1 | /* $Id: IEMAllThrdRecompiler.cpp 101245 2023-09-22 23:46:24Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Decoding and Threaded Recompilation.
|
---|
4 | *
|
---|
5 | * Logging group IEM_RE_THREADED assignments:
|
---|
6 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events. [same as IEM]
|
---|
7 | * - Flow (LogFlow) :
|
---|
8 | * - Level 2 (Log2) : Basic instruction execution state info. [same as IEM]
|
---|
9 | * - Level 3 (Log3) : More detailed execution state info. [same as IEM]
|
---|
10 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP. [same as IEM]
|
---|
11 | * - Level 5 (Log5) : Decoding details. [same as IEM]
|
---|
12 | * - Level 6 (Log6) :
|
---|
13 | * - Level 7 (Log7) : TB obsoletion.
|
---|
14 | * - Level 8 (Log8) : TB compilation.
|
---|
15 | * - Level 9 (Log9) : TB exec.
|
---|
16 | * - Level 10 (Log10): TB block lookup.
|
---|
17 | * - Level 11 (Log11): TB block lookup details.
|
---|
18 | * - Level 12 (Log12): TB insertion.
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
23 | *
|
---|
24 | * This file is part of VirtualBox base platform packages, as
|
---|
25 | * available from https://www.virtualbox.org.
|
---|
26 | *
|
---|
27 | * This program is free software; you can redistribute it and/or
|
---|
28 | * modify it under the terms of the GNU General Public License
|
---|
29 | * as published by the Free Software Foundation, in version 3 of the
|
---|
30 | * License.
|
---|
31 | *
|
---|
32 | * This program is distributed in the hope that it will be useful, but
|
---|
33 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
34 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
35 | * General Public License for more details.
|
---|
36 | *
|
---|
37 | * You should have received a copy of the GNU General Public License
|
---|
38 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
39 | *
|
---|
40 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
41 | */
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Header Files *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | #ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
|
---|
48 | # define LOG_GROUP LOG_GROUP_IEM_RE_THREADED
|
---|
49 | #endif
|
---|
50 | #define IEM_WITH_CODE_TLB_AND_OPCODE_BUF /* A bit hackish, but its all in IEMInline.h. */
|
---|
51 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
52 | #include <VBox/vmm/iem.h>
|
---|
53 | #include <VBox/vmm/cpum.h>
|
---|
54 | #include <VBox/vmm/apic.h>
|
---|
55 | #include <VBox/vmm/pdm.h>
|
---|
56 | #include <VBox/vmm/pgm.h>
|
---|
57 | #include <VBox/vmm/iom.h>
|
---|
58 | #include <VBox/vmm/em.h>
|
---|
59 | #include <VBox/vmm/hm.h>
|
---|
60 | #include <VBox/vmm/nem.h>
|
---|
61 | #include <VBox/vmm/gim.h>
|
---|
62 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
63 | # include <VBox/vmm/em.h>
|
---|
64 | # include <VBox/vmm/hm_svm.h>
|
---|
65 | #endif
|
---|
66 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
67 | # include <VBox/vmm/hmvmxinline.h>
|
---|
68 | #endif
|
---|
69 | #include <VBox/vmm/tm.h>
|
---|
70 | #include <VBox/vmm/dbgf.h>
|
---|
71 | #include <VBox/vmm/dbgftrace.h>
|
---|
72 | #ifndef TST_IEM_CHECK_MC
|
---|
73 | # include "IEMInternal.h"
|
---|
74 | #endif
|
---|
75 | #include <VBox/vmm/vmcc.h>
|
---|
76 | #include <VBox/log.h>
|
---|
77 | #include <VBox/err.h>
|
---|
78 | #include <VBox/param.h>
|
---|
79 | #include <VBox/dis.h>
|
---|
80 | #include <VBox/disopcode-x86-amd64.h>
|
---|
81 | #include <iprt/asm-math.h>
|
---|
82 | #include <iprt/assert.h>
|
---|
83 | #include <iprt/mem.h>
|
---|
84 | #include <iprt/string.h>
|
---|
85 | #include <iprt/sort.h>
|
---|
86 | #include <iprt/x86.h>
|
---|
87 |
|
---|
88 | #ifndef TST_IEM_CHECK_MC
|
---|
89 | # include "IEMInline.h"
|
---|
90 | # include "IEMOpHlp.h"
|
---|
91 | # include "IEMMc.h"
|
---|
92 | #endif
|
---|
93 |
|
---|
94 | #include "IEMThreadedFunctions.h"
|
---|
95 |
|
---|
96 |
|
---|
97 | /*
|
---|
98 | * Narrow down configs here to avoid wasting time on unused configs here.
|
---|
99 | */
|
---|
100 |
|
---|
101 | #ifndef IEM_WITH_CODE_TLB
|
---|
102 | # error The code TLB must be enabled for the recompiler.
|
---|
103 | #endif
|
---|
104 |
|
---|
105 | #ifndef IEM_WITH_DATA_TLB
|
---|
106 | # error The data TLB must be enabled for the recompiler.
|
---|
107 | #endif
|
---|
108 |
|
---|
109 | #ifndef IEM_WITH_SETJMP
|
---|
110 | # error The setjmp approach must be enabled for the recompiler.
|
---|
111 | #endif
|
---|
112 |
|
---|
113 |
|
---|
114 | /*********************************************************************************************************************************
|
---|
115 | * Internal Functions *
|
---|
116 | *********************************************************************************************************************************/
|
---|
117 | static void iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
|
---|
118 |
|
---|
119 |
|
---|
120 | /**
|
---|
121 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
122 | * for use in the recompilers.
|
---|
123 | *
|
---|
124 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
125 | *
|
---|
126 | * May longjmp on internal error.
|
---|
127 | *
|
---|
128 | * @return The effective address.
|
---|
129 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
130 | * @param bRm The ModRM byte.
|
---|
131 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
132 | * following the effective address opcode bytes
|
---|
133 | * (only for RIP relative addressing).
|
---|
134 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
135 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
136 | * SIB byte (bits 39:32).
|
---|
137 | *
|
---|
138 | * @note This must be defined in a source file with matching
|
---|
139 | * IEM_WITH_CODE_TLB_AND_OPCODE_BUF define till the define is made default
|
---|
140 | * or implemented differently...
|
---|
141 | */
|
---|
142 | RTGCPTR iemOpHlpCalcRmEffAddrJmpEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, uint64_t *puInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
143 | {
|
---|
144 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
145 | # define SET_SS_DEF() \
|
---|
146 | do \
|
---|
147 | { \
|
---|
148 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
149 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
150 | } while (0)
|
---|
151 |
|
---|
152 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
153 | {
|
---|
154 | /** @todo Check the effective address size crap! */
|
---|
155 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
156 | {
|
---|
157 | uint16_t u16EffAddr;
|
---|
158 |
|
---|
159 | /* Handle the disp16 form with no registers first. */
|
---|
160 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
161 | {
|
---|
162 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
163 | *puInfo = u16EffAddr;
|
---|
164 | }
|
---|
165 | else
|
---|
166 | {
|
---|
167 | /* Get the displacment. */
|
---|
168 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
169 | {
|
---|
170 | case 0: u16EffAddr = 0; break;
|
---|
171 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
172 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
173 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
174 | }
|
---|
175 | *puInfo = u16EffAddr;
|
---|
176 |
|
---|
177 | /* Add the base and index registers to the disp. */
|
---|
178 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
179 | {
|
---|
180 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
181 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
182 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
183 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
184 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
185 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
186 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
187 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
188 | }
|
---|
189 | }
|
---|
190 |
|
---|
191 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16 uInfo=%#RX64\n", u16EffAddr, *puInfo));
|
---|
192 | return u16EffAddr;
|
---|
193 | }
|
---|
194 |
|
---|
195 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
196 | uint32_t u32EffAddr;
|
---|
197 | uint64_t uInfo;
|
---|
198 |
|
---|
199 | /* Handle the disp32 form with no registers first. */
|
---|
200 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
201 | {
|
---|
202 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
203 | uInfo = u32EffAddr;
|
---|
204 | }
|
---|
205 | else
|
---|
206 | {
|
---|
207 | /* Get the register (or SIB) value. */
|
---|
208 | uInfo = 0;
|
---|
209 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
210 | {
|
---|
211 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
212 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
213 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
214 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
215 | case 4: /* SIB */
|
---|
216 | {
|
---|
217 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
218 | uInfo = (uint64_t)bSib << 32;
|
---|
219 |
|
---|
220 | /* Get the index and scale it. */
|
---|
221 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
222 | {
|
---|
223 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
224 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
225 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
226 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
227 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
228 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
229 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
230 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
231 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
232 | }
|
---|
233 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
234 |
|
---|
235 | /* add base */
|
---|
236 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
237 | {
|
---|
238 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
239 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
240 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
241 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
242 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
243 | case 5:
|
---|
244 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
245 | {
|
---|
246 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
247 | SET_SS_DEF();
|
---|
248 | }
|
---|
249 | else
|
---|
250 | {
|
---|
251 | uint32_t u32Disp;
|
---|
252 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
253 | u32EffAddr += u32Disp;
|
---|
254 | uInfo |= u32Disp;
|
---|
255 | }
|
---|
256 | break;
|
---|
257 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
258 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
259 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
260 | }
|
---|
261 | break;
|
---|
262 | }
|
---|
263 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
264 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
265 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
266 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
267 | }
|
---|
268 |
|
---|
269 | /* Get and add the displacement. */
|
---|
270 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
271 | {
|
---|
272 | case 0:
|
---|
273 | break;
|
---|
274 | case 1:
|
---|
275 | {
|
---|
276 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
277 | u32EffAddr += i8Disp;
|
---|
278 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
279 | break;
|
---|
280 | }
|
---|
281 | case 2:
|
---|
282 | {
|
---|
283 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
284 | u32EffAddr += u32Disp;
|
---|
285 | uInfo |= u32Disp;
|
---|
286 | break;
|
---|
287 | }
|
---|
288 | default:
|
---|
289 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | *puInfo = uInfo;
|
---|
294 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32 uInfo=%#RX64\n", u32EffAddr, uInfo));
|
---|
295 | return u32EffAddr;
|
---|
296 | }
|
---|
297 |
|
---|
298 | uint64_t u64EffAddr;
|
---|
299 | uint64_t uInfo;
|
---|
300 |
|
---|
301 | /* Handle the rip+disp32 form with no registers first. */
|
---|
302 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
303 | {
|
---|
304 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
305 | uInfo = (uint32_t)u64EffAddr;
|
---|
306 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
307 | }
|
---|
308 | else
|
---|
309 | {
|
---|
310 | /* Get the register (or SIB) value. */
|
---|
311 | uInfo = 0;
|
---|
312 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
313 | {
|
---|
314 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
315 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
316 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
317 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
318 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
319 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
320 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
321 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
322 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
323 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
324 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
325 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
326 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
327 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
328 | /* SIB */
|
---|
329 | case 4:
|
---|
330 | case 12:
|
---|
331 | {
|
---|
332 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
333 | uInfo = (uint64_t)bSib << 32;
|
---|
334 |
|
---|
335 | /* Get the index and scale it. */
|
---|
336 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
337 | {
|
---|
338 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
339 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
340 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
341 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
342 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
343 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
344 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
345 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
346 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
347 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
348 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
349 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
350 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
351 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
352 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
353 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
354 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
355 | }
|
---|
356 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
357 |
|
---|
358 | /* add base */
|
---|
359 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
360 | {
|
---|
361 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
362 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
363 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
364 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
365 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
366 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
367 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
368 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
369 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
370 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
371 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
372 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
373 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
374 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
375 | /* complicated encodings */
|
---|
376 | case 5:
|
---|
377 | case 13:
|
---|
378 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
379 | {
|
---|
380 | if (!pVCpu->iem.s.uRexB)
|
---|
381 | {
|
---|
382 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
383 | SET_SS_DEF();
|
---|
384 | }
|
---|
385 | else
|
---|
386 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
387 | }
|
---|
388 | else
|
---|
389 | {
|
---|
390 | uint32_t u32Disp;
|
---|
391 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
392 | u64EffAddr += (int32_t)u32Disp;
|
---|
393 | uInfo |= u32Disp;
|
---|
394 | }
|
---|
395 | break;
|
---|
396 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
397 | }
|
---|
398 | break;
|
---|
399 | }
|
---|
400 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
401 | }
|
---|
402 |
|
---|
403 | /* Get and add the displacement. */
|
---|
404 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
405 | {
|
---|
406 | case 0:
|
---|
407 | break;
|
---|
408 | case 1:
|
---|
409 | {
|
---|
410 | int8_t i8Disp;
|
---|
411 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
412 | u64EffAddr += i8Disp;
|
---|
413 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
414 | break;
|
---|
415 | }
|
---|
416 | case 2:
|
---|
417 | {
|
---|
418 | uint32_t u32Disp;
|
---|
419 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
420 | u64EffAddr += (int32_t)u32Disp;
|
---|
421 | uInfo |= u32Disp;
|
---|
422 | break;
|
---|
423 | }
|
---|
424 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
425 | }
|
---|
426 |
|
---|
427 | }
|
---|
428 |
|
---|
429 | *puInfo = uInfo;
|
---|
430 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
431 | {
|
---|
432 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr, uInfo));
|
---|
433 | return u64EffAddr;
|
---|
434 | }
|
---|
435 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
436 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr & UINT32_MAX, uInfo));
|
---|
437 | return u64EffAddr & UINT32_MAX;
|
---|
438 | }
|
---|
439 |
|
---|
440 |
|
---|
441 | /*********************************************************************************************************************************
|
---|
442 | * Translation Block Cache. *
|
---|
443 | *********************************************************************************************************************************/
|
---|
444 |
|
---|
445 | /** @callback_method_impl{FNRTSORTCMP, Compare two TBs for pruning sorting purposes.} */
|
---|
446 | static DECLCALLBACK(int) iemTbCachePruneCmpTb(void const *pvElement1, void const *pvElement2, void *pvUser)
|
---|
447 | {
|
---|
448 | PCIEMTB const pTb1 = (PCIEMTB)pvElement1;
|
---|
449 | PCIEMTB const pTb2 = (PCIEMTB)pvElement2;
|
---|
450 | uint32_t const cMsSinceUse1 = (uint32_t)(uintptr_t)pvUser - pTb1->msLastUsed;
|
---|
451 | uint32_t const cMsSinceUse2 = (uint32_t)(uintptr_t)pvUser - pTb2->msLastUsed;
|
---|
452 | if (cMsSinceUse1 != cMsSinceUse2)
|
---|
453 | return cMsSinceUse1 < cMsSinceUse2 ? -1 : 1;
|
---|
454 | if (pTb1->cUsed != pTb2->cUsed)
|
---|
455 | return pTb1->cUsed > pTb2->cUsed ? -1 : 1;
|
---|
456 | if ((pTb1->fFlags & IEMTB_F_TYPE_MASK) != (pTb2->fFlags & IEMTB_F_TYPE_MASK))
|
---|
457 | return (pTb1->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE ? -1 : 1;
|
---|
458 | return 0;
|
---|
459 | }
|
---|
460 |
|
---|
461 | #ifdef VBOX_STRICT
|
---|
462 | /**
|
---|
463 | * Assertion helper that checks a collisions list count.
