245 | return RTCritSectInit(&g_IemNativeGdbJitLock);
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | # endif /* IEMNATIVE_USE_GDB_JIT */
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Per-chunk unwind info for non-windows hosts.
|
---|
253 | */
|
---|
254 | typedef struct IEMEXECMEMCHUNKEHFRAME
|
---|
255 | {
|
---|
256 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
257 | /** The offset of the FDA into abEhFrame. */
|
---|
258 | uintptr_t offFda;
|
---|
259 | # else
|
---|
260 | /** 'struct object' storage area. */
|
---|
261 | uint8_t abObject[1024];
|
---|
262 | # endif
|
---|
263 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
264 | # if 0
|
---|
265 | /** The GDB JIT 'symbol file' data. */
|
---|
266 | GDBJITSYMFILE GdbJitSymFile;
|
---|
267 | # endif
|
---|
268 | /** The GDB JIT list entry. */
|
---|
269 | GDBJITCODEENTRY GdbJitEntry;
|
---|
270 | # endif
|
---|
271 | /** The dwarf ehframe data for the chunk. */
|
---|
272 | uint8_t abEhFrame[512];
|
---|
273 | } IEMEXECMEMCHUNKEHFRAME;
|
---|
274 | /** Pointer to per-chunk info info for non-windows hosts. */
|
---|
275 | typedef IEMEXECMEMCHUNKEHFRAME *PIEMEXECMEMCHUNKEHFRAME;
|
---|
276 | #endif
|
---|
277 |
|
---|
278 |
|
---|
279 | /**
|
---|
280 | * An chunk of executable memory.
|
---|
281 | */
|
---|
282 | typedef struct IEMEXECMEMCHUNK
|
---|
283 | {
|
---|
284 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
285 | /** Number of free items in this chunk. */
|
---|
286 | uint32_t cFreeUnits;
|
---|
287 | /** Hint were to start searching for free space in the allocation bitmap. */
|
---|
288 | uint32_t idxFreeHint;
|
---|
289 | #else
|
---|
290 | /** The heap handle. */
|
---|
291 | RTHEAPSIMPLE hHeap;
|
---|
292 | #endif
|
---|
293 | /** Pointer to the chunk. */
|
---|
294 | void *pvChunk;
|
---|
295 | #ifdef IN_RING3
|
---|
296 | /**
|
---|
297 | * Pointer to the unwind information.
|
---|
298 | *
|
---|
299 | * This is used during C++ throw and longjmp (windows and probably most other
|
---|
300 | * platforms). Some debuggers (windbg) makes use of it as well.
|
---|
301 | *
|
---|
302 | * Windows: This is allocated from hHeap on windows because (at least for
|
---|
303 | * AMD64) the UNWIND_INFO structure address in the
|
---|
304 | * RUNTIME_FUNCTION entry is an RVA and the chunk is the "image".
|
---|
305 | *
|
---|
306 | * Others: Allocated from the regular heap to avoid unnecessary executable data
|
---|
307 | * structures. This points to an IEMEXECMEMCHUNKEHFRAME structure. */
|
---|
308 | void *pvUnwindInfo;
|
---|
309 | #elif defined(IN_RING0)
|
---|
310 | /** Allocation handle. */
|
---|
311 | RTR0MEMOBJ hMemObj;
|
---|
312 | #endif
|
---|
313 | } IEMEXECMEMCHUNK;
|
---|
314 | /** Pointer to a memory chunk. */
|
---|
315 | typedef IEMEXECMEMCHUNK *PIEMEXECMEMCHUNK;
|
---|
316 |
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Executable memory allocator for the native recompiler.
|
---|
320 | */
|
---|
321 | typedef struct IEMEXECMEMALLOCATOR
|
---|
322 | {
|
---|
323 | /** Magic value (IEMEXECMEMALLOCATOR_MAGIC). */
|
---|
324 | uint32_t uMagic;
|
---|
325 |
|
---|
326 | /** The chunk size. */
|
---|
327 | uint32_t cbChunk;
|
---|
328 | /** The maximum number of chunks. */
|
---|
329 | uint32_t cMaxChunks;
|
---|
330 | /** The current number of chunks. */
|
---|
331 | uint32_t cChunks;
|
---|
332 | /** Hint where to start looking for available memory. */
|
---|
333 | uint32_t idxChunkHint;
|
---|
334 | /** Statistics: Current number of allocations. */
|
---|
335 | uint32_t cAllocations;
|
---|
336 |
|
---|
337 | /** The total amount of memory available. */
|
---|
338 | uint64_t cbTotal;
|
---|
339 | /** Total amount of free memory. */
|
---|
340 | uint64_t cbFree;
|
---|
341 | /** Total amount of memory allocated. */
|
---|
342 | uint64_t cbAllocated;
|
---|
343 |
|
---|
344 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
345 | /** Pointer to the allocation bitmaps for all the chunks (follows aChunks).
|
---|
346 | *
|
---|
347 | * Since the chunk size is a power of two and the minimum chunk size is a lot
|
---|
348 | * higher than the IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE, each chunk will always
|
---|
349 | * require a whole number of uint64_t elements in the allocation bitmap. So,
|
---|
350 | * for sake of simplicity, they are allocated as one continous chunk for
|
---|
351 | * simplicity/laziness. */
|
---|
352 | uint64_t *pbmAlloc;
|
---|
353 | /** Number of units (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE) per chunk. */
|
---|
354 | uint32_t cUnitsPerChunk;
|
---|
355 | /** Number of bitmap elements per chunk (for quickly locating the bitmap
|
---|
356 | * portion corresponding to an chunk). */
|
---|
357 | uint32_t cBitmapElementsPerChunk;
|
---|
358 | #else
|
---|
359 | /** @name Tweaks to get 64 byte aligned allocats w/o unnecessary fragmentation.
|
---|
360 | * @{ */
|
---|
361 | /** The size of the heap internal block header. This is used to adjust the
|
---|
362 | * request memory size to make sure there is exacly enough room for a header at
|
---|
363 | * the end of the blocks we allocate before the next 64 byte alignment line. */
|
---|
364 | uint32_t cbHeapBlockHdr;
|
---|
365 | /** The size of initial heap allocation required make sure the first
|
---|
366 | * allocation is correctly aligned. */
|
---|
367 | uint32_t cbHeapAlignTweak;
|
---|
368 | /** The alignment tweak allocation address. */
|
---|
369 | void *pvAlignTweak;
|
---|
370 | /** @} */
|
---|
371 | #endif
|
---|
372 |
|
---|
373 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
374 | /** Pointer to the array of unwind info running parallel to aChunks (same
|
---|
375 | * allocation as this structure, located after the bitmaps).
|
---|
376 | * (For Windows, the structures must reside in 32-bit RVA distance to the
|
---|
377 | * actual chunk, so they are allocated off the chunk.) */
|
---|
378 | PIEMEXECMEMCHUNKEHFRAME paEhFrames;
|
---|
379 | #endif
|
---|
380 |
|
---|
381 | /** The allocation chunks. */
|
---|
382 | RT_FLEXIBLE_ARRAY_EXTENSION
|
---|
383 | IEMEXECMEMCHUNK aChunks[RT_FLEXIBLE_ARRAY];
|
---|
384 | } IEMEXECMEMALLOCATOR;
|
---|
385 | /** Pointer to an executable memory allocator. */
|
---|
386 | typedef IEMEXECMEMALLOCATOR *PIEMEXECMEMALLOCATOR;
|
---|
387 |
|
---|
388 | /** Magic value for IEMEXECMEMALLOCATOR::uMagic (Scott Frederick Turow). */
|
---|
389 | #define IEMEXECMEMALLOCATOR_MAGIC UINT32_C(0x19490412)
|
---|
390 |
|
---|
391 |
|
---|
392 | static int iemExecMemAllocatorGrow(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator);
|
---|
393 |
|
---|
394 |
|
---|
395 | /**
|
---|
396 | * Worker for iemExecMemAllocatorAlloc that returns @a pvRet after updating
|
---|
397 | * the heap statistics.
|
---|
398 | */
|
---|
399 | static void * iemExecMemAllocatorAllocTailCode(PIEMEXECMEMALLOCATOR pExecMemAllocator, void *pvRet,
|
---|
400 | uint32_t cbReq, uint32_t idxChunk)
|
---|
401 | {
|
---|
402 | pExecMemAllocator->cAllocations += 1;
|
---|
403 | pExecMemAllocator->cbAllocated += cbReq;
|
---|
404 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
405 | pExecMemAllocator->cbFree -= cbReq;
|
---|
406 | #else
|
---|
407 | pExecMemAllocator->cbFree -= RT_ALIGN_32(cbReq, 64);
|
---|
408 | #endif
|
---|
409 | pExecMemAllocator->idxChunkHint = idxChunk;
|
---|
410 |
|
---|
411 | #ifdef RT_OS_DARWIN
|
---|
412 | /*
|
---|
413 | * Sucks, but RTMEM_PROT_EXEC and RTMEM_PROT_WRITE are mutually exclusive
|
---|
414 | * on darwin. So, we mark the pages returned as read+write after alloc and
|
---|
415 | * expect the caller to call iemExecMemAllocatorReadyForUse when done
|
---|
416 | * writing to the allocation.
|
---|
417 | *
|
---|
418 | * See also https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
|
---|
419 | * for details.
|
---|
420 | */
|
---|
421 | /** @todo detect if this is necessary... it wasn't required on 10.15 or
|
---|
422 | * whatever older version it was. */
|
---|
423 | int rc = RTMemProtect(pvRet, cbReq, RTMEM_PROT_WRITE | RTMEM_PROT_READ);
|
---|
424 | AssertRC(rc);
|
---|
425 | #endif
|
---|
426 |
|
---|
427 | return pvRet;
|
---|
428 | }
|
---|
429 |
|
---|
430 |
|
---|
431 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
432 | static void *iemExecMemAllocatorAllocInChunkInt(PIEMEXECMEMALLOCATOR pExecMemAllocator, uint64_t *pbmAlloc, uint32_t idxFirst,
|
---|
433 | uint32_t cToScan, uint32_t cReqUnits, uint32_t idxChunk)
|
---|
434 | {
|
---|
435 | /*
|
---|
436 | * Shift the bitmap to the idxFirst bit so we can use ASMBitFirstClear.
|
---|
437 | */
|
---|
438 | Assert(!(cToScan & 63));
|
---|
439 | Assert(!(idxFirst & 63));
|
---|
440 | Assert(cToScan + idxFirst <= pExecMemAllocator->cUnitsPerChunk);
|
---|
441 | pbmAlloc += idxFirst / 64;
|
---|
442 |
|
---|
443 | /*
|
---|
444 | * Scan the bitmap for cReqUnits of consequtive clear bits
|
---|
445 | */
|
---|
446 | /** @todo This can probably be done more efficiently for non-x86 systems. */
|
---|
447 | int iBit = ASMBitFirstClear(pbmAlloc, cToScan);
|
---|
448 | while (iBit >= 0 && (uint32_t)iBit <= cToScan - cReqUnits)
|
---|
449 | {
|
---|
450 | uint32_t idxAddBit = 1;
|
---|
451 | while (idxAddBit < cReqUnits && !ASMBitTest(pbmAlloc, (uint32_t)iBit + idxAddBit))
|
---|
452 | idxAddBit++;
|
---|
453 | if (idxAddBit >= cReqUnits)
|
---|
454 | {
|
---|
455 | ASMBitSetRange(pbmAlloc, (uint32_t)iBit, (uint32_t)iBit + cReqUnits);
|
---|
456 |
|
---|
457 | PIEMEXECMEMCHUNK const pChunk = &pExecMemAllocator->aChunks[idxChunk];
|
---|
458 | pChunk->cFreeUnits -= cReqUnits;
|
---|
459 | pChunk->idxFreeHint = (uint32_t)iBit + cReqUnits;
|
---|
460 |
|
---|
461 | void * const pvRet = (uint8_t *)pChunk->pvChunk
|
---|
462 | + ((idxFirst + (uint32_t)iBit) << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT);
|
---|
463 |
|
---|
464 | return iemExecMemAllocatorAllocTailCode(pExecMemAllocator, pvRet,
|
---|
465 | cReqUnits << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT, idxChunk);
|
---|
466 | }
|
---|
467 |
|
---|
468 | iBit = ASMBitNextClear(pbmAlloc, cToScan, iBit + idxAddBit - 1);
|
---|
469 | }
|
---|
470 | return NULL;
|
---|
471 | }
|
---|
472 | #endif /* IEMEXECMEM_USE_ALT_SUB_ALLOCATOR */
|
---|
473 |
|
---|
474 |
|
---|
475 | static void *iemExecMemAllocatorAllocInChunk(PIEMEXECMEMALLOCATOR pExecMemAllocator, uint32_t idxChunk, uint32_t cbReq)
|
---|
476 | {
|
---|
477 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
478 | /*
|
---|
479 | * Figure out how much to allocate.
|
---|
480 | */
|
---|
481 | uint32_t const cReqUnits = (cbReq + IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE - 1) >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
482 | if (cReqUnits <= pExecMemAllocator->aChunks[idxChunk].cFreeUnits)
|
---|
483 | {
|
---|
484 | uint64_t * const pbmAlloc = &pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk];
|
---|
485 | uint32_t const idxHint = pExecMemAllocator->aChunks[idxChunk].idxFreeHint & ~(uint32_t)63;
|
---|
486 | if (idxHint + cReqUnits <= pExecMemAllocator->cUnitsPerChunk)
|
---|
487 | {
|
---|
488 | void *pvRet = iemExecMemAllocatorAllocInChunkInt(pExecMemAllocator, pbmAlloc, idxHint,
|
---|
489 | pExecMemAllocator->cUnitsPerChunk - idxHint, cReqUnits, idxChunk);
|
---|
490 | if (pvRet)
|
---|
491 | return pvRet;
|
---|
492 | }
|
---|
493 | return iemExecMemAllocatorAllocInChunkInt(pExecMemAllocator, pbmAlloc, 0,
|
---|
494 | RT_MIN(pExecMemAllocator->cUnitsPerChunk, RT_ALIGN_32(idxHint + cReqUnits, 64)),
|
---|
495 | cReqUnits, idxChunk);
|
---|
496 | }
|
---|
497 | #else
|
---|
498 | void *pvRet = RTHeapSimpleAlloc(pExecMemAllocator->aChunks[idxChunk].hHeap, cbReq, 32);
|
---|
499 | if (pvRet)
|
---|
500 | return iemExecMemAllocatorAllocTailCode(pExecMemAllocator, pvRet, cbReq, idxChunk);
|
---|
501 | #endif
|
---|
502 | return NULL;
|
---|
503 |
|
---|
504 | }
|
---|
505 |
|
---|
506 |
|
---|
507 | /**
|
---|
508 | * Allocates @a cbReq bytes of executable memory.
|
---|
509 | *
|
---|
510 | * @returns Pointer to the memory, NULL if out of memory or other problem
|
---|
511 | * encountered.
|
---|
512 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
513 | * thread.
|
---|
514 | * @param cbReq How many bytes are required.
|
---|
515 | */
|
---|
516 | static void *iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq)
|
---|
517 | {
|
---|
518 | PIEMEXECMEMALLOCATOR pExecMemAllocator = pVCpu->iem.s.pExecMemAllocatorR3;
|
---|
519 | AssertReturn(pExecMemAllocator && pExecMemAllocator->uMagic == IEMEXECMEMALLOCATOR_MAGIC, NULL);
|
---|
520 | AssertMsgReturn(cbReq > 32 && cbReq < _512K, ("%#x\n", cbReq), NULL);
|
---|
521 |
|
---|
522 | /*
|
---|
523 | * Adjust the request size so it'll fit the allocator alignment/whatnot.
|
---|
524 | *
|
---|
525 | * For the RTHeapSimple allocator this means to follow the logic described
|
---|
526 | * in iemExecMemAllocatorGrow and attempt to allocate it from one of the
|
---|
527 | * existing chunks if we think we've got sufficient free memory around.
|
---|
528 | *
|
---|
529 | * While for the alternative one we just align it up to a whole unit size.
|
---|
530 | */
|
---|
531 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
532 | cbReq = RT_ALIGN_32(cbReq, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
533 | #else
|
---|
534 | cbReq = RT_ALIGN_32(cbReq + pExecMemAllocator->cbHeapBlockHdr, 64) - pExecMemAllocator->cbHeapBlockHdr;
|
---|
535 | #endif
|
---|
536 | if (cbReq <= pExecMemAllocator->cbFree)
|
---|
537 | {
|
---|
538 | uint32_t const cChunks = pExecMemAllocator->cChunks;
|
---|
539 | uint32_t const idxChunkHint = pExecMemAllocator->idxChunkHint < cChunks ? pExecMemAllocator->idxChunkHint : 0;
|
---|
540 | for (uint32_t idxChunk = idxChunkHint; idxChunk < cChunks; idxChunk++)
|
---|
541 | {
|
---|
542 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
543 | if (pvRet)
|
---|
544 | return pvRet;
|
---|
545 | }
|
---|
546 | for (uint32_t idxChunk = 0; idxChunk < idxChunkHint; idxChunk++)
|
---|
547 | {
|
---|
548 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
549 | if (pvRet)
|
---|
550 | return pvRet;
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | /*
|
---|
555 | * Can we grow it with another chunk?
|
---|
556 | */
|
---|
557 | if (pExecMemAllocator->cChunks < pExecMemAllocator->cMaxChunks)
|
---|
558 | {
|
---|
559 | int rc = iemExecMemAllocatorGrow(pVCpu, pExecMemAllocator);
|
---|
560 | AssertLogRelRCReturn(rc, NULL);
|
---|
561 |
|
---|
562 | uint32_t const idxChunk = pExecMemAllocator->cChunks - 1;
|
---|
563 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
564 | if (pvRet)
|
---|
565 | return pvRet;
|
---|
566 | AssertFailed();
|
---|
567 | }
|
---|
568 |
|
---|
569 | /* What now? Prune native translation blocks from the cache? */
|
---|
570 | AssertFailed();
|
---|
571 | return NULL;
|
---|
572 | }
|
---|
573 |
|
---|
574 |
|
---|
575 | /** This is a hook that we may need later for changing memory protection back
|
---|
576 | * to readonly+exec */
|
---|
577 | static void iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb)
|
---|
578 | {
|
---|
579 | #ifdef RT_OS_DARWIN
|
---|
580 | /* See iemExecMemAllocatorAllocTailCode for the explanation. */
|
---|
581 | int rc = RTMemProtect(pv, cb, RTMEM_PROT_EXEC | RTMEM_PROT_READ);
|
---|
582 | AssertRC(rc); RT_NOREF(pVCpu);
|
---|
583 |
|
---|
584 | /*
|
---|
585 | * Flush the instruction cache:
|
---|
586 | * https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
|
---|
587 | */
|
---|
588 | /* sys_dcache_flush(pv, cb); - not necessary */
|
---|
589 | sys_icache_invalidate(pv, cb);
|
---|
590 | #else
|
---|
591 | RT_NOREF(pVCpu, pv, cb);
|
---|
592 | #endif
|
---|
593 | }
|
---|
594 |
|
---|
595 |
|
---|
596 | /**
|
---|
597 | * Frees executable memory.
|
---|
598 | */
|
---|
599 | void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb)
|
---|
600 | {
|
---|
601 | PIEMEXECMEMALLOCATOR pExecMemAllocator = pVCpu->iem.s.pExecMemAllocatorR3;
|
---|
602 | Assert(pExecMemAllocator && pExecMemAllocator->uMagic == IEMEXECMEMALLOCATOR_MAGIC);
|
---|
603 | Assert(pv);
|
---|
604 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
605 | Assert(!((uintptr_t)pv & (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE - 1)));
|
---|
606 | #else
|
---|
607 | Assert(!((uintptr_t)pv & 63));
|
---|
608 | #endif
|
---|
609 |
|
---|
610 | /* Align the size as we did when allocating the block. */
|
---|
611 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
612 | cb = RT_ALIGN_Z(cb, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
613 | #else
|
---|
614 | cb = RT_ALIGN_Z(cb + pExecMemAllocator->cbHeapBlockHdr, 64) - pExecMemAllocator->cbHeapBlockHdr;
|
---|
615 | #endif
|
---|
616 |
|
---|
617 | /* Free it / assert sanity. */
|
---|
618 | #if defined(VBOX_STRICT) || defined(IEMEXECMEM_USE_ALT_SUB_ALLOCATOR)
|
---|
619 | uint32_t const cChunks = pExecMemAllocator->cChunks;
|
---|
620 | uint32_t const cbChunk = pExecMemAllocator->cbChunk;
|
---|
621 | bool fFound = false;
|
---|
622 | for (uint32_t idxChunk = 0; idxChunk < cChunks; idxChunk++)
|
---|
623 | {
|
---|
624 | uintptr_t const offChunk = (uintptr_t)pv - (uintptr_t)pExecMemAllocator->aChunks[idxChunk].pvChunk;
|
---|
625 | fFound = offChunk < cbChunk;
|
---|
626 | if (fFound)
|
---|
627 | {
|
---|
628 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
629 | uint32_t const idxFirst = (uint32_t)offChunk >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
630 | uint32_t const cReqUnits = (uint32_t)cb >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
631 |
|
---|
632 | /* Check that it's valid and free it. */
|
---|
633 | uint64_t * const pbmAlloc = &pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk];
|
---|
634 | AssertReturnVoid(ASMBitTest(pbmAlloc, idxFirst));
|
---|
635 | for (uint32_t i = 1; i < cReqUnits; i++)
|
---|
636 | AssertReturnVoid(ASMBitTest(pbmAlloc, idxFirst + i));
|
---|
637 | ASMBitClearRange(pbmAlloc, idxFirst, idxFirst + cReqUnits);
|
---|
638 |
|
---|
639 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits += cReqUnits;
|
---|
640 | pExecMemAllocator->aChunks[idxChunk].idxFreeHint = idxFirst;
|
---|
641 |
|
---|
642 | /* Update the stats. */
|
---|
643 | pExecMemAllocator->cbAllocated -= cb;
|
---|
644 | pExecMemAllocator->cbFree += cb;
|
---|
645 | pExecMemAllocator->cAllocations -= 1;
|
---|
646 | return;
|
---|
647 | #else
|
---|
648 | Assert(RTHeapSimpleSize(pExecMemAllocator->aChunks[idxChunk].hHeap, pv) == cb);
|
---|
649 | break;
|
---|
650 | #endif
|
---|
651 | }
|
---|
652 | }
|
---|
653 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
654 | AssertFailed();
|
---|
655 | # else
|
---|
656 | Assert(fFound);
|
---|
657 | # endif
|
---|
658 | #endif
|
---|
659 |
|
---|
660 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
661 | /* Update stats while cb is freshly calculated.*/
|
---|
662 | pExecMemAllocator->cbAllocated -= cb;
|
---|
663 | pExecMemAllocator->cbFree += RT_ALIGN_Z(cb, 64);
|
---|
664 | pExecMemAllocator->cAllocations -= 1;
|
---|
665 |
|
---|
666 | /* Free it. */
|
---|
667 | RTHeapSimpleFree(NIL_RTHEAPSIMPLE, pv);
|
---|
668 | #endif
|
---|
669 | }
|
---|
670 |
|
---|
671 |
|
---|
672 |
|
---|
673 | #ifdef IN_RING3
|
---|
674 | # ifdef RT_OS_WINDOWS
|
---|
675 |
|
---|
676 | /**
|
---|
677 | * Initializes the unwind info structures for windows hosts.
|
---|
678 | */
|
---|
679 | static int
|
---|
680 | iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator,
|
---|
681 | void *pvChunk, uint32_t idxChunk)
|
---|
682 | {
|
---|
683 | RT_NOREF(pVCpu);
|
---|
684 |
|
---|
685 | /*
|
---|
686 | * The AMD64 unwind opcodes.
|
---|
687 | *
|
---|
688 | * This is a program that starts with RSP after a RET instruction that
|
---|
689 | * ends up in recompiled code, and the operations we describe here will
|
---|
690 | * restore all non-volatile registers and bring RSP back to where our
|
---|
691 | * RET address is. This means it's reverse order from what happens in
|
---|
692 | * the prologue.
|
---|
693 | *
|
---|
694 | * Note! Using a frame register approach here both because we have one
|
---|
695 | * and but mainly because the UWOP_ALLOC_LARGE argument values
|
---|
696 | * would be a pain to write initializers for. On the positive
|
---|
697 | * side, we're impervious to changes in the the stack variable
|
---|
698 | * area can can deal with dynamic stack allocations if necessary.
|
---|
699 | */
|
---|
700 | static const IMAGE_UNWIND_CODE s_aOpcodes[] =
|
---|
701 | {
|
---|
702 | { { 16, IMAGE_AMD64_UWOP_SET_FPREG, 0 } }, /* RSP = RBP - FrameOffset * 10 (0x60) */
|
---|
703 | { { 16, IMAGE_AMD64_UWOP_ALLOC_SMALL, 0 } }, /* RSP += 8; */
|
---|
704 | { { 14, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x15 } }, /* R15 = [RSP]; RSP += 8; */
|
---|
705 | { { 12, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x14 } }, /* R14 = [RSP]; RSP += 8; */
|
---|
706 | { { 10, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x13 } }, /* R13 = [RSP]; RSP += 8; */
|
---|
707 | { { 8, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x12 } }, /* R12 = [RSP]; RSP += 8; */
|
---|
708 | { { 7, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xDI } }, /* RDI = [RSP]; RSP += 8; */
|
---|
709 | { { 6, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xSI } }, /* RSI = [RSP]; RSP += 8; */
|
---|
710 | { { 5, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xBX } }, /* RBX = [RSP]; RSP += 8; */
|
---|
711 | { { 4, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xBP } }, /* RBP = [RSP]; RSP += 8; */
|
---|
712 | };
|
---|
713 | union
|
---|
714 | {
|
---|
715 | IMAGE_UNWIND_INFO Info;
|
---|
716 | uint8_t abPadding[RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes) + 16];
|
---|
717 | } s_UnwindInfo =
|
---|
718 | {
|
---|
719 | {
|
---|
720 | /* .Version = */ 1,
|
---|
721 | /* .Flags = */ 0,
|
---|
722 | /* .SizeOfProlog = */ 16, /* whatever */
|
---|
723 | /* .CountOfCodes = */ RT_ELEMENTS(s_aOpcodes),
|
---|
724 | /* .FrameRegister = */ X86_GREG_xBP,
|
---|
725 | /* .FrameOffset = */ (-IEMNATIVE_FP_OFF_LAST_PUSH + 8) / 16 /* we're off by one slot. sigh. */,
|
---|
726 | }
|
---|
727 | };
|
---|
728 | AssertCompile(-IEMNATIVE_FP_OFF_LAST_PUSH < 240 && -IEMNATIVE_FP_OFF_LAST_PUSH > 0);
|
---|
729 | AssertCompile((-IEMNATIVE_FP_OFF_LAST_PUSH & 0xf) == 8);
|
---|
730 |
|
---|
731 | /*
|
---|
732 | * Calc how much space we need and allocate it off the exec heap.
|
---|
733 | */
|
---|
734 | unsigned const cFunctionEntries = 1;
|
---|
735 | unsigned const cbUnwindInfo = sizeof(s_aOpcodes) + RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes);
|
---|
736 | unsigned const cbNeeded = sizeof(IMAGE_RUNTIME_FUNCTION_ENTRY) * cFunctionEntries + cbUnwindInfo;
|
---|
737 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
738 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
739 | PIMAGE_RUNTIME_FUNCTION_ENTRY const paFunctions
|
---|
740 | = (PIMAGE_RUNTIME_FUNCTION_ENTRY)iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbNeededAligned);
|
---|
741 | # else
|
---|
742 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
743 | - pExecMemAllocator->cbHeapBlockHdr;
|
---|
744 | PIMAGE_RUNTIME_FUNCTION_ENTRY const paFunctions = (PIMAGE_RUNTIME_FUNCTION_ENTRY)RTHeapSimpleAlloc(hHeap, cbNeededAligned,
|
---|
745 | 32 /*cbAlignment*/);
|
---|
746 | # endif
|
---|
747 | AssertReturn(paFunctions, VERR_INTERNAL_ERROR_5);
|
---|
748 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = paFunctions;
|
---|
749 |
|
---|
750 | /*
|
---|
751 | * Initialize the structures.
|
---|
752 | */
|
---|
753 | PIMAGE_UNWIND_INFO const pInfo = (PIMAGE_UNWIND_INFO)&paFunctions[cFunctionEntries];
|
---|
754 |
|
---|
755 | paFunctions[0].BeginAddress = 0;
|
---|
756 | paFunctions[0].EndAddress = pExecMemAllocator->cbChunk;
|
---|
757 | paFunctions[0].UnwindInfoAddress = (uint32_t)((uintptr_t)pInfo - (uintptr_t)pvChunk);
|
---|
758 |
|
---|
759 | memcpy(pInfo, &s_UnwindInfo, RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes));
|
---|
760 | memcpy(&pInfo->aOpcodes[0], s_aOpcodes, sizeof(s_aOpcodes));
|
---|
761 |
|
---|
762 | /*
|
---|
763 | * Register it.
|
---|
764 | */
|
---|
765 | uint8_t fRet = RtlAddFunctionTable(paFunctions, cFunctionEntries, (uintptr_t)pvChunk);
|
---|
766 | AssertReturn(fRet, VERR_INTERNAL_ERROR_3); /* Nothing to clean up on failure, since its within the chunk itself. */
|
---|
767 |
|
---|
768 | return VINF_SUCCESS;
|
---|
769 | }
|
---|
770 |
|
---|
771 |
|
---|
772 | # else /* !RT_OS_WINDOWS */
|
---|
773 |
|
---|
774 | /**
|
---|
775 | * Emits a LEB128 encoded value between -0x2000 and 0x2000 (both exclusive).
|
---|
776 | */
|
---|
777 | DECLINLINE(RTPTRUNION) iemDwarfPutLeb128(RTPTRUNION Ptr, int32_t iValue)
|
---|
778 | {
|
---|
779 | if (iValue >= 64)
|
---|
780 | {
|
---|
781 | Assert(iValue < 0x2000);
|
---|
782 | *Ptr.pb++ = ((uint8_t)iValue & 0x7f) | 0x80;
|
---|
783 | *Ptr.pb++ = (uint8_t)(iValue >> 7) & 0x3f;
|
---|
784 | }
|
---|
785 | else if (iValue >= 0)
|
---|
786 | *Ptr.pb++ = (uint8_t)iValue;
|
---|
787 | else if (iValue > -64)
|
---|
788 | *Ptr.pb++ = ((uint8_t)iValue & 0x3f) | 0x40;
|
---|
789 | else
|
---|
790 | {
|
---|
791 | Assert(iValue > -0x2000);
|
---|
792 | *Ptr.pb++ = ((uint8_t)iValue & 0x7f) | 0x80;
|
---|
793 | *Ptr.pb++ = ((uint8_t)(iValue >> 7) & 0x3f) | 0x40;
|
---|
794 | }
|
---|
795 | return Ptr;
|
---|
796 | }
|
---|
797 |
|
---|
798 |
|
---|
799 | /**
|
---|
800 | * Emits an ULEB128 encoded value (up to 64-bit wide).
|
---|
801 | */
|
---|
802 | DECLINLINE(RTPTRUNION) iemDwarfPutUleb128(RTPTRUNION Ptr, uint64_t uValue)
|
---|
803 | {
|
---|
804 | while (uValue >= 0x80)
|
---|
805 | {
|
---|
806 | *Ptr.pb++ = ((uint8_t)uValue & 0x7f) | 0x80;
|
---|
807 | uValue >>= 7;
|
---|
808 | }
|
---|
809 | *Ptr.pb++ = (uint8_t)uValue;
|
---|
810 | return Ptr;
|
---|
811 | }
|
---|
812 |
|
---|
813 |
|
---|
814 | /**
|
---|
815 | * Emits a CFA rule as register @a uReg + offset @a off.
|
---|
816 | */
|
---|
817 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaDefCfa(RTPTRUNION Ptr, uint32_t uReg, uint32_t off)
|
---|
818 | {
|
---|
819 | *Ptr.pb++ = DW_CFA_def_cfa;
|
---|
820 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
821 | Ptr = iemDwarfPutUleb128(Ptr, off);
|
---|
822 | return Ptr;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /**
|
---|
827 | * Emits a register (@a uReg) save location:
|
---|
828 | * CFA + @a off * data_alignment_factor
|
---|
829 | */
|
---|
830 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaOffset(RTPTRUNION Ptr, uint32_t uReg, uint32_t off)
|
---|
831 | {
|
---|
832 | if (uReg < 0x40)
|
---|
833 | *Ptr.pb++ = DW_CFA_offset | uReg;
|
---|
834 | else
|
---|
835 | {
|
---|
836 | *Ptr.pb++ = DW_CFA_offset_extended;
|
---|
837 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
838 | }
|
---|
839 | Ptr = iemDwarfPutUleb128(Ptr, off);
|
---|
840 | return Ptr;
|
---|
841 | }
|
---|
842 |
|
---|
843 |
|
---|
844 | # if 0 /* unused */
|
---|
845 | /**
|
---|
846 | * Emits a register (@a uReg) save location, using signed offset:
|
---|
847 | * CFA + @a offSigned * data_alignment_factor
|
---|
848 | */
|
---|
849 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaSignedOffset(RTPTRUNION Ptr, uint32_t uReg, int32_t offSigned)
|
---|
850 | {
|
---|
851 | *Ptr.pb++ = DW_CFA_offset_extended_sf;
|
---|
852 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
853 | Ptr = iemDwarfPutLeb128(Ptr, offSigned);
|
---|
854 | return Ptr;
|
---|
855 | }
|
---|
856 | # endif
|
---|
857 |
|
---|
858 |
|
---|
859 | /**
|
---|
860 | * Initializes the unwind info section for non-windows hosts.
|
---|
861 | */
|
---|
862 | static int
|
---|
863 | iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator,
|
---|
864 | void *pvChunk, uint32_t idxChunk)
|
---|
865 | {
|
---|
866 | PIEMEXECMEMCHUNKEHFRAME const pEhFrame = &pExecMemAllocator->paEhFrames[idxChunk];
|
---|
867 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = pEhFrame; /* not necessary, but whatever */
|
---|
868 |
|
---|
869 | RTPTRUNION Ptr = { pEhFrame->abEhFrame };
|
---|
870 |
|
---|
871 | /*
|
---|
872 | * Generate the CIE first.
|
---|
873 | */
|
---|
874 | # ifdef IEMNATIVE_USE_LIBUNWIND /* libunwind (llvm, darwin) only supports v1 and v3. */
|
---|
875 | uint8_t const iDwarfVer = 3;
|
---|
876 | # else
|
---|
877 | uint8_t const iDwarfVer = 4;
|
---|
878 | # endif
|
---|
879 | RTPTRUNION const PtrCie = Ptr;
|
---|
880 | *Ptr.pu32++ = 123; /* The CIE length will be determined later. */
|
---|
881 | *Ptr.pu32++ = 0 /*UINT32_MAX*/; /* I'm a CIE in .eh_frame speak. */
|
---|
882 | *Ptr.pb++ = iDwarfVer; /* DwARF version */
|
---|
883 | *Ptr.pb++ = 0; /* Augmentation. */
|
---|
884 | if (iDwarfVer >= 4)
|
---|
885 | {
|
---|
886 | *Ptr.pb++ = sizeof(uintptr_t); /* Address size. */
|
---|
887 | *Ptr.pb++ = 0; /* Segment selector size. */
|
---|
888 | }
|
---|
889 | # ifdef RT_ARCH_AMD64
|
---|
890 | Ptr = iemDwarfPutLeb128(Ptr, 1); /* Code alignment factor (LEB128 = 1). */
|
---|
891 | # else
|
---|
892 | Ptr = iemDwarfPutLeb128(Ptr, 4); /* Code alignment factor (LEB128 = 4). */
|
---|
893 | # endif
|
---|
894 | Ptr = iemDwarfPutLeb128(Ptr, -8); /* Data alignment factor (LEB128 = -8). */
|
---|
895 | # ifdef RT_ARCH_AMD64
|
---|
896 | Ptr = iemDwarfPutUleb128(Ptr, DWREG_AMD64_RA); /* Return address column (ULEB128) */
|
---|
897 | # elif defined(RT_ARCH_ARM64)
|
---|
898 | Ptr = iemDwarfPutUleb128(Ptr, DWREG_ARM64_LR); /* Return address column (ULEB128) */
|
---|
899 | # else
|
---|
900 | # error "port me"
|
---|
901 | # endif
|
---|
902 | /* Initial instructions: */
|
---|
903 | # ifdef RT_ARCH_AMD64
|
---|
904 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_AMD64_RBP, 16); /* CFA = RBP + 0x10 - first stack parameter */
|
---|
905 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RA, 1); /* Ret RIP = [CFA + 1*-8] */
|
---|
906 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RBP, 2); /* RBP = [CFA + 2*-8] */
|
---|
907 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RBX, 3); /* RBX = [CFA + 3*-8] */
|
---|
908 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R12, 4); /* R12 = [CFA + 4*-8] */
|
---|
909 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R13, 5); /* R13 = [CFA + 5*-8] */
|
---|
910 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R14, 6); /* R14 = [CFA + 6*-8] */
|
---|
911 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R15, 7); /* R15 = [CFA + 7*-8] */
|
---|
912 | # elif defined(RT_ARCH_ARM64)
|
---|
913 | # if 1
|
---|
914 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_ARM64_BP, 16); /* CFA = BP + 0x10 - first stack parameter */
|
---|
915 | # else
|
---|
916 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_ARM64_SP, IEMNATIVE_FRAME_VAR_SIZE + IEMNATIVE_FRAME_SAVE_REG_SIZE);
|
---|
917 | # endif
|
---|
918 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_LR, 1); /* Ret PC = [CFA + 1*-8] */
|
---|
919 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_BP, 2); /* Ret BP = [CFA + 2*-8] */
|
---|
920 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X28, 3); /* X28 = [CFA + 3*-8] */
|
---|
921 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X27, 4); /* X27 = [CFA + 4*-8] */
|
---|
922 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X26, 5); /* X26 = [CFA + 5*-8] */
|
---|
923 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X25, 6); /* X25 = [CFA + 6*-8] */
|
---|
924 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X24, 7); /* X24 = [CFA + 7*-8] */
|
---|
925 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X23, 8); /* X23 = [CFA + 8*-8] */
|
---|
926 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X22, 9); /* X22 = [CFA + 9*-8] */
|
---|
927 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X21, 10); /* X21 = [CFA +10*-8] */
|
---|
928 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X20, 11); /* X20 = [CFA +11*-8] */
|
---|
929 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X19, 12); /* X19 = [CFA +12*-8] */
|
---|
930 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
931 | /** @todo we we need to do something about clearing DWREG_ARM64_RA_SIGN_STATE or something? */
|
---|
932 | # else
|
---|
933 | # error "port me"
|
---|
934 | # endif
|
---|
935 | while ((Ptr.u - PtrCie.u) & 3)
|
---|
936 | *Ptr.pb++ = DW_CFA_nop;
|
---|
937 | /* Finalize the CIE size. */
|
---|
938 | *PtrCie.pu32 = Ptr.u - PtrCie.u - sizeof(uint32_t);
|
---|
939 |
|
---|
940 | /*
|
---|
941 | * Generate an FDE for the whole chunk area.
|
---|
942 | */
|
---|
943 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
944 | pEhFrame->offFda = Ptr.u - (uintptr_t)&pEhFrame->abEhFrame[0];
|
---|
945 | # endif
|
---|
946 | RTPTRUNION const PtrFde = Ptr;
|
---|
947 | *Ptr.pu32++ = 123; /* The CIE length will be determined later. */
|
---|
948 | *Ptr.pu32 = Ptr.u - PtrCie.u; /* Negated self relative CIE address. */
|
---|
949 | Ptr.pu32++;
|
---|
950 | *Ptr.pu64++ = (uintptr_t)pvChunk; /* Absolute start PC of this FDE. */
|
---|
951 | *Ptr.pu64++ = pExecMemAllocator->cbChunk; /* PC range length for this PDE. */
|
---|
952 | # if 0 /* not requried for recent libunwind.dylib nor recent libgcc/glib. */
|
---|
953 | *Ptr.pb++ = DW_CFA_nop;
|
---|
954 | # endif
|
---|
955 | while ((Ptr.u - PtrFde.u) & 3)
|
---|
956 | *Ptr.pb++ = DW_CFA_nop;
|
---|
957 | /* Finalize the FDE size. */
|
---|
958 | *PtrFde.pu32 = Ptr.u - PtrFde.u - sizeof(uint32_t);
|
---|
959 |
|
---|
960 | /* Terminator entry. */
|
---|
961 | *Ptr.pu32++ = 0;
|
---|
962 | *Ptr.pu32++ = 0; /* just to be sure... */
|
---|
963 | Assert(Ptr.u - (uintptr_t)&pEhFrame->abEhFrame[0] <= sizeof(pEhFrame->abEhFrame));
|
---|
964 |
|
---|
965 | /*
|
---|
966 | * Register it.
|
---|
967 | */
|
---|
968 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
969 | __register_frame(&pEhFrame->abEhFrame[pEhFrame->offFda]);
|
---|
970 | # else
|
---|
971 | memset(pEhFrame->abObject, 0xf6, sizeof(pEhFrame->abObject)); /* color the memory to better spot usage */
|
---|
972 | __register_frame_info(pEhFrame->abEhFrame, pEhFrame->abObject);
|
---|
973 | # endif
|
---|
974 |
|
---|
975 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
976 | /*
|
---|
977 | * Now for telling GDB about this (experimental).
|
---|
978 | *
|
---|
979 | * This seems to work best with ET_DYN.
|
---|
980 | */
|
---|
981 | unsigned const cbNeeded = sizeof(GDBJITSYMFILE);
|
---|
982 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
983 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
984 | GDBJITSYMFILE * const pSymFile = (GDBJITSYMFILE *)iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbNeededAligned);
|
---|
985 | # else
|
---|
986 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
987 | - pExecMemAllocator->cbHeapBlockHdr;
|
---|
988 | GDBJITSYMFILE * const pSymFile = (PIMAGE_RUNTIME_FUNCTION_ENTRY)RTHeapSimpleAlloc(hHeap, cbNeededAligned, 32 /*cbAlignment*/);
|
---|
989 | # endif
|
---|
990 | AssertReturn(pSymFile, VERR_INTERNAL_ERROR_5);
|
---|
991 | unsigned const offSymFileInChunk = (uintptr_t)pSymFile - (uintptr_t)pvChunk;
|
---|
992 |
|
---|
993 | RT_ZERO(*pSymFile);
|
---|
994 |
|
---|
995 | /*
|
---|
996 | * The ELF header:
|
---|
997 | */
|
---|
998 | pSymFile->EHdr.e_ident[0] = ELFMAG0;
|
---|
999 | pSymFile->EHdr.e_ident[1] = ELFMAG1;
|
---|
1000 | pSymFile->EHdr.e_ident[2] = ELFMAG2;
|
---|
1001 | pSymFile->EHdr.e_ident[3] = ELFMAG3;
|
---|
1002 | pSymFile->EHdr.e_ident[EI_VERSION] = EV_CURRENT;
|
---|
1003 | pSymFile->EHdr.e_ident[EI_CLASS] = ELFCLASS64;
|
---|
1004 | pSymFile->EHdr.e_ident[EI_DATA] = ELFDATA2LSB;
|
---|
1005 | pSymFile->EHdr.e_ident[EI_OSABI] = ELFOSABI_NONE;
|
---|
1006 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1007 | pSymFile->EHdr.e_type = ET_DYN;
|
---|
1008 | # else
|
---|
1009 | pSymFile->EHdr.e_type = ET_REL;
|
---|
1010 | # endif
|
---|
1011 | # ifdef RT_ARCH_AMD64
|
---|
1012 | pSymFile->EHdr.e_machine = EM_AMD64;
|
---|
1013 | # elif defined(RT_ARCH_ARM64)
|
---|
1014 | pSymFile->EHdr.e_machine = EM_AARCH64;
|
---|
1015 | # else
|
---|
1016 | # error "port me"
|
---|
1017 | # endif
|
---|
1018 | pSymFile->EHdr.e_version = 1; /*?*/
|
---|
1019 | pSymFile->EHdr.e_entry = 0;
|
---|
1020 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1021 | pSymFile->EHdr.e_phoff = RT_UOFFSETOF(GDBJITSYMFILE, aPhdrs);
|
---|
1022 | # else
|
---|
1023 | pSymFile->EHdr.e_phoff = 0;
|
---|
1024 | # endif
|
---|
1025 | pSymFile->EHdr.e_shoff = sizeof(pSymFile->EHdr);
|
---|
1026 | pSymFile->EHdr.e_flags = 0;
|
---|
1027 | pSymFile->EHdr.e_ehsize = sizeof(pSymFile->EHdr);
|
---|
1028 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1029 | pSymFile->EHdr.e_phentsize = sizeof(pSymFile->aPhdrs[0]);
|
---|
1030 | pSymFile->EHdr.e_phnum = RT_ELEMENTS(pSymFile->aPhdrs);
|
---|
1031 | # else
|
---|
1032 | pSymFile->EHdr.e_phentsize = 0;
|
---|
1033 | pSymFile->EHdr.e_phnum = 0;
|
---|
1034 | # endif
|
---|
1035 | pSymFile->EHdr.e_shentsize = sizeof(pSymFile->aShdrs[0]);
|
---|
1036 | pSymFile->EHdr.e_shnum = RT_ELEMENTS(pSymFile->aShdrs);
|
---|
1037 | pSymFile->EHdr.e_shstrndx = 0; /* set later */
|
---|
1038 |
|
---|
1039 | uint32_t offStrTab = 0;
|
---|
1040 | #define APPEND_STR(a_szStr) do { \
|
---|
1041 | memcpy(&pSymFile->szzStrTab[offStrTab], a_szStr, sizeof(a_szStr)); \
|
---|
1042 | offStrTab += sizeof(a_szStr); \
|
---|
1043 | Assert(offStrTab < sizeof(pSymFile->szzStrTab)); \
|
---|
1044 | } while (0)
|
---|
1045 | #define APPEND_STR_FMT(a_szStr, ...) do { \
|
---|
1046 | offStrTab += RTStrPrintf(&pSymFile->szzStrTab[offStrTab], sizeof(pSymFile->szzStrTab) - offStrTab, a_szStr, __VA_ARGS__); \
|
---|
1047 | offStrTab++; \
|
---|
1048 | Assert(offStrTab < sizeof(pSymFile->szzStrTab)); \
|
---|
1049 | } while (0)
|
---|
1050 |
|
---|
1051 | /*
|
---|
1052 | * Section headers.
