VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllThrdFuncs.cpp@ 101504

Last change on this file since 101504 was 101387, checked in by vboxsync, 15 months ago

VMM/IEM: Added a new class of threaded function variants, the 16f/32f/64f variants that will clear RF (and vbox internal friends) and check for TF (and vbox internal friends). The variants w/o the 'f' after the bitcount will skip this test+branch. The motivation of this was to deal with this issue that the threaded recompiler level rather than try optimize away the test+branch++ code when generating native code, make the IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32 a very simple place to start emitting native code (compared to IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS). bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 30.8 KB
Line 
1/* $Id: IEMAllThrdFuncs.cpp 101387 2023-10-07 23:34:54Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation, Threaded Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
33# define LOG_GROUP LOG_GROUP_IEM
34#endif
35#define VMCPU_INCL_CPUM_GST_CTX
36#define IEM_WITH_OPAQUE_DECODER_STATE
37#include <VBox/vmm/iem.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/apic.h>
40#include <VBox/vmm/pdm.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/iom.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/nem.h>
46#include <VBox/vmm/gim.h>
47#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
48# include <VBox/vmm/em.h>
49# include <VBox/vmm/hm_svm.h>
50#endif
51#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
52# include <VBox/vmm/hmvmxinline.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode-x86-amd64.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70#include "IEMMc.h"
71
72#include "IEMThreadedFunctions.h"
73
74
75/*********************************************************************************************************************************
76* Defined Constants And Macros *
77*********************************************************************************************************************************/
78
79/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
80 * and only used when we're in 16-bit code on a pre-386 CPU. */
81#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr) \
82 return iemRegAddToIp16AndFinishingNoFlags(pVCpu, a_cbInstr)
83
84/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
85 * and used for 16-bit and 32-bit code on 386 and later CPUs. */
86#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr) \
87 return iemRegAddToEip32AndFinishingNoFlags(pVCpu, a_cbInstr)
88
89/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
90 * and only used when we're in 64-bit code. */
91#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr) \
92 return iemRegAddToRip64AndFinishingNoFlags(pVCpu, a_cbInstr)
93
94
95/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
96 * and only used when we're in 16-bit code on a pre-386 CPU and we need to
97 * check and clear flags. */
98#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_cbInstr) \
99 return iemRegAddToIp16AndFinishingClearingRF(pVCpu, a_cbInstr)
100
101/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
102 * and used for 16-bit and 32-bit code on 386 and later CPUs and we need to
103 * check and clear flags. */
104#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_cbInstr) \
105 return iemRegAddToEip32AndFinishingClearingRF(pVCpu, a_cbInstr)
106
107/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
108 * and only used when we're in 64-bit code and we need to check and clear
109 * flags. */
110#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_cbInstr) \
111 return iemRegAddToRip64AndFinishingClearingRF(pVCpu, a_cbInstr)
112
113#undef IEM_MC_ADVANCE_RIP_AND_FINISH
114
115
116/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
117 * parameter, for use in 16-bit code on a pre-386 CPU. */
118#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr) \
119 return iemRegIp16RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8))
120
121/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
122 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
123 * later CPUs. */
124#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize) \
125 return iemRegEip32RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
126
127/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
128 * size as extra parameters, for use in 64-bit code. */
129#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize) \
130 return iemRegRip64RelativeJumpS8AndFinishNoFlags(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
131
132
133/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
134 * parameter, for use in 16-bit code on a pre-386 CPU and we need to check and
135 * clear flags. */
136#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i8, a_cbInstr) \
137 return iemRegIp16RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8))
138
139/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
140 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
141 * later CPUs and we need to check and clear flags. */
142#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize) \
143 return iemRegEip32RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
144
145/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
146 * size as extra parameters, for use in 64-bit code and we need to check and
147 * clear flags. */
148#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize) \
149 return iemRegRip64RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
150
151#undef IEM_MC_REL_JMP_S8_AND_FINISH
152
153