|
---|
464 | */
|
---|
465 | static void iemTbCacheAssertCorrectCount(PIEMTBCACHE pTbCache, uint32_t idxHash, const char *pszOperation)
|
---|
466 | {
|
---|
467 | PIEMTB pTb = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
468 | int cLeft = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]);
|
---|
469 | while (pTb)
|
---|
470 | {
|
---|
471 | pTb = pTb->pNext;
|
---|
472 | cLeft--;
|
---|
473 | }
|
---|
474 | AssertMsg(cLeft == 0,
|
---|
475 | ("idxHash=%#x cLeft=%d; entry count=%d; %s\n",
|
---|
476 | idxHash, cLeft, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]), pszOperation));
|
---|
477 | }
|
---|
478 | #endif
|
---|
479 |
|
---|
480 |
|
---|
481 | DECL_NO_INLINE(static, void) iemTbCacheAddWithPruning(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb, uint32_t idxHash)
|
---|
482 | {
|
---|
483 | STAM_PROFILE_START(&pTbCache->StatPrune, a);
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * First convert the collision list to an array.
|
---|
487 | */
|
---|
488 | PIEMTB apSortedTbs[IEMTBCACHE_PTR_MAX_COUNT];
|
---|
489 | uintptr_t cInserted = 0;
|
---|
490 | PIEMTB pTbCollision = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
491 |
|
---|
492 | pTbCache->apHash[idxHash] = NULL; /* Must NULL the entry before trying to free anything. */
|
---|
493 |
|
---|
494 | while (pTbCollision && cInserted < RT_ELEMENTS(apSortedTbs))
|
---|
495 | {
|
---|
496 | apSortedTbs[cInserted++] = pTbCollision;
|
---|
497 | pTbCollision = pTbCollision->pNext;
|
---|
498 | }
|
---|
499 |
|
---|
500 | /* Free any excess (impossible). */
|
---|
501 | if (RT_LIKELY(!pTbCollision))
|
---|
502 | Assert(cInserted == RT_ELEMENTS(apSortedTbs));
|
---|
503 | else
|
---|
504 | do
|
---|
505 | {
|
---|
506 | PIEMTB pTbToFree = pTbCollision;
|
---|
507 | pTbCollision = pTbToFree->pNext;
|
---|
508 | iemTbAllocatorFree(pVCpu, pTbToFree);
|
---|
509 | } while (pTbCollision);
|
---|
510 |
|
---|
511 | /*
|
---|
512 | * Sort it by most recently used and usage count.
|
---|
513 | */
|
---|
514 | RTSortApvShell((void **)apSortedTbs, cInserted, iemTbCachePruneCmpTb, (void *)(uintptr_t)pVCpu->iem.s.msRecompilerPollNow);
|
---|
515 |
|
---|
516 | /* We keep half the list for now. Perhaps a bit aggressive... */
|
---|
517 | uintptr_t const cKeep = cInserted / 2;
|
---|
518 |
|
---|
519 | /* First free up the TBs we don't wish to keep (before creating the new
|
---|
520 | list because otherwise the free code will scan the list for each one
|
---|
521 | without ever finding it). */
|
---|
522 | for (uintptr_t idx = cKeep; idx < cInserted; idx++)
|
---|
523 | iemTbAllocatorFree(pVCpu, apSortedTbs[idx]);
|
---|
524 |
|
---|
525 | /* Then chain the new TB together with the ones we like to keep of the
|
---|
526 | existing ones and insert this list into the hash table. */
|
---|
527 | pTbCollision = pTb;
|
---|
528 | for (uintptr_t idx = 0; idx < cKeep; idx++)
|
---|
529 | pTbCollision = pTbCollision->pNext = apSortedTbs[idx];
|
---|
530 | pTbCollision->pNext = NULL;
|
---|
531 |
|
---|
532 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, cKeep + 1);
|
---|
533 | #ifdef VBOX_STRICT
|
---|
534 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "add w/ pruning");
|
---|
535 | #endif
|
---|
536 |
|
---|
537 | STAM_PROFILE_STOP(&pTbCache->StatPrune, a);
|
---|
538 | }
|
---|
539 |
|
---|
540 |
|
---|
541 | static void iemTbCacheAdd(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
542 | {
|
---|
543 | uint32_t const idxHash = IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
544 | PIEMTB const pTbOldHead = pTbCache->apHash[idxHash];
|
---|
545 | if (!pTbOldHead)
|
---|
546 | {
|
---|
547 | pTb->pNext = NULL;
|
---|
548 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, 1); /** @todo could make 1 implicit... */
|
---|
549 | }
|
---|
550 | else
|
---|
551 | {
|
---|
552 | STAM_REL_COUNTER_INC(&pTbCache->cCollisions);
|
---|
553 | uintptr_t cCollisions = IEMTBCACHE_PTR_GET_COUNT(pTbOldHead);
|
---|
554 | if (cCollisions < IEMTBCACHE_PTR_MAX_COUNT)
|
---|
555 | {
|
---|
556 | pTb->pNext = IEMTBCACHE_PTR_GET_TB(pTbOldHead);
|
---|
557 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, cCollisions + 1);
|
---|
558 | #ifdef VBOX_STRICT
|
---|
559 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "add");
|
---|
560 | #endif
|
---|
561 | }
|
---|
562 | else
|
---|
563 | iemTbCacheAddWithPruning(pVCpu, pTbCache, pTb, idxHash);
|
---|
564 | }
|
---|
565 | }
|
---|
566 |
|
---|
567 |
|
---|
568 | /**
|
---|
569 | * Unlinks @a pTb from the hash table if found in it.
|
---|
570 | *
|
---|
571 | * @returns true if unlinked, false if not present.
|
---|
572 | * @param pTbCache The hash table.
|
---|
573 | * @param pTb The TB to remove.
|
---|
574 | */
|
---|
575 | static bool iemTbCacheRemove(PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
576 | {
|
---|
577 | uint32_t const idxHash = IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
578 | PIEMTB pTbHash = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
579 | uint32_t volatile cLength = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]); RT_NOREF(cLength);
|
---|
580 |
|
---|
581 | /*
|
---|
582 | * At the head of the collision list?
|
---|
583 | */
|
---|
584 | if (pTbHash == pTb)
|
---|
585 | {
|
---|
586 | if (!pTb->pNext)
|
---|
587 | pTbCache->apHash[idxHash] = NULL;
|
---|
588 | else
|
---|
589 | {
|
---|
590 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb->pNext,
|
---|
591 | IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - 1);
|
---|
592 | #ifdef VBOX_STRICT
|
---|
593 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "remove #1");
|
---|
594 | #endif
|
---|
595 | }
|
---|
596 | return true;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /*
|
---|
600 | * Search the collision list.
|
---|
601 | */
|
---|
602 | PIEMTB const pTbHead = pTbHash;
|
---|
603 | while (pTbHash)
|
---|
604 | {
|
---|
605 | PIEMTB const pNextTb = pTbHash->pNext;
|
---|
606 | if (pNextTb == pTb)
|
---|
607 | {
|
---|
608 | pTbHash->pNext = pTb->pNext;
|
---|
609 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTbHead, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - 1);
|
---|
610 | #ifdef VBOX_STRICT
|
---|
611 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "remove #2");
|
---|
612 | #endif
|
---|
613 | return true;
|
---|
614 | }
|
---|
615 | pTbHash = pNextTb;
|
---|
616 | }
|
---|
617 | return false;
|
---|
618 | }
|
---|
619 |
|
---|
620 |
|
---|
621 | /**
|
---|
622 | * Looks up a TB for the given PC and flags in the cache.
|
---|
623 | *
|
---|
624 | * @returns Pointer to TB on success, NULL if not found.
|
---|
625 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
626 | * calling thread.
|
---|
627 | * @param pTbCache The translation block cache.
|
---|
628 | * @param GCPhysPc The PC to look up a TB for.
|
---|
629 | * @param fExtraFlags The extra flags to join with IEMCPU::fExec for
|
---|
630 | * the lookup.
|
---|
631 | * @thread EMT(pVCpu)
|
---|
632 | */
|
---|
633 | static PIEMTB iemTbCacheLookup(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache,
|
---|
634 | RTGCPHYS GCPhysPc, uint32_t fExtraFlags) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
635 | {
|
---|
636 | uint32_t const fFlags = ((pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags) & IEMTB_F_KEY_MASK;
|
---|
637 | uint32_t const idxHash = IEMTBCACHE_HASH_NO_KEY_MASK(pTbCache, fFlags, GCPhysPc);
|
---|
638 | PIEMTB pTb = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
639 | #if defined(VBOX_STRICT) || defined(LOG_ENABLED)
|
---|
640 | int cLeft = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]);
|
---|
641 | #endif
|
---|
642 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp idxHash=%#x: %p L %d\n", fFlags, GCPhysPc, idxHash, pTb, cLeft));
|
---|
643 | while (pTb)
|
---|
644 | {
|
---|
645 | if (pTb->GCPhysPc == GCPhysPc)
|
---|
646 | {
|
---|
647 | if ((pTb->fFlags & IEMTB_F_KEY_MASK) == fFlags)
|
---|
648 | {
|
---|
649 | if (pTb->x86.fAttr == (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u)
|
---|
650 | {
|
---|
651 | STAM_COUNTER_INC(&pTbCache->cLookupHits);
|
---|
652 | AssertMsg(cLeft > 0, ("%d\n", cLeft));
|
---|
653 |
|
---|
654 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
655 | pTb->cUsed++;
|
---|
656 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
657 | if ((pTb->fFlags & IEMTB_F_TYPE_NATIVE) || pTb->cUsed != 16)
|
---|
658 | return pTb;
|
---|
659 | return iemNativeRecompile(pVCpu, pTb);
|
---|
660 | #else
|
---|
661 | return pTb;
|
---|
662 | #endif
|
---|
663 | }
|
---|
664 | Log11(("TB miss: CS: %#x, wanted %#x\n", pTb->x86.fAttr, (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u));
|
---|
665 | }
|
---|
666 | else
|
---|
667 | Log11(("TB miss: fFlags: %#x, wanted %#x\n", pTb->fFlags, fFlags));
|
---|
668 | }
|
---|
669 | else
|
---|
670 | Log11(("TB miss: GCPhysPc: %#x, wanted %#x\n", pTb->GCPhysPc, GCPhysPc));
|
---|
671 |
|
---|
672 | pTb = pTb->pNext;
|
---|
673 | #ifdef VBOX_STRICT
|
---|
674 | cLeft--;
|
---|
675 | #endif
|
---|
676 | }
|
---|
677 | AssertMsg(cLeft == 0, ("%d\n", cLeft));
|
---|
678 | STAM_REL_COUNTER_INC(&pTbCache->cLookupMisses);
|
---|
679 | return pTb;
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | /*********************************************************************************************************************************
|
---|
684 | * Translation Block Allocator.
|
---|
685 | *********************************************************************************************************************************/
|
---|
686 | /*
|
---|
687 | * Translation block allocationmanagement.
|
---|
688 | */
|
---|
689 |
|
---|
690 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
691 | # define IEMTBALLOC_IDX_TO_CHUNK(a_pTbAllocator, a_idxTb) \
|
---|
692 | ((a_idxTb) >> (a_pTbAllocator)->cChunkShift)
|
---|
693 | # define IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(a_pTbAllocator, a_idxTb, a_idxChunk) \
|
---|
694 | ((a_idxTb) & (a_pTbAllocator)->fChunkMask)
|
---|
695 | # define IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) \
|
---|
696 | ((uint32_t)(a_idxChunk) << (a_pTbAllocator)->cChunkShift)
|
---|
697 | #else
|
---|
698 | # define IEMTBALLOC_IDX_TO_CHUNK(a_pTbAllocator, a_idxTb) \
|
---|
699 | ((a_idxTb) / (a_pTbAllocator)->cTbsPerChunk)
|
---|
700 | # define IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(a_pTbAllocator, a_idxTb, a_idxChunk) \
|
---|
701 | ((a_idxTb) - (a_idxChunk) * (a_pTbAllocator)->cTbsPerChunk)
|
---|
702 | # define IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) \
|
---|
703 | ((uint32_t)(a_idxChunk) * (a_pTbAllocator)->cTbsPerChunk)
|
---|
704 | #endif
|
---|
705 | /** Makes a TB index from a chunk index and TB index within that chunk. */
|
---|
706 | #define IEMTBALLOC_IDX_MAKE(a_pTbAllocator, a_idxChunk, a_idxInChunk) \
|
---|
707 | (IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) + (a_idxInChunk))
|
---|
708 |
|
---|
709 |
|
---|
710 | /**
|
---|
711 | * Initializes the TB allocator and cache for an EMT.
|
---|
712 | *
|
---|
713 | * @returns VBox status code.
|
---|
714 | * @param pVM The VM handle.
|
---|
715 | * @param cInitialTbs The initial number of translation blocks to
|
---|
716 | * preallocator.
|
---|
717 | * @param cMaxTbs The max number of translation blocks allowed.
|
---|
718 | * @param cbInitialExec The initial size of the executable memory allocator.
|
---|
719 | * @param cbMaxExec The max size of the executable memory allocator.
|
---|
720 | * @param cbChunkExec The chunk size for executable memory allocator. Zero
|
---|
721 | * or UINT32_MAX for automatically determining this.
|
---|
722 | * @thread EMT
|
---|
723 | */
|
---|
724 | DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
|
---|
725 | uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec)
|
---|
726 | {
|
---|
727 | PVMCPUCC pVCpu = VMMGetCpu(pVM);
|
---|
728 | Assert(!pVCpu->iem.s.pTbCacheR3);
|
---|
729 | Assert(!pVCpu->iem.s.pTbAllocatorR3);
|
---|
730 |
|
---|
731 | /*
|
---|
732 | * Calculate the chunk size of the TB allocator.
|
---|
733 | * The minimum chunk size is 2MiB.
|
---|
734 | */
|
---|
735 | AssertCompile(!(sizeof(IEMTB) & IEMTBCACHE_PTR_COUNT_MASK));
|
---|
736 | uint32_t cbPerChunk = _2M;
|
---|
737 | uint32_t cTbsPerChunk = _2M / sizeof(IEMTB);
|
---|
738 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
739 | uint8_t const cTbShift = ASMBitFirstSetU32((uint32_t)sizeof(IEMTB)) - 1;
|
---|
740 | uint8_t cChunkShift = 21 - cTbShift;
|
---|
741 | AssertCompile(RT_BIT_32(21) == _2M); Assert(RT_BIT_32(cChunkShift) == cTbsPerChunk);
|
---|
742 | #endif
|
---|
743 | for (;;)
|
---|
744 | {
|
---|
745 | if (cMaxTbs <= cTbsPerChunk * (uint64_t)RT_ELEMENTS(pVCpu->iem.s.pTbAllocatorR3->aChunks))
|
---|
746 | break;
|
---|
747 | cbPerChunk *= 2;
|
---|
748 | cTbsPerChunk = cbPerChunk / sizeof(IEMTB);
|
---|
749 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
750 | cChunkShift += 1;
|
---|
751 | #endif
|
---|
752 | }
|
---|
753 |
|
---|
754 | uint32_t cMaxChunks = (cMaxTbs + cTbsPerChunk - 1) / cTbsPerChunk;
|
---|
755 | Assert(cMaxChunks * cTbsPerChunk >= cMaxTbs);
|
---|
756 | Assert(cMaxChunks <= RT_ELEMENTS(pVCpu->iem.s.pTbAllocatorR3->aChunks));
|
---|
757 |
|
---|
758 | cMaxTbs = cMaxChunks * cTbsPerChunk;
|
---|
759 |
|
---|
760 | /*
|
---|
761 | * Allocate and initalize it.