|
---|
1053 | */
|
---|
1054 | /* Section header #0: NULL */
|
---|
1055 | unsigned i = 0;
|
---|
1056 | APPEND_STR("");
|
---|
1057 | RT_ZERO(pSymFile->aShdrs[i]);
|
---|
1058 | i++;
|
---|
1059 |
|
---|
1060 | /* Section header: .eh_frame */
|
---|
1061 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1062 | APPEND_STR(".eh_frame");
|
---|
1063 | pSymFile->aShdrs[i].sh_type = SHT_PROGBITS;
|
---|
1064 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
|
---|
1065 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1066 | pSymFile->aShdrs[i].sh_offset
|
---|
1067 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, abEhFrame);
|
---|
1068 | # else
|
---|
1069 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)&pSymFile->abEhFrame[0];
|
---|
1070 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1071 | # endif
|
---|
1072 |
|
---|
1073 | pSymFile->aShdrs[i].sh_size = sizeof(pEhFrame->abEhFrame);
|
---|
1074 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1075 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1076 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1077 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1078 | memcpy(pSymFile->abEhFrame, pEhFrame->abEhFrame, sizeof(pEhFrame->abEhFrame));
|
---|
1079 | i++;
|
---|
1080 |
|
---|
1081 | /* Section header: .shstrtab */
|
---|
1082 | unsigned const iShStrTab = i;
|
---|
1083 | pSymFile->EHdr.e_shstrndx = iShStrTab;
|
---|
1084 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1085 | APPEND_STR(".shstrtab");
|
---|
1086 | pSymFile->aShdrs[i].sh_type = SHT_STRTAB;
|
---|
1087 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1088 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1089 | pSymFile->aShdrs[i].sh_offset
|
---|
1090 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, szzStrTab);
|
---|
1091 | # else
|
---|
1092 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)&pSymFile->szzStrTab[0];
|
---|
1093 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1094 | # endif
|
---|
1095 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->szzStrTab);
|
---|
1096 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1097 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1098 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1099 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1100 | i++;
|
---|
1101 |
|
---|
1102 | /* Section header: .symbols */
|
---|
1103 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1104 | APPEND_STR(".symtab");
|
---|
1105 | pSymFile->aShdrs[i].sh_type = SHT_SYMTAB;
|
---|
1106 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1107 | pSymFile->aShdrs[i].sh_offset
|
---|
1108 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aSymbols);
|
---|
1109 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aSymbols);
|
---|
1110 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1111 | pSymFile->aShdrs[i].sh_info = RT_ELEMENTS(pSymFile->aSymbols);
|
---|
1112 | pSymFile->aShdrs[i].sh_addralign = sizeof(pSymFile->aSymbols[0].st_value);
|
---|
1113 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aSymbols[0]);
|
---|
1114 | i++;
|
---|
1115 |
|
---|
1116 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1117 | /* Section header: .symbols */
|
---|
1118 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1119 | APPEND_STR(".dynsym");
|
---|
1120 | pSymFile->aShdrs[i].sh_type = SHT_DYNSYM;
|
---|
1121 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1122 | pSymFile->aShdrs[i].sh_offset
|
---|
1123 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aDynSyms);
|
---|
1124 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aDynSyms);
|
---|
1125 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1126 | pSymFile->aShdrs[i].sh_info = RT_ELEMENTS(pSymFile->aDynSyms);
|
---|
1127 | pSymFile->aShdrs[i].sh_addralign = sizeof(pSymFile->aDynSyms[0].st_value);
|
---|
1128 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aDynSyms[0]);
|
---|
1129 | i++;
|
---|
1130 | # endif
|
---|
1131 |
|
---|
1132 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1133 | /* Section header: .dynamic */
|
---|
1134 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1135 | APPEND_STR(".dynamic");
|
---|
1136 | pSymFile->aShdrs[i].sh_type = SHT_DYNAMIC;
|
---|
1137 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1138 | pSymFile->aShdrs[i].sh_offset
|
---|
1139 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aDyn);
|
---|
1140 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aDyn);
|
---|
1141 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1142 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1143 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1144 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aDyn[0]);
|
---|
1145 | i++;
|
---|
1146 | # endif
|
---|
1147 |
|
---|
1148 | /* Section header: .text */
|
---|
1149 | unsigned const iShText = i;
|
---|
1150 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1151 | APPEND_STR(".text");
|
---|
1152 | pSymFile->aShdrs[i].sh_type = SHT_PROGBITS;
|
---|
1153 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
|
---|
1154 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1155 | pSymFile->aShdrs[i].sh_offset
|
---|
1156 | = pSymFile->aShdrs[i].sh_addr = sizeof(GDBJITSYMFILE);
|
---|
1157 | # else
|
---|
1158 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)(pSymFile + 1);
|
---|
1159 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1160 | # endif
|
---|
1161 | pSymFile->aShdrs[i].sh_size = pExecMemAllocator->cbChunk - offSymFileInChunk - sizeof(GDBJITSYMFILE);
|
---|
1162 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1163 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1164 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1165 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1166 | i++;
|
---|
1167 |
|
---|
1168 | Assert(i == RT_ELEMENTS(pSymFile->aShdrs));
|
---|
1169 |
|
---|
1170 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1171 | /*
|
---|
1172 | * The program headers:
|
---|
1173 | */
|
---|
1174 | /* Everything in a single LOAD segment: */
|
---|
1175 | i = 0;
|
---|
1176 | pSymFile->aPhdrs[i].p_type = PT_LOAD;
|
---|
1177 | pSymFile->aPhdrs[i].p_flags = PF_X | PF_R;
|
---|
1178 | pSymFile->aPhdrs[i].p_offset
|
---|
1179 | = pSymFile->aPhdrs[i].p_vaddr
|
---|
1180 | = pSymFile->aPhdrs[i].p_paddr = 0;
|
---|
1181 | pSymFile->aPhdrs[i].p_filesz /* Size of segment in file. */
|
---|
1182 | = pSymFile->aPhdrs[i].p_memsz = pExecMemAllocator->cbChunk - offSymFileInChunk;
|
---|
1183 | pSymFile->aPhdrs[i].p_align = HOST_PAGE_SIZE;
|
---|
1184 | i++;
|
---|
1185 | /* The .dynamic segment. */
|
---|
1186 | pSymFile->aPhdrs[i].p_type = PT_DYNAMIC;
|
---|
1187 | pSymFile->aPhdrs[i].p_flags = PF_R;
|
---|
1188 | pSymFile->aPhdrs[i].p_offset
|
---|
1189 | = pSymFile->aPhdrs[i].p_vaddr
|
---|
1190 | = pSymFile->aPhdrs[i].p_paddr = RT_UOFFSETOF(GDBJITSYMFILE, aDyn);
|
---|
1191 | pSymFile->aPhdrs[i].p_filesz /* Size of segment in file. */
|
---|
1192 | = pSymFile->aPhdrs[i].p_memsz = sizeof(pSymFile->aDyn);
|
---|
1193 | pSymFile->aPhdrs[i].p_align = sizeof(pSymFile->aDyn[0].d_tag);
|
---|
1194 | i++;
|
---|
1195 |
|
---|
1196 | Assert(i == RT_ELEMENTS(pSymFile->aPhdrs));
|
---|
1197 |
|
---|
1198 | /*
|
---|
1199 | * The dynamic section:
|
---|
1200 | */
|
---|
1201 | i = 0;
|
---|
1202 | pSymFile->aDyn[i].d_tag = DT_SONAME;
|
---|
1203 | pSymFile->aDyn[i].d_un.d_val = offStrTab;
|
---|
1204 | APPEND_STR_FMT("iem-exec-chunk-%u-%u", pVCpu->idCpu, idxChunk);
|
---|
1205 | i++;
|
---|
1206 | pSymFile->aDyn[i].d_tag = DT_STRTAB;
|
---|
1207 | pSymFile->aDyn[i].d_un.d_ptr = RT_UOFFSETOF(GDBJITSYMFILE, szzStrTab);
|
---|
1208 | i++;
|
---|
1209 | pSymFile->aDyn[i].d_tag = DT_STRSZ;
|
---|
1210 | pSymFile->aDyn[i].d_un.d_val = sizeof(pSymFile->szzStrTab);
|
---|
1211 | i++;
|
---|
1212 | pSymFile->aDyn[i].d_tag = DT_SYMTAB;
|
---|
1213 | pSymFile->aDyn[i].d_un.d_ptr = RT_UOFFSETOF(GDBJITSYMFILE, aDynSyms);
|
---|
1214 | i++;
|
---|
1215 | pSymFile->aDyn[i].d_tag = DT_SYMENT;
|
---|
1216 | pSymFile->aDyn[i].d_un.d_val = sizeof(pSymFile->aDynSyms[0]);
|
---|
1217 | i++;
|
---|
1218 | pSymFile->aDyn[i].d_tag = DT_NULL;
|
---|
1219 | i++;
|
---|
1220 | Assert(i == RT_ELEMENTS(pSymFile->aDyn));
|
---|
1221 | # endif /* IEMNATIVE_USE_GDB_JIT_ET_DYN */
|
---|
1222 |
|
---|
1223 | /*
|
---|
1224 | * Symbol tables:
|
---|
1225 | */
|
---|
1226 | /** @todo gdb doesn't seem to really like this ... */
|
---|
1227 | i = 0;
|
---|
1228 | pSymFile->aSymbols[i].st_name = 0;
|
---|
1229 | pSymFile->aSymbols[i].st_shndx = SHN_UNDEF;
|
---|
1230 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1231 | pSymFile->aSymbols[i].st_size = 0;
|
---|
1232 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_LOCAL, STT_NOTYPE);
|
---|
1233 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1234 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1235 | pSymFile->aDynSyms[0] = pSymFile->aSymbols[i];
|
---|
1236 | # endif
|
---|
1237 | i++;
|
---|
1238 |
|
---|
1239 | pSymFile->aSymbols[i].st_name = 0;
|
---|
1240 | pSymFile->aSymbols[i].st_shndx = SHN_ABS;
|
---|
1241 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1242 | pSymFile->aSymbols[i].st_size = 0;
|
---|
1243 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_LOCAL, STT_FILE);
|
---|
1244 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1245 | i++;
|
---|
1246 |
|
---|
1247 | pSymFile->aSymbols[i].st_name = offStrTab;
|
---|
1248 | APPEND_STR_FMT("iem_exec_chunk_%u_%u", pVCpu->idCpu, idxChunk);
|
---|
1249 | # if 0
|
---|
1250 | pSymFile->aSymbols[i].st_shndx = iShText;
|
---|
1251 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1252 | # else
|
---|
1253 | pSymFile->aSymbols[i].st_shndx = SHN_ABS;
|
---|
1254 | pSymFile->aSymbols[i].st_value = (uintptr_t)(pSymFile + 1);
|
---|
1255 | # endif
|
---|
1256 | pSymFile->aSymbols[i].st_size = pSymFile->aShdrs[iShText].sh_size;
|
---|
1257 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_GLOBAL, STT_FUNC);
|
---|
1258 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1259 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1260 | pSymFile->aDynSyms[1] = pSymFile->aSymbols[i];
|
---|
1261 | pSymFile->aDynSyms[1].st_value = (uintptr_t)(pSymFile + 1);
|
---|
1262 | # endif
|
---|
1263 | i++;
|
---|
1264 |
|
---|
1265 | Assert(i == RT_ELEMENTS(pSymFile->aSymbols));
|
---|
1266 | Assert(offStrTab < sizeof(pSymFile->szzStrTab));
|
---|
1267 |
|
---|
1268 | /*
|
---|
1269 | * The GDB JIT entry and informing GDB.
|
---|
1270 | */
|
---|
1271 | pEhFrame->GdbJitEntry.pbSymFile = (uint8_t *)pSymFile;
|
---|
1272 | # if 1
|
---|
1273 | pEhFrame->GdbJitEntry.cbSymFile = pExecMemAllocator->cbChunk - ((uintptr_t)pSymFile - (uintptr_t)pvChunk);
|
---|
1274 | # else
|
---|
1275 | pEhFrame->GdbJitEntry.cbSymFile = sizeof(GDBJITSYMFILE);
|
---|
1276 | # endif
|
---|
1277 |
|
---|
1278 | RTOnce(&g_IemNativeGdbJitOnce, iemNativeGdbJitInitOnce, NULL);
|
---|
1279 | RTCritSectEnter(&g_IemNativeGdbJitLock);
|
---|
1280 | pEhFrame->GdbJitEntry.pNext = NULL;
|
---|
1281 | pEhFrame->GdbJitEntry.pPrev = __jit_debug_descriptor.pTail;
|
---|
1282 | if (__jit_debug_descriptor.pTail)
|
---|
1283 | __jit_debug_descriptor.pTail->pNext = &pEhFrame->GdbJitEntry;
|
---|
1284 | else
|
---|
1285 | __jit_debug_descriptor.pHead = &pEhFrame->GdbJitEntry;
|
---|
1286 | __jit_debug_descriptor.pTail = &pEhFrame->GdbJitEntry;
|
---|
1287 | __jit_debug_descriptor.pRelevant = &pEhFrame->GdbJitEntry;
|
---|
1288 |
|
---|
1289 | /* Notify GDB: */
|
---|
1290 | __jit_debug_descriptor.enmAction = kGdbJitaction_Register;
|
---|
1291 | __jit_debug_register_code();
|
---|
1292 | __jit_debug_descriptor.enmAction = kGdbJitaction_NoAction;
|
---|
1293 | RTCritSectLeave(&g_IemNativeGdbJitLock);
|
---|
1294 |
|
---|
1295 | # else /* !IEMNATIVE_USE_GDB_JIT */
|
---|
1296 | RT_NOREF(pVCpu);
|
---|
1297 | # endif /* !IEMNATIVE_USE_GDB_JIT */
|
---|
1298 |
|
---|
1299 | return VINF_SUCCESS;
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | # endif /* !RT_OS_WINDOWS */
|
---|
1303 | #endif /* IN_RING3 */
|
---|
1304 |
|
---|
1305 |
|
---|
1306 | /**
|
---|
1307 | * Adds another chunk to the executable memory allocator.
|
---|
1308 | *
|
---|
1309 | * This is used by the init code for the initial allocation and later by the
|
---|
1310 | * regular allocator function when it's out of memory.
|
---|
1311 | */
|
---|
1312 | static int iemExecMemAllocatorGrow(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator)
|
---|
1313 | {
|
---|
1314 | /* Check that we've room for growth. */
|
---|
1315 | uint32_t const idxChunk = pExecMemAllocator->cChunks;
|
---|
1316 | AssertLogRelReturn(idxChunk < pExecMemAllocator->cMaxChunks, VERR_OUT_OF_RESOURCES);
|
---|
1317 |
|
---|
1318 | /* Allocate a chunk. */
|
---|
1319 | #ifdef RT_OS_DARWIN
|
---|
1320 | void *pvChunk = RTMemPageAllocEx(pExecMemAllocator->cbChunk, 0);
|
---|
1321 | #else
|
---|
1322 | void *pvChunk = RTMemPageAllocEx(pExecMemAllocator->cbChunk, RTMEMPAGEALLOC_F_EXECUTABLE);
|
---|
1323 | #endif
|
---|
1324 | AssertLogRelReturn(pvChunk, VERR_NO_EXEC_MEMORY);
|
---|
1325 |
|
---|
1326 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1327 | int rc = VINF_SUCCESS;
|
---|
1328 | #else
|
---|
1329 | /* Initialize the heap for the chunk. */
|
---|
1330 | RTHEAPSIMPLE hHeap = NIL_RTHEAPSIMPLE;
|
---|
1331 | int rc = RTHeapSimpleInit(&hHeap, pvChunk, pExecMemAllocator->cbChunk);
|
---|
1332 | AssertRC(rc);
|
---|
1333 | if (RT_SUCCESS(rc))
|
---|
1334 | {
|
---|
1335 | /*
|
---|
1336 | * We want the memory to be aligned on 64 byte, so the first time thru
|
---|
1337 | * here we do some exploratory allocations to see how we can achieve this.
|
---|
1338 | * On subsequent runs we only make an initial adjustment allocation, if
|
---|
1339 | * necessary.
|
---|
1340 | *
|
---|
1341 | * Since we own the heap implementation, we know that the internal block
|
---|
1342 | * header is 32 bytes in size for 64-bit systems (see RTHEAPSIMPLEBLOCK),
|
---|
1343 | * so all we need to wrt allocation size adjustments is to add 32 bytes
|
---|
1344 | * to the size, align up by 64 bytes, and subtract 32 bytes.
|
---|
1345 | *
|
---|
1346 | * The heap anchor block is 8 * sizeof(void *) (see RTHEAPSIMPLEINTERNAL),
|
---|
1347 | * which mean 64 bytes on a 64-bit system, so we need to make a 64 byte
|
---|
1348 | * allocation to force subsequent allocations to return 64 byte aligned
|
---|
1349 | * user areas.
|
---|
1350 | */
|
---|
1351 | if (!pExecMemAllocator->cbHeapBlockHdr)
|
---|
1352 | {
|
---|
1353 | pExecMemAllocator->cbHeapBlockHdr = sizeof(void *) * 4; /* See RTHEAPSIMPLEBLOCK. */
|
---|
1354 | pExecMemAllocator->cbHeapAlignTweak = 64;
|
---|
1355 | pExecMemAllocator->pvAlignTweak = RTHeapSimpleAlloc(hHeap, pExecMemAllocator->cbHeapAlignTweak,
|
---|
1356 | 32 /*cbAlignment*/);
|
---|
1357 | AssertStmt(pExecMemAllocator->pvAlignTweak, rc = VERR_INTERNAL_ERROR_2);
|
---|
1358 |
|
---|
1359 | void *pvTest1 = RTHeapSimpleAlloc(hHeap,
|
---|
1360 | RT_ALIGN_32(256 + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
1361 | - pExecMemAllocator->cbHeapBlockHdr, 32 /*cbAlignment*/);
|
---|
1362 | AssertStmt(pvTest1, rc = VERR_INTERNAL_ERROR_2);
|
---|
1363 | AssertStmt(!((uintptr_t)pvTest1 & 63), rc = VERR_INTERNAL_ERROR_3);
|
---|
1364 |
|
---|
1365 | void *pvTest2 = RTHeapSimpleAlloc(hHeap,
|
---|
1366 | RT_ALIGN_32(687 + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
1367 | - pExecMemAllocator->cbHeapBlockHdr, 32 /*cbAlignment*/);
|
---|
1368 | AssertStmt(pvTest2, rc = VERR_INTERNAL_ERROR_2);
|
---|
1369 | AssertStmt(!((uintptr_t)pvTest2 & 63), rc = VERR_INTERNAL_ERROR_3);
|
---|
1370 |
|
---|
1371 | RTHeapSimpleFree(hHeap, pvTest2);
|
---|
1372 | RTHeapSimpleFree(hHeap, pvTest1);
|
---|
1373 | }
|
---|
1374 | else
|
---|
1375 | {
|
---|
1376 | pExecMemAllocator->pvAlignTweak = RTHeapSimpleAlloc(hHeap, pExecMemAllocator->cbHeapAlignTweak, 32 /*cbAlignment*/);
|
---|
1377 | AssertStmt(pExecMemAllocator->pvAlignTweak, rc = VERR_INTERNAL_ERROR_4);
|
---|
1378 | }
|
---|
1379 | if (RT_SUCCESS(rc))
|
---|
1380 | #endif /* !IEMEXECMEM_USE_ALT_SUB_ALLOCATOR */
|
---|
1381 | {
|
---|
1382 | /*
|
---|
1383 | * Add the chunk.
|
---|
1384 | *
|
---|
1385 | * This must be done before the unwind init so windows can allocate
|
---|
1386 | * memory from the chunk when using the alternative sub-allocator.
|
---|
1387 | */
|
---|
1388 | pExecMemAllocator->aChunks[idxChunk].pvChunk = pvChunk;
|
---|
1389 | #ifdef IN_RING3
|
---|
1390 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = NULL;
|
---|
1391 | #endif
|
---|
1392 | #ifndef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1393 | pExecMemAllocator->aChunks[idxChunk].hHeap = hHeap;
|
---|
1394 | #else
|
---|
1395 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits = pExecMemAllocator->cUnitsPerChunk;
|
---|
1396 | pExecMemAllocator->aChunks[idxChunk].idxFreeHint = 0;
|
---|
1397 | memset(&pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk],
|
---|
1398 | 0, sizeof(pExecMemAllocator->pbmAlloc[0]) * pExecMemAllocator->cBitmapElementsPerChunk);
|
---|
1399 | #endif
|
---|
1400 |
|
---|
1401 | pExecMemAllocator->cChunks = idxChunk + 1;
|
---|
1402 | pExecMemAllocator->idxChunkHint = idxChunk;
|
---|
1403 |
|
---|
1404 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1405 | pExecMemAllocator->cbTotal += pExecMemAllocator->cbChunk;
|
---|
1406 | pExecMemAllocator->cbFree += pExecMemAllocator->cbChunk;
|
---|
1407 | #else
|
---|
1408 | size_t const cbFree = RTHeapSimpleGetFreeSize(hHeap);
|
---|
1409 | pExecMemAllocator->cbTotal += cbFree;
|
---|
1410 | pExecMemAllocator->cbFree += cbFree;
|
---|
1411 | #endif
|
---|
1412 |
|
---|
1413 | #ifdef IN_RING3
|
---|
1414 | /*
|
---|
1415 | * Initialize the unwind information (this cannot really fail atm).
|
---|
1416 | * (This sets pvUnwindInfo.)
|
---|
1417 | */
|
---|
1418 | rc = iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(pVCpu, pExecMemAllocator, pvChunk, idxChunk);
|
---|
1419 | if (RT_SUCCESS(rc))
|
---|
1420 | #endif
|
---|
1421 | {
|
---|
1422 | return VINF_SUCCESS;
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1426 | /* Just in case the impossible happens, undo the above up: */
|
---|
1427 | pExecMemAllocator->cbTotal -= pExecMemAllocator->cbChunk;
|
---|
1428 | pExecMemAllocator->cbFree -= pExecMemAllocator->aChunks[idxChunk].cFreeUnits << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
1429 | pExecMemAllocator->cChunks = idxChunk;
|
---|
1430 | memset(&pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk],
|
---|
1431 | 0xff, sizeof(pExecMemAllocator->pbmAlloc[0]) * pExecMemAllocator->cBitmapElementsPerChunk);
|
---|
1432 | pExecMemAllocator->aChunks[idxChunk].pvChunk = NULL;
|
---|
1433 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits = 0;
|
---|
1434 | #endif
|
---|
1435 | }
|
---|
1436 | #ifndef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1437 | }
|
---|
1438 | #endif
|
---|
1439 | RTMemPageFree(pvChunk, pExecMemAllocator->cbChunk);
|
---|
1440 | RT_NOREF(pVCpu);
|
---|
1441 | return rc;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | /**
|
---|
1446 | * Initializes the executable memory allocator for native recompilation on the
|
---|
1447 | * calling EMT.
|
---|
1448 | *
|
---|
1449 | * @returns VBox status code.
|
---|
1450 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1451 | * thread.
|
---|
1452 | * @param cbMax The max size of the allocator.
|
---|
1453 | * @param cbInitial The initial allocator size.
|
---|
1454 | * @param cbChunk The chunk size, 0 or UINT32_MAX for default (@a cbMax
|
---|
1455 | * dependent).
|
---|
1456 | */
|
---|
1457 | int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk)
|
---|
1458 | {
|
---|
1459 | /*
|
---|
1460 | * Validate input.
|
---|
1461 | */
|
---|
1462 | AssertLogRelMsgReturn(cbMax >= _1M && cbMax <= _4G+_4G, ("cbMax=%RU64 (%RX64)\n", cbMax, cbMax), VERR_OUT_OF_RANGE);
|
---|
1463 | AssertReturn(cbInitial <= cbMax, VERR_OUT_OF_RANGE);
|
---|
1464 | AssertLogRelMsgReturn( cbChunk != UINT32_MAX
|
---|
1465 | || cbChunk == 0
|
---|
1466 | || ( RT_IS_POWER_OF_TWO(cbChunk)
|
---|
1467 | && cbChunk >= _1M
|
---|
1468 | && cbChunk <= _256M
|
---|
1469 | && cbChunk <= cbMax),
|
---|
1470 | ("cbChunk=%RU32 (%RX32) cbMax=%RU64\n", cbChunk, cbChunk, cbMax),
|
---|
1471 | VERR_OUT_OF_RANGE);
|
---|
1472 |
|
---|
1473 | /*
|
---|
1474 | * Adjust/figure out the chunk size.
|
---|
1475 | */
|
---|
1476 | if (cbChunk == 0 || cbChunk == UINT32_MAX)
|
---|
1477 | {
|
---|
1478 | if (cbMax >= _256M)
|
---|
1479 | cbChunk = _64M;
|
---|
1480 | else
|
---|
1481 | {
|
---|
1482 | if (cbMax < _16M)
|
---|
1483 | cbChunk = cbMax >= _4M ? _4M : (uint32_t)cbMax;
|
---|
1484 | else
|
---|
1485 | cbChunk = (uint32_t)cbMax / 4;
|
---|
1486 | if (!RT_IS_POWER_OF_TWO(cbChunk))
|
---|
1487 | cbChunk = RT_BIT_32(ASMBitLastSetU32(cbChunk));
|
---|
1488 | }
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | if (cbChunk > cbMax)
|
---|
1492 | cbMax = cbChunk;
|
---|
1493 | else
|
---|
1494 | cbMax = (cbMax - 1 + cbChunk) / cbChunk * cbChunk;
|
---|
1495 | uint32_t const cMaxChunks = (uint32_t)(cbMax / cbChunk);
|
---|
1496 | AssertLogRelReturn((uint64_t)cMaxChunks * cbChunk == cbMax, VERR_INTERNAL_ERROR_3);
|
---|
1497 |
|
---|
1498 | /*
|
---|
1499 | * Allocate and initialize the allocatore instance.
|
---|
1500 | */
|
---|
1501 | size_t cbNeeded = RT_UOFFSETOF_DYN(IEMEXECMEMALLOCATOR, aChunks[cMaxChunks]);
|
---|
1502 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1503 | size_t const offBitmaps = RT_ALIGN_Z(cbNeeded, RT_CACHELINE_SIZE);
|
---|
1504 | size_t const cbBitmap = cbChunk >> (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 3);
|
---|
1505 | cbNeeded += cbBitmap * cMaxChunks;
|
---|
1506 | AssertCompile(IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT <= 10);
|
---|
1507 | Assert(cbChunk > RT_BIT_32(IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 3));
|
---|
1508 | #endif
|
---|
1509 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
1510 | size_t const offEhFrames = RT_ALIGN_Z(cbNeeded, RT_CACHELINE_SIZE);
|
---|
1511 | cbNeeded += sizeof(IEMEXECMEMCHUNKEHFRAME) * cMaxChunks;
|
---|
1512 | #endif
|
---|
1513 | PIEMEXECMEMALLOCATOR pExecMemAllocator = (PIEMEXECMEMALLOCATOR)RTMemAllocZ(cbNeeded);
|
---|
1514 | AssertLogRelMsgReturn(pExecMemAllocator, ("cbNeeded=%zx cMaxChunks=%#x cbChunk=%#x\n", cbNeeded, cMaxChunks, cbChunk),
|
---|
1515 | VERR_NO_MEMORY);
|
---|
1516 | pExecMemAllocator->uMagic = IEMEXECMEMALLOCATOR_MAGIC;
|
---|
1517 | pExecMemAllocator->cbChunk = cbChunk;
|
---|
1518 | pExecMemAllocator->cMaxChunks = cMaxChunks;
|
---|
1519 | pExecMemAllocator->cChunks = 0;
|
---|
1520 | pExecMemAllocator->idxChunkHint = 0;
|
---|
1521 | pExecMemAllocator->cAllocations = 0;
|
---|
1522 | pExecMemAllocator->cbTotal = 0;
|
---|
1523 | pExecMemAllocator->cbFree = 0;
|
---|
1524 | pExecMemAllocator->cbAllocated = 0;
|
---|
1525 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1526 | pExecMemAllocator->pbmAlloc = (uint64_t *)((uintptr_t)pExecMemAllocator + offBitmaps);
|
---|
1527 | pExecMemAllocator->cUnitsPerChunk = cbChunk >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
1528 | pExecMemAllocator->cBitmapElementsPerChunk = cbChunk >> (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 6);
|
---|
1529 | memset(pExecMemAllocator->pbmAlloc, 0xff, cbBitmap); /* Mark everything as allocated. Clear when chunks are added. */
|
---|
1530 | #endif
|
---|
1531 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
1532 | pExecMemAllocator->paEhFrames = (PIEMEXECMEMCHUNKEHFRAME)((uintptr_t)pExecMemAllocator + offEhFrames);
|
---|
1533 | #endif
|
---|
1534 | for (uint32_t i = 0; i < cMaxChunks; i++)
|
---|
1535 | {
|
---|
1536 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1537 | pExecMemAllocator->aChunks[i].cFreeUnits = 0;
|
---|
1538 | pExecMemAllocator->aChunks[i].idxFreeHint = 0;
|
---|
1539 | #else
|
---|
1540 | pExecMemAllocator->aChunks[i].hHeap = NIL_RTHEAPSIMPLE;
|
---|
1541 | #endif
|
---|
1542 | pExecMemAllocator->aChunks[i].pvChunk = NULL;
|
---|
1543 | #ifdef IN_RING0
|
---|
1544 | pExecMemAllocator->aChunks[i].hMemObj = NIL_RTR0MEMOBJ;
|
---|
1545 | #else
|
---|
1546 | pExecMemAllocator->aChunks[i].pvUnwindInfo = NULL;
|
---|
1547 | #endif
|
---|
1548 | }
|
---|
1549 | pVCpu->iem.s.pExecMemAllocatorR3 = pExecMemAllocator;
|
---|
1550 |
|
---|
1551 | /*
|
---|
1552 | * Do the initial allocations.
|
---|
1553 | */
|
---|
1554 | while (cbInitial < (uint64_t)pExecMemAllocator->cChunks * pExecMemAllocator->cbChunk)
|
---|
1555 | {
|
---|
1556 | int rc = iemExecMemAllocatorGrow(pVCpu, pExecMemAllocator);
|
---|
1557 | AssertLogRelRCReturn(rc, rc);
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | pExecMemAllocator->idxChunkHint = 0;
|
---|
1561 |
|
---|
1562 | return VINF_SUCCESS;
|
---|
1563 | }
|
---|
1564 |
|
---|
1565 |
|
---|
1566 | /*********************************************************************************************************************************
|
---|
1567 | * Native Recompilation *
|
---|
1568 | *********************************************************************************************************************************/
|
---|
1569 |
|
---|
1570 |
|
---|
1571 | /**
|
---|
1572 | * Used by TB code when encountering a non-zero status or rcPassUp after a call.
|
---|
1573 | */
|
---|
1574 | IEM_DECL_IMPL_DEF(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr))
|
---|
1575 | {
|
---|
1576 | pVCpu->iem.s.cInstructions += idxInstr;
|
---|
1577 | return VBOXSTRICTRC_VAL(iemExecStatusCodeFiddling(pVCpu, rc == VINF_IEM_REEXEC_BREAK ? VINF_SUCCESS : rc));
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 |
|
---|
1581 | /**
|
---|
1582 | * Used by TB code when it wants to raise a \#GP(0).
|
---|
1583 | */
|
---|
1584 | IEM_DECL_IMPL_DEF(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu, uint8_t idxInstr))
|
---|
1585 | {
|
---|
1586 | pVCpu->iem.s.cInstructions += idxInstr;
|
---|
1587 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1588 | #ifndef _MSC_VER
|
---|
1589 | return VINF_IEM_RAISED_XCPT; /* not reached */
|
---|
1590 | #endif
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 |
|
---|
1594 | /**
|
---|
1595 | * Reinitializes the native recompiler state.
|
---|
1596 | *
|
---|
1597 | * Called before starting a new recompile job.
|
---|
1598 | */
|
---|
1599 | static PIEMRECOMPILERSTATE iemNativeReInit(PIEMRECOMPILERSTATE pReNative, PCIEMTB pTb)
|
---|
1600 | {
|
---|
1601 | pReNative->cLabels = 0;
|
---|
1602 | pReNative->bmLabelTypes = 0;
|
---|
1603 | pReNative->cFixups = 0;
|
---|
1604 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1605 | pReNative->pDbgInfo->cEntries = 0;
|
---|
1606 | #endif
|
---|
1607 | pReNative->pTbOrg = pTb;
|
---|
1608 | pReNative->cCondDepth = 0;
|
---|
1609 | pReNative->uCondSeqNo = 0;
|
---|
1610 | pReNative->uCheckIrqSeqNo = 0;
|
---|
1611 |
|
---|
1612 | pReNative->Core.bmHstRegs = IEMNATIVE_REG_FIXED_MASK
|
---|
1613 | #if IEMNATIVE_HST_GREG_COUNT < 32
|
---|
1614 | | ~(RT_BIT(IEMNATIVE_HST_GREG_COUNT) - 1U)
|
---|
1615 | #endif
|
---|
1616 | ;
|
---|
1617 | pReNative->Core.bmHstRegsWithGstShadow = 0;
|
---|
1618 | pReNative->Core.bmGstRegShadows = 0;
|
---|
1619 | pReNative->Core.bmVars = 0;
|
---|
1620 | pReNative->Core.bmStack = 0;
|
---|
1621 | AssertCompile(sizeof(pReNative->Core.bmStack) * 8 == IEMNATIVE_FRAME_VAR_SLOTS); /* Must set reserved slots to 1 otherwise. */
|
---|
1622 | pReNative->Core.u64ArgVars = UINT64_MAX;
|
---|
1623 |
|
---|
1624 | /* Full host register reinit: */
|
---|
1625 | for (unsigned i = 0; i < RT_ELEMENTS(pReNative->Core.aHstRegs); i++)
|
---|
1626 | {
|
---|
1627 | pReNative->Core.aHstRegs[i].fGstRegShadows = 0;
|
---|
1628 | pReNative->Core.aHstRegs[i].enmWhat = kIemNativeWhat_Invalid;
|
---|
1629 | pReNative->Core.aHstRegs[i].idxVar = UINT8_MAX;
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | uint32_t fRegs = IEMNATIVE_REG_FIXED_MASK
|
---|
1633 | & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU)
|
---|
1634 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
1635 | | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX)
|
---|
1636 | #endif
|
---|
1637 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
1638 | | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0)
|
---|
1639 | #endif
|
---|
1640 | );
|
---|
1641 | for (uint32_t idxReg = ASMBitFirstSetU32(fRegs) - 1; fRegs != 0; idxReg = ASMBitFirstSetU32(fRegs) - 1)
|
---|
1642 | {
|
---|
1643 | fRegs &= ~RT_BIT_32(idxReg);
|
---|
1644 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PVMCPU].enmWhat = kIemNativeWhat_FixedReserved;
|
---|
1645 | }
|
---|
1646 |
|
---|
1647 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PVMCPU].enmWhat = kIemNativeWhat_pVCpuFixed;
|
---|
1648 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
1649 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PCPUMCTX].enmWhat = kIemNativeWhat_pCtxFixed;
|
---|
1650 | #endif
|
---|
1651 | #ifdef IEMNATIVE_REG_FIXED_TMP0
|
---|
1652 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_TMP0].enmWhat = kIemNativeWhat_FixedTmp;
|
---|
1653 | #endif
|
---|
1654 | return pReNative;
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 |
|
---|
1658 | /**
|
---|
1659 | * Allocates and initializes the native recompiler state.
|
---|
1660 | *
|
---|
1661 | * This is called the first time an EMT wants to recompile something.
|
---|
1662 | *
|
---|
1663 | * @returns Pointer to the new recompiler state.
|
---|
1664 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1665 | * thread.
|
---|
1666 | * @param pTb The TB that's about to be recompiled.
|
---|
1667 | * @thread EMT(pVCpu)
|
---|
1668 | */
|
---|
1669 | static PIEMRECOMPILERSTATE iemNativeInit(PVMCPUCC pVCpu, PCIEMTB pTb)
|
---|
1670 | {
|
---|
1671 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
1672 |
|
---|
1673 | PIEMRECOMPILERSTATE pReNative = (PIEMRECOMPILERSTATE)RTMemAllocZ(sizeof(*pReNative));
|
---|
1674 | AssertReturn(pReNative, NULL);
|
---|
1675 |
|
---|
1676 | /*
|
---|
1677 | * Try allocate all the buffers and stuff we need.
|
---|
1678 | */
|
---|
1679 | pReNative->pInstrBuf = (PIEMNATIVEINSTR)RTMemAllocZ(_64K);
|
---|
1680 | pReNative->paLabels = (PIEMNATIVELABEL)RTMemAllocZ(sizeof(IEMNATIVELABEL) * _8K);
|
---|
1681 | pReNative->paFixups = (PIEMNATIVEFIXUP)RTMemAllocZ(sizeof(IEMNATIVEFIXUP) * _16K);
|
---|
1682 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1683 | pReNative->pDbgInfo = (PIEMTBDBG)RTMemAllocZ(RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[_16K]));
|
---|
1684 | #endif
|
---|
1685 | if (RT_LIKELY( pReNative->pInstrBuf
|
---|
1686 | && pReNative->paLabels
|
---|
1687 | && pReNative->paFixups)
|
---|
1688 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1689 | && pReNative->pDbgInfo
|
---|
1690 | #endif
|
---|
1691 | )
|
---|
1692 | {
|
---|
1693 | /*
|
---|
1694 | * Set the buffer & array sizes on success.
|
---|
1695 | */
|
---|
1696 | pReNative->cInstrBufAlloc = _64K / sizeof(IEMNATIVEINSTR);
|
---|
1697 | pReNative->cLabelsAlloc = _8K;
|
---|
1698 | pReNative->cFixupsAlloc = _16K;
|
---|
1699 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1700 | pReNative->cDbgInfoAlloc = _16K;
|
---|
1701 | #endif
|
---|
1702 |
|
---|
1703 | /*
|
---|
1704 | * Done, just need to save it and reinit it.
|
---|
1705 | */
|
---|
1706 | pVCpu->iem.s.pNativeRecompilerStateR3 = pReNative;
|
---|
1707 | return iemNativeReInit(pReNative, pTb);
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 | /*
|
---|
1711 | * Failed. Cleanup and return.
|
---|
1712 | */
|
---|
1713 | AssertFailed();
|
---|
1714 | RTMemFree(pReNative->pInstrBuf);
|
---|
1715 | RTMemFree(pReNative->paLabels);
|
---|
1716 | RTMemFree(pReNative->paFixups);
|
---|
1717 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1718 | RTMemFree(pReNative->pDbgInfo);
|
---|
1719 | #endif
|
---|
1720 | RTMemFree(pReNative);
|
---|
1721 | return NULL;
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 |
|
---|
1725 | /**
|
---|
1726 | * Creates a label
|
---|
1727 | *
|
---|
1728 | * If the label does not yet have a defined position,
|
---|
1729 | * call iemNativeLabelDefine() later to set it.
|
---|
1730 | *
|
---|
1731 | * @returns Label ID. Throws VBox status code on failure, so no need to check
|
---|
1732 | * the return value.
|
---|
1733 | * @param pReNative The native recompile state.
|
---|
1734 | * @param enmType The label type.
|
---|
1735 | * @param offWhere The instruction offset of the label. UINT32_MAX if the
|
---|
1736 | * label is not yet defined (default).
|
---|
1737 | * @param uData Data associated with the lable. Only applicable to
|
---|
1738 | * certain type of labels. Default is zero.
|
---|
1739 | */
|
---|
1740 | DECL_HIDDEN_THROW(uint32_t)
|
---|
1741 | iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
|
---|
1742 | uint32_t offWhere /*= UINT32_MAX*/, uint16_t uData /*= 0*/)
|
---|
1743 | {
|
---|
1744 | /*
|
---|
1745 | * Locate existing label definition.
|
---|
1746 | *
|
---|
1747 | * This is only allowed for forward declarations where offWhere=UINT32_MAX
|
---|
1748 | * and uData is zero.
|
---|
1749 | */
|
---|
1750 | PIEMNATIVELABEL paLabels = pReNative->paLabels;
|
---|
1751 | uint32_t const cLabels = pReNative->cLabels;
|
---|
1752 | if ( pReNative->bmLabelTypes & RT_BIT_64(enmType)
|
---|
1753 | #ifndef VBOX_STRICT
|
---|
1754 | && offWhere == UINT32_MAX
|
---|
1755 | && uData == 0
|
---|
1756 | #endif
|
---|
1757 | )
|
---|
1758 | {
|
---|
1759 | /** @todo Since this is only used for labels with uData = 0, just use a
|
---|
1760 | * lookup array? */
|
---|
1761 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
1762 | if ( paLabels[i].enmType == enmType
|
---|
1763 | && paLabels[i].uData == uData)
|
---|
1764 | {
|
---|
1765 | #ifdef VBOX_STRICT
|
---|
1766 | AssertStmt(uData == 0, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
1767 | AssertStmt(offWhere == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
1768 | #endif
|
---|
1769 | AssertStmt(paLabels[i].off == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_2));
|
---|
1770 | return i;
|
---|
1771 | }
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 | /*
|
---|
1775 | * Make sure we've got room for another label.
|
---|
1776 | */
|
---|
1777 | if (RT_LIKELY(cLabels < pReNative->cLabelsAlloc))
|
---|
1778 | { /* likely */ }
|
---|
1779 | else
|
---|
1780 | {
|
---|
1781 | uint32_t cNew = pReNative->cLabelsAlloc;
|
---|
1782 | AssertStmt(cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_3));
|
---|
1783 | AssertStmt(cLabels == cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_3));
|
---|
1784 | cNew *= 2;
|
---|
1785 | AssertStmt(cNew <= _64K, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_TOO_MANY)); /* IEMNATIVEFIXUP::idxLabel type restrict this */
|
---|
1786 | paLabels = (PIEMNATIVELABEL)RTMemRealloc(paLabels, cNew * sizeof(paLabels[0]));
|
---|
1787 | AssertStmt(paLabels, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_OUT_OF_MEMORY));
|
---|
1788 | pReNative->paLabels = paLabels;
|
---|
1789 | pReNative->cLabelsAlloc = cNew;
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 | /*
|
---|
1793 | * Define a new label.
|
---|
1794 | */
|
---|
1795 | paLabels[cLabels].off = offWhere;
|
---|
1796 | paLabels[cLabels].enmType = enmType;
|
---|
1797 | paLabels[cLabels].uData = uData;
|
---|
1798 | pReNative->cLabels = cLabels + 1;
|
---|
1799 |
|
---|
1800 | Assert((unsigned)enmType < 64);
|
---|
1801 | pReNative->bmLabelTypes |= RT_BIT_64(enmType);
|
---|
1802 |
|
---|
1803 | if (offWhere != UINT32_MAX)
|
---|
1804 | {
|
---|
1805 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1806 | iemNativeDbgInfoAddNativeOffset(pReNative, offWhere);
|
---|
1807 | iemNativeDbgInfoAddLabel(pReNative, enmType, uData);
|
---|
1808 | #endif
|
---|
1809 | }
|
---|
1810 | return cLabels;
|
---|
1811 | }
|
---|
1812 |
|
---|
1813 |
|
---|
1814 | /**
|
---|
1815 | * Defines the location of an existing label.
|
---|
1816 | *
|
---|
1817 | * @param pReNative The native recompile state.
|
---|
1818 | * @param idxLabel The label to define.
|
---|
1819 | * @param offWhere The position.
|
---|
1820 | */
|
---|
1821 | DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere)
|
---|
1822 | {
|
---|
1823 | AssertStmt(idxLabel < pReNative->cLabels, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_4));
|
---|
1824 | PIEMNATIVELABEL const pLabel = &pReNative->paLabels[idxLabel];
|
---|
1825 | AssertStmt(pLabel->off == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_5));
|
---|
1826 | pLabel->off = offWhere;
|
---|
1827 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1828 | iemNativeDbgInfoAddNativeOffset(pReNative, offWhere);
|
---|
1829 | iemNativeDbgInfoAddLabel(pReNative, (IEMNATIVELABELTYPE)pLabel->enmType, pLabel->uData);
|
---|
1830 | #endif
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 |
|
---|
1834 | /**
|
---|
1835 | * Looks up a lable.
|
---|
1836 | *
|
---|
1837 | * @returns Label ID if found, UINT32_MAX if not.
|
---|
1838 | */
|
---|
1839 | static uint32_t iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
|
---|
1840 | uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT
|
---|
1841 | {
|
---|
1842 | Assert((unsigned)enmType < 64);
|
---|
1843 | if (RT_BIT_64(enmType) & pReNative->bmLabelTypes)
|
---|
1844 | {
|
---|
1845 | PIEMNATIVELABEL paLabels = pReNative->paLabels;
|
---|
1846 | uint32_t const cLabels = pReNative->cLabels;
|
---|
1847 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
1848 | if ( paLabels[i].enmType == enmType
|
---|
1849 | && paLabels[i].uData == uData
|
---|
1850 | && ( paLabels[i].off == offWhere
|
---|
1851 | || offWhere == UINT32_MAX
|
---|
1852 | || paLabels[i].off == UINT32_MAX))
|
---|
1853 | return i;
|
---|
1854 | }
|
---|
1855 | return UINT32_MAX;
|
---|
1856 | }
|
---|
1857 |
|
---|
1858 |
|
---|
1859 | /**
|
---|
1860 | * Adds a fixup.
|
---|
1861 | *
|
---|
1862 | * @throws VBox status code (int) on failure.
|
---|
1863 | * @param pReNative The native recompile state.
|
---|
1864 | * @param offWhere The instruction offset of the fixup location.
|
---|
1865 | * @param idxLabel The target label ID for the fixup.
|
---|
1866 | * @param enmType The fixup type.
|
---|
1867 | * @param offAddend Fixup addend if applicable to the type. Default is 0.
|
---|
1868 | */
|
---|
1869 | DECL_HIDDEN_THROW(void)
|
---|
1870 | iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
|
---|
1871 | IEMNATIVEFIXUPTYPE enmType, int8_t offAddend /*= 0*/)
|
---|
1872 | {
|
---|
1873 | Assert(idxLabel <= UINT16_MAX);
|
---|
1874 | Assert((unsigned)enmType <= UINT8_MAX);
|
---|
1875 |
|
---|
1876 | /*
|
---|
1877 | * Make sure we've room.
|
---|
1878 | */
|
---|
1879 | PIEMNATIVEFIXUP paFixups = pReNative->paFixups;
|
---|
1880 | uint32_t const cFixups = pReNative->cFixups;
|
---|
1881 | if (RT_LIKELY(cFixups < pReNative->cFixupsAlloc))
|
---|
1882 | { /* likely */ }
|
---|
1883 | else
|
---|
1884 | {
|
---|
1885 | uint32_t cNew = pReNative->cFixupsAlloc;
|
---|
1886 | AssertStmt(cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_IPE_1));
|
---|
1887 | AssertStmt(cFixups == cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_IPE_1));
|
---|
1888 | cNew *= 2;
|
---|
1889 | AssertStmt(cNew <= _128K, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_TOO_MANY));
|
---|
1890 | paFixups = (PIEMNATIVEFIXUP)RTMemRealloc(paFixups, cNew * sizeof(paFixups[0]));
|
---|
1891 | AssertStmt(paFixups, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_OUT_OF_MEMORY));
|
---|
1892 | pReNative->paFixups = paFixups;
|
---|
1893 | pReNative->cFixupsAlloc = cNew;
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | /*
|
---|
1897 | * Add the fixup.
|
---|
1898 | */
|
---|
1899 | paFixups[cFixups].off = offWhere;
|
---|
1900 | paFixups[cFixups].idxLabel = (uint16_t)idxLabel;
|
---|
1901 | paFixups[cFixups].enmType = enmType;
|
---|
1902 | paFixups[cFixups].offAddend = offAddend;
|
---|
1903 | pReNative->cFixups = cFixups + 1;
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 |
|
---|
1907 | /**
|
---|
1908 | * Slow code path for iemNativeInstrBufEnsure.
|
---|
1909 | */
|
---|
1910 | DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
|
---|
1911 | {
|
---|
1912 | /* Double the buffer size till we meet the request. */
|
---|
1913 | uint32_t cNew = pReNative->cInstrBufAlloc;
|
---|
1914 | AssertReturn(cNew > 0, NULL);
|
---|
1915 | do
|
---|
1916 | cNew *= 2;
|
---|
1917 | while (cNew < off + cInstrReq);
|
---|
1918 |
|
---|
1919 | uint32_t const cbNew = cNew * sizeof(IEMNATIVEINSTR);
|
---|
1920 | #ifdef RT_ARCH_ARM64
|
---|
1921 | uint32_t const cbMaxInstrBuf = _1M; /* Limited by the branch instruction range (18+2 bits). */
|
---|
1922 | #else
|
---|
1923 | uint32_t const cbMaxInstrBuf = _2M;
|
---|
1924 | #endif
|
---|
1925 | AssertStmt(cbNew <= cbMaxInstrBuf, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_INSTR_BUF_TOO_LARGE));
|
---|
1926 |
|
---|
1927 | void *pvNew = RTMemRealloc(pReNative->pInstrBuf, cbNew);
|
---|
1928 | AssertStmt(pvNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_INSTR_BUF_OUT_OF_MEMORY));
|
---|
1929 |
|
---|
1930 | pReNative->cInstrBufAlloc = cNew;
|
---|
1931 | return pReNative->pInstrBuf = (PIEMNATIVEINSTR)pvNew;
|
---|
1932 | }
|
---|
1933 |
|
---|
1934 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
1935 |
|
---|
1936 | /**
|
---|
1937 | * Grows the static debug info array used during recompilation.
|
---|
1938 | *
|
---|
1939 | * @returns Pointer to the new debug info block; throws VBox status code on
|
---|
1940 | * failure, so no need to check the return value.
|
---|
1941 | */
|
---|
1942 | DECL_NO_INLINE(static, PIEMTBDBG) iemNativeDbgInfoGrow(PIEMRECOMPILERSTATE pReNative, PIEMTBDBG pDbgInfo)
|
---|
1943 | {
|
---|
1944 | uint32_t cNew = pReNative->cDbgInfoAlloc * 2;
|
---|
1945 | AssertStmt(cNew < _1M && cNew != 0, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_IPE_1));
|
---|
1946 | pDbgInfo = (PIEMTBDBG)RTMemRealloc(pDbgInfo, RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[cNew]));
|
---|
1947 | AssertStmt(pDbgInfo, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_OUT_OF_MEMORY));
|
---|
1948 | pReNative->pDbgInfo = pDbgInfo;
|
---|
1949 | pReNative->cDbgInfoAlloc = cNew;
|
---|
1950 | return pDbgInfo;
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 |
|
---|
1954 | /**
|
---|
1955 | * Adds a new debug info uninitialized entry, returning the pointer to it.
|
---|
1956 | */
|
---|
1957 | DECL_INLINE_THROW(PIEMTBDBGENTRY) iemNativeDbgInfoAddNewEntry(PIEMRECOMPILERSTATE pReNative, PIEMTBDBG pDbgInfo)
|
---|
1958 | {
|
---|
1959 | if (RT_LIKELY(pDbgInfo->cEntries < pReNative->cDbgInfoAlloc))
|
---|
1960 | { /* likely */ }
|
---|
1961 | else
|
---|
1962 | pDbgInfo = iemNativeDbgInfoGrow(pReNative, pDbgInfo);
|
---|
1963 | return &pDbgInfo->aEntries[pDbgInfo->cEntries++];
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 |
|
---|
1967 | /**
|
---|
1968 | * Debug Info: Adds a native offset record, if necessary.
|
---|
1969 | */
|
---|
1970 | static void iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
1971 | {
|
---|
1972 | PIEMTBDBG pDbgInfo = pReNative->pDbgInfo;
|
---|
1973 |
|
---|
1974 | /*
|
---|
1975 | * Search backwards to see if we've got a similar record already.
|
---|
1976 | */
|
---|
1977 | uint32_t idx = pDbgInfo->cEntries;
|
---|
1978 | uint32_t idxStop = idx > 8 ? idx - 8 : 0;
|
---|
1979 | while (idx-- > idxStop)
|
---|
1980 | if (pDbgInfo->aEntries[idx].Gen.uType == kIemTbDbgEntryType_NativeOffset)
|
---|
1981 | {
|
---|
1982 | if (pDbgInfo->aEntries[idx].NativeOffset.offNative == off)
|
---|
1983 | return;
|
---|
1984 | AssertStmt(pDbgInfo->aEntries[idx].NativeOffset.offNative < off,
|
---|
1985 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_IPE_2));
|
---|
1986 | break;
|
---|
1987 | }
|
---|
1988 |
|
---|
1989 | /*
|
---|
1990 | * Add it.