154/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
155 * param, for use in 16-bit code on a pre-386 CPU. */
156#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr) \
157 return iemRegEip32RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
158
159/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
160 * param, for use in 16-bit and 32-bit code on 386 and later CPUs. */
161#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr) \
162 return iemRegEip32RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
163
164/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
165 * param, for use in 64-bit code. */
166#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr) \
167 return iemRegRip64RelativeJumpS16AndFinishNoFlags(pVCpu, a_cbInstr, (a_i16))
168
169
170/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
171 * param, for use in 16-bit code on a pre-386 CPU and we need to check and
172 * clear flags. */
173#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i16, a_cbInstr) \
174 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
175
176/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
177 * param, for use in 16-bit and 32-bit code on 386 and later CPUs and we need
178 * to check and clear flags. */
179#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i16, a_cbInstr) \
180 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
181
182/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
183 * param, for use in 64-bit code and we need to check and clear flags. */
184#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i16, a_cbInstr) \
185 return iemRegRip64RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
186
187#undef IEM_MC_REL_JMP_S16_AND_FINISH
188
189
190/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
191 * an extra parameter - dummy for pre-386 variations not eliminated by the
192 * python script. */
193#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr) \
194 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
195
196/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
197 * an extra parameter, for use in 16-bit and 32-bit code on 386+. */
198#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr) \
199 return iemRegEip32RelativeJumpS32AndFinishNoFlags(pVCpu, a_cbInstr, (a_i32))
200
201/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
202 * an extra parameter, for use in 64-bit code. */
203#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr) \
204 return iemRegRip64RelativeJumpS32AndFinishNoFlags(pVCpu, a_cbInstr, (a_i32))
205
206
207/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
208 * an extra parameter - dummy for pre-386 variations not eliminated by the
209 * python script. */
210#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i32, a_cbInstr) \
211 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
212
213/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
214 * an extra parameter, for use in 16-bit and 32-bit code on 386+ and we need
215 * to check and clear flags. */
216#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i32, a_cbInstr) \
217 return iemRegEip32RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
218
219/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
220 * an extra parameter, for use in 64-bit codeand we need to check and clear
221 * flags. */
222#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i32, a_cbInstr) \
223 return iemRegRip64RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
224
225#undef IEM_MC_REL_JMP_S32_AND_FINISH
226
227
228/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit. */
229#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
230 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr16(pVCpu, a_bRm, a_u16Disp)
231
232/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit. */
233#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
234 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_uSibAndRspOffset, a_u32Disp)
235
236/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
237#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
238 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
239
240/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
241#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_FSGS(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
242 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
243
244/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters.
245 * @todo How did that address prefix thing work for 64-bit code again? */
246#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
247 (a_GCPtrEff) = (uint32_t)iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
248
249#undef IEM_MC_CALC_RM_EFF_ADDR
250
251
252/** Variant of IEM_MC_CALL_CIMPL_1 with explicit instruction length parameter. */
253#define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0) \
254 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
255#undef IEM_MC_CALL_CIMPL_1
256
257/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
258#define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1) \
259 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
260#undef IEM_MC_CALL_CIMPL_2
261
262/** Variant of IEM_MC_CALL_CIMPL_3 with explicit instruction length parameter. */
263#define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2) \
264 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
265#undef IEM_MC_CALL_CIMPL_3
266
267/** Variant of IEM_MC_CALL_CIMPL_4 with explicit instruction length parameter. */
268#define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
269 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
270#undef IEM_MC_CALL_CIMPL_4