|
---|
762 | */
|
---|
763 | uint32_t const c64BitWords = RT_ALIGN_32(cMaxTbs, 64) / 64;
|
---|
764 | size_t const cbTbAllocator = RT_UOFFSETOF_DYN(IEMTBALLOCATOR, bmAllocated[c64BitWords]);
|
---|
765 | PIEMTBALLOCATOR const pTbAllocator = (PIEMTBALLOCATOR)RTMemAllocZ(cbTbAllocator);
|
---|
766 | if (!pTbAllocator)
|
---|
767 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
768 | "Failed to allocate %zu bytes (max %u TBs) for the TB allocator of VCpu #%u",
|
---|
769 | cbTbAllocator, cMaxTbs, pVCpu->idCpu);
|
---|
770 | pTbAllocator->uMagic = IEMTBALLOCATOR_MAGIC;
|
---|
771 | pTbAllocator->cMaxChunks = (uint8_t)cMaxChunks;
|
---|
772 | pTbAllocator->cTbsPerChunk = cTbsPerChunk;
|
---|
773 | pTbAllocator->cbPerChunk = cbPerChunk;
|
---|
774 | pTbAllocator->cMaxTbs = cMaxTbs;
|
---|
775 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
776 | pTbAllocator->fChunkMask = cTbsPerChunk - 1;
|
---|
777 | pTbAllocator->cChunkShift = cChunkShift;
|
---|
778 | Assert(RT_BIT_32(cChunkShift) == cTbsPerChunk);
|
---|
779 | #endif
|
---|
780 |
|
---|
781 | memset(pTbAllocator->bmAllocated, 0xff, c64BitWords * sizeof(uint64_t)); /* Mark all as allocated, clear as chunks are added. */
|
---|
782 | pVCpu->iem.s.pTbAllocatorR3 = pTbAllocator;
|
---|
783 |
|
---|
784 | /*
|
---|
785 | * Allocate the initial chunks.
|
---|
786 | */
|
---|
787 | for (uint32_t idxChunk = 0; ; idxChunk++)
|
---|
788 | {
|
---|
789 | PIEMTB const paTbs = pTbAllocator->aChunks[idxChunk].paTbs = (PIEMTB)RTMemPageAllocZ(cbPerChunk);
|
---|
790 | if (!paTbs)
|
---|
791 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
792 | "Failed to initial %zu bytes for the #%u chunk of TBs for VCpu #%u",
|
---|
793 | cbPerChunk, idxChunk, pVCpu->idCpu);
|
---|
794 |
|
---|
795 | for (uint32_t iTb = 0; iTb < cTbsPerChunk; iTb++)
|
---|
796 | paTbs[iTb].idxAllocChunk = idxChunk; /* This is not strictly necessary... */
|
---|
797 | ASMBitClearRange(pTbAllocator->bmAllocated, idxChunk * cTbsPerChunk, (idxChunk + 1) * cTbsPerChunk);
|
---|
798 | pTbAllocator->cAllocatedChunks = (uint16_t)(idxChunk + 1);
|
---|
799 | pTbAllocator->cTotalTbs += cTbsPerChunk;
|
---|
800 |
|
---|
801 | if ((idxChunk + 1) * cTbsPerChunk >= cInitialTbs)
|
---|
802 | break;
|
---|
803 | }
|
---|
804 |
|
---|
805 | /*
|
---|
806 | * Calculate the size of the hash table. We double the max TB count and
|
---|
807 | * round it up to the nearest power of two.
|
---|
808 | */
|
---|
809 | uint32_t cCacheEntries = cMaxTbs * 2;
|
---|
810 | if (!RT_IS_POWER_OF_TWO(cCacheEntries))
|
---|
811 | {
|
---|
812 | uint8_t const iBitTop = ASMBitFirstSetU32(cCacheEntries);
|
---|
813 | cCacheEntries = RT_BIT_32(iBitTop);
|
---|
814 | Assert(cCacheEntries >= cMaxTbs * 2);
|
---|
815 | }
|
---|
816 |
|
---|
817 | size_t const cbTbCache = RT_UOFFSETOF_DYN(IEMTBCACHE, apHash[cCacheEntries]);
|
---|
818 | PIEMTBCACHE const pTbCache = (PIEMTBCACHE)RTMemAllocZ(cbTbCache);
|
---|
819 | if (!pTbCache)
|
---|
820 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
821 | "Failed to allocate %zu bytes (%u entries) for the TB cache of VCpu #%u",
|
---|
822 | cbTbCache, cCacheEntries, pVCpu->idCpu);
|
---|
823 |
|
---|
824 | /*
|
---|
825 | * Initialize it (assumes zeroed by the allocator).
|
---|
826 | */
|
---|
827 | pTbCache->uMagic = IEMTBCACHE_MAGIC;
|
---|
828 | pTbCache->cHash = cCacheEntries;
|
---|
829 | pTbCache->uHashMask = cCacheEntries - 1;
|
---|
830 | Assert(pTbCache->cHash > pTbCache->uHashMask);
|
---|
831 | pVCpu->iem.s.pTbCacheR3 = pTbCache;
|
---|
832 |
|
---|
833 | /*
|
---|
834 | * Initialize the native executable memory allocator.
|
---|
835 | */
|
---|
836 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
837 | int rc = iemExecMemAllocatorInit(pVCpu, cbMaxExec, cbInitialExec, cbChunkExec);
|
---|
838 | AssertLogRelRCReturn(rc, rc);
|
---|
839 | #else
|
---|
840 | RT_NOREF(cbMaxExec, cbInitialExec, cbChunkExec);
|
---|
841 | #endif
|
---|
842 |
|
---|
843 | return VINF_SUCCESS;
|
---|
844 | }
|
---|
845 |
|
---|
846 |
|
---|
847 | /**
|
---|
848 | * Inner free worker.
|
---|
849 | */
|
---|
850 | static void iemTbAllocatorFreeInner(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator,
|
---|
851 | PIEMTB pTb, uint32_t idxChunk, uint32_t idxInChunk)
|
---|
852 | {
|
---|
853 | Assert(idxChunk < pTbAllocator->cAllocatedChunks);
|
---|
854 | Assert(idxInChunk < pTbAllocator->cTbsPerChunk);
|
---|
855 | Assert((uintptr_t)(pTb - pTbAllocator->aChunks[idxChunk].paTbs) == idxInChunk);
|
---|
856 | Assert(ASMBitTest(&pTbAllocator->bmAllocated, IEMTBALLOC_IDX_MAKE(pTbAllocator, idxChunk, idxInChunk)));
|
---|
857 |
|
---|
858 | /*
|
---|
859 | * Unlink the TB from the hash table.
|
---|
860 | */
|
---|
861 | iemTbCacheRemove(pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
862 |
|
---|
863 | /*
|
---|
864 | * Free the TB itself.
|
---|
865 | */
|
---|
866 | switch (pTb->fFlags & IEMTB_F_TYPE_MASK)
|
---|
867 | {
|
---|
868 | case IEMTB_F_TYPE_THREADED:
|
---|
869 | pTbAllocator->cThreadedTbs -= 1;
|
---|
870 | RTMemFree(pTb->Thrd.paCalls);
|
---|
871 | break;
|
---|
872 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
873 | case IEMTB_F_TYPE_NATIVE:
|
---|
874 | pTbAllocator->cNativeTbs -= 1;
|
---|
875 | iemExecMemAllocatorFree(pVCpu, pTb->Native.paInstructions,
|
---|
876 | pTb->Native.cInstructions * sizeof(pTb->Native.paInstructions[0]));
|
---|
877 | break;
|
---|
878 | #endif
|
---|
879 | default:
|
---|
880 | AssertFailed();
|
---|
881 | }
|
---|
882 | RTMemFree(pTb->pabOpcodes);
|
---|
883 |
|
---|
884 | pTb->pNext = NULL;
|
---|
885 | pTb->fFlags = 0;
|
---|
886 | pTb->GCPhysPc = UINT64_MAX;
|
---|
887 | pTb->Gen.uPtr = 0;
|
---|
888 | pTb->Gen.uData = 0;
|
---|
889 | pTb->cbOpcodes = 0;
|
---|
890 | pTb->cbOpcodesAllocated = 0;
|
---|
891 | pTb->pabOpcodes = NULL;
|
---|
892 |
|
---|
893 | ASMBitClear(&pTbAllocator->bmAllocated, IEMTBALLOC_IDX_MAKE(pTbAllocator, idxChunk, idxInChunk));
|
---|
894 | Assert(pTbAllocator->cInUseTbs > 0);
|
---|
895 |
|
---|
896 | pTbAllocator->cInUseTbs -= 1;
|
---|
897 | STAM_REL_COUNTER_INC(&pTbAllocator->StatFrees);
|
---|
898 | }
|
---|
899 |
|
---|
900 |
|
---|
901 | /**
|
---|
902 | * Frees the given TB.
|
---|
903 | *
|
---|
904 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
905 | * thread.
|
---|
906 | * @param pTb The translation block to free.
|
---|
907 | * @thread EMT(pVCpu)
|
---|
908 | */
|
---|
909 | static void iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
910 | {
|
---|
911 | /*
|
---|
912 | * Validate state.
|
---|
913 | */
|
---|
914 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
915 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
916 | uint8_t const idxChunk = pTb->idxAllocChunk;
|
---|
917 | AssertLogRelReturnVoid(idxChunk < pTbAllocator->cAllocatedChunks);
|
---|
918 | uintptr_t const idxInChunk = pTb - pTbAllocator->aChunks[idxChunk].paTbs;
|
---|
919 | AssertLogRelReturnVoid(idxInChunk < pTbAllocator->cTbsPerChunk);
|
---|
920 |
|
---|
921 | /*
|
---|
922 | * Call inner worker.
|
---|
923 | */
|
---|
924 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, (uint32_t)idxInChunk);
|
---|
925 | }
|
---|
926 |
|
---|
927 |
|
---|
928 | /**
|
---|
929 | * Schedules a native TB for freeing when it's not longer being executed and
|
---|
930 | * part of the caller's call stack.
|
---|
931 | *
|
---|
932 | * The TB will be removed from the translation block cache, though, so it isn't
|
---|
933 | * possible to executed it again and the IEMTB::pNext member can be used to link
|
---|
934 | * it together with other TBs awaiting freeing.
|
---|
935 | *
|
---|
936 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
937 | * thread.
|
---|
938 | * @param pTb The translation block to schedule for freeing.
|
---|
939 | */
|
---|
940 | static void iemTbAlloctorScheduleForFree(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
941 | {
|
---|
942 | /*
|
---|
943 | * Validate state.
|
---|
944 | */
|
---|
945 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
946 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
947 | Assert(pTb->idxAllocChunk < pTbAllocator->cAllocatedChunks);
|
---|
948 | Assert((uintptr_t)(pTb - pTbAllocator->aChunks[pTb->idxAllocChunk].paTbs) < pTbAllocator->cTbsPerChunk);
|
---|
949 | Assert(ASMBitTest(&pTbAllocator->bmAllocated,
|
---|
950 | IEMTBALLOC_IDX_MAKE(pTbAllocator, pTb->idxAllocChunk,
|
---|
951 | (uintptr_t)(pTb - pTbAllocator->aChunks[pTb->idxAllocChunk].paTbs))));
|
---|
952 | Assert((pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE);
|
---|
953 |
|
---|
954 | /*
|
---|
955 | * Remove it from the cache and prepend it to the allocator's todo list.
|
---|
956 | */
|
---|
957 | iemTbCacheRemove(pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
958 |
|
---|
959 | pTb->pNext = pTbAllocator->pDelayedFreeHead;
|
---|
960 | pTbAllocator->pDelayedFreeHead = pTb;
|
---|
961 | }
|
---|
962 |
|
---|
963 |
|
---|
964 | /**
|
---|
965 | * Processes the delayed frees.
|
---|
966 | *
|
---|
967 | * This is called by the allocator function as well as the native recompile
|
---|
968 | * function before making any TB or executable memory allocations respectively.
|
---|
969 | */
|
---|
970 | void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator)
|
---|
971 | {
|
---|
972 | PIEMTB pTb = pTbAllocator->pDelayedFreeHead;
|
---|
973 | pTbAllocator->pDelayedFreeHead = NULL;
|
---|
974 | while (pTb)
|
---|
975 | {
|
---|
976 | PIEMTB const pTbNext = pTb->pNext;
|
---|
977 | Assert(pVCpu->iem.s.pCurTbR3 != pTb);
|
---|
978 | iemTbAlloctorScheduleForFree(pVCpu, pTb);
|
---|
979 | pTb = pTbNext;
|
---|
980 | }
|
---|
981 | }
|
---|
982 |
|
---|
983 |
|
---|
984 | /**
|
---|
985 | * Grow the translation block allocator with another chunk.
|
---|
986 | */
|
---|
987 | static int iemTbAllocatorGrow(PVMCPUCC pVCpu)
|
---|
988 | {
|
---|
989 | /*
|
---|
990 | * Validate state.
|
---|
991 | */
|
---|
992 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
993 | AssertReturn(pTbAllocator, VERR_WRONG_ORDER);
|
---|
994 | AssertReturn(pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC, VERR_INVALID_MAGIC);
|
---|
995 | uint32_t const idxChunk = pTbAllocator->cAllocatedChunks;
|
---|
996 | AssertReturn(idxChunk < pTbAllocator->cMaxChunks, VERR_OUT_OF_RESOURCES);
|
---|
997 |
|
---|
998 | /*
|
---|
999 | * Allocate a new chunk and add it to the allocator.
|
---|
1000 | */
|
---|
1001 | PIEMTB const paTbs = (PIEMTB)RTMemPageAllocZ(pTbAllocator->cbPerChunk);
|
---|
1002 | AssertLogRelReturn(paTbs, VERR_NO_PAGE_MEMORY);
|
---|
1003 | pTbAllocator->aChunks[idxChunk].paTbs = paTbs;
|
---|
1004 |
|
---|
1005 | uint32_t const cTbsPerChunk = pTbAllocator->cTbsPerChunk;
|
---|
1006 | for (uint32_t iTb = 0; iTb < cTbsPerChunk; iTb++)
|
---|
1007 | paTbs[iTb].idxAllocChunk = idxChunk; /* This is not strictly necessary... */
|
---|
1008 | ASMBitClearRange(pTbAllocator->bmAllocated, idxChunk * cTbsPerChunk, (idxChunk + 1) * cTbsPerChunk);
|
---|
1009 | pTbAllocator->cAllocatedChunks = (uint16_t)(idxChunk + 1);
|
---|
1010 | pTbAllocator->cTotalTbs += cTbsPerChunk;
|
---|
1011 | pTbAllocator->iStartHint = idxChunk * cTbsPerChunk;
|
---|
1012 |
|
---|
1013 | return VINF_SUCCESS;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | /**
|
---|
1018 | * Allocates a TB from allocator with free block.