|
---|
1991 | */
|
---|
1992 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pDbgInfo);
|
---|
1993 | pEntry->NativeOffset.uType = kIemTbDbgEntryType_NativeOffset;
|
---|
1994 | pEntry->NativeOffset.offNative = off;
|
---|
1995 | }
|
---|
1996 |
|
---|
1997 |
|
---|
1998 | /**
|
---|
1999 | * Debug Info: Record info about a label.
|
---|
2000 | */
|
---|
2001 | static void iemNativeDbgInfoAddLabel(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint16_t uData)
|
---|
2002 | {
|
---|
2003 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
2004 | pEntry->Label.uType = kIemTbDbgEntryType_Label;
|
---|
2005 | pEntry->Label.uUnused = 0;
|
---|
2006 | pEntry->Label.enmLabel = (uint8_t)enmType;
|
---|
2007 | pEntry->Label.uData = uData;
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 |
|
---|
2011 | /**
|
---|
2012 | * Debug Info: Record info about a threaded call.
|
---|
2013 | */
|
---|
2014 | static void iemNativeDbgInfoAddThreadedCall(PIEMRECOMPILERSTATE pReNative, IEMTHREADEDFUNCS enmCall, bool fRecompiled)
|
---|
2015 | {
|
---|
2016 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
2017 | pEntry->ThreadedCall.uType = kIemTbDbgEntryType_ThreadedCall;
|
---|
2018 | pEntry->ThreadedCall.fRecompiled = fRecompiled;
|
---|
2019 | pEntry->ThreadedCall.uUnused = 0;
|
---|
2020 | pEntry->ThreadedCall.enmCall = (uint16_t)enmCall;
|
---|
2021 | }
|
---|
2022 |
|
---|
2023 |
|
---|
2024 | /**
|
---|
2025 | * Debug Info: Record info about a new guest instruction.
|
---|
2026 | */
|
---|
2027 | static void iemNativeDbgInfoAddGuestInstruction(PIEMRECOMPILERSTATE pReNative, uint32_t fExec)
|
---|
2028 | {
|
---|
2029 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
2030 | pEntry->GuestInstruction.uType = kIemTbDbgEntryType_GuestInstruction;
|
---|
2031 | pEntry->GuestInstruction.uUnused = 0;
|
---|
2032 | pEntry->GuestInstruction.fExec = fExec;
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 |
|
---|
2036 | /**
|
---|
2037 | * Debug Info: Record info about guest register shadowing.
|
---|
2038 | */
|
---|
2039 | static void iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
|
---|
2040 | uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX)
|
---|
2041 | {
|
---|
2042 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
2043 | pEntry->GuestRegShadowing.uType = kIemTbDbgEntryType_GuestRegShadowing;
|
---|
2044 | pEntry->GuestRegShadowing.uUnused = 0;
|
---|
2045 | pEntry->GuestRegShadowing.idxGstReg = enmGstReg;
|
---|
2046 | pEntry->GuestRegShadowing.idxHstReg = idxHstReg;
|
---|
2047 | pEntry->GuestRegShadowing.idxHstRegPrev = idxHstRegPrev;
|
---|
2048 | }
|
---|
2049 |
|
---|
2050 | #endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
|
---|
2051 |
|
---|
2052 |
|
---|
2053 | /*********************************************************************************************************************************
|
---|
2054 | * Register Allocator *
|
---|
2055 | *********************************************************************************************************************************/
|
---|
2056 |
|
---|
2057 | /**
|
---|
2058 | * Register parameter indexes (indexed by argument number).
|
---|
2059 | */
|
---|
2060 | DECL_HIDDEN_CONST(uint8_t) const g_aidxIemNativeCallRegs[] =
|
---|
2061 | {
|
---|
2062 | IEMNATIVE_CALL_ARG0_GREG,
|
---|
2063 | IEMNATIVE_CALL_ARG1_GREG,
|
---|
2064 | IEMNATIVE_CALL_ARG2_GREG,
|
---|
2065 | IEMNATIVE_CALL_ARG3_GREG,
|
---|
2066 | #if defined(IEMNATIVE_CALL_ARG4_GREG)
|
---|
2067 | IEMNATIVE_CALL_ARG4_GREG,
|
---|
2068 | # if defined(IEMNATIVE_CALL_ARG5_GREG)
|
---|
2069 | IEMNATIVE_CALL_ARG5_GREG,
|
---|
2070 | # if defined(IEMNATIVE_CALL_ARG6_GREG)
|
---|
2071 | IEMNATIVE_CALL_ARG6_GREG,
|
---|
2072 | # if defined(IEMNATIVE_CALL_ARG7_GREG)
|
---|
2073 | IEMNATIVE_CALL_ARG7_GREG,
|
---|
2074 | # endif
|
---|
2075 | # endif
|
---|
2076 | # endif
|
---|
2077 | #endif
|
---|
2078 | };
|
---|
2079 |
|
---|
2080 | /**
|
---|
2081 | * Call register masks indexed by argument count.
|
---|
2082 | */
|
---|
2083 | DECL_HIDDEN_CONST(uint32_t) const g_afIemNativeCallRegs[] =
|
---|
2084 | {
|
---|
2085 | 0,
|
---|
2086 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG),
|
---|
2087 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG),
|
---|
2088 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG),
|
---|
2089 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
2090 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG),
|
---|
2091 | #if defined(IEMNATIVE_CALL_ARG4_GREG)
|
---|
2092 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
2093 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG),
|
---|
2094 | # if defined(IEMNATIVE_CALL_ARG5_GREG)
|
---|
2095 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
2096 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG),
|
---|
2097 | # if defined(IEMNATIVE_CALL_ARG6_GREG)
|
---|
2098 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
2099 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG)
|
---|
2100 | | RT_BIT_32(IEMNATIVE_CALL_ARG6_GREG),
|
---|
2101 | # if defined(IEMNATIVE_CALL_ARG7_GREG)
|
---|
2102 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
2103 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG)
|
---|
2104 | | RT_BIT_32(IEMNATIVE_CALL_ARG6_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG7_GREG),
|
---|
2105 | # endif
|
---|
2106 | # endif
|
---|
2107 | # endif
|
---|
2108 | #endif
|
---|
2109 | };
|
---|
2110 |
|
---|
2111 | #ifdef IEMNATIVE_FP_OFF_STACK_ARG0
|
---|
2112 | /**
|
---|
2113 | * BP offset of the stack argument slots.
|
---|
2114 | *
|
---|
2115 | * This array is indexed by \#argument - IEMNATIVE_CALL_ARG_GREG_COUNT and has
|
---|
2116 | * IEMNATIVE_FRAME_STACK_ARG_COUNT entries.
|
---|
2117 | */
|
---|
2118 | DECL_HIDDEN_CONST(int32_t) const g_aoffIemNativeCallStackArgBpDisp[] =
|
---|
2119 | {
|
---|
2120 | IEMNATIVE_FP_OFF_STACK_ARG0,
|
---|
2121 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG1
|
---|
2122 | IEMNATIVE_FP_OFF_STACK_ARG1,
|
---|
2123 | # endif
|
---|
2124 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG2
|
---|
2125 | IEMNATIVE_FP_OFF_STACK_ARG2,
|
---|
2126 | # endif
|
---|
2127 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG3
|
---|
2128 | IEMNATIVE_FP_OFF_STACK_ARG3,
|
---|
2129 | # endif
|
---|
2130 | };
|
---|
2131 | AssertCompile(RT_ELEMENTS(g_aoffIemNativeCallStackArgBpDisp) == IEMNATIVE_FRAME_STACK_ARG_COUNT);
|
---|
2132 | #endif /* IEMNATIVE_FP_OFF_STACK_ARG0 */
|
---|
2133 |
|
---|
2134 | /**
|
---|
2135 | * Info about shadowed guest register values.
|
---|
2136 | * @see IEMNATIVEGSTREG
|
---|
2137 | */
|
---|
2138 | static struct
|
---|
2139 | {
|
---|
2140 | /** Offset in VMCPU. */
|
---|
2141 | uint32_t off;
|
---|
2142 | /** The field size. */
|
---|
2143 | uint8_t cb;
|
---|
2144 | /** Name (for logging). */
|
---|
2145 | const char *pszName;
|
---|
2146 | } const g_aGstShadowInfo[] =
|
---|
2147 | {
|
---|
2148 | #define CPUMCTX_OFF_AND_SIZE(a_Reg) (uint32_t)RT_UOFFSETOF(VMCPU, cpum.GstCtx. a_Reg), RT_SIZEOFMEMB(VMCPU, cpum.GstCtx. a_Reg)
|
---|
2149 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xAX] = */ { CPUMCTX_OFF_AND_SIZE(rax), "rax", },
|
---|
2150 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xCX] = */ { CPUMCTX_OFF_AND_SIZE(rcx), "rcx", },
|
---|
2151 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xDX] = */ { CPUMCTX_OFF_AND_SIZE(rdx), "rdx", },
|
---|
2152 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xBX] = */ { CPUMCTX_OFF_AND_SIZE(rbx), "rbx", },
|
---|
2153 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xSP] = */ { CPUMCTX_OFF_AND_SIZE(rsp), "rsp", },
|
---|
2154 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xBP] = */ { CPUMCTX_OFF_AND_SIZE(rbp), "rbp", },
|
---|
2155 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xSI] = */ { CPUMCTX_OFF_AND_SIZE(rsi), "rsi", },
|
---|
2156 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xDI] = */ { CPUMCTX_OFF_AND_SIZE(rdi), "rdi", },
|
---|
2157 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x8 ] = */ { CPUMCTX_OFF_AND_SIZE(r8), "r8", },
|
---|
2158 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x9 ] = */ { CPUMCTX_OFF_AND_SIZE(r9), "r9", },
|
---|
2159 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x10] = */ { CPUMCTX_OFF_AND_SIZE(r10), "r10", },
|
---|
2160 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x11] = */ { CPUMCTX_OFF_AND_SIZE(r11), "r11", },
|
---|
2161 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x12] = */ { CPUMCTX_OFF_AND_SIZE(r12), "r12", },
|
---|
2162 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x13] = */ { CPUMCTX_OFF_AND_SIZE(r13), "r13", },
|
---|
2163 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x14] = */ { CPUMCTX_OFF_AND_SIZE(r14), "r14", },
|
---|
2164 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x15] = */ { CPUMCTX_OFF_AND_SIZE(r15), "r15", },
|
---|
2165 | /* [kIemNativeGstReg_Pc] = */ { CPUMCTX_OFF_AND_SIZE(rip), "rip", },
|
---|
2166 | /* [kIemNativeGstReg_EFlags] = */ { CPUMCTX_OFF_AND_SIZE(eflags), "eflags", },
|
---|
2167 | /* [kIemNativeGstReg_SegSelFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].Sel), "es", },
|
---|
2168 | /* [kIemNativeGstReg_SegSelFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].Sel), "cs", },
|
---|
2169 | /* [kIemNativeGstReg_SegSelFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].Sel), "ss", },
|
---|
2170 | /* [kIemNativeGstReg_SegSelFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].Sel), "ds", },
|
---|
2171 | /* [kIemNativeGstReg_SegSelFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].Sel), "fs", },
|
---|
2172 | /* [kIemNativeGstReg_SegSelFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].Sel), "gs", },
|
---|
2173 | /* [kIemNativeGstReg_SegBaseFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].u64Base), "es_base", },
|
---|
2174 | /* [kIemNativeGstReg_SegBaseFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].u64Base), "cs_base", },
|
---|
2175 | /* [kIemNativeGstReg_SegBaseFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].u64Base), "ss_base", },
|
---|
2176 | /* [kIemNativeGstReg_SegBaseFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].u64Base), "ds_base", },
|
---|
2177 | /* [kIemNativeGstReg_SegBaseFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].u64Base), "fs_base", },
|
---|
2178 | /* [kIemNativeGstReg_SegBaseFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].u64Base), "gs_base", },
|
---|
2179 | /* [kIemNativeGstReg_SegLimitFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].u32Limit), "es_limit", },
|
---|
2180 | /* [kIemNativeGstReg_SegLimitFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].u32Limit), "cs_limit", },
|
---|
2181 | /* [kIemNativeGstReg_SegLimitFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].u32Limit), "ss_limit", },
|
---|
2182 | /* [kIemNativeGstReg_SegLimitFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].u32Limit), "ds_limit", },
|
---|
2183 | /* [kIemNativeGstReg_SegLimitFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].u32Limit), "fs_limit", },
|
---|
2184 | /* [kIemNativeGstReg_SegLimitFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].u32Limit), "gs_limit", },
|
---|
2185 | #undef CPUMCTX_OFF_AND_SIZE
|
---|
2186 | };
|
---|
2187 | AssertCompile(RT_ELEMENTS(g_aGstShadowInfo) == kIemNativeGstReg_End);
|
---|
2188 |
|
---|
2189 |
|
---|
2190 | /** Host CPU general purpose register names. */
|
---|
2191 | DECL_HIDDEN_CONST(const char * const) g_apszIemNativeHstRegNames[] =
|
---|
2192 | {
|
---|
2193 | #ifdef RT_ARCH_AMD64
|
---|
2194 | "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
---|
2195 | #elif RT_ARCH_ARM64
|
---|
2196 | "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
---|
2197 | "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "bp", "lr", "sp/xzr",
|
---|
2198 | #else
|
---|
2199 | # error "port me"
|
---|
2200 | #endif
|
---|
2201 | };
|
---|
2202 |
|
---|
2203 |
|
---|
2204 | DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
|
---|
2205 | IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
|
---|
2206 | {
|
---|
2207 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
2208 |
|
---|
2209 | pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
|
---|
2210 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
2211 | pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
|
---|
2212 | return (uint8_t)idxReg;
|
---|
2213 | }
|
---|
2214 |
|
---|
2215 |
|
---|
2216 | /**
|
---|
2217 | * Tries to locate a suitable register in the given register mask.
|
---|
2218 | *
|
---|
2219 | * This ASSUMES the caller has done the minimal/optimal allocation checks and
|
---|
2220 | * failed.
|
---|
2221 | *
|
---|
2222 | * @returns Host register number on success, returns UINT8_MAX on failure.
|
---|
2223 | */
|
---|
2224 | static uint8_t iemNativeRegTryAllocFree(PIEMRECOMPILERSTATE pReNative, uint32_t fRegMask)
|
---|
2225 | {
|
---|
2226 | Assert(!(fRegMask & ~IEMNATIVE_HST_GREG_MASK));
|
---|
2227 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & fRegMask;
|
---|
2228 | if (fRegs)
|
---|
2229 | {
|
---|
2230 | /** @todo pick better here: */
|
---|
2231 | unsigned const idxReg = ASMBitFirstSetU32(fRegs) - 1;
|
---|
2232 |
|
---|
2233 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
2234 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
2235 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
2236 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
2237 |
|
---|
2238 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
2239 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
2240 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
2241 | return idxReg;
|
---|
2242 | }
|
---|
2243 | return UINT8_MAX;
|
---|
2244 | }
|
---|
2245 |
|
---|
2246 |
|
---|
2247 | /**
|
---|
2248 | * Locate a register, possibly freeing one up.
|
---|
2249 | *
|
---|
2250 | * This ASSUMES the caller has done the minimal/optimal allocation checks and
|
---|
2251 | * failed.
|
---|
2252 | *
|
---|
2253 | * @returns Host register number on success. Returns UINT8_MAX if no registers
|
---|
2254 | * found, the caller is supposed to deal with this and raise a
|
---|
2255 | * allocation type specific status code (if desired).
|
---|
2256 | *
|
---|
2257 | * @throws VBox status code if we're run into trouble spilling a variable of
|
---|
2258 | * recording debug info. Does NOT throw anything if we're out of
|
---|
2259 | * registers, though.
|
---|
2260 | */
|
---|
2261 | static uint8_t iemNativeRegAllocFindFree(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile,
|
---|
2262 | uint32_t fRegMask = IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK)
|
---|
2263 | {
|
---|
2264 | Assert(!(fRegMask & ~IEMNATIVE_HST_GREG_MASK));
|
---|
2265 | Assert(!(fRegMask & IEMNATIVE_REG_FIXED_MASK));
|
---|
2266 |
|
---|
2267 | /*
|
---|
2268 | * Try a freed register that's shadowing a guest register
|
---|
2269 | */
|
---|
2270 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & fRegMask;
|
---|
2271 | if (fRegs)
|
---|
2272 | {
|
---|
2273 | unsigned const idxReg = (fPreferVolatile
|
---|
2274 | ? ASMBitFirstSetU32(fRegs)
|
---|
2275 | : ASMBitLastSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
2276 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK: fRegs))
|
---|
2277 | - 1;
|
---|
2278 |
|
---|
2279 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
2280 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
2281 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
2282 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
2283 |
|
---|
2284 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
2285 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
2286 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
2287 | return idxReg;
|
---|
2288 | }
|
---|
2289 |
|
---|
2290 | /*
|
---|
2291 | * Try free up a variable that's in a register.
|
---|
2292 | *
|
---|
2293 | * We do two rounds here, first evacuating variables we don't need to be
|
---|
2294 | * saved on the stack, then in the second round move things to the stack.
|
---|
2295 | */
|
---|
2296 | for (uint32_t iLoop = 0; iLoop < 2; iLoop++)
|
---|
2297 | {
|
---|
2298 | uint32_t fVars = pReNative->Core.bmVars;
|
---|
2299 | while (fVars)
|
---|
2300 | {
|
---|
2301 | uint32_t const idxVar = ASMBitFirstSetU32(fVars) - 1;
|
---|
2302 | uint8_t const idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
2303 | if ( idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs)
|
---|
2304 | && (RT_BIT_32(idxReg) & fRegMask)
|
---|
2305 | && ( iLoop == 0
|
---|
2306 | ? pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack
|
---|
2307 | : pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack))
|
---|
2308 | {
|
---|
2309 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg));
|
---|
2310 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxReg].fGstRegShadows)
|
---|
2311 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
2312 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2313 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg))
|
---|
2314 | == RT_BOOL(pReNative->Core.aHstRegs[idxReg].fGstRegShadows));
|
---|
2315 |
|
---|
2316 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack)
|
---|
2317 | {
|
---|
2318 | AssertStmt(pReNative->Core.aVars[idxVar].idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS,
|
---|
2319 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_8));
|
---|
2320 | *poff = iemNativeEmitStoreGprByBp(pReNative, *poff, iemNativeVarCalcBpDisp(pReNative, idxVar), idxReg);
|
---|
2321 | }
|
---|
2322 |
|
---|
2323 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
2324 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
2325 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
2326 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxReg);
|
---|
2327 | return idxReg;
|
---|
2328 | }
|
---|
2329 | fVars &= ~RT_BIT_32(idxVar);
|
---|
2330 | }
|
---|
2331 | }
|
---|
2332 |
|
---|
2333 | return UINT8_MAX;
|
---|
2334 | }
|
---|
2335 |
|
---|
2336 |
|
---|
2337 | /**
|
---|
2338 | * Moves a variable to a different register or spills it onto the stack.
|
---|
2339 | *
|
---|
2340 | * This must be a stack variable (kIemNativeVarKind_Stack) because the other
|
---|
2341 | * kinds can easily be recreated if needed later.
|
---|
2342 | *
|
---|
2343 | * @returns The new code buffer position, UINT32_MAX on failure.
|
---|
2344 | * @param pReNative The native recompile state.
|
---|
2345 | * @param off The current code buffer position.
|
---|
2346 | * @param idxVar The variable index.
|
---|
2347 | * @param fForbiddenRegs Mask of the forbidden registers. Defaults to
|
---|
2348 | * call-volatile registers.
|
---|
2349 | */
|
---|
2350 | static uint32_t iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
|
---|
2351 | uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK)
|
---|
2352 | {
|
---|
2353 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
2354 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack);
|
---|
2355 |
|
---|
2356 | uint8_t const idxRegOld = pReNative->Core.aVars[idxVar].idxReg;
|
---|
2357 | Assert(idxRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
2358 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxRegOld));
|
---|
2359 | Assert(pReNative->Core.aHstRegs[idxRegOld].enmWhat == kIemNativeWhat_Var);
|
---|
2360 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows)
|
---|
2361 | == pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows);
|
---|
2362 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2363 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegOld))
|
---|
2364 | == RT_BOOL(pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows));
|
---|
2365 |
|
---|
2366 |
|
---|
2367 | /** @todo Add statistics on this.*/
|
---|
2368 | /** @todo Implement basic variable liveness analysis (python) so variables
|
---|
2369 | * can be freed immediately once no longer used. This has the potential to
|
---|
2370 | * be trashing registers and stack for dead variables. */
|
---|
2371 |
|
---|
2372 | /*
|
---|
2373 | * First try move it to a different register, as that's cheaper.
|
---|
2374 | */
|
---|
2375 | fForbiddenRegs |= RT_BIT_32(idxRegOld);
|
---|
2376 | fForbiddenRegs |= IEMNATIVE_REG_FIXED_MASK;
|
---|
2377 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & ~fForbiddenRegs;
|
---|
2378 | if (fRegs)
|
---|
2379 | {
|
---|
2380 | /* Avoid using shadow registers, if possible. */
|
---|
2381 | if (fRegs & ~pReNative->Core.bmHstRegsWithGstShadow)
|
---|
2382 | fRegs &= ~pReNative->Core.bmHstRegsWithGstShadow;
|
---|
2383 | unsigned const idxRegNew = ASMBitFirstSetU32(fRegs) - 1;
|
---|
2384 | iemNativeRegClearGstRegShadowing(pReNative, idxRegNew, off);
|
---|
2385 |
|
---|
2386 | uint64_t fGstRegShadows = pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows;
|
---|
2387 | Log12(("iemNativeRegMoveOrSpillStackVar: moving idxVar=%d from %s to %s (fGstRegShadows=%RX64)\n",
|
---|
2388 | idxVar, g_apszIemNativeHstRegNames[idxRegOld], g_apszIemNativeHstRegNames[idxRegNew], fGstRegShadows));
|
---|
2389 | pReNative->Core.aHstRegs[idxRegNew].fGstRegShadows = fGstRegShadows;
|
---|
2390 | pReNative->Core.aHstRegs[idxRegNew].enmWhat = kIemNativeWhat_Var;
|
---|
2391 | pReNative->Core.aHstRegs[idxRegNew].idxVar = idxVar;
|
---|
2392 | if (fGstRegShadows)
|
---|
2393 | {
|
---|
2394 | pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegNew);
|
---|
2395 | while (fGstRegShadows)
|
---|
2396 | {
|
---|
2397 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegShadows) - 1;
|
---|
2398 | fGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
2399 |
|
---|
2400 | Assert(pReNative->Core.aidxGstRegShadows[idxGstReg] == idxRegOld);
|
---|
2401 | pReNative->Core.aidxGstRegShadows[idxGstReg] = idxRegNew;
|
---|
2402 | }
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 | pReNative->Core.aVars[idxVar].idxReg = (uint8_t)idxRegNew;
|
---|
2406 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxRegNew);
|
---|
2407 | }
|
---|
2408 | /*
|
---|
2409 | * Otherwise we must spill the register onto the stack.
|
---|
2410 | */
|
---|
2411 | else
|
---|
2412 | {
|
---|
2413 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
2414 | Log12(("iemNativeRegMoveOrSpillStackVar: spilling idxVar=%d/idxReg=%d onto the stack (slot %#x bp+%d, off=%#x)\n",
|
---|
2415 | idxVar, idxRegOld, idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
2416 | AssertStmt(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_7));
|
---|
2417 | off = iemNativeEmitStoreGprByBp(pReNative, off, iemNativeStackCalcBpDisp(idxStackSlot), idxRegOld);
|
---|
2418 |
|
---|
2419 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegOld);
|
---|
2420 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows;
|
---|
2421 | }
|
---|
2422 |
|
---|
2423 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxRegOld);
|
---|
2424 | pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows = 0;
|
---|
2425 | return off;
|
---|
2426 | }
|
---|
2427 |
|
---|
2428 |
|
---|
2429 | /**
|
---|
2430 | * Allocates a temporary host general purpose register.
|
---|
2431 | *
|
---|
2432 | * This may emit code to save register content onto the stack in order to free
|
---|
2433 | * up a register.
|
---|
2434 | *
|
---|
2435 | * @returns The host register number; throws VBox status code on failure,
|
---|
2436 | * so no need to check the return value.
|
---|
2437 | * @param pReNative The native recompile state.
|
---|
2438 | * @param poff Pointer to the variable with the code buffer position.
|
---|
2439 | * This will be update if we need to move a variable from
|
---|
2440 | * register to stack in order to satisfy the request.
|
---|
2441 | * @param fPreferVolatile Wheter to prefer volatile over non-volatile
|
---|
2442 | * registers (@c true, default) or the other way around
|
---|
2443 | * (@c false, for iemNativeRegAllocTmpForGuestReg()).
|
---|
2444 | */
|
---|
2445 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile /*= true*/)
|
---|
2446 | {
|
---|
2447 | /*
|
---|
2448 | * Try find a completely unused register, preferably a call-volatile one.
|
---|
2449 | */
|
---|
2450 | uint8_t idxReg;
|
---|
2451 | uint32_t fRegs = ~pReNative->Core.bmHstRegs
|
---|
2452 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
2453 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK);
|
---|
2454 | if (fRegs)
|
---|
2455 | {
|
---|
2456 | if (fPreferVolatile)
|
---|
2457 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
2458 | ? fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
2459 | else
|
---|
2460 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
2461 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
2462 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
2463 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
2464 | }
|
---|
2465 | else
|
---|
2466 | {
|
---|
2467 | idxReg = iemNativeRegAllocFindFree(pReNative, poff, fPreferVolatile);
|
---|
2468 | AssertStmt(idxReg != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_ALLOCATOR_NO_FREE_TMP));
|
---|
2469 | }
|
---|
2470 | return iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Tmp);
|
---|
2471 | }
|
---|
2472 |
|
---|
2473 |
|
---|
2474 | /**
|
---|
2475 | * Allocates a temporary register for loading an immediate value into.
|
---|
2476 | *
|
---|
2477 | * This will emit code to load the immediate, unless there happens to be an
|
---|
2478 | * unused register with the value already loaded.
|
---|
2479 | *
|
---|
2480 | * The caller will not modify the returned register, it must be considered
|
---|
2481 | * read-only. Free using iemNativeRegFreeTmpImm.
|
---|
2482 | *
|
---|
2483 | * @returns The host register number; throws VBox status code on failure, so no
|
---|
2484 | * need to check the return value.
|
---|
2485 | * @param pReNative The native recompile state.
|
---|
2486 | * @param poff Pointer to the variable with the code buffer position.
|
---|
2487 | * @param uImm The immediate value that the register must hold upon
|
---|
2488 | * return.
|
---|
2489 | * @param fPreferVolatile Wheter to prefer volatile over non-volatile
|
---|
2490 | * registers (@c true, default) or the other way around
|
---|
2491 | * (@c false).
|
---|
2492 | *
|
---|
2493 | * @note Reusing immediate values has not been implemented yet.
|
---|
2494 | */
|
---|
2495 | DECL_HIDDEN_THROW(uint8_t)
|
---|
2496 | iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm, bool fPreferVolatile /*= true*/)
|
---|
2497 | {
|
---|
2498 | uint8_t const idxReg = iemNativeRegAllocTmp(pReNative, poff, fPreferVolatile);
|
---|
2499 | *poff = iemNativeEmitLoadGprImm64(pReNative, *poff, idxReg, uImm);
|
---|
2500 | return idxReg;
|
---|
2501 | }
|
---|
2502 |
|
---|
2503 |
|
---|
2504 | /**
|
---|
2505 | * Marks host register @a idxHstReg as containing a shadow copy of guest
|
---|
2506 | * register @a enmGstReg.
|
---|
2507 | *
|
---|
2508 | * ASSUMES that caller has made sure @a enmGstReg is not associated with any
|
---|
2509 | * host register before calling.
|
---|
2510 | */
|
---|
2511 | DECL_FORCE_INLINE(void)
|
---|
2512 | iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
2513 | {
|
---|
2514 | Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
|
---|
2515 | Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
|
---|
2516 |
|
---|
2517 | pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
|
---|
2518 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg);
|
---|
2519 | pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
|
---|
2520 | pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
|
---|
2521 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2522 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
2523 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
|
---|
2524 | #else
|
---|
2525 | RT_NOREF(off);
|
---|
2526 | #endif
|
---|
2527 | }
|
---|
2528 |
|
---|
2529 |
|
---|
2530 | /**
|
---|
2531 | * Clear any guest register shadow claims from @a idxHstReg.
|
---|
2532 | *
|
---|
2533 | * The register does not need to be shadowing any guest registers.
|
---|
2534 | */
|
---|
2535 | DECL_FORCE_INLINE(void)
|
---|
2536 | iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
|
---|
2537 | {
|
---|
2538 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
2539 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
|
---|
2540 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2541 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
|
---|
2542 | == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
2543 |
|
---|
2544 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2545 | uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
2546 | if (fGstRegs)
|
---|
2547 | {
|
---|
2548 | Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2549 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
2550 | while (fGstRegs)
|
---|
2551 | {
|
---|
2552 | unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
2553 | fGstRegs &= ~RT_BIT_64(iGstReg);
|
---|
2554 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
|
---|
2555 | }
|
---|
2556 | }
|
---|
2557 | #else
|
---|
2558 | RT_NOREF(off);
|
---|
2559 | #endif
|
---|
2560 |
|
---|
2561 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
2562 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
2563 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
2564 | }
|
---|
2565 |
|
---|
2566 |
|
---|
2567 | /**
|
---|
2568 | * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
|
---|
2569 | * and global overview flags.
|
---|
2570 | */
|
---|
2571 | DECL_FORCE_INLINE(void)
|
---|
2572 | iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
2573 | {
|
---|
2574 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2575 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
2576 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
|
---|
2577 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2578 | Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
2579 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
2580 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
2581 |
|
---|
2582 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2583 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
2584 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
|
---|
2585 | #else
|
---|
2586 | RT_NOREF(off);
|
---|
2587 | #endif
|
---|
2588 |
|
---|
2589 | uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
|
---|
2590 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
|
---|
2591 | if (!fGstRegShadowsNew)
|
---|
2592 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
2593 | pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
|
---|
2594 | }
|
---|
2595 |
|
---|
2596 |
|
---|
2597 | /**
|
---|
2598 | * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
|
---|
2599 | * to @a idxRegTo.
|
---|
2600 | */
|
---|
2601 | DECL_FORCE_INLINE(void)
|
---|
2602 | iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
|
---|
2603 | IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
2604 | {
|
---|
2605 | Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
2606 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
|
---|
2607 | == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
|
---|
2608 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
2609 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
|
---|
2610 | == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
|
---|
2611 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
|
---|
2612 | == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
|
---|
2613 |
|
---|
2614 | uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
|
---|
2615 | pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
|
---|
2616 | if (!fGstRegShadowsFrom)
|
---|
2617 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
|
---|
2618 | pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
|
---|
2619 | pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
|
---|
2620 | pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
|
---|
2621 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2622 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
2623 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
|
---|
2624 | #else
|
---|
2625 | RT_NOREF(off);
|
---|
2626 | #endif
|
---|
2627 | }
|
---|
2628 |
|
---|
2629 |
|
---|
2630 | /**
|
---|
2631 | * Allocates a temporary host general purpose register for keeping a guest
|
---|
2632 | * register value.
|
---|
2633 | *
|
---|
2634 | * Since we may already have a register holding the guest register value,
|
---|
2635 | * code will be emitted to do the loading if that's not the case. Code may also
|
---|
2636 | * be emitted if we have to free up a register to satify the request.
|
---|
2637 | *
|
---|
2638 | * @returns The host register number; throws VBox status code on failure, so no
|
---|
2639 | * need to check the return value.
|
---|
2640 | * @param pReNative The native recompile state.
|
---|
2641 | * @param poff Pointer to the variable with the code buffer
|
---|
2642 | * position. This will be update if we need to move a
|
---|
2643 | * variable from register to stack in order to satisfy
|
---|
2644 | * the request.
|
---|
2645 | * @param enmGstReg The guest register that will is to be updated.
|
---|
2646 | * @param enmIntendedUse How the caller will be using the host register.
|
---|
2647 | * @sa iemNativeRegAllocTmpForGuestRegIfAlreadyPresent
|
---|
2648 | */
|
---|
2649 | DECL_HIDDEN_THROW(uint8_t)
|
---|
2650 | iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
|
---|
2651 | IEMNATIVEGSTREG enmGstReg, IEMNATIVEGSTREGUSE enmIntendedUse)
|
---|
2652 | {
|
---|
2653 | Assert(enmGstReg < kIemNativeGstReg_End && g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
2654 | #ifdef LOG_ENABLED
|
---|
2655 | static const char * const s_pszIntendedUse[] = { "fetch", "update", "full write", "destructive calc" };
|
---|
2656 | #endif
|
---|
2657 |
|
---|
2658 | /*
|
---|
2659 | * First check if the guest register value is already in a host register.
|
---|
2660 | */
|
---|
2661 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
2662 | {
|
---|
2663 | uint8_t idxReg = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
2664 | Assert(idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
2665 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
2666 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
2667 |
|
---|
2668 | if (!(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg)))
|
---|
2669 | {
|
---|
2670 | /*
|
---|
2671 | * If the register will trash the guest shadow copy, try find a
|
---|
2672 | * completely unused register we can use instead. If that fails,
|
---|
2673 | * we need to disassociate the host reg from the guest reg.
|
---|
2674 | */
|
---|
2675 | /** @todo would be nice to know if preserving the register is in any way helpful. */
|
---|
2676 | if ( enmIntendedUse == kIemNativeGstRegUse_Calculation
|
---|
2677 | && ( ~pReNative->Core.bmHstRegs
|
---|
2678 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
2679 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)))
|
---|
2680 | {
|
---|
2681 | uint8_t const idxRegNew = iemNativeRegAllocTmp(pReNative, poff);
|
---|
2682 |
|
---|
2683 | *poff = iemNativeEmitLoadGprFromGpr(pReNative, *poff, idxRegNew, idxReg);
|
---|
2684 |
|
---|
2685 | Log12(("iemNativeRegAllocTmpForGuestReg: Duplicated %s for guest %s into %s for destructive calc\n",
|
---|
2686 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
2687 | g_apszIemNativeHstRegNames[idxRegNew]));
|
---|
2688 | idxReg = idxRegNew;
|
---|
2689 | }
|
---|
2690 | else
|
---|
2691 | {
|
---|
2692 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
2693 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Tmp;
|
---|
2694 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
2695 | if (enmIntendedUse != kIemNativeGstRegUse_Calculation)
|
---|
2696 | Log12(("iemNativeRegAllocTmpForGuestReg: Reusing %s for guest %s %s\n",
|
---|
2697 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName, s_pszIntendedUse[enmIntendedUse]));
|
---|
2698 | else
|
---|
2699 | {
|
---|
2700 | iemNativeRegClearGstRegShadowing(pReNative, idxReg, *poff);
|
---|
2701 | Log12(("iemNativeRegAllocTmpForGuestReg: Grabbing %s for guest %s - destructive calc\n",
|
---|
2702 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
2703 | }
|
---|
2704 | }
|
---|
2705 | }
|
---|
2706 | else
|
---|
2707 | {
|
---|
2708 | AssertMsg( enmIntendedUse != kIemNativeGstRegUse_ForUpdate
|
---|
2709 | && enmIntendedUse != kIemNativeGstRegUse_ForFullWrite,
|
---|
2710 | ("This shouldn't happen: idxReg=%d enmGstReg=%d enmIntendedUse=%s\n",
|
---|
2711 | idxReg, s_pszIntendedUse[enmIntendedUse]));
|
---|
2712 |
|
---|
2713 | /*
|
---|
2714 | * Allocate a new register, copy the value and, if updating, the
|
---|
2715 | * guest shadow copy assignment to the new register.
|
---|
2716 | */
|
---|
2717 | /** @todo share register for readonly access. */
|
---|
2718 | uint8_t const idxRegNew = iemNativeRegAllocTmp(pReNative, poff, enmIntendedUse == kIemNativeGstRegUse_Calculation);
|
---|
2719 |
|
---|
2720 | if (enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
2721 | *poff = iemNativeEmitLoadGprFromGpr(pReNative, *poff, idxRegNew, idxReg);
|
---|
2722 |
|
---|
2723 | if ( enmIntendedUse != kIemNativeGstRegUse_ForUpdate
|
---|
2724 | && enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
2725 | Log12(("iemNativeRegAllocTmpForGuestReg: Duplicated %s for guest %s into %s for %s\n",
|
---|
2726 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
2727 | g_apszIemNativeHstRegNames[idxRegNew], s_pszIntendedUse[enmIntendedUse]));
|
---|
2728 | else
|
---|
2729 | {
|
---|
2730 | iemNativeRegTransferGstRegShadowing(pReNative, idxReg, idxRegNew, enmGstReg, *poff);
|
---|
2731 | Log12(("iemNativeRegAllocTmpForGuestReg: Moved %s for guest %s into %s for %s\n",
|
---|
2732 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
2733 | g_apszIemNativeHstRegNames[idxRegNew], s_pszIntendedUse[enmIntendedUse]));
|
---|
2734 | }
|
---|
2735 | idxReg = idxRegNew;
|
---|
2736 | }
|
---|
2737 |
|
---|
2738 | #ifdef VBOX_STRICT
|
---|
2739 | /* Strict builds: Check that the value is correct. */
|
---|
2740 | *poff = iemNativeEmitGuestRegValueCheck(pReNative, *poff, idxReg, enmGstReg);
|
---|
2741 | #endif
|
---|
2742 |
|
---|
2743 | return idxReg;
|
---|
2744 | }
|
---|
2745 |
|
---|
2746 | /*
|
---|
2747 | * Allocate a new register, load it with the guest value and designate it as a copy of the
|
---|
2748 | */
|
---|
2749 | uint8_t const idxRegNew = iemNativeRegAllocTmp(pReNative, poff, enmIntendedUse == kIemNativeGstRegUse_Calculation);
|
---|
2750 |
|
---|
2751 | if (enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
2752 | *poff = iemNativeEmitLoadGprWithGstShadowReg(pReNative, *poff, idxRegNew, enmGstReg);
|
---|
2753 |
|
---|
2754 | if (enmIntendedUse != kIemNativeGstRegUse_Calculation)
|
---|
2755 | iemNativeRegMarkAsGstRegShadow(pReNative, idxRegNew, enmGstReg, *poff);
|
---|
2756 | Log12(("iemNativeRegAllocTmpForGuestReg: Allocated %s for guest %s %s\n",
|
---|
2757 | g_apszIemNativeHstRegNames[idxRegNew], g_aGstShadowInfo[enmGstReg].pszName, s_pszIntendedUse[enmIntendedUse]));
|
---|
2758 |
|
---|
2759 | return idxRegNew;
|
---|
2760 | }
|
---|
2761 |
|
---|
2762 |
|
---|
2763 | /**
|
---|
2764 | * Allocates a temporary host general purpose register that already holds the
|
---|
2765 | * given guest register value.
|
---|
2766 | *
|
---|
2767 | * The use case for this function is places where the shadowing state cannot be
|
---|
2768 | * modified due to branching and such. This will fail if the we don't have a
|
---|
2769 | * current shadow copy handy or if it's incompatible. The only code that will
|
---|
2770 | * be emitted here is value checking code in strict builds.
|
---|
2771 | *
|
---|
2772 | * The intended use can only be readonly!
|
---|
2773 | *
|
---|
2774 | * @returns The host register number, UINT8_MAX if not present.
|
---|
2775 | * @param pReNative The native recompile state.
|
---|
2776 | * @param poff Pointer to the instruction buffer offset.
|
---|
2777 | * Will be updated in strict builds if a register is
|
---|
2778 | * found.
|
---|
2779 | * @param enmGstReg The guest register that will is to be updated.
|
---|
2780 | * @note In strict builds, this may throw instruction buffer growth failures.
|
---|
2781 | * Non-strict builds will not throw anything.
|
---|
2782 | * @sa iemNativeRegAllocTmpForGuestReg
|
---|
2783 | */
|
---|
2784 | DECL_HIDDEN_THROW(uint8_t)
|
---|
2785 | iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg)
|
---|
2786 | {
|
---|
2787 | Assert(enmGstReg < kIemNativeGstReg_End && g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
2788 |
|
---|
2789 | /*
|
---|
2790 | * First check if the guest register value is already in a host register.
|
---|
2791 | */
|
---|
2792 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
2793 | {
|
---|
2794 | uint8_t idxReg = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
2795 | Assert(idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
2796 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
2797 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
2798 |
|
---|
2799 | if (!(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg)))
|
---|
2800 | {
|
---|
2801 | /*
|
---|
2802 | * We only do readonly use here, so easy compared to the other
|
---|
2803 | * variant of this code.
|
---|
2804 | */
|
---|
2805 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
2806 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Tmp;
|
---|
2807 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
2808 | Log12(("iemNativeRegAllocTmpForGuestRegIfAlreadyPresent: Reusing %s for guest %s readonly\n",
|
---|
2809 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
2810 |
|
---|
2811 | #ifdef VBOX_STRICT
|
---|
2812 | /* Strict builds: Check that the value is correct. */
|
---|
2813 | *poff = iemNativeEmitGuestRegValueCheck(pReNative, *poff, idxReg, enmGstReg);
|
---|
2814 | #else
|
---|
2815 | RT_NOREF(poff);
|
---|
2816 | #endif
|
---|
2817 | return idxReg;
|
---|
2818 | }
|
---|
2819 | }
|
---|
2820 |
|
---|
2821 | return UINT8_MAX;
|
---|
2822 | }
|
---|
2823 |
|
---|
2824 |
|
---|
2825 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocVar(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t idxVar);
|
---|
2826 |
|
---|
2827 |
|
---|
2828 | /**
|
---|
2829 | * Allocates argument registers for a function call.
|
---|
2830 | *
|
---|
2831 | * @returns New code buffer offset on success; throws VBox status code on failure, so no
|
---|
2832 | * need to check the return value.
|
---|
2833 | * @param pReNative The native recompile state.
|
---|
2834 | * @param off The current code buffer offset.
|
---|
2835 | * @param cArgs The number of arguments the function call takes.
|
---|
2836 | */
|
---|
2837 | DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs)
|
---|
2838 | {
|
---|
2839 | AssertStmt(cArgs <= IEMNATIVE_CALL_ARG_GREG_COUNT + IEMNATIVE_FRAME_STACK_ARG_COUNT,
|
---|
2840 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_4));
|
---|
2841 | Assert(RT_ELEMENTS(g_aidxIemNativeCallRegs) == IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
2842 | Assert(RT_ELEMENTS(g_afIemNativeCallRegs) == IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
2843 |
|
---|
2844 | if (cArgs > RT_ELEMENTS(g_aidxIemNativeCallRegs))
|
---|
2845 | cArgs = RT_ELEMENTS(g_aidxIemNativeCallRegs);
|
---|
2846 | else if (cArgs == 0)
|
---|
2847 | return true;
|
---|
2848 |
|
---|
2849 | /*
|
---|
2850 | * Do we get luck and all register are free and not shadowing anything?
|
---|
2851 | */
|
---|
2852 | if (((pReNative->Core.bmHstRegs | pReNative->Core.bmHstRegsWithGstShadow) & g_afIemNativeCallRegs[cArgs]) == 0)
|
---|
2853 | for (uint32_t i = 0; i < cArgs; i++)
|
---|
2854 | {
|
---|
2855 | uint8_t const idxReg = g_aidxIemNativeCallRegs[i];
|
---|
2856 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Arg;
|
---|
2857 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
2858 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
2859 | }
|
---|
2860 | /*
|
---|
2861 | * Okay, not lucky so we have to free up the registers.
|
---|
2862 | */
|
---|
2863 | else
|
---|
2864 | for (uint32_t i = 0; i < cArgs; i++)
|
---|
2865 | {
|
---|
2866 | uint8_t const idxReg = g_aidxIemNativeCallRegs[i];
|
---|
2867 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxReg))
|
---|
2868 | {
|
---|
2869 | switch (pReNative->Core.aHstRegs[idxReg].enmWhat)
|
---|
2870 | {
|
---|
2871 | case kIemNativeWhat_Var:
|
---|
2872 | {
|
---|
2873 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxReg].idxVar;
|
---|
2874 | AssertStmt(idxVar < RT_ELEMENTS(pReNative->Core.aVars),
|
---|
2875 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_5));
|
---|
2876 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxReg);
|
---|
2877 | Assert(pReNative->Core.bmVars & RT_BIT_32(idxVar));
|
---|
2878 |
|
---|
2879 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
2880 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
2881 | else
|
---|
2882 | {
|
---|
2883 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
2884 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
2885 | }
|
---|
2886 | break;
|
---|
2887 | }
|
---|
2888 |
|
---|
2889 | case kIemNativeWhat_Tmp:
|
---|
2890 | case kIemNativeWhat_Arg:
|
---|
2891 | case kIemNativeWhat_rc:
|
---|
2892 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_5));
|
---|
2893 | default:
|
---|
2894 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_6));
|
---|
2895 | }
|
---|
2896 |
|
---|
2897 | }
|
---|
2898 | if (pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg))
|
---|
2899 | {
|
---|
2900 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
2901 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
2902 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
2903 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
2904 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
2905 | }
|
---|
2906 | else
|
---|
2907 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
2908 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Arg;
|
---|
2909 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
2910 | }
|
---|
2911 | pReNative->Core.bmHstRegs |= g_afIemNativeCallRegs[cArgs];
|
---|
2912 | return true;
|
---|
2913 | }
|
---|
2914 |
|
---|
2915 |
|
---|
2916 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
|
---|
2917 |
|
---|
2918 |
|
---|
2919 | #if 0
|
---|
2920 | /**
|
---|
2921 | * Frees a register assignment of any type.
|
---|
2922 | *
|
---|
2923 | * @param pReNative The native recompile state.
|
---|
2924 | * @param idxHstReg The register to free.
|
---|
2925 | *
|
---|
2926 | * @note Does not update variables.
|
---|
2927 | */
|
---|
2928 | DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
2929 | {
|
---|
2930 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
2931 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg));
|
---|
2932 | Assert(!(IEMNATIVE_REG_FIXED_MASK & RT_BIT_32(idxHstReg)));
|
---|
2933 | Assert( pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Var
|
---|
2934 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Tmp
|
---|
2935 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Arg
|
---|
2936 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_rc);
|
---|
2937 | Assert( pReNative->Core.aHstRegs[idxHstReg].enmWhat != kIemNativeWhat_Var
|
---|
2938 | || pReNative->Core.aVars[pReNative->Core.aHstRegs[idxHstReg].idxVar].idxReg == UINT8_MAX
|
---|
2939 | || (pReNative->Core.bmVars & RT_BIT_32(pReNative->Core.aHstRegs[idxHstReg].idxVar)));
|
---|
2940 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
2941 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
|
---|
2942 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
|
---|
2943 | == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
2944 |
|
---|
2945 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
2946 | /* no flushing, right:
|
---|
2947 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
2948 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
2949 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
2950 | */
|
---|
2951 | }
|
---|
2952 | #endif
|
---|
2953 |
|
---|
2954 |
|
---|
2955 | /**
|
---|
2956 | * Frees a temporary register.
|
---|
2957 | *
|
---|
2958 | * Any shadow copies of guest registers assigned to the host register will not
|
---|
2959 | * be flushed by this operation.
|
---|
2960 | */
|
---|
2961 | DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
2962 | {
|
---|
2963 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg));
|
---|
2964 | Assert(pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Tmp);
|
---|
2965 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
2966 | Log12(("iemNativeRegFreeTmp: %s (gst: %#RX64)\n",
|
---|
2967 | g_apszIemNativeHstRegNames[idxHstReg], pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 |
|
---|
2971 | /**
|
---|
2972 | * Frees a temporary immediate register.
|
---|
2973 | *
|
---|
2974 | * It is assumed that the call has not modified the register, so it still hold
|
---|
2975 | * the same value as when it was allocated via iemNativeRegAllocTmpImm().
|
---|
2976 | */
|
---|
2977 | DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
2978 | {
|
---|
2979 | iemNativeRegFreeTmp(pReNative, idxHstReg);
|
---|
2980 | }
|
---|
2981 |
|
---|
2982 |
|
---|
2983 | /**
|
---|
2984 | * Called right before emitting a call instruction to move anything important
|
---|
2985 | * out of call-volatile registers, free and flush the call-volatile registers,
|
---|
2986 | * optionally freeing argument variables.
|
---|
2987 | *
|
---|
2988 | * @returns New code buffer offset, UINT32_MAX on failure.
|
---|
2989 | * @param pReNative The native recompile state.
|
---|
2990 | * @param off The code buffer offset.
|
---|
2991 | * @param cArgs The number of arguments the function call takes.
|
---|
2992 | * It is presumed that the host register part of these have
|
---|
2993 | * been allocated as such already and won't need moving,
|
---|
2994 | * just freeing.
|
---|
2995 | */
|
---|
2996 | DECL_HIDDEN_THROW(uint32_t)
|
---|
2997 | iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs)
|
---|
2998 | {
|
---|
2999 | Assert(cArgs <= IEMNATIVE_CALL_MAX_ARG_COUNT);
|
---|
3000 |
|
---|
3001 | /*
|
---|
3002 | * Move anything important out of volatile registers.
|
---|
3003 | */
|
---|
3004 | if (cArgs > RT_ELEMENTS(g_aidxIemNativeCallRegs))
|
---|
3005 | cArgs = RT_ELEMENTS(g_aidxIemNativeCallRegs);
|
---|
3006 | uint32_t fRegsToMove = IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3007 | #ifdef IEMNATIVE_REG_FIXED_TMP0
|
---|
3008 | & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0)
|
---|
3009 | #endif
|
---|
3010 | & ~g_afIemNativeCallRegs[cArgs];
|
---|
3011 |
|
---|
3012 | fRegsToMove &= pReNative->Core.bmHstRegs;
|
---|
3013 | if (!fRegsToMove)
|
---|
3014 | { /* likely */ }
|
---|
3015 | else
|
---|
3016 | {
|
---|
3017 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: fRegsToMove=%#x\n", fRegsToMove));
|
---|
3018 | while (fRegsToMove != 0)
|
---|
3019 | {
|
---|
3020 | unsigned const idxReg = ASMBitFirstSetU32(fRegsToMove) - 1;
|
---|
3021 | fRegsToMove &= ~RT_BIT_32(idxReg);
|
---|
3022 |
|
---|
3023 | switch (pReNative->Core.aHstRegs[idxReg].enmWhat)
|
---|
3024 | {
|
---|
3025 | case kIemNativeWhat_Var:
|
---|
3026 | {
|
---|
3027 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxReg].idxVar;
|
---|
3028 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
3029 | Assert(pReNative->Core.bmVars & RT_BIT_32(idxVar));
|
---|
3030 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxReg);
|
---|
3031 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: idxVar=%d enmKind=%d idxReg=%d\n",
|
---|
3032 | idxVar, pReNative->Core.aVars[idxVar].enmKind, pReNative->Core.aVars[idxVar].idxReg));
|
---|
3033 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
3034 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
3035 | else
|
---|
3036 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
3037 | continue;
|
---|
3038 | }
|
---|
3039 |
|
---|
3040 | case kIemNativeWhat_Arg:
|
---|
3041 | AssertMsgFailed(("What?!?: %u\n", idxReg));
|
---|
3042 | continue;
|
---|
3043 |
|
---|
3044 | case kIemNativeWhat_rc:
|
---|
3045 | case kIemNativeWhat_Tmp:
|
---|
3046 | AssertMsgFailed(("Missing free: %u\n", idxReg));
|
---|
3047 | continue;
|
---|
3048 |
|
---|
3049 | case kIemNativeWhat_FixedTmp:
|
---|
3050 | case kIemNativeWhat_pVCpuFixed:
|
---|
3051 | case kIemNativeWhat_pCtxFixed:
|
---|
3052 | case kIemNativeWhat_FixedReserved:
|
---|
3053 | case kIemNativeWhat_Invalid:
|
---|
3054 | case kIemNativeWhat_End:
|
---|
3055 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_1));
|
---|
3056 | }
|
---|
3057 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_2));
|
---|
3058 | }
|
---|
3059 | }
|
---|
3060 |
|
---|
3061 | /*
|
---|
3062 | * Do the actual freeing.
|
---|
3063 | */
|
---|
3064 | if (pReNative->Core.bmHstRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK)
|
---|
3065 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: bmHstRegs %#x -> %#x\n", pReNative->Core.bmHstRegs, pReNative->Core.bmHstRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK));
|
---|
3066 | pReNative->Core.bmHstRegs &= ~IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
3067 |
|
---|
3068 | /* If there are guest register shadows in any call-volatile register, we
|
---|
3069 | have to clear the corrsponding guest register masks for each register. */
|
---|
3070 | uint32_t fHstRegsWithGstShadow = pReNative->Core.bmHstRegsWithGstShadow & IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
3071 | if (fHstRegsWithGstShadow)
|
---|
3072 | {
|
---|
3073 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: bmHstRegsWithGstShadow %#RX32 -> %#RX32; removed %#RX32\n",
|
---|
3074 | pReNative->Core.bmHstRegsWithGstShadow, pReNative->Core.bmHstRegsWithGstShadow & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK, fHstRegsWithGstShadow));
|
---|
3075 | pReNative->Core.bmHstRegsWithGstShadow &= ~fHstRegsWithGstShadow;
|
---|
3076 | do
|
---|
3077 | {
|
---|
3078 | unsigned const idxReg = ASMBitFirstSetU32(fHstRegsWithGstShadow) - 1;
|
---|
3079 | fHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
3080 |
|
---|
3081 | AssertMsg(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0, ("idxReg=%#x\n", idxReg));
|
---|
3082 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
3083 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
3084 | } while (fHstRegsWithGstShadow != 0);
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | return off;
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 |
|
---|
3091 | /**
|
---|
3092 | * Flushes a set of guest register shadow copies.
|
---|
3093 | *
|
---|
3094 | * This is usually done after calling a threaded function or a C-implementation
|
---|
3095 | * of an instruction.
|
---|
3096 | *
|
---|
3097 | * @param pReNative The native recompile state.
|
---|
3098 | * @param fGstRegs Set of guest registers to flush.
|
---|
3099 | */
|
---|
3100 | DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT
|
---|
3101 | {
|
---|
3102 | /*
|
---|
3103 | * Reduce the mask by what's currently shadowed
|
---|
3104 | */
|
---|
3105 | fGstRegs &= pReNative->Core.bmGstRegShadows;
|
---|
3106 | if (fGstRegs)
|
---|
3107 | {
|
---|
3108 | Log12(("iemNativeRegFlushGuestShadows: flushing %#RX64 (%#RX64 -> %#RX64)\n",
|
---|
3109 | fGstRegs, pReNative->Core.bmGstRegShadows, pReNative->Core.bmGstRegShadows & ~fGstRegs));
|
---|
3110 | pReNative->Core.bmGstRegShadows &= ~fGstRegs;
|
---|
3111 | if (pReNative->Core.bmGstRegShadows)
|
---|
3112 | {
|
---|
3113 | /*
|
---|
3114 | * Partial.
|
---|
3115 | */
|
---|
3116 | do
|
---|
3117 | {
|
---|
3118 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
3119 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
3120 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
3121 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
3122 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg));
|
---|
3123 |
|
---|
3124 | uint64_t const fInThisHstReg = (pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & fGstRegs) | RT_BIT_64(idxGstReg);
|
---|
3125 | fGstRegs &= ~fInThisHstReg;
|
---|
3126 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows &= ~fInThisHstReg;
|
---|
3127 | if (!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
3128 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
3129 | } while (fGstRegs != 0);
|
---|
3130 | }
|
---|
3131 | else
|
---|
3132 | {
|
---|
3133 | /*
|
---|
3134 | * Clear all.
|
---|
3135 | */
|
---|
3136 | do
|
---|
3137 | {
|
---|
3138 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
3139 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
3140 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
3141 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
3142 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg));
|
---|
3143 |
|
---|
3144 | fGstRegs &= ~(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows | RT_BIT_64(idxGstReg));
|
---|
3145 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
3146 | } while (fGstRegs != 0);
|
---|
3147 | pReNative->Core.bmHstRegsWithGstShadow = 0;
|
---|
3148 | }
|
---|
3149 | }
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 |
|
---|
3153 | /**
|
---|
3154 | * Flushes any delayed guest register writes.
|
---|
3155 | *
|
---|
3156 | * This must be called prior to calling CImpl functions and any helpers that use
|
---|
3157 | * the guest state (like raising exceptions) and such.
|
---|
3158 | *
|
---|
3159 | * This optimization has not yet been implemented. The first target would be
|
---|
3160 | * RIP updates, since these are the most common ones.
|
---|
3161 | */
|
---|
3162 | DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
3163 | {
|
---|
3164 | RT_NOREF(pReNative, off);
|
---|
3165 | return off;
|
---|
3166 | }
|
---|
3167 |
|
---|
3168 |
|
---|
3169 | #ifdef VBOX_STRICT
|
---|
3170 | /**
|
---|
3171 | * Does internal register allocator sanity checks.
|
---|
3172 | */
|
---|
3173 | static void iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative)
|
---|
3174 | {
|
---|
3175 | /*
|
---|
3176 | * Iterate host registers building a guest shadowing set.
|
---|
3177 | */
|
---|
3178 | uint64_t bmGstRegShadows = 0;
|
---|
3179 | uint32_t bmHstRegsWithGstShadow = pReNative->Core.bmHstRegsWithGstShadow;
|
---|
3180 | AssertMsg(!(bmHstRegsWithGstShadow & IEMNATIVE_REG_FIXED_MASK), ("%#RX32\n", bmHstRegsWithGstShadow));
|
---|
3181 | while (bmHstRegsWithGstShadow)
|
---|
3182 | {
|
---|
3183 | unsigned const idxHstReg = ASMBitFirstSetU32(bmHstRegsWithGstShadow) - 1;
|
---|
3184 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
3185 | bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
3186 |
|
---|
3187 | uint64_t fThisGstRegShadows = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
3188 | AssertMsg(fThisGstRegShadows != 0, ("idxHstReg=%d\n", idxHstReg));
|
---|
3189 | AssertMsg(fThisGstRegShadows < RT_BIT_64(kIemNativeGstReg_End), ("idxHstReg=%d %#RX64\n", idxHstReg, fThisGstRegShadows));
|
---|
3190 | bmGstRegShadows |= fThisGstRegShadows;
|
---|
3191 | while (fThisGstRegShadows)
|
---|
3192 | {
|
---|
3193 | unsigned const idxGstReg = ASMBitFirstSetU64(fThisGstRegShadows) - 1;
|
---|
3194 | fThisGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
3195 | AssertMsg(pReNative->Core.aidxGstRegShadows[idxGstReg] == idxHstReg,
|
---|
3196 | ("idxHstReg=%d aidxGstRegShadows[idxGstReg=%d]=%d\n",
|
---|
3197 | idxHstReg, idxGstReg, pReNative->Core.aidxGstRegShadows[idxGstReg]));
|
---|
3198 | }
|
---|
3199 | }
|
---|
3200 | AssertMsg(bmGstRegShadows == pReNative->Core.bmGstRegShadows,
|
---|
3201 | ("%RX64 vs %RX64; diff %RX64\n", bmGstRegShadows, pReNative->Core.bmGstRegShadows,
|
---|
3202 | bmGstRegShadows ^ pReNative->Core.bmGstRegShadows));
|
---|
3203 |
|
---|
3204 | /*
|
---|
3205 | * Now the other way around, checking the guest to host index array.
|
---|
3206 | */
|
---|
3207 | bmHstRegsWithGstShadow = 0;
|
---|
3208 | bmGstRegShadows = pReNative->Core.bmGstRegShadows;
|
---|
3209 | Assert(bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3210 | while (bmGstRegShadows)
|
---|
3211 | {
|
---|
3212 | unsigned const idxGstReg = ASMBitFirstSetU64(bmGstRegShadows) - 1;
|
---|
3213 | Assert(idxGstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
3214 | bmGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
3215 |
|
---|
3216 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
3217 | AssertMsg(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs), ("aidxGstRegShadows[%d]=%d\n", idxGstReg, idxHstReg));
|
---|
3218 | AssertMsg(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg),
|
---|
3219 | ("idxGstReg=%d idxHstReg=%d fGstRegShadows=%RX64\n",
|
---|
3220 | idxGstReg, idxHstReg, pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
3221 | bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
|
---|
3222 | }
|
---|
3223 | AssertMsg(bmHstRegsWithGstShadow == pReNative->Core.bmHstRegsWithGstShadow,
|
---|
3224 | ("%RX64 vs %RX64; diff %RX64\n", bmHstRegsWithGstShadow, pReNative->Core.bmHstRegsWithGstShadow,
|
---|
3225 | bmHstRegsWithGstShadow ^ pReNative->Core.bmHstRegsWithGstShadow));
|
---|
3226 | }
|
---|
3227 | #endif
|
---|
3228 |
|
---|
3229 |
|
---|
3230 | /*********************************************************************************************************************************
|
---|
3231 | * Code Emitters (larger snippets) *
|
---|
3232 | *********************************************************************************************************************************/
|
---|
3233 |
|
---|
3234 | /**
|
---|
3235 | * Loads the guest shadow register @a enmGstReg into host reg @a idxHstReg, zero
|
---|
3236 | * extending to 64-bit width.
|
---|
3237 | *
|
---|
3238 | * @returns New code buffer offset on success, UINT32_MAX on failure.
|
---|
3239 | * @param pReNative .
|
---|
3240 | * @param off The current code buffer position.
|
---|
3241 | * @param idxHstReg The host register to load the guest register value into.
|
---|
3242 | * @param enmGstReg The guest register to load.
|
---|
3243 | *
|
---|
3244 | * @note This does not mark @a idxHstReg as having a shadow copy of @a enmGstReg,
|
---|
3245 | * that is something the caller needs to do if applicable.
|
---|
3246 | */
|
---|
3247 | DECL_HIDDEN_THROW(uint32_t)
|
---|
3248 | iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg)
|
---|
3249 | {
|
---|
3250 | Assert((unsigned)enmGstReg < RT_ELEMENTS(g_aGstShadowInfo));
|
---|
3251 | Assert(g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
3252 |
|
---|
3253 | switch (g_aGstShadowInfo[enmGstReg].cb)
|
---|
3254 | {
|
---|
3255 | case sizeof(uint64_t):
|
---|
3256 | return iemNativeEmitLoadGprFromVCpuU64(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
3257 | case sizeof(uint32_t):
|
---|
3258 | return iemNativeEmitLoadGprFromVCpuU32(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
3259 | case sizeof(uint16_t):
|
---|
3260 | return iemNativeEmitLoadGprFromVCpuU16(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
3261 | #if 0 /* not present in the table. */
|
---|
3262 | case sizeof(uint8_t):
|
---|
3263 | return iemNativeEmitLoadGprFromVCpuU8(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
3264 | #endif
|
---|
3265 | default:
|
---|
3266 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IPE_NOT_REACHED_DEFAULT_CASE));
|
---|
3267 | }
|
---|
3268 | }
|
---|
3269 |
|
---|
3270 |
|
---|
3271 | #ifdef VBOX_STRICT
|
---|
3272 | /**
|
---|
3273 | * Emitting code that checks that the value of @a idxReg is UINT32_MAX or less.
|
---|
3274 | *
|
---|
3275 | * @note May of course trash IEMNATIVE_REG_FIXED_TMP0.
|
---|
3276 | * Trashes EFLAGS on AMD64.
|
---|
3277 | */
|
---|
3278 | static uint32_t
|
---|
3279 | iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg)
|
---|
3280 | {
|
---|
3281 | # ifdef RT_ARCH_AMD64
|
---|
3282 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 20);
|
---|
3283 |
|
---|
3284 | /* rol reg64, 32 */
|
---|
3285 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
3286 | pbCodeBuf[off++] = 0xc1;
|
---|
3287 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
3288 | pbCodeBuf[off++] = 32;
|
---|
3289 |
|
---|
3290 | /* test reg32, ffffffffh */
|
---|
3291 | if (idxReg >= 8)
|
---|
3292 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
3293 | pbCodeBuf[off++] = 0xf7;
|
---|
3294 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
3295 | pbCodeBuf[off++] = 0xff;
|
---|
3296 | pbCodeBuf[off++] = 0xff;
|
---|
3297 | pbCodeBuf[off++] = 0xff;
|
---|
3298 | pbCodeBuf[off++] = 0xff;
|
---|
3299 |
|
---|
3300 | /* je/jz +1 */
|
---|
3301 | pbCodeBuf[off++] = 0x74;
|
---|
3302 | pbCodeBuf[off++] = 0x01;
|
---|
3303 |
|
---|
3304 | /* int3 */
|
---|
3305 | pbCodeBuf[off++] = 0xcc;
|
---|
3306 |
|
---|
3307 | /* rol reg64, 32 */
|
---|
3308 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
3309 | pbCodeBuf[off++] = 0xc1;
|
---|
3310 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
3311 | pbCodeBuf[off++] = 32;
|
---|
3312 |
|
---|
3313 | # elif defined(RT_ARCH_ARM64)
|
---|
3314 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
3315 | /* lsr tmp0, reg64, #32 */
|
---|
3316 | pu32CodeBuf[off++] = Armv8A64MkInstrLsrImm(IEMNATIVE_REG_FIXED_TMP0, idxReg, 32);
|
---|
3317 | /* cbz tmp0, +1 */
|
---|
3318 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(false /*fJmpIfNotZero*/, 2, IEMNATIVE_REG_FIXED_TMP0);
|
---|
3319 | /* brk #0x1100 */
|
---|
3320 | pu32CodeBuf[off++] = Armv8A64MkInstrBrk(UINT32_C(0x1100));
|
---|
3321 |
|
---|
3322 | # else
|
---|
3323 | # error "Port me!"
|
---|
3324 | # endif
|
---|
3325 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3326 | return off;
|
---|
3327 | }
|
---|
3328 | #endif /* VBOX_STRICT */
|
---|
3329 |
|
---|
3330 |
|
---|
3331 | #ifdef VBOX_STRICT
|
---|
3332 | /**
|
---|
3333 | * Emitting code that checks that the content of register @a idxReg is the same
|
---|
3334 | * as what's in the guest register @a enmGstReg, resulting in a breakpoint
|
---|
3335 | * instruction if that's not the case.
|
---|
3336 | *
|
---|
3337 | * @note May of course trash IEMNATIVE_REG_FIXED_TMP0.
|
---|
3338 | * Trashes EFLAGS on AMD64.
|
---|
3339 | */
|
---|
3340 | static uint32_t
|
---|
3341 | iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg)
|
---|
3342 | {
|
---|
3343 | # ifdef RT_ARCH_AMD64
|
---|
3344 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
3345 |
|
---|
3346 | /* cmp reg, [mem] */
|
---|
3347 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint8_t))
|
---|
3348 | {
|
---|
3349 | if (idxReg >= 8)
|
---|
3350 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
3351 | pbCodeBuf[off++] = 0x38;
|
---|
3352 | }
|
---|
3353 | else
|
---|
3354 | {
|
---|
3355 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint64_t))
|
---|
3356 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_R);
|
---|
3357 | else
|
---|
3358 | {
|
---|
3359 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint16_t))
|
---|
3360 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
3361 | else
|
---|
3362 | AssertStmt(g_aGstShadowInfo[enmGstReg].cb == sizeof(uint32_t),
|
---|
3363 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_6));
|
---|
3364 | if (idxReg >= 8)
|
---|
3365 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
3366 | }
|
---|
3367 | pbCodeBuf[off++] = 0x39;
|
---|
3368 | }
|
---|
3369 | off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, idxReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
3370 |
|
---|
3371 | /* je/jz +1 */
|
---|
3372 | pbCodeBuf[off++] = 0x74;
|
---|
3373 | pbCodeBuf[off++] = 0x01;
|
---|
3374 |
|
---|
3375 | /* int3 */
|
---|
3376 | pbCodeBuf[off++] = 0xcc;
|
---|
3377 |
|
---|
3378 | /* For values smaller than the register size, we must check that the rest
|
---|
3379 | of the register is all zeros. */
|
---|
3380 | if (g_aGstShadowInfo[enmGstReg].cb < sizeof(uint32_t))
|
---|
3381 | {
|
---|
3382 | /* test reg64, imm32 */
|
---|
3383 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
3384 | pbCodeBuf[off++] = 0xf7;
|
---|
3385 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
3386 | pbCodeBuf[off++] = 0;
|
---|
3387 | pbCodeBuf[off++] = g_aGstShadowInfo[enmGstReg].cb > sizeof(uint8_t) ? 0 : 0xff;
|
---|
3388 | pbCodeBuf[off++] = 0xff;
|
---|
3389 | pbCodeBuf[off++] = 0xff;
|
---|
3390 |
|
---|
3391 | /* je/jz +1 */
|
---|
3392 | pbCodeBuf[off++] = 0x74;
|
---|
3393 | pbCodeBuf[off++] = 0x01;
|
---|
3394 |
|
---|
3395 | /* int3 */
|
---|
3396 | pbCodeBuf[off++] = 0xcc;
|
---|
3397 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3398 | }
|
---|
3399 | else
|
---|
3400 | {
|
---|
3401 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3402 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint32_t))
|
---|
3403 | iemNativeEmitTop32BitsClearCheck(pReNative, off, idxReg);
|
---|
3404 | }
|
---|
3405 |
|
---|
3406 | # elif defined(RT_ARCH_ARM64)
|
---|
3407 | /* mov TMP0, [gstreg] */
|
---|
3408 | off = iemNativeEmitLoadGprWithGstShadowReg(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, enmGstReg);
|
---|
3409 |
|
---|
3410 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
3411 | /* sub tmp0, tmp0, idxReg */
|
---|
3412 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(true /*fSub*/, IEMNATIVE_REG_FIXED_TMP0, IEMNATIVE_REG_FIXED_TMP0, idxReg);
|
---|
3413 | /* cbz tmp0, +1 */
|
---|
3414 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(false /*fJmpIfNotZero*/, 2, IEMNATIVE_REG_FIXED_TMP0);
|
---|
3415 | /* brk #0x1000+enmGstReg */
|
---|
3416 | pu32CodeBuf[off++] = Armv8A64MkInstrBrk((uint32_t)enmGstReg | UINT32_C(0x1000));
|
---|
3417 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3418 |
|
---|
3419 | # else
|
---|
3420 | # error "Port me!"
|
---|
3421 | # endif
|
---|
3422 | return off;
|
---|
3423 | }
|
---|
3424 | #endif /* VBOX_STRICT */
|
---|
3425 |
|
---|
3426 |
|
---|
3427 | /**
|
---|
3428 | * Emits a code for checking the return code of a call and rcPassUp, returning
|
---|
3429 | * from the code if either are non-zero.
|
---|
3430 | */
|
---|
3431 | DECL_HIDDEN_THROW(uint32_t)
|
---|
3432 | iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr)
|
---|
3433 | {
|
---|
3434 | #ifdef RT_ARCH_AMD64
|
---|
3435 | /*
|
---|
3436 | * AMD64: eax = call status code.
|
---|
3437 | */
|
---|
3438 |
|
---|
3439 | /* edx = rcPassUp */
|
---|
3440 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, X86_GREG_xDX, RT_UOFFSETOF(VMCPUCC, iem.s.rcPassUp));
|
---|
3441 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3442 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, X86_GREG_xCX, idxInstr);
|
---|
3443 | # endif
|
---|
3444 |
|
---|
3445 | /* edx = eax | rcPassUp */
|
---|
3446 | uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
3447 | pbCodeBuf[off++] = 0x0b; /* or edx, eax */
|
---|
3448 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xDX, X86_GREG_xAX);
|
---|
3449 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3450 |
|
---|
3451 | /* Jump to non-zero status return path. */
|
---|
3452 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
3453 |
|
---|
3454 | /* done. */
|
---|
3455 |
|
---|
3456 | #elif RT_ARCH_ARM64
|
---|
3457 | /*
|
---|
3458 | * ARM64: w0 = call status code.
|
---|
3459 | */
|
---|
3460 | off = iemNativeEmitLoadGprImm64(pReNative, off, ARMV8_A64_REG_X2, idxInstr); /** @todo 32-bit imm load? Fixed counter register? */
|
---|
3461 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, ARMV8_A64_REG_X3, RT_UOFFSETOF(VMCPUCC, iem.s.rcPassUp));
|
---|
3462 |
|
---|
3463 | uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
3464 |
|
---|
3465 | pu32CodeBuf[off++] = Armv8A64MkInstrOrr(ARMV8_A64_REG_X4, ARMV8_A64_REG_X3, ARMV8_A64_REG_X0, false /*f64Bit*/);
|
---|
3466 |
|
---|
3467 | uint32_t const idxLabel = iemNativeLabelCreate(pReNative, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
3468 | iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm19At5);
|
---|
3469 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(true /*fJmpIfNotZero*/, 0, ARMV8_A64_REG_X4, false /*f64Bit*/);
|
---|
3470 |
|
---|
3471 | #else
|
---|
3472 | # error "port me"
|
---|
3473 | #endif
|
---|
3474 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3475 | return off;
|
---|
3476 | }
|
---|
3477 |
|
---|
3478 |
|
---|
3479 | /**
|
---|
3480 | * Emits code to check if the content of @a idxAddrReg is a canonical address,
|
---|
3481 | * raising a \#GP(0) if it isn't.
|
---|
3482 | *
|
---|
3483 | * @returns New code buffer offset, UINT32_MAX on failure.
|
---|
3484 | * @param pReNative The native recompile state.
|
---|
3485 | * @param off The code buffer offset.
|
---|
3486 | * @param idxAddrReg The host register with the address to check.
|
---|
3487 | * @param idxInstr The current instruction.
|
---|
3488 | */
|
---|
3489 | DECL_HIDDEN_THROW(uint32_t)
|
---|
3490 | iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxAddrReg, uint8_t idxInstr)
|
---|
3491 | {
|
---|
3492 | RT_NOREF(idxInstr);
|
---|
3493 |
|
---|
3494 | /*
|
---|
3495 | * Make sure we don't have any outstanding guest register writes as we may
|
---|
3496 | * raise an #GP(0) and all guest register must be up to date in CPUMCTX.
|
---|
3497 | */
|
---|
3498 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
3499 |
|
---|
3500 | #ifdef RT_ARCH_AMD64
|
---|
3501 | /*
|
---|
3502 | * if ((((uint32_t)(a_u64Addr >> 32) + UINT32_C(0x8000)) >> 16) != 0)
|
---|
3503 | * return raisexcpt();
|
---|
3504 | * ---- this wariant avoid loading a 64-bit immediate, but is an instruction longer.
|
---|
3505 | */
|
---|
3506 | uint8_t const iTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
3507 |
|
---|
3508 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, iTmpReg, idxAddrReg);
|
---|
3509 | off = iemNativeEmitShiftGprRight(pReNative, off, iTmpReg, 32);
|
---|
3510 | off = iemNativeEmitAddGpr32Imm(pReNative, off, iTmpReg, (int32_t)0x8000);
|
---|
3511 | off = iemNativeEmitShiftGprRight(pReNative, off, iTmpReg, 16);
|
---|
3512 |
|
---|
3513 | # ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3514 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3515 | # else
|
---|
3516 | uint32_t const offFixup = off;
|
---|
3517 | off = iemNativeEmitJzToFixed(pReNative, off, 0);
|
---|
3518 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxInstr);
|
---|
3519 | off = iemNativeEmitJmpToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3520 | iemNativeFixupFixedJump(pReNative, offFixup, off /*offTarget*/);
|
---|
3521 | # endif
|
---|
3522 |
|
---|
3523 | iemNativeRegFreeTmp(pReNative, iTmpReg);
|
---|
3524 |
|
---|
3525 | #elif defined(RT_ARCH_ARM64)
|
---|
3526 | /*
|
---|
3527 | * if ((((uint64_t)(a_u64Addr) + UINT64_C(0x800000000000)) >> 48) != 0)
|
---|
3528 | * return raisexcpt();
|
---|
3529 | * ----
|
---|
3530 | * mov x1, 0x800000000000
|
---|
3531 | * add x1, x0, x1
|
---|
3532 | * cmp xzr, x1, lsr 48
|
---|
3533 | * and either:
|
---|
3534 | * b.ne .Lraisexcpt
|
---|
3535 | * or:
|
---|
3536 | * b.eq .Lnoexcept
|
---|
3537 | * movz x1, #instruction-number
|
---|
3538 | * b .Lraisexcpt
|
---|
3539 | * .Lnoexcept:
|
---|
3540 | */
|
---|
3541 | uint8_t const iTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
3542 |
|
---|
3543 | off = iemNativeEmitLoadGprImm64(pReNative, off, iTmpReg, UINT64_C(0x800000000000));
|
---|
3544 | off = iemNativeEmitAddTwoGprs(pReNative, off, iTmpReg, idxAddrReg);
|
---|
3545 | off = iemNativeEmitCmpArm64(pReNative, off, ARMV8_A64_REG_XZR, idxAddrReg, true /*f64Bit*/, 48 /*cShift*/, kArmv8A64InstrShift_Lsr);
|
---|
3546 |
|
---|
3547 | # ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3548 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3549 | # else
|
---|
3550 | uint32_t const offFixup = off;
|
---|
3551 | off = iemNativeEmitJzToFixed(pReNative, off, 0);
|
---|
3552 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxInstr);
|
---|
3553 | off = iemNativeEmitJmpToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3554 | iemNativeFixupFixedJump(pReNative, offFixup, off /*offTarget*/);
|
---|
3555 | # endif
|
---|
3556 |
|
---|
3557 | iemNativeRegFreeTmp(pReNative, iTmpReg);
|
---|
3558 |
|
---|
3559 | #else
|
---|
3560 | # error "Port me"
|
---|
3561 | #endif
|
---|
3562 | return off;
|
---|
3563 | }
|
---|
3564 |
|
---|
3565 |
|
---|
3566 | /**
|
---|
3567 | * Emits code to check if the content of @a idxAddrReg is within the limit of
|
---|
3568 | * idxSegReg, raising a \#GP(0) if it isn't.
|
---|
3569 | *
|
---|
3570 | * @returns New code buffer offset; throws VBox status code on error.
|
---|
3571 | * @param pReNative The native recompile state.
|
---|
3572 | * @param off The code buffer offset.
|
---|
3573 | * @param idxAddrReg The host register (32-bit) with the address to
|
---|
3574 | * check.
|
---|
3575 | * @param idxSegReg The segment register (X86_SREG_XXX) to check
|
---|
3576 | * against.
|
---|
3577 | * @param idxInstr The current instruction.
|
---|
3578 | */
|
---|
3579 | DECL_HIDDEN_THROW(uint32_t)
|
---|
3580 | iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
3581 | uint8_t idxAddrReg, uint8_t idxSegReg, uint8_t idxInstr)
|
---|
3582 | {
|
---|
3583 | /*
|
---|
3584 | * Make sure we don't have any outstanding guest register writes as we may
|
---|
3585 | * raise an #GP(0) and all guest register must be up to date in CPUMCTX.
|
---|
3586 | */
|
---|
3587 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
3588 |
|
---|
3589 | /** @todo implement expand down/whatnot checking */
|
---|
3590 | AssertStmt(idxSegReg == X86_SREG_CS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_EMIT_CASE_NOT_IMPLEMENTED_1));
|
---|
3591 |
|
---|
3592 | uint8_t const iTmpLimReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off,
|
---|
3593 | (IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + idxSegReg),
|
---|
3594 | kIemNativeGstRegUse_ForUpdate);
|
---|
3595 |
|
---|
3596 | off = iemNativeEmitCmpGpr32WithGpr(pReNative, off, idxAddrReg, iTmpLimReg);
|
---|
3597 |
|
---|
3598 | #ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3599 | off = iemNativeEmitJaToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3600 | RT_NOREF(idxInstr);
|
---|
3601 | #else
|
---|
3602 | uint32_t const offFixup = off;
|
---|
3603 | off = iemNativeEmitJbeToFixed(pReNative, off, 0);
|
---|
3604 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxInstr);
|
---|
3605 | off = iemNativeEmitJmpToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
3606 | iemNativeFixupFixedJump(pReNative, offFixup, off /*offTarget*/);
|
---|
3607 | #endif
|
---|
3608 |
|
---|
3609 | iemNativeRegFreeTmp(pReNative, iTmpLimReg);
|
---|
3610 | return off;
|
---|
3611 | }
|
---|
3612 |
|
---|
3613 |
|
---|
3614 | /**
|
---|
3615 | * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
|
---|
3616 | *
|
---|
3617 | * @returns The flush mask.
|
---|
3618 | * @param fCImpl The IEM_CIMPL_F_XXX flags.
|
---|
3619 | * @param fGstShwFlush The starting flush mask.
|
---|
3620 | */
|
---|
3621 | DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
|
---|
3622 | {
|
---|
3623 | if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
|
---|
3624 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
|
---|
3625 | | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
|
---|
3626 | | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
|
---|
3627 | if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
|
---|
3628 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
|
---|
3629 | | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
|
---|
3630 | | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
|
---|
3631 | | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
|
---|
3632 | else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
|
---|
3633 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
|
---|
3634 | if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
|
---|
3635 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
|
---|
3636 | return fGstShwFlush;
|
---|
3637 | }
|
---|
3638 |
|
---|
3639 |
|
---|
3640 | /**
|
---|
3641 | * Emits a call to a CImpl function or something similar.
|
---|
3642 | */
|
---|
3643 | static int32_t iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
3644 | uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
|
---|
3645 | uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
|
---|
3646 | {
|
---|
3647 | /*
|
---|
3648 | * Flush stuff. PC and EFlags are implictly flushed, the latter because we
|
---|
3649 | * don't do with/without flags variants of defer-to-cimpl stuff at the moment.
|
---|
3650 | */
|
---|
3651 | fGstShwFlush = iemNativeCImplFlagsToGuestShadowFlushMask(pReNative->fCImpl,
|
---|
3652 | fGstShwFlush
|
---|
3653 | | RT_BIT_64(kIemNativeGstReg_Pc)
|
---|
3654 | | RT_BIT_64(kIemNativeGstReg_EFlags));
|
---|
3655 | iemNativeRegFlushGuestShadows(pReNative, fGstShwFlush);
|
---|
3656 |
|
---|
3657 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 4);
|
---|
3658 |
|
---|
3659 | /*
|
---|
3660 | * Load the parameters.
|
---|
3661 | */
|
---|
3662 | #if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
|
---|
3663 | /* Special code the hidden VBOXSTRICTRC pointer. */
|
---|
3664 | off = iemNativeEmitLoadGprFromGpr( pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3665 | off = iemNativeEmitLoadGprImm64( pReNative, off, IEMNATIVE_CALL_ARG2_GREG, cbInstr); /** @todo 8-bit reg load opt for amd64 */
|
---|
3666 | if (cAddParams > 0)
|
---|
3667 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, uParam0);
|
---|
3668 | if (cAddParams > 1)
|
---|
3669 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, uParam1);
|
---|
3670 | if (cAddParams > 2)
|
---|
3671 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG1, uParam2);
|
---|
3672 | off = iemNativeEmitLeaGprByBp(pReNative, off, X86_GREG_xCX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
3673 |
|
---|
3674 | #else
|
---|
3675 | AssertCompile(IEMNATIVE_CALL_ARG_GREG_COUNT >= 4);
|
---|
3676 | off = iemNativeEmitLoadGprFromGpr( pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3677 | off = iemNativeEmitLoadGprImm64( pReNative, off, IEMNATIVE_CALL_ARG1_GREG, cbInstr); /** @todo 8-bit reg load opt for amd64 */
|
---|
3678 | if (cAddParams > 0)
|
---|
3679 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, uParam0);
|
---|
3680 | if (cAddParams > 1)
|
---|
3681 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, uParam1);
|
---|
3682 | if (cAddParams > 2)
|
---|
3683 | # if IEMNATIVE_CALL_ARG_GREG_COUNT >= 5
|
---|
3684 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG4_GREG, uParam2);
|
---|
3685 | # else
|
---|
3686 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, uParam2);
|
---|
3687 | # endif
|
---|
3688 | #endif
|
---|
3689 |
|
---|
3690 | /*
|
---|
3691 | * Make the call.
|
---|
3692 | */
|
---|
3693 | off = iemNativeEmitCallImm(pReNative, off, pfnCImpl);
|
---|
3694 |
|
---|
3695 | #if defined(RT_ARCH_AMD64) && defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS)
|
---|
3696 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
3697 | #endif
|
---|
3698 |
|
---|
3699 | /*
|
---|
3700 | * Check the status code.
|
---|
3701 | */
|
---|
3702 | return iemNativeEmitCheckCallRetAndPassUp(pReNative, off, idxInstr);
|
---|
3703 | }
|
---|
3704 |
|
---|
3705 |
|
---|
3706 | /**
|
---|
3707 | * Emits a call to a threaded worker function.
|
---|
3708 | */
|
---|
3709 | static uint32_t iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
|
---|
3710 | {
|
---|
3711 | iemNativeRegFlushGuestShadows(pReNative, UINT64_MAX); /** @todo optimize this */
|
---|
3712 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 4);
|
---|
3713 | uint8_t const cParams = g_acIemThreadedFunctionUsedArgs[pCallEntry->enmFunction];
|
---|
3714 |
|
---|
3715 | #ifdef RT_ARCH_AMD64
|
---|
3716 | /* Load the parameters and emit the call. */
|
---|
3717 | # ifdef RT_OS_WINDOWS
|
---|
3718 | # ifndef VBOXSTRICTRC_STRICT_ENABLED
|
---|
3719 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xCX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3720 | if (cParams > 0)
|
---|
3721 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xDX, pCallEntry->auParams[0]);
|
---|
3722 | if (cParams > 1)
|
---|
3723 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x8, pCallEntry->auParams[1]);
|
---|
3724 | if (cParams > 2)
|
---|
3725 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x9, pCallEntry->auParams[2]);
|
---|
3726 | # else /* VBOXSTRICTRC: Returned via hidden parameter. Sigh. */
|
---|
3727 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3728 | if (cParams > 0)
|
---|
3729 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x8, pCallEntry->auParams[0]);
|
---|
3730 | if (cParams > 1)
|
---|
3731 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x9, pCallEntry->auParams[1]);
|
---|
3732 | if (cParams > 2)
|
---|
3733 | {
|
---|
3734 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x10, pCallEntry->auParams[2]);
|
---|
3735 | off = iemNativeEmitStoreGprByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, X86_GREG_x10);
|
---|
3736 | }
|
---|
3737 | off = iemNativeEmitLeaGprByBp(pReNative, off, X86_GREG_xCX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
3738 | # endif /* VBOXSTRICTRC_STRICT_ENABLED */
|
---|
3739 | # else
|
---|
3740 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDI, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3741 | if (cParams > 0)
|
---|
3742 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xSI, pCallEntry->auParams[0]);
|
---|
3743 | if (cParams > 1)
|
---|
3744 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xDX, pCallEntry->auParams[1]);
|
---|
3745 | if (cParams > 2)
|
---|
3746 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xCX, pCallEntry->auParams[2]);
|
---|
3747 | # endif
|
---|
3748 |
|
---|
3749 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)g_apfnIemThreadedFunctions[pCallEntry->enmFunction]);
|
---|
3750 |
|
---|
3751 | # if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS)
|
---|
3752 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
3753 | # endif
|
---|
3754 |
|
---|
3755 | #elif RT_ARCH_ARM64
|
---|
3756 | /*
|
---|
3757 | * ARM64:
|
---|
3758 | */
|
---|
3759 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3760 | if (cParams > 0)
|
---|
3761 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, pCallEntry->auParams[0]);
|
---|
3762 | if (cParams > 1)
|
---|
3763 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, pCallEntry->auParams[1]);
|
---|
3764 | if (cParams > 2)
|
---|
3765 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, pCallEntry->auParams[2]);
|
---|
3766 |
|
---|
3767 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)g_apfnIemThreadedFunctions[pCallEntry->enmFunction]);
|
---|
3768 |
|
---|
3769 | #else
|
---|
3770 | # error "port me"
|
---|
3771 | #endif
|
---|
3772 |
|
---|
3773 | /*
|
---|
3774 | * Check the status code.
|
---|
3775 | */
|
---|
3776 | off = iemNativeEmitCheckCallRetAndPassUp(pReNative, off, pCallEntry->idxInstr);
|
---|
3777 |
|
---|
3778 | return off;
|
---|
3779 | }
|
---|
3780 |
|
---|
3781 |
|
---|
3782 | /**
|
---|
3783 | * Emits the code at the RaiseGP0 label.
|
---|
3784 | */
|
---|
3785 | static uint32_t iemNativeEmitRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
3786 | {
|
---|
3787 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_RaiseGp0);
|
---|
3788 | if (idxLabel != UINT32_MAX)
|
---|
3789 | {
|
---|
3790 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
3791 |
|
---|
3792 | /* iemNativeHlpExecRaiseGp0(PVMCPUCC pVCpu, uint8_t idxInstr) */
|
---|
3793 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3794 | #ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3795 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, 0);
|
---|
3796 | #endif
|
---|
3797 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpExecRaiseGp0);
|
---|
3798 |
|
---|
3799 | /* jump back to the return sequence. */
|
---|
3800 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
3801 | }
|
---|
3802 | return off;
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 |
|
---|
3806 | /**
|
---|
3807 | * Emits the code at the ReturnWithFlags label (returns
|
---|
3808 | * VINF_IEM_REEXEC_FINISH_WITH_FLAGS).
|
---|
3809 | */
|
---|
3810 | static uint32_t iemNativeEmitReturnWithFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
3811 | {
|
---|
3812 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_ReturnWithFlags);
|
---|
3813 | if (idxLabel != UINT32_MAX)
|
---|
3814 | {
|
---|
3815 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
3816 |
|
---|
3817 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_RET_GREG, VINF_IEM_REEXEC_FINISH_WITH_FLAGS);
|
---|
3818 |
|
---|
3819 | /* jump back to the return sequence. */
|
---|
3820 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
3821 | }
|
---|
3822 | return off;
|
---|
3823 | }
|
---|
3824 |
|
---|
3825 |
|
---|
3826 | /**
|
---|
3827 | * Emits the code at the ReturnBreak label (returns VINF_IEM_REEXEC_BREAK).
|
---|
3828 | */
|
---|
3829 | static uint32_t iemNativeEmitReturnBreak(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
3830 | {
|
---|
3831 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_ReturnBreak);
|
---|
3832 | if (idxLabel != UINT32_MAX)
|
---|
3833 | {
|
---|
3834 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
3835 |
|
---|
3836 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_RET_GREG, VINF_IEM_REEXEC_BREAK);
|
---|
3837 |
|
---|
3838 | /* jump back to the return sequence. */
|
---|
3839 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
3840 | }
|
---|
3841 | return off;
|
---|
3842 | }
|
---|
3843 |
|
---|
3844 |
|
---|
3845 | /**
|
---|
3846 | * Emits the RC fiddling code for handling non-zero return code or rcPassUp.
|
---|
3847 | */
|
---|
3848 | static uint32_t iemNativeEmitRcFiddling(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
3849 | {
|
---|
3850 | /*
|
---|
3851 | * Generate the rc + rcPassUp fiddling code if needed.
|
---|
3852 | */
|
---|
3853 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
3854 | if (idxLabel != UINT32_MAX)
|
---|
3855 | {
|
---|
3856 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
3857 |
|
---|
3858 | /* iemNativeHlpExecStatusCodeFiddling(PVMCPUCC pVCpu, int rc, uint8_t idxInstr) */
|
---|
3859 | #ifdef RT_ARCH_AMD64
|
---|
3860 | # ifdef RT_OS_WINDOWS
|
---|
3861 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3862 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_x8, X86_GREG_xCX); /* cl = instruction number */
|
---|
3863 | # endif
|
---|
3864 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xCX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3865 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, X86_GREG_xAX);
|
---|
3866 | # else
|
---|
3867 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDI, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3868 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xSI, X86_GREG_xAX);
|
---|
3869 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3870 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, X86_GREG_xCX); /* cl = instruction number */
|
---|
3871 | # endif
|
---|
3872 | # endif
|
---|
3873 | # ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3874 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, X86_GREG_xCX, 0);
|
---|
3875 | # endif
|
---|
3876 |
|
---|
3877 | #else
|
---|
3878 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_CALL_RET_GREG);
|
---|
3879 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
3880 | /* IEMNATIVE_CALL_ARG2_GREG is already set. */
|
---|
3881 | #endif
|
---|
3882 |
|
---|
3883 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpExecStatusCodeFiddling);
|
---|
3884 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
3885 | }
|
---|
3886 | return off;
|
---|
3887 | }
|
---|
3888 |
|
---|
3889 |
|
---|
3890 | /**
|
---|
3891 | * Emits a standard epilog.
|
---|
3892 | */
|
---|
3893 | static uint32_t iemNativeEmitEpilog(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t *pidxReturnLabel)
|
---|
3894 | {
|
---|
3895 | *pidxReturnLabel = UINT32_MAX;
|
---|
3896 |
|
---|
3897 | /*
|
---|
3898 | * Successful return, so clear the return register (eax, w0).
|
---|
3899 | */
|
---|
3900 | off = iemNativeEmitGprZero(pReNative,off, IEMNATIVE_CALL_RET_GREG);
|
---|
3901 |
|
---|
3902 | /*
|
---|
3903 | * Define label for common return point.
|
---|
3904 | */
|
---|
3905 | uint32_t const idxReturn = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Return, off);
|
---|
3906 | *pidxReturnLabel = idxReturn;
|
---|
3907 |
|
---|
3908 | /*
|
---|
3909 | * Restore registers and return.
|
---|
3910 | */
|
---|
3911 | #ifdef RT_ARCH_AMD64
|
---|
3912 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 20);
|
---|
3913 |
|
---|
3914 | /* Reposition esp at the r15 restore point. */
|
---|
3915 | pbCodeBuf[off++] = X86_OP_REX_W;
|
---|
3916 | pbCodeBuf[off++] = 0x8d; /* lea rsp, [rbp - (gcc ? 5 : 7) * 8] */
|
---|
3917 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, X86_GREG_xSP, X86_GREG_xBP);
|
---|
3918 | pbCodeBuf[off++] = (uint8_t)IEMNATIVE_FP_OFF_LAST_PUSH;
|
---|
3919 |
|
---|
3920 | /* Pop non-volatile registers and return */
|
---|
3921 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r15 */
|
---|
3922 | pbCodeBuf[off++] = 0x58 + X86_GREG_x15 - 8;
|
---|
3923 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r14 */
|
---|
3924 | pbCodeBuf[off++] = 0x58 + X86_GREG_x14 - 8;
|
---|
3925 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r13 */
|
---|
3926 | pbCodeBuf[off++] = 0x58 + X86_GREG_x13 - 8;
|
---|
3927 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r12 */
|
---|
3928 | pbCodeBuf[off++] = 0x58 + X86_GREG_x12 - 8;
|
---|
3929 | # ifdef RT_OS_WINDOWS
|
---|
3930 | pbCodeBuf[off++] = 0x58 + X86_GREG_xDI; /* pop rdi */
|
---|
3931 | pbCodeBuf[off++] = 0x58 + X86_GREG_xSI; /* pop rsi */
|
---|
3932 | # endif
|
---|
3933 | pbCodeBuf[off++] = 0x58 + X86_GREG_xBX; /* pop rbx */
|
---|
3934 | pbCodeBuf[off++] = 0xc9; /* leave */
|
---|
3935 | pbCodeBuf[off++] = 0xc3; /* ret */
|
---|
3936 | pbCodeBuf[off++] = 0xcc; /* int3 poison */
|
---|
3937 |
|
---|
3938 | #elif RT_ARCH_ARM64
|
---|
3939 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
3940 |
|
---|
3941 | /* ldp x19, x20, [sp #IEMNATIVE_FRAME_VAR_SIZE]! ; Unallocate the variable space and restore x19+x20. */
|
---|
3942 | AssertCompile(IEMNATIVE_FRAME_VAR_SIZE < 64*8);
|
---|
3943 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_PreIndex,
|
---|
3944 | ARMV8_A64_REG_X19, ARMV8_A64_REG_X20, ARMV8_A64_REG_SP,
|
---|
3945 | IEMNATIVE_FRAME_VAR_SIZE / 8);
|
---|
3946 | /* Restore x21 thru x28 + BP and LR (ret address) (SP remains unchanged in the kSigned variant). */
|
---|
3947 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
3948 | ARMV8_A64_REG_X21, ARMV8_A64_REG_X22, ARMV8_A64_REG_SP, 2);
|
---|
3949 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
3950 | ARMV8_A64_REG_X23, ARMV8_A64_REG_X24, ARMV8_A64_REG_SP, 4);
|
---|
3951 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
3952 | ARMV8_A64_REG_X25, ARMV8_A64_REG_X26, ARMV8_A64_REG_SP, 6);
|
---|
3953 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
3954 | ARMV8_A64_REG_X27, ARMV8_A64_REG_X28, ARMV8_A64_REG_SP, 8);
|
---|
3955 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
3956 | ARMV8_A64_REG_BP, ARMV8_A64_REG_LR, ARMV8_A64_REG_SP, 10);
|
---|
3957 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
3958 |
|
---|
3959 | /* add sp, sp, IEMNATIVE_FRAME_SAVE_REG_SIZE ; */
|
---|
3960 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE < 4096);
|
---|
3961 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, ARMV8_A64_REG_SP, ARMV8_A64_REG_SP,
|
---|
3962 | IEMNATIVE_FRAME_SAVE_REG_SIZE);
|
---|
3963 |
|
---|
3964 | /* retab / ret */
|
---|
3965 | # ifdef RT_OS_DARWIN /** @todo See todo on pacibsp in the prolog. */
|
---|
3966 | if (1)
|
---|
3967 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_RETAB;
|
---|
3968 | else
|
---|
3969 | # endif
|
---|
3970 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_RET;
|
---|
3971 |
|
---|
3972 | #else
|
---|
3973 | # error "port me"
|
---|
3974 | #endif
|
---|
3975 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
3976 |
|
---|
3977 | return iemNativeEmitRcFiddling(pReNative, off, idxReturn);
|
---|
3978 | }
|
---|
3979 |
|
---|
3980 |
|
---|
3981 | /**
|
---|
3982 | * Emits a standard prolog.
|
---|
3983 | */
|
---|
3984 | static uint32_t iemNativeEmitProlog(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
3985 | {
|
---|
3986 | #ifdef RT_ARCH_AMD64
|
---|
3987 | /*
|
---|
3988 | * Set up a regular xBP stack frame, pushing all non-volatile GPRs,
|
---|
3989 | * reserving 64 bytes for stack variables plus 4 non-register argument
|
---|
3990 | * slots. Fixed register assignment: xBX = pReNative;
|
---|
3991 | *
|
---|
3992 | * Since we always do the same register spilling, we can use the same
|
---|
3993 | * unwind description for all the code.
|
---|
3994 | */
|
---|
3995 | uint8_t *const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
3996 | pbCodeBuf[off++] = 0x50 + X86_GREG_xBP; /* push rbp */
|
---|
3997 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbp, rsp */
|
---|
3998 | pbCodeBuf[off++] = 0x8b;
|
---|
3999 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBP, X86_GREG_xSP);
|
---|
4000 | pbCodeBuf[off++] = 0x50 + X86_GREG_xBX; /* push rbx */
|
---|
4001 | AssertCompile(IEMNATIVE_REG_FIXED_PVMCPU == X86_GREG_xBX);
|
---|
4002 | # ifdef RT_OS_WINDOWS
|
---|
4003 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbx, rcx ; RBX = pVCpu */
|
---|
4004 | pbCodeBuf[off++] = 0x8b;
|
---|
4005 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBX, X86_GREG_xCX);
|
---|
4006 | pbCodeBuf[off++] = 0x50 + X86_GREG_xSI; /* push rsi */
|
---|
4007 | pbCodeBuf[off++] = 0x50 + X86_GREG_xDI; /* push rdi */
|
---|
4008 | # else
|
---|
4009 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbx, rdi ; RBX = pVCpu */
|
---|
4010 | pbCodeBuf[off++] = 0x8b;
|
---|
4011 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBX, X86_GREG_xDI);
|
---|
4012 | # endif
|
---|
4013 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r12 */
|
---|
4014 | pbCodeBuf[off++] = 0x50 + X86_GREG_x12 - 8;
|
---|
4015 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r13 */
|
---|
4016 | pbCodeBuf[off++] = 0x50 + X86_GREG_x13 - 8;
|
---|
4017 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r14 */
|
---|
4018 | pbCodeBuf[off++] = 0x50 + X86_GREG_x14 - 8;
|
---|
4019 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r15 */
|
---|
4020 | pbCodeBuf[off++] = 0x50 + X86_GREG_x15 - 8;
|
---|
4021 |
|
---|
4022 | off = iemNativeEmitSubGprImm(pReNative, off, /* sub rsp, byte 28h */
|
---|
4023 | X86_GREG_xSP,
|
---|
4024 | IEMNATIVE_FRAME_ALIGN_SIZE
|
---|
4025 | + IEMNATIVE_FRAME_VAR_SIZE
|
---|
4026 | + IEMNATIVE_FRAME_STACK_ARG_COUNT * 8
|
---|
4027 | + IEMNATIVE_FRAME_SHADOW_ARG_COUNT * 8);
|
---|
4028 | AssertCompile(!(IEMNATIVE_FRAME_VAR_SIZE & 0xf));
|
---|
4029 | AssertCompile(!(IEMNATIVE_FRAME_STACK_ARG_COUNT & 0x1));
|
---|
4030 | AssertCompile(!(IEMNATIVE_FRAME_SHADOW_ARG_COUNT & 0x1));
|
---|
4031 |
|
---|
4032 | #elif RT_ARCH_ARM64
|
---|
4033 | /*
|
---|
4034 | * We set up a stack frame exactly like on x86, only we have to push the
|
---|
4035 | * return address our selves here. We save all non-volatile registers.
|
---|
4036 | */
|
---|
4037 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
4038 |
|
---|
4039 | # ifdef RT_OS_DARWIN /** @todo This seems to be requirement by libunwind for JIT FDEs. Investigate further as been unable
|
---|
4040 | * to figure out where the BRK following AUTHB*+XPACB* stuff comes from in libunwind. It's
|
---|
4041 | * definitely the dwarf stepping code, but till found it's very tedious to figure out whether it's
|
---|
4042 | * in any way conditional, so just emitting this instructions now and hoping for the best... */
|
---|
4043 | /* pacibsp */
|
---|
4044 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_PACIBSP;
|
---|
4045 | # endif
|
---|
4046 |
|
---|
4047 | /* stp x19, x20, [sp, #-IEMNATIVE_FRAME_SAVE_REG_SIZE] ; Allocate space for saving registers and place x19+x20 at the bottom. */
|
---|
4048 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE < 64*8);
|
---|
4049 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_PreIndex,
|
---|
4050 | ARMV8_A64_REG_X19, ARMV8_A64_REG_X20, ARMV8_A64_REG_SP,
|
---|
4051 | -IEMNATIVE_FRAME_SAVE_REG_SIZE / 8);
|
---|
4052 | /* Save x21 thru x28 (SP remains unchanged in the kSigned variant). */
|
---|
4053 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
4054 | ARMV8_A64_REG_X21, ARMV8_A64_REG_X22, ARMV8_A64_REG_SP, 2);
|
---|
4055 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
4056 | ARMV8_A64_REG_X23, ARMV8_A64_REG_X24, ARMV8_A64_REG_SP, 4);
|
---|
4057 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
4058 | ARMV8_A64_REG_X25, ARMV8_A64_REG_X26, ARMV8_A64_REG_SP, 6);
|
---|
4059 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
4060 | ARMV8_A64_REG_X27, ARMV8_A64_REG_X28, ARMV8_A64_REG_SP, 8);
|
---|
4061 | /* Save the BP and LR (ret address) registers at the top of the frame. */
|
---|
4062 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
4063 | ARMV8_A64_REG_BP, ARMV8_A64_REG_LR, ARMV8_A64_REG_SP, 10);
|
---|
4064 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
4065 | /* add bp, sp, IEMNATIVE_FRAME_SAVE_REG_SIZE - 16 ; Set BP to point to the old BP stack address. */
|
---|
4066 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, ARMV8_A64_REG_BP,
|
---|
4067 | ARMV8_A64_REG_SP, IEMNATIVE_FRAME_SAVE_REG_SIZE - 16);
|
---|
4068 |
|
---|
4069 | /* sub sp, sp, IEMNATIVE_FRAME_VAR_SIZE ; Allocate the variable area from SP. */
|
---|
4070 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_SP, ARMV8_A64_REG_SP, IEMNATIVE_FRAME_VAR_SIZE);
|
---|
4071 |
|
---|
4072 | /* mov r28, r0 */
|
---|
4073 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_REG_FIXED_PVMCPU, IEMNATIVE_CALL_ARG0_GREG);
|
---|
4074 | /* mov r27, r1 */
|
---|
4075 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_REG_FIXED_PCPUMCTX, IEMNATIVE_CALL_ARG1_GREG);
|
---|
4076 |
|
---|
4077 | #else
|
---|
4078 | # error "port me"
|
---|
4079 | #endif
|
---|
4080 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4081 | return off;
|
---|
4082 | }
|
---|
4083 |
|
---|
4084 |
|
---|
4085 |
|
---|
4086 |
|
---|
4087 | /*********************************************************************************************************************************
|
---|
4088 | * Emitters for IEM_MC_BEGIN and IEM_MC_END. *
|
---|
4089 | *********************************************************************************************************************************/
|
---|
4090 |
|
---|
4091 | #define IEM_MC_BEGIN(a_cArgs, a_cLocals, a_fMcFlags, a_fCImplFlags) \
|
---|
4092 | { \
|
---|
4093 | Assert(pReNative->Core.bmVars == 0); \
|
---|
4094 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX); \
|
---|
4095 | Assert(pReNative->Core.bmStack == 0); \
|
---|
4096 | pReNative->fMc = (a_fMcFlags); \
|
---|
4097 | pReNative->fCImpl = (a_fCImplFlags); \
|
---|
4098 | pReNative->cArgs = ((a_cArgs) + iemNativeArgGetHiddenArgCount(pReNative))
|
---|
4099 |
|
---|
4100 | /** We have to get to the end in recompilation mode, as otherwise we won't
|
---|
4101 | * generate code for all the IEM_MC_IF_XXX branches. */
|
---|
4102 | #define IEM_MC_END() \
|
---|
4103 | iemNativeVarFreeAll(pReNative); \
|
---|
4104 | } return off
|
---|
4105 |
|
---|
4106 |
|
---|
4107 |
|
---|
4108 | /*********************************************************************************************************************************
|
---|
4109 | * Emitters for standalone C-implementation deferals (IEM_MC_DEFER_TO_CIMPL_XXXX) *
|
---|
4110 | *********************************************************************************************************************************/
|
---|
4111 |
|
---|
4112 | #define IEM_MC_DEFER_TO_CIMPL_0_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
|
---|
4113 | pReNative->fMc = 0; \
|
---|
4114 | pReNative->fCImpl = (a_fFlags); \
|
---|
4115 | return iemNativeEmitCImplCall0(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a_cbInstr) /** @todo not used ... */
|
---|
4116 |
|
---|
4117 |
|
---|
4118 | #define IEM_MC_DEFER_TO_CIMPL_1_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
|
---|
4119 | pReNative->fMc = 0; \
|
---|
4120 | pReNative->fCImpl = (a_fFlags); \
|
---|
4121 | return iemNativeEmitCImplCall1(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a_cbInstr, a0)
|
---|
4122 |
|
---|
4123 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall1(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4124 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
4125 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0)
|
---|
4126 | {
|
---|
4127 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 1, uArg0, 0, 0);
|
---|
4128 | }
|
---|
4129 |
|
---|
4130 |
|
---|
4131 | #define IEM_MC_DEFER_TO_CIMPL_2_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
|
---|
4132 | pReNative->fMc = 0; \
|
---|
4133 | pReNative->fCImpl = (a_fFlags); \
|
---|
4134 | return iemNativeEmitCImplCall2(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
4135 | (uintptr_t)a_pfnCImpl, a_cbInstr, a0, a1)
|
---|
4136 |
|
---|
4137 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall2(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4138 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
4139 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0, uint64_t uArg1)
|
---|
4140 | {
|
---|
4141 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 2, uArg0, uArg1, 0);
|
---|
4142 | }
|
---|
4143 |
|
---|
4144 |
|
---|
4145 | #define IEM_MC_DEFER_TO_CIMPL_3_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
|
---|
4146 | pReNative->fMc = 0; \
|
---|
4147 | pReNative->fCImpl = (a_fFlags); \
|
---|
4148 | return iemNativeEmitCImplCall3(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
4149 | (uintptr_t)a_pfnCImpl, a_cbInstr, a0, a1, a2)
|
---|
4150 |
|
---|
4151 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall3(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4152 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
4153 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0, uint64_t uArg1,
|
---|
4154 | uint64_t uArg2)
|
---|
4155 | {
|
---|
4156 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 3, uArg0, uArg1, uArg2);
|
---|
4157 | }
|
---|
4158 |
|
---|
4159 |
|
---|
4160 |
|
---|
4161 | /*********************************************************************************************************************************
|
---|
4162 | * Emitters for advancing PC/RIP/EIP/IP (IEM_MC_ADVANCE_RIP_AND_FINISH_XXX) *
|
---|
4163 | *********************************************************************************************************************************/
|
---|
4164 |
|
---|
4165 | /** Emits the flags check for IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS
|
---|
4166 | * and the other _WITH_FLAGS MCs, see iemRegFinishClearingRF. */
|
---|
4167 | DECL_INLINE_THROW(uint32_t)
|
---|
4168 | iemNativeEmitFinishInstructionFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
4169 | {
|
---|
4170 | /*
|
---|
4171 | * If its not just X86_EFL_RF and CPUMCTX_INHIBIT_SHADOW that are set, we
|
---|
4172 | * return with special status code and make the execution loop deal with
|
---|
4173 | * this. If TF or CPUMCTX_DBG_HIT_DRX_MASK triggers, we have to raise an
|
---|
4174 | * exception and won't continue execution. While CPUMCTX_DBG_DBGF_MASK
|
---|
4175 | * could continue w/o interruption, it probably will drop into the
|
---|
4176 | * debugger, so not worth the effort of trying to services it here and we
|
---|
4177 | * just lump it in with the handling of the others.
|
---|
4178 | *
|
---|
4179 | * To simplify the code and the register state management even more (wrt
|
---|
4180 | * immediate in AND operation), we always update the flags and skip the
|
---|
4181 | * extra check associated conditional jump.
|
---|
4182 | */
|
---|
4183 | AssertCompile( (X86_EFL_TF | X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)
|
---|
4184 | <= UINT32_MAX);
|
---|
4185 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4186 | kIemNativeGstRegUse_ForUpdate);
|
---|
4187 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfAnySet(pReNative, off, idxEflReg,
|
---|
4188 | X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK,
|
---|
4189 | iemNativeLabelCreate(pReNative, kIemNativeLabelType_ReturnWithFlags));
|
---|
4190 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxEflReg, ~(uint32_t)(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW));
|
---|
4191 | off = iemNativeEmitStoreGprToVCpuU32(pReNative, off, idxEflReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.eflags));
|
---|
4192 |
|
---|
4193 | /* Free but don't flush the EFLAGS register. */
|
---|
4194 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4195 |
|
---|
4196 | return off;
|
---|
4197 | }
|
---|
4198 |
|
---|
4199 |
|
---|
4200 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr) \
|
---|
4201 | off = iemNativeEmitAddToRip64AndFinishingNoFlags(pReNative, off, (a_cbInstr))
|
---|
4202 |
|
---|
4203 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_cbInstr) \
|
---|
4204 | IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr); \
|
---|
4205 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4206 |
|
---|
4207 | /** Same as iemRegAddToRip64AndFinishingNoFlags. */
|
---|
4208 | DECL_INLINE_THROW(uint32_t)
|
---|
4209 | iemNativeEmitAddToRip64AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
4210 | {
|
---|
4211 | /* Allocate a temporary PC register. */
|
---|
4212 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4213 |
|
---|
4214 | /* Perform the addition and store the result. */
|
---|
4215 | off = iemNativeEmitAddGprImm8(pReNative, off, idxPcReg, cbInstr);
|
---|
4216 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4217 |
|
---|
4218 | /* Free but don't flush the PC register. */
|
---|
4219 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4220 |
|
---|
4221 | return off;
|
---|
4222 | }
|
---|
4223 |
|
---|
4224 |
|
---|
4225 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr) \
|
---|
4226 | off = iemNativeEmitAddToEip32AndFinishingNoFlags(pReNative, off, (a_cbInstr))
|
---|
4227 |
|
---|
4228 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_cbInstr) \
|
---|
4229 | IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr); \
|
---|
4230 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4231 |
|
---|
4232 | /** Same as iemRegAddToEip32AndFinishingNoFlags. */
|
---|
4233 | DECL_INLINE_THROW(uint32_t)
|
---|
4234 | iemNativeEmitAddToEip32AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
4235 | {
|
---|
4236 | /* Allocate a temporary PC register. */
|
---|
4237 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4238 |
|
---|
4239 | /* Perform the addition and store the result. */
|
---|
4240 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxPcReg, cbInstr);
|
---|
4241 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4242 |
|
---|
4243 | /* Free but don't flush the PC register. */
|
---|
4244 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4245 |
|
---|
4246 | return off;
|
---|
4247 | }
|
---|
4248 |
|
---|
4249 |
|
---|
4250 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr) \
|
---|
4251 | off = iemNativeEmitAddToIp16AndFinishingNoFlags(pReNative, off, (a_cbInstr))
|
---|
4252 |
|
---|
4253 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_cbInstr) \
|
---|
4254 | IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr); \
|
---|
4255 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4256 |
|
---|
4257 | /** Same as iemRegAddToIp16AndFinishingNoFlags. */
|
---|
4258 | DECL_INLINE_THROW(uint32_t)
|
---|
4259 | iemNativeEmitAddToIp16AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
4260 | {
|
---|
4261 | /* Allocate a temporary PC register. */
|
---|
4262 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4263 |
|
---|
4264 | /* Perform the addition and store the result. */
|
---|
4265 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxPcReg, cbInstr);
|
---|
4266 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
4267 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4268 |
|
---|
4269 | /* Free but don't flush the PC register. */
|
---|
4270 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4271 |
|
---|
4272 | return off;
|
---|
4273 | }
|
---|
4274 |
|
---|
4275 |
|
---|
4276 |
|
---|
4277 | /*********************************************************************************************************************************
|
---|
4278 | * Emitters for changing PC/RIP/EIP/IP with a relative jump (IEM_MC_REL_JMP_XXX_AND_FINISH_XXX). *
|
---|
4279 | *********************************************************************************************************************************/
|
---|
4280 |
|
---|
4281 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize) \
|
---|
4282 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
4283 | (a_enmEffOpSize), pCallEntry->idxInstr)
|
---|
4284 |
|
---|
4285 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize) \
|
---|
4286 | IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize); \
|
---|
4287 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4288 |
|
---|
4289 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr) \
|
---|
4290 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
4291 | IEMMODE_16BIT, pCallEntry->idxInstr)
|
---|
4292 |
|
---|
4293 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i16, a_cbInstr) \
|
---|
4294 | IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr); \
|
---|
4295 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4296 |
|
---|
4297 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr) \
|
---|
4298 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
4299 | IEMMODE_64BIT, pCallEntry->idxInstr)
|
---|
4300 |
|
---|
4301 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i32, a_cbInstr) \
|
---|
4302 | IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr); \
|
---|
4303 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4304 |
|
---|
4305 | /** Same as iemRegRip64RelativeJumpS8AndFinishNoFlags,
|
---|
4306 | * iemRegRip64RelativeJumpS16AndFinishNoFlags and
|
---|
4307 | * iemRegRip64RelativeJumpS32AndFinishNoFlags. */
|
---|
4308 | DECL_INLINE_THROW(uint32_t)
|
---|
4309 | iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr,
|
---|
4310 | int32_t offDisp, IEMMODE enmEffOpSize, uint8_t idxInstr)
|
---|
4311 | {
|
---|
4312 | Assert(enmEffOpSize == IEMMODE_64BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
4313 |
|
---|
4314 | /* We speculatively modify PC and may raise #GP(0), so make sure the right value is in CPUMCTX. */
|
---|
4315 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
4316 |
|
---|
4317 | /* Allocate a temporary PC register. */
|
---|
4318 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4319 |
|
---|
4320 | /* Perform the addition. */
|
---|
4321 | off = iemNativeEmitAddGprImm(pReNative, off, idxPcReg, (int64_t)offDisp + cbInstr);
|
---|
4322 |
|
---|
4323 | if (RT_LIKELY(enmEffOpSize == IEMMODE_64BIT))
|
---|
4324 | {
|
---|
4325 | /* Check that the address is canonical, raising #GP(0) + exit TB if it isn't. */
|
---|
4326 | off = iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(pReNative, off, idxPcReg, idxInstr);
|
---|
4327 | }
|
---|
4328 | else
|
---|
4329 | {
|
---|
4330 | /* Just truncate the result to 16-bit IP. */
|
---|
4331 | Assert(enmEffOpSize == IEMMODE_16BIT);
|
---|
4332 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
4333 | }
|
---|
4334 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4335 |
|
---|
4336 | /* Free but don't flush the PC register. */
|
---|
4337 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4338 |
|
---|
4339 | return off;
|
---|
4340 | }
|
---|
4341 |
|
---|
4342 |
|
---|
4343 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize) \
|
---|
4344 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
4345 | (a_enmEffOpSize), pCallEntry->idxInstr)
|
---|
4346 |
|
---|
4347 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize) \
|
---|
4348 | IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize); \
|
---|
4349 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4350 |
|
---|
4351 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr) \
|
---|
4352 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
4353 | IEMMODE_16BIT, pCallEntry->idxInstr)
|
---|
4354 |
|
---|
4355 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i16, a_cbInstr) \
|
---|
4356 | IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr); \
|
---|
4357 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4358 |
|
---|
4359 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr) \
|
---|
4360 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
4361 | IEMMODE_32BIT, pCallEntry->idxInstr)
|
---|
4362 |
|
---|
4363 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i32, a_cbInstr) \
|
---|
4364 | IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr); \
|
---|
4365 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4366 |
|
---|
4367 | /** Same as iemRegEip32RelativeJumpS8AndFinishNoFlags,
|
---|
4368 | * iemRegEip32RelativeJumpS16AndFinishNoFlags and
|
---|
4369 | * iemRegEip32RelativeJumpS32AndFinishNoFlags. */
|
---|
4370 | DECL_INLINE_THROW(uint32_t)
|
---|
4371 | iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr,
|
---|
4372 | int32_t offDisp, IEMMODE enmEffOpSize, uint8_t idxInstr)
|
---|
4373 | {
|
---|
4374 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
4375 |
|
---|
4376 | /* We speculatively modify PC and may raise #GP(0), so make sure the right value is in CPUMCTX. */
|
---|
4377 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
4378 |
|
---|
4379 | /* Allocate a temporary PC register. */
|
---|
4380 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4381 |
|
---|
4382 | /* Perform the addition. */
|
---|
4383 | off = iemNativeEmitAddGpr32Imm(pReNative, off, idxPcReg, offDisp + cbInstr);
|
---|
4384 |
|
---|
4385 | /* Truncate the result to 16-bit IP if the operand size is 16-bit. */
|
---|
4386 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
4387 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
4388 |
|
---|
4389 | /* Perform limit checking, potentially raising #GP(0) and exit the TB. */
|
---|
4390 | off = iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(pReNative, off, idxPcReg, X86_SREG_CS, idxInstr);
|
---|
4391 |
|
---|
4392 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4393 |
|
---|
4394 | /* Free but don't flush the PC register. */
|
---|
4395 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4396 |
|
---|
4397 | return off;
|
---|
4398 | }
|
---|
4399 |
|
---|
4400 |
|
---|
4401 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr) \
|
---|
4402 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), pCallEntry->idxInstr)
|
---|
4403 |
|
---|
4404 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i8, a_cbInstr) \
|
---|
4405 | IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr); \
|
---|
4406 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4407 |
|
---|
4408 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr) \
|
---|
4409 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), pCallEntry->idxInstr)
|
---|
4410 |
|
---|
4411 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i16, a_cbInstr) \
|
---|
4412 | IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr); \
|
---|
4413 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4414 |
|
---|
4415 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr) \
|
---|
4416 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), pCallEntry->idxInstr)
|
---|
4417 |
|
---|
4418 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i32, a_cbInstr) \
|
---|
4419 | IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr); \
|
---|
4420 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
4421 |
|
---|
4422 | /** Same as iemRegIp16RelativeJumpS8AndFinishNoFlags. */
|
---|
4423 | DECL_INLINE_THROW(uint32_t)
|
---|
4424 | iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4425 | uint8_t cbInstr, int32_t offDisp, uint8_t idxInstr)
|
---|
4426 | {
|
---|
4427 | /* We speculatively modify PC and may raise #GP(0), so make sure the right value is in CPUMCTX. */
|
---|
4428 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
4429 |
|
---|
4430 | /* Allocate a temporary PC register. */
|
---|
4431 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
4432 |
|
---|
4433 | /* Perform the addition, clamp the result, check limit (may #GP(0) + exit TB) and store the result. */
|
---|
4434 | off = iemNativeEmitAddGpr32Imm(pReNative, off, idxPcReg, offDisp + cbInstr);
|
---|
4435 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
4436 | off = iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(pReNative, off, idxPcReg, X86_SREG_CS, idxInstr);
|
---|
4437 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
4438 |
|
---|
4439 | /* Free but don't flush the PC register. */
|
---|
4440 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
4441 |
|
---|
4442 | return off;
|
---|
4443 | }
|
---|
4444 |
|
---|
4445 |
|
---|
4446 |
|
---|
4447 | /*********************************************************************************************************************************
|
---|
4448 | * Emitters for conditionals (IEM_MC_IF_XXX, IEM_MC_ELSE, IEM_MC_ENDIF) *
|
---|
4449 | *********************************************************************************************************************************/
|
---|
4450 |
|
---|
4451 | /**
|
---|
4452 | * Pushes an IEM_MC_IF_XXX onto the condition stack.
|
---|
4453 | *
|
---|
4454 | * @returns Pointer to the condition stack entry on success, NULL on failure
|
---|
4455 | * (too many nestings)
|
---|
4456 | */
|
---|
4457 | DECL_INLINE_THROW(PIEMNATIVECOND) iemNativeCondPushIf(PIEMRECOMPILERSTATE pReNative)
|
---|
4458 | {
|
---|
4459 | uint32_t const idxStack = pReNative->cCondDepth;
|
---|
4460 | AssertStmt(idxStack < RT_ELEMENTS(pReNative->aCondStack), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_COND_TOO_DEEPLY_NESTED));
|
---|
4461 |
|
---|
4462 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[idxStack];
|
---|
4463 | pReNative->cCondDepth = (uint8_t)(idxStack + 1);
|
---|
4464 |
|
---|
4465 | uint16_t const uCondSeqNo = ++pReNative->uCondSeqNo;
|
---|
4466 | pEntry->fInElse = false;
|
---|
4467 | pEntry->idxLabelElse = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Else, UINT32_MAX /*offWhere*/, uCondSeqNo);
|
---|
4468 | pEntry->idxLabelEndIf = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Endif, UINT32_MAX /*offWhere*/, uCondSeqNo);
|
---|
4469 |
|
---|
4470 | return pEntry;
|
---|
4471 | }
|
---|
4472 |
|
---|
4473 |
|
---|
4474 | /**
|
---|
4475 | * Start of the if-block, snapshotting the register and variable state.
|
---|
4476 | */
|
---|
4477 | DECL_INLINE_THROW(void)
|
---|
4478 | iemNativeCondStartIfBlock(PIEMRECOMPILERSTATE pReNative, uint32_t offIfBlock, uint32_t idxLabelIf = UINT32_MAX)
|
---|
4479 | {
|
---|
4480 | Assert(offIfBlock != UINT32_MAX);
|
---|
4481 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
4482 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
4483 | Assert(!pEntry->fInElse);
|
---|
4484 |
|
---|
4485 | /* Define the start of the IF block if request or for disassembly purposes. */
|
---|
4486 | if (idxLabelIf != UINT32_MAX)
|
---|
4487 | iemNativeLabelDefine(pReNative, idxLabelIf, offIfBlock);
|
---|
4488 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
4489 | else
|
---|
4490 | iemNativeLabelCreate(pReNative, kIemNativeLabelType_If, offIfBlock, pReNative->paLabels[pEntry->idxLabelElse].uData);
|
---|
4491 | #else
|
---|
4492 | RT_NOREF(offIfBlock);
|
---|
4493 | #endif
|
---|
4494 |
|
---|
4495 | /* Copy the initial state so we can restore it in the 'else' block. */
|
---|
4496 | pEntry->InitialState = pReNative->Core;
|
---|
4497 | }
|
---|
4498 |
|
---|
4499 |
|
---|
4500 | #define IEM_MC_ELSE() } while (0); \
|
---|
4501 | off = iemNativeEmitElse(pReNative, off); \
|
---|
4502 | do {
|
---|
4503 |
|
---|
4504 | /** Emits code related to IEM_MC_ELSE. */
|
---|
4505 | DECL_INLINE_THROW(uint32_t) iemNativeEmitElse(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
4506 | {
|
---|
4507 | /* Check sanity and get the conditional stack entry. */
|
---|
4508 | Assert(off != UINT32_MAX);
|
---|
4509 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
4510 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
4511 | Assert(!pEntry->fInElse);
|
---|
4512 |
|
---|
4513 | /* Jump to the endif */
|
---|
4514 | off = iemNativeEmitJmpToLabel(pReNative, off, pEntry->idxLabelEndIf);
|
---|
4515 |
|
---|
4516 | /* Define the else label and enter the else part of the condition. */
|
---|
4517 | iemNativeLabelDefine(pReNative, pEntry->idxLabelElse, off);
|
---|
4518 | pEntry->fInElse = true;
|
---|
4519 |
|
---|
4520 | /* Snapshot the core state so we can do a merge at the endif and restore
|
---|
4521 | the snapshot we took at the start of the if-block. */
|
---|
4522 | pEntry->IfFinalState = pReNative->Core;
|
---|
4523 | pReNative->Core = pEntry->InitialState;
|
---|
4524 |
|
---|
4525 | return off;
|
---|
4526 | }
|
---|
4527 |
|
---|
4528 |
|
---|
4529 | #define IEM_MC_ENDIF() } while (0); \
|
---|
4530 | off = iemNativeEmitEndIf(pReNative, off)
|
---|
4531 |
|
---|
4532 | /** Emits code related to IEM_MC_ENDIF. */
|
---|
4533 | DECL_INLINE_THROW(uint32_t) iemNativeEmitEndIf(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
4534 | {
|
---|
4535 | /* Check sanity and get the conditional stack entry. */
|
---|
4536 | Assert(off != UINT32_MAX);
|
---|
4537 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
4538 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
4539 |
|
---|
4540 | /*
|
---|
4541 | * Now we have find common group with the core state at the end of the
|
---|
4542 | * if-final. Use the smallest common denominator and just drop anything
|
---|
4543 | * that isn't the same in both states.
|
---|
4544 | */
|
---|
4545 | /** @todo We could, maybe, shuffle registers around if we thought it helpful,
|
---|
4546 | * which is why we're doing this at the end of the else-block.
|
---|
4547 | * But we'd need more info about future for that to be worth the effort. */
|
---|
4548 | PCIEMNATIVECORESTATE const pOther = pEntry->fInElse ? &pEntry->IfFinalState : &pEntry->InitialState;
|
---|
4549 | if (memcmp(&pReNative->Core, pOther, sizeof(*pOther)) != 0)
|
---|
4550 | {
|
---|
4551 | /* shadow guest stuff first. */
|
---|
4552 | uint64_t fGstRegs = pReNative->Core.bmGstRegShadows;
|
---|
4553 | if (fGstRegs)
|
---|
4554 | {
|
---|
4555 | Assert(pReNative->Core.bmHstRegsWithGstShadow != 0);
|
---|
4556 | do
|
---|
4557 | {
|
---|
4558 | unsigned idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
4559 | fGstRegs &= ~RT_BIT_64(idxGstReg);
|
---|
4560 |
|
---|
4561 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
4562 | if ( !(pOther->bmGstRegShadows & RT_BIT_64(idxGstReg))
|
---|
4563 | || idxHstReg != pOther->aidxGstRegShadows[idxGstReg])
|
---|
4564 | {
|
---|
4565 | Log12(("iemNativeEmitEndIf: dropping gst %s from hst %s\n",
|
---|
4566 | g_aGstShadowInfo[idxGstReg].pszName, g_apszIemNativeHstRegNames[idxHstReg]));
|
---|
4567 | iemNativeRegClearGstRegShadowing(pReNative, idxHstReg, off);
|
---|
4568 | }
|
---|
4569 | } while (fGstRegs);
|
---|
4570 | }
|
---|
4571 | else
|
---|
4572 | Assert(pReNative->Core.bmHstRegsWithGstShadow == 0);
|
---|
4573 |
|
---|
4574 | /* Check variables next. For now we must require them to be identical
|
---|
4575 | or stuff we can recreate. */
|
---|
4576 | Assert(pReNative->Core.u64ArgVars == pOther->u64ArgVars);
|
---|
4577 | uint32_t fVars = pReNative->Core.bmVars | pOther->bmVars;
|
---|
4578 | if (fVars)
|
---|
4579 | {
|
---|
4580 | uint32_t const fVarsMustRemove = pReNative->Core.bmVars ^ pOther->bmVars;
|
---|
4581 | do
|
---|
4582 | {
|
---|
4583 | unsigned idxVar = ASMBitFirstSetU32(fVars) - 1;
|
---|
4584 | fVars &= ~RT_BIT_32(idxVar);
|
---|
4585 |
|
---|
4586 | if (!(fVarsMustRemove & RT_BIT_32(idxVar)))
|
---|
4587 | {
|
---|
4588 | if (pReNative->Core.aVars[idxVar].idxReg == pOther->aVars[idxVar].idxReg)
|
---|
4589 | continue;
|
---|
4590 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
4591 | {
|
---|
4592 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
4593 | if (idxHstReg != UINT8_MAX)
|
---|
4594 | {
|
---|
4595 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4596 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
4597 | Log12(("iemNativeEmitEndIf: Dropping hst reg %s for var #%u\n",
|
---|
4598 | g_apszIemNativeHstRegNames[idxHstReg], idxVar));
|
---|
4599 | }
|
---|
4600 | continue;
|
---|
4601 | }
|
---|
4602 | }
|
---|
4603 | else if (!(pReNative->Core.bmVars & RT_BIT_32(idxVar)))
|
---|
4604 | continue;
|
---|
4605 |
|
---|
4606 | /* Irreconcilable, so drop it. */
|
---|
4607 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
4608 | if (idxHstReg != UINT8_MAX)
|
---|
4609 | {
|
---|
4610 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4611 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
4612 | Log12(("iemNativeEmitEndIf: Dropping hst reg %s for var #%u (also dropped)\n",
|
---|
4613 | g_apszIemNativeHstRegNames[idxHstReg], idxVar));
|
---|
4614 | }
|
---|
4615 | Log11(("iemNativeEmitEndIf: Freeing variable #%u\n", idxVar));
|
---|
4616 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
4617 | } while (fVars);
|
---|
4618 | }
|
---|
4619 |
|
---|
4620 | /* Finally, check that the host register allocations matches. */
|
---|
4621 | AssertMsgStmt(pReNative->Core.bmHstRegs == pOther->bmHstRegs,
|
---|
4622 | ("Core.bmHstRegs=%#x pOther->bmHstRegs=%#x - %#x\n",
|
---|
4623 | pReNative->Core.bmHstRegs, pOther->bmHstRegs, pReNative->Core.bmHstRegs ^ pOther->bmHstRegs),
|
---|
4624 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_COND_ENDIF_RECONCILIATION_FAILED));
|
---|
4625 | }
|
---|
4626 |
|
---|
4627 | /*
|
---|
4628 | * Define the endif label and maybe the else one if we're still in the 'if' part.
|
---|
4629 | */
|
---|
4630 | if (!pEntry->fInElse)
|
---|
4631 | iemNativeLabelDefine(pReNative, pEntry->idxLabelElse, off);
|
---|
4632 | else
|
---|
4633 | Assert(pReNative->paLabels[pEntry->idxLabelElse].off <= off);
|
---|
4634 | iemNativeLabelDefine(pReNative, pEntry->idxLabelEndIf, off);
|
---|
4635 |
|
---|
4636 | /* Pop the conditional stack.*/
|
---|
4637 | pReNative->cCondDepth -= 1;
|
---|
4638 |
|
---|
4639 | return off;
|
---|
4640 | }
|
---|
4641 |
|
---|
4642 |
|
---|
4643 | #define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) \
|
---|
4644 | off = iemNativeEmitIfEflagAnysBitsSet(pReNative, off, (a_fBits)); \
|
---|
4645 | do {
|
---|
4646 |
|
---|
4647 | /** Emits code for IEM_MC_IF_EFL_ANY_BITS_SET. */
|
---|
4648 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagAnysBitsSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitsInEfl)
|
---|
4649 | {
|
---|
4650 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4651 |
|
---|
4652 | /* Get the eflags. */
|
---|
4653 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4654 | kIemNativeGstRegUse_ReadOnly);
|
---|
4655 |
|
---|
4656 | /* Test and jump. */
|
---|
4657 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxEflReg, fBitsInEfl, pEntry->idxLabelElse);
|
---|
4658 |
|
---|
4659 | /* Free but don't flush the EFlags register. */
|
---|
4660 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4661 |
|
---|
4662 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4663 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4664 |
|
---|
4665 | return off;
|
---|
4666 | }
|
---|
4667 |
|
---|
4668 |
|
---|
4669 | #define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) \
|
---|
4670 | off = iemNativeEmitIfEflagNoBitsSet(pReNative, off, (a_fBits)); \
|
---|
4671 | do {
|
---|
4672 |
|
---|
4673 | /** Emits code for IEM_MC_IF_EFL_NO_BITS_SET. */
|
---|
4674 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagNoBitsSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitsInEfl)
|
---|
4675 | {
|
---|
4676 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4677 |
|
---|
4678 | /* Get the eflags. */
|
---|
4679 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4680 | kIemNativeGstRegUse_ReadOnly);
|
---|
4681 |
|
---|
4682 | /* Test and jump. */
|
---|
4683 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfAnySet(pReNative, off, idxEflReg, fBitsInEfl, pEntry->idxLabelElse);
|
---|
4684 |
|
---|
4685 | /* Free but don't flush the EFlags register. */
|
---|
4686 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4687 |
|
---|
4688 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4689 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4690 |
|
---|
4691 | return off;
|
---|
4692 | }
|
---|
4693 |
|
---|
4694 |
|
---|
4695 | #define IEM_MC_IF_EFL_BIT_SET(a_fBit) \
|
---|
4696 | off = iemNativeEmitIfEflagsBitSet(pReNative, off, (a_fBit)); \
|
---|
4697 | do {
|
---|
4698 |
|
---|
4699 | /** Emits code for IEM_MC_IF_EFL_BIT_SET. */
|
---|
4700 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagsBitSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl)
|
---|
4701 | {
|
---|
4702 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4703 |
|
---|
4704 | /* Get the eflags. */
|
---|
4705 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4706 | kIemNativeGstRegUse_ReadOnly);
|
---|
4707 |
|
---|
4708 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
4709 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
4710 |
|
---|
4711 | /* Test and jump. */
|
---|
4712 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfNotSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
4713 |
|
---|
4714 | /* Free but don't flush the EFlags register. */
|
---|
4715 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4716 |
|
---|
4717 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4718 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4719 |
|
---|
4720 | return off;
|
---|
4721 | }
|
---|
4722 |
|
---|
4723 |
|
---|
4724 | #define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) \
|
---|
4725 | off = iemNativeEmitIfEflagsBitNotSet(pReNative, off, (a_fBit)); \
|
---|
4726 | do {
|
---|
4727 |
|
---|
4728 | /** Emits code for IEM_MC_IF_EFL_BIT_NOT_SET. */
|
---|
4729 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagsBitNotSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl)
|
---|
4730 | {
|
---|
4731 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4732 |
|
---|
4733 | /* Get the eflags. */
|
---|
4734 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4735 | kIemNativeGstRegUse_ReadOnly);
|
---|
4736 |
|
---|
4737 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
4738 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
4739 |
|
---|
4740 | /* Test and jump. */
|
---|
4741 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
4742 |
|
---|
4743 | /* Free but don't flush the EFlags register. */
|
---|
4744 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4745 |
|
---|
4746 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4747 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4748 |
|
---|
4749 | return off;
|
---|
4750 | }
|
---|
4751 |
|
---|
4752 |
|
---|
4753 | #define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
|
---|
4754 | off = iemNativeEmitIfEflagsTwoBitsEqual(pReNative, off, a_fBit1, a_fBit2, false /*fInverted*/); \
|
---|
4755 | do {
|
---|
4756 |
|
---|
4757 | #define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
|
---|
4758 | off = iemNativeEmitIfEflagsTwoBitsEqual(pReNative, off, a_fBit1, a_fBit2, true /*fInverted*/); \
|
---|
4759 | do {
|
---|
4760 |
|
---|
4761 | /** Emits code for IEM_MC_IF_EFL_BITS_EQ and IEM_MC_IF_EFL_BITS_NE. */
|
---|
4762 | DECL_INLINE_THROW(uint32_t)
|
---|
4763 | iemNativeEmitIfEflagsTwoBitsEqual(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4764 | uint32_t fBit1InEfl, uint32_t fBit2InEfl, bool fInverted)
|
---|
4765 | {
|
---|
4766 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4767 |
|
---|
4768 | /* Get the eflags. */
|
---|
4769 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4770 | kIemNativeGstRegUse_ReadOnly);
|
---|
4771 |
|
---|
4772 | unsigned const iBitNo1 = ASMBitFirstSetU32(fBit1InEfl) - 1;
|
---|
4773 | Assert(RT_BIT_32(iBitNo1) == fBit1InEfl);
|
---|
4774 |
|
---|
4775 | unsigned const iBitNo2 = ASMBitFirstSetU32(fBit2InEfl) - 1;
|
---|
4776 | Assert(RT_BIT_32(iBitNo2) == fBit2InEfl);
|
---|
4777 | Assert(iBitNo1 != iBitNo2);
|
---|
4778 |
|
---|
4779 | #ifdef RT_ARCH_AMD64
|
---|
4780 | uint8_t const idxTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBit1InEfl);
|
---|
4781 |
|
---|
4782 | off = iemNativeEmitAndGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
4783 | if (iBitNo1 > iBitNo2)
|
---|
4784 | off = iemNativeEmitShiftGpr32Right(pReNative, off, idxTmpReg, iBitNo1 - iBitNo2);
|
---|
4785 | else
|
---|
4786 | off = iemNativeEmitShiftGpr32Left(pReNative, off, idxTmpReg, iBitNo2 - iBitNo1);
|
---|
4787 | off = iemNativeEmitXorGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
4788 |
|
---|
4789 | #elif defined(RT_ARCH_ARM64)
|
---|
4790 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
4791 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
4792 |
|
---|
4793 | /* and tmpreg, eflreg, #1<<iBitNo1 */
|
---|
4794 | pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(idxTmpReg, idxEflReg, 0 /*uImm7SizeLen -> 32*/, 32 - iBitNo1, false /*f64Bit*/);
|
---|
4795 |
|
---|
4796 | /* eeyore tmpreg, eflreg, tmpreg, LSL/LSR, #abs(iBitNo2 - iBitNo1) */
|
---|
4797 | if (iBitNo1 > iBitNo2)
|
---|
4798 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
4799 | iBitNo1 - iBitNo2, kArmv8A64InstrShift_Lsr);
|
---|
4800 | else
|
---|
4801 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
4802 | iBitNo2 - iBitNo1, kArmv8A64InstrShift_Lsl);
|
---|
4803 |
|
---|
4804 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4805 |
|
---|
4806 | #else
|
---|
4807 | # error "Port me"
|
---|
4808 | #endif
|
---|
4809 |
|
---|
4810 | /* Test (bit #2 is set in tmpreg if not-equal) and jump. */
|
---|
4811 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxTmpReg, iBitNo2,
|
---|
4812 | pEntry->idxLabelElse, !fInverted /*fJmpIfSet*/);
|
---|
4813 |
|
---|
4814 | /* Free but don't flush the EFlags and tmp registers. */
|
---|
4815 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
4816 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4817 |
|
---|
4818 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4819 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4820 |
|
---|
4821 | return off;
|
---|
4822 | }
|
---|
4823 |
|
---|
4824 |
|
---|
4825 | #define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
|
---|
4826 | off = iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(pReNative, off, a_fBit, a_fBit1, a_fBit2, false /*fInverted*/); \
|
---|
4827 | do {
|
---|
4828 |
|
---|
4829 | #define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
|
---|
4830 | off = iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(pReNative, off, a_fBit, a_fBit1, a_fBit2, true /*fInverted*/); \
|
---|
4831 | do {
|
---|
4832 |
|
---|
4833 | /** Emits code for IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ and
|
---|
4834 | * IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE. */
|
---|
4835 | DECL_INLINE_THROW(uint32_t)
|
---|
4836 | iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl,
|
---|
4837 | uint32_t fBit1InEfl, uint32_t fBit2InEfl, bool fInverted)
|
---|
4838 | {
|
---|
4839 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4840 |
|
---|
4841 | /* We need an if-block label for the non-inverted variant. */
|
---|
4842 | uint32_t const idxLabelIf = fInverted ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_If, UINT32_MAX,
|
---|
4843 | pReNative->paLabels[pEntry->idxLabelElse].uData) : UINT32_MAX;
|
---|
4844 |
|
---|
4845 | /* Get the eflags. */
|
---|
4846 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4847 | kIemNativeGstRegUse_ReadOnly);
|
---|
4848 |
|
---|
4849 | /* Translate the flag masks to bit numbers. */
|
---|
4850 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
4851 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
4852 |
|
---|
4853 | unsigned const iBitNo1 = ASMBitFirstSetU32(fBit1InEfl) - 1;
|
---|
4854 | Assert(RT_BIT_32(iBitNo1) == fBit1InEfl);
|
---|
4855 | Assert(iBitNo1 != iBitNo);
|
---|
4856 |
|
---|
4857 | unsigned const iBitNo2 = ASMBitFirstSetU32(fBit2InEfl) - 1;
|
---|
4858 | Assert(RT_BIT_32(iBitNo2) == fBit2InEfl);
|
---|
4859 | Assert(iBitNo2 != iBitNo);
|
---|
4860 | Assert(iBitNo2 != iBitNo1);
|
---|
4861 |
|
---|
4862 | #ifdef RT_ARCH_AMD64
|
---|
4863 | uint8_t const idxTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBit1InEfl); /* This must come before we jump anywhere! */
|
---|
4864 | #elif defined(RT_ARCH_ARM64)
|
---|
4865 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
4866 | #endif
|
---|
4867 |
|
---|
4868 | /* Check for the lone bit first. */
|
---|
4869 | if (!fInverted)
|
---|
4870 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
4871 | else
|
---|
4872 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, idxLabelIf);
|
---|
4873 |
|
---|
4874 | /* Then extract and compare the other two bits. */
|
---|
4875 | #ifdef RT_ARCH_AMD64
|
---|
4876 | off = iemNativeEmitAndGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
4877 | if (iBitNo1 > iBitNo2)
|
---|
4878 | off = iemNativeEmitShiftGpr32Right(pReNative, off, idxTmpReg, iBitNo1 - iBitNo2);
|
---|
4879 | else
|
---|
4880 | off = iemNativeEmitShiftGpr32Left(pReNative, off, idxTmpReg, iBitNo2 - iBitNo1);
|
---|
4881 | off = iemNativeEmitXorGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
4882 |
|
---|
4883 | #elif defined(RT_ARCH_ARM64)
|
---|
4884 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
4885 |
|
---|
4886 | /* and tmpreg, eflreg, #1<<iBitNo1 */
|
---|
4887 | pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(idxTmpReg, idxEflReg, 0 /*uImm7SizeLen -> 32*/, 32 - iBitNo1, false /*f64Bit*/);
|
---|
4888 |
|
---|
4889 | /* eeyore tmpreg, eflreg, tmpreg, LSL/LSR, #abs(iBitNo2 - iBitNo1) */
|
---|
4890 | if (iBitNo1 > iBitNo2)
|
---|
4891 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
4892 | iBitNo1 - iBitNo2, kArmv8A64InstrShift_Lsr);
|
---|
4893 | else
|
---|
4894 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
4895 | iBitNo2 - iBitNo1, kArmv8A64InstrShift_Lsl);
|
---|
4896 |
|
---|
4897 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4898 |
|
---|
4899 | #else
|
---|
4900 | # error "Port me"
|
---|
4901 | #endif
|
---|
4902 |
|
---|
4903 | /* Test (bit #2 is set in tmpreg if not-equal) and jump. */
|
---|
4904 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxTmpReg, iBitNo2,
|
---|
4905 | pEntry->idxLabelElse, !fInverted /*fJmpIfSet*/);
|
---|
4906 |
|
---|
4907 | /* Free but don't flush the EFlags and tmp registers. */
|
---|
4908 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
4909 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4910 |
|
---|
4911 | /* Make a copy of the core state now as we start the if-block. */
|
---|
4912 | iemNativeCondStartIfBlock(pReNative, off, idxLabelIf);
|
---|
4913 |
|
---|
4914 | return off;
|
---|
4915 | }
|
---|
4916 |
|
---|
4917 |
|
---|
4918 | #define IEM_MC_IF_CX_IS_NZ() \
|
---|
4919 | off = iemNativeEmitIfCxIsNotZero(pReNative, off); \
|
---|
4920 | do {
|
---|
4921 |
|
---|
4922 | /** Emits code for IEM_MC_IF_CX_IS_NZ. */
|
---|
4923 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfCxIsNotZero(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
4924 | {
|
---|
4925 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4926 |
|
---|
4927 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
4928 | kIemNativeGstRegUse_ReadOnly);
|
---|
4929 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxGstRcxReg, UINT16_MAX, pEntry->idxLabelElse);
|
---|
4930 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
4931 |
|
---|
4932 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4933 | return off;
|
---|
4934 | }
|
---|
4935 |
|
---|
4936 |
|
---|
4937 | #define IEM_MC_IF_ECX_IS_NZ() \
|
---|
4938 | off = iemNativeEmitIfRcxEcxIsNotZero(pReNative, off, false /*f64Bit*/); \
|
---|
4939 | do {
|
---|
4940 |
|
---|
4941 | #define IEM_MC_IF_RCX_IS_NZ() \
|
---|
4942 | off = iemNativeEmitIfRcxEcxIsNotZero(pReNative, off, true /*f64Bit*/); \
|
---|
4943 | do {
|
---|
4944 |
|
---|
4945 | /** Emits code for IEM_MC_IF_ECX_IS_NZ and IEM_MC_IF_RCX_IS_NZ. */
|
---|
4946 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfRcxEcxIsNotZero(PIEMRECOMPILERSTATE pReNative, uint32_t off, bool f64Bit)
|
---|
4947 | {
|
---|
4948 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4949 |
|
---|
4950 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
4951 | kIemNativeGstRegUse_ReadOnly);
|
---|
4952 | off = iemNativeEmitTestIfGprIsZeroAndJmpToLabel(pReNative, off, idxGstRcxReg, f64Bit, pEntry->idxLabelElse);
|
---|
4953 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
4954 |
|
---|
4955 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4956 | return off;
|
---|
4957 | }
|
---|
4958 |
|
---|
4959 |
|
---|
4960 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
4961 | off = iemNativeEmitIfCxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/); \
|
---|
4962 | do {
|
---|
4963 |
|
---|
4964 | #define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
4965 | off = iemNativeEmitIfCxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/); \
|
---|
4966 | do {
|
---|
4967 |
|
---|
4968 | /** Emits code for IEM_MC_IF_CX_IS_NZ. */
|
---|
4969 | DECL_INLINE_THROW(uint32_t)
|
---|
4970 | iemNativeEmitIfCxIsNotZeroAndTestEflagsBit(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl, bool fCheckIfSet)
|
---|
4971 | {
|
---|
4972 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
4973 |
|
---|
4974 | /* We have to load both RCX and EFLAGS before we can start branching,
|
---|
4975 | otherwise we'll end up in the else-block with an inconsistent
|
---|
4976 | register allocator state.
|
---|
4977 | Doing EFLAGS first as it's more likely to be loaded, right? */
|
---|
4978 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
4979 | kIemNativeGstRegUse_ReadOnly);
|
---|
4980 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
4981 | kIemNativeGstRegUse_ReadOnly);
|
---|
4982 |
|
---|
4983 | /** @todo we could reduce this to a single branch instruction by spending a
|
---|
4984 | * temporary register and some setnz stuff. Not sure if loops are
|
---|
4985 | * worth it. */
|
---|
4986 | /* Check CX. */
|
---|
4987 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxGstRcxReg, UINT16_MAX, pEntry->idxLabelElse);
|
---|
4988 |
|
---|
4989 | /* Check the EFlags bit. */
|
---|
4990 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
4991 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
4992 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse,
|
---|
4993 | !fCheckIfSet /*fJmpIfSet*/);
|
---|
4994 |
|
---|
4995 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
4996 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
4997 |
|
---|
4998 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
4999 | return off;
|
---|
5000 | }
|
---|
5001 |
|
---|
5002 |
|
---|
5003 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
5004 | off = iemNativeEmitIfRcxEcxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/, false /*f64Bit*/); \
|
---|
5005 | do {
|
---|
5006 |
|
---|
5007 | #define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
5008 | off = iemNativeEmitIfRcxEcxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/, false /*f64Bit*/); \
|
---|
5009 | do {
|
---|
5010 |
|
---|
5011 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
|
---|
5012 | off = iemNativeEmitIfRcxEcxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/, true /*f64Bit*/); \
|
---|
5013 | do {
|
---|
5014 |
|
---|
5015 | #define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
5016 | off = iemNativeEmitIfRcxEcxIsNotZeroAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/, true /*f64Bit*/); \
|
---|
5017 | do {
|
---|
5018 |
|
---|
5019 | /** Emits code for IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET,
|
---|
5020 | * IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET,
|
---|
5021 | * IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET and
|
---|
5022 | * IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET. */
|
---|
5023 | DECL_INLINE_THROW(uint32_t)
|
---|
5024 | iemNativeEmitIfRcxEcxIsNotZeroAndTestEflagsBit(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
5025 | uint32_t fBitInEfl, bool fCheckIfSet, bool f64Bit)
|
---|
5026 | {
|
---|
5027 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
5028 |
|
---|
5029 | /* We have to load both RCX and EFLAGS before we can start branching,
|
---|
5030 | otherwise we'll end up in the else-block with an inconsistent
|
---|
5031 | register allocator state.
|
---|
5032 | Doing EFLAGS first as it's more likely to be loaded, right? */
|
---|
5033 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
5034 | kIemNativeGstRegUse_ReadOnly);
|
---|
5035 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
5036 | kIemNativeGstRegUse_ReadOnly);
|
---|
5037 |
|
---|
5038 | /** @todo we could reduce this to a single branch instruction by spending a
|
---|
5039 | * temporary register and some setnz stuff. Not sure if loops are
|
---|
5040 | * worth it. */
|
---|
5041 | /* Check RCX/ECX. */
|
---|
5042 | off = iemNativeEmitTestIfGprIsZeroAndJmpToLabel(pReNative, off, idxGstRcxReg, f64Bit, pEntry->idxLabelElse);
|
---|
5043 |
|
---|
5044 | /* Check the EFlags bit. */
|
---|
5045 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
5046 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
5047 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse,
|
---|
5048 | !fCheckIfSet /*fJmpIfSet*/);
|
---|
5049 |
|
---|
5050 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
5051 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
5052 |
|
---|
5053 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
5054 | return off;
|
---|
5055 | }
|
---|
5056 |
|
---|
5057 |
|
---|
5058 |
|
---|
5059 | /*********************************************************************************************************************************
|
---|
5060 | * Emitters for IEM_MC_ARG_XXX, IEM_MC_LOCAL, IEM_MC_LOCAL_CONST, ++ *
|
---|
5061 | *********************************************************************************************************************************/
|
---|
5062 | /** Number of hidden arguments for CIMPL calls.
|
---|
5063 | * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
|
---|
5064 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
5065 | # define IEM_CIMPL_HIDDEN_ARGS 3
|
---|
5066 | #else
|
---|
5067 | # define IEM_CIMPL_HIDDEN_ARGS 2
|
---|
5068 | #endif
|
---|
5069 |
|
---|
5070 | #define IEM_MC_ARG(a_Type, a_Name, a_iArg) \
|
---|
5071 | uint8_t const a_Name = iemNativeArgAlloc(pReNative, (a_iArg), sizeof(a_Type))
|
---|
5072 |
|
---|
5073 | #define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) \
|
---|
5074 | uint8_t const a_Name = iemNativeArgAllocConst(pReNative, (a_iArg), sizeof(a_Type), (a_Value))
|
---|
5075 |
|
---|
5076 | #define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_iArg) \
|
---|
5077 | uint8_t const a_Name = iemNativeArgAllocLocalRef(pReNative, (a_iArg), (a_Local))
|
---|
5078 |
|
---|
5079 | #define IEM_MC_LOCAL(a_Type, a_Name) \
|
---|
5080 | uint8_t const a_Name = iemNativeVarAlloc(pReNative, sizeof(a_Type))
|
---|
5081 |
|
---|
5082 | #define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) \
|
---|
5083 | uint8_t const a_Name = iemNativeVarAllocConst(pReNative, sizeof(a_Type), (a_Value))
|
---|
5084 |
|
---|
5085 |
|
---|
5086 | /**
|
---|
5087 | * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
|
---|
5088 | */
|
---|
5089 | DECLINLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
|
---|
5090 | {
|
---|
5091 | if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
|
---|
5092 | return IEM_CIMPL_HIDDEN_ARGS;
|
---|
5093 | if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE)
|
---|
5094 | return 1;
|
---|
5095 | return 0;
|
---|
5096 | }
|
---|
5097 |
|
---|
5098 |
|
---|
5099 | /**
|
---|
5100 | * Internal work that allocates a variable with kind set to
|
---|
5101 | * kIemNativeVarKind_Invalid and no current stack allocation.
|
---|
5102 | *
|
---|
5103 | * The kind will either be set by the caller or later when the variable is first
|
---|
5104 | * assigned a value.
|
---|
5105 | */
|
---|
5106 | static uint8_t iemNativeVarAllocInt(PIEMRECOMPILERSTATE pReNative, uint8_t cbType)
|
---|
5107 | {
|
---|
5108 | Assert(cbType > 0 && cbType <= 64);
|
---|
5109 | unsigned const idxVar = ASMBitFirstSetU32(~pReNative->Core.bmVars) - 1;
|
---|
5110 | AssertStmt(idxVar < RT_ELEMENTS(pReNative->Core.aVars), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_EXHAUSTED));
|
---|
5111 | pReNative->Core.bmVars |= RT_BIT_32(idxVar);
|
---|
5112 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Invalid;
|
---|
5113 | pReNative->Core.aVars[idxVar].cbVar = cbType;
|
---|
5114 | pReNative->Core.aVars[idxVar].idxStackSlot = UINT8_MAX;
|
---|
5115 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
5116 | pReNative->Core.aVars[idxVar].uArgNo = UINT8_MAX;
|
---|
5117 | pReNative->Core.aVars[idxVar].idxReferrerVar = UINT8_MAX;
|
---|
5118 | pReNative->Core.aVars[idxVar].enmGstReg = kIemNativeGstReg_End;
|
---|
5119 | pReNative->Core.aVars[idxVar].u.uValue = 0;
|
---|
5120 | return idxVar;
|
---|
5121 | }
|
---|
5122 |
|
---|
5123 |
|
---|
5124 | /**
|
---|
5125 | * Internal work that allocates an argument variable w/o setting enmKind.
|
---|
5126 | */
|
---|
5127 | static uint8_t iemNativeArgAllocInt(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType)
|
---|
5128 | {
|
---|
5129 | iArgNo += iemNativeArgGetHiddenArgCount(pReNative);
|
---|
5130 | AssertStmt(iArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_1));
|
---|
5131 | AssertStmt(pReNative->Core.aidxArgVars[iArgNo] == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_DUP_ARG_NO));
|
---|
5132 |
|
---|
5133 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
5134 | pReNative->Core.aidxArgVars[iArgNo] = idxVar;
|
---|
5135 | pReNative->Core.aVars[idxVar].uArgNo = iArgNo;
|
---|
5136 | return idxVar;
|
---|
5137 | }
|
---|
5138 |
|
---|
5139 |
|
---|
5140 | /**
|
---|
5141 | * Changes the variable to a stack variable.
|
---|
5142 | *
|
---|
5143 | * Currently this is s only possible to do the first time the variable is used,
|
---|
5144 | * switching later is can be implemented but not done.
|
---|
5145 | *
|
---|
5146 | * @param pReNative The recompiler state.
|
---|
5147 | * @param idxVar The variable.
|
---|
5148 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS, VERR_IEM_VAR_IPE_2
|
---|
5149 | */
|
---|
5150 | static void iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
5151 | {
|
---|
5152 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5153 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
5154 | {
|
---|
5155 | /* We could in theory transition from immediate to stack as well, but it
|
---|
5156 | would involve the caller doing work storing the value on the stack. So,
|
---|
5157 | till that's required we only allow transition from invalid. */
|
---|
5158 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
5159 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
5160 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Stack;
|
---|
5161 |
|
---|
5162 | if (pReNative->Core.aVars[idxVar].idxStackSlot == UINT8_MAX)
|
---|
5163 | {
|
---|
5164 | if (pReNative->Core.aVars[idxVar].cbVar <= sizeof(uint64_t))
|
---|
5165 | {
|
---|
5166 | unsigned const iSlot = ASMBitFirstSetU32(~pReNative->Core.bmStack) - 1;
|
---|
5167 | AssertStmt(iSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
5168 | pReNative->Core.bmStack |= RT_BIT_32(iSlot);
|
---|
5169 | pReNative->Core.aVars[idxVar].idxStackSlot = iSlot;
|
---|
5170 | Log11(("iemNativeVarSetKindToStack: idxVar=%d iSlot=%#x\n", idxVar, iSlot));
|
---|
5171 | return;
|
---|
5172 | }
|
---|
5173 | /* cbVar -> fBitAlignMask: 16 -> 1; 32 -> 3; 64 -> 7;*/
|
---|
5174 | AssertCompile(RT_IS_POWER_OF_TWO(IEMNATIVE_FRAME_VAR_SLOTS)); /* If not we have to add an overflow check. */
|
---|
5175 | Assert(pReNative->Core.aVars[idxVar].cbVar <= 64);
|
---|
5176 | uint32_t const fBitAlignMask = RT_BIT_32(ASMBitLastSetU32(pReNative->Core.aVars[idxVar].cbVar) - 4) - 1;
|
---|
5177 | uint32_t fBitAllocMask = RT_BIT_32((pReNative->Core.aVars[idxVar].cbVar + 7) >> 3) - 1;
|
---|
5178 | uint32_t bmStack = ~pReNative->Core.bmStack;
|
---|
5179 | while (bmStack != UINT32_MAX)
|
---|
5180 | {
|
---|
5181 | unsigned const iSlot = ASMBitFirstSetU32(bmStack) - 1;
|
---|
5182 | AssertStmt(iSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
5183 | if (!(iSlot & fBitAlignMask))
|
---|
5184 | {
|
---|
5185 | if ((bmStack & (fBitAllocMask << iSlot)) == (fBitAllocMask << iSlot))
|
---|
5186 | {
|
---|
5187 | pReNative->Core.bmStack |= (fBitAllocMask << iSlot);
|
---|
5188 | pReNative->Core.aVars[idxVar].idxStackSlot = iSlot;
|
---|
5189 | Log11(("iemNativeVarSetKindToStack: idxVar=%d iSlot=%#x/%#x (cbVar=%#x)\n",
|
---|
5190 | idxVar, iSlot, fBitAllocMask, pReNative->Core.aVars[idxVar].cbVar));
|
---|
5191 | return;
|
---|
5192 | }
|
---|
5193 | }
|
---|
5194 | bmStack |= fBitAlignMask << (iSlot & ~fBitAlignMask);
|
---|
5195 | }
|
---|
5196 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
5197 | }
|
---|
5198 | }
|
---|
5199 | }
|
---|
5200 |
|
---|
5201 |
|
---|
5202 | /**
|
---|
5203 | * Changes it to a variable with a constant value.
|
---|
5204 | *
|
---|
5205 | * This does not require stack storage as we know the value and can always
|
---|
5206 | * reload it, unless of course it's referenced.
|
---|
5207 | *
|
---|
5208 | * @param pReNative The recompiler state.
|
---|
5209 | * @param idxVar The variable.
|
---|
5210 | * @param uValue The immediate value.
|
---|
5211 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS, VERR_IEM_VAR_IPE_2
|
---|
5212 | */
|
---|
5213 | static void iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue)
|
---|
5214 | {
|
---|
5215 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5216 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Immediate)
|
---|
5217 | {
|
---|
5218 | /* Only simple trasnsitions for now. */
|
---|
5219 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
5220 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
5221 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Immediate;
|
---|
5222 | }
|
---|
5223 | pReNative->Core.aVars[idxVar].u.uValue = uValue;
|
---|
5224 | }
|
---|
5225 |
|
---|
5226 |
|
---|
5227 | /**
|
---|
5228 | * Changes the variable to a reference (pointer) to @a idxOtherVar.
|
---|
5229 | *
|
---|
5230 | * @param pReNative The recompiler state.
|
---|
5231 | * @param idxVar The variable.
|
---|
5232 | * @param idxOtherVar The variable to take the (stack) address of.
|
---|
5233 | *
|
---|
5234 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS, VERR_IEM_VAR_IPE_2
|
---|
5235 | */
|
---|
5236 | static void iemNativeVarSetKindToLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint8_t idxOtherVar)
|
---|
5237 | {
|
---|
5238 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxVar)));
|
---|
5239 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxOtherVar)));
|
---|
5240 |
|
---|
5241 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_VarRef)
|
---|
5242 | {
|
---|
5243 | /* Only simple trasnsitions for now. */
|
---|
5244 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
5245 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
5246 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Immediate;
|
---|
5247 | }
|
---|
5248 | pReNative->Core.aVars[idxVar].u.idxRefVar = idxOtherVar;
|
---|
5249 |
|
---|
5250 | /* Update the other variable, ensure it's a stack variable. */
|
---|
5251 | /** @todo handle variables with const values... that's go boom now. */
|
---|
5252 | pReNative->Core.aVars[idxOtherVar].idxReferrerVar = idxVar;
|
---|
5253 | iemNativeVarSetKindToStack(pReNative, idxOtherVar);
|
---|
5254 | }
|
---|
5255 |
|
---|
5256 |
|
---|
5257 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType)
|
---|
5258 | {
|
---|
5259 | return iemNativeArgAllocInt(pReNative, iArgNo, cbType);
|
---|
5260 | }
|
---|
5261 |
|
---|
5262 |
|
---|
5263 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue)
|
---|
5264 | {
|
---|
5265 | uint8_t const idxVar = iemNativeArgAllocInt(pReNative, iArgNo, cbType);
|
---|
5266 | iemNativeVarSetKindToConst(pReNative, idxVar, uValue);
|
---|
5267 | return idxVar;
|
---|
5268 | }
|
---|
5269 |
|
---|
5270 |
|
---|
5271 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar)
|
---|
5272 | {
|
---|
5273 | AssertStmt( idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars)
|
---|
5274 | && (pReNative->Core.bmVars & RT_BIT_32(idxOtherVar))
|
---|
5275 | && pReNative->Core.aVars[idxOtherVar].uArgNo == UINT8_MAX,
|
---|
5276 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_1));
|
---|
5277 |
|
---|
5278 | uint8_t const idxArgVar = iemNativeArgAlloc(pReNative, iArgNo, sizeof(uintptr_t));
|
---|
5279 | iemNativeVarSetKindToLocalRef(pReNative, idxArgVar, idxOtherVar);
|
---|
5280 | return idxArgVar;
|
---|
5281 | }
|
---|
5282 |
|
---|
5283 |
|
---|
5284 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType)
|
---|
5285 | {
|
---|
5286 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
5287 | iemNativeVarSetKindToStack(pReNative, idxVar);
|
---|
5288 | return idxVar;
|
---|
5289 | }
|
---|
5290 |
|
---|
5291 |
|
---|
5292 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue)
|
---|
5293 | {
|
---|
5294 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
5295 | iemNativeVarSetKindToConst(pReNative, idxVar, uValue);
|
---|
5296 | return idxVar;
|
---|
5297 | }
|
---|
5298 |
|
---|
5299 |
|
---|
5300 | /**
|
---|
5301 | * Makes sure variable @a idxVar has a register assigned to it.
|
---|
5302 | *
|
---|
5303 | * @returns The host register number.
|
---|
5304 | * @param pReNative The recompiler state.
|
---|
5305 | * @param idxVar The variable.
|
---|
5306 | * @param poff Pointer to the instruction buffer offset.
|
---|
5307 | * In case a register needs to be freed up.
|
---|
5308 | */
|
---|
5309 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocRegister(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff)
|
---|
5310 | {
|
---|
5311 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5312 | Assert(pReNative->Core.aVars[idxVar].cbVar <= 8);
|
---|
5313 |
|
---|
5314 | uint8_t idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
5315 | if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5316 | {
|
---|
5317 | Assert( pReNative->Core.aVars[idxVar].enmKind > kIemNativeVarKind_Invalid
|
---|
5318 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End);
|
---|
5319 | return idxReg;
|
---|
5320 | }
|
---|
5321 |
|
---|
5322 | /*
|
---|
5323 | * If the kind of variable has not yet been set, default to 'stack'.
|
---|
5324 | */
|
---|
5325 | Assert( pReNative->Core.aVars[idxVar].enmKind >= kIemNativeVarKind_Invalid
|
---|
5326 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End);
|
---|
5327 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid)
|
---|
5328 | iemNativeVarSetKindToStack(pReNative, idxVar);
|
---|
5329 |
|
---|
5330 | /*
|
---|
5331 | * We have to allocate a register for the variable, even if its a stack one
|
---|
5332 | * as we don't know if there are modification being made to it before its
|
---|
5333 | * finalized (todo: analyze and insert hints about that?).
|
---|
5334 | *
|
---|
5335 | * If we can, we try get the correct register for argument variables. This
|
---|
5336 | * is assuming that most argument variables are fetched as close as possible
|
---|
5337 | * to the actual call, so that there aren't any interfering hidden calls
|
---|
5338 | * (memory accesses, etc) inbetween.
|
---|
5339 | *
|
---|
5340 | * If we cannot or it's a variable, we make sure no argument registers
|
---|
5341 | * that will be used by this MC block will be allocated here, and we always
|
---|
5342 | * prefer non-volatile registers to avoid needing to spill stuff for internal
|
---|
5343 | * call.
|
---|
5344 | */
|
---|
5345 | /** @todo Detect too early argument value fetches and warn about hidden
|
---|
5346 | * calls causing less optimal code to be generated in the python script. */
|
---|
5347 |
|
---|
5348 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
5349 | if ( uArgNo < RT_ELEMENTS(g_aidxIemNativeCallRegs)
|
---|
5350 | && !(pReNative->Core.bmHstRegs & RT_BIT_32(g_aidxIemNativeCallRegs[uArgNo])))
|
---|
5351 | idxReg = g_aidxIemNativeCallRegs[uArgNo];
|
---|
5352 | else
|
---|
5353 | {
|
---|
5354 | uint32_t const fNotArgsMask = ~g_afIemNativeCallRegs[RT_MIN(pReNative->cArgs, IEMNATIVE_CALL_ARG_GREG_COUNT)];
|
---|
5355 | uint32_t const fRegs = ~pReNative->Core.bmHstRegs
|
---|
5356 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
5357 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)
|
---|
5358 | & fNotArgsMask;
|
---|
5359 | if (fRegs)
|
---|
5360 | {
|
---|
5361 | /* Pick from the top as that both arm64 and amd64 have a block of non-volatile registers there. */
|
---|
5362 | idxReg = (uint8_t)ASMBitLastSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
5363 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
5364 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
5365 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
5366 | }
|
---|
5367 | else
|
---|
5368 | {
|
---|
5369 | idxReg = iemNativeRegAllocFindFree(pReNative, poff, false /*fPreferVolatile*/,
|
---|
5370 | IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & fNotArgsMask);
|
---|
5371 | AssertStmt(idxReg != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_ALLOCATOR_NO_FREE_VAR));
|
---|
5372 | }
|
---|
5373 | }
|
---|
5374 | iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Var, idxVar);
|
---|
5375 | pReNative->Core.aVars[idxVar].idxReg = idxReg;
|
---|
5376 | return idxReg;
|
---|
5377 | }
|
---|
5378 |
|
---|
5379 |
|
---|
5380 | /**
|
---|
5381 | * The value of variable @a idxVar will be written in full to the @a enmGstReg
|
---|
5382 | * guest register.
|
---|
5383 | *
|
---|
5384 | * This function makes sure there is a register for it and sets it to be the
|
---|
5385 | * current shadow copy of @a enmGstReg.
|
---|
5386 | *
|
---|
5387 | * @returns The host register number.
|
---|
5388 | * @param pReNative The recompiler state.
|
---|
5389 | * @param idxVar The variable.
|
---|
5390 | * @param enmGstReg The guest register this variable will be written to
|
---|
5391 | * after this call.
|
---|
5392 | * @param poff Pointer to the instruction buffer offset.
|
---|
5393 | * In case a register needs to be freed up or if the
|
---|
5394 | * variable content needs to be loaded off the stack.
|
---|
5395 | *
|
---|
5396 | * @note We DO NOT expect @a idxVar to be an argument variable,
|
---|
5397 | * because we can only in the commit stage of an instruction when this
|
---|
5398 | * function is used.
|
---|
5399 | */
|
---|
5400 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocRegisterForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
|
---|
5401 | IEMNATIVEGSTREG enmGstReg, uint32_t *poff)
|
---|
5402 | {
|
---|
5403 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5404 | AssertMsgStmt( pReNative->Core.aVars[idxVar].cbVar <= 8
|
---|
5405 | && ( pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Immediate
|
---|
5406 | || pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack),
|
---|
5407 | ("idxVar=%d cbVar=%d enmKind=%d enmGstReg=%s\n", idxVar, pReNative->Core.aVars[idxVar].cbVar,
|
---|
5408 | pReNative->Core.aVars[idxVar].enmKind, g_aGstShadowInfo[enmGstReg].pszName),
|
---|
5409 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_6));
|
---|
5410 |
|
---|
5411 | /*
|
---|
5412 | * This shouldn't ever be used for arguments, unless it's in a weird else
|
---|
5413 | * branch that doesn't do any calling and even then it's questionable.
|
---|
5414 | *
|
---|
5415 | * However, in case someone writes crazy wrong MC code and does register
|
---|
5416 | * updates before making calls, just use the regular register allocator to
|
---|
5417 | * ensure we get a register suitable for the intended argument number.
|
---|
5418 | */
|
---|
5419 | AssertStmt(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX, iemNativeVarAllocRegister(pReNative, idxVar, poff));
|
---|
5420 |
|
---|
5421 | /*
|
---|
5422 | * If there is already a register for the variable, we transfer/set the
|
---|
5423 | * guest shadow copy assignment to it.
|
---|
5424 | */
|
---|
5425 | uint8_t idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
5426 | if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5427 | {
|
---|
5428 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
5429 | {
|
---|
5430 | uint8_t const idxRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
5431 | iemNativeRegTransferGstRegShadowing(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], idxReg, enmGstReg, *poff);
|
---|
5432 | Log12(("iemNativeVarAllocRegisterForGuestReg: Moved %s for guest %s into %s for full write\n",
|
---|
5433 | g_apszIemNativeHstRegNames[idxRegOld], g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxReg]));
|
---|
5434 | }
|
---|
5435 | else
|
---|
5436 | {
|
---|
5437 | iemNativeRegMarkAsGstRegShadow(pReNative, idxReg, enmGstReg, *poff);
|
---|
5438 | Log12(("iemNativeVarAllocRegisterForGuestReg: Marking %s as copy of guest %s (full write)\n",
|
---|
5439 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
5440 | }
|
---|
5441 | /** @todo figure this one out. We need some way of making sure the register isn't
|
---|
5442 | * modified after this point, just in case we start writing crappy MC code. */
|
---|
5443 | pReNative->Core.aVars[idxVar].enmGstReg = enmGstReg;
|
---|
5444 | return idxReg;
|
---|
5445 | }
|
---|
5446 | Assert(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX);
|
---|
5447 |
|
---|
5448 | /*
|
---|
5449 | * Because this is supposed to be the commit stage, we're just tag along with the
|
---|
5450 | * temporary register allocator and upgrade it to a variable register.
|
---|
5451 | */
|
---|
5452 | idxReg = iemNativeRegAllocTmpForGuestReg(pReNative, poff, enmGstReg, kIemNativeGstRegUse_ForFullWrite);
|
---|
5453 | Assert(pReNative->Core.aHstRegs[idxReg].enmWhat == kIemNativeWhat_Tmp);
|
---|
5454 | Assert(pReNative->Core.aHstRegs[idxReg].idxVar == UINT8_MAX);
|
---|
5455 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Var;
|
---|
5456 | pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
|
---|
5457 | pReNative->Core.aVars[idxVar].idxReg = idxReg;
|
---|
5458 |
|
---|
5459 | /*
|
---|
5460 | * Now we need to load the register value.
|
---|
5461 | */
|
---|
5462 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Immediate)
|
---|
5463 | *poff = iemNativeEmitLoadGprImm64(pReNative, *poff, idxReg, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
5464 | else
|
---|
5465 | {
|
---|
5466 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
5467 | AssertStmt(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_7));
|
---|
5468 | int32_t const offDispBp = iemNativeStackCalcBpDisp(idxStackSlot);
|
---|
5469 | switch (pReNative->Core.aVars[idxVar].cbVar)
|
---|
5470 | {
|
---|
5471 | case sizeof(uint64_t):
|
---|
5472 | *poff = iemNativeEmitLoadGprByBp(pReNative, *poff, idxReg, offDispBp);
|
---|
5473 | break;
|
---|
5474 | case sizeof(uint32_t):
|
---|
5475 | *poff = iemNativeEmitLoadGprByBpU32(pReNative, *poff, idxReg, offDispBp);
|
---|
5476 | break;
|
---|
5477 | case sizeof(uint16_t):
|
---|
5478 | *poff = iemNativeEmitLoadGprByBpU16(pReNative, *poff, idxReg, offDispBp);
|
---|
5479 | break;
|
---|
5480 | case sizeof(uint8_t):
|
---|
5481 | *poff = iemNativeEmitLoadGprByBpU8(pReNative, *poff, idxReg, offDispBp);
|
---|
5482 | break;
|
---|
5483 | default:
|
---|
5484 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_6));
|
---|
5485 | }
|
---|
5486 | }
|
---|
5487 |
|
---|
5488 | return idxReg;
|
---|
5489 | }
|
---|
5490 |
|
---|
5491 |
|
---|
5492 | /**
|
---|
5493 | * Worker that frees the stack slots for variable @a idxVar if any allocated.
|
---|
5494 | *
|
---|
5495 | * This is used both by iemNativeVarFreeOneWorker and iemNativeEmitCallCommon.
|
---|
5496 | */
|
---|
5497 | DECL_FORCE_INLINE(void) iemNativeVarFreeStackSlots(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
5498 | {
|
---|
5499 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
5500 | Assert(idxStackSlot == UINT8_MAX || idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
|
---|
5501 | if (idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS)
|
---|
5502 | {
|
---|
5503 | uint8_t const cbVar = pReNative->Core.aVars[idxVar].cbVar;
|
---|
5504 | uint8_t const cSlots = (cbVar + sizeof(uint64_t) - 1) / sizeof(uint64_t);
|
---|
5505 | uint32_t const fAllocMask = (uint32_t)(RT_BIT_32(cSlots) - 1U);
|
---|
5506 | Assert(cSlots > 0);
|
---|
5507 | Assert(((pReNative->Core.bmStack >> idxStackSlot) & fAllocMask) == fAllocMask);
|
---|
5508 | Log11(("iemNativeVarFreeStackSlots: idxVar=%d iSlot=%#x/%#x (cbVar=%#x)\n", idxVar, idxStackSlot, fAllocMask, cbVar));
|
---|
5509 | pReNative->Core.bmStack &= ~(fAllocMask << idxStackSlot);
|
---|
5510 | pReNative->Core.aVars[idxVar].idxStackSlot = UINT8_MAX;
|
---|
5511 | }
|
---|
5512 | }
|
---|
5513 |
|
---|
5514 |
|
---|
5515 | /**
|
---|
5516 | * Worker that frees a single variable.
|
---|
5517 | *
|
---|
5518 | * ASSUMES that @a idxVar is valid.
|
---|
5519 | */
|
---|
5520 | DECLINLINE(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
5521 | {
|
---|
5522 | Assert( pReNative->Core.aVars[idxVar].enmKind > kIemNativeVarKind_Invalid
|
---|
5523 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End);
|
---|
5524 |
|
---|
5525 | /* Free the host register first if any assigned. */
|
---|
5526 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
5527 | if (idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5528 | {
|
---|
5529 | Assert(pReNative->Core.aHstRegs[idxHstReg].idxVar == idxVar);
|
---|
5530 | pReNative->Core.aHstRegs[idxHstReg].idxVar = UINT8_MAX;
|
---|
5531 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
5532 | }
|
---|
5533 |
|
---|
5534 | /* Free argument mapping. */
|
---|
5535 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
5536 | if (uArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars))
|
---|
5537 | pReNative->Core.aidxArgVars[uArgNo] = UINT8_MAX;
|
---|
5538 |
|
---|
5539 | /* Free the stack slots. */
|
---|
5540 | iemNativeVarFreeStackSlots(pReNative, idxVar);
|
---|
5541 |
|
---|
5542 | /* Free the actual variable. */
|
---|
5543 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Invalid;
|
---|
5544 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
5545 | }
|
---|
5546 |
|
---|
5547 |
|
---|
5548 | /**
|
---|
5549 | * Worker for iemNativeVarFreeAll that's called when there is anything to do.
|
---|
5550 | */
|
---|
5551 | DECLINLINE(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars)
|
---|
5552 | {
|
---|
5553 | while (bmVars != 0)
|
---|
5554 | {
|
---|
5555 | uint8_t const idxVar = ASMBitFirstSetU32(bmVars) - 1;
|
---|
5556 | bmVars &= ~RT_BIT_32(idxVar);
|
---|
5557 |
|
---|
5558 | #if 1 /** @todo optimize by simplifying this later... */
|
---|
5559 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
5560 | #else
|
---|
5561 | /* Only need to free the host register, the rest is done as bulk updates below. */
|
---|
5562 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
5563 | if (idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5564 | {
|
---|
5565 | Assert(pReNative->Core.aHstRegs[idxHstReg].idxVar == idxVar);
|
---|
5566 | pReNative->Core.aHstRegs[idxHstReg].idxVar = UINT8_MAX;
|
---|
5567 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
5568 | }
|
---|
5569 | #endif
|
---|
5570 | }
|
---|
5571 | #if 0 /** @todo optimize by simplifying this later... */
|
---|
5572 | pReNative->Core.bmVars = 0;
|
---|
5573 | pReNative->Core.bmStack = 0;
|
---|
5574 | pReNative->Core.u64ArgVars = UINT64_MAX;
|
---|
5575 | #endif
|
---|
5576 | }
|
---|
5577 |
|
---|
5578 |
|
---|
5579 | /**
|
---|
5580 | * This is called by IEM_MC_END() to clean up all variables.
|
---|
5581 | */
|
---|
5582 | DECL_FORCE_INLINE(void) iemNativeVarFreeAll(PIEMRECOMPILERSTATE pReNative)
|
---|
5583 | {
|
---|
5584 | uint32_t const bmVars = pReNative->Core.bmVars;
|
---|
5585 | if (bmVars != 0)
|
---|
5586 | iemNativeVarFreeAllSlow(pReNative, bmVars);
|
---|
5587 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX);
|
---|
5588 | Assert(pReNative->Core.bmStack == 0);
|
---|
5589 | }
|
---|
5590 |
|
---|
5591 |
|
---|
5592 | #define IEM_MC_FREE_LOCAL(a_Name) iemNativeVarFreeLocal(pReNative, a_Name)
|
---|
5593 |
|
---|
5594 | /**
|
---|
5595 | * This is called by IEM_MC_FREE_LOCAL.
|
---|
5596 | */
|
---|
5597 | DECLINLINE(void) iemNativeVarFreeLocal(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
5598 | {
|
---|
5599 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5600 | Assert(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX);
|
---|
5601 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
5602 | }
|
---|
5603 |
|
---|
5604 |
|
---|
5605 | #define IEM_MC_FREE_ARG(a_Name) iemNativeVarFreeArg(pReNative, a_Name)
|
---|
5606 |
|
---|
5607 | /**
|
---|
5608 | * This is called by IEM_MC_FREE_ARG.
|
---|
5609 | */
|
---|
5610 | DECLINLINE(void) iemNativeVarFreeArg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
5611 | {
|
---|
5612 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
5613 | Assert(pReNative->Core.aVars[idxVar].uArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars));
|
---|
5614 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
5615 | }
|
---|
5616 |
|
---|
5617 |
|
---|
5618 |
|
---|
5619 | /*********************************************************************************************************************************
|
---|
5620 | * Emitters for IEM_MC_CALL_CIMPL_XXX *
|
---|
5621 | *********************************************************************************************************************************/
|
---|
5622 |
|
---|
5623 | /**
|
---|
5624 | * Emits code to load a reference to the given guest register into @a idxGprDst.
|
---|
5625 | */
|
---|
5626 | DECL_INLINE_THROW(uint32_t)
|
---|
5627 | iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
|
---|
5628 | IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass)
|
---|
5629 | {
|
---|
5630 | /*
|
---|
5631 | * Get the offset relative to the CPUMCTX structure.
|
---|
5632 | */
|
---|
5633 | uint32_t offCpumCtx;
|
---|
5634 | switch (enmClass)
|
---|
5635 | {
|
---|
5636 | case kIemNativeGstRegRef_Gpr:
|
---|
5637 | Assert(idxRegInClass < 16);
|
---|
5638 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, aGRegs[idxRegInClass]);
|
---|
5639 | break;
|
---|
5640 |
|
---|
5641 | case kIemNativeGstRegRef_GprHighByte: /**< AH, CH, DH, BH*/
|
---|
5642 | Assert(idxRegInClass < 4);
|
---|
5643 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, aGRegs[0].bHi) + idxRegInClass * sizeof(CPUMCTXGREG);
|
---|
5644 | break;
|
---|
5645 |
|
---|
5646 | case kIemNativeGstRegRef_EFlags:
|
---|
5647 | Assert(idxRegInClass == 0);
|
---|
5648 | offCpumCtx = RT_UOFFSETOF(CPUMCTX, eflags);
|
---|
5649 | break;
|
---|
5650 |
|
---|
5651 | case kIemNativeGstRegRef_MxCsr:
|
---|
5652 | Assert(idxRegInClass == 0);
|
---|
5653 | offCpumCtx = RT_UOFFSETOF(CPUMCTX, XState.x87.MXCSR);
|
---|
5654 | break;
|
---|
5655 |
|
---|
5656 | case kIemNativeGstRegRef_FpuReg:
|
---|
5657 | Assert(idxRegInClass < 8);
|
---|
5658 | AssertFailed(); /** @todo what kind of indexing? */
|
---|
5659 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aRegs[idxRegInClass]);
|
---|
5660 | break;
|
---|
5661 |
|
---|
5662 | case kIemNativeGstRegRef_MReg:
|
---|
5663 | Assert(idxRegInClass < 8);
|
---|
5664 | AssertFailed(); /** @todo what kind of indexing? */
|
---|
5665 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aRegs[idxRegInClass]);
|
---|
5666 | break;
|
---|
5667 |
|
---|
5668 | case kIemNativeGstRegRef_XReg:
|
---|
5669 | Assert(idxRegInClass < 16);
|
---|
5670 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aXMM[idxRegInClass]);
|
---|
5671 | break;
|
---|
5672 |
|
---|
5673 | default:
|
---|
5674 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_5));
|
---|
5675 | }
|
---|
5676 |
|
---|
5677 | /*
|
---|
5678 | * Load the value into the destination register.
|
---|
5679 | */
|
---|
5680 | #ifdef RT_ARCH_AMD64
|
---|
5681 | off = iemNativeEmitLeaGprByVCpu(pReNative, off, idxGprDst, offCpumCtx + RT_UOFFSETOF(VMCPUCC, cpum.GstCtx));
|
---|
5682 |
|
---|
5683 | #elif defined(RT_ARCH_ARM64)
|
---|
5684 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
5685 | Assert(offCpumCtx < 4096);
|
---|
5686 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxGprDst, IEMNATIVE_REG_FIXED_PCPUMCTX, offCpumCtx);
|
---|
5687 |
|
---|
5688 | #else
|
---|
5689 | # error "Port me!"
|
---|
5690 | #endif
|
---|
5691 |
|
---|
5692 | return off;
|
---|
5693 | }
|
---|
5694 |
|
---|
5695 |
|
---|
5696 | /**
|
---|
5697 | * Common code for CIMPL and AIMPL calls.
|
---|
5698 | *
|
---|
5699 | * These are calls that uses argument variables and such. They should not be
|
---|
5700 | * confused with internal calls required to implement an MC operation,
|
---|
5701 | * like a TLB load and similar.
|
---|
5702 | *
|
---|
5703 | * Upon return all that is left to do is to load any hidden arguments and
|
---|
5704 | * perform the call. All argument variables are freed.
|
---|
5705 | *
|
---|
5706 | * @returns New code buffer offset; throws VBox status code on error.
|
---|
5707 | * @param pReNative The native recompile state.
|
---|
5708 | * @param off The code buffer offset.
|
---|
5709 | * @param cArgs The total nubmer of arguments (includes hidden
|
---|
5710 | * count).
|
---|
5711 | * @param cHiddenArgs The number of hidden arguments. The hidden
|
---|
5712 | * arguments must not have any variable declared for
|
---|
5713 | * them, whereas all the regular arguments must
|
---|
5714 | * (tstIEMCheckMc ensures this).
|
---|
5715 | */
|
---|
5716 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5717 | iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs)
|
---|
5718 | {
|
---|
5719 | #ifdef VBOX_STRICT
|
---|
5720 | /*
|
---|
5721 | * Assert sanity.
|
---|
5722 | */
|
---|
5723 | Assert(cArgs <= IEMNATIVE_CALL_MAX_ARG_COUNT);
|
---|
5724 | Assert(cHiddenArgs < IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
5725 | for (unsigned i = 0; i < cHiddenArgs; i++)
|
---|
5726 | Assert(pReNative->Core.aidxArgVars[i] == UINT8_MAX);
|
---|
5727 | for (unsigned i = cHiddenArgs; i < cArgs; i++)
|
---|
5728 | {
|
---|
5729 | Assert(pReNative->Core.aidxArgVars[i] != UINT8_MAX); /* checked by tstIEMCheckMc.cpp */
|
---|
5730 | Assert(pReNative->Core.bmVars & RT_BIT_32(pReNative->Core.aidxArgVars[i]));
|
---|
5731 | }
|
---|
5732 | #endif
|
---|
5733 |
|
---|
5734 | uint8_t const cRegArgs = RT_MIN(cArgs, RT_ELEMENTS(g_aidxIemNativeCallRegs));
|
---|
5735 |
|
---|
5736 | /*
|
---|
5737 | * First, go over the host registers that will be used for arguments and make
|
---|
5738 | * sure they either hold the desired argument or are free.
|
---|
5739 | */
|
---|
5740 | if (pReNative->Core.bmHstRegs & g_afIemNativeCallRegs[cRegArgs])
|
---|
5741 | for (uint32_t i = 0; i < cRegArgs; i++)
|
---|
5742 | {
|
---|
5743 | uint8_t const idxArgReg = g_aidxIemNativeCallRegs[i];
|
---|
5744 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxArgReg))
|
---|
5745 | {
|
---|
5746 | if (pReNative->Core.aHstRegs[idxArgReg].enmWhat == kIemNativeWhat_Var)
|
---|
5747 | {
|
---|
5748 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxArgReg].idxVar;
|
---|
5749 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
5750 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxArgReg);
|
---|
5751 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
5752 | if (uArgNo == i)
|
---|
5753 | { /* prefect */ }
|
---|
5754 | else
|
---|
5755 | {
|
---|
5756 | /* The variable allocator logic should make sure this is impossible. */
|
---|
5757 | AssertStmt(uArgNo == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_10));
|
---|
5758 |
|
---|
5759 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack)
|
---|
5760 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
5761 | else
|
---|
5762 | {
|
---|
5763 | /* just free it, can be reloaded if used again */
|
---|
5764 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
5765 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxArgReg);
|
---|
5766 | iemNativeRegClearGstRegShadowing(pReNative, idxArgReg, off);
|
---|
5767 | }
|
---|
5768 | }
|
---|
5769 | }
|
---|
5770 | else
|
---|
5771 | AssertStmt(pReNative->Core.aHstRegs[idxArgReg].enmWhat == kIemNativeWhat_Arg,
|
---|
5772 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_8));
|
---|
5773 | }
|
---|
5774 | }
|
---|
5775 |
|
---|
5776 | Assert(!(pReNative->Core.bmHstRegs & g_afIemNativeCallRegs[cHiddenArgs])); /* No variables for hidden arguments. */
|
---|
5777 |
|
---|
5778 | /*
|
---|
5779 | * Make sure the argument variables are loaded into their respective registers.
|
---|
5780 | *
|
---|
5781 | * We can optimize this by ASSUMING that any register allocations are for
|
---|
5782 | * registeres that have already been loaded and are ready. The previous step
|
---|
5783 | * saw to that.
|
---|
5784 | */
|
---|
5785 | if (~pReNative->Core.bmHstRegs & (g_afIemNativeCallRegs[cRegArgs] & ~g_afIemNativeCallRegs[cHiddenArgs]))
|
---|
5786 | for (unsigned i = cHiddenArgs; i < cRegArgs; i++)
|
---|
5787 | {
|
---|
5788 | uint8_t const idxArgReg = g_aidxIemNativeCallRegs[i];
|
---|
5789 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxArgReg))
|
---|
5790 | Assert( pReNative->Core.aHstRegs[idxArgReg].idxVar == pReNative->Core.aidxArgVars[i]
|
---|
5791 | && pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].uArgNo == i
|
---|
5792 | && pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].idxReg == idxArgReg);
|
---|
5793 | else
|
---|
5794 | {
|
---|
5795 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
5796 | if (pReNative->Core.aVars[idxVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5797 | {
|
---|
5798 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack);
|
---|
5799 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxArgReg, pReNative->Core.aVars[idxVar].idxReg);
|
---|
5800 | pReNative->Core.bmHstRegs = (pReNative->Core.bmHstRegs & ~RT_BIT_32(pReNative->Core.aVars[idxVar].idxReg))
|
---|
5801 | | RT_BIT_32(idxArgReg);
|
---|
5802 | pReNative->Core.aVars[idxVar].idxReg = idxArgReg;
|
---|
5803 | }
|
---|
5804 | else
|
---|
5805 | {
|
---|
5806 | /* Use ARG0 as temp for stuff we need registers for. */
|
---|
5807 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
5808 | {
|
---|
5809 | case kIemNativeVarKind_Stack:
|
---|
5810 | AssertStmt(pReNative->Core.aVars[idxVar].idxStackSlot != UINT8_MAX,
|
---|
5811 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
5812 | off = iemNativeEmitLoadGprByBp(pReNative, off, idxArgReg, iemNativeVarCalcBpDisp(pReNative, idxVar));
|
---|
5813 | continue;
|
---|
5814 |
|
---|
5815 | case kIemNativeVarKind_Immediate:
|
---|
5816 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxArgReg, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
5817 | continue;
|
---|
5818 |
|
---|
5819 | case kIemNativeVarKind_VarRef:
|
---|
5820 | {
|
---|
5821 | uint8_t const idxOtherVar = pReNative->Core.aVars[idxVar].u.idxRefVar;
|
---|
5822 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
5823 | AssertStmt(pReNative->Core.aVars[idxOtherVar].idxStackSlot != UINT8_MAX,
|
---|
5824 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_4));
|
---|
5825 | off = iemNativeEmitLeaGprByBp(pReNative, off, idxArgReg,
|
---|
5826 | iemNativeStackCalcBpDisp(pReNative->Core.aVars[idxOtherVar].idxStackSlot));
|
---|
5827 | continue;
|
---|
5828 | }
|
---|
5829 |
|
---|
5830 | case kIemNativeVarKind_GstRegRef:
|
---|
5831 | off = iemNativeEmitLeaGprByGstRegRef(pReNative, off, idxArgReg,
|
---|
5832 | pReNative->Core.aVars[idxVar].u.GstRegRef.enmClass,
|
---|
5833 | pReNative->Core.aVars[idxVar].u.GstRegRef.idx);
|
---|
5834 | continue;
|
---|
5835 |
|
---|
5836 | case kIemNativeVarKind_Invalid:
|
---|
5837 | case kIemNativeVarKind_End:
|
---|
5838 | break;
|
---|
5839 | }
|
---|
5840 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
5841 | }
|
---|
5842 | }
|
---|
5843 | }
|
---|
5844 | #ifdef VBOX_STRICT
|
---|
5845 | else
|
---|
5846 | for (unsigned i = cHiddenArgs; i < cRegArgs; i++)
|
---|
5847 | {
|
---|
5848 | Assert(pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].uArgNo == i);
|
---|
5849 | Assert(pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].idxReg == g_aidxIemNativeCallRegs[i]);
|
---|
5850 | }
|
---|
5851 | #endif
|
---|
5852 |
|
---|
5853 | #ifdef IEMNATIVE_FP_OFF_STACK_ARG0
|
---|
5854 | /*
|
---|
5855 | * If there are any stack arguments, make sure they are in their place as well.
|
---|
5856 | *
|
---|
5857 | * We can use IEMNATIVE_CALL_ARG0_GREG as temporary register since it the
|
---|
5858 | * caller will load it later and it must be free (see first loop).
|
---|
5859 | */
|
---|
5860 | if (cArgs > IEMNATIVE_CALL_ARG_GREG_COUNT)
|
---|
5861 | for (unsigned i = IEMNATIVE_CALL_ARG_GREG_COUNT; i < cArgs; i++)
|
---|
5862 | {
|
---|
5863 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
5864 | int32_t const offBpDisp = g_aoffIemNativeCallStackArgBpDisp[i - IEMNATIVE_CALL_ARG_GREG_COUNT];
|
---|
5865 | if (pReNative->Core.aVars[idxVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
5866 | {
|
---|
5867 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack); /* Imm as well? */
|
---|
5868 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, pReNative->Core.aVars[idxVar].idxReg);
|
---|
5869 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(pReNative->Core.aVars[idxVar].idxReg);
|
---|
5870 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
5871 | }
|
---|
5872 | else
|
---|
5873 | {
|
---|
5874 | /* Use ARG0 as temp for stuff we need registers for. */
|
---|
5875 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
5876 | {
|
---|
5877 | case kIemNativeVarKind_Stack:
|
---|
5878 | AssertStmt(pReNative->Core.aVars[idxVar].idxStackSlot != UINT8_MAX,
|
---|
5879 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
5880 | off = iemNativeEmitLoadGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG /* is free */,
|
---|
5881 | iemNativeVarCalcBpDisp(pReNative, idxVar));
|
---|
5882 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
5883 | continue;
|
---|
5884 |
|
---|
5885 | case kIemNativeVarKind_Immediate:
|
---|
5886 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, offBpDisp, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
5887 | continue;
|
---|
5888 |
|
---|
5889 | case kIemNativeVarKind_VarRef:
|
---|
5890 | {
|
---|
5891 | uint8_t const idxOtherVar = pReNative->Core.aVars[idxVar].u.idxRefVar;
|
---|
5892 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
5893 | AssertStmt(pReNative->Core.aVars[idxOtherVar].idxStackSlot != UINT8_MAX,
|
---|
5894 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_4));
|
---|
5895 | off = iemNativeEmitLeaGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG,
|
---|
5896 | iemNativeStackCalcBpDisp(pReNative->Core.aVars[idxOtherVar].idxStackSlot));
|
---|
5897 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
5898 | continue;
|
---|
5899 | }
|
---|
5900 |
|
---|
5901 | case kIemNativeVarKind_GstRegRef:
|
---|
5902 | off = iemNativeEmitLeaGprByGstRegRef(pReNative, off, IEMNATIVE_CALL_ARG0_GREG,
|
---|
5903 | pReNative->Core.aVars[idxVar].u.GstRegRef.enmClass,
|
---|
5904 | pReNative->Core.aVars[idxVar].u.GstRegRef.idx);
|
---|
5905 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
5906 | continue;
|
---|
5907 |
|
---|
5908 | case kIemNativeVarKind_Invalid:
|
---|
5909 | case kIemNativeVarKind_End:
|
---|
5910 | break;
|
---|
5911 | }
|
---|
5912 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
5913 | }
|
---|
5914 | }
|
---|
5915 | #else
|
---|
5916 | AssertCompile(IEMNATIVE_CALL_MAX_ARG_COUNT <= IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
5917 | #endif
|
---|
5918 |
|
---|
5919 | /*
|
---|
5920 | * Free all argument variables (simplified).
|
---|
5921 | * Their lifetime always expires with the call they are for.
|
---|
5922 | */
|
---|
5923 | /** @todo Make the python script check that arguments aren't used after
|
---|
5924 | * IEM_MC_CALL_XXXX. */
|
---|
5925 | /** @todo There is a special with IEM_MC_MEM_MAP_U16_RW and friends requiring
|
---|
5926 | * a IEM_MC_MEM_COMMIT_AND_UNMAP_RW after a AIMPL call typically with
|
---|
5927 | * an argument value. There is also some FPU stuff. */
|
---|
5928 | for (uint32_t i = cHiddenArgs; i < cArgs; i++)
|
---|
5929 | {
|
---|
5930 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
5931 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
5932 |
|
---|
5933 | /* no need to free registers: */
|
---|
5934 | AssertMsg(i < IEMNATIVE_CALL_ARG_GREG_COUNT
|
---|
5935 | ? pReNative->Core.aVars[idxVar].idxReg == g_aidxIemNativeCallRegs[i]
|
---|
5936 | || pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX
|
---|
5937 | : pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX,
|
---|
5938 | ("i=%d idxVar=%d idxReg=%d, expected %d\n", i, idxVar, pReNative->Core.aVars[idxVar].idxReg,
|
---|
5939 | i < IEMNATIVE_CALL_ARG_GREG_COUNT ? g_aidxIemNativeCallRegs[i] : UINT8_MAX));
|
---|
5940 |
|
---|
5941 | pReNative->Core.aidxArgVars[i] = UINT8_MAX;
|
---|
5942 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
5943 | iemNativeVarFreeStackSlots(pReNative, idxVar);
|
---|
5944 | }
|
---|
5945 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX);
|
---|
5946 |
|
---|
5947 | /*
|
---|
5948 | * Flush volatile registers as we make the call.
|
---|
5949 | */
|
---|
5950 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, cRegArgs);
|
---|
5951 |
|
---|
5952 | return off;
|
---|
5953 | }
|
---|
5954 |
|
---|
5955 |
|
---|
5956 | /** Common emit function for IEM_MC_CALL_CIMPL_XXXX. */
|
---|
5957 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5958 | iemNativeEmitCallCImplCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr,
|
---|
5959 | uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cArgs)
|
---|
5960 |
|
---|
5961 | {
|
---|
5962 | /*
|
---|
5963 | * Do all the call setup and cleanup.
|
---|
5964 | */
|
---|
5965 | off = iemNativeEmitCallCommon(pReNative, off, cArgs + IEM_CIMPL_HIDDEN_ARGS, IEM_CIMPL_HIDDEN_ARGS);
|
---|
5966 |
|
---|
5967 | /*
|
---|
5968 | * Load the two hidden arguments.
|
---|
5969 | */
|
---|
5970 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
5971 | off = iemNativeEmitLeaGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
5972 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5973 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, cbInstr);
|
---|
5974 | #else
|
---|
5975 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5976 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, cbInstr);
|
---|
5977 | #endif
|
---|
5978 |
|
---|
5979 | /*
|
---|
5980 | * Make the call and check the return code.
|
---|
5981 | *
|
---|
5982 | * Shadow PC copies are always flushed here, other stuff depends on flags.
|
---|
5983 | * Segment and general purpose registers are explictily flushed via the
|
---|
5984 | * IEM_MC_HINT_FLUSH_GUEST_SHADOW_GREG and IEM_MC_HINT_FLUSH_GUEST_SHADOW_SREG
|
---|
5985 | * macros.
|
---|
5986 | */
|
---|
5987 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)pfnCImpl);
|
---|
5988 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
5989 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
5990 | #endif
|
---|
5991 | fGstShwFlush = iemNativeCImplFlagsToGuestShadowFlushMask(pReNative->fCImpl, fGstShwFlush | RT_BIT_64(kIemNativeGstReg_Pc));
|
---|
5992 | if (!(pReNative->fMc & IEM_MC_F_WITHOUT_FLAGS)) /** @todo We don't emit with-flags/without-flags variations for CIMPL calls. */
|
---|
5993 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
|
---|
5994 | iemNativeRegFlushGuestShadows(pReNative, fGstShwFlush);
|
---|
5995 |
|
---|
5996 | return iemNativeEmitCheckCallRetAndPassUp(pReNative, off, idxInstr);
|
---|
5997 | }
|
---|
5998 |
|
---|
5999 |
|
---|
6000 | #define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
|
---|
6001 | off = iemNativeEmitCallCImpl1(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a0)
|
---|
6002 |
|
---|
6003 | /** Emits code for IEM_MC_CALL_CIMPL_1. */
|
---|
6004 | DECL_INLINE_THROW(uint32_t)
|
---|
6005 | iemNativeEmitCallCImpl1(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
6006 | uintptr_t pfnCImpl, uint8_t idxArg0)
|
---|
6007 | {
|
---|
6008 | Assert(idxArg0 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg0)));
|
---|
6009 | Assert(pReNative->Core.aVars[idxArg0].uArgNo == 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6010 | RT_NOREF_PV(idxArg0);
|
---|
6011 |
|
---|
6012 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 1);
|
---|
6013 | }
|
---|
6014 |
|
---|
6015 |
|
---|
6016 | #define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
|
---|
6017 | off = iemNativeEmitCallCImpl2(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a0, a1)
|
---|
6018 |
|
---|
6019 | /** Emits code for IEM_MC_CALL_CIMPL_2. */
|
---|
6020 | DECL_INLINE_THROW(uint32_t)
|
---|
6021 | iemNativeEmitCallCImpl2(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
6022 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1)
|
---|
6023 | {
|
---|
6024 | Assert(idxArg0 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg0)));
|
---|
6025 | Assert(pReNative->Core.aVars[idxArg0].uArgNo == 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6026 | RT_NOREF_PV(idxArg0);
|
---|
6027 |
|
---|
6028 | Assert(idxArg1 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg1)));
|
---|
6029 | Assert(pReNative->Core.aVars[idxArg1].uArgNo == 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6030 | RT_NOREF_PV(idxArg1);
|
---|
6031 |
|
---|
6032 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 2);
|
---|
6033 | }
|
---|
6034 |
|
---|
6035 |
|
---|
6036 | #define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
|
---|
6037 | off = iemNativeEmitCallCImpl3(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
6038 | (uintptr_t)a_pfnCImpl, a0, a1, a2)
|
---|
6039 |
|
---|
6040 | /** Emits code for IEM_MC_CALL_CIMPL_3. */
|
---|
6041 | DECL_INLINE_THROW(uint32_t)
|
---|
6042 | iemNativeEmitCallCImpl3(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
6043 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2)
|
---|
6044 | {
|
---|
6045 | pReNative->pInstrBuf[off++] = 0xcc;
|
---|
6046 | Assert(idxArg0 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg0)));
|
---|
6047 | Assert(pReNative->Core.aVars[idxArg0].uArgNo == 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6048 | RT_NOREF_PV(idxArg0);
|
---|
6049 |
|
---|
6050 | Assert(idxArg1 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg1)));
|
---|
6051 | Assert(pReNative->Core.aVars[idxArg1].uArgNo == 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6052 | RT_NOREF_PV(idxArg1);
|
---|
6053 |
|
---|
6054 | Assert(idxArg2 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg2)));
|
---|
6055 | Assert(pReNative->Core.aVars[idxArg2].uArgNo == 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6056 | RT_NOREF_PV(idxArg2);
|
---|
6057 |
|
---|
6058 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 3);
|
---|
6059 | }
|
---|
6060 |
|
---|
6061 |
|
---|
6062 | #define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
|
---|
6063 | off = iemNativeEmitCallCImpl4(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
6064 | (uintptr_t)a_pfnCImpl, a0, a1, a2, a3)
|
---|
6065 |
|
---|
6066 | /** Emits code for IEM_MC_CALL_CIMPL_4. */
|
---|
6067 | DECL_INLINE_THROW(uint32_t)
|
---|
6068 | iemNativeEmitCallCImpl4(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
6069 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2, uint8_t idxArg3)
|
---|
6070 | {
|
---|
6071 | pReNative->pInstrBuf[off++] = 0xcc;
|
---|
6072 | Assert(idxArg0 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg0)));
|
---|
6073 | Assert(pReNative->Core.aVars[idxArg0].uArgNo == 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6074 | RT_NOREF_PV(idxArg0);
|
---|
6075 |
|
---|
6076 | Assert(idxArg1 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg1)));
|
---|
6077 | Assert(pReNative->Core.aVars[idxArg1].uArgNo == 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6078 | RT_NOREF_PV(idxArg1);
|
---|
6079 |
|
---|
6080 | Assert(idxArg2 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg2)));
|
---|
6081 | Assert(pReNative->Core.aVars[idxArg2].uArgNo == 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6082 | RT_NOREF_PV(idxArg2);
|
---|
6083 |
|
---|
6084 | Assert(idxArg3 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg3)));
|
---|
6085 | Assert(pReNative->Core.aVars[idxArg3].uArgNo == 3 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6086 | RT_NOREF_PV(idxArg3);
|
---|
6087 |
|
---|
6088 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 4);
|
---|
6089 | }
|
---|
6090 |
|
---|
6091 |
|
---|
6092 | #define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
|
---|
6093 | off = iemNativeEmitCallCImpl5(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
6094 | (uintptr_t)a_pfnCImpl, a0, a1, a2, a3, a4)
|
---|
6095 |
|
---|
6096 | /** Emits code for IEM_MC_CALL_CIMPL_4. */
|
---|
6097 | DECL_INLINE_THROW(uint32_t)
|
---|
6098 | iemNativeEmitCallCImpl5(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
6099 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2, uint8_t idxArg3, uint8_t idxArg4)
|
---|
6100 | {
|
---|
6101 | pReNative->pInstrBuf[off++] = 0xcc;
|
---|
6102 | Assert(idxArg0 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg0)));
|
---|
6103 | Assert(pReNative->Core.aVars[idxArg0].uArgNo == 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6104 | RT_NOREF_PV(idxArg0);
|
---|
6105 |
|
---|
6106 | Assert(idxArg1 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg1)));
|
---|
6107 | Assert(pReNative->Core.aVars[idxArg1].uArgNo == 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6108 | RT_NOREF_PV(idxArg1);
|
---|
6109 |
|
---|
6110 | Assert(idxArg2 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg2)));
|
---|
6111 | Assert(pReNative->Core.aVars[idxArg2].uArgNo == 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6112 | RT_NOREF_PV(idxArg2);
|
---|
6113 |
|
---|
6114 | Assert(idxArg3 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg3)));
|
---|
6115 | Assert(pReNative->Core.aVars[idxArg3].uArgNo == 3 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6116 | RT_NOREF_PV(idxArg3);
|
---|
6117 |
|
---|
6118 | Assert(idxArg4 < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxArg4)));
|
---|
6119 | Assert(pReNative->Core.aVars[idxArg4].uArgNo == 4 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
6120 | RT_NOREF_PV(idxArg4);
|
---|
6121 |
|
---|
6122 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 5);
|
---|
6123 | }
|
---|
6124 |
|
---|
6125 |
|
---|
6126 | /** Recompiler debugging: Flush guest register shadow copies. */
|
---|
6127 | #define IEM_MC_HINT_FLUSH_GUEST_SHADOW(g_fGstShwFlush) iemNativeRegFlushGuestShadows(pReNative, g_fGstShwFlush)
|
---|
6128 |
|
---|
6129 |
|
---|
6130 |
|
---|
6131 |
|
---|
6132 | /*********************************************************************************************************************************
|
---|
6133 | * Emitters for general purpose register fetches (IEM_MC_FETCH_GREG_XXX). *
|
---|
6134 | *********************************************************************************************************************************/
|
---|
6135 |
|
---|
6136 | #define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) \
|
---|
6137 | off = iemNativeEmitFetchGregU16(pReNative, off, a_u16Dst, a_iGReg)
|
---|
6138 |
|
---|
6139 | /** Emits code for IEM_MC_FETCH_GREG_U16. */
|
---|
6140 | DECL_INLINE_THROW(uint32_t)
|
---|
6141 | iemNativeEmitFetchGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg)
|
---|
6142 | {
|
---|
6143 | Assert(idxDstVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxDstVar)));
|
---|
6144 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == sizeof(uint16_t));
|
---|
6145 |
|
---|
6146 | /*
|
---|
6147 | * We can either just load the low 16-bit of the GPR into a host register
|
---|
6148 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
6149 | * latter will avoid having to reload it if it's being stored later, but
|
---|
6150 | * will waste a host register if it isn't touched again. Since we don't
|
---|
6151 | * know what going to happen, we choose the latter for now.
|
---|
6152 | */
|
---|
6153 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6154 | kIemNativeGstRegUse_ReadOnly);
|
---|
6155 |
|
---|
6156 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
6157 | uint8_t const idxVarReg = iemNativeVarAllocRegister(pReNative, idxDstVar, &off);
|
---|
6158 | off = iemNativeEmitLoadGprFromGpr16(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
6159 |
|
---|
6160 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
6161 | return off;
|
---|
6162 | }
|
---|
6163 |
|
---|
6164 |
|
---|
6165 | #define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) \
|
---|
6166 | off = iemNativeEmitFetchGregU32(pReNative, off, a_u32Dst, a_iGReg)
|
---|
6167 |
|
---|
6168 | /** Emits code for IEM_MC_FETCH_GREG_U32. */
|
---|
6169 | DECL_INLINE_THROW(uint32_t)
|
---|
6170 | iemNativeEmitFetchGregU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg)
|
---|
6171 | {
|
---|
6172 | Assert(idxDstVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxDstVar)));
|
---|
6173 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == sizeof(uint32_t));
|
---|
6174 |
|
---|
6175 | /*
|
---|
6176 | * We can either just load the low 16-bit of the GPR into a host register
|
---|
6177 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
6178 | * latter will avoid having to reload it if it's being stored later, but
|
---|
6179 | * will waste a host register if it isn't touched again. Since we don't
|
---|
6180 | * know what going to happen, we choose the latter for now.
|
---|
6181 | */
|
---|
6182 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6183 | kIemNativeGstRegUse_ReadOnly);
|
---|
6184 |
|
---|
6185 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
6186 | uint8_t const idxVarReg = iemNativeVarAllocRegister(pReNative, idxDstVar, &off);
|
---|
6187 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
6188 |
|
---|
6189 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
6190 | return off;
|
---|
6191 | }
|
---|
6192 |
|
---|
6193 |
|
---|
6194 |
|
---|
6195 | /*********************************************************************************************************************************
|
---|
6196 | * Emitters for general purpose register stores (IEM_MC_STORE_GREG_XXX). *
|
---|
6197 | *********************************************************************************************************************************/
|
---|
6198 |
|
---|
6199 | #define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
|
---|
6200 | off = iemNativeEmitStoreGregU8Const(pReNative, off, a_iGRegEx, a_u8Value)
|
---|
6201 |
|
---|
6202 | /** Emits code for IEM_MC_STORE_GREG_U8_CONST_THREADED. */
|
---|
6203 | DECL_INLINE_THROW(uint32_t)
|
---|
6204 | iemNativeEmitStoreGregU8Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGRegEx, uint8_t u8Value)
|
---|
6205 | {
|
---|
6206 | Assert(iGRegEx < 20);
|
---|
6207 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGRegEx & 15),
|
---|
6208 | kIemNativeGstRegUse_ForUpdate);
|
---|
6209 | #ifdef RT_ARCH_AMD64
|
---|
6210 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
6211 |
|
---|
6212 | /* To the lowest byte of the register: mov r8, imm8 */
|
---|
6213 | if (iGRegEx < 16)
|
---|
6214 | {
|
---|
6215 | if (idxGstTmpReg >= 8)
|
---|
6216 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
6217 | else if (idxGstTmpReg >= 4)
|
---|
6218 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
6219 | pbCodeBuf[off++] = 0xb0 + (idxGstTmpReg & 7);
|
---|
6220 | pbCodeBuf[off++] = u8Value;
|
---|
6221 | }
|
---|
6222 | /* Otherwise it's to ah, ch, dh or bh: use mov r8, imm8 if we can, otherwise, we rotate. */
|
---|
6223 | else if (idxGstTmpReg < 4)
|
---|
6224 | {
|
---|
6225 | pbCodeBuf[off++] = 0xb4 + idxGstTmpReg;
|
---|
6226 | pbCodeBuf[off++] = u8Value;
|
---|
6227 | }
|
---|
6228 | else
|
---|
6229 | {
|
---|
6230 | /* ror reg64, 8 */
|
---|
6231 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
6232 | pbCodeBuf[off++] = 0xc1;
|
---|
6233 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
6234 | pbCodeBuf[off++] = 8;
|
---|
6235 |
|
---|
6236 | /* mov reg8, imm8 */
|
---|
6237 | if (idxGstTmpReg >= 8)
|
---|
6238 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
6239 | else if (idxGstTmpReg >= 4)
|
---|
6240 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
6241 | pbCodeBuf[off++] = 0xb0 + (idxGstTmpReg & 7);
|
---|
6242 | pbCodeBuf[off++] = u8Value;
|
---|
6243 |
|
---|
6244 | /* rol reg64, 8 */
|
---|
6245 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
6246 | pbCodeBuf[off++] = 0xc1;
|
---|
6247 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
6248 | pbCodeBuf[off++] = 8;
|
---|
6249 | }
|
---|
6250 |
|
---|
6251 | #elif defined(RT_ARCH_ARM64)
|
---|
6252 | uint8_t const idxImmReg = iemNativeRegAllocTmpImm(pReNative, &off, u8Value);
|
---|
6253 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
6254 | if (iGRegEx < 16)
|
---|
6255 | /* bfi w1, w2, 0, 8 - moves bits 7:0 from idxImmReg to idxGstTmpReg bits 7:0. */
|
---|
6256 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxImmReg, 0, 8);
|
---|
6257 | else
|
---|
6258 | /* bfi w1, w2, 8, 8 - moves bits 7:0 from idxImmReg to idxGstTmpReg bits 15:8. */
|
---|
6259 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxImmReg, 8, 8);
|
---|
6260 | iemNativeRegFreeTmp(pReNative, idxImmReg);
|
---|
6261 |
|
---|
6262 | #else
|
---|
6263 | # error "Port me!"
|
---|
6264 | #endif
|
---|
6265 |
|
---|
6266 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6267 |
|
---|
6268 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGRegEx & 15]));
|
---|
6269 |
|
---|
6270 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6271 | return off;
|
---|
6272 | }
|
---|
6273 |
|
---|
6274 |
|
---|
6275 | #define IEM_MC_STORE_GREG_U16_CONST(a_iGReg, a_u16Const) \
|
---|
6276 | off = iemNativeEmitStoreGregU16Const(pReNative, off, a_iGReg, a_u16Const)
|
---|
6277 |
|
---|
6278 | /** Emits code for IEM_MC_STORE_GREG_U16. */
|
---|
6279 | DECL_INLINE_THROW(uint32_t)
|
---|
6280 | iemNativeEmitStoreGregU16Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint16_t uValue)
|
---|
6281 | {
|
---|
6282 | Assert(iGReg < 16);
|
---|
6283 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6284 | kIemNativeGstRegUse_ForUpdate);
|
---|
6285 | #ifdef RT_ARCH_AMD64
|
---|
6286 | /* mov reg16, imm16 */
|
---|
6287 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
6288 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
6289 | if (idxGstTmpReg >= 8)
|
---|
6290 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
6291 | pbCodeBuf[off++] = 0xb8 + (idxGstTmpReg & 7);
|
---|
6292 | pbCodeBuf[off++] = RT_BYTE1(uValue);
|
---|
6293 | pbCodeBuf[off++] = RT_BYTE2(uValue);
|
---|
6294 |
|
---|
6295 | #elif defined(RT_ARCH_ARM64)
|
---|
6296 | /* movk xdst, #uValue, lsl #0 */
|
---|
6297 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
6298 | pu32CodeBuf[off++] = Armv8A64MkInstrMovK(idxGstTmpReg, uValue);
|
---|
6299 |
|
---|
6300 | #else
|
---|
6301 | # error "Port me!"
|
---|
6302 | #endif
|
---|
6303 |
|
---|
6304 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6305 |
|
---|
6306 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6307 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6308 | return off;
|
---|
6309 | }
|
---|
6310 |
|
---|
6311 |
|
---|
6312 | #define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) \
|
---|
6313 | off = iemNativeEmitStoreGregU16(pReNative, off, a_iGReg, a_u16Value)
|
---|
6314 |
|
---|
6315 | /** Emits code for IEM_MC_STORE_GREG_U16. */
|
---|
6316 | DECL_INLINE_THROW(uint32_t)
|
---|
6317 | iemNativeEmitStoreGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t idxValueVar)
|
---|
6318 | {
|
---|
6319 | Assert(iGReg < 16);
|
---|
6320 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
6321 |
|
---|
6322 | /*
|
---|
6323 | * If it's a constant value (unlikely) we treat this as a
|
---|
6324 | * IEM_MC_STORE_GREG_U16_CONST statement.
|
---|
6325 | */
|
---|
6326 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
6327 | { /* likely */ }
|
---|
6328 | else
|
---|
6329 | {
|
---|
6330 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind != kIemNativeVarKind_Immediate,
|
---|
6331 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
6332 | return iemNativeEmitStoreGregU16Const(pReNative, off, iGReg, (uint16_t)pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
6333 | }
|
---|
6334 |
|
---|
6335 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6336 | kIemNativeGstRegUse_ForUpdate);
|
---|
6337 |
|
---|
6338 | #ifdef RT_ARCH_AMD64
|
---|
6339 | /* mov reg16, reg16 or [mem16] */
|
---|
6340 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
6341 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
6342 | if (pReNative->Core.aVars[idxValueVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
6343 | {
|
---|
6344 | if (idxGstTmpReg >= 8 || pReNative->Core.aVars[idxValueVar].idxReg >= 8)
|
---|
6345 | pbCodeBuf[off++] = (idxGstTmpReg >= 8 ? X86_OP_REX_R : 0)
|
---|
6346 | | (pReNative->Core.aVars[idxValueVar].idxReg >= 8 ? X86_OP_REX_B : 0);
|
---|
6347 | pbCodeBuf[off++] = 0x8b;
|
---|
6348 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxGstTmpReg & 7, pReNative->Core.aVars[idxValueVar].idxReg & 7);
|
---|
6349 | }
|
---|
6350 | else
|
---|
6351 | {
|
---|
6352 | AssertStmt(pReNative->Core.aVars[idxValueVar].idxStackSlot != UINT8_MAX,
|
---|
6353 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_4));
|
---|
6354 | if (idxGstTmpReg >= 8)
|
---|
6355 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
6356 | pbCodeBuf[off++] = 0x8b;
|
---|
6357 | off = iemNativeEmitGprByBpDisp(pbCodeBuf, off, idxGstTmpReg, iemNativeVarCalcBpDisp(pReNative, idxValueVar), pReNative);
|
---|
6358 | }
|
---|
6359 |
|
---|
6360 | #elif defined(RT_ARCH_ARM64)
|
---|
6361 | /* bfi w1, w2, 0, 16 - moves bits 15:0 from idxVarReg to idxGstTmpReg bits 15:0. */
|
---|
6362 | uint8_t const idxVarReg = iemNativeVarAllocRegister(pReNative, idxDstVar, &off);
|
---|
6363 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
6364 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxVarReg, 0, 16);
|
---|
6365 |
|
---|
6366 | #else
|
---|
6367 | # error "Port me!"
|
---|
6368 | #endif
|
---|
6369 |
|
---|
6370 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6371 |
|
---|
6372 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6373 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6374 | return off;
|
---|
6375 | }
|
---|
6376 |
|
---|
6377 |
|
---|
6378 | #define IEM_MC_STORE_GREG_U32_CONST(a_iGReg, a_u32Const) \
|
---|
6379 | off = iemNativeEmitStoreGregU32Const(pReNative, off, a_iGReg, a_u32Const)
|
---|
6380 |
|
---|
6381 | /** Emits code for IEM_MC_STORE_GREG_U32_CONST. */
|
---|
6382 | DECL_INLINE_THROW(uint32_t)
|
---|
6383 | iemNativeEmitStoreGregU32Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint32_t uValue)
|
---|
6384 | {
|
---|
6385 | Assert(iGReg < 16);
|
---|
6386 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6387 | kIemNativeGstRegUse_ForFullWrite);
|
---|
6388 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxGstTmpReg, uValue);
|
---|
6389 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6390 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6391 | return off;
|
---|
6392 | }
|
---|
6393 |
|
---|
6394 |
|
---|
6395 | #define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) \
|
---|
6396 | off = iemNativeEmitStoreGregU32(pReNative, off, a_iGReg, a_u32Value)
|
---|
6397 |
|
---|
6398 | /** Emits code for IEM_MC_STORE_GREG_U32. */
|
---|
6399 | DECL_INLINE_THROW(uint32_t)
|
---|
6400 | iemNativeEmitStoreGregU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t idxValueVar)
|
---|
6401 | {
|
---|
6402 | Assert(iGReg < 16);
|
---|
6403 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
6404 |
|
---|
6405 | /*
|
---|
6406 | * If it's a constant value (unlikely) we treat this as a
|
---|
6407 | * IEM_MC_STORE_GREG_U32_CONST statement.
|
---|
6408 | */
|
---|
6409 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
6410 | { /* likely */ }
|
---|
6411 | else
|
---|
6412 | {
|
---|
6413 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind != kIemNativeVarKind_Immediate,
|
---|
6414 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
6415 | return iemNativeEmitStoreGregU32Const(pReNative, off, iGReg, (uint32_t)pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
6416 | }
|
---|
6417 |
|
---|
6418 | /*
|
---|
6419 | * For the rest we allocate a guest register for the variable and writes
|
---|
6420 | * it to the CPUMCTX structure.
|
---|
6421 | */
|
---|
6422 | uint8_t const idxVarReg = iemNativeVarAllocRegisterForGuestReg(pReNative, idxValueVar, IEMNATIVEGSTREG_GPR(iGReg), &off);
|
---|
6423 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxVarReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6424 | #ifdef VBOX_STRICT
|
---|
6425 | off = iemNativeEmitTop32BitsClearCheck(pReNative, off, idxVarReg);
|
---|
6426 | #endif
|
---|
6427 | return off;
|
---|
6428 | }
|
---|
6429 |
|
---|
6430 |
|
---|
6431 |
|
---|
6432 | #define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) \
|
---|
6433 | off = iemNativeEmitClearHighGregU64(pReNative, off, a_iGReg)
|
---|
6434 |
|
---|
6435 | /** Emits code for IEM_MC_CLEAR_HIGH_GREG_U64. */
|
---|
6436 | DECL_INLINE_THROW(uint32_t)
|
---|
6437 | iemNativeEmitClearHighGregU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg)
|
---|
6438 | {
|
---|
6439 | Assert(iGReg < 16);
|
---|
6440 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6441 | kIemNativeGstRegUse_ForUpdate);
|
---|
6442 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxGstTmpReg, idxGstTmpReg);
|
---|
6443 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6444 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6445 | return off;
|
---|
6446 | }
|
---|
6447 |
|
---|
6448 |
|
---|
6449 |
|
---|
6450 | /*********************************************************************************************************************************
|
---|
6451 | * General purpose register manipulation (add, sub). *
|
---|
6452 | *********************************************************************************************************************************/
|
---|
6453 |
|
---|
6454 | #define IEM_MC_SUB_GREG_U16(a_iGReg, a_u8SubtrahendConst) \
|
---|
6455 | off = iemNativeEmitSubGregU16(pReNative, off, a_iGReg, a_u8SubtrahendConst)
|
---|
6456 |
|
---|
6457 | /** Emits code for IEM_MC_SUB_GREG_U16. */
|
---|
6458 | DECL_INLINE_THROW(uint32_t)
|
---|
6459 | iemNativeEmitSubGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uSubtrahend)
|
---|
6460 | {
|
---|
6461 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6462 | kIemNativeGstRegUse_ForUpdate);
|
---|
6463 |
|
---|
6464 | #ifdef RT_ARCH_AMD64
|
---|
6465 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 4);
|
---|
6466 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
6467 | if (idxGstTmpReg >= 8)
|
---|
6468 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
6469 | if (uSubtrahend)
|
---|
6470 | {
|
---|
6471 | pbCodeBuf[off++] = 0xff; /* dec */
|
---|
6472 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
6473 | }
|
---|
6474 | else
|
---|
6475 | {
|
---|
6476 | pbCodeBuf[off++] = 0x81;
|
---|
6477 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
6478 | pbCodeBuf[off++] = uSubtrahend;
|
---|
6479 | pbCodeBuf[off++] = 0;
|
---|
6480 | }
|
---|
6481 |
|
---|
6482 | #else
|
---|
6483 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6484 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
6485 |
|
---|
6486 | /* sub tmp, gstgrp, uSubtrahend */
|
---|
6487 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxTmpReg, idxGstTmpReg, uSubtrahend, false /*f64Bit*/);
|
---|
6488 |
|
---|
6489 | /* bfi w1, w2, 0, 16 - moves bits 15:0 from tmpreg2 to tmpreg. */
|
---|
6490 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxTmpReg, 0, 16);
|
---|
6491 |
|
---|
6492 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6493 | #endif
|
---|
6494 |
|
---|
6495 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6496 |
|
---|
6497 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6498 |
|
---|
6499 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6500 | return off;
|
---|
6501 | }
|
---|
6502 |
|
---|
6503 |
|
---|
6504 | #define IEM_MC_SUB_GREG_U32(a_iGReg, a_u8Const) \
|
---|
6505 | off = iemNativeEmitSubGregU32U64(pReNative, off, a_iGReg, a_u8Const, false /*f64Bit*/)
|
---|
6506 |
|
---|
6507 | #define IEM_MC_SUB_GREG_U64(a_iGReg, a_u8Const) \
|
---|
6508 | off = iemNativeEmitSubGregU32U64(pReNative, off, a_iGReg, a_u8Const, true /*f64Bit*/)
|
---|
6509 |
|
---|
6510 | /** Emits code for IEM_MC_SUB_GREG_U32 and IEM_MC_SUB_GREG_U64. */
|
---|
6511 | DECL_INLINE_THROW(uint32_t)
|
---|
6512 | iemNativeEmitSubGregU32U64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uSubtrahend, bool f64Bit)
|
---|
6513 | {
|
---|
6514 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
6515 | kIemNativeGstRegUse_ForUpdate);
|
---|
6516 |
|
---|
6517 | #ifdef RT_ARCH_AMD64
|
---|
6518 | uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6);
|
---|
6519 | if (f64Bit)
|
---|
6520 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg >= 8 ? X86_OP_REX_B : 0);
|
---|
6521 | else if (idxGstTmpReg >= 8)
|
---|
6522 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
6523 | if (uSubtrahend == 1)
|
---|
6524 | {
|
---|
6525 | /* dec */
|
---|
6526 | pbCodeBuf[off++] = 0xff;
|
---|
6527 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
6528 | }
|
---|
6529 | else if (uSubtrahend < 128)
|
---|
6530 | {
|
---|
6531 | pbCodeBuf[off++] = 0x83; /* sub */
|
---|
6532 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
6533 | pbCodeBuf[off++] = RT_BYTE1(uSubtrahend);
|
---|
6534 | }
|
---|
6535 | else
|
---|
6536 | {
|
---|
6537 | pbCodeBuf[off++] = 0x81; /* sub */
|
---|
6538 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
6539 | pbCodeBuf[off++] = RT_BYTE1(uSubtrahend);
|
---|
6540 | pbCodeBuf[off++] = 0;
|
---|
6541 | pbCodeBuf[off++] = 0;
|
---|
6542 | pbCodeBuf[off++] = 0;
|
---|
6543 | }
|
---|
6544 |
|
---|
6545 | #else
|
---|
6546 | /* sub tmp, gstgrp, uSubtrahend */
|
---|
6547 | uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
6548 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxGstTmpReg, idxGstTmpReg, uSubtrahend, f64Bit);
|
---|
6549 |
|
---|
6550 | #endif
|
---|
6551 |
|
---|
6552 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6553 |
|
---|
6554 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
6555 |
|
---|
6556 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
6557 | return off;
|
---|
6558 | }
|
---|
6559 |
|
---|
6560 |
|
---|
6561 |
|
---|
6562 | /*********************************************************************************************************************************
|
---|
6563 | * Effective Address Calculation *
|
---|
6564 | *********************************************************************************************************************************/
|
---|
6565 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
|
---|
6566 | off = iemNativeEmitCalcRmEffAddrThreadedAddr16(pReNative, off, a_bRm, a_u16Disp, a_GCPtrEff)
|
---|
6567 |
|
---|
6568 | /** Emit code for IEM_MC_CALC_RM_EFF_ADDR_THREADED_16.
|
---|
6569 | * @sa iemOpHlpCalcRmEffAddrThreadedAddr16 */
|
---|
6570 | DECL_INLINE_THROW(uint32_t)
|
---|
6571 | iemNativeEmitCalcRmEffAddrThreadedAddr16(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
6572 | uint8_t bRm, uint16_t u16Disp, uint8_t idxVarRet)
|
---|
6573 | {
|
---|
6574 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRet);
|
---|
6575 | uint8_t const idxRegRet = iemNativeVarAllocRegister(pReNative, idxVarRet, &off);
|
---|
6576 |
|
---|
6577 | /* Handle the disp16 form with no registers first. */
|
---|
6578 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
6579 | return iemNativeEmitLoadGprImm64(pReNative, off, idxRegRet, u16Disp);
|
---|
6580 |
|
---|
6581 | /* Determin the displacment. */
|
---|
6582 | uint16_t u16EffAddr;
|
---|
6583 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
6584 | {
|
---|
6585 | case 0: u16EffAddr = 0; break;
|
---|
6586 | case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
|
---|
6587 | case 2: u16EffAddr = u16Disp; break;
|
---|
6588 | default: AssertFailedStmt(u16EffAddr = 0);
|
---|
6589 | }
|
---|
6590 |
|
---|
6591 | /* Determine the registers involved. */
|
---|
6592 | uint8_t idxGstRegBase;
|
---|
6593 | uint8_t idxGstRegIndex;
|
---|
6594 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
6595 | {
|
---|
6596 | case 0:
|
---|
6597 | idxGstRegBase = X86_GREG_xBX;
|
---|
6598 | idxGstRegIndex = X86_GREG_xSI;
|
---|
6599 | break;
|
---|
6600 | case 1:
|
---|
6601 | idxGstRegBase = X86_GREG_xBX;
|
---|
6602 | idxGstRegIndex = X86_GREG_xDI;
|
---|
6603 | break;
|
---|
6604 | case 2:
|
---|
6605 | idxGstRegBase = X86_GREG_xBP;
|
---|
6606 | idxGstRegIndex = X86_GREG_xSI;
|
---|
6607 | break;
|
---|
6608 | case 3:
|
---|
6609 | idxGstRegBase = X86_GREG_xBP;
|
---|
6610 | idxGstRegIndex = X86_GREG_xDI;
|
---|
6611 | break;
|
---|
6612 | case 4:
|
---|
6613 | idxGstRegBase = X86_GREG_xSI;
|
---|
6614 | idxGstRegIndex = UINT8_MAX;
|
---|
6615 | break;
|
---|
6616 | case 5:
|
---|
6617 | idxGstRegBase = X86_GREG_xDI;
|
---|
6618 | idxGstRegIndex = UINT8_MAX;
|
---|
6619 | break;
|
---|
6620 | case 6:
|
---|
6621 | idxGstRegBase = X86_GREG_xBP;
|
---|
6622 | idxGstRegIndex = UINT8_MAX;
|
---|
6623 | break;
|
---|
6624 | #ifdef _MSC_VER /* lazy compiler, thinks idxGstRegBase and idxGstRegIndex may otherwise be used uninitialized. */
|
---|
6625 | default:
|
---|
6626 | #endif
|
---|
6627 | case 7:
|
---|
6628 | idxGstRegBase = X86_GREG_xBX;
|
---|
6629 | idxGstRegIndex = UINT8_MAX;
|
---|
6630 | break;
|
---|
6631 | }
|
---|
6632 |
|
---|
6633 | /*
|
---|
6634 | * Now calculate: idxRegRet = (uint16_t)(u16EffAddr + idxGstRegBase [+ idxGstRegIndex])
|
---|
6635 | */
|
---|
6636 | uint8_t const idxRegBase = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegBase),
|
---|
6637 | kIemNativeGstRegUse_ReadOnly);
|
---|
6638 | uint8_t const idxRegIndex = idxGstRegIndex != UINT8_MAX
|
---|
6639 | ? iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegIndex),
|
---|
6640 | kIemNativeGstRegUse_ReadOnly)
|
---|
6641 | : UINT8_MAX;
|
---|
6642 | #ifdef RT_ARCH_AMD64
|
---|
6643 | if (idxRegIndex == UINT8_MAX)
|
---|
6644 | {
|
---|
6645 | if (u16EffAddr == 0)
|
---|
6646 | {
|
---|
6647 | /* movxz ret, base */
|
---|
6648 | off = iemNativeEmitLoadGprFromGpr16(pReNative, off, idxRegRet, idxRegBase);
|
---|
6649 | }
|
---|
6650 | else
|
---|
6651 | {
|
---|
6652 | /* lea ret32, [base64 + disp32] */
|
---|
6653 | Assert(idxRegBase != X86_GREG_xSP /*SIB*/);
|
---|
6654 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
6655 | if (idxRegRet >= 8 || idxRegBase >= 8)
|
---|
6656 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0) | (idxRegBase >= 8 ? X86_OP_REX_B : 0);
|
---|
6657 | pbCodeBuf[off++] = 0x8d;
|
---|
6658 | if (idxRegBase != X86_GREG_x12 /*SIB*/)
|
---|
6659 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, idxRegRet & 7, idxRegBase & 7);
|
---|
6660 | else
|
---|
6661 | {
|
---|
6662 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, idxRegRet & 7, 4 /*SIB*/);
|
---|
6663 | pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_x12 & 7, 4 /*no index*/, 0);
|
---|
6664 | }
|
---|
6665 | pbCodeBuf[off++] = RT_BYTE1(u16EffAddr);
|
---|
6666 | pbCodeBuf[off++] = RT_BYTE2(u16EffAddr);
|
---|
6667 | pbCodeBuf[off++] = 0;
|
---|
6668 | pbCodeBuf[off++] = 0;
|
---|
6669 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6670 |
|
---|
6671 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxRegRet);
|
---|
6672 | }
|
---|
6673 | }
|
---|
6674 | else
|
---|
6675 | {
|
---|
6676 | /* lea ret32, [index64 + base64 (+ disp32)] */
|
---|
6677 | Assert(idxRegIndex != X86_GREG_xSP /*no-index*/);
|
---|
6678 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
6679 | if (idxRegRet >= 8 || idxRegBase >= 8 || idxRegIndex >= 8)
|
---|
6680 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
6681 | | (idxRegBase >= 8 ? X86_OP_REX_B : 0)
|
---|
6682 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0);
|
---|
6683 | pbCodeBuf[off++] = 0x8d;
|
---|
6684 | uint8_t const bMod = u16EffAddr == 0 && (idxRegBase & 7) != X86_GREG_xBP ? X86_MOD_MEM0 : X86_MOD_MEM4;
|
---|
6685 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
6686 | pbCodeBuf[off++] = X86_SIB_MAKE(idxRegBase & 7, idxRegIndex & 7, 0);
|
---|
6687 | if (bMod == X86_MOD_MEM4)
|
---|
6688 | {
|
---|
6689 | pbCodeBuf[off++] = RT_BYTE1(u16EffAddr);
|
---|
6690 | pbCodeBuf[off++] = RT_BYTE2(u16EffAddr);
|
---|
6691 | pbCodeBuf[off++] = 0;
|
---|
6692 | pbCodeBuf[off++] = 0;
|
---|
6693 | }
|
---|
6694 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6695 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxRegRet);
|
---|
6696 | }
|
---|
6697 |
|
---|
6698 | #elif defined(RT_ARCH_ARM64)
|
---|
6699 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
6700 | if (u16EffAddr == 0)
|
---|
6701 | {
|
---|
6702 | if (idxRegIndex == UINT8_MAX)
|
---|
6703 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegBase);
|
---|
6704 | else
|
---|
6705 | {
|
---|
6706 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegBase, idxRegIndex, false /*f64Bit*/);
|
---|
6707 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegRet);
|
---|
6708 | }
|
---|
6709 | }
|
---|
6710 | else
|
---|
6711 | {
|
---|
6712 | if ((int16_t)u16Disp < 4096 && (int16_t)u16Disp >= 0)
|
---|
6713 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxRegRet, idxRegBase, u16Disp, false /*f64Bit*/);
|
---|
6714 | else if ((int16_t)u16Disp > -4096 && (int16_t)u16Disp < 0)
|
---|
6715 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxRegRet, idxRegBase,
|
---|
6716 | (uint16_t)-(int16_t)u16Disp, false /*f64Bit*/);
|
---|
6717 | else
|
---|
6718 | {
|
---|
6719 | pu32CodeBuf[off++] = Armv8A64MkInstrMovZ(idxRegRet, u16Disp);
|
---|
6720 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegBase, false /*f64Bit*/);
|
---|
6721 | }
|
---|
6722 | if (idxRegIndex != UINT8_MAX)
|
---|
6723 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegIndex, false /*f64Bit*/);
|
---|
6724 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegRet);
|
---|
6725 | }
|
---|
6726 |
|
---|
6727 | #else
|
---|
6728 | # error "port me"
|
---|
6729 | #endif
|
---|
6730 |
|
---|
6731 | if (idxRegIndex != UINT8_MAX)
|
---|
6732 | iemNativeRegFreeTmp(pReNative, idxRegIndex);
|
---|
6733 | iemNativeRegFreeTmp(pReNative, idxRegBase);
|
---|
6734 | return off;
|
---|
6735 | }
|
---|
6736 |
|
---|
6737 |
|
---|
6738 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
|
---|
6739 | off = iemNativeEmitCalcRmEffAddrThreadedAddr32(pReNative, off, a_bRm, a_uSibAndRspOffset, a_u32Disp, a_GCPtrEff)
|
---|
6740 |
|
---|
6741 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
6742 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm, a_GCPtrEff)
|
---|
6743 |
|
---|
6744 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_FSGS(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
6745 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm, a_GCPtrEff, 64)
|
---|
6746 |
|
---|
6747 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
6748 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm, a_GCPtrEff, 32)
|
---|
6749 |
|
---|
6750 |
|
---|
6751 |
|
---|
6752 | /*********************************************************************************************************************************
|
---|
6753 | * Builtin functions *
|
---|
6754 | *********************************************************************************************************************************/
|
---|
6755 |
|
---|
6756 | /**
|
---|
6757 | * Built-in function that calls a C-implemention function taking zero arguments.
|
---|
6758 | */
|
---|
6759 | static IEM_DECL_IEMNATIVERECOMPFUNC_DEF(iemNativeRecompFunc_BltIn_DeferToCImpl0)
|
---|
6760 | {
|
---|
6761 | PFNIEMCIMPL0 const pfnCImpl = (PFNIEMCIMPL0)(uintptr_t)pCallEntry->auParams[0];
|
---|
6762 | uint8_t const cbInstr = (uint8_t)pCallEntry->auParams[1];
|
---|
6763 | uint64_t const fGstShwFlush = (uint8_t)pCallEntry->auParams[2];
|
---|
6764 | return iemNativeEmitCImplCall(pReNative, off, pCallEntry->idxInstr, fGstShwFlush, (uintptr_t)pfnCImpl, cbInstr, 0, 0, 0, 0);
|
---|
6765 | }
|
---|
6766 |
|
---|
6767 |
|
---|
6768 | /**
|
---|
6769 | * Built-in function that checks for pending interrupts that can be delivered or
|
---|
6770 | * forced action flags.
|
---|
6771 | *
|
---|
6772 | * This triggers after the completion of an instruction, so EIP is already at
|
---|
6773 | * the next instruction. If an IRQ or important FF is pending, this will return
|
---|
6774 | * a non-zero status that stops TB execution.
|
---|
6775 | */
|
---|
6776 | static IEM_DECL_IEMNATIVERECOMPFUNC_DEF(iemNativeRecompFunc_BltIn_CheckIrq)
|
---|
6777 | {
|
---|
6778 | RT_NOREF(pCallEntry);
|
---|
6779 |
|
---|
6780 | /* It's too convenient to use iemNativeEmitTestBitInGprAndJmpToLabelIfNotSet below
|
---|
6781 | and I'm too lazy to create a 'Fixed' version of that one. */
|
---|
6782 | uint32_t const idxLabelVmCheck = iemNativeLabelCreate(pReNative, kIemNativeLabelType_CheckIrq,
|
---|
6783 | UINT32_MAX, pReNative->uCheckIrqSeqNo++);
|
---|
6784 |
|
---|
6785 | uint32_t const idxLabelReturnBreak = iemNativeLabelCreate(pReNative, kIemNativeLabelType_ReturnBreak);
|
---|
6786 |
|
---|
6787 | /* Again, we need to load the extended EFLAGS before we actually need them
|
---|
6788 | in case we jump. We couldn't use iemNativeRegAllocTmpForGuestReg if we
|
---|
6789 | loaded them inside the check, as the shadow state would not be correct
|
---|
6790 | when the code branches before the load. Ditto PC. */
|
---|
6791 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6792 | kIemNativeGstRegUse_ReadOnly);
|
---|
6793 |
|
---|
6794 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ReadOnly);
|
---|
6795 |
|
---|
6796 | uint8_t idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6797 |
|
---|
6798 | /*
|
---|
6799 | * Start by checking the local forced actions of the EMT we're on for IRQs
|
---|
6800 | * and other FFs that needs servicing.
|
---|
6801 | */
|
---|
6802 | /** @todo this isn't even close to the NMI and interrupt conditions in EM! */
|
---|
6803 | /* Load FFs in to idxTmpReg and AND with all relevant flags. */
|
---|
6804 | off = iemNativeEmitLoadGprFromVCpuU64(pReNative, off, idxTmpReg, RT_UOFFSETOF(VMCPUCC, fLocalForcedActions));
|
---|
6805 | off = iemNativeEmitAndGprByImm(pReNative, off, idxTmpReg,
|
---|
6806 | VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
6807 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
6808 | | VMCPU_FF_TLB_FLUSH
|
---|
6809 | | VMCPU_FF_UNHALT ),
|
---|
6810 | true /*fSetFlags*/);
|
---|
6811 | /* If we end up with ZERO in idxTmpReg there is nothing to do.*/
|
---|
6812 | uint32_t const offFixupJumpToVmCheck1 = off;
|
---|
6813 | off = iemNativeEmitJzToFixed(pReNative, off, 0);
|
---|
6814 |
|
---|
6815 | /* Some relevant FFs are set, but if's only APIC or/and PIC being set,
|
---|
6816 | these may be supressed by EFLAGS.IF or CPUMIsInInterruptShadow. */
|
---|
6817 | off = iemNativeEmitAndGprByImm(pReNative, off, idxTmpReg,
|
---|
6818 | ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC), true /*fSetFlags*/);
|
---|
6819 | /* Return VINF_IEM_REEXEC_BREAK if other FFs are set. */
|
---|
6820 | off = iemNativeEmitJnzToLabel(pReNative, off, idxLabelReturnBreak);
|
---|
6821 |
|
---|
6822 | /* So, it's only interrupt releated FFs and we need to see if IRQs are being
|
---|
6823 | suppressed by the CPU or not. */
|
---|
6824 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfNotSet(pReNative, off, idxEflReg, X86_EFL_IF_BIT, idxLabelVmCheck);
|
---|
6825 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxEflReg, CPUMCTX_INHIBIT_SHADOW,
|
---|
6826 | idxLabelReturnBreak);
|
---|
6827 |
|
---|
6828 | /* We've got shadow flags set, so we must check that the PC they are valid
|
---|
6829 | for matches our current PC value. */
|
---|
6830 | /** @todo AMD64 can do this more efficiently w/o loading uRipInhibitInt into
|
---|
6831 | * a register. */
|
---|
6832 | off = iemNativeEmitLoadGprFromVCpuU64(pReNative, off, idxTmpReg, RT_UOFFSETOF(VMCPUCC, cpum.GstCtx.uRipInhibitInt));
|
---|
6833 | off = iemNativeEmitTestIfGprNotEqualGprAndJmpToLabel(pReNative, off, idxTmpReg, idxPcReg, idxLabelReturnBreak);
|
---|
6834 |
|
---|
6835 | /*
|
---|
6836 | * Now check the force flags of the VM.
|
---|
6837 | */
|
---|
6838 | iemNativeLabelDefine(pReNative, idxLabelVmCheck, off);
|
---|
6839 | iemNativeFixupFixedJump(pReNative, offFixupJumpToVmCheck1, off);
|
---|
6840 | off = iemNativeEmitLoadGprFromVCpuU64(pReNative, off, idxTmpReg, RT_UOFFSETOF(VMCPUCC, CTX_SUFF(pVM))); /* idxTmpReg = pVM */
|
---|
6841 | off = iemNativeEmitLoadGpr32ByGpr(pReNative, off, idxTmpReg, idxTmpReg, RT_UOFFSETOF(VMCC, fGlobalForcedActions));
|
---|
6842 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxTmpReg, VM_FF_ALL_MASK, true /*fSetFlags*/);
|
---|
6843 | off = iemNativeEmitJnzToLabel(pReNative, off, idxLabelReturnBreak);
|
---|
6844 |
|
---|
6845 | /** @todo STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatCheckIrqBreaks); */
|
---|
6846 |
|
---|
6847 | /*
|
---|
6848 | * We're good, no IRQs or FFs pending.
|
---|
6849 | */
|
---|
6850 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6851 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6852 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
6853 |
|
---|
6854 | return off;
|
---|
6855 | }
|
---|
6856 |
|
---|
6857 |
|
---|
6858 | /**
|
---|
6859 | * Built-in function checks if IEMCPU::fExec has the expected value.
|
---|
6860 | */
|
---|
6861 | static IEM_DECL_IEMNATIVERECOMPFUNC_DEF(iemNativeRecompFunc_BltIn_CheckMode)
|
---|
6862 | {
|
---|
6863 | uint32_t const fExpectedExec = (uint32_t)pCallEntry->auParams[0];
|
---|
6864 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6865 |
|
---|
6866 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, idxTmpReg, RT_UOFFSETOF(VMCPUCC, iem.s.fExec));
|
---|
6867 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxTmpReg, IEMTB_F_KEY_MASK);
|
---|
6868 | off = iemNativeEmitTestIfGpr32NotEqualImmAndJmpToNewLabel(pReNative, off, idxTmpReg, fExpectedExec & IEMTB_F_KEY_MASK,
|
---|
6869 | kIemNativeLabelType_ReturnBreak);
|
---|
6870 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6871 | return off;
|
---|
6872 | }
|
---|
6873 |
|
---|
6874 |
|
---|
6875 |
|
---|
6876 | /*********************************************************************************************************************************
|
---|
6877 | * The native code generator functions for each MC block. *
|
---|
6878 | *********************************************************************************************************************************/
|
---|
6879 |
|
---|
6880 |
|
---|
6881 | /*
|
---|
6882 | * Include g_apfnIemNativeRecompileFunctions and associated functions.
|
---|
6883 | *
|
---|
6884 | * This should probably live in it's own file later, but lets see what the
|
---|
6885 | * compile times turn out to be first.
|
---|
6886 | */
|
---|
6887 | #include "IEMNativeFunctions.cpp.h"
|
---|
6888 |
|
---|
6889 |
|
---|
6890 |
|
---|
6891 | /*********************************************************************************************************************************
|
---|
6892 | * Recompiler Core. *
|
---|
6893 | *********************************************************************************************************************************/
|
---|
6894 |
|
---|
6895 |
|
---|
6896 | /** @callback_method_impl{FNDISREADBYTES, Dummy.} */
|
---|
6897 | static DECLCALLBACK(int) iemNativeDisasReadBytesDummy(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
|
---|
6898 | {
|
---|
6899 | RT_BZERO(&pDis->Instr.ab[offInstr], cbMaxRead);
|
---|
6900 | pDis->cbCachedInstr += cbMaxRead;
|
---|
6901 | RT_NOREF(cbMinRead);
|
---|
6902 | return VERR_NO_DATA;
|
---|
6903 | }
|
---|
6904 |
|
---|
6905 |
|
---|
6906 | /**
|
---|
6907 | * Formats TB flags (IEM_F_XXX and IEMTB_F_XXX) to string.
|
---|
6908 | * @returns pszBuf.
|
---|
6909 | * @param fFlags The flags.
|
---|
6910 | * @param pszBuf The output buffer.
|
---|
6911 | * @param cbBuf The output buffer size. At least 32 bytes.
|
---|
6912 | */
|
---|
6913 | DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT
|
---|
6914 | {
|
---|
6915 | Assert(cbBuf >= 32);
|
---|
6916 | static RTSTRTUPLE const s_aModes[] =
|
---|
6917 | {
|
---|
6918 | /* [00] = */ { RT_STR_TUPLE("16BIT") },
|
---|
6919 | /* [01] = */ { RT_STR_TUPLE("32BIT") },
|
---|
6920 | /* [02] = */ { RT_STR_TUPLE("!2!") },
|
---|
6921 | /* [03] = */ { RT_STR_TUPLE("!3!") },
|
---|
6922 | /* [04] = */ { RT_STR_TUPLE("16BIT_PRE_386") },
|
---|
6923 | /* [05] = */ { RT_STR_TUPLE("32BIT_FLAT") },
|
---|
6924 | /* [06] = */ { RT_STR_TUPLE("!6!") },
|
---|
6925 | /* [07] = */ { RT_STR_TUPLE("!7!") },
|
---|
6926 | /* [08] = */ { RT_STR_TUPLE("16BIT_PROT") },
|
---|
6927 | /* [09] = */ { RT_STR_TUPLE("32BIT_PROT") },
|
---|
6928 | /* [0a] = */ { RT_STR_TUPLE("64BIT") },
|
---|
6929 | /* [0b] = */ { RT_STR_TUPLE("!b!") },
|
---|
6930 | /* [0c] = */ { RT_STR_TUPLE("16BIT_PROT_PRE_386") },
|
---|
6931 | /* [0d] = */ { RT_STR_TUPLE("32BIT_PROT_FLAT") },
|
---|
6932 | /* [0e] = */ { RT_STR_TUPLE("!e!") },
|
---|
6933 | /* [0f] = */ { RT_STR_TUPLE("!f!") },
|
---|
6934 | /* [10] = */ { RT_STR_TUPLE("!10!") },
|
---|
6935 | /* [11] = */ { RT_STR_TUPLE("!11!") },
|
---|
6936 | /* [12] = */ { RT_STR_TUPLE("!12!") },
|
---|
6937 | /* [13] = */ { RT_STR_TUPLE("!13!") },
|
---|
6938 | /* [14] = */ { RT_STR_TUPLE("!14!") },
|
---|
6939 | /* [15] = */ { RT_STR_TUPLE("!15!") },
|
---|
6940 | /* [16] = */ { RT_STR_TUPLE("!16!") },
|
---|
6941 | /* [17] = */ { RT_STR_TUPLE("!17!") },
|
---|
6942 | /* [18] = */ { RT_STR_TUPLE("16BIT_PROT_V86") },
|
---|
6943 | /* [19] = */ { RT_STR_TUPLE("32BIT_PROT_V86") },
|
---|
6944 | /* [1a] = */ { RT_STR_TUPLE("!1a!") },
|
---|
6945 | /* [1b] = */ { RT_STR_TUPLE("!1b!") },
|
---|
6946 | /* [1c] = */ { RT_STR_TUPLE("!1c!") },
|
---|
6947 | /* [1d] = */ { RT_STR_TUPLE("!1d!") },
|
---|
6948 | /* [1e] = */ { RT_STR_TUPLE("!1e!") },
|
---|
6949 | /* [1f] = */ { RT_STR_TUPLE("!1f!") },
|
---|
6950 | };
|
---|
6951 | AssertCompile(RT_ELEMENTS(s_aModes) == IEM_F_MODE_MASK + 1);
|
---|
6952 | memcpy(pszBuf, s_aModes[fFlags & IEM_F_MODE_MASK].psz, s_aModes[fFlags & IEM_F_MODE_MASK].cch);
|
---|
6953 | size_t off = s_aModes[fFlags & IEM_F_MODE_MASK].cch;
|
---|
6954 |
|
---|
6955 | pszBuf[off++] = ' ';
|
---|
6956 | pszBuf[off++] = 'C';
|
---|
6957 | pszBuf[off++] = 'P';
|
---|
6958 | pszBuf[off++] = 'L';
|
---|
6959 | pszBuf[off++] = '0' + ((fFlags >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK);
|
---|
6960 | Assert(off < 32);
|
---|
6961 |
|
---|
6962 | fFlags &= ~(IEM_F_MODE_MASK | IEM_F_X86_CPL_SMASK);
|
---|
6963 |
|
---|
6964 | static struct { const char *pszName; uint32_t cchName; uint32_t fFlag; } const s_aFlags[] =
|
---|
6965 | {
|
---|
6966 | { RT_STR_TUPLE("BYPASS_HANDLERS"), IEM_F_BYPASS_HANDLERS },
|
---|
6967 | { RT_STR_TUPLE("PENDING_BRK_INSTR"), IEM_F_PENDING_BRK_INSTR },
|
---|
6968 | { RT_STR_TUPLE("PENDING_BRK_DATA"), IEM_F_PENDING_BRK_DATA },
|
---|
6969 | { RT_STR_TUPLE("PENDING_BRK_X86_IO"), IEM_F_PENDING_BRK_X86_IO },
|
---|
6970 | { RT_STR_TUPLE("X86_DISREGARD_LOCK"), IEM_F_X86_DISREGARD_LOCK },
|
---|
6971 | { RT_STR_TUPLE("X86_CTX_VMX"), IEM_F_X86_CTX_VMX },
|
---|
6972 | { RT_STR_TUPLE("X86_CTX_SVM"), IEM_F_X86_CTX_SVM },
|
---|
6973 | { RT_STR_TUPLE("X86_CTX_IN_GUEST"), IEM_F_X86_CTX_IN_GUEST },
|
---|
6974 | { RT_STR_TUPLE("X86_CTX_SMM"), IEM_F_X86_CTX_SMM },
|
---|
6975 | { RT_STR_TUPLE("INHIBIT_SHADOW"), IEMTB_F_INHIBIT_SHADOW },
|
---|
6976 | { RT_STR_TUPLE("INHIBIT_NMI"), IEMTB_F_INHIBIT_NMI },
|
---|
6977 | { RT_STR_TUPLE("CS_LIM_CHECKS"), IEMTB_F_CS_LIM_CHECKS },
|
---|
6978 | { RT_STR_TUPLE("TYPE_THREADED"), IEMTB_F_TYPE_THREADED },
|
---|
6979 | { RT_STR_TUPLE("TYPE_NATIVE"), IEMTB_F_TYPE_NATIVE },
|
---|
6980 | };
|
---|
6981 | if (fFlags)
|
---|
6982 | for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
6983 | if (s_aFlags[i].fFlag & fFlags)
|
---|
6984 | {
|
---|
6985 | AssertReturnStmt(off + 1 + s_aFlags[i].cchName + 1 <= cbBuf, pszBuf[off] = '\0', pszBuf);
|
---|
6986 | pszBuf[off++] = ' ';
|
---|
6987 | memcpy(&pszBuf[off], s_aFlags[i].pszName, s_aFlags[i].cchName);
|
---|
6988 | off += s_aFlags[i].cchName;
|
---|
6989 | fFlags &= ~s_aFlags[i].fFlag;
|
---|
6990 | if (!fFlags)
|
---|
6991 | break;
|
---|
6992 | }
|
---|
6993 | pszBuf[off] = '\0';
|
---|
6994 |
|
---|
6995 | return pszBuf;
|
---|
6996 | }
|
---|
6997 |
|
---|
6998 |
|
---|
6999 | DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT
|
---|
7000 | {
|
---|
7001 | AssertReturnVoid((pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE);
|
---|
7002 |
|
---|
7003 | char szDisBuf[512];
|
---|
7004 | DISSTATE Dis;
|
---|
7005 | PCIEMNATIVEINSTR const paNative = pTb->Native.paInstructions;
|
---|
7006 | uint32_t const cNative = pTb->Native.cInstructions;
|
---|
7007 | uint32_t offNative = 0;
|
---|
7008 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
7009 | PCIEMTBDBG const pDbgInfo = pTb->pDbgInfo;
|
---|
7010 | #endif
|
---|
7011 | DISCPUMODE enmGstCpuMode = (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT ? DISCPUMODE_16BIT
|
---|
7012 | : (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT ? DISCPUMODE_32BIT
|
---|
7013 | : DISCPUMODE_64BIT;
|
---|
7014 | #if defined(RT_ARCH_AMD64) && !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
7015 | DISCPUMODE const enmHstCpuMode = DISCPUMODE_64BIT;
|
---|
7016 | #elif defined(RT_ARCH_ARM64) && !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
7017 | DISCPUMODE const enmHstCpuMode = DISCPUMODE_ARMV8_A64;
|
---|
7018 | #elif !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
7019 | # error "Port me"
|
---|
7020 | #else
|
---|
7021 | csh hDisasm = ~(size_t)0;
|
---|
7022 | # if defined(RT_ARCH_AMD64)
|
---|
7023 | cs_err rcCs = cs_open(CS_ARCH_X86, CS_MODE_LITTLE_ENDIAN | CS_MODE_64, &hDisasm);
|
---|
7024 | # elif defined(RT_ARCH_ARM64)
|
---|
7025 | cs_err rcCs = cs_open(CS_ARCH_ARM64, CS_MODE_LITTLE_ENDIAN, &hDisasm);
|
---|
7026 | # else
|
---|
7027 | # error "Port me"
|
---|
7028 | # endif
|
---|
7029 | AssertMsgReturnVoid(rcCs == CS_ERR_OK, ("%d (%#x)\n", rcCs, rcCs));
|
---|
7030 | #endif
|
---|
7031 |
|
---|
7032 | /*
|
---|
7033 | * Print TB info.
|
---|
7034 | */
|
---|
7035 | pHlp->pfnPrintf(pHlp,
|
---|
7036 | "pTb=%p: GCPhysPc=%RGp cInstructions=%u LB %#x cRanges=%u\n"
|
---|
7037 | "pTb=%p: cUsed=%u msLastUsed=%u fFlags=%#010x %s\n",
|
---|
7038 | pTb, pTb->GCPhysPc, pTb->cInstructions, pTb->cbOpcodes, pTb->cRanges,
|
---|
7039 | pTb, pTb->cUsed, pTb->msLastUsed, pTb->fFlags, iemTbFlagsToString(pTb->fFlags, szDisBuf, sizeof(szDisBuf)));
|
---|
7040 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
7041 | if (pDbgInfo && pDbgInfo->cEntries > 1)
|
---|
7042 | {
|
---|
7043 | Assert(pDbgInfo->aEntries[0].Gen.uType == kIemTbDbgEntryType_NativeOffset);
|
---|
7044 |
|
---|
7045 | /*
|
---|
7046 | * This disassembly is driven by the debug info which follows the native
|
---|
7047 | * code and indicates when it starts with the next guest instructions,
|
---|
7048 | * where labels are and such things.
|
---|
7049 | */
|
---|
7050 | uint32_t idxThreadedCall = 0;
|
---|
7051 | uint32_t fExec = pTb->fFlags & UINT32_C(0x00ffffff);
|
---|
7052 | uint8_t idxRange = UINT8_MAX;
|
---|
7053 | uint8_t const cRanges = RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges));
|
---|
7054 | uint32_t offRange = 0;
|
---|
7055 | uint32_t offOpcodes = 0;
|
---|
7056 | RTGCPHYS GCPhysPc = pTb->GCPhysPc;
|
---|
7057 | uint32_t const cDbgEntries = pDbgInfo->cEntries;
|
---|
7058 | uint32_t iDbgEntry = 1;
|
---|
7059 | uint32_t offDbgNativeNext = pDbgInfo->aEntries[0].NativeOffset.offNative;
|
---|
7060 |
|
---|
7061 | while (offNative < cNative)
|
---|
7062 | {
|
---|
7063 | /* If we're at or have passed the point where the next chunk of debug
|
---|
7064 | info starts, process it. */
|
---|
7065 | if (offDbgNativeNext <= offNative)
|
---|
7066 | {
|
---|
7067 | offDbgNativeNext = UINT32_MAX;
|
---|
7068 | for (; iDbgEntry < cDbgEntries; iDbgEntry++)
|
---|
7069 | {
|
---|
7070 | switch (pDbgInfo->aEntries[iDbgEntry].Gen.uType)
|
---|
7071 | {
|
---|
7072 | case kIemTbDbgEntryType_GuestInstruction:
|
---|
7073 | {
|
---|
7074 | /* Did the exec flag change? */
|
---|
7075 | if (fExec != pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec)
|
---|
7076 | {
|
---|
7077 | pHlp->pfnPrintf(pHlp,
|
---|
7078 | " fExec change %#08x -> %#08x %s\n",
|
---|
7079 | fExec, pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec,
|
---|
7080 | iemTbFlagsToString(pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec,
|
---|
7081 | szDisBuf, sizeof(szDisBuf)));
|
---|
7082 | fExec = pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec;
|
---|
7083 | enmGstCpuMode = (fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT ? DISCPUMODE_16BIT
|
---|
7084 | : (fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT ? DISCPUMODE_32BIT
|
---|
7085 | : DISCPUMODE_64BIT;
|
---|
7086 | }
|
---|
7087 |
|
---|
7088 | /* New opcode range? We need to fend up a spurious debug info entry here for cases
|
---|
7089 | where the compilation was aborted before the opcode was recorded and the actual
|
---|
7090 | instruction was translated to a threaded call. This may happen when we run out
|
---|
7091 | of ranges, or when some complicated interrupts/FFs are found to be pending or
|
---|
7092 | similar. So, we just deal with it here rather than in the compiler code as it
|
---|
7093 | is a lot simpler to do up here. */
|
---|
7094 | if ( idxRange == UINT8_MAX
|
---|
7095 | || idxRange >= cRanges
|
---|
7096 | || offRange >= pTb->aRanges[idxRange].cbOpcodes)
|
---|
7097 | {
|
---|
7098 | idxRange += 1;
|
---|
7099 | if (idxRange < cRanges)
|
---|
7100 | offRange = 0;
|
---|
7101 | else
|
---|
7102 | continue;
|
---|
7103 | Assert(offOpcodes == pTb->aRanges[idxRange].offOpcodes);
|
---|
7104 | GCPhysPc = pTb->aRanges[idxRange].offPhysPage
|
---|
7105 | + (pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
7106 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
7107 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]);
|
---|
7108 | pHlp->pfnPrintf(pHlp, " Range #%u: GCPhysPc=%RGp LB %#x [idxPg=%d]\n",
|
---|
7109 | idxRange, GCPhysPc, pTb->aRanges[idxRange].cbOpcodes,
|
---|
7110 | pTb->aRanges[idxRange].idxPhysPage);
|
---|
7111 | }
|
---|
7112 |
|
---|
7113 | /* Disassemble the instruction. */
|
---|
7114 | uint8_t const cbInstrMax = RT_MIN(pTb->aRanges[idxRange].cbOpcodes - offRange, 15);
|
---|
7115 | uint32_t cbInstr = 1;
|
---|
7116 | int rc = DISInstrWithPrefetchedBytes(GCPhysPc, enmGstCpuMode, DISOPTYPE_ALL,
|
---|
7117 | &pTb->pabOpcodes[offOpcodes], cbInstrMax,
|
---|
7118 | iemNativeDisasReadBytesDummy, NULL, &Dis, &cbInstr);
|
---|
7119 | if (RT_SUCCESS(rc))
|
---|
7120 | {
|
---|
7121 | size_t cch = DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7122 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
7123 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7124 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7125 |
|
---|
7126 | static unsigned const s_offMarker = 55;
|
---|
7127 | static char const s_szMarker[] = " ; <--- guest";
|
---|
7128 | if (cch < s_offMarker)
|
---|
7129 | {
|
---|
7130 | memset(&szDisBuf[cch], ' ', s_offMarker - cch);
|
---|
7131 | cch = s_offMarker;
|
---|
7132 | }
|
---|
7133 | if (cch + sizeof(s_szMarker) <= sizeof(szDisBuf))
|
---|
7134 | memcpy(&szDisBuf[cch], s_szMarker, sizeof(s_szMarker));
|
---|
7135 |
|
---|
7136 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %s\n", GCPhysPc, szDisBuf);
|
---|
7137 | }
|
---|
7138 | else
|
---|
7139 | {
|
---|
7140 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %.*Rhxs - guest disassembly failure %Rrc\n",
|
---|
7141 | GCPhysPc, cbInstrMax, &pTb->pabOpcodes[offOpcodes], rc);
|
---|
7142 | cbInstr = 1;
|
---|
7143 | }
|
---|
7144 | GCPhysPc += cbInstr;
|
---|
7145 | offOpcodes += cbInstr;
|
---|
7146 | offRange += cbInstr;
|
---|
7147 | continue;
|
---|
7148 | }
|
---|
7149 |
|
---|
7150 | case kIemTbDbgEntryType_ThreadedCall:
|
---|
7151 | pHlp->pfnPrintf(pHlp,
|
---|
7152 | " Call #%u to %s (%u args)%s\n",
|
---|
7153 | idxThreadedCall,
|
---|
7154 | g_apszIemThreadedFunctions[pDbgInfo->aEntries[iDbgEntry].ThreadedCall.enmCall],
|
---|
7155 | g_acIemThreadedFunctionUsedArgs[pDbgInfo->aEntries[iDbgEntry].ThreadedCall.enmCall],
|
---|
7156 | pDbgInfo->aEntries[iDbgEntry].ThreadedCall.fRecompiled ? " - recompiled" : "");
|
---|
7157 | idxThreadedCall++;
|
---|
7158 | continue;
|
---|
7159 |
|
---|
7160 | case kIemTbDbgEntryType_GuestRegShadowing:
|
---|
7161 | {
|
---|
7162 | PCIEMTBDBGENTRY const pEntry = &pDbgInfo->aEntries[iDbgEntry];
|
---|
7163 | const char * const pszGstReg = g_aGstShadowInfo[pEntry->GuestRegShadowing.idxGstReg].pszName;
|
---|
7164 | if (pEntry->GuestRegShadowing.idxHstReg == UINT8_MAX)
|
---|
7165 | pHlp->pfnPrintf(pHlp, " Guest register %s != host register %s\n", pszGstReg,
|
---|
7166 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstRegPrev]);
|
---|
7167 | else if (pEntry->GuestRegShadowing.idxHstRegPrev == UINT8_MAX)
|
---|
7168 | pHlp->pfnPrintf(pHlp, " Guest register %s == host register %s\n", pszGstReg,
|
---|
7169 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstReg]);
|
---|
7170 | else
|
---|
7171 | pHlp->pfnPrintf(pHlp, " Guest register %s == host register %s (previously in %s)\n", pszGstReg,
|
---|
7172 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstReg],
|
---|
7173 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstRegPrev]);
|
---|
7174 | continue;
|
---|
7175 | }
|
---|
7176 |
|
---|
7177 | case kIemTbDbgEntryType_Label:
|
---|
7178 | {
|
---|
7179 | const char *pszName = "what_the_fudge";
|
---|
7180 | const char *pszComment = "";
|
---|
7181 | bool fNumbered = pDbgInfo->aEntries[iDbgEntry].Label.uData != 0;
|
---|
7182 | switch ((IEMNATIVELABELTYPE)pDbgInfo->aEntries[iDbgEntry].Label.enmLabel)
|
---|
7183 | {
|
---|
7184 | case kIemNativeLabelType_Return:
|
---|
7185 | pszName = "Return";
|
---|
7186 | break;
|
---|
7187 | case kIemNativeLabelType_ReturnBreak:
|
---|
7188 | pszName = "ReturnBreak";
|
---|
7189 | break;
|
---|
7190 | case kIemNativeLabelType_ReturnWithFlags:
|
---|
7191 | pszName = "ReturnWithFlags";
|
---|
7192 | break;
|
---|
7193 | case kIemNativeLabelType_NonZeroRetOrPassUp:
|
---|
7194 | pszName = "NonZeroRetOrPassUp";
|
---|
7195 | break;
|
---|
7196 | case kIemNativeLabelType_RaiseGp0:
|
---|
7197 | pszName = "RaiseGp0";
|
---|
7198 | break;
|
---|
7199 | case kIemNativeLabelType_If:
|
---|
7200 | pszName = "If";
|
---|
7201 | fNumbered = true;
|
---|
7202 | break;
|
---|
7203 | case kIemNativeLabelType_Else:
|
---|
7204 | pszName = "Else";
|
---|
7205 | fNumbered = true;
|
---|
7206 | pszComment = " ; regs state restored pre-if-block";
|
---|
7207 | break;
|
---|
7208 | case kIemNativeLabelType_Endif:
|
---|
7209 | pszName = "Endif";
|
---|
7210 | fNumbered = true;
|
---|
7211 | break;
|
---|
7212 | case kIemNativeLabelType_CheckIrq:
|
---|
7213 | pszName = "CheckIrq_CheckVM";
|
---|
7214 | fNumbered = true;
|
---|
7215 | break;
|
---|
7216 | case kIemNativeLabelType_Invalid:
|
---|
7217 | case kIemNativeLabelType_End:
|
---|
7218 | break;
|
---|
7219 | }
|
---|
7220 | if (fNumbered)
|
---|
7221 | pHlp->pfnPrintf(pHlp, " %s_%u:%s\n", pszName, pDbgInfo->aEntries[iDbgEntry].Label.uData, pszComment);
|
---|
7222 | else
|
---|
7223 | pHlp->pfnPrintf(pHlp, " %s:\n", pszName);
|
---|
7224 | continue;
|
---|
7225 | }
|
---|
7226 |
|
---|
7227 | case kIemTbDbgEntryType_NativeOffset:
|
---|
7228 | offDbgNativeNext = pDbgInfo->aEntries[iDbgEntry].NativeOffset.offNative;
|
---|
7229 | Assert(offDbgNativeNext > offNative);
|
---|
7230 | break;
|
---|
7231 |
|
---|
7232 | default:
|
---|
7233 | AssertFailed();
|
---|
7234 | }
|
---|
7235 | iDbgEntry++;
|
---|
7236 | break;
|
---|
7237 | }
|
---|
7238 | }
|
---|
7239 |
|
---|
7240 | /*
|
---|
7241 | * Disassemble the next native instruction.
|
---|
7242 | */
|
---|
7243 | PCIEMNATIVEINSTR const pNativeCur = &paNative[offNative];
|
---|
7244 | # ifndef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
7245 | uint32_t cbInstr = sizeof(paNative[0]);
|
---|
7246 | int const rc = DISInstr(pNativeCur, enmHstCpuMode, &Dis, &cbInstr);
|
---|
7247 | if (RT_SUCCESS(rc))
|
---|
7248 | {
|
---|
7249 | # if defined(RT_ARCH_AMD64)
|
---|
7250 | if (Dis.pCurInstr->uOpcode == OP_NOP && cbInstr == 7) /* iemNativeEmitMarker */
|
---|
7251 | {
|
---|
7252 | uint32_t const uInfo = *(uint32_t const *)&Dis.Instr.ab[3];
|
---|
7253 | if (RT_HIWORD(uInfo) < kIemThreadedFunc_End)
|
---|
7254 | pHlp->pfnPrintf(pHlp, " %p: nop ; marker: call #%u to %s (%u args)%s\n",
|
---|
7255 | pNativeCur, uInfo & 0x7fff, g_apszIemThreadedFunctions[RT_HIWORD(uInfo)],
|
---|
7256 | g_acIemThreadedFunctionUsedArgs[RT_HIWORD(uInfo)],
|
---|
7257 | uInfo & 0x8000 ? " - recompiled" : "");
|
---|
7258 | else
|
---|
7259 | pHlp->pfnPrintf(pHlp, " %p: nop ; unknown marker: %#x (%d)\n", pNativeCur, uInfo, uInfo);
|
---|
7260 | }
|
---|
7261 | else
|
---|
7262 | # endif
|
---|
7263 | {
|
---|
7264 | # ifdef RT_ARCH_AMD64
|
---|
7265 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7266 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
7267 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7268 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7269 | # elif defined(RT_ARCH_ARM64)
|
---|
7270 | DISFormatArmV8Ex(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7271 | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7272 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7273 | # else
|
---|
7274 | # error "Port me"
|
---|
7275 | # endif
|
---|
7276 | pHlp->pfnPrintf(pHlp, " %p: %s\n", pNativeCur, szDisBuf);
|
---|
7277 | }
|
---|
7278 | }
|
---|
7279 | else
|
---|
7280 | {
|
---|
7281 | # if defined(RT_ARCH_AMD64)
|
---|
7282 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
7283 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, rc);
|
---|
7284 | # elif defined(RT_ARCH_ARM64)
|
---|
7285 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %Rrc\n", pNativeCur, *pNativeCur, rc);
|
---|
7286 | # else
|
---|
7287 | # error "Port me"
|
---|
7288 | # endif
|
---|
7289 | cbInstr = sizeof(paNative[0]);
|
---|
7290 | }
|
---|
7291 | offNative += cbInstr / sizeof(paNative[0]);
|
---|
7292 |
|
---|
7293 | # else /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
7294 | cs_insn *pInstr;
|
---|
7295 | size_t cInstrs = cs_disasm(hDisasm, (const uint8_t *)pNativeCur, (cNative - offNative) * sizeof(*pNativeCur),
|
---|
7296 | (uintptr_t)pNativeCur, 1, &pInstr);
|
---|
7297 | if (cInstrs > 0)
|
---|
7298 | {
|
---|
7299 | Assert(cInstrs == 1);
|
---|
7300 | # if defined(RT_ARCH_AMD64)
|
---|
7301 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs %-7s %s\n",
|
---|
7302 | pNativeCur, pInstr->size, pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
7303 | # else
|
---|
7304 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 %-7s %s\n",
|
---|
7305 | pNativeCur, *pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
7306 | # endif
|
---|
7307 | offNative += pInstr->size / sizeof(*pNativeCur);
|
---|
7308 | cs_free(pInstr, cInstrs);
|
---|
7309 | }
|
---|
7310 | else
|
---|
7311 | {
|
---|
7312 | # if defined(RT_ARCH_AMD64)
|
---|
7313 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %d\n",
|
---|
7314 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, cs_errno(hDisasm)));
|
---|
7315 | # else
|
---|
7316 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %d\n", pNativeCur, *pNativeCur, cs_errno(hDisasm));
|
---|
7317 | # endif
|
---|
7318 | offNative++;
|
---|
7319 | }
|
---|
7320 | # endif /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
7321 | }
|
---|
7322 | }
|
---|
7323 | else
|
---|
7324 | #endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
|
---|
7325 | {
|
---|
7326 | /*
|
---|
7327 | * No debug info, just disassemble the x86 code and then the native code.
|
---|
7328 | *
|
---|
7329 | * First the guest code:
|
---|
7330 | */
|
---|
7331 | for (unsigned i = 0; i < pTb->cRanges; i++)
|
---|
7332 | {
|
---|
7333 | RTGCPHYS GCPhysPc = pTb->aRanges[i].offPhysPage
|
---|
7334 | + (pTb->aRanges[i].idxPhysPage == 0
|
---|
7335 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
7336 | : pTb->aGCPhysPages[pTb->aRanges[i].idxPhysPage - 1]);
|
---|
7337 | pHlp->pfnPrintf(pHlp, " Range #%u: GCPhysPc=%RGp LB %#x [idxPg=%d]\n",
|
---|
7338 | i, GCPhysPc, pTb->aRanges[i].cbOpcodes, pTb->aRanges[i].idxPhysPage);
|
---|
7339 | unsigned off = pTb->aRanges[i].offOpcodes;
|
---|
7340 | unsigned const cbOpcodes = pTb->aRanges[i].cbOpcodes + off;
|
---|
7341 | while (off < cbOpcodes)
|
---|
7342 | {
|
---|
7343 | uint32_t cbInstr = 1;
|
---|
7344 | int rc = DISInstrWithPrefetchedBytes(GCPhysPc, enmGstCpuMode, DISOPTYPE_ALL,
|
---|
7345 | &pTb->pabOpcodes[off], cbOpcodes - off,
|
---|
7346 | iemNativeDisasReadBytesDummy, NULL, &Dis, &cbInstr);
|
---|
7347 | if (RT_SUCCESS(rc))
|
---|
7348 | {
|
---|
7349 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7350 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
7351 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7352 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7353 | pHlp->pfnPrintf(pHlp, " %RGp: %s\n", GCPhysPc, szDisBuf);
|
---|
7354 | GCPhysPc += cbInstr;
|
---|
7355 | off += cbInstr;
|
---|
7356 | }
|
---|
7357 | else
|
---|
7358 | {
|
---|
7359 | pHlp->pfnPrintf(pHlp, " %RGp: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
7360 | GCPhysPc, cbOpcodes - off, &pTb->pabOpcodes[off], rc);
|
---|
7361 | break;
|
---|
7362 | }
|
---|
7363 | }
|
---|
7364 | }
|
---|
7365 |
|
---|
7366 | /*
|
---|
7367 | * Then the native code:
|
---|
7368 | */
|
---|
7369 | pHlp->pfnPrintf(pHlp, " Native code %p L %#x\n", paNative, cNative);
|
---|
7370 | while (offNative < cNative)
|
---|
7371 | {
|
---|
7372 | PCIEMNATIVEINSTR const pNativeCur = &paNative[offNative];
|
---|
7373 | # ifndef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
7374 | uint32_t cbInstr = sizeof(paNative[0]);
|
---|
7375 | int const rc = DISInstr(pNativeCur, enmHstCpuMode, &Dis, &cbInstr);
|
---|
7376 | if (RT_SUCCESS(rc))
|
---|
7377 | {
|
---|
7378 | # if defined(RT_ARCH_AMD64)
|
---|
7379 | if (Dis.pCurInstr->uOpcode == OP_NOP && cbInstr == 7) /* iemNativeEmitMarker */
|
---|
7380 | {
|
---|
7381 | uint32_t const uInfo = *(uint32_t const *)&Dis.Instr.ab[3];
|
---|
7382 | if (RT_HIWORD(uInfo) < kIemThreadedFunc_End)
|
---|
7383 | pHlp->pfnPrintf(pHlp, "\n %p: nop ; marker: call #%u to %s (%u args)%s\n",
|
---|
7384 | pNativeCur, uInfo & 0x7fff, g_apszIemThreadedFunctions[RT_HIWORD(uInfo)],
|
---|
7385 | g_acIemThreadedFunctionUsedArgs[RT_HIWORD(uInfo)],
|
---|
7386 | uInfo & 0x8000 ? " - recompiled" : "");
|
---|
7387 | else
|
---|
7388 | pHlp->pfnPrintf(pHlp, " %p: nop ; unknown marker: %#x (%d)\n", pNativeCur, uInfo, uInfo);
|
---|
7389 | }
|
---|
7390 | else
|
---|
7391 | # endif
|
---|
7392 | {
|
---|
7393 | # ifdef RT_ARCH_AMD64
|
---|
7394 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7395 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
7396 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7397 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7398 | # elif defined(RT_ARCH_ARM64)
|
---|
7399 | DISFormatArmV8Ex(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
7400 | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
7401 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
7402 | # else
|
---|
7403 | # error "Port me"
|
---|
7404 | # endif
|
---|
7405 | pHlp->pfnPrintf(pHlp, " %p: %s\n", pNativeCur, szDisBuf);
|
---|
7406 | }
|
---|
7407 | }
|
---|
7408 | else
|
---|
7409 | {
|
---|
7410 | # if defined(RT_ARCH_AMD64)
|
---|
7411 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
7412 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, rc);
|
---|
7413 | # else
|
---|
7414 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %Rrc\n", pNativeCur, *pNativeCur, rc);
|
---|
7415 | # endif
|
---|
7416 | cbInstr = sizeof(paNative[0]);
|
---|
7417 | }
|
---|
7418 | offNative += cbInstr / sizeof(paNative[0]);
|
---|
7419 |
|
---|
7420 | # else /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
7421 | cs_insn *pInstr;
|
---|
7422 | size_t cInstrs = cs_disasm(hDisasm, (const uint8_t *)pNativeCur, (cNative - offNative) * sizeof(*pNativeCur),
|
---|
7423 | (uintptr_t)pNativeCur, 1, &pInstr);
|
---|
7424 | if (cInstrs > 0)
|
---|
7425 | {
|
---|
7426 | Assert(cInstrs == 1);
|
---|
7427 | # if defined(RT_ARCH_AMD64)
|
---|
7428 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs %-7s %s\n",
|
---|
7429 | pNativeCur, pInstr->size, pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
7430 | # else
|
---|
7431 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 %-7s %s\n",
|
---|
7432 | pNativeCur, *pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
7433 | # endif
|
---|
7434 | offNative += pInstr->size / sizeof(*pNativeCur);
|
---|
7435 | cs_free(pInstr, cInstrs);
|
---|
7436 | }
|
---|
7437 | else
|
---|
7438 | {
|
---|
7439 | # if defined(RT_ARCH_AMD64)
|
---|
7440 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %d\n",
|
---|
7441 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, cs_errno(hDisasm)));
|
---|
7442 | # else
|
---|
7443 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %d\n", pNativeCur, *pNativeCur, cs_errno(hDisasm));
|
---|
7444 | # endif
|
---|
7445 | offNative++;
|
---|
7446 | }
|
---|
7447 | # endif /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
7448 | }
|
---|
7449 | }
|
---|
7450 |
|
---|
7451 | #ifdef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
7452 | /* Cleanup. */
|
---|
7453 | cs_close(&hDisasm);
|
---|
7454 | #endif
|
---|
7455 | }
|
---|
7456 |
|
---|
7457 |
|
---|
7458 | /**
|
---|
7459 | * Recompiles the given threaded TB into a native one.
|
---|
7460 | *
|
---|
7461 | * In case of failure the translation block will be returned as-is.
|
---|
7462 | *
|
---|
7463 | * @returns pTb.
|
---|
7464 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
7465 | * thread.
|
---|
7466 | * @param pTb The threaded translation to recompile to native.
|
---|
7467 | */
|
---|
7468 | DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT
|
---|
7469 | {
|
---|
7470 | /*
|
---|
7471 | * The first time thru, we allocate the recompiler state, the other times
|
---|
7472 | * we just need to reset it before using it again.
|
---|
7473 | */
|
---|
7474 | PIEMRECOMPILERSTATE pReNative = pVCpu->iem.s.pNativeRecompilerStateR3;
|
---|
7475 | if (RT_LIKELY(pReNative))
|
---|
7476 | iemNativeReInit(pReNative, pTb);
|
---|
7477 | else
|
---|
7478 | {
|
---|
7479 | pReNative = iemNativeInit(pVCpu, pTb);
|
---|
7480 | AssertReturn(pReNative, pTb);
|
---|
7481 | }
|
---|
7482 |
|
---|
7483 | /*
|
---|
7484 | * Recompiling and emitting code is done using try/throw/catch or setjmp/longjmp
|
---|
7485 | * for aborting if an error happens.
|
---|
7486 | */
|
---|
7487 | uint32_t cCallsLeft = pTb->Thrd.cCalls;
|
---|
7488 | #ifdef LOG_ENABLED
|
---|
7489 | uint32_t const cCallsOrg = cCallsLeft;
|
---|
7490 | #endif
|
---|
7491 | uint32_t off = 0;
|
---|
7492 | int rc = VINF_SUCCESS;
|
---|
7493 | IEMNATIVE_TRY_SETJMP(pReNative, rc)
|
---|
7494 | {
|
---|
7495 | /*
|
---|
7496 | * Emit prolog code (fixed).
|
---|
7497 | */
|
---|
7498 | off = iemNativeEmitProlog(pReNative, off);
|
---|
7499 |
|
---|
7500 | /*
|
---|
7501 | * Convert the calls to native code.
|
---|
7502 | */
|
---|
7503 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
7504 | int32_t iGstInstr = -1;
|
---|
7505 | uint32_t fExec = pTb->fFlags;
|
---|
7506 | #endif
|
---|
7507 | PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls;
|
---|
7508 | while (cCallsLeft-- > 0)
|
---|
7509 | {
|
---|
7510 | PFNIEMNATIVERECOMPFUNC const pfnRecom = g_apfnIemNativeRecompileFunctions[pCallEntry->enmFunction];
|
---|
7511 |
|
---|
7512 | /*
|
---|
7513 | * Debug info and assembly markup.
|
---|
7514 | */
|
---|
7515 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
7516 | if (pCallEntry->enmFunction == kIemThreadedFunc_BltIn_CheckMode)
|
---|
7517 | fExec = pCallEntry->auParams[0];
|
---|
7518 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
7519 | if (iGstInstr < (int32_t)pCallEntry->idxInstr)
|
---|
7520 | {
|
---|
7521 | if (iGstInstr < (int32_t)pTb->cInstructions)
|
---|
7522 | iemNativeDbgInfoAddGuestInstruction(pReNative, fExec);
|
---|
7523 | else
|
---|
7524 | Assert(iGstInstr == pTb->cInstructions);
|
---|
7525 | iGstInstr = pCallEntry->idxInstr;
|
---|
7526 | }
|
---|
7527 | iemNativeDbgInfoAddThreadedCall(pReNative, (IEMTHREADEDFUNCS)pCallEntry->enmFunction, pfnRecom != NULL);
|
---|
7528 | #endif
|
---|
7529 | #if defined(VBOX_STRICT)
|
---|
7530 | off = iemNativeEmitMarker(pReNative, off,
|
---|
7531 | RT_MAKE_U32((pTb->Thrd.cCalls - cCallsLeft - 1) | (pfnRecom ? 0x8000 : 0),
|
---|
7532 | pCallEntry->enmFunction));
|
---|
7533 | #endif
|
---|
7534 | #if defined(VBOX_STRICT)
|
---|
7535 | iemNativeRegAssertSanity(pReNative);
|
---|
7536 | #endif
|
---|
7537 |
|
---|
7538 | /*
|
---|
7539 | * Actual work.
|
---|
7540 | */
|
---|
7541 | Log2(("%u[%u]: %s%s\n", pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->idxInstr,
|
---|
7542 | g_apszIemThreadedFunctions[pCallEntry->enmFunction], pfnRecom ? "" : "(todo)"));
|
---|
7543 | if (pfnRecom) /** @todo stats on this. */
|
---|
7544 | {
|
---|
7545 | //STAM_COUNTER_INC()
|
---|
7546 | off = pfnRecom(pReNative, off, pCallEntry);
|
---|
7547 | }
|
---|
7548 | else
|
---|
7549 | off = iemNativeEmitThreadedCall(pReNative, off, pCallEntry);
|
---|
7550 | Assert(off <= pReNative->cInstrBufAlloc);
|
---|
7551 | Assert(pReNative->cCondDepth == 0);
|
---|
7552 |
|
---|
7553 | /*
|
---|
7554 | * Advance.
|
---|
7555 | */
|
---|
7556 | pCallEntry++;
|
---|
7557 | }
|
---|
7558 |
|
---|
7559 | /*
|
---|
7560 | * Emit the epilog code.
|
---|
7561 | */
|
---|
7562 | uint32_t idxReturnLabel;
|
---|
7563 | off = iemNativeEmitEpilog(pReNative, off, &idxReturnLabel);
|
---|
7564 |
|
---|
7565 | /*
|
---|
7566 | * Generate special jump labels.
|
---|
7567 | */
|
---|
7568 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_ReturnBreak))
|
---|
7569 | off = iemNativeEmitReturnBreak(pReNative, off, idxReturnLabel);
|
---|
7570 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_ReturnWithFlags))
|
---|
7571 | off = iemNativeEmitReturnWithFlags(pReNative, off, idxReturnLabel);
|
---|
7572 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_RaiseGp0))
|
---|
7573 | off = iemNativeEmitRaiseGp0(pReNative, off, idxReturnLabel);
|
---|
7574 | }
|
---|
7575 | IEMNATIVE_CATCH_LONGJMP_BEGIN(pReNative, rc);
|
---|
7576 | {
|
---|
7577 | Log(("iemNativeRecompile: Caught %Rrc while recompiling!\n", rc));
|
---|
7578 | return pTb;
|
---|
7579 | }
|
---|
7580 | IEMNATIVE_CATCH_LONGJMP_END(pReNative);
|
---|
7581 | Assert(off <= pReNative->cInstrBufAlloc);
|
---|
7582 |
|
---|
7583 | /*
|
---|
7584 | * Make sure all labels has been defined.
|
---|
7585 | */
|
---|
7586 | PIEMNATIVELABEL const paLabels = pReNative->paLabels;
|
---|
7587 | #ifdef VBOX_STRICT
|
---|
7588 | uint32_t const cLabels = pReNative->cLabels;
|
---|
7589 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
7590 | AssertMsgReturn(paLabels[i].off < off, ("i=%d enmType=%d\n", i, paLabels[i].enmType), pTb);
|
---|
7591 | #endif
|
---|
7592 |
|
---|
7593 | /*
|
---|
7594 | * Allocate executable memory, copy over the code we've generated.
|
---|
7595 | */
|
---|
7596 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
7597 | if (pTbAllocator->pDelayedFreeHead)
|
---|
7598 | iemTbAllocatorProcessDelayedFrees(pVCpu, pVCpu->iem.s.pTbAllocatorR3);
|
---|
7599 |
|
---|
7600 | PIEMNATIVEINSTR const paFinalInstrBuf = (PIEMNATIVEINSTR)iemExecMemAllocatorAlloc(pVCpu, off * sizeof(IEMNATIVEINSTR));
|
---|
7601 | AssertReturn(paFinalInstrBuf, pTb);
|
---|
7602 | memcpy(paFinalInstrBuf, pReNative->pInstrBuf, off * sizeof(paFinalInstrBuf[0]));
|
---|
7603 |
|
---|
7604 | /*
|
---|
7605 | * Apply fixups.
|
---|
7606 | */
|
---|
7607 | PIEMNATIVEFIXUP const paFixups = pReNative->paFixups;
|
---|
7608 | uint32_t const cFixups = pReNative->cFixups;
|
---|
7609 | for (uint32_t i = 0; i < cFixups; i++)
|
---|
7610 | {
|
---|
7611 | Assert(paFixups[i].off < off);
|
---|
7612 | Assert(paFixups[i].idxLabel < cLabels);
|
---|
7613 | RTPTRUNION const Ptr = { &paFinalInstrBuf[paFixups[i].off] };
|
---|
7614 | switch (paFixups[i].enmType)
|
---|
7615 | {
|
---|
7616 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
7617 | case kIemNativeFixupType_Rel32:
|
---|
7618 | Assert(paFixups[i].off + 4 <= off);
|
---|
7619 | *Ptr.pi32 = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
7620 | continue;
|
---|
7621 |
|
---|
7622 | #elif defined(RT_ARCH_ARM64)
|
---|
7623 | case kIemNativeFixupType_RelImm26At0:
|
---|
7624 | {
|
---|
7625 | Assert(paFixups[i].off < off);
|
---|
7626 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
7627 | Assert(offDisp >= -262144 && offDisp < 262144);
|
---|
7628 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xfc000000)) | ((uint32_t)offDisp & UINT32_C(0x03ffffff));
|
---|
7629 | continue;
|
---|
7630 | }
|
---|
7631 |
|
---|
7632 | case kIemNativeFixupType_RelImm19At5:
|
---|
7633 | {
|
---|
7634 | Assert(paFixups[i].off < off);
|
---|
7635 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
7636 | Assert(offDisp >= -262144 && offDisp < 262144);
|
---|
7637 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xff00001f)) | (((uint32_t)offDisp & UINT32_C(0x0007ffff)) << 5);
|
---|
7638 | continue;
|
---|
7639 | }
|
---|
7640 |
|
---|
7641 | case kIemNativeFixupType_RelImm14At5:
|
---|
7642 | {
|
---|
7643 | Assert(paFixups[i].off < off);
|
---|
7644 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
7645 | Assert(offDisp >= -8192 && offDisp < 8192);
|
---|
7646 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xfff8001f)) | (((uint32_t)offDisp & UINT32_C(0x00003fff)) << 5);
|
---|
7647 | continue;
|
---|
7648 | }
|
---|
7649 |
|
---|
7650 | #endif
|
---|
7651 | case kIemNativeFixupType_Invalid:
|
---|
7652 | case kIemNativeFixupType_End:
|
---|
7653 | break;
|
---|
7654 | }
|
---|
7655 | AssertFailed();
|
---|
7656 | }
|
---|
7657 |
|
---|
7658 | iemExecMemAllocatorReadyForUse(pVCpu, paFinalInstrBuf, off * sizeof(IEMNATIVEINSTR));
|
---|
7659 |
|
---|
7660 | /*
|
---|
7661 | * Convert the translation block.
|
---|
7662 | */
|
---|
7663 | //RT_BREAKPOINT();
|
---|
7664 | RTMemFree(pTb->Thrd.paCalls);
|
---|
7665 | pTb->Native.paInstructions = paFinalInstrBuf;
|
---|
7666 | pTb->Native.cInstructions = off;
|
---|
7667 | pTb->fFlags = (pTb->fFlags & ~IEMTB_F_TYPE_MASK) | IEMTB_F_TYPE_NATIVE;
|
---|
7668 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
7669 | pTb->pDbgInfo = (PIEMTBDBG)RTMemDup(pReNative->pDbgInfo, /* non-fatal, so not return check. */
|
---|
7670 | RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[pReNative->pDbgInfo->cEntries]));
|
---|
7671 | #endif
|
---|
7672 |
|
---|
7673 | Assert(pTbAllocator->cThreadedTbs > 0);
|
---|
7674 | pTbAllocator->cThreadedTbs -= 1;
|
---|
7675 | pTbAllocator->cNativeTbs += 1;
|
---|
7676 | Assert(pTbAllocator->cNativeTbs <= pTbAllocator->cTotalTbs);
|
---|
7677 |
|
---|
7678 | #ifdef LOG_ENABLED
|
---|
7679 | /*
|
---|
7680 | * Disassemble to the log if enabled.
|
---|
7681 | */
|
---|
7682 | if (LogIs3Enabled())
|
---|
7683 | {
|
---|
7684 | Log3(("----------------------------------------- %d calls ---------------------------------------\n", cCallsOrg));
|
---|
7685 | iemNativeDisassembleTb(pTb, DBGFR3InfoLogHlp());
|
---|
7686 | }
|
---|
7687 | #endif
|
---|
7688 |
|
---|
7689 | return pTb;
|
---|
7690 | }
|
---|
7691 |
|
---|