271
272/** Variant of IEM_MC_CALL_CIMPL_5 with explicit instruction length parameter. */
273#define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
274 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
275#undef IEM_MC_CALL_CIMPL_5
276
277
278/** Variant of IEM_MC_DEFER_TO_CIMPL_0_RET with explicit instruction
279 * length parameter. */
280#define IEM_MC_DEFER_TO_CIMPL_0_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl) \
281 return (a_pfnCImpl)(pVCpu, (a_cbInstr))
282#undef IEM_MC_DEFER_TO_CIMPL_0_RET
283
284/** Variant of IEM_MC_DEFER_TO_CIMPL_1_RET with explicit instruction
285 * length parameter. */
286#define IEM_MC_DEFER_TO_CIMPL_1_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0) \
287 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
288#undef IEM_MC_DEFER_TO_CIMPL_1_RET
289
290/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
291#define IEM_MC_DEFER_TO_CIMPL_2_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1) \
292 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
293#undef IEM_MC_DEFER_TO_CIMPL_2_RET
294
295/** Variant of IEM_MC_DEFER_TO_CIMPL_3 with explicit instruction length
296 * parameter. */
297#define IEM_MC_DEFER_TO_CIMPL_3_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2) \
298 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
299#undef IEM_MC_DEFER_TO_CIMPL_3_RET
300
301/** Variant of IEM_MC_DEFER_TO_CIMPL_4 with explicit instruction length
302 * parameter. */
303#define IEM_MC_DEFER_TO_CIMPL_4_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
304 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
305#undef IEM_MC_DEFER_TO_CIMPL_4_RET
306
307/** Variant of IEM_MC_DEFER_TO_CIMPL_5 with explicit instruction length
308 * parameter. */
309#define IEM_MC_DEFER_TO_CIMPL_5_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
310 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
311#undef IEM_MC_DEFER_TO_CIMPL_5_RET
312
313
314/** Variant of IEM_MC_FETCH_GREG_U8 with extended (20) register index. */
315#define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
316 (a_u8Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
317
318/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U16 with extended (20) register index. */
319#define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
320 (a_u16Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
321
322/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U32 with extended (20) register index. */
323#define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
324 (a_u32Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
325
326/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U64 with extended (20) register index. */
327#define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
328 (a_u64Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
329
330/** Variant of IEM_MC_FETCH_GREG_U8_SX_U16 with extended (20) register index. */
331#define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
332 (a_u16Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
333
334/** Variant of IEM_MC_FETCH_GREG_U8_SX_U32 with extended (20) register index. */
335#define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
336 (a_u32Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
337#undef IEM_MC_FETCH_GREG_U8_SX_U32
338
339/** Variant of IEM_MC_FETCH_GREG_U8_SX_U64 with extended (20) register index. */
340#define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
341 (a_u64Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
342#undef IEM_MC_FETCH_GREG_U8_SX_U64
343
344/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
345#define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
346 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
347#undef IEM_MC_STORE_GREG_U8
348
349/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
350#define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
351 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
352#undef IEM_MC_STORE_GREG_U8
353
354/** Variant of IEM_MC_REF_GREG_U8 with extended (20) register index. */
355#define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
356 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
357#undef IEM_MC_REF_GREG_U8
358
359/** Variant of IEM_MC_ADD_GREG_U8 with extended (20) register index. */
360#define IEM_MC_ADD_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
361 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) += (a_u8Value)
362#undef IEM_MC_ADD_GREG_U8
363
364/** Variant of IEM_MC_SUB_GREG_U8 with extended (20) register index. */
365#define IEM_MC_SUB_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
366 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) -= (a_u8Value)
367#undef IEM_MC_SUB_GREG_U8
368
369/** Variant of IEM_MC_ADD_GREG_U8_TO_LOCAL with extended (20) register index. */
370#define IEM_MC_ADD_GREG_U8_TO_LOCAL_THREADED(a_u8Value, a_iGRegEx) \
371 do { (a_u8Value) += iemGRegFetchU8Ex(pVCpu, (a_iGRegEx)); } while (0)
372#undef IEM_MC_ADD_GREG_U8_TO_LOCAL
373
374/** Variant of IEM_MC_AND_GREG_U8 with extended (20) register index. */
375#define IEM_MC_AND_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
376 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) &= (a_u8Value)
377#undef IEM_MC_AND_GREG_U8
378
379/** Variant of IEM_MC_OR_GREG_U8 with extended (20) register index. */
380#define IEM_MC_OR_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
381 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) |= (a_u8Value)
382#undef IEM_MC_OR_GREG_U8
383
384/**
385 * Calculates the effective address of a ModR/M memory operand, 16-bit
386 * addressing variant.