|
---|
1019 | *
|
---|
1020 | * This is common code to both the fast and slow allocator code paths.
|
---|
1021 | */
|
---|
1022 | DECL_FORCE_INLINE(PIEMTB) iemTbAllocatorAllocCore(PIEMTBALLOCATOR const pTbAllocator, bool fThreaded)
|
---|
1023 | {
|
---|
1024 | Assert(pTbAllocator->cInUseTbs < pTbAllocator->cTotalTbs);
|
---|
1025 |
|
---|
1026 | int idxTb;
|
---|
1027 | if (pTbAllocator->iStartHint < pTbAllocator->cTotalTbs)
|
---|
1028 | idxTb = ASMBitNextClear(pTbAllocator->bmAllocated,
|
---|
1029 | pTbAllocator->cTotalTbs,
|
---|
1030 | pTbAllocator->iStartHint & ~(uint32_t)63);
|
---|
1031 | else
|
---|
1032 | idxTb = -1;
|
---|
1033 | if (idxTb < 0)
|
---|
1034 | {
|
---|
1035 | idxTb = ASMBitFirstClear(pTbAllocator->bmAllocated, pTbAllocator->cTotalTbs);
|
---|
1036 | AssertLogRelReturn(idxTb >= 0, NULL);
|
---|
1037 | }
|
---|
1038 | Assert((uint32_t)idxTb < pTbAllocator->cTotalTbs);
|
---|
1039 | ASMBitSet(pTbAllocator->bmAllocated, idxTb);
|
---|
1040 |
|
---|
1041 | /** @todo shift/mask optimization for power of two IEMTB sizes. */
|
---|
1042 | uint32_t const idxChunk = IEMTBALLOC_IDX_TO_CHUNK(pTbAllocator, idxTb);
|
---|
1043 | uint32_t const idxTbInChunk = IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(pTbAllocator, idxTb, idxChunk);
|
---|
1044 | PIEMTB const pTb = &pTbAllocator->aChunks[idxChunk].paTbs[idxTbInChunk];
|
---|
1045 | Assert(pTb->idxAllocChunk == idxChunk);
|
---|
1046 |
|
---|
1047 | pTbAllocator->cInUseTbs += 1;
|
---|
1048 | if (fThreaded)
|
---|
1049 | pTbAllocator->cThreadedTbs += 1;
|
---|
1050 | else
|
---|
1051 | pTbAllocator->cNativeTbs += 1;
|
---|
1052 | STAM_REL_COUNTER_INC(&pTbAllocator->StatAllocs);
|
---|
1053 | return pTb;
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 |
|
---|
1057 | /**
|
---|
1058 | * Slow path for iemTbAllocatorAlloc.
|
---|
1059 | */
|
---|
1060 | static PIEMTB iemTbAllocatorAllocSlow(PVMCPUCC pVCpu, PIEMTBALLOCATOR const pTbAllocator, bool fThreaded)
|
---|
1061 | {
|
---|
1062 | /*
|
---|
1063 | * With some luck we can add another chunk.
|
---|
1064 | */
|
---|
1065 | if (pTbAllocator->cAllocatedChunks < pTbAllocator->cMaxChunks)
|
---|
1066 | {
|
---|
1067 | int rc = iemTbAllocatorGrow(pVCpu);
|
---|
1068 | if (RT_SUCCESS(rc))
|
---|
1069 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | /*
|
---|
1073 | * We have to prune stuff. Sigh.
|
---|
1074 | *
|
---|
1075 | * This requires scanning for older TBs and kick them out. Not sure how to
|
---|
1076 | * best do this as we don't want to maintain any list of TBs ordered by last
|
---|
1077 | * usage time. But one reasonably simple approach would be that each time we
|
---|
1078 | * get here we continue a sequential scan of the allocation chunks,
|
---|
1079 | * considering just a smallish number of TBs and freeing a fixed portion of
|
---|
1080 | * them. Say, we consider the next 128 TBs, freeing the least recently used
|
---|
1081 | * in out of groups of 4 TBs, resulting in 32 free TBs.
|
---|
1082 | */
|
---|
1083 | STAM_PROFILE_START(&pTbAllocator->StatPrune, a);
|
---|
1084 | uint32_t const msNow = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1085 | uint32_t const cTbsToPrune = 128;
|
---|
1086 | uint32_t const cTbsPerGroup = 4;
|
---|
1087 | uint32_t cFreedTbs = 0;
|
---|
1088 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
1089 | uint32_t idxTbPruneFrom = pTbAllocator->iPruneFrom & ~(uint32_t)(cTbsToPrune - 1); /* Stay within a chunk! */
|
---|
1090 | #else
|
---|
1091 | uint32_t idxTbPruneFrom = pTbAllocator->iPruneFrom;
|
---|
1092 | #endif
|
---|
1093 | if (idxTbPruneFrom >= pTbAllocator->cMaxTbs)
|
---|
1094 | idxTbPruneFrom = 0;
|
---|
1095 | for (uint32_t i = 0; i < cTbsToPrune; i += cTbsPerGroup, idxTbPruneFrom += cTbsPerGroup)
|
---|
1096 | {
|
---|
1097 | uint32_t idxChunk = IEMTBALLOC_IDX_TO_CHUNK(pTbAllocator, idxTbPruneFrom);
|
---|
1098 | uint32_t idxInChunk = IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(pTbAllocator, idxTbPruneFrom, idxChunk);
|
---|
1099 | PIEMTB pTb = &pTbAllocator->aChunks[idxChunk].paTbs[idxInChunk];
|
---|
1100 | uint32_t cMsAge = msNow - pTb->msLastUsed;
|
---|
1101 | Assert(pTb->fFlags & IEMTB_F_TYPE_MASK);
|
---|
1102 |
|
---|
1103 | for (uint32_t j = 1, idxChunk2 = idxChunk, idxInChunk2 = idxInChunk + 1; j < cTbsPerGroup; j++, idxInChunk2++)
|
---|
1104 | {
|
---|
1105 | #ifndef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
1106 | if (idxInChunk2 < pTbAllocator->cTbsPerChunk)
|
---|
1107 | { /* likely */ }
|
---|
1108 | else
|
---|
1109 | {
|
---|
1110 | idxInChunk2 = 0;
|
---|
1111 | idxChunk2 += 1;
|
---|
1112 | if (idxChunk2 >= pTbAllocator->cAllocatedChunks)
|
---|
1113 | idxChunk2 = 0;
|
---|
1114 | }
|
---|
1115 | #endif
|
---|
1116 | PIEMTB const pTb2 = &pTbAllocator->aChunks[idxChunk2].paTbs[idxInChunk2];
|
---|
1117 | uint32_t const cMsAge2 = msNow - pTb2->msLastUsed;
|
---|
1118 | if ( cMsAge2 > cMsAge
|
---|
1119 | || (cMsAge2 == cMsAge && pTb2->cUsed < pTb->cUsed))
|
---|
1120 | {
|
---|
1121 | Assert(pTb2->fFlags & IEMTB_F_TYPE_MASK);
|
---|
1122 | pTb = pTb2;
|
---|
1123 | idxChunk = idxChunk2;
|
---|
1124 | idxInChunk = idxInChunk2;
|
---|
1125 | cMsAge = cMsAge2;
|
---|
1126 | }
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | /* Free the TB. */
|
---|
1130 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, idxInChunk);
|
---|
1131 | cFreedTbs++; /* paranoia */
|
---|
1132 | }
|
---|
1133 | pTbAllocator->iPruneFrom = idxTbPruneFrom;
|
---|
1134 | STAM_PROFILE_STOP(&pTbAllocator->StatPrune, a);
|
---|
1135 |
|
---|
1136 | /*
|
---|
1137 | * Allocate a TB from the ones we've pruned.
|
---|
1138 | */
|
---|
1139 | if (cFreedTbs)
|
---|
1140 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1141 | return NULL;
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 |
|
---|
1145 | /**
|
---|
1146 | * Allocate a translation block.
|
---|
1147 | *
|
---|
1148 | * @returns Pointer to block on success, NULL if we're out and is unable to
|
---|
1149 | * free up an existing one (very unlikely once implemented).
|
---|
1150 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1151 | * thread.
|
---|
1152 | * @param fThreaded Set if threaded TB being allocated, clear if native TB.
|
---|
1153 | * For statistics.
|
---|
1154 | */
|
---|
1155 | DECL_FORCE_INLINE(PIEMTB) iemTbAllocatorAlloc(PVMCPUCC pVCpu, bool fThreaded)
|
---|
1156 | {
|
---|
1157 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1158 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
1159 |
|
---|
1160 | /* Free any pending TBs before we proceed. */
|
---|
1161 | if (!pTbAllocator->pDelayedFreeHead)
|
---|
1162 | { /* probably likely */ }
|
---|
1163 | else
|
---|
1164 | iemTbAllocatorProcessDelayedFrees(pVCpu, pTbAllocator);
|
---|
1165 |
|
---|
1166 | /* If the allocator is full, take slow code path.*/
|
---|
1167 | if (RT_LIKELY(pTbAllocator->cInUseTbs < pTbAllocator->cTotalTbs))
|
---|
1168 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1169 | return iemTbAllocatorAllocSlow(pVCpu, pTbAllocator, fThreaded);
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 |
|
---|
1173 |
|
---|
1174 | /*********************************************************************************************************************************
|
---|
1175 | * Threaded Recompiler Core *
|
---|
1176 | *********************************************************************************************************************************/
|
---|
1177 |
|
---|
1178 | /**
|
---|
1179 | * Allocate a translation block for threadeded recompilation.
|
---|
1180 | *
|
---|
1181 | * This is allocated with maxed out call table and storage for opcode bytes,
|
---|
1182 | * because it's only supposed to be called once per EMT to allocate the TB
|
---|
1183 | * pointed to by IEMCPU::pThrdCompileTbR3.
|
---|
1184 | *
|
---|
1185 | * @returns Pointer to the translation block on success, NULL on failure.
|
---|
1186 | * @param pVM The cross context virtual machine structure.
|
---|
1187 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1188 | * thread.
|
---|
1189 | * @param GCPhysPc The physical address corresponding to RIP + CS.BASE.
|
---|
1190 | * @param fExtraFlags Extra flags (IEMTB_F_XXX).
|
---|
1191 | */
|
---|
1192 | static PIEMTB iemThreadedTbAlloc(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
1193 | {
|
---|
1194 | PIEMTB pTb = (PIEMTB)RTMemAllocZ(sizeof(IEMTB));
|
---|
1195 | if (pTb)
|
---|
1196 | {
|
---|
1197 | unsigned const cCalls = 256;
|
---|
1198 | pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemAlloc(sizeof(IEMTHRDEDCALLENTRY) * cCalls);
|
---|
1199 | if (pTb->Thrd.paCalls)
|
---|
1200 | {
|
---|
1201 | pTb->pabOpcodes = (uint8_t *)RTMemAlloc(cCalls * 16);
|
---|
1202 | if (pTb->pabOpcodes)
|
---|
1203 | {
|
---|
1204 | pTb->Thrd.cAllocated = cCalls;
|
---|
1205 | pTb->cbOpcodesAllocated = cCalls * 16;
|
---|
1206 | pTb->Thrd.cCalls = 0;
|
---|
1207 | pTb->cbOpcodes = 0;
|
---|
1208 | pTb->pNext = NULL;
|
---|
1209 | pTb->cUsed = 0;
|
---|
1210 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1211 | pTb->idxAllocChunk = UINT8_MAX;
|
---|
1212 | pTb->GCPhysPc = GCPhysPc;
|
---|
1213 | pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u;
|
---|
1214 | pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags;
|
---|
1215 | pTb->cInstructions = 0;
|
---|
1216 |
|
---|
1217 | /* Init the first opcode range. */
|
---|
1218 | pTb->cRanges = 1;
|
---|
1219 | pTb->aRanges[0].cbOpcodes = 0;
|
---|
1220 | pTb->aRanges[0].offOpcodes = 0;
|
---|
1221 | pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK;
|
---|
1222 | pTb->aRanges[0].u2Unused = 0;
|
---|
1223 | pTb->aRanges[0].idxPhysPage = 0;
|
---|
1224 | pTb->aGCPhysPages[0] = NIL_RTGCPHYS;
|
---|
1225 | pTb->aGCPhysPages[1] = NIL_RTGCPHYS;
|
---|
1226 |
|
---|
1227 | return pTb;
|
---|
1228 | }
|
---|
1229 | RTMemFree(pTb->Thrd.paCalls);
|
---|
1230 | }
|
---|
1231 | RTMemFree(pTb);
|
---|
1232 | }
|
---|
1233 | RT_NOREF(pVM);
|
---|
1234 | return NULL;
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 |
|
---|
1238 | /**
|
---|
1239 | * Called on the TB that are dedicated for recompilation before it's reused.
|
---|
1240 | *
|
---|
1241 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1242 | * thread.
|
---|
1243 | * @param pTb The translation block to reuse.
|
---|
1244 | * @param GCPhysPc The physical address corresponding to RIP + CS.BASE.
|
---|
1245 | * @param fExtraFlags Extra flags (IEMTB_F_XXX).
|
---|
1246 | */
|
---|
1247 | static void iemThreadedTbReuse(PVMCPUCC pVCpu, PIEMTB pTb, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
1248 | {
|
---|
1249 | pTb->GCPhysPc = GCPhysPc;
|
---|
1250 | pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags;
|
---|
1251 | pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u;
|
---|
1252 | pTb->Thrd.cCalls = 0;
|
---|
1253 | pTb->cbOpcodes = 0;
|
---|
1254 | pTb->cInstructions = 0;
|
---|
1255 |
|
---|
1256 | /* Init the first opcode range. */
|
---|
1257 | pTb->cRanges = 1;
|
---|
1258 | pTb->aRanges[0].cbOpcodes = 0;
|
---|
1259 | pTb->aRanges[0].offOpcodes = 0;
|
---|
1260 | pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK;
|
---|
1261 | pTb->aRanges[0].u2Unused = 0;
|
---|
1262 | pTb->aRanges[0].idxPhysPage = 0;
|
---|
1263 | pTb->aGCPhysPages[0] = NIL_RTGCPHYS;
|
---|
1264 | pTb->aGCPhysPages[1] = NIL_RTGCPHYS;
|
---|
1265 | }
|
---|
1266 |
|
---|
1267 |
|
---|
1268 | /**
|
---|
1269 | * Used to duplicate a threded translation block after recompilation is done.
|
---|
1270 | *
|
---|
1271 | * @returns Pointer to the translation block on success, NULL on failure.
|
---|
1272 | * @param pVM The cross context virtual machine structure.
|
---|
1273 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1274 | * thread.
|
---|
1275 | * @param pTbSrc The TB to duplicate.
|
---|
1276 | */
|
---|
1277 | static PIEMTB iemThreadedTbDuplicate(PVMCC pVM, PVMCPUCC pVCpu, PCIEMTB pTbSrc)
|
---|
1278 | {
|
---|
1279 | /*
|
---|
1280 | * Just using the heap for now. Will make this more efficient and
|
---|
1281 | * complicated later, don't worry. :-)
|
---|
1282 | */
|
---|
1283 | PIEMTB pTb = iemTbAllocatorAlloc(pVCpu, true /*fThreaded*/);
|
---|
1284 | if (pTb)
|
---|
1285 | {
|
---|
1286 | uint8_t const idxAllocChunk = pTb->idxAllocChunk;
|
---|
1287 | memcpy(pTb, pTbSrc, sizeof(*pTb));
|
---|
1288 | pTb->idxAllocChunk = idxAllocChunk;
|
---|
1289 |
|
---|
1290 | unsigned const cCalls = pTbSrc->Thrd.cCalls;
|
---|
1291 | Assert(cCalls > 0);
|
---|
1292 | pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemDup(pTbSrc->Thrd.paCalls, sizeof(IEMTHRDEDCALLENTRY) * cCalls);
|
---|
1293 | if (pTb->Thrd.paCalls)
|
---|
1294 | {
|
---|
1295 | unsigned const cbOpcodes = pTbSrc->cbOpcodes;
|
---|
1296 | Assert(cbOpcodes > 0);
|
---|
1297 | pTb->pabOpcodes = (uint8_t *)RTMemDup(pTbSrc->pabOpcodes, cbOpcodes);
|
---|
1298 | if (pTb->pabOpcodes)
|
---|
1299 | {
|
---|
1300 | pTb->Thrd.cAllocated = cCalls;
|
---|
1301 | pTb->cbOpcodesAllocated = cbOpcodes;
|
---|
1302 | pTb->pNext = NULL;
|
---|
1303 | pTb->cUsed = 0;
|
---|
1304 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1305 | pTb->fFlags = pTbSrc->fFlags;
|
---|
1306 |
|
---|
1307 | return pTb;
|
---|
1308 | }
|
---|
1309 | RTMemFree(pTb->Thrd.paCalls);
|
---|
1310 | }
|
---|
1311 | iemTbAllocatorFree(pVCpu, pTb);
|
---|
1312 | }
|
---|
1313 | RT_NOREF(pVM);
|
---|
1314 | return NULL;
|
---|
1315 |
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 |
|
---|
1319 | /**
|
---|
1320 | * Adds the given TB to the hash table.
|
---|
1321 | *
|
---|
1322 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1323 | * thread.
|
---|
1324 | * @param pTbCache The cache to add it to.
|
---|
1325 | * @param pTb The translation block to add.
|
---|
1326 | */
|
---|
1327 | static void iemThreadedTbAdd(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
1328 | {
|
---|
1329 | iemTbCacheAdd(pVCpu, pTbCache, pTb);
|
---|
1330 |
|
---|
1331 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedInstr, pTb->cInstructions);
|
---|
1332 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedCalls, pTb->Thrd.cCalls);
|
---|
1333 | if (LogIs12Enabled())
|
---|
1334 | {
|
---|
1335 | Log12(("TB added: %p %RGp LB %#x fl=%#x idxHash=%#x cRanges=%u cInstr=%u cCalls=%u\n",
|
---|
1336 | pTb, pTb->GCPhysPc, pTb->cbOpcodes, pTb->fFlags, IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc),
|
---|
1337 | pTb->cRanges, pTb->cInstructions, pTb->Thrd.cCalls));
|
---|
1338 | for (uint8_t idxRange = 0; idxRange < pTb->cRanges; idxRange++)
|
---|
1339 | Log12((" range#%u: offPg=%#05x offOp=%#04x LB %#04x pg#%u=%RGp\n", idxRange, pTb->aRanges[idxRange].offPhysPage,
|
---|
1340 | pTb->aRanges[idxRange].offOpcodes, pTb->aRanges[idxRange].cbOpcodes, pTb->aRanges[idxRange].idxPhysPage,
|
---|
1341 | pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
1342 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
1343 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]));
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | /**
|
---|
1349 | * Called by opcode verifier functions when they detect a problem.
|
---|
1350 | */
|
---|
1351 | void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree)
|
---|
1352 | {
|
---|
1353 | /* Unless it's safe, we can only immediately free threaded TB, as we will
|
---|
1354 | have more code left to execute in native TBs when fSafeToFree == false. */
|
---|
1355 | if (fSafeToFree || (pTb->fFlags & IEMTB_F_TYPE_THREADED))
|
---|
1356 | iemTbAllocatorFree(pVCpu, pTb);
|
---|
1357 | else
|
---|
1358 | iemTbAlloctorScheduleForFree(pVCpu, pTb);
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 |
|
---|
1362 | /*
|
---|
1363 | * Real code.
|
---|
1364 | */
|
---|
1365 |
|
---|
1366 | #ifdef LOG_ENABLED
|
---|
1367 | /**
|
---|
1368 | * Logs the current instruction.
|
---|
1369 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1370 | * @param pszFunction The IEM function doing the execution.
|
---|
1371 | */
|
---|
1372 | static void iemThreadedLogCurInstr(PVMCPUCC pVCpu, const char *pszFunction) RT_NOEXCEPT
|
---|
1373 | {
|
---|
1374 | # ifdef IN_RING3
|
---|
1375 | if (LogIs2Enabled())
|
---|
1376 | {
|
---|
1377 | char szInstr[256];
|
---|
1378 | uint32_t cbInstr = 0;
|
---|
1379 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
1380 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
1381 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
1382 |
|
---|
1383 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
1384 | Log2(("**** %s fExec=%x pTb=%p\n"
|
---|
1385 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
1386 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
1387 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
1388 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
1389 | " %s\n"
|
---|
1390 | , pszFunction, pVCpu->iem.s.fExec, pVCpu->iem.s.pCurTbR3,
|
---|
1391 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
1392 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
1393 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
1394 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
1395 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
1396 | szInstr));
|
---|
1397 |
|
---|
1398 | if (LogIs3Enabled())
|
---|
1399 | DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL);
|
---|
1400 | }
|
---|
1401 | else
|
---|
1402 | # endif
|
---|
1403 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
1404 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
1405 | }
|
---|
1406 | #endif /* LOG_ENABLED */
|
---|
1407 |
|
---|
1408 |
|
---|
1409 | #if 0
|
---|
1410 | static VBOXSTRICTRC iemThreadedCompileLongJumped(PVMCC pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
1411 | {
|
---|
1412 | RT_NOREF(pVM, pVCpu);
|
---|
1413 | return rcStrict;
|
---|
1414 | }
|
---|
1415 | #endif
|
---|
1416 |
|
---|
1417 |
|
---|
1418 | /**
|
---|
1419 | * Initializes the decoder state when compiling TBs.
|
---|
1420 | *
|
---|
1421 | * This presumes that fExec has already be initialized.
|
---|
1422 | *
|
---|
1423 | * This is very similar to iemInitDecoder() and iemReInitDecoder(), so may need
|
---|
1424 | * to apply fixes to them as well.
|
---|
1425 | *
|
---|
1426 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1427 | * thread.
|
---|
1428 | * @param fReInit Clear for the first call for a TB, set for subsequent
|
---|
1429 | * calls from inside the compile loop where we can skip a
|
---|
1430 | * couple of things.
|
---|
1431 | * @param fExtraFlags The extra translation block flags when @a fReInit is
|
---|
1432 | * true, otherwise ignored. Only IEMTB_F_INHIBIT_SHADOW is
|
---|
1433 | * checked.
|
---|
1434 | */
|
---|
1435 | DECL_FORCE_INLINE(void) iemThreadedCompileInitDecoder(PVMCPUCC pVCpu, bool const fReInit, uint32_t const fExtraFlags)
|
---|
1436 | {
|
---|
1437 | /* ASSUMES: That iemInitExec was already called and that anyone changing
|
---|
1438 | CPU state affecting the fExec bits since then will have updated fExec! */
|
---|
1439 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
1440 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
1441 |
|
---|
1442 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
1443 |
|
---|
1444 | /* Decoder state: */
|
---|
1445 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
1446 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
1447 | if (enmMode != IEMMODE_64BIT)
|
---|
1448 | {
|
---|
1449 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
1450 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
1451 | }
|
---|
1452 | else
|
---|
1453 | {
|
---|
1454 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
1455 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
1456 | }
|
---|
1457 | pVCpu->iem.s.fPrefixes = 0;
|
---|
1458 | pVCpu->iem.s.uRexReg = 0;
|
---|
1459 | pVCpu->iem.s.uRexB = 0;
|
---|
1460 | pVCpu->iem.s.uRexIndex = 0;
|
---|
1461 | pVCpu->iem.s.idxPrefix = 0;
|
---|
1462 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
1463 | pVCpu->iem.s.uVexLength = 0;
|
---|
1464 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
1465 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
1466 | pVCpu->iem.s.offModRm = 0;
|
---|
1467 | pVCpu->iem.s.iNextMapping = 0;
|
---|
1468 |
|
---|
1469 | if (!fReInit)
|
---|
1470 | {
|
---|
1471 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
1472 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
1473 | pVCpu->iem.s.fEndTb = false;
|
---|
1474 | pVCpu->iem.s.fTbCheckOpcodes = false;
|
---|
1475 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
1476 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
1477 | pVCpu->iem.s.cInstrTillIrqCheck = !(fExtraFlags & IEMTB_F_INHIBIT_SHADOW) ? 32 : 0;
|
---|
1478 | pVCpu->iem.s.fTbCurInstrIsSti = false;
|
---|
1479 | }
|
---|
1480 | else
|
---|
1481 | {
|
---|
1482 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
1483 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
1484 | Assert(pVCpu->iem.s.fEndTb == false);
|
---|
1485 | Assert(pVCpu->iem.s.fTbCrossedPage == false);
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 | #ifdef DBGFTRACE_ENABLED
|
---|
1489 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
1490 | {
|
---|
1491 | case IEMMODE_64BIT:
|
---|
1492 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
1493 | break;
|
---|
1494 | case IEMMODE_32BIT:
|
---|
1495 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
1496 | break;
|
---|
1497 | case IEMMODE_16BIT:
|
---|
1498 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
1499 | break;
|
---|
1500 | }
|
---|
1501 | #endif
|
---|
1502 | }
|
---|
1503 |
|
---|
1504 |
|
---|
1505 | /**
|
---|
1506 | * Initializes the opcode fetcher when starting the compilation.
|
---|
1507 | *
|
---|
1508 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1509 | * thread.
|
---|
1510 | */
|
---|
1511 | DECL_FORCE_INLINE(void) iemThreadedCompileInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
1512 | {
|
---|
1513 | /* Almost everything is done by iemGetPcWithPhysAndCode() already. We just need to initialize the index into abOpcode. */
|
---|
1514 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1515 | pVCpu->iem.s.offOpcode = 0;
|
---|
1516 | #else
|
---|
1517 | RT_NOREF(pVCpu);
|
---|
1518 | #endif
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 |
|
---|
1522 | /**
|
---|
1523 | * Re-initializes the opcode fetcher between instructions while compiling.
|
---|
1524 | *
|
---|
1525 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1526 | * thread.
|
---|
1527 | */
|
---|
1528 | DECL_FORCE_INLINE(void) iemThreadedCompileReInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
1529 | {
|
---|
1530 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
1531 | {
|
---|
1532 | uint64_t off = pVCpu->cpum.GstCtx.rip;
|
---|
1533 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
1534 | off += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
1535 | off -= pVCpu->iem.s.uInstrBufPc;
|
---|
1536 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
1537 | {
|
---|
1538 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
1539 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
1540 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
1541 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
1542 | else
|
---|
1543 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
1544 | }
|
---|
1545 | else
|
---|
1546 | {
|
---|
1547 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
1548 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1549 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1550 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
1551 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1552 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
1553 | }
|
---|
1554 | }
|
---|
1555 | else
|
---|
1556 | {
|
---|
1557 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
1558 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
1559 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
1560 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
1561 | #ifdef VBOX_STRICT
|
---|
1562 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
1563 | #endif
|
---|
1564 | }
|
---|
1565 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1566 | pVCpu->iem.s.offOpcode = 0;
|
---|
1567 | #endif
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 |
|
---|
1571 | DECLINLINE(void) iemThreadedCopyOpcodeBytesInline(PCVMCPUCC pVCpu, uint8_t *pbDst, uint8_t cbInstr)
|
---|
1572 | {
|
---|
1573 | switch (cbInstr)
|
---|
1574 | {
|
---|
1575 | default: AssertMsgFailed(("%#x\n", cbInstr)); RT_FALL_THROUGH();
|
---|
1576 | case 15: pbDst[14] = pVCpu->iem.s.abOpcode[14]; RT_FALL_THROUGH();
|
---|
1577 | case 14: pbDst[13] = pVCpu->iem.s.abOpcode[13]; RT_FALL_THROUGH();
|
---|
1578 | case 13: pbDst[12] = pVCpu->iem.s.abOpcode[12]; RT_FALL_THROUGH();
|
---|
1579 | case 12: pbDst[11] = pVCpu->iem.s.abOpcode[11]; RT_FALL_THROUGH();
|
---|
1580 | case 11: pbDst[10] = pVCpu->iem.s.abOpcode[10]; RT_FALL_THROUGH();
|
---|
1581 | case 10: pbDst[9] = pVCpu->iem.s.abOpcode[9]; RT_FALL_THROUGH();
|
---|
1582 | case 9: pbDst[8] = pVCpu->iem.s.abOpcode[8]; RT_FALL_THROUGH();
|
---|
1583 | case 8: pbDst[7] = pVCpu->iem.s.abOpcode[7]; RT_FALL_THROUGH();
|
---|
1584 | case 7: pbDst[6] = pVCpu->iem.s.abOpcode[6]; RT_FALL_THROUGH();
|
---|
1585 | case 6: pbDst[5] = pVCpu->iem.s.abOpcode[5]; RT_FALL_THROUGH();
|
---|
1586 | case 5: pbDst[4] = pVCpu->iem.s.abOpcode[4]; RT_FALL_THROUGH();
|
---|
1587 | case 4: pbDst[3] = pVCpu->iem.s.abOpcode[3]; RT_FALL_THROUGH();
|
---|
1588 | case 3: pbDst[2] = pVCpu->iem.s.abOpcode[2]; RT_FALL_THROUGH();
|
---|
1589 | case 2: pbDst[1] = pVCpu->iem.s.abOpcode[1]; RT_FALL_THROUGH();
|
---|
1590 | case 1: pbDst[0] = pVCpu->iem.s.abOpcode[0]; break;
|
---|
1591 | }
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 |
|
---|
1595 | /**
|
---|
1596 | * Called by IEM_MC2_BEGIN_EMIT_CALLS() under one of these conditions:
|
---|
1597 | *
|
---|
1598 | * - CS LIM check required.
|
---|
1599 | * - Must recheck opcode bytes.
|
---|
1600 | * - Previous instruction branched.
|
---|
1601 | * - TLB load detected, probably due to page crossing.
|
---|
1602 | *
|
---|
1603 | * @returns true if everything went well, false if we're out of space in the TB
|
---|
1604 | * (e.g. opcode ranges) or needs to start doing CS.LIM checks.
|
---|
1605 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1606 | * thread.
|
---|
1607 | * @param pTb The translation block being compiled.
|
---|
1608 | */
|
---|
1609 | bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
1610 | {
|
---|
1611 | Assert((pVCpu->iem.s.GCPhysInstrBuf & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
1612 | #if 0
|
---|
1613 | if (pVCpu->cpum.GstCtx.rip >= 0xc0000000 && !LogIsEnabled())
|
---|
1614 | RTLogChangeFlags(NULL, 0, RTLOGFLAGS_DISABLED);
|
---|
1615 | #endif
|
---|
1616 |
|
---|
1617 | /*
|
---|
1618 | * If we're not in 64-bit mode and not already checking CS.LIM we need to
|
---|
1619 | * see if it's needed to start checking.
|
---|
1620 | */
|
---|
1621 | bool fConsiderCsLimChecking;
|
---|
1622 | uint32_t const fMode = pVCpu->iem.s.fExec & IEM_F_MODE_MASK;
|
---|
1623 | if ( fMode == IEM_F_MODE_X86_64BIT
|
---|
1624 | || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS)
|
---|
1625 | || fMode == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
1626 | || fMode == IEM_F_MODE_X86_32BIT_FLAT)
|
---|
1627 | fConsiderCsLimChecking = false; /* already enabled or not needed */
|
---|
1628 | else
|
---|
1629 | {
|
---|
1630 | int64_t const offFromLim = (int64_t)pVCpu->cpum.GstCtx.cs.u32Limit - (int64_t)pVCpu->cpum.GstCtx.eip;
|
---|
1631 | if (offFromLim >= GUEST_PAGE_SIZE + 16 - (int32_t)(pVCpu->cpum.GstCtx.cs.u64Base & GUEST_PAGE_OFFSET_MASK))
|
---|
1632 | fConsiderCsLimChecking = true; /* likely */
|
---|
1633 | else
|
---|
1634 | {
|
---|
1635 | Log8(("%04x:%08RX64: Needs CS.LIM checks (%#RX64)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, offFromLim));
|
---|
1636 | return false;
|
---|
1637 | }
|
---|
1638 | }
|
---|
1639 |
|
---|
1640 | /*
|
---|
1641 | * Prepare call now, even before we know if can accept the instruction in this TB.
|
---|
1642 | * This allows us amending parameters w/o making every case suffer.
|
---|
1643 | */
|
---|
1644 | uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu);
|
---|
1645 | uint16_t const offOpcode = pTb->cbOpcodes;
|
---|
1646 | uint8_t idxRange = pTb->cRanges - 1;
|
---|
1647 |
|
---|
1648 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls];
|
---|
1649 | pCall->idxInstr = pTb->cInstructions;
|
---|
1650 | pCall->offOpcode = offOpcode;
|
---|
1651 | pCall->idxRange = idxRange;
|
---|
1652 | pCall->cbOpcode = cbInstr;
|
---|
1653 | pCall->auParams[0] = cbInstr;
|
---|
1654 | pCall->auParams[1] = idxRange;
|
---|
1655 | pCall->auParams[2] = offOpcode - pTb->aRanges[idxRange].offOpcodes;
|
---|
1656 |
|
---|
1657 | /** @todo check if we require IEMTB_F_CS_LIM_CHECKS for any new page we've
|
---|
1658 | * gotten onto. If we do, stop */
|
---|
1659 |
|
---|
1660 | /*
|
---|
1661 | * Case 1: We've branched (RIP changed).
|
---|
1662 | *
|
---|
1663 | * Sub-case 1a: Same page, no TLB load (fTbCrossedPage is false).
|
---|
1664 | * Req: 1 extra range, no extra phys.
|
---|
1665 | *
|
---|
1666 | * Sub-case 1b: Different page but no page boundrary crossing, so TLB load
|
---|
1667 | * necessary (fTbCrossedPage is true).
|
---|
1668 | * Req: 1 extra range, probably 1 extra phys page entry.
|
---|
1669 | *
|
---|
1670 | * Sub-case 1c: Different page, so TLB load necessary (fTbCrossedPage is true),
|
---|
1671 | * but in addition we cross into the following page and require
|
---|
1672 | * another TLB load.
|
---|
1673 | * Req: 2 extra ranges, probably 2 extra phys page entries.
|
---|
1674 | *
|
---|
1675 | * Sub-case 1d: Same page, so no initial TLB load necessary, but we cross into
|
---|
1676 | * the following page (thus fTbCrossedPage is true).
|
---|
1677 | * Req: 2 extra ranges, probably 1 extra phys page entry.
|
---|
1678 | *
|
---|
1679 | * Note! The setting fTbCrossedPage is done by the iemOpcodeFetchBytesJmp, but
|
---|
1680 | * it may trigger "spuriously" from the CPU point of view because of
|
---|
1681 | * physical page changes that'll invalid the physical TLB and trigger a
|
---|
1682 | * call to the function. In theory this be a big deal, just a bit
|
---|
1683 | * performance loss as we'll pick the LoadingTlb variants.
|
---|
1684 | *
|
---|
1685 | * Note! We do not currently optimize branching to the next instruction (sorry
|
---|
1686 | * 32-bit PIC code). We could maybe do that in the branching code that
|
---|
1687 | * sets (or not) fTbBranched.
|
---|
1688 | */
|
---|
1689 | /** @todo Optimize 'jmp .next_instr' and 'call .next_instr'. Seen the jmp
|
---|
1690 | * variant in win 3.1 code and the call variant in 32-bit linux PIC
|
---|
1691 | * code. This'll require filtering out far jmps and calls, as they
|
---|
1692 | * load CS which should technically be considered indirect since the
|
---|
1693 | * GDT/LDT entry's base address can be modified independently from
|
---|
1694 | * the code. */
|
---|
1695 | if (pVCpu->iem.s.fTbBranched != 0)
|
---|
1696 | {
|
---|
1697 | if ( !pVCpu->iem.s.fTbCrossedPage /* 1a */
|
---|
1698 | || pVCpu->iem.s.offCurInstrStart >= 0 /* 1b */ )
|
---|
1699 | {
|
---|
1700 | /* 1a + 1b - instruction fully within the branched to page. */
|
---|
1701 | Assert(pVCpu->iem.s.offCurInstrStart >= 0);
|
---|
1702 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr <= GUEST_PAGE_SIZE);
|
---|
1703 |
|
---|
1704 | if (!(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_ZERO))
|
---|
1705 | {
|
---|
1706 | /* Check that we've got a free range. */
|
---|
1707 | idxRange += 1;
|
---|
1708 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
1709 | { /* likely */ }
|
---|
1710 | else
|
---|
1711 | {
|
---|
1712 | Log8(("%04x:%08RX64: out of ranges after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1713 | return false;
|
---|
1714 | }
|
---|
1715 | pCall->idxRange = idxRange;
|
---|
1716 | pCall->auParams[1] = idxRange;
|
---|
1717 | pCall->auParams[2] = 0;
|
---|
1718 |
|
---|
1719 | /* Check that we've got a free page slot. */
|
---|
1720 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
1721 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1722 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
1723 | pTb->aRanges[idxRange].idxPhysPage = 0;
|
---|
1724 | else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS
|
---|
1725 | || pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
1726 | {
|
---|
1727 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
1728 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
1729 | }
|
---|
1730 | else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS
|
---|
1731 | || pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
1732 | {
|
---|
1733 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
1734 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
1735 | }
|
---|
1736 | else
|
---|
1737 | {
|
---|
1738 | Log8(("%04x:%08RX64: out of aGCPhysPages entires after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1739 | return false;
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | /* Finish setting up the new range. */
|
---|
1743 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
1744 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
1745 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
1746 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1747 | pTb->cRanges++;
|
---|
1748 | }
|
---|
1749 | else
|
---|
1750 | {
|
---|
1751 | Log8(("%04x:%08RX64: zero byte jump\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1752 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | /* Determin which function we need to load & check.
|
---|
1756 | Note! For jumps to a new page, we'll set both fTbBranched and
|
---|
1757 | fTbCrossedPage to avoid unnecessary TLB work for intra
|
---|
1758 | page branching */
|
---|
1759 | if ( (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_INDIRECT | IEMBRANCHED_F_FAR)) /* Far is basically indirect. */
|
---|
1760 | || pVCpu->iem.s.fTbCrossedPage)
|
---|
1761 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1762 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb
|
---|
1763 | : !fConsiderCsLimChecking
|
---|
1764 | ? kIemThreadedFunc_BltIn_CheckOpcodesLoadingTlb
|
---|
1765 | : kIemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim;
|
---|
1766 | else if (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_CONDITIONAL | /* paranoia: */ IEMBRANCHED_F_DIRECT))
|
---|
1767 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1768 | ? kIemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes
|
---|
1769 | : !fConsiderCsLimChecking
|
---|
1770 | ? kIemThreadedFunc_BltIn_CheckPcAndOpcodes
|
---|
1771 | : kIemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim;
|
---|
1772 | else
|
---|
1773 | {
|
---|
1774 | Assert(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_RELATIVE);
|
---|
1775 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1776 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodes
|
---|
1777 | : !fConsiderCsLimChecking
|
---|
1778 | ? kIemThreadedFunc_BltIn_CheckOpcodes
|
---|
1779 | : kIemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim;
|
---|
1780 | }
|
---|
1781 | }
|
---|
1782 | else
|
---|
1783 | {
|
---|
1784 | /* 1c + 1d - instruction crosses pages. */
|
---|
1785 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
1786 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
1787 |
|
---|
1788 | /* Lazy bird: Check that this isn't case 1c, since we've already
|
---|
1789 | load the first physical address. End the TB and
|
---|
1790 | make it a case 2b instead.
|
---|
1791 |
|
---|
1792 | Hmm. Too much bother to detect, so just do the same
|
---|
1793 | with case 1d as well. */
|
---|
1794 | #if 0 /** @todo get back to this later when we've got the actual branch code in
|
---|
1795 | * place. */
|
---|
1796 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
1797 |
|
---|
1798 | /* Check that we've got two free ranges. */
|
---|
1799 | if (idxRange + 2 < RT_ELEMENTS(pTb->aRanges))
|
---|
1800 | { /* likely */ }
|
---|
1801 | else
|
---|
1802 | return false;
|
---|
1803 | idxRange += 1;
|
---|
1804 | pCall->idxRange = idxRange;
|
---|
1805 | pCall->auParams[1] = idxRange;
|
---|
1806 | pCall->auParams[2] = 0;
|
---|
1807 |
|
---|
1808 | /* ... */
|
---|
1809 |
|
---|
1810 | #else
|
---|
1811 | Log8(("%04x:%08RX64: complicated post-branch condition, ending TB.\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1812 | return false;
|
---|
1813 | #endif
|
---|
1814 | }
|
---|
1815 | }
|
---|
1816 |
|
---|
1817 | /*
|
---|
1818 | * Case 2: Page crossing.
|
---|
1819 | *
|
---|
1820 | * Sub-case 2a: The instruction starts on the first byte in the next page.
|
---|
1821 | *
|
---|
1822 | * Sub-case 2b: The instruction has opcode bytes in both the current and
|
---|
1823 | * following page.
|
---|
1824 | *
|
---|
1825 | * Both cases requires a new range table entry and probably a new physical
|
---|
1826 | * page entry. The difference is in which functions to emit and whether to
|
---|
1827 | * add bytes to the current range.
|
---|
1828 | */
|
---|
1829 | else if (pVCpu->iem.s.fTbCrossedPage)
|
---|
1830 | {
|
---|
1831 | /* Check that we've got a free range. */
|
---|
1832 | idxRange += 1;
|
---|
1833 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
1834 | { /* likely */ }
|
---|
1835 | else
|
---|
1836 | {
|
---|
1837 | Log8(("%04x:%08RX64: out of ranges while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1838 | return false;
|
---|
1839 | }
|
---|
1840 |
|
---|
1841 | /* Check that we've got a free page slot. */
|
---|
1842 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
1843 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
1844 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
1845 | pTb->aRanges[idxRange].idxPhysPage = 0;
|
---|
1846 | else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS
|
---|
1847 | || pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
1848 | {
|
---|
1849 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
1850 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
1851 | }
|
---|
1852 | else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS
|
---|
1853 | || pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
1854 | {
|
---|
1855 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
1856 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
1857 | }
|
---|
1858 | else
|
---|
1859 | {
|
---|
1860 | Log8(("%04x:%08RX64: out of aGCPhysPages entires while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1861 | return false;
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | if (((pTb->aRanges[idxRange - 1].offPhysPage + pTb->aRanges[idxRange - 1].cbOpcodes) & GUEST_PAGE_OFFSET_MASK) == 0)
|
---|
1865 | {
|
---|
1866 | Assert(pVCpu->iem.s.offCurInstrStart == 0);
|
---|
1867 | pCall->idxRange = idxRange;
|
---|
1868 | pCall->auParams[1] = idxRange;
|
---|
1869 | pCall->auParams[2] = 0;
|
---|
1870 |
|
---|
1871 | /* Finish setting up the new range. */
|
---|
1872 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
1873 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
1874 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
1875 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1876 | pTb->cRanges++;
|
---|
1877 |
|
---|
1878 | /* Determin which function we need to load & check. */
|
---|
1879 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1880 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb
|
---|
1881 | : !fConsiderCsLimChecking
|
---|
1882 | ? kIemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb
|
---|
1883 | : kIemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim;
|
---|
1884 | }
|
---|
1885 | else
|
---|
1886 | {
|
---|
1887 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
1888 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
1889 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
1890 | pCall->auParams[0] |= (uint64_t)cbStartPage << 32;
|
---|
1891 |
|
---|
1892 | /* We've good. Split the instruction over the old and new range table entries. */
|
---|
1893 | pTb->aRanges[idxRange - 1].cbOpcodes += cbStartPage;
|
---|
1894 |
|
---|
1895 | pTb->aRanges[idxRange].offPhysPage = 0;
|
---|
1896 | pTb->aRanges[idxRange].offOpcodes = offOpcode + cbStartPage;
|
---|
1897 | pTb->aRanges[idxRange].cbOpcodes = cbInstr - cbStartPage;
|
---|
1898 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
1899 | pTb->cRanges++;
|
---|
1900 |
|
---|
1901 | /* Determin which function we need to load & check. */
|
---|
1902 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
1903 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1904 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb
|
---|
1905 | : !fConsiderCsLimChecking
|
---|
1906 | ? kIemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb
|
---|
1907 | : kIemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim;
|
---|
1908 | else
|
---|
1909 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1910 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb
|
---|
1911 | : !fConsiderCsLimChecking
|
---|
1912 | ? kIemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb
|
---|
1913 | : kIemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim;
|
---|
1914 | }
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | /*
|
---|
1918 | * Regular case: No new range required.
|
---|
1919 | */
|
---|
1920 | else
|
---|
1921 | {
|
---|
1922 | Assert(pVCpu->iem.s.fTbCheckOpcodes || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS));
|
---|
1923 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
1924 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
1925 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodes
|
---|
1926 | : kIemThreadedFunc_BltIn_CheckOpcodes;
|
---|
1927 | else
|
---|
1928 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckCsLim;
|
---|
1929 |
|
---|
1930 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
1931 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
1932 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
1933 | Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated);
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 | /*
|
---|
1937 | * Commit the call.
|
---|
1938 | */
|
---|
1939 | pTb->Thrd.cCalls++;
|
---|
1940 |
|
---|
1941 | /*
|
---|
1942 | * Clear state.
|
---|
1943 | */
|
---|
1944 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
1945 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
1946 | pVCpu->iem.s.fTbCheckOpcodes = false;
|
---|
1947 |
|
---|
1948 | /*
|
---|
1949 | * Copy opcode bytes.
|
---|
1950 | */
|
---|
1951 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
1952 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
1953 | Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated);
|
---|
1954 |
|
---|
1955 | return true;
|
---|
1956 | }
|
---|
1957 |
|
---|
1958 |
|
---|
1959 | /**
|
---|
1960 | * Worker for iemThreadedCompileBeginEmitCallsComplications and
|
---|
1961 | * iemThreadedCompileCheckIrq that checks for pending delivarable events.
|
---|
1962 | *
|
---|
1963 | * @returns true if anything is pending, false if not.
|
---|
1964 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1965 | * thread.
|
---|
1966 | */
|
---|
1967 | DECL_FORCE_INLINE(bool) iemThreadedCompileIsIrqOrForceFlagPending(PVMCPUCC pVCpu)
|
---|
1968 | {
|
---|
1969 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
1970 | fCpu &= VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI;
|
---|
1971 | #if 1
|
---|
1972 | /** @todo this isn't even close to the NMI/IRQ conditions in EM. */
|
---|
1973 | if (RT_LIKELY( !fCpu
|
---|
1974 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
1975 | && ( !pVCpu->cpum.GstCtx.rflags.Bits.u1IF
|
---|
1976 | || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))) ))
|
---|
1977 | return false;
|
---|
1978 | return true;
|
---|
1979 | #else
|
---|
1980 | return false;
|
---|
1981 | #endif
|
---|
1982 |
|
---|
1983 | }
|
---|
1984 |
|
---|
1985 |
|
---|
1986 | /**
|
---|
1987 | * Called by IEM_MC2_BEGIN_EMIT_CALLS() when IEM_CIMPL_F_CHECK_IRQ_BEFORE is
|
---|
1988 | * set.
|
---|
1989 | *
|
---|
1990 | * @returns true if we should continue, false if an IRQ is deliverable or a
|
---|
1991 | * relevant force flag is pending.
|
---|
1992 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1993 | * thread.
|
---|
1994 | * @param pTb The translation block being compiled.
|
---|
1995 | * @sa iemThreadedCompileCheckIrq
|
---|
1996 | */
|
---|
1997 | bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
1998 | {
|
---|
1999 | /*
|
---|
2000 | * Skip this we've already emitted a call after the previous instruction
|
---|
2001 | * or if it's the first call, as we're always checking FFs between blocks.
|
---|
2002 | */
|
---|
2003 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2004 | if ( idxCall > 0
|
---|
2005 | && pTb->Thrd.paCalls[idxCall - 1].enmFunction != kIemThreadedFunc_BltIn_CheckIrq)
|
---|
2006 | {
|
---|
2007 | /* Emit the call. */
|
---|
2008 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2009 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2010 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2011 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckIrq;
|
---|
2012 | pCall->idxInstr = pTb->cInstructions;
|
---|
2013 | pCall->uUnused0 = 0;
|
---|
2014 | pCall->offOpcode = 0;
|
---|
2015 | pCall->cbOpcode = 0;
|
---|
2016 | pCall->idxRange = 0;
|
---|
2017 | pCall->auParams[0] = 0;
|
---|
2018 | pCall->auParams[1] = 0;
|
---|
2019 | pCall->auParams[2] = 0;
|
---|
2020 | LogFunc(("%04x:%08RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2021 |
|
---|
2022 | /* Reset the IRQ check value. */
|
---|
2023 | pVCpu->iem.s.cInstrTillIrqCheck = !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) ? 32 : 0;
|
---|
2024 |
|
---|
2025 | /*
|
---|
2026 | * Check for deliverable IRQs and pending force flags.
|
---|
2027 | */
|
---|
2028 | return !iemThreadedCompileIsIrqOrForceFlagPending(pVCpu);
|
---|
2029 | }
|
---|
2030 | return true; /* continue */
|
---|
2031 | }
|
---|
2032 |
|
---|
2033 |
|
---|
2034 | /**
|
---|
2035 | * Emits an IRQ check call and checks for pending IRQs.
|
---|
2036 | *
|
---|
2037 | * @returns true if we should continue, false if an IRQ is deliverable or a
|
---|
2038 | * relevant force flag is pending.
|
---|
2039 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2040 | * thread.
|
---|
2041 | * @param pTb The transation block.
|
---|
2042 | * @sa iemThreadedCompileBeginEmitCallsComplications
|
---|
2043 | */
|
---|
2044 | static bool iemThreadedCompileCheckIrqAfter(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2045 | {
|
---|
2046 | /* Check again in a little bit, unless it is immediately following an STI
|
---|
2047 | in which case we *must* check immediately after the next instruction
|
---|
2048 | as well in case it's executed with interrupt inhibition. We could
|
---|
2049 | otherwise miss the interrupt window. See the irq2 wait2 varaiant in
|
---|
2050 | bs3-timers-1 which is doing sti + sti + cli. */
|
---|
2051 | if (!pVCpu->iem.s.fTbCurInstrIsSti)
|
---|
2052 | pVCpu->iem.s.cInstrTillIrqCheck = 32;
|
---|
2053 | else
|
---|
2054 | {
|
---|
2055 | pVCpu->iem.s.fTbCurInstrIsSti = false;
|
---|
2056 | pVCpu->iem.s.cInstrTillIrqCheck = 0;
|
---|
2057 | }
|
---|
2058 | LogFunc(("%04x:%08RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2059 |
|
---|
2060 | /*
|
---|
2061 | * Emit the call.
|
---|
2062 | */
|
---|
2063 | AssertReturn(pTb->Thrd.cCalls < pTb->Thrd.cAllocated, false);
|
---|
2064 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++];
|
---|
2065 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckIrq;
|
---|
2066 | pCall->idxInstr = pTb->cInstructions;
|
---|
2067 | pCall->uUnused0 = 0;
|
---|
2068 | pCall->offOpcode = 0;
|
---|
2069 | pCall->cbOpcode = 0;
|
---|
2070 | pCall->idxRange = 0;
|
---|
2071 | pCall->auParams[0] = 0;
|
---|
2072 | pCall->auParams[1] = 0;
|
---|
2073 | pCall->auParams[2] = 0;
|
---|
2074 |
|
---|
2075 | /*
|
---|
2076 | * Check for deliverable IRQs and pending force flags.
|
---|
2077 | */
|
---|
2078 | return !iemThreadedCompileIsIrqOrForceFlagPending(pVCpu);
|
---|
2079 | }
|
---|
2080 |
|
---|
2081 |
|
---|
2082 | /**
|
---|
2083 | * Compiles a new TB and executes it.
|
---|
2084 | *
|
---|
2085 | * We combine compilation and execution here as it makes it simpler code flow
|
---|
2086 | * in the main loop and it allows interpreting while compiling if we want to
|
---|
2087 | * explore that option.
|
---|
2088 | *
|
---|
2089 | * @returns Strict VBox status code.
|
---|
2090 | * @param pVM The cross context virtual machine structure.
|
---|
2091 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2092 | * thread.
|
---|
2093 | * @param GCPhysPc The physical address corresponding to the current
|
---|
2094 | * RIP+CS.BASE.
|
---|
2095 | * @param fExtraFlags Extra translation block flags: IEMTB_F_INHIBIT_SHADOW,
|
---|
2096 | * IEMTB_F_INHIBIT_NMI, IEMTB_F_CS_LIM_CHECKS.
|
---|
2097 | */
|
---|
2098 | static VBOXSTRICTRC iemThreadedCompile(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2099 | {
|
---|
2100 | Assert(!(fExtraFlags & IEMTB_F_TYPE_MASK));
|
---|
2101 | fExtraFlags |= IEMTB_F_TYPE_THREADED;
|
---|
2102 |
|
---|
2103 | /*
|
---|
2104 | * Get the TB we use for the recompiling. This is a maxed-out TB so
|
---|
2105 | * that'll we'll make a more efficient copy of when we're done compiling.
|
---|
2106 | */
|
---|
2107 | PIEMTB pTb = pVCpu->iem.s.pThrdCompileTbR3;
|
---|
2108 | if (pTb)
|
---|
2109 | iemThreadedTbReuse(pVCpu, pTb, GCPhysPc, fExtraFlags);
|
---|
2110 | else
|
---|
2111 | {
|
---|
2112 | pTb = iemThreadedTbAlloc(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
2113 | AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED);
|
---|
2114 | pVCpu->iem.s.pThrdCompileTbR3 = pTb;
|
---|
2115 | }
|
---|
2116 |
|
---|
2117 | /* Set the current TB so iemThreadedCompileLongJumped and the CIMPL
|
---|
2118 | functions may get at it. */
|
---|
2119 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
2120 |
|
---|
2121 | #if 0
|
---|
2122 | /* Make sure the CheckIrq condition matches the one in EM. */
|
---|
2123 | iemThreadedCompileCheckIrqAfter(pVCpu, pTb);
|
---|
2124 | const uint32_t cZeroCalls = 1;
|
---|
2125 | #else
|
---|
2126 | const uint32_t cZeroCalls = 0;
|
---|
2127 | #endif
|
---|
2128 |
|
---|
2129 | /*
|
---|
2130 | * Now for the recomplication. (This mimicks IEMExecLots in many ways.)
|
---|
2131 | */
|
---|
2132 | iemThreadedCompileInitDecoder(pVCpu, false /*fReInit*/, fExtraFlags);
|
---|
2133 | iemThreadedCompileInitOpcodeFetching(pVCpu);
|
---|
2134 | VBOXSTRICTRC rcStrict;
|
---|
2135 | for (;;)
|
---|
2136 | {
|
---|
2137 | /* Process the next instruction. */
|
---|
2138 | #ifdef LOG_ENABLED
|
---|
2139 | iemThreadedLogCurInstr(pVCpu, "CC");
|
---|
2140 | uint16_t const uCsLog = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2141 | uint64_t const uRipLog = pVCpu->cpum.GstCtx.rip;
|
---|
2142 | #endif
|
---|
2143 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
2144 | uint16_t const cCallsPrev = pTb->Thrd.cCalls;
|
---|
2145 |
|
---|
2146 | rcStrict = FNIEMOP_CALL(g_apfnIemThreadedRecompilerOneByteMap[b]);
|
---|
2147 | if ( rcStrict == VINF_SUCCESS
|
---|
2148 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS
|
---|
2149 | && !pVCpu->iem.s.fEndTb)
|
---|
2150 | {
|
---|
2151 | Assert(pTb->Thrd.cCalls > cCallsPrev);
|
---|
2152 | Assert(cCallsPrev - pTb->Thrd.cCalls < 5);
|
---|
2153 |
|
---|
2154 | pVCpu->iem.s.cInstructions++;
|
---|
2155 | }
|
---|
2156 | else
|
---|
2157 | {
|
---|
2158 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, rc=%d\n",
|
---|
2159 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2160 | if (rcStrict == VINF_IEM_RECOMPILE_END_TB)
|
---|
2161 | rcStrict = VINF_SUCCESS;
|
---|
2162 |
|
---|
2163 | if (pTb->Thrd.cCalls > cZeroCalls)
|
---|
2164 | {
|
---|
2165 | if (cCallsPrev != pTb->Thrd.cCalls)
|
---|
2166 | pVCpu->iem.s.cInstructions++;
|
---|
2167 | break;
|
---|
2168 | }
|
---|
2169 |
|
---|
2170 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
2171 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 | /* Check for IRQs? */
|
---|
2175 | if (pVCpu->iem.s.cInstrTillIrqCheck > 0)
|
---|
2176 | pVCpu->iem.s.cInstrTillIrqCheck--;
|
---|
2177 | else if (!iemThreadedCompileCheckIrqAfter(pVCpu, pTb))
|
---|
2178 | break;
|
---|
2179 |
|
---|
2180 | /* Still space in the TB? */
|
---|
2181 | if ( pTb->Thrd.cCalls + 5 < pTb->Thrd.cAllocated
|
---|
2182 | && pTb->cbOpcodes + 16 <= pTb->cbOpcodesAllocated)
|
---|
2183 | iemThreadedCompileInitDecoder(pVCpu, true /*fReInit*/, 0);
|
---|
2184 | else
|
---|
2185 | {
|
---|
2186 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, %u opcode bytes - full\n",
|
---|
2187 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, pTb->cbOpcodes));
|
---|
2188 | break;
|
---|
2189 | }
|
---|
2190 | iemThreadedCompileReInitOpcodeFetching(pVCpu);
|
---|
2191 | }
|
---|
2192 |
|
---|
2193 | /*
|
---|
2194 | * Duplicate the TB into a completed one and link it.
|
---|
2195 | */
|
---|
2196 | pTb = iemThreadedTbDuplicate(pVM, pVCpu, pTb);
|
---|
2197 | AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED);
|
---|
2198 |
|
---|
2199 | iemThreadedTbAdd(pVCpu, pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
2200 |
|
---|
2201 | #ifdef IEM_COMPILE_ONLY_MODE
|
---|
2202 | /*
|
---|
2203 | * Execute the translation block.
|
---|
2204 | */
|
---|
2205 | #endif
|
---|
2206 |
|
---|
2207 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2208 | }
|
---|
2209 |
|
---|
2210 |
|
---|
2211 |
|
---|
2212 | /*********************************************************************************************************************************
|
---|
2213 | * Recompiled Execution Core *
|
---|
2214 | *********************************************************************************************************************************/
|
---|
2215 |
|
---|
2216 | /**
|
---|
2217 | * Executes a translation block.
|
---|
2218 | *
|
---|
2219 | * @returns Strict VBox status code.
|
---|
2220 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2221 | * thread.
|
---|
2222 | * @param pTb The translation block to execute.
|
---|
2223 | */
|
---|
2224 | static VBOXSTRICTRC iemTbExec(PVMCPUCC pVCpu, PIEMTB pTb) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2225 | {
|
---|
2226 | /*
|
---|
2227 | * Check the opcodes in the first page before starting execution.
|
---|
2228 | */
|
---|
2229 | Assert(!(pVCpu->iem.s.GCPhysInstrBuf & (RTGCPHYS)GUEST_PAGE_OFFSET_MASK));
|
---|
2230 | Assert(pTb->aRanges[0].cbOpcodes <= pVCpu->iem.s.cbInstrBufTotal - pVCpu->iem.s.offInstrNextByte);
|
---|
2231 | if (memcmp(pTb->pabOpcodes, &pVCpu->iem.s.pbInstrBuf[pTb->aRanges[0].offPhysPage], pTb->aRanges[0].cbOpcodes) == 0)
|
---|
2232 | { /* likely */ }
|
---|
2233 | else
|
---|
2234 | {
|
---|
2235 | Log7(("TB obsolete: %p GCPhys=%RGp\n", pTb, pTb->GCPhysPc));
|
---|
2236 | iemThreadedTbObsolete(pVCpu, pTb, true /*fSafeToFree*/);
|
---|
2237 | return VINF_SUCCESS;
|
---|
2238 | }
|
---|
2239 |
|
---|
2240 | /*
|
---|
2241 | * Set the current TB so CIMPL functions may get at it.
|
---|
2242 | */
|
---|
2243 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
2244 |
|
---|
2245 | /*
|
---|
2246 | * Execute the block.
|
---|
2247 | */
|
---|
2248 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
2249 | if (pTb->fFlags & IEMTB_F_TYPE_NATIVE)
|
---|
2250 | {
|
---|
2251 | pVCpu->iem.s.cTbExecNative++;
|
---|
2252 | typedef IEM_DECL_IMPL_TYPE(int, FNIEMNATIVETB, (PVMCPUCC pVCpu, PIEMTB pTb));
|
---|
2253 | # ifdef LOG_ENABLED
|
---|
2254 | iemThreadedLogCurInstr(pVCpu, "EXn");
|
---|
2255 | # endif
|
---|
2256 | VBOXSTRICTRC const rcStrict = ((FNIEMNATIVETB *)pTb->Native.paInstructions)(pVCpu, pTb);
|
---|
2257 | if (RT_LIKELY( rcStrict == VINF_SUCCESS
|
---|
2258 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */))
|
---|
2259 | { /* likely */ }
|
---|
2260 | else
|
---|
2261 | {
|
---|
2262 | /* pVCpu->iem.s.cInstructions is incremented by iemNativeHlpExecStatusCodeFiddling. */
|
---|
2263 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
2264 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbExecBreaks);
|
---|
2265 |
|
---|
2266 | /* VINF_IEM_REEXEC_BREAK should be treated as VINF_SUCCESS as it's
|
---|
2267 | only to break out of TB execution early. */
|
---|
2268 | if (rcStrict == VINF_IEM_REEXEC_BREAK)
|
---|
2269 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
2270 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2271 | }
|
---|
2272 | }
|
---|
2273 | else
|
---|
2274 | #endif /* VBOX_WITH_IEM_NATIVE_RECOMPILER */
|
---|
2275 | {
|
---|
2276 | /*
|
---|
2277 | * The threaded execution loop.
|
---|
2278 | */
|
---|
2279 | pVCpu->iem.s.cTbExecThreaded++;
|
---|
2280 | #ifdef LOG_ENABLED
|
---|
2281 | uint64_t uRipPrev = UINT64_MAX;
|
---|
2282 | #endif
|
---|
2283 | PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls;
|
---|
2284 | uint32_t cCallsLeft = pTb->Thrd.cCalls;
|
---|
2285 | while (cCallsLeft-- > 0)
|
---|
2286 | {
|
---|
2287 | #ifdef LOG_ENABLED
|
---|
2288 | if (pVCpu->cpum.GstCtx.rip != uRipPrev)
|
---|
2289 | {
|
---|
2290 | uRipPrev = pVCpu->cpum.GstCtx.rip;
|
---|
2291 | iemThreadedLogCurInstr(pVCpu, "EXt");
|
---|
2292 | }
|
---|
2293 | Log9(("%04x:%08RX64: #%d/%d - %d %s\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
2294 | pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->idxInstr, pCallEntry->enmFunction,
|
---|
2295 | g_apszIemThreadedFunctions[pCallEntry->enmFunction]));
|
---|
2296 | #endif
|
---|
2297 | VBOXSTRICTRC const rcStrict = g_apfnIemThreadedFunctions[pCallEntry->enmFunction](pVCpu,
|
---|
2298 | pCallEntry->auParams[0],
|
---|
2299 | pCallEntry->auParams[1],
|
---|
2300 | pCallEntry->auParams[2]);
|
---|
2301 | if (RT_LIKELY( rcStrict == VINF_SUCCESS
|
---|
2302 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */))
|
---|
2303 | pCallEntry++;
|
---|
2304 | else
|
---|
2305 | {
|
---|
2306 | pVCpu->iem.s.cInstructions += pCallEntry->idxInstr; /* This may be one short, but better than zero. */
|
---|
2307 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
2308 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbExecBreaks);
|
---|
2309 |
|
---|
2310 | /* VINF_IEM_REEXEC_BREAK should be treated as VINF_SUCCESS as it's
|
---|
2311 | only to break out of TB execution early. */
|
---|
2312 | if (rcStrict == VINF_IEM_REEXEC_BREAK)
|
---|
2313 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
2314 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2315 | }
|
---|
2316 | }
|
---|
2317 | }
|
---|
2318 |
|
---|
2319 | pVCpu->iem.s.cInstructions += pTb->cInstructions;
|
---|
2320 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
2321 | return VINF_SUCCESS;
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 |
|
---|
2325 | /**
|
---|
2326 | * This is called when the PC doesn't match the current pbInstrBuf.
|
---|
2327 | *
|
---|
2328 | * Upon return, we're ready for opcode fetching. But please note that
|
---|
2329 | * pbInstrBuf can be NULL iff the memory doesn't have readable backing (i.e.
|
---|
2330 | * MMIO or unassigned).
|
---|
2331 | */
|
---|
2332 | static RTGCPHYS iemGetPcWithPhysAndCodeMissed(PVMCPUCC pVCpu)
|
---|
2333 | {
|
---|
2334 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2335 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
2336 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
2337 | iemOpcodeFetchBytesJmp(pVCpu, 0, NULL);
|
---|
2338 | return pVCpu->iem.s.GCPhysInstrBuf + pVCpu->iem.s.offCurInstrStart;
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 |
|
---|
2342 | /** @todo need private inline decl for throw/nothrow matching IEM_WITH_SETJMP? */
|
---|
2343 | DECL_FORCE_INLINE_THROW(RTGCPHYS) iemGetPcWithPhysAndCode(PVMCPUCC pVCpu)
|
---|
2344 | {
|
---|
2345 | /*
|
---|
2346 | * Set uCurTbStartPc to RIP and calc the effective PC.
|
---|
2347 | */
|
---|
2348 | uint64_t uPc = pVCpu->cpum.GstCtx.rip;
|
---|
2349 | pVCpu->iem.s.uCurTbStartPc = uPc;
|
---|
2350 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
2351 | uPc += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
2352 |
|
---|
2353 | /*
|
---|
2354 | * Advance within the current buffer (PAGE) when possible.
|
---|
2355 | */
|
---|
2356 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
2357 | {
|
---|
2358 | uint64_t off = uPc - pVCpu->iem.s.uInstrBufPc;
|
---|
2359 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
2360 | {
|
---|
2361 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
2362 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
2363 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
2364 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
2365 | else
|
---|
2366 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
2367 |
|
---|
2368 | return pVCpu->iem.s.GCPhysInstrBuf + off;
|
---|
2369 | }
|
---|
2370 | }
|
---|
2371 | return iemGetPcWithPhysAndCodeMissed(pVCpu);
|
---|
2372 | }
|
---|
2373 |
|
---|
2374 |
|
---|
2375 | /**
|
---|
2376 | * Determines the extra IEMTB_F_XXX flags.
|
---|
2377 | *
|
---|
2378 | * @returns A mix of IEMTB_F_INHIBIT_SHADOW, IEMTB_F_INHIBIT_NMI and
|
---|
2379 | * IEMTB_F_CS_LIM_CHECKS (or zero).
|
---|
2380 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2381 | * thread.
|
---|
2382 | */
|
---|
2383 | DECL_FORCE_INLINE(uint32_t) iemGetTbFlagsForCurrentPc(PVMCPUCC pVCpu)
|
---|
2384 | {
|
---|
2385 | uint32_t fRet = 0;
|
---|
2386 |
|
---|
2387 | /*
|
---|
2388 | * Determine the inhibit bits.
|
---|
2389 | */
|
---|
2390 | if (!(pVCpu->cpum.GstCtx.rflags.uBoth & (IEMTB_F_INHIBIT_SHADOW | IEMTB_F_INHIBIT_NMI)))
|
---|
2391 | { /* typical */ }
|
---|
2392 | else
|
---|
2393 | {
|
---|
2394 | if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
|
---|
2395 | fRet |= IEMTB_F_INHIBIT_SHADOW;
|
---|
2396 | if (CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx))
|
---|
2397 | fRet |= IEMTB_F_INHIBIT_NMI;
|
---|
2398 | }
|
---|
2399 |
|
---|
2400 | /*
|
---|
2401 | * Return IEMTB_F_CS_LIM_CHECKS if the current PC is invalid or if it is
|
---|
2402 | * likely to go invalid before the end of the translation block.
|
---|
2403 | */
|
---|
2404 | if (IEM_IS_64BIT_CODE(pVCpu))
|
---|
2405 | return fRet;
|
---|
2406 |
|
---|
2407 | int64_t const offFromLim = (int64_t)pVCpu->cpum.GstCtx.cs.u32Limit - (int64_t)pVCpu->cpum.GstCtx.eip;
|
---|
2408 | if (offFromLim >= X86_PAGE_SIZE + 16 - (int32_t)(pVCpu->cpum.GstCtx.cs.u64Base & GUEST_PAGE_OFFSET_MASK))
|
---|
2409 | return fRet;
|
---|
2410 | return fRet | IEMTB_F_CS_LIM_CHECKS;
|
---|
2411 | }
|
---|
2412 |
|
---|
2413 |
|
---|
2414 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecRecompiler(PVMCC pVM, PVMCPUCC pVCpu)
|
---|
2415 | {
|
---|
2416 | /*
|
---|
2417 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
2418 | */
|
---|
2419 | if (!TRPMHasTrap(pVCpu))
|
---|
2420 | { /* likely */ }
|
---|
2421 | else
|
---|
2422 | {
|
---|
2423 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
2424 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
2425 | { /*likely */ }
|
---|
2426 | else
|
---|
2427 | return rcStrict;
|
---|
2428 | }
|
---|
2429 |
|
---|
2430 | /*
|
---|
2431 | * Init the execution environment.
|
---|
2432 | */
|
---|
2433 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
2434 | if (RT_LIKELY(pVCpu->iem.s.msRecompilerPollNow != 0))
|
---|
2435 | { }
|
---|
2436 | else
|
---|
2437 | pVCpu->iem.s.msRecompilerPollNow = (uint32_t)(TMVirtualGetNoCheck(pVM) / RT_NS_1MS);
|
---|
2438 |
|
---|
2439 | /*
|
---|
2440 | * Run-loop.
|
---|
2441 | *
|
---|
2442 | * If we're using setjmp/longjmp we combine all the catching here to avoid
|
---|
2443 | * having to call setjmp for each block we're executing.
|
---|
2444 | */
|
---|
2445 | PIEMTBCACHE const pTbCache = pVCpu->iem.s.pTbCacheR3;
|
---|
2446 | for (;;)
|
---|
2447 | {
|
---|
2448 | PIEMTB pTb = NULL;
|
---|
2449 | VBOXSTRICTRC rcStrict;
|
---|
2450 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
2451 | {
|
---|
2452 | uint32_t const cPollRate = 511; /* EM.cpp passes 4095 to IEMExecLots, so an eigth of that seems reasonable for now. */
|
---|
2453 | for (uint32_t iIterations = 0; ; iIterations++)
|
---|
2454 | {
|
---|
2455 | /* Translate PC to physical address, we'll need this for both lookup and compilation. */
|
---|
2456 | RTGCPHYS const GCPhysPc = iemGetPcWithPhysAndCode(pVCpu);
|
---|
2457 | uint32_t const fExtraFlags = iemGetTbFlagsForCurrentPc(pVCpu);
|
---|
2458 |
|
---|
2459 | pTb = iemTbCacheLookup(pVCpu, pTbCache, GCPhysPc, fExtraFlags);
|
---|
2460 | if (pTb)
|
---|
2461 | rcStrict = iemTbExec(pVCpu, pTb);
|
---|
2462 | else
|
---|
2463 | rcStrict = iemThreadedCompile(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
2464 | if (rcStrict == VINF_SUCCESS)
|
---|
2465 | {
|
---|
2466 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
2467 |
|
---|
2468 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
2469 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
2470 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
2471 | | VMCPU_FF_TLB_FLUSH
|
---|
2472 | | VMCPU_FF_UNHALT );
|
---|
2473 | /** @todo this isn't even close to the NMI/IRQ conditions in EM. */
|
---|
2474 | if (RT_LIKELY( ( !fCpu
|
---|
2475 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
2476 | && ( !pVCpu->cpum.GstCtx.rflags.Bits.u1IF
|
---|
2477 | || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) )) )
|
---|
2478 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
2479 | {
|
---|
2480 | if (RT_LIKELY( (iIterations & cPollRate) != 0
|
---|
2481 | || !TMTimerPollBoolWith32BitMilliTS(pVM, pVCpu, &pVCpu->iem.s.msRecompilerPollNow)))
|
---|
2482 | pTb = NULL; /* Clear it before looping so iemTbCacheLookup can safely do native recompilation. */
|
---|
2483 | else
|
---|
2484 | return VINF_SUCCESS;
|
---|
2485 | }
|
---|
2486 | else
|
---|
2487 | return VINF_SUCCESS;
|
---|
2488 | }
|
---|
2489 | else
|
---|
2490 | return rcStrict;
|
---|
2491 | }
|
---|
2492 | }
|
---|
2493 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
2494 | {
|
---|
2495 | pVCpu->iem.s.cLongJumps++;
|
---|
2496 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
2497 | iemMemRollback(pVCpu);
|
---|
2498 |
|
---|
2499 | #if 0 /** @todo do we need to clean up anything? If not, we can drop the pTb = NULL some lines up and change the scope. */
|
---|
2500 | /* If pTb isn't NULL we're in iemTbExec. */
|
---|
2501 | if (!pTb)
|
---|
2502 | {
|
---|
2503 | /* If pCurTbR3 is NULL, we're in iemGetPcWithPhysAndCode.*/
|
---|
2504 | pTb = pVCpu->iem.s.pCurTbR3;
|
---|
2505 | if (pTb)
|
---|
2506 | {
|
---|
2507 | if (pTb == pVCpu->iem.s.pThrdCompileTbR3)
|
---|
2508 | return iemThreadedCompileLongJumped(pVM, pVCpu, rcStrict);
|
---|
2509 | Assert(pTb != pVCpu->iem.s.pNativeCompileTbR3);
|
---|
2510 | }
|
---|
2511 | }
|
---|
2512 | #endif
|
---|
2513 | return rcStrict;
|
---|
2514 | }
|
---|
2515 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
2516 | }
|
---|
2517 | }
|
---|
2518 |
|
---|