387 *
388 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16.
389 *
390 * @returns The effective address.
391 * @param pVCpu The cross context virtual CPU structure of the calling thread.
392 * @param bRm The ModRM byte.
393 * @param u16Disp The displacement byte/word, if any.
394 * RIP relative addressing.
395 */
396static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr16(PVMCPUCC pVCpu, uint8_t bRm, uint16_t u16Disp) RT_NOEXCEPT
397{
398 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: bRm=%#x u16Disp=%#x\n", bRm, u16Disp));
399 Assert(!IEM_IS_64BIT_CODE(pVCpu));
400
401 /* Handle the disp16 form with no registers first. */
402 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
403 {
404 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16Disp));
405 return u16Disp;
406 }
407
408 /* Get the displacment. */
409 /** @todo we can eliminate this step by making u16Disp have this value
410 * already! */
411 uint16_t u16EffAddr;
412 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
413 {
414 case 0: u16EffAddr = 0; break;
415 case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
416 case 2: u16EffAddr = u16Disp; break;
417 default: AssertFailedStmt(u16EffAddr = 0);
418 }
419
420 /* Add the base and index registers to the disp. */
421 switch (bRm & X86_MODRM_RM_MASK)
422 {
423 case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
424 case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
425 case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; break;
426 case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; break;
427 case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
428 case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
429 case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; break;
430 case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
431 }
432
433 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16EffAddr));
434 return u16EffAddr;
435}
436
437
438/**
439 * Calculates the effective address of a ModR/M memory operand, 32-bit
440 * addressing variant.
441 *
442 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32 and
443 * IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT.
444 *
445 * @returns The effective address.
446 * @param pVCpu The cross context virtual CPU structure of the
447 * calling thread.
448 * @param bRm The ModRM byte.
449 * @param uSibAndRspOffset Two parts:
450 * - The first 8 bits make up the SIB byte.
451 * - The next 8 bits are the fixed RSP/ESP offse
452 * in case of a pop [xSP].
453 * @param u32Disp The displacement byte/dword, if any.
454 */
455static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr32(PVMCPUCC pVCpu, uint8_t bRm, uint32_t uSibAndRspOffset,
456 uint32_t u32Disp) RT_NOEXCEPT
457{
458 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: bRm=%#x uSibAndRspOffset=%#x u32Disp=%#x\n", bRm, uSibAndRspOffset, u32Disp));
459
460 /* Handle the disp32 form with no registers first. */
461 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
462 {
463 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32Disp));
464 return u32Disp;
465 }
466
467 /* Get the register (or SIB) value. */
468 uint32_t u32EffAddr;
469#ifdef _MSC_VER
470 u32EffAddr = 0;/* MSC uninitialized variable analysis is too simple, it seems. */
471#endif
472 switch (bRm & X86_MODRM_RM_MASK)
473 {
474 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
475 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
476 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
477 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
478 case 4: /* SIB */
479 {
480 /* Get the index and scale it. */
481 switch ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
482 {
483 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
484 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
485 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
486 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
487 case 4: u32EffAddr = 0; /*none */ break;
488 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
489 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
490 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
491 }
492 u32EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
493
494 /* add base */
495 switch (uSibAndRspOffset & X86_SIB_BASE_MASK)
496 {
497 case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
498 case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
499 case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
500 case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
501 case 4:
502 u32EffAddr += pVCpu->cpum.GstCtx.esp;
503 u32EffAddr += uSibAndRspOffset >> 8;
504 break;
505 case 5:
506 if ((bRm & X86_MODRM_MOD_MASK) != 0)
507 u32EffAddr += pVCpu->cpum.GstCtx.ebp;
508 else
509 u32EffAddr += u32Disp;
510 break;
511 case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
512 case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
513 }
514 break;
515 }
516 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
517 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
518 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
519 }
520
521 /* Get and add the displacement. */
522 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
523 {
524 case 0: break;
525 case 1: u32EffAddr += (int8_t)u32Disp; break;
526 case 2: u32EffAddr += u32Disp; break;
527 default: AssertFailed();
528 }
529
530 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32EffAddr));
531 return u32EffAddr;
532}
533
534
535/**
536 * Calculates the effective address of a ModR/M memory operand.
537 *
538 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64.
539 *
540 * @returns The effective address.
541 * @param pVCpu The cross context virtual CPU structure of the
542 * calling thread.
543 * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
544 * bit 4 to REX.X. The two bits are part of the
545 * REG sub-field, which isn't needed in this
546 * function.
547 * @param uSibAndRspOffset Two parts:
548 * - The first 8 bits make up the SIB byte.
549 * - The next 8 bits are the fixed RSP/ESP offse
550 * in case of a pop [xSP].
551 * @param u32Disp The displacement byte/word/dword, if any.
552 * @param cbInstr The size of the fully decoded instruction. Used
553 * for RIP relative addressing.
554 * @todo combine cbInstr and cbImm!
555 */
556static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr64(PVMCPUCC pVCpu, uint8_t bRmEx, uint32_t uSibAndRspOffset,
557 uint32_t u32Disp, uint8_t cbInstr) RT_NOEXCEPT
558{
559 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: bRmEx=%#x\n", bRmEx));
560 Assert(IEM_IS_64BIT_CODE(pVCpu));
561
562 uint64_t u64EffAddr;
563
564 /* Handle the rip+disp32 form with no registers first. */
565 if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
566 {
567 u64EffAddr = (int32_t)u32Disp;
568 u64EffAddr += pVCpu->cpum.GstCtx.rip + cbInstr;
569 }
570 else
571 {
572 /* Get the register (or SIB) value. */
573#ifdef _MSC_VER
574 u64EffAddr = 0; /* MSC uninitialized variable analysis is too simple, it seems. */
575#endif
576 switch (bRmEx & (X86_MODRM_RM_MASK | 0x8)) /* bRmEx[bit 3] = REX.B */
577 {
578 default:
579 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
580 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
581 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
582 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
583 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
584 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
585 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
586 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
587 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
588 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
589 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
590 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
591 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
592 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
593 /* SIB */
594 case 4:
595 case 12:
596 {
597 /* Get the index and scale it. */
598 switch ( ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
599 | ((bRmEx & 0x10) >> 1)) /* bRmEx[bit 4] = REX.X */
600 {
601 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
602 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
603 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
604 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
605 case 4: u64EffAddr = 0; /*none */ break;
606 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
607 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
608 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
609 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
610 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
611 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
612 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
613 case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
614 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
615 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
616 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
617 }
618 u64EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
619
620 /* add base */
621 switch ((uSibAndRspOffset & X86_SIB_BASE_MASK) | (bRmEx & 0x8)) /* bRmEx[bit 3] = REX.B */
622 {
623 case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
624 case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
625 case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
626 case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
627 case 4:
628 u64EffAddr += pVCpu->cpum.GstCtx.rsp;
629 u64EffAddr += uSibAndRspOffset >> 8;
630 break;
631 case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
632 case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
633 case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
634 case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
635 case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
636 case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
637 case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
638 case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
639 case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
640 /* complicated encodings */
641 case 5:
642 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
643 u64EffAddr += pVCpu->cpum.GstCtx.rbp;
644 else
645 u64EffAddr += (int32_t)u32Disp;
646 break;
647 case 13:
648 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
649 u64EffAddr += pVCpu->cpum.GstCtx.r13;
650 else
651 u64EffAddr += (int32_t)u32Disp;
652 break;
653 }
654 break;
655 }
656 }
657
658 /* Get and add the displacement. */
659 switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
660 {
661 case 0: break;
662 case 1: u64EffAddr += (int8_t)u32Disp; break;
663 case 2: u64EffAddr += (int32_t)u32Disp; break;
664 default: AssertFailed();
665 }
666 }
667
668 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: EffAddr=%#010RGv\n", u64EffAddr));
669 return u64EffAddr;
670}
671
672
673/*
674 * The threaded functions.
675 */
676#include "IEMThreadedFunctions.cpp.h"
677
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette