1 | /* $Id: IEMAllThrdRecompiler.cpp 105805 2024-08-21 23:52:56Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Instruction Decoding and Threaded Recompilation.
|
---|
4 | *
|
---|
5 | * Logging group IEM_RE_THREADED assignments:
|
---|
6 | * - Level 1 (Log) : Errors, exceptions, interrupts and such major events. [same as IEM]
|
---|
7 | * - Flow (LogFlow) : TB calls being emitted.
|
---|
8 | * - Level 2 (Log2) : Basic instruction execution state info. [same as IEM]
|
---|
9 | * - Level 3 (Log3) : More detailed execution state info. [same as IEM]
|
---|
10 | * - Level 4 (Log4) : Decoding mnemonics w/ EIP. [same as IEM]
|
---|
11 | * - Level 5 (Log5) : Decoding details. [same as IEM]
|
---|
12 | * - Level 6 (Log6) : TB opcode range management.
|
---|
13 | * - Level 7 (Log7) : TB obsoletion.
|
---|
14 | * - Level 8 (Log8) : TB compilation.
|
---|
15 | * - Level 9 (Log9) : TB exec.
|
---|
16 | * - Level 10 (Log10): TB block lookup.
|
---|
17 | * - Level 11 (Log11): TB block lookup details.
|
---|
18 | * - Level 12 (Log12): TB insertion.
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
23 | *
|
---|
24 | * This file is part of VirtualBox base platform packages, as
|
---|
25 | * available from https://www.virtualbox.org.
|
---|
26 | *
|
---|
27 | * This program is free software; you can redistribute it and/or
|
---|
28 | * modify it under the terms of the GNU General Public License
|
---|
29 | * as published by the Free Software Foundation, in version 3 of the
|
---|
30 | * License.
|
---|
31 | *
|
---|
32 | * This program is distributed in the hope that it will be useful, but
|
---|
33 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
34 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
35 | * General Public License for more details.
|
---|
36 | *
|
---|
37 | * You should have received a copy of the GNU General Public License
|
---|
38 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
39 | *
|
---|
40 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
41 | */
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Header Files *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | #ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
|
---|
48 | # define LOG_GROUP LOG_GROUP_IEM_RE_THREADED
|
---|
49 | #endif
|
---|
50 | #define IEM_WITH_CODE_TLB_AND_OPCODE_BUF /* A bit hackish, but its all in IEMInline.h. */
|
---|
51 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
52 | #include <VBox/vmm/iem.h>
|
---|
53 | #include <VBox/vmm/cpum.h>
|
---|
54 | #include <VBox/vmm/apic.h>
|
---|
55 | #include <VBox/vmm/pdm.h>
|
---|
56 | #include <VBox/vmm/pgm.h>
|
---|
57 | #include <VBox/vmm/iom.h>
|
---|
58 | #include <VBox/vmm/em.h>
|
---|
59 | #include <VBox/vmm/hm.h>
|
---|
60 | #include <VBox/vmm/nem.h>
|
---|
61 | #include <VBox/vmm/gim.h>
|
---|
62 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
63 | # include <VBox/vmm/em.h>
|
---|
64 | # include <VBox/vmm/hm_svm.h>
|
---|
65 | #endif
|
---|
66 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
67 | # include <VBox/vmm/hmvmxinline.h>
|
---|
68 | #endif
|
---|
69 | #include <VBox/vmm/tm.h>
|
---|
70 | #include <VBox/vmm/dbgf.h>
|
---|
71 | #include <VBox/vmm/dbgftrace.h>
|
---|
72 | #ifndef TST_IEM_CHECK_MC
|
---|
73 | # include "IEMInternal.h"
|
---|
74 | #endif
|
---|
75 | #include <VBox/vmm/vmcc.h>
|
---|
76 | #include <VBox/log.h>
|
---|
77 | #include <VBox/err.h>
|
---|
78 | #include <VBox/param.h>
|
---|
79 | #include <VBox/dis.h>
|
---|
80 | #include <VBox/disopcode-x86-amd64.h>
|
---|
81 | #include <iprt/asm-math.h>
|
---|
82 | #include <iprt/assert.h>
|
---|
83 | #include <iprt/mem.h>
|
---|
84 | #include <iprt/string.h>
|
---|
85 | #include <iprt/sort.h>
|
---|
86 | #include <iprt/x86.h>
|
---|
87 |
|
---|
88 | #ifndef TST_IEM_CHECK_MC
|
---|
89 | # include "IEMInline.h"
|
---|
90 | # include "IEMOpHlp.h"
|
---|
91 | # include "IEMMc.h"
|
---|
92 | #endif
|
---|
93 |
|
---|
94 | #include "IEMThreadedFunctions.h"
|
---|
95 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
96 | # include "IEMN8veRecompiler.h"
|
---|
97 | #endif
|
---|
98 |
|
---|
99 |
|
---|
100 | /*
|
---|
101 | * Narrow down configs here to avoid wasting time on unused configs here.
|
---|
102 | */
|
---|
103 |
|
---|
104 | #ifndef IEM_WITH_CODE_TLB
|
---|
105 | # error The code TLB must be enabled for the recompiler.
|
---|
106 | #endif
|
---|
107 |
|
---|
108 | #ifndef IEM_WITH_DATA_TLB
|
---|
109 | # error The data TLB must be enabled for the recompiler.
|
---|
110 | #endif
|
---|
111 |
|
---|
112 | #ifndef IEM_WITH_SETJMP
|
---|
113 | # error The setjmp approach must be enabled for the recompiler.
|
---|
114 | #endif
|
---|
115 |
|
---|
116 | #if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) && !defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
|
---|
117 | # error "IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS requires IEMNATIVE_WITH_SIMD_REG_ALLOCATOR"
|
---|
118 | #endif
|
---|
119 |
|
---|
120 |
|
---|
121 | /**
|
---|
122 | * Calculates the effective address of a ModR/M memory operand, extended version
|
---|
123 | * for use in the recompilers.
|
---|
124 | *
|
---|
125 | * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR.
|
---|
126 | *
|
---|
127 | * May longjmp on internal error.
|
---|
128 | *
|
---|
129 | * @return The effective address.
|
---|
130 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
131 | * @param bRm The ModRM byte.
|
---|
132 | * @param cbImmAndRspOffset - First byte: The size of any immediate
|
---|
133 | * following the effective address opcode bytes
|
---|
134 | * (only for RIP relative addressing).
|
---|
135 | * - Second byte: RSP displacement (for POP [ESP]).
|
---|
136 | * @param puInfo Extra info: 32-bit displacement (bits 31:0) and
|
---|
137 | * SIB byte (bits 39:32).
|
---|
138 | *
|
---|
139 | * @note This must be defined in a source file with matching
|
---|
140 | * IEM_WITH_CODE_TLB_AND_OPCODE_BUF define till the define is made default
|
---|
141 | * or implemented differently...
|
---|
142 | */
|
---|
143 | RTGCPTR iemOpHlpCalcRmEffAddrJmpEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, uint64_t *puInfo) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
144 | {
|
---|
145 | Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm));
|
---|
146 | # define SET_SS_DEF() \
|
---|
147 | do \
|
---|
148 | { \
|
---|
149 | if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \
|
---|
150 | pVCpu->iem.s.iEffSeg = X86_SREG_SS; \
|
---|
151 | } while (0)
|
---|
152 |
|
---|
153 | if (!IEM_IS_64BIT_CODE(pVCpu))
|
---|
154 | {
|
---|
155 | /** @todo Check the effective address size crap! */
|
---|
156 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
|
---|
157 | {
|
---|
158 | uint16_t u16EffAddr;
|
---|
159 |
|
---|
160 | /* Handle the disp16 form with no registers first. */
|
---|
161 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
162 | {
|
---|
163 | IEM_OPCODE_GET_NEXT_U16(&u16EffAddr);
|
---|
164 | *puInfo = u16EffAddr;
|
---|
165 | }
|
---|
166 | else
|
---|
167 | {
|
---|
168 | /* Get the displacment. */
|
---|
169 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
170 | {
|
---|
171 | case 0: u16EffAddr = 0; break;
|
---|
172 | case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break;
|
---|
173 | case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break;
|
---|
174 | default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */
|
---|
175 | }
|
---|
176 | *puInfo = u16EffAddr;
|
---|
177 |
|
---|
178 | /* Add the base and index registers to the disp. */
|
---|
179 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
180 | {
|
---|
181 | case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
|
---|
182 | case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
|
---|
183 | case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break;
|
---|
184 | case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break;
|
---|
185 | case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
|
---|
186 | case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
|
---|
187 | case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break;
|
---|
188 | case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16 uInfo=%#RX64\n", u16EffAddr, *puInfo));
|
---|
193 | return u16EffAddr;
|
---|
194 | }
|
---|
195 |
|
---|
196 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
197 | uint32_t u32EffAddr;
|
---|
198 | uint64_t uInfo;
|
---|
199 |
|
---|
200 | /* Handle the disp32 form with no registers first. */
|
---|
201 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
202 | {
|
---|
203 | IEM_OPCODE_GET_NEXT_U32(&u32EffAddr);
|
---|
204 | uInfo = u32EffAddr;
|
---|
205 | }
|
---|
206 | else
|
---|
207 | {
|
---|
208 | /* Get the register (or SIB) value. */
|
---|
209 | uInfo = 0;
|
---|
210 | switch ((bRm & X86_MODRM_RM_MASK))
|
---|
211 | {
|
---|
212 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
213 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
214 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
215 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
216 | case 4: /* SIB */
|
---|
217 | {
|
---|
218 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
219 | uInfo = (uint64_t)bSib << 32;
|
---|
220 |
|
---|
221 | /* Get the index and scale it. */
|
---|
222 | switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
223 | {
|
---|
224 | case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
|
---|
225 | case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
|
---|
226 | case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
|
---|
227 | case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
|
---|
228 | case 4: u32EffAddr = 0; /*none */ break;
|
---|
229 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
|
---|
230 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
231 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
232 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
233 | }
|
---|
234 | u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
235 |
|
---|
236 | /* add base */
|
---|
237 | switch (bSib & X86_SIB_BASE_MASK)
|
---|
238 | {
|
---|
239 | case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
|
---|
240 | case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
|
---|
241 | case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
|
---|
242 | case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
|
---|
243 | case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
244 | case 5:
|
---|
245 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
246 | {
|
---|
247 | u32EffAddr += pVCpu->cpum.GstCtx.ebp;
|
---|
248 | SET_SS_DEF();
|
---|
249 | }
|
---|
250 | else
|
---|
251 | {
|
---|
252 | uint32_t u32Disp;
|
---|
253 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
254 | u32EffAddr += u32Disp;
|
---|
255 | uInfo |= u32Disp;
|
---|
256 | }
|
---|
257 | break;
|
---|
258 | case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
|
---|
259 | case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
|
---|
260 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
261 | }
|
---|
262 | break;
|
---|
263 | }
|
---|
264 | case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break;
|
---|
265 | case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
|
---|
266 | case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
|
---|
267 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
268 | }
|
---|
269 |
|
---|
270 | /* Get and add the displacement. */
|
---|
271 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
272 | {
|
---|
273 | case 0:
|
---|
274 | break;
|
---|
275 | case 1:
|
---|
276 | {
|
---|
277 | int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
278 | u32EffAddr += i8Disp;
|
---|
279 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
280 | break;
|
---|
281 | }
|
---|
282 | case 2:
|
---|
283 | {
|
---|
284 | uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
285 | u32EffAddr += u32Disp;
|
---|
286 | uInfo |= u32Disp;
|
---|
287 | break;
|
---|
288 | }
|
---|
289 | default:
|
---|
290 | AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | *puInfo = uInfo;
|
---|
295 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32 uInfo=%#RX64\n", u32EffAddr, uInfo));
|
---|
296 | return u32EffAddr;
|
---|
297 | }
|
---|
298 |
|
---|
299 | uint64_t u64EffAddr;
|
---|
300 | uint64_t uInfo;
|
---|
301 |
|
---|
302 | /* Handle the rip+disp32 form with no registers first. */
|
---|
303 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
304 | {
|
---|
305 | IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr);
|
---|
306 | uInfo = (uint32_t)u64EffAddr;
|
---|
307 | u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff));
|
---|
308 | }
|
---|
309 | else
|
---|
310 | {
|
---|
311 | /* Get the register (or SIB) value. */
|
---|
312 | uInfo = 0;
|
---|
313 | switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB)
|
---|
314 | {
|
---|
315 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
316 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
317 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
318 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
319 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break;
|
---|
320 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
321 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
322 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
323 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
324 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
325 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
326 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
327 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
328 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
329 | /* SIB */
|
---|
330 | case 4:
|
---|
331 | case 12:
|
---|
332 | {
|
---|
333 | uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib);
|
---|
334 | uInfo = (uint64_t)bSib << 32;
|
---|
335 |
|
---|
336 | /* Get the index and scale it. */
|
---|
337 | switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex)
|
---|
338 | {
|
---|
339 | case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
|
---|
340 | case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
|
---|
341 | case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
|
---|
342 | case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
|
---|
343 | case 4: u64EffAddr = 0; /*none */ break;
|
---|
344 | case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
|
---|
345 | case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
|
---|
346 | case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
|
---|
347 | case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
|
---|
348 | case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
|
---|
349 | case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
|
---|
350 | case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
|
---|
351 | case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
|
---|
352 | case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
|
---|
353 | case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
|
---|
354 | case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
|
---|
355 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
356 | }
|
---|
357 | u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
358 |
|
---|
359 | /* add base */
|
---|
360 | switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB)
|
---|
361 | {
|
---|
362 | case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
|
---|
363 | case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
|
---|
364 | case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
|
---|
365 | case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
|
---|
366 | case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break;
|
---|
367 | case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
|
---|
368 | case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
|
---|
369 | case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
|
---|
370 | case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
|
---|
371 | case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
|
---|
372 | case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
|
---|
373 | case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
|
---|
374 | case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
|
---|
375 | case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
|
---|
376 | /* complicated encodings */
|
---|
377 | case 5:
|
---|
378 | case 13:
|
---|
379 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
380 | {
|
---|
381 | if (!pVCpu->iem.s.uRexB)
|
---|
382 | {
|
---|
383 | u64EffAddr += pVCpu->cpum.GstCtx.rbp;
|
---|
384 | SET_SS_DEF();
|
---|
385 | }
|
---|
386 | else
|
---|
387 | u64EffAddr += pVCpu->cpum.GstCtx.r13;
|
---|
388 | }
|
---|
389 | else
|
---|
390 | {
|
---|
391 | uint32_t u32Disp;
|
---|
392 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
393 | u64EffAddr += (int32_t)u32Disp;
|
---|
394 | uInfo |= u32Disp;
|
---|
395 | }
|
---|
396 | break;
|
---|
397 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
398 | }
|
---|
399 | break;
|
---|
400 | }
|
---|
401 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX);
|
---|
402 | }
|
---|
403 |
|
---|
404 | /* Get and add the displacement. */
|
---|
405 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
406 | {
|
---|
407 | case 0:
|
---|
408 | break;
|
---|
409 | case 1:
|
---|
410 | {
|
---|
411 | int8_t i8Disp;
|
---|
412 | IEM_OPCODE_GET_NEXT_S8(&i8Disp);
|
---|
413 | u64EffAddr += i8Disp;
|
---|
414 | uInfo |= (uint32_t)(int32_t)i8Disp;
|
---|
415 | break;
|
---|
416 | }
|
---|
417 | case 2:
|
---|
418 | {
|
---|
419 | uint32_t u32Disp;
|
---|
420 | IEM_OPCODE_GET_NEXT_U32(&u32Disp);
|
---|
421 | u64EffAddr += (int32_t)u32Disp;
|
---|
422 | uInfo |= u32Disp;
|
---|
423 | break;
|
---|
424 | }
|
---|
425 | IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */
|
---|
426 | }
|
---|
427 |
|
---|
428 | }
|
---|
429 |
|
---|
430 | *puInfo = uInfo;
|
---|
431 | if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
|
---|
432 | {
|
---|
433 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr, uInfo));
|
---|
434 | return u64EffAddr;
|
---|
435 | }
|
---|
436 | Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT);
|
---|
437 | Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr & UINT32_MAX, uInfo));
|
---|
438 | return u64EffAddr & UINT32_MAX;
|
---|
439 | }
|
---|
440 |
|
---|
441 |
|
---|
442 | /*********************************************************************************************************************************
|
---|
443 | * Translation Block Cache. *
|
---|
444 | *********************************************************************************************************************************/
|
---|
445 |
|
---|
446 | /** @callback_method_impl{FNRTSORTCMP, Compare two TBs for pruning sorting purposes.} */
|
---|
447 | static DECLCALLBACK(int) iemTbCachePruneCmpTb(void const *pvElement1, void const *pvElement2, void *pvUser)
|
---|
448 | {
|
---|
449 | PCIEMTB const pTb1 = (PCIEMTB)pvElement1;
|
---|
450 | PCIEMTB const pTb2 = (PCIEMTB)pvElement2;
|
---|
451 | uint32_t const cMsSinceUse1 = (uint32_t)(uintptr_t)pvUser - pTb1->msLastUsed;
|
---|
452 | uint32_t const cMsSinceUse2 = (uint32_t)(uintptr_t)pvUser - pTb2->msLastUsed;
|
---|
453 | if (cMsSinceUse1 != cMsSinceUse2)
|
---|
454 | return cMsSinceUse1 < cMsSinceUse2 ? -1 : 1;
|
---|
455 | if (pTb1->cUsed != pTb2->cUsed)
|
---|
456 | return pTb1->cUsed > pTb2->cUsed ? -1 : 1;
|
---|
457 | if ((pTb1->fFlags & IEMTB_F_TYPE_MASK) != (pTb2->fFlags & IEMTB_F_TYPE_MASK))
|
---|
458 | return (pTb1->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE ? -1 : 1;
|
---|
459 | return 0;
|
---|
460 | }
|
---|
461 |
|
---|
462 | #ifdef VBOX_STRICT
|
---|
463 | /**
|
---|
464 | * Assertion helper that checks a collisions list count.
|
---|
465 | */
|
---|
466 | static void iemTbCacheAssertCorrectCount(PIEMTBCACHE pTbCache, uint32_t idxHash, const char *pszOperation)
|
---|
467 | {
|
---|
468 | PIEMTB pTb = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
469 | int cLeft = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]);
|
---|
470 | while (pTb)
|
---|
471 | {
|
---|
472 | pTb = pTb->pNext;
|
---|
473 | cLeft--;
|
---|
474 | }
|
---|
475 | AssertMsg(cLeft == 0,
|
---|
476 | ("idxHash=%#x cLeft=%d; entry count=%d; %s\n",
|
---|
477 | idxHash, cLeft, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]), pszOperation));
|
---|
478 | }
|
---|
479 | #endif
|
---|
480 |
|
---|
481 |
|
---|
482 | DECL_NO_INLINE(static, void) iemTbCacheAddWithPruning(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb, uint32_t idxHash)
|
---|
483 | {
|
---|
484 | STAM_PROFILE_START(&pTbCache->StatPrune, a);
|
---|
485 |
|
---|
486 | /*
|
---|
487 | * First convert the collision list to an array.
|
---|
488 | */
|
---|
489 | PIEMTB apSortedTbs[IEMTBCACHE_PTR_MAX_COUNT];
|
---|
490 | uintptr_t cInserted = 0;
|
---|
491 | PIEMTB pTbCollision = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
492 |
|
---|
493 | pTbCache->apHash[idxHash] = NULL; /* Must NULL the entry before trying to free anything. */
|
---|
494 |
|
---|
495 | while (pTbCollision && cInserted < RT_ELEMENTS(apSortedTbs))
|
---|
496 | {
|
---|
497 | apSortedTbs[cInserted++] = pTbCollision;
|
---|
498 | pTbCollision = pTbCollision->pNext;
|
---|
499 | }
|
---|
500 |
|
---|
501 | /* Free any excess (impossible). */
|
---|
502 | if (RT_LIKELY(!pTbCollision))
|
---|
503 | Assert(cInserted == RT_ELEMENTS(apSortedTbs));
|
---|
504 | else
|
---|
505 | do
|
---|
506 | {
|
---|
507 | PIEMTB pTbToFree = pTbCollision;
|
---|
508 | pTbCollision = pTbToFree->pNext;
|
---|
509 | iemTbAllocatorFree(pVCpu, pTbToFree);
|
---|
510 | } while (pTbCollision);
|
---|
511 |
|
---|
512 | /*
|
---|
513 | * Sort it by most recently used and usage count.
|
---|
514 | */
|
---|
515 | RTSortApvShell((void **)apSortedTbs, cInserted, iemTbCachePruneCmpTb, (void *)(uintptr_t)pVCpu->iem.s.msRecompilerPollNow);
|
---|
516 |
|
---|
517 | /* We keep half the list for now. Perhaps a bit aggressive... */
|
---|
518 | uintptr_t const cKeep = cInserted / 2;
|
---|
519 |
|
---|
520 | /* First free up the TBs we don't wish to keep (before creating the new
|
---|
521 | list because otherwise the free code will scan the list for each one
|
---|
522 | without ever finding it). */
|
---|
523 | for (uintptr_t idx = cKeep; idx < cInserted; idx++)
|
---|
524 | iemTbAllocatorFree(pVCpu, apSortedTbs[idx]);
|
---|
525 |
|
---|
526 | /* Then chain the new TB together with the ones we like to keep of the
|
---|
527 | existing ones and insert this list into the hash table. */
|
---|
528 | pTbCollision = pTb;
|
---|
529 | for (uintptr_t idx = 0; idx < cKeep; idx++)
|
---|
530 | pTbCollision = pTbCollision->pNext = apSortedTbs[idx];
|
---|
531 | pTbCollision->pNext = NULL;
|
---|
532 |
|
---|
533 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, cKeep + 1);
|
---|
534 | #ifdef VBOX_STRICT
|
---|
535 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "add w/ pruning");
|
---|
536 | #endif
|
---|
537 |
|
---|
538 | STAM_PROFILE_STOP(&pTbCache->StatPrune, a);
|
---|
539 | }
|
---|
540 |
|
---|
541 |
|
---|
542 | static void iemTbCacheAdd(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
543 | {
|
---|
544 | uint32_t const idxHash = IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
545 | PIEMTB const pTbOldHead = pTbCache->apHash[idxHash];
|
---|
546 | if (!pTbOldHead)
|
---|
547 | {
|
---|
548 | pTb->pNext = NULL;
|
---|
549 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, 1); /** @todo could make 1 implicit... */
|
---|
550 | }
|
---|
551 | else
|
---|
552 | {
|
---|
553 | STAM_REL_COUNTER_INC(&pTbCache->cCollisions);
|
---|
554 | uintptr_t cCollisions = IEMTBCACHE_PTR_GET_COUNT(pTbOldHead);
|
---|
555 | if (cCollisions < IEMTBCACHE_PTR_MAX_COUNT)
|
---|
556 | {
|
---|
557 | pTb->pNext = IEMTBCACHE_PTR_GET_TB(pTbOldHead);
|
---|
558 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb, cCollisions + 1);
|
---|
559 | #ifdef VBOX_STRICT
|
---|
560 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "add");
|
---|
561 | #endif
|
---|
562 | }
|
---|
563 | else
|
---|
564 | iemTbCacheAddWithPruning(pVCpu, pTbCache, pTb, idxHash);
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 |
|
---|
569 | /**
|
---|
570 | * Unlinks @a pTb from the hash table if found in it.
|
---|
571 | *
|
---|
572 | * @returns true if unlinked, false if not present.
|
---|
573 | * @param pTbCache The hash table.
|
---|
574 | * @param pTb The TB to remove.
|
---|
575 | */
|
---|
576 | static bool iemTbCacheRemove(PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
577 | {
|
---|
578 | uint32_t const idxHash = IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc);
|
---|
579 | PIEMTB pTbHash = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
580 | uint32_t volatile cLength = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]); RT_NOREF(cLength);
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * At the head of the collision list?
|
---|
584 | */
|
---|
585 | if (pTbHash == pTb)
|
---|
586 | {
|
---|
587 | if (!pTb->pNext)
|
---|
588 | pTbCache->apHash[idxHash] = NULL;
|
---|
589 | else
|
---|
590 | {
|
---|
591 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTb->pNext,
|
---|
592 | IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - 1);
|
---|
593 | #ifdef VBOX_STRICT
|
---|
594 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "remove #1");
|
---|
595 | #endif
|
---|
596 | }
|
---|
597 | return true;
|
---|
598 | }
|
---|
599 |
|
---|
600 | /*
|
---|
601 | * Search the collision list.
|
---|
602 | */
|
---|
603 | PIEMTB const pTbHead = pTbHash;
|
---|
604 | while (pTbHash)
|
---|
605 | {
|
---|
606 | PIEMTB const pNextTb = pTbHash->pNext;
|
---|
607 | if (pNextTb == pTb)
|
---|
608 | {
|
---|
609 | pTbHash->pNext = pTb->pNext;
|
---|
610 | pTbCache->apHash[idxHash] = IEMTBCACHE_PTR_MAKE(pTbHead, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - 1);
|
---|
611 | #ifdef VBOX_STRICT
|
---|
612 | iemTbCacheAssertCorrectCount(pTbCache, idxHash, "remove #2");
|
---|
613 | #endif
|
---|
614 | return true;
|
---|
615 | }
|
---|
616 | pTbHash = pNextTb;
|
---|
617 | }
|
---|
618 | return false;
|
---|
619 | }
|
---|
620 |
|
---|
621 |
|
---|
622 | /**
|
---|
623 | * Looks up a TB for the given PC and flags in the cache.
|
---|
624 | *
|
---|
625 | * @returns Pointer to TB on success, NULL if not found.
|
---|
626 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
627 | * calling thread.
|
---|
628 | * @param pTbCache The translation block cache.
|
---|
629 | * @param GCPhysPc The PC to look up a TB for.
|
---|
630 | * @param fExtraFlags The extra flags to join with IEMCPU::fExec for
|
---|
631 | * the lookup.
|
---|
632 | * @thread EMT(pVCpu)
|
---|
633 | */
|
---|
634 | static PIEMTB iemTbCacheLookup(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache,
|
---|
635 | RTGCPHYS GCPhysPc, uint32_t fExtraFlags) IEM_NOEXCEPT_MAY_LONGJMP /** @todo r=bird: no longjumping here, right? iemNativeRecompile is noexcept. */
|
---|
636 | {
|
---|
637 | uint32_t const fFlags = ((pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags) & IEMTB_F_KEY_MASK;
|
---|
638 |
|
---|
639 | /*
|
---|
640 | * First consult the lookup table entry.
|
---|
641 | */
|
---|
642 | PIEMTB * const ppTbLookup = pVCpu->iem.s.ppTbLookupEntryR3;
|
---|
643 | PIEMTB pTb = *ppTbLookup;
|
---|
644 | if (pTb)
|
---|
645 | {
|
---|
646 | if (pTb->GCPhysPc == GCPhysPc)
|
---|
647 | {
|
---|
648 | if ( (pTb->fFlags & (IEMTB_F_KEY_MASK | IEMTB_F_TYPE_MASK)) == (fFlags | IEMTB_F_TYPE_NATIVE)
|
---|
649 | || (pTb->fFlags & (IEMTB_F_KEY_MASK | IEMTB_F_TYPE_MASK)) == (fFlags | IEMTB_F_TYPE_THREADED) )
|
---|
650 | {
|
---|
651 | if (pTb->x86.fAttr == (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u)
|
---|
652 | {
|
---|
653 | STAM_COUNTER_INC(&pTbCache->cLookupHitsViaTbLookupTable);
|
---|
654 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
655 | pTb->cUsed++;
|
---|
656 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
657 | if ((pTb->fFlags & IEMTB_F_TYPE_NATIVE) || pTb->cUsed != pVCpu->iem.s.uTbNativeRecompileAtUsedCount)
|
---|
658 | {
|
---|
659 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp: %p (@ %p)\n", fFlags, GCPhysPc, pTb, ppTbLookup));
|
---|
660 | return pTb;
|
---|
661 | }
|
---|
662 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp: %p (@ %p) - recompiling\n", fFlags, GCPhysPc, pTb, ppTbLookup));
|
---|
663 | return iemNativeRecompile(pVCpu, pTb);
|
---|
664 | #else
|
---|
665 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp: %p (@ %p)\n", fFlags, GCPhysPc, pTb, ppTbLookup));
|
---|
666 | return pTb;
|
---|
667 | #endif
|
---|
668 | }
|
---|
669 | }
|
---|
670 | }
|
---|
671 | }
|
---|
672 |
|
---|
673 | /*
|
---|
674 | * Then consult the hash table.
|
---|
675 | */
|
---|
676 | uint32_t const idxHash = IEMTBCACHE_HASH_NO_KEY_MASK(pTbCache, fFlags, GCPhysPc);
|
---|
677 | #if defined(VBOX_STRICT) || defined(LOG_ENABLED)
|
---|
678 | int cLeft = IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]);
|
---|
679 | #endif
|
---|
680 | pTb = IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]);
|
---|
681 | while (pTb)
|
---|
682 | {
|
---|
683 | if (pTb->GCPhysPc == GCPhysPc)
|
---|
684 | {
|
---|
685 | if ((pTb->fFlags & IEMTB_F_KEY_MASK) == fFlags)
|
---|
686 | {
|
---|
687 | if (pTb->x86.fAttr == (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u)
|
---|
688 | {
|
---|
689 | STAM_COUNTER_INC(&pTbCache->cLookupHits);
|
---|
690 | AssertMsg(cLeft > 0, ("%d\n", cLeft));
|
---|
691 |
|
---|
692 | *ppTbLookup = pTb;
|
---|
693 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
694 | pTb->cUsed++;
|
---|
695 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
696 | if ((pTb->fFlags & IEMTB_F_TYPE_NATIVE) || pTb->cUsed != pVCpu->iem.s.uTbNativeRecompileAtUsedCount)
|
---|
697 | {
|
---|
698 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp idxHash=%#x: %p (@ %d / %d)\n",
|
---|
699 | fFlags, GCPhysPc, idxHash, pTb, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - cLeft,
|
---|
700 | IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) ));
|
---|
701 | return pTb;
|
---|
702 | }
|
---|
703 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp idxHash=%#x: %p (@ %d / %d) - recompiling\n",
|
---|
704 | fFlags, GCPhysPc, idxHash, pTb, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - cLeft,
|
---|
705 | IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) ));
|
---|
706 | return iemNativeRecompile(pVCpu, pTb);
|
---|
707 | #else
|
---|
708 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp idxHash=%#x: %p (@ %d / %d)\n",
|
---|
709 | fFlags, GCPhysPc, idxHash, pTb, IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) - cLeft,
|
---|
710 | IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) ));
|
---|
711 | return pTb;
|
---|
712 | #endif
|
---|
713 | }
|
---|
714 | Log11(("TB miss: CS: %#x, wanted %#x\n", pTb->x86.fAttr, (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u));
|
---|
715 | }
|
---|
716 | else
|
---|
717 | Log11(("TB miss: fFlags: %#x, wanted %#x\n", pTb->fFlags, fFlags));
|
---|
718 | }
|
---|
719 | else
|
---|
720 | Log11(("TB miss: GCPhysPc: %#x, wanted %#x\n", pTb->GCPhysPc, GCPhysPc));
|
---|
721 |
|
---|
722 | pTb = pTb->pNext;
|
---|
723 | #ifdef VBOX_STRICT
|
---|
724 | cLeft--;
|
---|
725 | #endif
|
---|
726 | }
|
---|
727 | AssertMsg(cLeft == 0, ("%d\n", cLeft));
|
---|
728 | STAM_REL_COUNTER_INC(&pTbCache->cLookupMisses);
|
---|
729 | Log10(("TB lookup: fFlags=%#x GCPhysPc=%RGp idxHash=%#x: NULL - (%p L %d)\n", fFlags, GCPhysPc, idxHash,
|
---|
730 | IEMTBCACHE_PTR_GET_TB(pTbCache->apHash[idxHash]), IEMTBCACHE_PTR_GET_COUNT(pTbCache->apHash[idxHash]) ));
|
---|
731 | return pTb;
|
---|
732 | }
|
---|
733 |
|
---|
734 |
|
---|
735 | /*********************************************************************************************************************************
|
---|
736 | * Translation Block Allocator.
|
---|
737 | *********************************************************************************************************************************/
|
---|
738 | /*
|
---|
739 | * Translation block allocationmanagement.
|
---|
740 | */
|
---|
741 |
|
---|
742 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
743 | # define IEMTBALLOC_IDX_TO_CHUNK(a_pTbAllocator, a_idxTb) \
|
---|
744 | ((a_idxTb) >> (a_pTbAllocator)->cChunkShift)
|
---|
745 | # define IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(a_pTbAllocator, a_idxTb, a_idxChunk) \
|
---|
746 | ((a_idxTb) & (a_pTbAllocator)->fChunkMask)
|
---|
747 | # define IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) \
|
---|
748 | ((uint32_t)(a_idxChunk) << (a_pTbAllocator)->cChunkShift)
|
---|
749 | #else
|
---|
750 | # define IEMTBALLOC_IDX_TO_CHUNK(a_pTbAllocator, a_idxTb) \
|
---|
751 | ((a_idxTb) / (a_pTbAllocator)->cTbsPerChunk)
|
---|
752 | # define IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(a_pTbAllocator, a_idxTb, a_idxChunk) \
|
---|
753 | ((a_idxTb) - (a_idxChunk) * (a_pTbAllocator)->cTbsPerChunk)
|
---|
754 | # define IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) \
|
---|
755 | ((uint32_t)(a_idxChunk) * (a_pTbAllocator)->cTbsPerChunk)
|
---|
756 | #endif
|
---|
757 | /** Makes a TB index from a chunk index and TB index within that chunk. */
|
---|
758 | #define IEMTBALLOC_IDX_MAKE(a_pTbAllocator, a_idxChunk, a_idxInChunk) \
|
---|
759 | (IEMTBALLOC_IDX_FOR_CHUNK(a_pTbAllocator, a_idxChunk) + (a_idxInChunk))
|
---|
760 |
|
---|
761 |
|
---|
762 | /**
|
---|
763 | * Initializes the TB allocator and cache for an EMT.
|
---|
764 | *
|
---|
765 | * @returns VBox status code.
|
---|
766 | * @param pVM The VM handle.
|
---|
767 | * @param cInitialTbs The initial number of translation blocks to
|
---|
768 | * preallocator.
|
---|
769 | * @param cMaxTbs The max number of translation blocks allowed.
|
---|
770 | * @param cbInitialExec The initial size of the executable memory allocator.
|
---|
771 | * @param cbMaxExec The max size of the executable memory allocator.
|
---|
772 | * @param cbChunkExec The chunk size for executable memory allocator. Zero
|
---|
773 | * or UINT32_MAX for automatically determining this.
|
---|
774 | * @thread EMT
|
---|
775 | */
|
---|
776 | DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
|
---|
777 | uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec)
|
---|
778 | {
|
---|
779 | PVMCPUCC pVCpu = VMMGetCpu(pVM);
|
---|
780 | Assert(!pVCpu->iem.s.pTbCacheR3);
|
---|
781 | Assert(!pVCpu->iem.s.pTbAllocatorR3);
|
---|
782 |
|
---|
783 | /*
|
---|
784 | * Calculate the chunk size of the TB allocator.
|
---|
785 | * The minimum chunk size is 2MiB.
|
---|
786 | */
|
---|
787 | AssertCompile(!(sizeof(IEMTB) & IEMTBCACHE_PTR_COUNT_MASK));
|
---|
788 | uint32_t cbPerChunk = _2M;
|
---|
789 | uint32_t cTbsPerChunk = _2M / sizeof(IEMTB);
|
---|
790 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
791 | uint8_t const cTbShift = ASMBitFirstSetU32((uint32_t)sizeof(IEMTB)) - 1;
|
---|
792 | uint8_t cChunkShift = 21 - cTbShift;
|
---|
793 | AssertCompile(RT_BIT_32(21) == _2M); Assert(RT_BIT_32(cChunkShift) == cTbsPerChunk);
|
---|
794 | #endif
|
---|
795 | for (;;)
|
---|
796 | {
|
---|
797 | if (cMaxTbs <= cTbsPerChunk * (uint64_t)RT_ELEMENTS(pVCpu->iem.s.pTbAllocatorR3->aChunks))
|
---|
798 | break;
|
---|
799 | cbPerChunk *= 2;
|
---|
800 | cTbsPerChunk = cbPerChunk / sizeof(IEMTB);
|
---|
801 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
802 | cChunkShift += 1;
|
---|
803 | #endif
|
---|
804 | }
|
---|
805 |
|
---|
806 | uint32_t cMaxChunks = (cMaxTbs + cTbsPerChunk - 1) / cTbsPerChunk;
|
---|
807 | Assert(cMaxChunks * cTbsPerChunk >= cMaxTbs);
|
---|
808 | Assert(cMaxChunks <= RT_ELEMENTS(pVCpu->iem.s.pTbAllocatorR3->aChunks));
|
---|
809 |
|
---|
810 | cMaxTbs = cMaxChunks * cTbsPerChunk;
|
---|
811 |
|
---|
812 | /*
|
---|
813 | * Allocate and initalize it.
|
---|
814 | */
|
---|
815 | PIEMTBALLOCATOR const pTbAllocator = (PIEMTBALLOCATOR)RTMemAllocZ(sizeof(*pTbAllocator));
|
---|
816 | if (!pTbAllocator)
|
---|
817 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
818 | "Failed to allocate %zu bytes (max %u TBs) for the TB allocator of VCpu #%u",
|
---|
819 | sizeof(*pTbAllocator), cMaxTbs, pVCpu->idCpu);
|
---|
820 | pTbAllocator->uMagic = IEMTBALLOCATOR_MAGIC;
|
---|
821 | pTbAllocator->cMaxChunks = (uint8_t)cMaxChunks;
|
---|
822 | pTbAllocator->cTbsPerChunk = cTbsPerChunk;
|
---|
823 | pTbAllocator->cbPerChunk = cbPerChunk;
|
---|
824 | pTbAllocator->cMaxTbs = cMaxTbs;
|
---|
825 | pTbAllocator->pTbsFreeHead = NULL;
|
---|
826 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
827 | pTbAllocator->fChunkMask = cTbsPerChunk - 1;
|
---|
828 | pTbAllocator->cChunkShift = cChunkShift;
|
---|
829 | Assert(RT_BIT_32(cChunkShift) == cTbsPerChunk);
|
---|
830 | #endif
|
---|
831 |
|
---|
832 | pVCpu->iem.s.pTbAllocatorR3 = pTbAllocator;
|
---|
833 |
|
---|
834 | /*
|
---|
835 | * Allocate the initial chunks.
|
---|
836 | */
|
---|
837 | for (uint32_t idxChunk = 0; ; idxChunk++)
|
---|
838 | {
|
---|
839 | PIEMTB const paTbs = pTbAllocator->aChunks[idxChunk].paTbs = (PIEMTB)RTMemPageAllocZ(cbPerChunk);
|
---|
840 | if (!paTbs)
|
---|
841 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
842 | "Failed to initial %zu bytes for the #%u chunk of TBs for VCpu #%u",
|
---|
843 | cbPerChunk, idxChunk, pVCpu->idCpu);
|
---|
844 |
|
---|
845 | for (uint32_t iTb = 0; iTb < cTbsPerChunk; iTb++)
|
---|
846 | {
|
---|
847 | paTbs[iTb].idxAllocChunk = idxChunk; /* This is not strictly necessary... */
|
---|
848 | paTbs[iTb].pNext = pTbAllocator->pTbsFreeHead;
|
---|
849 | pTbAllocator->pTbsFreeHead = &paTbs[iTb];
|
---|
850 | }
|
---|
851 | pTbAllocator->cAllocatedChunks = (uint16_t)(idxChunk + 1);
|
---|
852 | pTbAllocator->cTotalTbs += cTbsPerChunk;
|
---|
853 |
|
---|
854 | if ((idxChunk + 1) * cTbsPerChunk >= cInitialTbs)
|
---|
855 | break;
|
---|
856 | }
|
---|
857 |
|
---|
858 | /*
|
---|
859 | * Calculate the size of the hash table. We double the max TB count and
|
---|
860 | * round it up to the nearest power of two.
|
---|
861 | */
|
---|
862 | uint32_t cCacheEntries = cMaxTbs * 2;
|
---|
863 | if (!RT_IS_POWER_OF_TWO(cCacheEntries))
|
---|
864 | {
|
---|
865 | uint8_t const iBitTop = ASMBitFirstSetU32(cCacheEntries);
|
---|
866 | cCacheEntries = RT_BIT_32(iBitTop);
|
---|
867 | Assert(cCacheEntries >= cMaxTbs * 2);
|
---|
868 | }
|
---|
869 |
|
---|
870 | size_t const cbTbCache = RT_UOFFSETOF_DYN(IEMTBCACHE, apHash[cCacheEntries]);
|
---|
871 | PIEMTBCACHE const pTbCache = (PIEMTBCACHE)RTMemAllocZ(cbTbCache);
|
---|
872 | if (!pTbCache)
|
---|
873 | return VMSetError(pVM, VERR_NO_MEMORY, RT_SRC_POS,
|
---|
874 | "Failed to allocate %zu bytes (%u entries) for the TB cache of VCpu #%u",
|
---|
875 | cbTbCache, cCacheEntries, pVCpu->idCpu);
|
---|
876 |
|
---|
877 | /*
|
---|
878 | * Initialize it (assumes zeroed by the allocator).
|
---|
879 | */
|
---|
880 | pTbCache->uMagic = IEMTBCACHE_MAGIC;
|
---|
881 | pTbCache->cHash = cCacheEntries;
|
---|
882 | pTbCache->uHashMask = cCacheEntries - 1;
|
---|
883 | Assert(pTbCache->cHash > pTbCache->uHashMask);
|
---|
884 | pVCpu->iem.s.pTbCacheR3 = pTbCache;
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * Initialize the native executable memory allocator.
|
---|
888 | */
|
---|
889 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
890 | int rc = iemExecMemAllocatorInit(pVCpu, cbMaxExec, cbInitialExec, cbChunkExec);
|
---|
891 | AssertLogRelRCReturn(rc, rc);
|
---|
892 | #else
|
---|
893 | RT_NOREF(cbMaxExec, cbInitialExec, cbChunkExec);
|
---|
894 | #endif
|
---|
895 |
|
---|
896 | return VINF_SUCCESS;
|
---|
897 | }
|
---|
898 |
|
---|
899 |
|
---|
900 | /**
|
---|
901 | * Inner free worker.
|
---|
902 | */
|
---|
903 | static void iemTbAllocatorFreeInner(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator,
|
---|
904 | PIEMTB pTb, uint32_t idxChunk, uint32_t idxInChunk)
|
---|
905 | {
|
---|
906 | Assert(idxChunk < pTbAllocator->cAllocatedChunks); RT_NOREF(idxChunk);
|
---|
907 | Assert(idxInChunk < pTbAllocator->cTbsPerChunk); RT_NOREF(idxInChunk);
|
---|
908 | Assert((uintptr_t)(pTb - pTbAllocator->aChunks[idxChunk].paTbs) == idxInChunk);
|
---|
909 | #ifdef VBOX_STRICT
|
---|
910 | for (PIEMTB pTbOther = pTbAllocator->pDelayedFreeHead; pTbOther; pTbOther = pTbOther->pNext)
|
---|
911 | Assert(pTbOther != pTb);
|
---|
912 | #endif
|
---|
913 |
|
---|
914 | /*
|
---|
915 | * Unlink the TB from the hash table.
|
---|
916 | */
|
---|
917 | iemTbCacheRemove(pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
918 |
|
---|
919 | /*
|
---|
920 | * Free the TB itself.
|
---|
921 | */
|
---|
922 | switch (pTb->fFlags & IEMTB_F_TYPE_MASK)
|
---|
923 | {
|
---|
924 | case IEMTB_F_TYPE_THREADED:
|
---|
925 | pTbAllocator->cThreadedTbs -= 1;
|
---|
926 | RTMemFree(pTb->Thrd.paCalls);
|
---|
927 | break;
|
---|
928 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
929 | case IEMTB_F_TYPE_NATIVE:
|
---|
930 | pTbAllocator->cNativeTbs -= 1;
|
---|
931 | iemExecMemAllocatorFree(pVCpu, pTb->Native.paInstructions,
|
---|
932 | pTb->Native.cInstructions * sizeof(pTb->Native.paInstructions[0]));
|
---|
933 | pTb->Native.paInstructions = NULL; /* required by iemExecMemAllocatorPrune */
|
---|
934 | break;
|
---|
935 | #endif
|
---|
936 | default:
|
---|
937 | AssertFailed();
|
---|
938 | }
|
---|
939 |
|
---|
940 | RTMemFree(IEMTB_GET_TB_LOOKUP_TAB_ENTRY(pTb, 0)); /* Frees both the TB lookup table and opcode bytes. */
|
---|
941 |
|
---|
942 | pTb->pNext = pTbAllocator->pTbsFreeHead;
|
---|
943 | pTbAllocator->pTbsFreeHead = pTb;
|
---|
944 | pTb->fFlags = 0;
|
---|
945 | pTb->GCPhysPc = UINT64_MAX;
|
---|
946 | pTb->Gen.uPtr = 0;
|
---|
947 | pTb->Gen.uData = 0;
|
---|
948 | pTb->cTbLookupEntries = 0;
|
---|
949 | pTb->cbOpcodes = 0;
|
---|
950 | pTb->pabOpcodes = NULL;
|
---|
951 |
|
---|
952 | Assert(pTbAllocator->cInUseTbs > 0);
|
---|
953 |
|
---|
954 | pTbAllocator->cInUseTbs -= 1;
|
---|
955 | STAM_REL_COUNTER_INC(&pTbAllocator->StatFrees);
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | /**
|
---|
960 | * Frees the given TB.
|
---|
961 | *
|
---|
962 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
963 | * thread.
|
---|
964 | * @param pTb The translation block to free.
|
---|
965 | * @thread EMT(pVCpu)
|
---|
966 | */
|
---|
967 | DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
968 | {
|
---|
969 | /*
|
---|
970 | * Validate state.
|
---|
971 | */
|
---|
972 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
973 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
974 | uint8_t const idxChunk = pTb->idxAllocChunk;
|
---|
975 | AssertLogRelReturnVoid(idxChunk < pTbAllocator->cAllocatedChunks);
|
---|
976 | uintptr_t const idxInChunk = pTb - pTbAllocator->aChunks[idxChunk].paTbs;
|
---|
977 | AssertLogRelReturnVoid(idxInChunk < pTbAllocator->cTbsPerChunk);
|
---|
978 |
|
---|
979 | /*
|
---|
980 | * Invalidate the TB lookup pointer and call the inner worker.
|
---|
981 | */
|
---|
982 | pVCpu->iem.s.ppTbLookupEntryR3 = &pVCpu->iem.s.pTbLookupEntryDummyR3;
|
---|
983 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, (uint32_t)idxInChunk);
|
---|
984 | }
|
---|
985 |
|
---|
986 |
|
---|
987 | /**
|
---|
988 | * Schedules a TB for freeing when it's not longer being executed and/or part of
|
---|
989 | * the caller's call stack.
|
---|
990 | *
|
---|
991 | * The TB will be removed from the translation block cache, though, so it isn't
|
---|
992 | * possible to executed it again and the IEMTB::pNext member can be used to link
|
---|
993 | * it together with other TBs awaiting freeing.
|
---|
994 | *
|
---|
995 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
996 | * thread.
|
---|
997 | * @param pTb The translation block to schedule for freeing.
|
---|
998 | */
|
---|
999 | static void iemTbAlloctorScheduleForFree(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
1000 | {
|
---|
1001 | /*
|
---|
1002 | * Validate state.
|
---|
1003 | */
|
---|
1004 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1005 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
1006 | Assert(pTb->idxAllocChunk < pTbAllocator->cAllocatedChunks);
|
---|
1007 | Assert((uintptr_t)(pTb - pTbAllocator->aChunks[pTb->idxAllocChunk].paTbs) < pTbAllocator->cTbsPerChunk);
|
---|
1008 | Assert( (pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE
|
---|
1009 | || (pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_THREADED);
|
---|
1010 | #ifdef VBOX_STRICT
|
---|
1011 | for (PIEMTB pTbOther = pTbAllocator->pDelayedFreeHead; pTbOther; pTbOther = pTbOther->pNext)
|
---|
1012 | Assert(pTbOther != pTb);
|
---|
1013 | #endif
|
---|
1014 |
|
---|
1015 | /*
|
---|
1016 | * Remove it from the cache and prepend it to the allocator's todo list.
|
---|
1017 | *
|
---|
1018 | * Note! It could still be in various lookup tables, so we trash the GCPhys
|
---|
1019 | * and CS attribs to ensure it won't be reused.
|
---|
1020 | */
|
---|
1021 | iemTbCacheRemove(pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
1022 | pTb->GCPhysPc = NIL_RTGCPHYS;
|
---|
1023 | pTb->x86.fAttr = UINT16_MAX;
|
---|
1024 |
|
---|
1025 | pTb->pNext = pTbAllocator->pDelayedFreeHead;
|
---|
1026 | pTbAllocator->pDelayedFreeHead = pTb;
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 |
|
---|
1030 | /**
|
---|
1031 | * Processes the delayed frees.
|
---|
1032 | *
|
---|
1033 | * This is called by the allocator function as well as the native recompile
|
---|
1034 | * function before making any TB or executable memory allocations respectively.
|
---|
1035 | */
|
---|
1036 | void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator)
|
---|
1037 | {
|
---|
1038 | /** @todo r-bird: these have already been removed from the cache,
|
---|
1039 | * iemTbAllocatorFree/Inner redoes that, which is a waste of time. */
|
---|
1040 | PIEMTB pTb = pTbAllocator->pDelayedFreeHead;
|
---|
1041 | pTbAllocator->pDelayedFreeHead = NULL;
|
---|
1042 | while (pTb)
|
---|
1043 | {
|
---|
1044 | PIEMTB const pTbNext = pTb->pNext;
|
---|
1045 | Assert(pVCpu->iem.s.pCurTbR3 != pTb);
|
---|
1046 | iemTbAllocatorFree(pVCpu, pTb);
|
---|
1047 | pTb = pTbNext;
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 |
|
---|
1052 | #if 0
|
---|
1053 | /**
|
---|
1054 | * Frees all TBs.
|
---|
1055 | */
|
---|
1056 | static int iemTbAllocatorFreeAll(PVMCPUCC pVCpu)
|
---|
1057 | {
|
---|
1058 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1059 | AssertReturn(pTbAllocator, VERR_WRONG_ORDER);
|
---|
1060 | AssertReturn(pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC, VERR_INVALID_MAGIC);
|
---|
1061 |
|
---|
1062 | iemTbAllocatorProcessDelayedFrees(pVCpu, pTbAllocator);
|
---|
1063 |
|
---|
1064 | uint32_t idxChunk = pTbAllocator->cAllocatedChunks;
|
---|
1065 | while (idxChunk-- > 0)
|
---|
1066 | {
|
---|
1067 | PIEMTB const paTbs = pTbAllocator->aChunks[idxChunk].paTbs;
|
---|
1068 | uint32_t idxTb = pTbAllocator->cTbsPerChunk;
|
---|
1069 | while (idxTb-- > 0)
|
---|
1070 | {
|
---|
1071 | PIEMTB const pTb = &paTbs[idxTb];
|
---|
1072 | if (pTb->fFlags)
|
---|
1073 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, idxTb);
|
---|
1074 | }
|
---|
1075 | }
|
---|
1076 |
|
---|
1077 | pVCpu->iem.s.ppTbLookupEntryR3 = &pVCpu->iem.s.pTbLookupEntryDummyR3;
|
---|
1078 |
|
---|
1079 | # if 1
|
---|
1080 | /* Reset the free list. */
|
---|
1081 | pTbAllocator->pTbsFreeHead = NULL;
|
---|
1082 | idxChunk = pTbAllocator->cAllocatedChunks;
|
---|
1083 | while (idxChunk-- > 0)
|
---|
1084 | {
|
---|
1085 | uint32_t const cTbsPerChunk = pTbAllocator->cTbsPerChunk;
|
---|
1086 | PIEMTB const paTbs = pTbAllocator->aChunks[idxChunk].paTbs;
|
---|
1087 | RT_BZERO(paTbs, sizeof(paTbs[0]) * cTbsPerChunk);
|
---|
1088 | for (uint32_t idxTb = 0; idxTb < cTbsPerChunk; idxTb++)
|
---|
1089 | {
|
---|
1090 | paTbs[idxTb].idxAllocChunk = idxChunk; /* This is not strictly necessary... */
|
---|
1091 | paTbs[idxTb].pNext = pTbAllocator->pTbsFreeHead;
|
---|
1092 | pTbAllocator->pTbsFreeHead = &paTbs[idxTb];
|
---|
1093 | }
|
---|
1094 | }
|
---|
1095 | # endif
|
---|
1096 |
|
---|
1097 | # if 1
|
---|
1098 | /* Completely reset the TB cache. */
|
---|
1099 | RT_BZERO(pVCpu->iem.s.pTbCacheR3->apHash, sizeof(pVCpu->iem.s.pTbCacheR3->apHash[0]) * pVCpu->iem.s.pTbCacheR3->cHash);
|
---|
1100 | # endif
|
---|
1101 |
|
---|
1102 | return VINF_SUCCESS;
|
---|
1103 | }
|
---|
1104 | #endif
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Grow the translation block allocator with another chunk.
|
---|
1109 | */
|
---|
1110 | static int iemTbAllocatorGrow(PVMCPUCC pVCpu)
|
---|
1111 | {
|
---|
1112 | /*
|
---|
1113 | * Validate state.
|
---|
1114 | */
|
---|
1115 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1116 | AssertReturn(pTbAllocator, VERR_WRONG_ORDER);
|
---|
1117 | AssertReturn(pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC, VERR_INVALID_MAGIC);
|
---|
1118 | uint32_t const idxChunk = pTbAllocator->cAllocatedChunks;
|
---|
1119 | AssertReturn(idxChunk < pTbAllocator->cMaxChunks, VERR_OUT_OF_RESOURCES);
|
---|
1120 |
|
---|
1121 | /*
|
---|
1122 | * Allocate a new chunk and add it to the allocator.
|
---|
1123 | */
|
---|
1124 | PIEMTB const paTbs = (PIEMTB)RTMemPageAllocZ(pTbAllocator->cbPerChunk);
|
---|
1125 | AssertLogRelReturn(paTbs, VERR_NO_PAGE_MEMORY);
|
---|
1126 | pTbAllocator->aChunks[idxChunk].paTbs = paTbs;
|
---|
1127 |
|
---|
1128 | uint32_t const cTbsPerChunk = pTbAllocator->cTbsPerChunk;
|
---|
1129 | for (uint32_t iTb = 0; iTb < cTbsPerChunk; iTb++)
|
---|
1130 | {
|
---|
1131 | paTbs[iTb].idxAllocChunk = idxChunk; /* This is not strictly necessary... */
|
---|
1132 | paTbs[iTb].pNext = pTbAllocator->pTbsFreeHead;
|
---|
1133 | pTbAllocator->pTbsFreeHead = &paTbs[iTb];
|
---|
1134 | }
|
---|
1135 | pTbAllocator->cAllocatedChunks = (uint16_t)(idxChunk + 1);
|
---|
1136 | pTbAllocator->cTotalTbs += cTbsPerChunk;
|
---|
1137 |
|
---|
1138 | return VINF_SUCCESS;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 |
|
---|
1142 | /**
|
---|
1143 | * Allocates a TB from allocator with free block.
|
---|
1144 | *
|
---|
1145 | * This is common code to both the fast and slow allocator code paths.
|
---|
1146 | */
|
---|
1147 | DECL_FORCE_INLINE(PIEMTB) iemTbAllocatorAllocCore(PIEMTBALLOCATOR const pTbAllocator, bool fThreaded)
|
---|
1148 | {
|
---|
1149 | Assert(pTbAllocator->cInUseTbs < pTbAllocator->cTotalTbs);
|
---|
1150 | Assert(pTbAllocator->pTbsFreeHead);
|
---|
1151 |
|
---|
1152 | PIEMTB const pTb = pTbAllocator->pTbsFreeHead;
|
---|
1153 | pTbAllocator->pTbsFreeHead = pTb->pNext;
|
---|
1154 | pTbAllocator->cInUseTbs += 1;
|
---|
1155 | if (fThreaded)
|
---|
1156 | pTbAllocator->cThreadedTbs += 1;
|
---|
1157 | else
|
---|
1158 | pTbAllocator->cNativeTbs += 1;
|
---|
1159 | STAM_REL_COUNTER_INC(&pTbAllocator->StatAllocs);
|
---|
1160 | return pTb;
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 |
|
---|
1164 | /**
|
---|
1165 | * Slow path for iemTbAllocatorAlloc.
|
---|
1166 | */
|
---|
1167 | static PIEMTB iemTbAllocatorAllocSlow(PVMCPUCC pVCpu, PIEMTBALLOCATOR const pTbAllocator, bool fThreaded)
|
---|
1168 | {
|
---|
1169 | /*
|
---|
1170 | * With some luck we can add another chunk.
|
---|
1171 | */
|
---|
1172 | if (pTbAllocator->cAllocatedChunks < pTbAllocator->cMaxChunks)
|
---|
1173 | {
|
---|
1174 | int rc = iemTbAllocatorGrow(pVCpu);
|
---|
1175 | if (RT_SUCCESS(rc))
|
---|
1176 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | /*
|
---|
1180 | * We have to prune stuff. Sigh.
|
---|
1181 | *
|
---|
1182 | * This requires scanning for older TBs and kick them out. Not sure how to
|
---|
1183 | * best do this as we don't want to maintain any list of TBs ordered by last
|
---|
1184 | * usage time. But one reasonably simple approach would be that each time we
|
---|
1185 | * get here we continue a sequential scan of the allocation chunks,
|
---|
1186 | * considering just a smallish number of TBs and freeing a fixed portion of
|
---|
1187 | * them. Say, we consider the next 128 TBs, freeing the least recently used
|
---|
1188 | * in out of groups of 4 TBs, resulting in 32 free TBs.
|
---|
1189 | */
|
---|
1190 | STAM_PROFILE_START(&pTbAllocator->StatPrune, a);
|
---|
1191 | uint32_t const msNow = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1192 | uint32_t const cTbsToPrune = 128;
|
---|
1193 | uint32_t const cTbsPerGroup = 4;
|
---|
1194 | uint32_t cFreedTbs = 0;
|
---|
1195 | #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
1196 | uint32_t idxTbPruneFrom = pTbAllocator->iPruneFrom & ~(uint32_t)(cTbsToPrune - 1); /* Stay within a chunk! */
|
---|
1197 | #else
|
---|
1198 | uint32_t idxTbPruneFrom = pTbAllocator->iPruneFrom;
|
---|
1199 | #endif
|
---|
1200 | if (idxTbPruneFrom >= pTbAllocator->cMaxTbs)
|
---|
1201 | idxTbPruneFrom = 0;
|
---|
1202 | for (uint32_t i = 0; i < cTbsToPrune; i += cTbsPerGroup, idxTbPruneFrom += cTbsPerGroup)
|
---|
1203 | {
|
---|
1204 | uint32_t idxChunk = IEMTBALLOC_IDX_TO_CHUNK(pTbAllocator, idxTbPruneFrom);
|
---|
1205 | uint32_t idxInChunk = IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(pTbAllocator, idxTbPruneFrom, idxChunk);
|
---|
1206 | PIEMTB pTb = &pTbAllocator->aChunks[idxChunk].paTbs[idxInChunk];
|
---|
1207 | uint32_t cMsAge = msNow - pTb->msLastUsed;
|
---|
1208 | Assert(pTb->fFlags & IEMTB_F_TYPE_MASK);
|
---|
1209 |
|
---|
1210 | for (uint32_t j = 1, idxChunk2 = idxChunk, idxInChunk2 = idxInChunk + 1; j < cTbsPerGroup; j++, idxInChunk2++)
|
---|
1211 | {
|
---|
1212 | #ifndef IEMTB_SIZE_IS_POWER_OF_TWO
|
---|
1213 | if (idxInChunk2 < pTbAllocator->cTbsPerChunk)
|
---|
1214 | { /* likely */ }
|
---|
1215 | else
|
---|
1216 | {
|
---|
1217 | idxInChunk2 = 0;
|
---|
1218 | idxChunk2 += 1;
|
---|
1219 | if (idxChunk2 >= pTbAllocator->cAllocatedChunks)
|
---|
1220 | idxChunk2 = 0;
|
---|
1221 | }
|
---|
1222 | #endif
|
---|
1223 | PIEMTB const pTb2 = &pTbAllocator->aChunks[idxChunk2].paTbs[idxInChunk2];
|
---|
1224 | uint32_t const cMsAge2 = msNow - pTb2->msLastUsed;
|
---|
1225 | if ( cMsAge2 > cMsAge
|
---|
1226 | || (cMsAge2 == cMsAge && pTb2->cUsed < pTb->cUsed))
|
---|
1227 | {
|
---|
1228 | Assert(pTb2->fFlags & IEMTB_F_TYPE_MASK);
|
---|
1229 | pTb = pTb2;
|
---|
1230 | idxChunk = idxChunk2;
|
---|
1231 | idxInChunk = idxInChunk2;
|
---|
1232 | cMsAge = cMsAge2;
|
---|
1233 | }
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | /* Free the TB. */
|
---|
1237 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, idxInChunk);
|
---|
1238 | cFreedTbs++; /* paranoia */
|
---|
1239 | }
|
---|
1240 | pTbAllocator->iPruneFrom = idxTbPruneFrom;
|
---|
1241 | STAM_PROFILE_STOP(&pTbAllocator->StatPrune, a);
|
---|
1242 |
|
---|
1243 | /* Flush the TB lookup entry pointer. */
|
---|
1244 | pVCpu->iem.s.ppTbLookupEntryR3 = &pVCpu->iem.s.pTbLookupEntryDummyR3;
|
---|
1245 |
|
---|
1246 | /*
|
---|
1247 | * Allocate a TB from the ones we've pruned.
|
---|
1248 | */
|
---|
1249 | if (cFreedTbs)
|
---|
1250 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1251 | return NULL;
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 |
|
---|
1255 | /**
|
---|
1256 | * Allocate a translation block.
|
---|
1257 | *
|
---|
1258 | * @returns Pointer to block on success, NULL if we're out and is unable to
|
---|
1259 | * free up an existing one (very unlikely once implemented).
|
---|
1260 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1261 | * thread.
|
---|
1262 | * @param fThreaded Set if threaded TB being allocated, clear if native TB.
|
---|
1263 | * For statistics.
|
---|
1264 | */
|
---|
1265 | DECL_FORCE_INLINE(PIEMTB) iemTbAllocatorAlloc(PVMCPUCC pVCpu, bool fThreaded)
|
---|
1266 | {
|
---|
1267 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1268 | Assert(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
1269 |
|
---|
1270 | /* Free any pending TBs before we proceed. */
|
---|
1271 | if (!pTbAllocator->pDelayedFreeHead)
|
---|
1272 | { /* probably likely */ }
|
---|
1273 | else
|
---|
1274 | iemTbAllocatorProcessDelayedFrees(pVCpu, pTbAllocator);
|
---|
1275 |
|
---|
1276 | /* If the allocator is full, take slow code path.*/
|
---|
1277 | if (RT_LIKELY(pTbAllocator->cInUseTbs < pTbAllocator->cTotalTbs))
|
---|
1278 | return iemTbAllocatorAllocCore(pTbAllocator, fThreaded);
|
---|
1279 | return iemTbAllocatorAllocSlow(pVCpu, pTbAllocator, fThreaded);
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 |
|
---|
1283 | /**
|
---|
1284 | * This is called when we're out of space for native TBs.
|
---|
1285 | *
|
---|
1286 | * This uses a variation on the pruning in iemTbAllocatorAllocSlow.
|
---|
1287 | * The difference is that we only prune native TBs and will only free any if
|
---|
1288 | * there are least two in a group. The conditions under which we're called are
|
---|
1289 | * different - there will probably be free TBs in the table when we're called.
|
---|
1290 | * Therefore we increase the group size and max scan length, though we'll stop
|
---|
1291 | * scanning once we've reached the requested size (@a cNeededInstrs) and freed
|
---|
1292 | * up at least 8 TBs.
|
---|
1293 | */
|
---|
1294 | void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs)
|
---|
1295 | {
|
---|
1296 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
1297 | AssertReturnVoid(pTbAllocator && pTbAllocator->uMagic == IEMTBALLOCATOR_MAGIC);
|
---|
1298 |
|
---|
1299 | STAM_REL_PROFILE_START(&pTbAllocator->StatPruneNative, a);
|
---|
1300 |
|
---|
1301 | /*
|
---|
1302 | * Flush the delayed free list before we start freeing TBs indiscriminately.
|
---|
1303 | */
|
---|
1304 | iemTbAllocatorProcessDelayedFrees(pVCpu, pTbAllocator);
|
---|
1305 |
|
---|
1306 | /*
|
---|
1307 | * Scan and free TBs.
|
---|
1308 | */
|
---|
1309 | uint32_t const msNow = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1310 | uint32_t const cTbsToPrune = 128 * 8;
|
---|
1311 | uint32_t const cTbsPerGroup = 4 * 4;
|
---|
1312 | uint32_t cFreedTbs = 0;
|
---|
1313 | uint32_t cMaxInstrs = 0;
|
---|
1314 | uint32_t idxTbPruneFrom = pTbAllocator->iPruneNativeFrom & ~(uint32_t)(cTbsPerGroup - 1);
|
---|
1315 | for (uint32_t i = 0; i < cTbsToPrune; i += cTbsPerGroup, idxTbPruneFrom += cTbsPerGroup)
|
---|
1316 | {
|
---|
1317 | if (idxTbPruneFrom >= pTbAllocator->cTotalTbs)
|
---|
1318 | idxTbPruneFrom = 0;
|
---|
1319 | uint32_t idxChunk = IEMTBALLOC_IDX_TO_CHUNK(pTbAllocator, idxTbPruneFrom);
|
---|
1320 | uint32_t idxInChunk = IEMTBALLOC_IDX_TO_INDEX_IN_CHUNK(pTbAllocator, idxTbPruneFrom, idxChunk);
|
---|
1321 | PIEMTB pTb = &pTbAllocator->aChunks[idxChunk].paTbs[idxInChunk];
|
---|
1322 | uint32_t cMsAge = pTb->fFlags & IEMTB_F_TYPE_NATIVE ? msNow - pTb->msLastUsed : msNow;
|
---|
1323 | uint8_t cNativeTbs = (pTb->fFlags & IEMTB_F_TYPE_NATIVE) != 0;
|
---|
1324 |
|
---|
1325 | for (uint32_t j = 1, idxChunk2 = idxChunk, idxInChunk2 = idxInChunk + 1; j < cTbsPerGroup; j++, idxInChunk2++)
|
---|
1326 | {
|
---|
1327 | if (idxInChunk2 < pTbAllocator->cTbsPerChunk)
|
---|
1328 | { /* likely */ }
|
---|
1329 | else
|
---|
1330 | {
|
---|
1331 | idxInChunk2 = 0;
|
---|
1332 | idxChunk2 += 1;
|
---|
1333 | if (idxChunk2 >= pTbAllocator->cAllocatedChunks)
|
---|
1334 | idxChunk2 = 0;
|
---|
1335 | }
|
---|
1336 | PIEMTB const pTb2 = &pTbAllocator->aChunks[idxChunk2].paTbs[idxInChunk2];
|
---|
1337 | if (pTb2->fFlags & IEMTB_F_TYPE_NATIVE)
|
---|
1338 | {
|
---|
1339 | cNativeTbs += 1;
|
---|
1340 | uint32_t const cMsAge2 = msNow - pTb2->msLastUsed;
|
---|
1341 | if ( cMsAge2 > cMsAge
|
---|
1342 | || ( cMsAge2 == cMsAge
|
---|
1343 | && ( pTb2->cUsed < pTb->cUsed
|
---|
1344 | || ( pTb2->cUsed == pTb->cUsed
|
---|
1345 | && pTb2->Native.cInstructions > pTb->Native.cInstructions)))
|
---|
1346 | || !(pTb->fFlags & IEMTB_F_TYPE_NATIVE))
|
---|
1347 | {
|
---|
1348 | pTb = pTb2;
|
---|
1349 | idxChunk = idxChunk2;
|
---|
1350 | idxInChunk = idxInChunk2;
|
---|
1351 | cMsAge = cMsAge2;
|
---|
1352 | }
|
---|
1353 | }
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /* Free the TB if we found at least two native one in this group. */
|
---|
1357 | if (cNativeTbs >= 2)
|
---|
1358 | {
|
---|
1359 | cMaxInstrs = RT_MAX(cMaxInstrs, pTb->Native.cInstructions);
|
---|
1360 | iemTbAllocatorFreeInner(pVCpu, pTbAllocator, pTb, idxChunk, idxInChunk);
|
---|
1361 | cFreedTbs++;
|
---|
1362 | if (cFreedTbs >= 8 && cMaxInstrs >= cNeededInstrs)
|
---|
1363 | break;
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 | pTbAllocator->iPruneNativeFrom = idxTbPruneFrom;
|
---|
1367 |
|
---|
1368 | STAM_REL_PROFILE_STOP(&pTbAllocator->StatPruneNative, a);
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 |
|
---|
1372 | /*********************************************************************************************************************************
|
---|
1373 | * Threaded Recompiler Core *
|
---|
1374 | *********************************************************************************************************************************/
|
---|
1375 | /**
|
---|
1376 | * Formats TB flags (IEM_F_XXX and IEMTB_F_XXX) to string.
|
---|
1377 | * @returns pszBuf.
|
---|
1378 | * @param fFlags The flags.
|
---|
1379 | * @param pszBuf The output buffer.
|
---|
1380 | * @param cbBuf The output buffer size. At least 32 bytes.
|
---|
1381 | */
|
---|
1382 | DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT
|
---|
1383 | {
|
---|
1384 | Assert(cbBuf >= 32);
|
---|
1385 | static RTSTRTUPLE const s_aModes[] =
|
---|
1386 | {
|
---|
1387 | /* [00] = */ { RT_STR_TUPLE("16BIT") },
|
---|
1388 | /* [01] = */ { RT_STR_TUPLE("32BIT") },
|
---|
1389 | /* [02] = */ { RT_STR_TUPLE("!2!") },
|
---|
1390 | /* [03] = */ { RT_STR_TUPLE("!3!") },
|
---|
1391 | /* [04] = */ { RT_STR_TUPLE("16BIT_PRE_386") },
|
---|
1392 | /* [05] = */ { RT_STR_TUPLE("32BIT_FLAT") },
|
---|
1393 | /* [06] = */ { RT_STR_TUPLE("!6!") },
|
---|
1394 | /* [07] = */ { RT_STR_TUPLE("!7!") },
|
---|
1395 | /* [08] = */ { RT_STR_TUPLE("16BIT_PROT") },
|
---|
1396 | /* [09] = */ { RT_STR_TUPLE("32BIT_PROT") },
|
---|
1397 | /* [0a] = */ { RT_STR_TUPLE("64BIT") },
|
---|
1398 | /* [0b] = */ { RT_STR_TUPLE("!b!") },
|
---|
1399 | /* [0c] = */ { RT_STR_TUPLE("16BIT_PROT_PRE_386") },
|
---|
1400 | /* [0d] = */ { RT_STR_TUPLE("32BIT_PROT_FLAT") },
|
---|
1401 | /* [0e] = */ { RT_STR_TUPLE("!e!") },
|
---|
1402 | /* [0f] = */ { RT_STR_TUPLE("!f!") },
|
---|
1403 | /* [10] = */ { RT_STR_TUPLE("!10!") },
|
---|
1404 | /* [11] = */ { RT_STR_TUPLE("!11!") },
|
---|
1405 | /* [12] = */ { RT_STR_TUPLE("!12!") },
|
---|
1406 | /* [13] = */ { RT_STR_TUPLE("!13!") },
|
---|
1407 | /* [14] = */ { RT_STR_TUPLE("!14!") },
|
---|
1408 | /* [15] = */ { RT_STR_TUPLE("!15!") },
|
---|
1409 | /* [16] = */ { RT_STR_TUPLE("!16!") },
|
---|
1410 | /* [17] = */ { RT_STR_TUPLE("!17!") },
|
---|
1411 | /* [18] = */ { RT_STR_TUPLE("16BIT_PROT_V86") },
|
---|
1412 | /* [19] = */ { RT_STR_TUPLE("32BIT_PROT_V86") },
|
---|
1413 | /* [1a] = */ { RT_STR_TUPLE("!1a!") },
|
---|
1414 | /* [1b] = */ { RT_STR_TUPLE("!1b!") },
|
---|
1415 | /* [1c] = */ { RT_STR_TUPLE("!1c!") },
|
---|
1416 | /* [1d] = */ { RT_STR_TUPLE("!1d!") },
|
---|
1417 | /* [1e] = */ { RT_STR_TUPLE("!1e!") },
|
---|
1418 | /* [1f] = */ { RT_STR_TUPLE("!1f!") },
|
---|
1419 | };
|
---|
1420 | AssertCompile(RT_ELEMENTS(s_aModes) == IEM_F_MODE_MASK + 1);
|
---|
1421 | memcpy(pszBuf, s_aModes[fFlags & IEM_F_MODE_MASK].psz, s_aModes[fFlags & IEM_F_MODE_MASK].cch);
|
---|
1422 | size_t off = s_aModes[fFlags & IEM_F_MODE_MASK].cch;
|
---|
1423 |
|
---|
1424 | pszBuf[off++] = ' ';
|
---|
1425 | pszBuf[off++] = 'C';
|
---|
1426 | pszBuf[off++] = 'P';
|
---|
1427 | pszBuf[off++] = 'L';
|
---|
1428 | pszBuf[off++] = '0' + ((fFlags >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK);
|
---|
1429 | Assert(off < 32);
|
---|
1430 |
|
---|
1431 | fFlags &= ~(IEM_F_MODE_MASK | IEM_F_X86_CPL_SMASK);
|
---|
1432 |
|
---|
1433 | static struct { const char *pszName; uint32_t cchName; uint32_t fFlag; } const s_aFlags[] =
|
---|
1434 | {
|
---|
1435 | { RT_STR_TUPLE("BYPASS_HANDLERS"), IEM_F_BYPASS_HANDLERS },
|
---|
1436 | { RT_STR_TUPLE("PENDING_BRK_INSTR"), IEM_F_PENDING_BRK_INSTR },
|
---|
1437 | { RT_STR_TUPLE("PENDING_BRK_DATA"), IEM_F_PENDING_BRK_DATA },
|
---|
1438 | { RT_STR_TUPLE("PENDING_BRK_X86_IO"), IEM_F_PENDING_BRK_X86_IO },
|
---|
1439 | { RT_STR_TUPLE("X86_DISREGARD_LOCK"), IEM_F_X86_DISREGARD_LOCK },
|
---|
1440 | { RT_STR_TUPLE("X86_CTX_VMX"), IEM_F_X86_CTX_VMX },
|
---|
1441 | { RT_STR_TUPLE("X86_CTX_SVM"), IEM_F_X86_CTX_SVM },
|
---|
1442 | { RT_STR_TUPLE("X86_CTX_IN_GUEST"), IEM_F_X86_CTX_IN_GUEST },
|
---|
1443 | { RT_STR_TUPLE("X86_CTX_SMM"), IEM_F_X86_CTX_SMM },
|
---|
1444 | { RT_STR_TUPLE("INHIBIT_SHADOW"), IEMTB_F_INHIBIT_SHADOW },
|
---|
1445 | { RT_STR_TUPLE("INHIBIT_NMI"), IEMTB_F_INHIBIT_NMI },
|
---|
1446 | { RT_STR_TUPLE("CS_LIM_CHECKS"), IEMTB_F_CS_LIM_CHECKS },
|
---|
1447 | { RT_STR_TUPLE("TYPE_THREADED"), IEMTB_F_TYPE_THREADED },
|
---|
1448 | { RT_STR_TUPLE("TYPE_NATIVE"), IEMTB_F_TYPE_NATIVE },
|
---|
1449 | };
|
---|
1450 | if (fFlags)
|
---|
1451 | for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
1452 | if (s_aFlags[i].fFlag & fFlags)
|
---|
1453 | {
|
---|
1454 | AssertReturnStmt(off + 1 + s_aFlags[i].cchName + 1 <= cbBuf, pszBuf[off] = '\0', pszBuf);
|
---|
1455 | pszBuf[off++] = ' ';
|
---|
1456 | memcpy(&pszBuf[off], s_aFlags[i].pszName, s_aFlags[i].cchName);
|
---|
1457 | off += s_aFlags[i].cchName;
|
---|
1458 | fFlags &= ~s_aFlags[i].fFlag;
|
---|
1459 | if (!fFlags)
|
---|
1460 | break;
|
---|
1461 | }
|
---|
1462 | pszBuf[off] = '\0';
|
---|
1463 |
|
---|
1464 | return pszBuf;
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 |
|
---|
1468 | /** @callback_method_impl{FNDISREADBYTES, Dummy.} */
|
---|
1469 | static DECLCALLBACK(int) iemThreadedDisasReadBytesDummy(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
|
---|
1470 | {
|
---|
1471 | RT_BZERO(&pDis->Instr.ab[offInstr], cbMaxRead);
|
---|
1472 | pDis->cbCachedInstr += cbMaxRead;
|
---|
1473 | RT_NOREF(cbMinRead);
|
---|
1474 | return VERR_NO_DATA;
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | /**
|
---|
1479 | * Worker for iemThreadedDisassembleTb.
|
---|
1480 | */
|
---|
1481 | static void iemThreadedDumpLookupTable(PCIEMTB pTb, PCDBGFINFOHLP pHlp, unsigned idxFirst, unsigned cEntries,
|
---|
1482 | const char *pszLeadText = " TB Lookup:") RT_NOEXCEPT
|
---|
1483 | {
|
---|
1484 | if (idxFirst + cEntries <= pTb->cTbLookupEntries)
|
---|
1485 | {
|
---|
1486 | PIEMTB * const papTbLookup = IEMTB_GET_TB_LOOKUP_TAB_ENTRY(pTb, idxFirst);
|
---|
1487 | pHlp->pfnPrintf(pHlp, "%s", pszLeadText);
|
---|
1488 | for (uint8_t iLookup = 0; iLookup < cEntries; iLookup++)
|
---|
1489 | {
|
---|
1490 | PIEMTB pLookupTb = papTbLookup[iLookup];
|
---|
1491 | if (pLookupTb)
|
---|
1492 | pHlp->pfnPrintf(pHlp, "%c%p (%s)", iLookup ? ',' : ' ', pLookupTb,
|
---|
1493 | (pLookupTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_THREADED ? "threaded"
|
---|
1494 | : (pLookupTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE ? "native"
|
---|
1495 | : "invalid");
|
---|
1496 | else
|
---|
1497 | pHlp->pfnPrintf(pHlp, "%cNULL", iLookup ? ',' : ' ');
|
---|
1498 | }
|
---|
1499 | pHlp->pfnPrintf(pHlp, "\n");
|
---|
1500 | }
|
---|
1501 | else
|
---|
1502 | {
|
---|
1503 | pHlp->pfnPrintf(pHlp, " !!Bogus TB lookup info: idxFirst=%#x L %u > cTbLookupEntries=%#x!!\n",
|
---|
1504 | idxFirst, cEntries, pTb->cTbLookupEntries);
|
---|
1505 | AssertMsgFailed(("idxFirst=%#x L %u > cTbLookupEntries=%#x\n", idxFirst, cEntries, pTb->cTbLookupEntries));
|
---|
1506 | }
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 |
|
---|
1510 | DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT
|
---|
1511 | {
|
---|
1512 | AssertReturnVoid((pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_THREADED);
|
---|
1513 |
|
---|
1514 | char szDisBuf[512];
|
---|
1515 |
|
---|
1516 | /*
|
---|
1517 | * Print TB info.
|
---|
1518 | */
|
---|
1519 | pHlp->pfnPrintf(pHlp,
|
---|
1520 | "pTb=%p: GCPhysPc=%RGp (%RGv) cInstructions=%u LB %#x cRanges=%u cTbLookupEntries=%u\n"
|
---|
1521 | "pTb=%p: cUsed=%u msLastUsed=%u fFlags=%#010x %s\n",
|
---|
1522 | pTb, pTb->GCPhysPc, pTb->FlatPc, pTb->cInstructions, pTb->cbOpcodes, pTb->cRanges, pTb->cTbLookupEntries,
|
---|
1523 | pTb, pTb->cUsed, pTb->msLastUsed, pTb->fFlags, iemTbFlagsToString(pTb->fFlags, szDisBuf, sizeof(szDisBuf)));
|
---|
1524 |
|
---|
1525 | /*
|
---|
1526 | * This disassembly is driven by the debug info which follows the native
|
---|
1527 | * code and indicates when it starts with the next guest instructions,
|
---|
1528 | * where labels are and such things.
|
---|
1529 | */
|
---|
1530 | DISSTATE Dis;
|
---|
1531 | PCIEMTHRDEDCALLENTRY const paCalls = pTb->Thrd.paCalls;
|
---|
1532 | uint32_t const cCalls = pTb->Thrd.cCalls;
|
---|
1533 | DISCPUMODE enmGstCpuMode = (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT ? DISCPUMODE_16BIT
|
---|
1534 | : (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT ? DISCPUMODE_32BIT
|
---|
1535 | : DISCPUMODE_64BIT;
|
---|
1536 | uint32_t fExec = pTb->fFlags & UINT32_C(0x00ffffff);
|
---|
1537 | uint8_t idxRange = UINT8_MAX;
|
---|
1538 | uint8_t const cRanges = RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges));
|
---|
1539 | uint32_t offRange = 0;
|
---|
1540 | uint32_t offOpcodes = 0;
|
---|
1541 | uint32_t const cbOpcodes = pTb->cbOpcodes;
|
---|
1542 | RTGCPHYS GCPhysPc = pTb->GCPhysPc;
|
---|
1543 | bool fTbLookupSeen0 = false;
|
---|
1544 |
|
---|
1545 | for (uint32_t iCall = 0; iCall < cCalls; iCall++)
|
---|
1546 | {
|
---|
1547 | /*
|
---|
1548 | * New opcode range?
|
---|
1549 | */
|
---|
1550 | if ( idxRange == UINT8_MAX
|
---|
1551 | || idxRange >= cRanges
|
---|
1552 | || offRange >= pTb->aRanges[idxRange].cbOpcodes)
|
---|
1553 | {
|
---|
1554 | idxRange += 1;
|
---|
1555 | if (idxRange < cRanges)
|
---|
1556 | offRange = !idxRange ? 0 : offRange - pTb->aRanges[idxRange - 1].cbOpcodes;
|
---|
1557 | else
|
---|
1558 | continue;
|
---|
1559 | GCPhysPc = pTb->aRanges[idxRange].offPhysPage
|
---|
1560 | + (pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
1561 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
1562 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]);
|
---|
1563 | pHlp->pfnPrintf(pHlp, " Range #%u: GCPhysPc=%RGp LB %#x [idxPg=%d]\n",
|
---|
1564 | idxRange, GCPhysPc, pTb->aRanges[idxRange].cbOpcodes,
|
---|
1565 | pTb->aRanges[idxRange].idxPhysPage);
|
---|
1566 | GCPhysPc += offRange;
|
---|
1567 | }
|
---|
1568 |
|
---|
1569 | /*
|
---|
1570 | * Disassemble another guest instruction?
|
---|
1571 | */
|
---|
1572 | if ( paCalls[iCall].offOpcode != offOpcodes
|
---|
1573 | && paCalls[iCall].cbOpcode > 0
|
---|
1574 | && (uint32_t)(cbOpcodes - paCalls[iCall].offOpcode) <= cbOpcodes /* paranoia^2 */ )
|
---|
1575 | {
|
---|
1576 | offOpcodes = paCalls[iCall].offOpcode;
|
---|
1577 | uint8_t const cbInstrMax = RT_MIN(cbOpcodes - offOpcodes, 15);
|
---|
1578 | uint32_t cbInstr = 1;
|
---|
1579 | int rc = DISInstrWithPrefetchedBytes(GCPhysPc, enmGstCpuMode, DISOPTYPE_ALL,
|
---|
1580 | &pTb->pabOpcodes[offOpcodes], cbInstrMax,
|
---|
1581 | iemThreadedDisasReadBytesDummy, NULL, &Dis, &cbInstr);
|
---|
1582 | if (RT_SUCCESS(rc))
|
---|
1583 | {
|
---|
1584 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
1585 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
1586 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
1587 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
1588 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %s\n", GCPhysPc, szDisBuf);
|
---|
1589 | }
|
---|
1590 | else
|
---|
1591 | {
|
---|
1592 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %.*Rhxs - guest disassembly failure %Rrc\n",
|
---|
1593 | GCPhysPc, cbInstrMax, &pTb->pabOpcodes[offOpcodes], rc);
|
---|
1594 | cbInstr = paCalls[iCall].cbOpcode;
|
---|
1595 | }
|
---|
1596 | GCPhysPc += cbInstr;
|
---|
1597 | offRange += cbInstr;
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 | /*
|
---|
1601 | * Dump call details.
|
---|
1602 | */
|
---|
1603 | pHlp->pfnPrintf(pHlp,
|
---|
1604 | " Call #%u to %s (%u args)\n",
|
---|
1605 | iCall, g_apszIemThreadedFunctions[paCalls[iCall].enmFunction],
|
---|
1606 | g_acIemThreadedFunctionUsedArgs[paCalls[iCall].enmFunction]);
|
---|
1607 | if (paCalls[iCall].uTbLookup != 0)
|
---|
1608 | {
|
---|
1609 | uint8_t const idxFirst = IEM_TB_LOOKUP_TAB_GET_IDX(paCalls[iCall].uTbLookup);
|
---|
1610 | fTbLookupSeen0 = idxFirst == 0;
|
---|
1611 | iemThreadedDumpLookupTable(pTb, pHlp, idxFirst, IEM_TB_LOOKUP_TAB_GET_SIZE(paCalls[iCall].uTbLookup));
|
---|
1612 | }
|
---|
1613 |
|
---|
1614 | /*
|
---|
1615 | * Snoop fExec.
|
---|
1616 | */
|
---|
1617 | switch (paCalls[iCall].enmFunction)
|
---|
1618 | {
|
---|
1619 | default:
|
---|
1620 | break;
|
---|
1621 | case kIemThreadedFunc_BltIn_CheckMode:
|
---|
1622 | fExec = paCalls[iCall].auParams[0];
|
---|
1623 | break;
|
---|
1624 | }
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 | if (!fTbLookupSeen0)
|
---|
1628 | iemThreadedDumpLookupTable(pTb, pHlp, 0, 1, " Fallback TB Lookup:");
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 |
|
---|
1632 |
|
---|
1633 | /**
|
---|
1634 | * Allocate a translation block for threadeded recompilation.
|
---|
1635 | *
|
---|
1636 | * This is allocated with maxed out call table and storage for opcode bytes,
|
---|
1637 | * because it's only supposed to be called once per EMT to allocate the TB
|
---|
1638 | * pointed to by IEMCPU::pThrdCompileTbR3.
|
---|
1639 | *
|
---|
1640 | * @returns Pointer to the translation block on success, NULL on failure.
|
---|
1641 | * @param pVM The cross context virtual machine structure.
|
---|
1642 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1643 | * thread.
|
---|
1644 | * @param GCPhysPc The physical address corresponding to RIP + CS.BASE.
|
---|
1645 | * @param fExtraFlags Extra flags (IEMTB_F_XXX).
|
---|
1646 | */
|
---|
1647 | static PIEMTB iemThreadedTbAlloc(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
1648 | {
|
---|
1649 | PIEMTB pTb = (PIEMTB)RTMemAllocZ(sizeof(IEMTB));
|
---|
1650 | if (pTb)
|
---|
1651 | {
|
---|
1652 | unsigned const cCalls = 256;
|
---|
1653 | pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemAlloc(sizeof(IEMTHRDEDCALLENTRY) * cCalls);
|
---|
1654 | if (pTb->Thrd.paCalls)
|
---|
1655 | {
|
---|
1656 | pTb->pabOpcodes = (uint8_t *)RTMemAlloc(cCalls * 16);
|
---|
1657 | if (pTb->pabOpcodes)
|
---|
1658 | {
|
---|
1659 | pVCpu->iem.s.cbOpcodesAllocated = cCalls * 16;
|
---|
1660 | pTb->Thrd.cAllocated = cCalls;
|
---|
1661 | pTb->Thrd.cCalls = 0;
|
---|
1662 | pTb->cbOpcodes = 0;
|
---|
1663 | pTb->pNext = NULL;
|
---|
1664 | pTb->cUsed = 0;
|
---|
1665 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1666 | pTb->idxAllocChunk = UINT8_MAX;
|
---|
1667 | pTb->GCPhysPc = GCPhysPc;
|
---|
1668 | pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u;
|
---|
1669 | pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags;
|
---|
1670 | pTb->cInstructions = 0;
|
---|
1671 | pTb->cTbLookupEntries = 1; /* Entry zero is for anything w/o a specific entry. */
|
---|
1672 |
|
---|
1673 | /* Init the first opcode range. */
|
---|
1674 | pTb->cRanges = 1;
|
---|
1675 | pTb->aRanges[0].cbOpcodes = 0;
|
---|
1676 | pTb->aRanges[0].offOpcodes = 0;
|
---|
1677 | pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK;
|
---|
1678 | pTb->aRanges[0].u2Unused = 0;
|
---|
1679 | pTb->aRanges[0].idxPhysPage = 0;
|
---|
1680 | pTb->aGCPhysPages[0] = NIL_RTGCPHYS;
|
---|
1681 | pTb->aGCPhysPages[1] = NIL_RTGCPHYS;
|
---|
1682 |
|
---|
1683 | return pTb;
|
---|
1684 | }
|
---|
1685 | RTMemFree(pTb->Thrd.paCalls);
|
---|
1686 | }
|
---|
1687 | RTMemFree(pTb);
|
---|
1688 | }
|
---|
1689 | RT_NOREF(pVM);
|
---|
1690 | return NULL;
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 |
|
---|
1694 | /**
|
---|
1695 | * Called on the TB that are dedicated for recompilation before it's reused.
|
---|
1696 | *
|
---|
1697 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1698 | * thread.
|
---|
1699 | * @param pTb The translation block to reuse.
|
---|
1700 | * @param GCPhysPc The physical address corresponding to RIP + CS.BASE.
|
---|
1701 | * @param fExtraFlags Extra flags (IEMTB_F_XXX).
|
---|
1702 | */
|
---|
1703 | static void iemThreadedTbReuse(PVMCPUCC pVCpu, PIEMTB pTb, RTGCPHYS GCPhysPc, uint32_t fExtraFlags)
|
---|
1704 | {
|
---|
1705 | pTb->GCPhysPc = GCPhysPc;
|
---|
1706 | pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags;
|
---|
1707 | pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u;
|
---|
1708 | pTb->Thrd.cCalls = 0;
|
---|
1709 | pTb->cbOpcodes = 0;
|
---|
1710 | pTb->cInstructions = 0;
|
---|
1711 | pTb->cTbLookupEntries = 1; /* Entry zero is for anything w/o a specific entry. */
|
---|
1712 |
|
---|
1713 | /* Init the first opcode range. */
|
---|
1714 | pTb->cRanges = 1;
|
---|
1715 | pTb->aRanges[0].cbOpcodes = 0;
|
---|
1716 | pTb->aRanges[0].offOpcodes = 0;
|
---|
1717 | pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK;
|
---|
1718 | pTb->aRanges[0].u2Unused = 0;
|
---|
1719 | pTb->aRanges[0].idxPhysPage = 0;
|
---|
1720 | pTb->aGCPhysPages[0] = NIL_RTGCPHYS;
|
---|
1721 | pTb->aGCPhysPages[1] = NIL_RTGCPHYS;
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 |
|
---|
1725 | /**
|
---|
1726 | * Used to duplicate a threded translation block after recompilation is done.
|
---|
1727 | *
|
---|
1728 | * @returns Pointer to the translation block on success, NULL on failure.
|
---|
1729 | * @param pVM The cross context virtual machine structure.
|
---|
1730 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1731 | * thread.
|
---|
1732 | * @param pTbSrc The TB to duplicate.
|
---|
1733 | */
|
---|
1734 | static PIEMTB iemThreadedTbDuplicate(PVMCC pVM, PVMCPUCC pVCpu, PCIEMTB pTbSrc)
|
---|
1735 | {
|
---|
1736 | /*
|
---|
1737 | * Just using the heap for now. Will make this more efficient and
|
---|
1738 | * complicated later, don't worry. :-)
|
---|
1739 | */
|
---|
1740 | PIEMTB pTb = iemTbAllocatorAlloc(pVCpu, true /*fThreaded*/);
|
---|
1741 | if (pTb)
|
---|
1742 | {
|
---|
1743 | uint8_t const idxAllocChunk = pTb->idxAllocChunk;
|
---|
1744 | memcpy(pTb, pTbSrc, sizeof(*pTb));
|
---|
1745 | pTb->idxAllocChunk = idxAllocChunk;
|
---|
1746 |
|
---|
1747 | unsigned const cCalls = pTbSrc->Thrd.cCalls;
|
---|
1748 | Assert(cCalls > 0);
|
---|
1749 | pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemDup(pTbSrc->Thrd.paCalls, sizeof(IEMTHRDEDCALLENTRY) * cCalls);
|
---|
1750 | if (pTb->Thrd.paCalls)
|
---|
1751 | {
|
---|
1752 | size_t const cbTbLookup = pTbSrc->cTbLookupEntries * sizeof(PIEMTB);
|
---|
1753 | Assert(cbTbLookup > 0);
|
---|
1754 | size_t const cbOpcodes = pTbSrc->cbOpcodes;
|
---|
1755 | Assert(cbOpcodes > 0);
|
---|
1756 | size_t const cbBoth = cbTbLookup + RT_ALIGN_Z(cbOpcodes, sizeof(PIEMTB));
|
---|
1757 | uint8_t * const pbBoth = (uint8_t *)RTMemAlloc(cbBoth);
|
---|
1758 | if (pbBoth)
|
---|
1759 | {
|
---|
1760 | RT_BZERO(pbBoth, cbTbLookup);
|
---|
1761 | pTb->pabOpcodes = (uint8_t *)memcpy(&pbBoth[cbTbLookup], pTbSrc->pabOpcodes, cbOpcodes);
|
---|
1762 | pTb->Thrd.cAllocated = cCalls;
|
---|
1763 | pTb->pNext = NULL;
|
---|
1764 | pTb->cUsed = 0;
|
---|
1765 | pTb->msLastUsed = pVCpu->iem.s.msRecompilerPollNow;
|
---|
1766 | pTb->fFlags = pTbSrc->fFlags;
|
---|
1767 |
|
---|
1768 | return pTb;
|
---|
1769 | }
|
---|
1770 | RTMemFree(pTb->Thrd.paCalls);
|
---|
1771 | }
|
---|
1772 | iemTbAllocatorFree(pVCpu, pTb);
|
---|
1773 | }
|
---|
1774 | RT_NOREF(pVM);
|
---|
1775 | return NULL;
|
---|
1776 |
|
---|
1777 | }
|
---|
1778 |
|
---|
1779 |
|
---|
1780 | /**
|
---|
1781 | * Adds the given TB to the hash table.
|
---|
1782 | *
|
---|
1783 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1784 | * thread.
|
---|
1785 | * @param pTbCache The cache to add it to.
|
---|
1786 | * @param pTb The translation block to add.
|
---|
1787 | */
|
---|
1788 | static void iemThreadedTbAdd(PVMCPUCC pVCpu, PIEMTBCACHE pTbCache, PIEMTB pTb)
|
---|
1789 | {
|
---|
1790 | iemTbCacheAdd(pVCpu, pTbCache, pTb);
|
---|
1791 |
|
---|
1792 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbInstr, pTb->cInstructions);
|
---|
1793 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbLookupEntries, pTb->cTbLookupEntries);
|
---|
1794 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedCalls, pTb->Thrd.cCalls);
|
---|
1795 | if (LogIs12Enabled())
|
---|
1796 | {
|
---|
1797 | Log12(("TB added: %p %RGp LB %#x fl=%#x idxHash=%#x cRanges=%u cInstr=%u cCalls=%u\n",
|
---|
1798 | pTb, pTb->GCPhysPc, pTb->cbOpcodes, pTb->fFlags, IEMTBCACHE_HASH(pTbCache, pTb->fFlags, pTb->GCPhysPc),
|
---|
1799 | pTb->cRanges, pTb->cInstructions, pTb->Thrd.cCalls));
|
---|
1800 | for (uint8_t idxRange = 0; idxRange < pTb->cRanges; idxRange++)
|
---|
1801 | Log12((" range#%u: offPg=%#05x offOp=%#04x LB %#04x pg#%u=%RGp\n", idxRange, pTb->aRanges[idxRange].offPhysPage,
|
---|
1802 | pTb->aRanges[idxRange].offOpcodes, pTb->aRanges[idxRange].cbOpcodes, pTb->aRanges[idxRange].idxPhysPage,
|
---|
1803 | pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
1804 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
1805 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]));
|
---|
1806 | }
|
---|
1807 | }
|
---|
1808 |
|
---|
1809 |
|
---|
1810 | /**
|
---|
1811 | * Called by opcode verifier functions when they detect a problem.
|
---|
1812 | */
|
---|
1813 | void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree)
|
---|
1814 | {
|
---|
1815 | /* We cannot free the current TB (indicated by fSafeToFree) because:
|
---|
1816 | - A threaded TB will have its current call entry accessed
|
---|
1817 | to update pVCpu->iem.s.cInstructions.
|
---|
1818 | - A native TB will have code left to execute. */
|
---|
1819 | if (fSafeToFree)
|
---|
1820 | iemTbAllocatorFree(pVCpu, pTb);
|
---|
1821 | else
|
---|
1822 | iemTbAlloctorScheduleForFree(pVCpu, pTb);
|
---|
1823 | }
|
---|
1824 |
|
---|
1825 |
|
---|
1826 | /*
|
---|
1827 | * Real code.
|
---|
1828 | */
|
---|
1829 |
|
---|
1830 | #ifdef LOG_ENABLED
|
---|
1831 | /**
|
---|
1832 | * Logs the current instruction.
|
---|
1833 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1834 | * @param pszFunction The IEM function doing the execution.
|
---|
1835 | * @param idxInstr The instruction number in the block.
|
---|
1836 | */
|
---|
1837 | static void iemThreadedLogCurInstr(PVMCPUCC pVCpu, const char *pszFunction, uint32_t idxInstr) RT_NOEXCEPT
|
---|
1838 | {
|
---|
1839 | # ifdef IN_RING3
|
---|
1840 | if (LogIs2Enabled())
|
---|
1841 | {
|
---|
1842 | char szInstr[256];
|
---|
1843 | uint32_t cbInstr = 0;
|
---|
1844 | DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0,
|
---|
1845 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
1846 | szInstr, sizeof(szInstr), &cbInstr);
|
---|
1847 |
|
---|
1848 | PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
1849 | Log2(("**** %s fExec=%x pTb=%p cUsed=%u #%u\n"
|
---|
1850 | " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
|
---|
1851 | " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n"
|
---|
1852 | " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n"
|
---|
1853 | " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n"
|
---|
1854 | " %s\n"
|
---|
1855 | , pszFunction, pVCpu->iem.s.fExec, pVCpu->iem.s.pCurTbR3, pVCpu->iem.s.pCurTbR3 ? pVCpu->iem.s.pCurTbR3->cUsed : 0, idxInstr,
|
---|
1856 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi,
|
---|
1857 | pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel,
|
---|
1858 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel,
|
---|
1859 | pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u,
|
---|
1860 | pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK,
|
---|
1861 | szInstr));
|
---|
1862 |
|
---|
1863 | /*if (LogIs3Enabled()) - this outputs an insane amount of stuff, so disabled.
|
---|
1864 | DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL); */
|
---|
1865 | }
|
---|
1866 | else
|
---|
1867 | # endif
|
---|
1868 | LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel,
|
---|
1869 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u));
|
---|
1870 | }
|
---|
1871 | #endif /* LOG_ENABLED */
|
---|
1872 |
|
---|
1873 |
|
---|
1874 | #if 0
|
---|
1875 | static VBOXSTRICTRC iemThreadedCompileLongJumped(PVMCC pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
|
---|
1876 | {
|
---|
1877 | RT_NOREF(pVM, pVCpu);
|
---|
1878 | return rcStrict;
|
---|
1879 | }
|
---|
1880 | #endif
|
---|
1881 |
|
---|
1882 |
|
---|
1883 | /**
|
---|
1884 | * Initializes the decoder state when compiling TBs.
|
---|
1885 | *
|
---|
1886 | * This presumes that fExec has already be initialized.
|
---|
1887 | *
|
---|
1888 | * This is very similar to iemInitDecoder() and iemReInitDecoder(), so may need
|
---|
1889 | * to apply fixes to them as well.
|
---|
1890 | *
|
---|
1891 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1892 | * thread.
|
---|
1893 | * @param fReInit Clear for the first call for a TB, set for subsequent
|
---|
1894 | * calls from inside the compile loop where we can skip a
|
---|
1895 | * couple of things.
|
---|
1896 | * @param fExtraFlags The extra translation block flags when @a fReInit is
|
---|
1897 | * true, otherwise ignored. Only IEMTB_F_INHIBIT_SHADOW is
|
---|
1898 | * checked.
|
---|
1899 | */
|
---|
1900 | DECL_FORCE_INLINE(void) iemThreadedCompileInitDecoder(PVMCPUCC pVCpu, bool const fReInit, uint32_t const fExtraFlags)
|
---|
1901 | {
|
---|
1902 | /* ASSUMES: That iemInitExec was already called and that anyone changing
|
---|
1903 | CPU state affecting the fExec bits since then will have updated fExec! */
|
---|
1904 | AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu),
|
---|
1905 | ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu)));
|
---|
1906 |
|
---|
1907 | IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu);
|
---|
1908 |
|
---|
1909 | /* Decoder state: */
|
---|
1910 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
1911 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
1912 | if (enmMode != IEMMODE_64BIT)
|
---|
1913 | {
|
---|
1914 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
1915 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
1916 | }
|
---|
1917 | else
|
---|
1918 | {
|
---|
1919 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
1920 | pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT;
|
---|
1921 | }
|
---|
1922 | pVCpu->iem.s.fPrefixes = 0;
|
---|
1923 | pVCpu->iem.s.uRexReg = 0;
|
---|
1924 | pVCpu->iem.s.uRexB = 0;
|
---|
1925 | pVCpu->iem.s.uRexIndex = 0;
|
---|
1926 | pVCpu->iem.s.idxPrefix = 0;
|
---|
1927 | pVCpu->iem.s.uVex3rdReg = 0;
|
---|
1928 | pVCpu->iem.s.uVexLength = 0;
|
---|
1929 | pVCpu->iem.s.fEvexStuff = 0;
|
---|
1930 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
1931 | pVCpu->iem.s.offModRm = 0;
|
---|
1932 | pVCpu->iem.s.iNextMapping = 0;
|
---|
1933 |
|
---|
1934 | if (!fReInit)
|
---|
1935 | {
|
---|
1936 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
1937 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
1938 | pVCpu->iem.s.fEndTb = false;
|
---|
1939 | pVCpu->iem.s.fTbCheckOpcodes = true; /* (check opcodes for before executing the first instruction) */
|
---|
1940 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
1941 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
1942 | pVCpu->iem.s.cInstrTillIrqCheck = !(fExtraFlags & IEMTB_F_INHIBIT_SHADOW) ? 32 : 0;
|
---|
1943 | pVCpu->iem.s.idxLastCheckIrqCallNo = UINT16_MAX;
|
---|
1944 | pVCpu->iem.s.fTbCurInstrIsSti = false;
|
---|
1945 | /* Force RF clearing and TF checking on first instruction in the block
|
---|
1946 | as we don't really know what came before and should assume the worst: */
|
---|
1947 | pVCpu->iem.s.fTbPrevInstr = IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_END_TB;
|
---|
1948 | }
|
---|
1949 | else
|
---|
1950 | {
|
---|
1951 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
1952 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
1953 | Assert(pVCpu->iem.s.fEndTb == false);
|
---|
1954 | Assert(pVCpu->iem.s.fTbCrossedPage == false);
|
---|
1955 | pVCpu->iem.s.fTbPrevInstr = pVCpu->iem.s.fTbCurInstr;
|
---|
1956 | }
|
---|
1957 | pVCpu->iem.s.fTbCurInstr = 0;
|
---|
1958 |
|
---|
1959 | #ifdef DBGFTRACE_ENABLED
|
---|
1960 | switch (IEM_GET_CPU_MODE(pVCpu))
|
---|
1961 | {
|
---|
1962 | case IEMMODE_64BIT:
|
---|
1963 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip);
|
---|
1964 | break;
|
---|
1965 | case IEMMODE_32BIT:
|
---|
1966 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
1967 | break;
|
---|
1968 | case IEMMODE_16BIT:
|
---|
1969 | RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip);
|
---|
1970 | break;
|
---|
1971 | }
|
---|
1972 | #endif
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 |
|
---|
1976 | /**
|
---|
1977 | * Initializes the opcode fetcher when starting the compilation.
|
---|
1978 | *
|
---|
1979 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1980 | * thread.
|
---|
1981 | */
|
---|
1982 | DECL_FORCE_INLINE(void) iemThreadedCompileInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
1983 | {
|
---|
1984 | /* Almost everything is done by iemGetPcWithPhysAndCode() already. We just need to initialize the index into abOpcode. */
|
---|
1985 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
1986 | pVCpu->iem.s.offOpcode = 0;
|
---|
1987 | #else
|
---|
1988 | RT_NOREF(pVCpu);
|
---|
1989 | #endif
|
---|
1990 | }
|
---|
1991 |
|
---|
1992 |
|
---|
1993 | /**
|
---|
1994 | * Re-initializes the opcode fetcher between instructions while compiling.
|
---|
1995 | *
|
---|
1996 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1997 | * thread.
|
---|
1998 | */
|
---|
1999 | DECL_FORCE_INLINE(void) iemThreadedCompileReInitOpcodeFetching(PVMCPUCC pVCpu)
|
---|
2000 | {
|
---|
2001 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
2002 | {
|
---|
2003 | uint64_t off = pVCpu->cpum.GstCtx.rip;
|
---|
2004 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
2005 | off += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
2006 | off -= pVCpu->iem.s.uInstrBufPc;
|
---|
2007 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
2008 | {
|
---|
2009 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
2010 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
2011 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
2012 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
2013 | else
|
---|
2014 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
2015 | }
|
---|
2016 | else
|
---|
2017 | {
|
---|
2018 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
2019 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
2020 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
2021 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
2022 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
2023 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
2024 | }
|
---|
2025 | }
|
---|
2026 | else
|
---|
2027 | {
|
---|
2028 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
2029 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
2030 | pVCpu->iem.s.cbInstrBuf = 0;
|
---|
2031 | pVCpu->iem.s.cbInstrBufTotal = 0;
|
---|
2032 | #ifdef VBOX_STRICT
|
---|
2033 | pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS;
|
---|
2034 | #endif
|
---|
2035 | }
|
---|
2036 | #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
|
---|
2037 | pVCpu->iem.s.offOpcode = 0;
|
---|
2038 | #endif
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | #ifdef LOG_ENABLED
|
---|
2042 |
|
---|
2043 | /**
|
---|
2044 | * Inserts a NOP call.
|
---|
2045 | *
|
---|
2046 | * This is for debugging.
|
---|
2047 | *
|
---|
2048 | * @returns true on success, false if we're out of call entries.
|
---|
2049 | * @param pTb The translation block being compiled.
|
---|
2050 | */
|
---|
2051 | bool iemThreadedCompileEmitNop(PIEMTB pTb)
|
---|
2052 | {
|
---|
2053 | /* Emit the call. */
|
---|
2054 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2055 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2056 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2057 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2058 | pCall->enmFunction = kIemThreadedFunc_BltIn_Nop;
|
---|
2059 | pCall->idxInstr = pTb->cInstructions - 1;
|
---|
2060 | pCall->cbOpcode = 0;
|
---|
2061 | pCall->offOpcode = 0;
|
---|
2062 | pCall->uTbLookup = 0;
|
---|
2063 | pCall->fFlags = 0;
|
---|
2064 | pCall->auParams[0] = 0;
|
---|
2065 | pCall->auParams[1] = 0;
|
---|
2066 | pCall->auParams[2] = 0;
|
---|
2067 | return true;
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 |
|
---|
2071 | /**
|
---|
2072 | * Called by iemThreadedCompile if cpu state logging is desired.
|
---|
2073 | *
|
---|
2074 | * @returns true on success, false if we're out of call entries.
|
---|
2075 | * @param pTb The translation block being compiled.
|
---|
2076 | */
|
---|
2077 | bool iemThreadedCompileEmitLogCpuState(PIEMTB pTb)
|
---|
2078 | {
|
---|
2079 | /* Emit the call. */
|
---|
2080 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2081 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2082 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2083 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2084 | pCall->enmFunction = kIemThreadedFunc_BltIn_LogCpuState;
|
---|
2085 | pCall->idxInstr = pTb->cInstructions - 1;
|
---|
2086 | pCall->cbOpcode = 0;
|
---|
2087 | pCall->offOpcode = 0;
|
---|
2088 | pCall->uTbLookup = 0;
|
---|
2089 | pCall->fFlags = 0;
|
---|
2090 | pCall->auParams[0] = RT_MAKE_U16(pCall->idxInstr, idxCall); /* currently not used, but whatever */
|
---|
2091 | pCall->auParams[1] = 0;
|
---|
2092 | pCall->auParams[2] = 0;
|
---|
2093 | return true;
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 | #endif /* LOG_ENABLED */
|
---|
2097 |
|
---|
2098 | DECLINLINE(void) iemThreadedCopyOpcodeBytesInline(PCVMCPUCC pVCpu, uint8_t *pbDst, uint8_t cbInstr)
|
---|
2099 | {
|
---|
2100 | switch (cbInstr)
|
---|
2101 | {
|
---|
2102 | default: AssertMsgFailed(("%#x\n", cbInstr)); RT_FALL_THROUGH();
|
---|
2103 | case 15: pbDst[14] = pVCpu->iem.s.abOpcode[14]; RT_FALL_THROUGH();
|
---|
2104 | case 14: pbDst[13] = pVCpu->iem.s.abOpcode[13]; RT_FALL_THROUGH();
|
---|
2105 | case 13: pbDst[12] = pVCpu->iem.s.abOpcode[12]; RT_FALL_THROUGH();
|
---|
2106 | case 12: pbDst[11] = pVCpu->iem.s.abOpcode[11]; RT_FALL_THROUGH();
|
---|
2107 | case 11: pbDst[10] = pVCpu->iem.s.abOpcode[10]; RT_FALL_THROUGH();
|
---|
2108 | case 10: pbDst[9] = pVCpu->iem.s.abOpcode[9]; RT_FALL_THROUGH();
|
---|
2109 | case 9: pbDst[8] = pVCpu->iem.s.abOpcode[8]; RT_FALL_THROUGH();
|
---|
2110 | case 8: pbDst[7] = pVCpu->iem.s.abOpcode[7]; RT_FALL_THROUGH();
|
---|
2111 | case 7: pbDst[6] = pVCpu->iem.s.abOpcode[6]; RT_FALL_THROUGH();
|
---|
2112 | case 6: pbDst[5] = pVCpu->iem.s.abOpcode[5]; RT_FALL_THROUGH();
|
---|
2113 | case 5: pbDst[4] = pVCpu->iem.s.abOpcode[4]; RT_FALL_THROUGH();
|
---|
2114 | case 4: pbDst[3] = pVCpu->iem.s.abOpcode[3]; RT_FALL_THROUGH();
|
---|
2115 | case 3: pbDst[2] = pVCpu->iem.s.abOpcode[2]; RT_FALL_THROUGH();
|
---|
2116 | case 2: pbDst[1] = pVCpu->iem.s.abOpcode[1]; RT_FALL_THROUGH();
|
---|
2117 | case 1: pbDst[0] = pVCpu->iem.s.abOpcode[0]; break;
|
---|
2118 | }
|
---|
2119 | }
|
---|
2120 |
|
---|
2121 | #ifdef IEM_WITH_INTRA_TB_JUMPS
|
---|
2122 |
|
---|
2123 | /**
|
---|
2124 | * Emits the necessary tail calls for a full TB loop-jump.
|
---|
2125 | */
|
---|
2126 | static bool iemThreadedCompileFullTbJump(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2127 | {
|
---|
2128 | /*
|
---|
2129 | * We need a timer and maybe IRQ check before jumping, so make sure
|
---|
2130 | * we've got sufficient call entries left before emitting anything.
|
---|
2131 | */
|
---|
2132 | uint32_t idxCall = pTb->Thrd.cCalls;
|
---|
2133 | if (idxCall + 1U <= pTb->Thrd.cAllocated)
|
---|
2134 | {
|
---|
2135 | /*
|
---|
2136 | * We're good, emit the calls.
|
---|
2137 | */
|
---|
2138 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2139 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 2);
|
---|
2140 |
|
---|
2141 | /* Always check timers as we risk getting stuck in a loop otherwise. We
|
---|
2142 | combine it with an IRQ check if that's not performed in the TB already. */
|
---|
2143 | pCall->enmFunction = pVCpu->iem.s.idxLastCheckIrqCallNo < idxCall
|
---|
2144 | ? kIemThreadedFunc_BltIn_CheckTimers
|
---|
2145 | : kIemThreadedFunc_BltIn_CheckTimersAndIrq;
|
---|
2146 | pCall->idxInstr = 0;
|
---|
2147 | pCall->offOpcode = 0;
|
---|
2148 | pCall->cbOpcode = 0;
|
---|
2149 | pCall->uTbLookup = 0;
|
---|
2150 | pCall->fFlags = 0;
|
---|
2151 | pCall->auParams[0] = 0;
|
---|
2152 | pCall->auParams[1] = 0;
|
---|
2153 | pCall->auParams[2] = 0;
|
---|
2154 | pCall++;
|
---|
2155 |
|
---|
2156 | /* The jump callentry[0]. */
|
---|
2157 | pCall->enmFunction = kIemThreadedFunc_BltIn_Jump;
|
---|
2158 | pCall->idxInstr = 0;
|
---|
2159 | pCall->offOpcode = 0;
|
---|
2160 | pCall->cbOpcode = 0;
|
---|
2161 | pCall->uTbLookup = 0;
|
---|
2162 | pCall->fFlags = 0;
|
---|
2163 | pCall->auParams[0] = 0; /* jump target is call zero */
|
---|
2164 | pCall->auParams[1] = 0;
|
---|
2165 | pCall->auParams[2] = 0;
|
---|
2166 |
|
---|
2167 | /* Mark callentry #0 as a jump target. */
|
---|
2168 | pTb->Thrd.paCalls[0].fFlags |= IEMTHREADEDCALLENTRY_F_JUMP_TARGET;
|
---|
2169 | }
|
---|
2170 |
|
---|
2171 | return false;
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 | /**
|
---|
2175 | * Called by IEM_MC2_BEGIN_EMIT_CALLS when it detects that we're back at the
|
---|
2176 | * first instruction and we didn't just branch to it (that's handled below).
|
---|
2177 | *
|
---|
2178 | * This will emit a loop iff everything is compatible with that.
|
---|
2179 | */
|
---|
2180 | DECLHIDDEN(int) iemThreadedCompileBackAtFirstInstruction(PVMCPU pVCpu, PIEMTB pTb) RT_NOEXCEPT
|
---|
2181 | {
|
---|
2182 | /* Check if the mode matches. */
|
---|
2183 | if ( (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK & IEMTB_F_KEY_MASK)
|
---|
2184 | == (pTb->fFlags & IEMTB_F_KEY_MASK & ~IEMTB_F_CS_LIM_CHECKS))
|
---|
2185 | {
|
---|
2186 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbLoopFullTbDetected2);
|
---|
2187 | iemThreadedCompileFullTbJump(pVCpu, pTb);
|
---|
2188 | }
|
---|
2189 | return VINF_IEM_RECOMPILE_END_TB;
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 | #endif /* IEM_WITH_INTRA_TB_JUMPS */
|
---|
2193 |
|
---|
2194 |
|
---|
2195 | /**
|
---|
2196 | * Called by IEM_MC2_BEGIN_EMIT_CALLS() under one of these conditions:
|
---|
2197 | *
|
---|
2198 | * - CS LIM check required.
|
---|
2199 | * - Must recheck opcode bytes.
|
---|
2200 | * - Previous instruction branched.
|
---|
2201 | * - TLB load detected, probably due to page crossing.
|
---|
2202 | *
|
---|
2203 | * @returns true if everything went well, false if we're out of space in the TB
|
---|
2204 | * (e.g. opcode ranges) or needs to start doing CS.LIM checks.
|
---|
2205 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2206 | * thread.
|
---|
2207 | * @param pTb The translation block being compiled.
|
---|
2208 | */
|
---|
2209 | bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2210 | {
|
---|
2211 | Log6(("%04x:%08RX64: iemThreadedCompileBeginEmitCallsComplications\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2212 | Assert((pVCpu->iem.s.GCPhysInstrBuf & GUEST_PAGE_OFFSET_MASK) == 0);
|
---|
2213 | #if 0
|
---|
2214 | if (pVCpu->cpum.GstCtx.rip >= 0xc0000000 && !LogIsEnabled())
|
---|
2215 | RTLogChangeFlags(NULL, 0, RTLOGFLAGS_DISABLED);
|
---|
2216 | #endif
|
---|
2217 |
|
---|
2218 | /*
|
---|
2219 | * If we're not in 64-bit mode and not already checking CS.LIM we need to
|
---|
2220 | * see if it's needed to start checking.
|
---|
2221 | */
|
---|
2222 | bool fConsiderCsLimChecking;
|
---|
2223 | uint32_t const fMode = pVCpu->iem.s.fExec & IEM_F_MODE_MASK;
|
---|
2224 | if ( fMode == IEM_F_MODE_X86_64BIT
|
---|
2225 | || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS)
|
---|
2226 | || fMode == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
2227 | || fMode == IEM_F_MODE_X86_32BIT_FLAT)
|
---|
2228 | fConsiderCsLimChecking = false; /* already enabled or not needed */
|
---|
2229 | else
|
---|
2230 | {
|
---|
2231 | int64_t const offFromLim = (int64_t)pVCpu->cpum.GstCtx.cs.u32Limit - (int64_t)pVCpu->cpum.GstCtx.eip;
|
---|
2232 | if (offFromLim >= GUEST_PAGE_SIZE + 16 - (int32_t)(pVCpu->cpum.GstCtx.cs.u64Base & GUEST_PAGE_OFFSET_MASK))
|
---|
2233 | fConsiderCsLimChecking = true; /* likely */
|
---|
2234 | else
|
---|
2235 | {
|
---|
2236 | Log8(("%04x:%08RX64: Needs CS.LIM checks (%#RX64)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, offFromLim));
|
---|
2237 | return false;
|
---|
2238 | }
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | /*
|
---|
2242 | * Prepare call now, even before we know if can accept the instruction in this TB.
|
---|
2243 | * This allows us amending parameters w/o making every case suffer.
|
---|
2244 | */
|
---|
2245 | uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu);
|
---|
2246 | uint16_t const offOpcode = pTb->cbOpcodes;
|
---|
2247 | uint8_t idxRange = pTb->cRanges - 1;
|
---|
2248 |
|
---|
2249 | PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls];
|
---|
2250 | pCall->idxInstr = pTb->cInstructions;
|
---|
2251 | pCall->cbOpcode = cbInstr;
|
---|
2252 | pCall->offOpcode = offOpcode;
|
---|
2253 | pCall->uTbLookup = 0;
|
---|
2254 | pCall->fFlags = 0;
|
---|
2255 | pCall->auParams[0] = (uint32_t)cbInstr
|
---|
2256 | | (uint32_t)(pVCpu->iem.s.fExec << 8) /* liveness: Enough of fExec for IEM_F_MODE_X86_IS_FLAT. */
|
---|
2257 | /* The upper dword is sometimes used for cbStartPage. */;
|
---|
2258 | pCall->auParams[1] = idxRange;
|
---|
2259 | pCall->auParams[2] = offOpcode - pTb->aRanges[idxRange].offOpcodes;
|
---|
2260 |
|
---|
2261 | /** @todo check if we require IEMTB_F_CS_LIM_CHECKS for any new page we've
|
---|
2262 | * gotten onto. If we do, stop */
|
---|
2263 |
|
---|
2264 | /*
|
---|
2265 | * Case 1: We've branched (RIP changed).
|
---|
2266 | *
|
---|
2267 | * Loop check: If the new PC (GCPhysPC) is within a opcode range of this
|
---|
2268 | * TB, end the TB here as it is most likely a loop and if it
|
---|
2269 | * made sense to unroll it, the guest code compiler should've
|
---|
2270 | * done it already.
|
---|
2271 | *
|
---|
2272 | * Sub-case 1a: Same page, no TLB load (fTbCrossedPage is false).
|
---|
2273 | * Req: 1 extra range, no extra phys.
|
---|
2274 | *
|
---|
2275 | * Sub-case 1b: Different page but no page boundrary crossing, so TLB load
|
---|
2276 | * necessary (fTbCrossedPage is true).
|
---|
2277 | * Req: 1 extra range, probably 1 extra phys page entry.
|
---|
2278 | *
|
---|
2279 | * Sub-case 1c: Different page, so TLB load necessary (fTbCrossedPage is true),
|
---|
2280 | * but in addition we cross into the following page and require
|
---|
2281 | * another TLB load.
|
---|
2282 | * Req: 2 extra ranges, probably 2 extra phys page entries.
|
---|
2283 | *
|
---|
2284 | * Sub-case 1d: Same page, so no initial TLB load necessary, but we cross into
|
---|
2285 | * the following page (thus fTbCrossedPage is true).
|
---|
2286 | * Req: 2 extra ranges, probably 1 extra phys page entry.
|
---|
2287 | *
|
---|
2288 | * Note! The setting fTbCrossedPage is done by the iemOpcodeFetchBytesJmp, but
|
---|
2289 | * it may trigger "spuriously" from the CPU point of view because of
|
---|
2290 | * physical page changes that'll invalid the physical TLB and trigger a
|
---|
2291 | * call to the function. In theory this be a big deal, just a bit
|
---|
2292 | * performance loss as we'll pick the LoadingTlb variants.
|
---|
2293 | *
|
---|
2294 | * Note! We do not currently optimize branching to the next instruction (sorry
|
---|
2295 | * 32-bit PIC code). We could maybe do that in the branching code that
|
---|
2296 | * sets (or not) fTbBranched.
|
---|
2297 | */
|
---|
2298 | /** @todo Optimize 'jmp .next_instr' and 'call .next_instr'. Seen the jmp
|
---|
2299 | * variant in win 3.1 code and the call variant in 32-bit linux PIC
|
---|
2300 | * code. This'll require filtering out far jmps and calls, as they
|
---|
2301 | * load CS which should technically be considered indirect since the
|
---|
2302 | * GDT/LDT entry's base address can be modified independently from
|
---|
2303 | * the code. */
|
---|
2304 | if (pVCpu->iem.s.fTbBranched != IEMBRANCHED_F_NO)
|
---|
2305 | {
|
---|
2306 | if ( !pVCpu->iem.s.fTbCrossedPage /* 1a */
|
---|
2307 | || pVCpu->iem.s.offCurInstrStart >= 0 /* 1b */ )
|
---|
2308 | {
|
---|
2309 | /* 1a + 1b - instruction fully within the branched to page. */
|
---|
2310 | Assert(pVCpu->iem.s.offCurInstrStart >= 0);
|
---|
2311 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr <= GUEST_PAGE_SIZE);
|
---|
2312 |
|
---|
2313 | if (!(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_ZERO))
|
---|
2314 | {
|
---|
2315 | /* Check that we've got a free range. */
|
---|
2316 | idxRange += 1;
|
---|
2317 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
2318 | { /* likely */ }
|
---|
2319 | else
|
---|
2320 | {
|
---|
2321 | Log8(("%04x:%08RX64: out of ranges after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2322 | return false;
|
---|
2323 | }
|
---|
2324 | pCall->auParams[1] = idxRange;
|
---|
2325 | pCall->auParams[2] = 0;
|
---|
2326 |
|
---|
2327 | /* Check that we've got a free page slot. */
|
---|
2328 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
2329 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
2330 | uint8_t idxPhysPage;
|
---|
2331 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
2332 | pTb->aRanges[idxRange].idxPhysPage = idxPhysPage = 0;
|
---|
2333 | else if (pTb->aGCPhysPages[0] == NIL_RTGCPHYS)
|
---|
2334 | {
|
---|
2335 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
2336 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
2337 | idxPhysPage = UINT8_MAX;
|
---|
2338 | }
|
---|
2339 | else if (pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
2340 | pTb->aRanges[idxRange].idxPhysPage = idxPhysPage = 1;
|
---|
2341 | else if (pTb->aGCPhysPages[1] == NIL_RTGCPHYS)
|
---|
2342 | {
|
---|
2343 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
2344 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
2345 | idxPhysPage = UINT8_MAX;
|
---|
2346 | }
|
---|
2347 | else if (pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
2348 | pTb->aRanges[idxRange].idxPhysPage = idxPhysPage = 2;
|
---|
2349 | else
|
---|
2350 | {
|
---|
2351 | Log8(("%04x:%08RX64: out of aGCPhysPages entires after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2352 | return false;
|
---|
2353 | }
|
---|
2354 |
|
---|
2355 | /* Loop check: We weave the loop check in here to optimize the lookup. */
|
---|
2356 | if (idxPhysPage != UINT8_MAX)
|
---|
2357 | {
|
---|
2358 | uint32_t const offPhysPc = pVCpu->iem.s.offCurInstrStart;
|
---|
2359 | for (uint8_t idxLoopRange = 0; idxLoopRange < idxRange; idxLoopRange++)
|
---|
2360 | if ( pTb->aRanges[idxLoopRange].idxPhysPage == idxPhysPage
|
---|
2361 | && offPhysPc - (uint32_t)pTb->aRanges[idxLoopRange].offPhysPage
|
---|
2362 | < (uint32_t)pTb->aRanges[idxLoopRange].cbOpcodes)
|
---|
2363 | {
|
---|
2364 | Log8(("%04x:%08RX64: loop detected after branch\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2365 | #ifdef IEM_WITH_INTRA_TB_JUMPS
|
---|
2366 | /* If we're looping back to the start of the TB and the mode is still the same,
|
---|
2367 | we could emit a jump optimization. For now we don't do page transitions
|
---|
2368 | as that implies TLB loading and such. */
|
---|
2369 | if ( idxLoopRange == 0
|
---|
2370 | && offPhysPc == pTb->aRanges[0].offPhysPage
|
---|
2371 | && (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK & IEMTB_F_KEY_MASK)
|
---|
2372 | == (pTb->fFlags & IEMTB_F_KEY_MASK & ~IEMTB_F_CS_LIM_CHECKS)
|
---|
2373 | && (pVCpu->iem.s.fTbBranched & ( IEMBRANCHED_F_INDIRECT | IEMBRANCHED_F_FAR
|
---|
2374 | | IEMBRANCHED_F_STACK | IEMBRANCHED_F_RELATIVE))
|
---|
2375 | == IEMBRANCHED_F_RELATIVE)
|
---|
2376 | {
|
---|
2377 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbLoopFullTbDetected);
|
---|
2378 | return iemThreadedCompileFullTbJump(pVCpu, pTb);
|
---|
2379 | }
|
---|
2380 | #endif
|
---|
2381 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbLoopInTbDetected);
|
---|
2382 | return false;
|
---|
2383 | }
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 | /* Finish setting up the new range. */
|
---|
2387 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
2388 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
2389 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
2390 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
2391 | pTb->cRanges++;
|
---|
2392 | Log6(("%04x:%08RX64: new range #%u same page: offPhysPage=%#x offOpcodes=%#x\n",
|
---|
2393 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, idxRange, pTb->aRanges[idxRange].offPhysPage,
|
---|
2394 | pTb->aRanges[idxRange].offOpcodes));
|
---|
2395 | }
|
---|
2396 | else
|
---|
2397 | {
|
---|
2398 | Log8(("%04x:%08RX64: zero byte jump\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2399 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
2400 | }
|
---|
2401 |
|
---|
2402 | /* Determin which function we need to load & check.
|
---|
2403 | Note! For jumps to a new page, we'll set both fTbBranched and
|
---|
2404 | fTbCrossedPage to avoid unnecessary TLB work for intra
|
---|
2405 | page branching */
|
---|
2406 | if ( (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_INDIRECT | IEMBRANCHED_F_FAR)) /* Far is basically indirect. */
|
---|
2407 | || pVCpu->iem.s.fTbCrossedPage)
|
---|
2408 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2409 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb
|
---|
2410 | : !fConsiderCsLimChecking
|
---|
2411 | ? kIemThreadedFunc_BltIn_CheckOpcodesLoadingTlb
|
---|
2412 | : kIemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim;
|
---|
2413 | else if (pVCpu->iem.s.fTbBranched & (IEMBRANCHED_F_CONDITIONAL | /* paranoia: */ IEMBRANCHED_F_DIRECT))
|
---|
2414 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2415 | ? kIemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes
|
---|
2416 | : !fConsiderCsLimChecking
|
---|
2417 | ? kIemThreadedFunc_BltIn_CheckPcAndOpcodes
|
---|
2418 | : kIemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim;
|
---|
2419 | else
|
---|
2420 | {
|
---|
2421 | Assert(pVCpu->iem.s.fTbBranched & IEMBRANCHED_F_RELATIVE);
|
---|
2422 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2423 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodes
|
---|
2424 | : !fConsiderCsLimChecking
|
---|
2425 | ? kIemThreadedFunc_BltIn_CheckOpcodes
|
---|
2426 | : kIemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim;
|
---|
2427 | }
|
---|
2428 | }
|
---|
2429 | else
|
---|
2430 | {
|
---|
2431 | /* 1c + 1d - instruction crosses pages. */
|
---|
2432 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
2433 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
2434 |
|
---|
2435 | /* Lazy bird: Check that this isn't case 1c, since we've already
|
---|
2436 | load the first physical address. End the TB and
|
---|
2437 | make it a case 2b instead.
|
---|
2438 |
|
---|
2439 | Hmm. Too much bother to detect, so just do the same
|
---|
2440 | with case 1d as well. */
|
---|
2441 | #if 0 /** @todo get back to this later when we've got the actual branch code in
|
---|
2442 | * place. */
|
---|
2443 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
2444 |
|
---|
2445 | /* Check that we've got two free ranges. */
|
---|
2446 | if (idxRange + 2 < RT_ELEMENTS(pTb->aRanges))
|
---|
2447 | { /* likely */ }
|
---|
2448 | else
|
---|
2449 | return false;
|
---|
2450 | idxRange += 1;
|
---|
2451 | pCall->auParams[1] = idxRange;
|
---|
2452 | pCall->auParams[2] = 0;
|
---|
2453 |
|
---|
2454 | /* ... */
|
---|
2455 |
|
---|
2456 | #else
|
---|
2457 | Log8(("%04x:%08RX64: complicated post-branch condition, ending TB.\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2458 | return false;
|
---|
2459 | #endif
|
---|
2460 | }
|
---|
2461 | }
|
---|
2462 |
|
---|
2463 | /*
|
---|
2464 | * Case 2: Page crossing.
|
---|
2465 | *
|
---|
2466 | * Sub-case 2a: The instruction starts on the first byte in the next page.
|
---|
2467 | *
|
---|
2468 | * Sub-case 2b: The instruction has opcode bytes in both the current and
|
---|
2469 | * following page.
|
---|
2470 | *
|
---|
2471 | * Both cases requires a new range table entry and probably a new physical
|
---|
2472 | * page entry. The difference is in which functions to emit and whether to
|
---|
2473 | * add bytes to the current range.
|
---|
2474 | */
|
---|
2475 | else if (pVCpu->iem.s.fTbCrossedPage)
|
---|
2476 | {
|
---|
2477 | /* Check that we've got a free range. */
|
---|
2478 | idxRange += 1;
|
---|
2479 | if (idxRange < RT_ELEMENTS(pTb->aRanges))
|
---|
2480 | { /* likely */ }
|
---|
2481 | else
|
---|
2482 | {
|
---|
2483 | Log8(("%04x:%08RX64: out of ranges while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2484 | return false;
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 | /* Check that we've got a free page slot. */
|
---|
2488 | AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2);
|
---|
2489 | RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
|
---|
2490 | if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew)
|
---|
2491 | pTb->aRanges[idxRange].idxPhysPage = 0;
|
---|
2492 | else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS
|
---|
2493 | || pTb->aGCPhysPages[0] == GCPhysNew)
|
---|
2494 | {
|
---|
2495 | pTb->aGCPhysPages[0] = GCPhysNew;
|
---|
2496 | pTb->aRanges[idxRange].idxPhysPage = 1;
|
---|
2497 | }
|
---|
2498 | else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS
|
---|
2499 | || pTb->aGCPhysPages[1] == GCPhysNew)
|
---|
2500 | {
|
---|
2501 | pTb->aGCPhysPages[1] = GCPhysNew;
|
---|
2502 | pTb->aRanges[idxRange].idxPhysPage = 2;
|
---|
2503 | }
|
---|
2504 | else
|
---|
2505 | {
|
---|
2506 | Log8(("%04x:%08RX64: out of aGCPhysPages entires while crossing page\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2507 | return false;
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | if (((pTb->aRanges[idxRange - 1].offPhysPage + pTb->aRanges[idxRange - 1].cbOpcodes) & GUEST_PAGE_OFFSET_MASK) == 0)
|
---|
2511 | {
|
---|
2512 | Assert(pVCpu->iem.s.offCurInstrStart == 0);
|
---|
2513 | pCall->auParams[1] = idxRange;
|
---|
2514 | pCall->auParams[2] = 0;
|
---|
2515 |
|
---|
2516 | /* Finish setting up the new range. */
|
---|
2517 | pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart;
|
---|
2518 | pTb->aRanges[idxRange].offOpcodes = offOpcode;
|
---|
2519 | pTb->aRanges[idxRange].cbOpcodes = cbInstr;
|
---|
2520 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
2521 | pTb->cRanges++;
|
---|
2522 | Log6(("%04x:%08RX64: new range #%u new page (a) %u/%RGp: offPhysPage=%#x offOpcodes=%#x\n",
|
---|
2523 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, idxRange, pTb->aRanges[idxRange].idxPhysPage, GCPhysNew,
|
---|
2524 | pTb->aRanges[idxRange].offPhysPage, pTb->aRanges[idxRange].offOpcodes));
|
---|
2525 |
|
---|
2526 | /* Determin which function we need to load & check. */
|
---|
2527 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2528 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb
|
---|
2529 | : !fConsiderCsLimChecking
|
---|
2530 | ? kIemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb
|
---|
2531 | : kIemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim;
|
---|
2532 | }
|
---|
2533 | else
|
---|
2534 | {
|
---|
2535 | Assert(pVCpu->iem.s.offCurInstrStart < 0);
|
---|
2536 | Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0);
|
---|
2537 | uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart;
|
---|
2538 | pCall->auParams[0] |= (uint64_t)cbStartPage << 32;
|
---|
2539 |
|
---|
2540 | /* We've good. Split the instruction over the old and new range table entries. */
|
---|
2541 | pTb->aRanges[idxRange - 1].cbOpcodes += cbStartPage;
|
---|
2542 |
|
---|
2543 | pTb->aRanges[idxRange].offPhysPage = 0;
|
---|
2544 | pTb->aRanges[idxRange].offOpcodes = offOpcode + cbStartPage;
|
---|
2545 | pTb->aRanges[idxRange].cbOpcodes = cbInstr - cbStartPage;
|
---|
2546 | pTb->aRanges[idxRange].u2Unused = 0;
|
---|
2547 | pTb->cRanges++;
|
---|
2548 | Log6(("%04x:%08RX64: new range #%u new page (b) %u/%RGp: offPhysPage=%#x offOpcodes=%#x\n",
|
---|
2549 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, idxRange, pTb->aRanges[idxRange].idxPhysPage, GCPhysNew,
|
---|
2550 | pTb->aRanges[idxRange].offPhysPage, pTb->aRanges[idxRange].offOpcodes));
|
---|
2551 |
|
---|
2552 | /* Determin which function we need to load & check. */
|
---|
2553 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
2554 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2555 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb
|
---|
2556 | : !fConsiderCsLimChecking
|
---|
2557 | ? kIemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb
|
---|
2558 | : kIemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim;
|
---|
2559 | else
|
---|
2560 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2561 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb
|
---|
2562 | : !fConsiderCsLimChecking
|
---|
2563 | ? kIemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb
|
---|
2564 | : kIemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim;
|
---|
2565 | }
|
---|
2566 | }
|
---|
2567 |
|
---|
2568 | /*
|
---|
2569 | * Regular case: No new range required.
|
---|
2570 | */
|
---|
2571 | else
|
---|
2572 | {
|
---|
2573 | Assert(pVCpu->iem.s.fTbCheckOpcodes || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS));
|
---|
2574 | if (pVCpu->iem.s.fTbCheckOpcodes)
|
---|
2575 | pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS
|
---|
2576 | ? kIemThreadedFunc_BltIn_CheckCsLimAndOpcodes
|
---|
2577 | : kIemThreadedFunc_BltIn_CheckOpcodes;
|
---|
2578 | else
|
---|
2579 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckCsLim;
|
---|
2580 |
|
---|
2581 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
2582 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
2583 | pTb->aRanges[idxRange].cbOpcodes += cbInstr;
|
---|
2584 | Assert(pTb->cbOpcodes <= pVCpu->iem.s.cbOpcodesAllocated);
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 | /*
|
---|
2588 | * Commit the call.
|
---|
2589 | */
|
---|
2590 | pTb->Thrd.cCalls++;
|
---|
2591 |
|
---|
2592 | /*
|
---|
2593 | * Clear state.
|
---|
2594 | */
|
---|
2595 | pVCpu->iem.s.fTbBranched = IEMBRANCHED_F_NO;
|
---|
2596 | pVCpu->iem.s.fTbCrossedPage = false;
|
---|
2597 | pVCpu->iem.s.fTbCheckOpcodes = false;
|
---|
2598 |
|
---|
2599 | /*
|
---|
2600 | * Copy opcode bytes.
|
---|
2601 | */
|
---|
2602 | iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr);
|
---|
2603 | pTb->cbOpcodes = offOpcode + cbInstr;
|
---|
2604 | Assert(pTb->cbOpcodes <= pVCpu->iem.s.cbOpcodesAllocated);
|
---|
2605 |
|
---|
2606 | return true;
|
---|
2607 | }
|
---|
2608 |
|
---|
2609 |
|
---|
2610 | /**
|
---|
2611 | * Worker for iemThreadedCompileBeginEmitCallsComplications and
|
---|
2612 | * iemThreadedCompileCheckIrq that checks for pending delivarable events.
|
---|
2613 | *
|
---|
2614 | * @returns true if anything is pending, false if not.
|
---|
2615 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2616 | * thread.
|
---|
2617 | */
|
---|
2618 | DECL_FORCE_INLINE(bool) iemThreadedCompileIsIrqOrForceFlagPending(PVMCPUCC pVCpu)
|
---|
2619 | {
|
---|
2620 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
2621 | fCpu &= VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI;
|
---|
2622 | #if 1
|
---|
2623 | /** @todo this isn't even close to the NMI/IRQ conditions in EM. */
|
---|
2624 | if (RT_LIKELY( !fCpu
|
---|
2625 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
2626 | && ( !pVCpu->cpum.GstCtx.rflags.Bits.u1IF
|
---|
2627 | || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))) ))
|
---|
2628 | return false;
|
---|
2629 | return true;
|
---|
2630 | #else
|
---|
2631 | return false;
|
---|
2632 | #endif
|
---|
2633 |
|
---|
2634 | }
|
---|
2635 |
|
---|
2636 |
|
---|
2637 | /**
|
---|
2638 | * Called by iemThreadedCompile when a block requires a mode check.
|
---|
2639 | *
|
---|
2640 | * @returns true if we should continue, false if we're out of call entries.
|
---|
2641 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2642 | * thread.
|
---|
2643 | * @param pTb The translation block being compiled.
|
---|
2644 | */
|
---|
2645 | static bool iemThreadedCompileEmitCheckMode(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2646 | {
|
---|
2647 | /* Emit the call. */
|
---|
2648 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2649 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2650 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2651 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2652 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckMode;
|
---|
2653 | pCall->idxInstr = pTb->cInstructions - 1;
|
---|
2654 | pCall->cbOpcode = 0;
|
---|
2655 | pCall->offOpcode = 0;
|
---|
2656 | pCall->uTbLookup = 0;
|
---|
2657 | pCall->fFlags = 0;
|
---|
2658 | pCall->auParams[0] = pVCpu->iem.s.fExec;
|
---|
2659 | pCall->auParams[1] = 0;
|
---|
2660 | pCall->auParams[2] = 0;
|
---|
2661 | LogFunc(("%04x:%08RX64 fExec=%#x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->iem.s.fExec));
|
---|
2662 | return true;
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 |
|
---|
2666 | /**
|
---|
2667 | * Called by IEM_MC2_BEGIN_EMIT_CALLS() when IEM_CIMPL_F_CHECK_IRQ_BEFORE is
|
---|
2668 | * set.
|
---|
2669 | *
|
---|
2670 | * @returns true if we should continue, false if an IRQ is deliverable or a
|
---|
2671 | * relevant force flag is pending.
|
---|
2672 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2673 | * thread.
|
---|
2674 | * @param pTb The translation block being compiled.
|
---|
2675 | * @sa iemThreadedCompileCheckIrq
|
---|
2676 | */
|
---|
2677 | bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2678 | {
|
---|
2679 | /*
|
---|
2680 | * Skip this we've already emitted a call after the previous instruction
|
---|
2681 | * or if it's the first call, as we're always checking FFs between blocks.
|
---|
2682 | */
|
---|
2683 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2684 | if ( idxCall > 0
|
---|
2685 | && pTb->Thrd.paCalls[idxCall - 1].enmFunction != kIemThreadedFunc_BltIn_CheckIrq)
|
---|
2686 | {
|
---|
2687 | /* Emit the call. */
|
---|
2688 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2689 | pVCpu->iem.s.idxLastCheckIrqCallNo = (uint16_t)idxCall;
|
---|
2690 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2691 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2692 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckIrq;
|
---|
2693 | pCall->idxInstr = pTb->cInstructions;
|
---|
2694 | pCall->offOpcode = 0;
|
---|
2695 | pCall->cbOpcode = 0;
|
---|
2696 | pCall->uTbLookup = 0;
|
---|
2697 | pCall->fFlags = 0;
|
---|
2698 | pCall->auParams[0] = 0;
|
---|
2699 | pCall->auParams[1] = 0;
|
---|
2700 | pCall->auParams[2] = 0;
|
---|
2701 | LogFunc(("%04x:%08RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2702 |
|
---|
2703 | /* Reset the IRQ check value. */
|
---|
2704 | pVCpu->iem.s.cInstrTillIrqCheck = !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) ? 32 : 0;
|
---|
2705 |
|
---|
2706 | /*
|
---|
2707 | * Check for deliverable IRQs and pending force flags.
|
---|
2708 | */
|
---|
2709 | return !iemThreadedCompileIsIrqOrForceFlagPending(pVCpu);
|
---|
2710 | }
|
---|
2711 | return true; /* continue */
|
---|
2712 | }
|
---|
2713 |
|
---|
2714 |
|
---|
2715 | /**
|
---|
2716 | * Emits an IRQ check call and checks for pending IRQs.
|
---|
2717 | *
|
---|
2718 | * @returns true if we should continue, false if an IRQ is deliverable or a
|
---|
2719 | * relevant force flag is pending.
|
---|
2720 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2721 | * thread.
|
---|
2722 | * @param pTb The transation block.
|
---|
2723 | * @sa iemThreadedCompileBeginEmitCallsComplications
|
---|
2724 | */
|
---|
2725 | static bool iemThreadedCompileCheckIrqAfter(PVMCPUCC pVCpu, PIEMTB pTb)
|
---|
2726 | {
|
---|
2727 | /* Check again in a little bit, unless it is immediately following an STI
|
---|
2728 | in which case we *must* check immediately after the next instruction
|
---|
2729 | as well in case it's executed with interrupt inhibition. We could
|
---|
2730 | otherwise miss the interrupt window. See the irq2 wait2 varaiant in
|
---|
2731 | bs3-timers-1 which is doing sti + sti + cli. */
|
---|
2732 | if (!pVCpu->iem.s.fTbCurInstrIsSti)
|
---|
2733 | pVCpu->iem.s.cInstrTillIrqCheck = 32;
|
---|
2734 | else
|
---|
2735 | {
|
---|
2736 | pVCpu->iem.s.fTbCurInstrIsSti = false;
|
---|
2737 | pVCpu->iem.s.cInstrTillIrqCheck = 0;
|
---|
2738 | }
|
---|
2739 | LogFunc(("%04x:%08RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2740 |
|
---|
2741 | /*
|
---|
2742 | * Emit the call.
|
---|
2743 | */
|
---|
2744 | uint32_t const idxCall = pTb->Thrd.cCalls;
|
---|
2745 | AssertReturn(idxCall < pTb->Thrd.cAllocated, false);
|
---|
2746 | pVCpu->iem.s.idxLastCheckIrqCallNo = (uint16_t)idxCall;
|
---|
2747 | pTb->Thrd.cCalls = (uint16_t)(idxCall + 1);
|
---|
2748 | PIEMTHRDEDCALLENTRY pCall = &pTb->Thrd.paCalls[idxCall];
|
---|
2749 | pCall->enmFunction = kIemThreadedFunc_BltIn_CheckIrq;
|
---|
2750 | pCall->idxInstr = pTb->cInstructions;
|
---|
2751 | pCall->offOpcode = 0;
|
---|
2752 | pCall->cbOpcode = 0;
|
---|
2753 | pCall->uTbLookup = 0;
|
---|
2754 | pCall->fFlags = 0;
|
---|
2755 | pCall->auParams[0] = 0;
|
---|
2756 | pCall->auParams[1] = 0;
|
---|
2757 | pCall->auParams[2] = 0;
|
---|
2758 |
|
---|
2759 | /*
|
---|
2760 | * Check for deliverable IRQs and pending force flags.
|
---|
2761 | */
|
---|
2762 | return !iemThreadedCompileIsIrqOrForceFlagPending(pVCpu);
|
---|
2763 | }
|
---|
2764 |
|
---|
2765 |
|
---|
2766 | /**
|
---|
2767 | * Compiles a new TB and executes it.
|
---|
2768 | *
|
---|
2769 | * We combine compilation and execution here as it makes it simpler code flow
|
---|
2770 | * in the main loop and it allows interpreting while compiling if we want to
|
---|
2771 | * explore that option.
|
---|
2772 | *
|
---|
2773 | * @returns Strict VBox status code.
|
---|
2774 | * @param pVM The cross context virtual machine structure.
|
---|
2775 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2776 | * thread.
|
---|
2777 | * @param GCPhysPc The physical address corresponding to the current
|
---|
2778 | * RIP+CS.BASE.
|
---|
2779 | * @param fExtraFlags Extra translation block flags: IEMTB_F_INHIBIT_SHADOW,
|
---|
2780 | * IEMTB_F_INHIBIT_NMI, IEMTB_F_CS_LIM_CHECKS.
|
---|
2781 | */
|
---|
2782 | static VBOXSTRICTRC iemThreadedCompile(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2783 | {
|
---|
2784 | IEMTLBTRACE_TB_COMPILE(pVCpu, GCPhysPc);
|
---|
2785 | Assert(!(fExtraFlags & IEMTB_F_TYPE_MASK));
|
---|
2786 | fExtraFlags |= IEMTB_F_TYPE_THREADED;
|
---|
2787 |
|
---|
2788 | /*
|
---|
2789 | * Get the TB we use for the recompiling. This is a maxed-out TB so
|
---|
2790 | * that'll we'll make a more efficient copy of when we're done compiling.
|
---|
2791 | */
|
---|
2792 | PIEMTB pTb = pVCpu->iem.s.pThrdCompileTbR3;
|
---|
2793 | if (pTb)
|
---|
2794 | iemThreadedTbReuse(pVCpu, pTb, GCPhysPc, fExtraFlags);
|
---|
2795 | else
|
---|
2796 | {
|
---|
2797 | pTb = iemThreadedTbAlloc(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
2798 | AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED);
|
---|
2799 | pVCpu->iem.s.pThrdCompileTbR3 = pTb;
|
---|
2800 | }
|
---|
2801 | pTb->FlatPc = pVCpu->iem.s.uInstrBufPc | (GCPhysPc & GUEST_PAGE_OFFSET_MASK);
|
---|
2802 |
|
---|
2803 | /* Set the current TB so iemThreadedCompileLongJumped and the CIMPL
|
---|
2804 | functions may get at it. */
|
---|
2805 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
2806 |
|
---|
2807 | #if 0
|
---|
2808 | /* Make sure the CheckIrq condition matches the one in EM. */
|
---|
2809 | iemThreadedCompileCheckIrqAfter(pVCpu, pTb);
|
---|
2810 | const uint32_t cZeroCalls = 1;
|
---|
2811 | #else
|
---|
2812 | const uint32_t cZeroCalls = 0;
|
---|
2813 | #endif
|
---|
2814 |
|
---|
2815 | /*
|
---|
2816 | * Now for the recomplication. (This mimicks IEMExecLots in many ways.)
|
---|
2817 | */
|
---|
2818 | iemThreadedCompileInitDecoder(pVCpu, false /*fReInit*/, fExtraFlags);
|
---|
2819 | iemThreadedCompileInitOpcodeFetching(pVCpu);
|
---|
2820 | VBOXSTRICTRC rcStrict;
|
---|
2821 | for (;;)
|
---|
2822 | {
|
---|
2823 | /* Process the next instruction. */
|
---|
2824 | #ifdef LOG_ENABLED
|
---|
2825 | iemThreadedLogCurInstr(pVCpu, "CC", pTb->cInstructions);
|
---|
2826 | uint16_t const uCsLog = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2827 | uint64_t const uRipLog = pVCpu->cpum.GstCtx.rip;
|
---|
2828 | Assert(uCsLog != 0 || uRipLog > 0x400 || !IEM_IS_REAL_OR_V86_MODE(pVCpu)); /* Detect executing RM interrupt table. */
|
---|
2829 | #endif
|
---|
2830 | uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b);
|
---|
2831 | uint16_t const cCallsPrev = pTb->Thrd.cCalls;
|
---|
2832 |
|
---|
2833 | rcStrict = FNIEMOP_CALL(g_apfnIemThreadedRecompilerOneByteMap[b]);
|
---|
2834 | #if 0
|
---|
2835 | for (unsigned i = cCallsPrev; i < pTb->Thrd.cCalls; i++)
|
---|
2836 | Log8(("-> %#u/%u - %d %s\n", i, pTb->Thrd.paCalls[i].idxInstr, pTb->Thrd.paCalls[i].enmFunction,
|
---|
2837 | g_apszIemThreadedFunctions[pTb->Thrd.paCalls[i].enmFunction]));
|
---|
2838 | #endif
|
---|
2839 | if ( rcStrict == VINF_SUCCESS
|
---|
2840 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS
|
---|
2841 | && !pVCpu->iem.s.fEndTb)
|
---|
2842 | {
|
---|
2843 | Assert(pTb->Thrd.cCalls > cCallsPrev);
|
---|
2844 | Assert(cCallsPrev - pTb->Thrd.cCalls < 5);
|
---|
2845 |
|
---|
2846 | pVCpu->iem.s.cInstructions++;
|
---|
2847 |
|
---|
2848 | /* Check for mode change _after_ certain CIMPL calls, so check that
|
---|
2849 | we continue executing with the same mode value. */
|
---|
2850 | if (!(pVCpu->iem.s.fTbCurInstr & (IEM_CIMPL_F_MODE | IEM_CIMPL_F_XCPT | IEM_CIMPL_F_VMEXIT)))
|
---|
2851 | { /* probable */ }
|
---|
2852 | else if (RT_LIKELY(iemThreadedCompileEmitCheckMode(pVCpu, pTb)))
|
---|
2853 | { /* extremely likely */ }
|
---|
2854 | else
|
---|
2855 | break;
|
---|
2856 |
|
---|
2857 | #if defined(LOG_ENABLED) && 0 /* for debugging */
|
---|
2858 | //iemThreadedCompileEmitNop(pTb);
|
---|
2859 | iemThreadedCompileEmitLogCpuState(pTb);
|
---|
2860 | #endif
|
---|
2861 | }
|
---|
2862 | else
|
---|
2863 | {
|
---|
2864 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, rc=%d\n",
|
---|
2865 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
2866 | if (rcStrict == VINF_IEM_RECOMPILE_END_TB)
|
---|
2867 | rcStrict = VINF_SUCCESS;
|
---|
2868 |
|
---|
2869 | if (pTb->Thrd.cCalls > cZeroCalls)
|
---|
2870 | {
|
---|
2871 | if (cCallsPrev != pTb->Thrd.cCalls)
|
---|
2872 | pVCpu->iem.s.cInstructions++;
|
---|
2873 | break;
|
---|
2874 | }
|
---|
2875 |
|
---|
2876 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
2877 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2878 | }
|
---|
2879 |
|
---|
2880 | /* Check for IRQs? */
|
---|
2881 | if (pVCpu->iem.s.cInstrTillIrqCheck > 0)
|
---|
2882 | pVCpu->iem.s.cInstrTillIrqCheck--;
|
---|
2883 | else if (!iemThreadedCompileCheckIrqAfter(pVCpu, pTb))
|
---|
2884 | break;
|
---|
2885 |
|
---|
2886 | /* Still space in the TB? */
|
---|
2887 | if ( pTb->Thrd.cCalls + 5 < pTb->Thrd.cAllocated
|
---|
2888 | && pTb->cbOpcodes + 16 <= pVCpu->iem.s.cbOpcodesAllocated
|
---|
2889 | && pTb->cTbLookupEntries < 127)
|
---|
2890 | iemThreadedCompileInitDecoder(pVCpu, true /*fReInit*/, 0);
|
---|
2891 | else
|
---|
2892 | {
|
---|
2893 | Log8(("%04x:%08RX64: End TB - %u instr, %u calls, %u opcode bytes, %u TB lookup entries - full\n",
|
---|
2894 | uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, pTb->cbOpcodes, pTb->cTbLookupEntries));
|
---|
2895 | break;
|
---|
2896 | }
|
---|
2897 | iemThreadedCompileReInitOpcodeFetching(pVCpu);
|
---|
2898 | }
|
---|
2899 |
|
---|
2900 | /*
|
---|
2901 | * Reserve lookup space for the final call entry if necessary.
|
---|
2902 | */
|
---|
2903 | PIEMTHRDEDCALLENTRY pFinalCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls - 1];
|
---|
2904 | if (pTb->Thrd.cCalls > 1)
|
---|
2905 | {
|
---|
2906 | if (pFinalCall->uTbLookup == 0)
|
---|
2907 | {
|
---|
2908 | pFinalCall->uTbLookup = IEM_TB_LOOKUP_TAB_MAKE(pTb->cTbLookupEntries, 0);
|
---|
2909 | pTb->cTbLookupEntries += 1;
|
---|
2910 | }
|
---|
2911 | }
|
---|
2912 | else if (pFinalCall->uTbLookup != 0)
|
---|
2913 | {
|
---|
2914 | Assert(pTb->cTbLookupEntries > 1);
|
---|
2915 | pFinalCall->uTbLookup -= 1;
|
---|
2916 | pTb->cTbLookupEntries -= 1;
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 | /*
|
---|
2920 | * Duplicate the TB into a completed one and link it.
|
---|
2921 | */
|
---|
2922 | pTb = iemThreadedTbDuplicate(pVM, pVCpu, pTb);
|
---|
2923 | AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED);
|
---|
2924 |
|
---|
2925 | iemThreadedTbAdd(pVCpu, pVCpu->iem.s.pTbCacheR3, pTb);
|
---|
2926 |
|
---|
2927 | #ifdef IEM_COMPILE_ONLY_MODE
|
---|
2928 | /*
|
---|
2929 | * Execute the translation block.
|
---|
2930 | */
|
---|
2931 | #endif
|
---|
2932 |
|
---|
2933 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
2934 | }
|
---|
2935 |
|
---|
2936 |
|
---|
2937 |
|
---|
2938 | /*********************************************************************************************************************************
|
---|
2939 | * Recompiled Execution Core *
|
---|
2940 | *********************************************************************************************************************************/
|
---|
2941 |
|
---|
2942 | /** Default TB factor.
|
---|
2943 | * This is basically the number of nanoseconds we guess executing a TB takes
|
---|
2944 | * on average. We estimates it high if we can.
|
---|
2945 | * @note Best if this is a power of two so it can be translated to a shift. */
|
---|
2946 | #define IEM_TIMER_POLL_DEFAULT_FACTOR UINT32_C(64)
|
---|
2947 | /** The minimum number of nanoseconds we can allow between timer pollings.
|
---|
2948 | * This must take the cost of TMTimerPollBoolWithNanoTS into mind. We put that
|
---|
2949 | * cost at 104 ns now, thus this constant is at 256 ns. */
|
---|
2950 | #define IEM_TIMER_POLL_MIN_NS UINT32_C(256)
|
---|
2951 | /** The IEM_TIMER_POLL_MIN_NS value roughly translated to TBs, with some grains
|
---|
2952 | * of salt thrown in.
|
---|
2953 | * The idea is that we will be able to make progress with guest code execution
|
---|
2954 | * before polling timers and between running timers. */
|
---|
2955 | #define IEM_TIMER_POLL_MIN_ITER UINT32_C(12)
|
---|
2956 | /** The maximum number of nanoseconds we can allow between timer pollings.
|
---|
2957 | * This probably shouldn't be too high, as we don't have any timer
|
---|
2958 | * reprogramming feedback in the polling code. So, when a device reschedule a
|
---|
2959 | * timer for an earlier delivery, we won't know about it. */
|
---|
2960 | #define IEM_TIMER_POLL_MAX_NS UINT32_C(8388608) /* 0x800000 ns = 8.4 ms */
|
---|
2961 | /** The IEM_TIMER_POLL_MAX_NS value roughly translated to TBs, with some grains
|
---|
2962 | * of salt thrown in.
|
---|
2963 | * This helps control fluctuations in the NU benchmark. */
|
---|
2964 | #define IEM_TIMER_POLL_MAX_ITER _512K
|
---|
2965 |
|
---|
2966 | #ifdef IEM_WITH_ADAPTIVE_TIMER_POLLING
|
---|
2967 | /**
|
---|
2968 | * Calculates the number of TBs till the next timer polling using defaults.
|
---|
2969 | *
|
---|
2970 | * This is used when the previous run wasn't long enough to provide sufficient
|
---|
2971 | * data and when comming back from the HALT state and we haven't actually
|
---|
2972 | * executed anything for a while.
|
---|
2973 | */
|
---|
2974 | DECL_FORCE_INLINE(uint32_t) iemPollTimersCalcDefaultCountdown(uint64_t cNsDelta) RT_NOEXCEPT
|
---|
2975 | {
|
---|
2976 | if (cNsDelta >= IEM_TIMER_POLL_MAX_NS)
|
---|
2977 | return RT_MIN(IEM_TIMER_POLL_MAX_NS / IEM_TIMER_POLL_DEFAULT_FACTOR, IEM_TIMER_POLL_MAX_ITER);
|
---|
2978 |
|
---|
2979 | cNsDelta = RT_BIT_64(ASMBitFirstSetU32(cNsDelta) - 1); /* round down to power of 2 */
|
---|
2980 | uint32_t const cRet = cNsDelta / IEM_TIMER_POLL_DEFAULT_FACTOR;
|
---|
2981 | if (cRet >= IEM_TIMER_POLL_MIN_ITER)
|
---|
2982 | {
|
---|
2983 | if (cRet <= IEM_TIMER_POLL_MAX_ITER)
|
---|
2984 | return cRet;
|
---|
2985 | return IEM_TIMER_POLL_MAX_ITER;
|
---|
2986 | }
|
---|
2987 | return IEM_TIMER_POLL_MIN_ITER;
|
---|
2988 | }
|
---|
2989 | #endif
|
---|
2990 |
|
---|
2991 |
|
---|
2992 | /**
|
---|
2993 | * Helper for polling timers.
|
---|
2994 | */
|
---|
2995 | DECLHIDDEN(int) iemPollTimers(PVMCC pVM, PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2996 | {
|
---|
2997 | STAM_PROFILE_START(&pVCpu->iem.s.StatTimerPoll, a);
|
---|
2998 |
|
---|
2999 | /*
|
---|
3000 | * Check for VM_FF_TM_VIRTUAL_SYNC and call TMR3VirtualSyncFF if set.
|
---|
3001 | * This is something all EMTs can do.
|
---|
3002 | */
|
---|
3003 | /* If the virtual sync FF is set, respond to it. */
|
---|
3004 | bool fRanTimers = VM_FF_IS_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
|
---|
3005 | if (!fRanTimers)
|
---|
3006 | { /* likely */ }
|
---|
3007 | else
|
---|
3008 | {
|
---|
3009 | STAM_PROFILE_START(&pVCpu->iem.s.StatTimerPollRun, b);
|
---|
3010 | TMR3VirtualSyncFF(pVM, pVCpu);
|
---|
3011 | STAM_PROFILE_STOP(&pVCpu->iem.s.StatTimerPollRun, b);
|
---|
3012 | }
|
---|
3013 |
|
---|
3014 | /*
|
---|
3015 | * Poll timers.
|
---|
3016 | *
|
---|
3017 | * On the 10980xe the polling averaging 314 ticks, with a min of 201, while
|
---|
3018 | * running a norton utilities DOS benchmark program. TSC runs at 3GHz,
|
---|
3019 | * translating that to 104 ns and 67 ns respectively. (An M2 booting win11
|
---|
3020 | * has an average of 2 ticks / 84 ns.)
|
---|
3021 | *
|
---|
3022 | * With the same setup the TMR3VirtualSyncFF and else branch here profiles
|
---|
3023 | * to 79751 ticks / 26583 ns on average, with a min of 1194 ticks / 398 ns.
|
---|
3024 | * (An M2 booting win11 has an average of 24 ticks / 1008 ns, with a min of
|
---|
3025 | * 8 ticks / 336 ns.)
|
---|
3026 | *
|
---|
3027 | * If we get a zero return value we run timers. Non-timer EMTs shouldn't
|
---|
3028 | * ever see a zero value here, so we just call TMR3TimerQueuesDo. However,
|
---|
3029 | * we do not re-run timers if we already called TMR3VirtualSyncFF above, we
|
---|
3030 | * try to make sure some code is executed first.
|
---|
3031 | */
|
---|
3032 | uint64_t nsNow = 0;
|
---|
3033 | uint64_t cNsDelta = TMTimerPollBoolWithNanoTS(pVM, pVCpu, &nsNow);
|
---|
3034 | if (cNsDelta >= 1) /* It is okay to run virtual sync timers a little early. */
|
---|
3035 | { /* likely */ }
|
---|
3036 | else if (!fRanTimers || VM_FF_IS_SET(pVM, VM_FF_TM_VIRTUAL_SYNC))
|
---|
3037 | {
|
---|
3038 | STAM_PROFILE_START(&pVCpu->iem.s.StatTimerPollRun, b);
|
---|
3039 | TMR3TimerQueuesDo(pVM);
|
---|
3040 | fRanTimers = true;
|
---|
3041 | nsNow = 0;
|
---|
3042 | cNsDelta = TMTimerPollBoolWithNanoTS(pVM, pVCpu, &nsNow);
|
---|
3043 | STAM_PROFILE_STOP(&pVCpu->iem.s.StatTimerPollRun, b);
|
---|
3044 | }
|
---|
3045 | else
|
---|
3046 | cNsDelta = 33;
|
---|
3047 |
|
---|
3048 | /*
|
---|
3049 | * Calc interval and update the timestamps.
|
---|
3050 | */
|
---|
3051 | uint64_t const cNsSinceLast = nsNow - pVCpu->iem.s.nsRecompilerPollNow;
|
---|
3052 | pVCpu->iem.s.nsRecompilerPollNow = nsNow;
|
---|
3053 | pVCpu->iem.s.msRecompilerPollNow = (uint32_t)(nsNow / RT_NS_1MS);
|
---|
3054 |
|
---|
3055 | /*
|
---|
3056 | * Set the next polling count down value.
|
---|
3057 | *
|
---|
3058 | * We take the previous value and adjust it according to the cNsSinceLast
|
---|
3059 | * value, if it's not within reason. This can't be too accurate since the
|
---|
3060 | * CheckIrq and intra-TB-checks aren't evenly spaced, they depends highly
|
---|
3061 | * on the guest code.
|
---|
3062 | */
|
---|
3063 | #ifdef IEM_WITH_ADAPTIVE_TIMER_POLLING
|
---|
3064 | uint32_t cItersTillNextPoll = pVCpu->iem.s.cTbsTillNextTimerPollPrev;
|
---|
3065 | if (cNsDelta >= RT_NS_1SEC / 4)
|
---|
3066 | {
|
---|
3067 | /*
|
---|
3068 | * Non-timer EMTs should end up here with a fixed 500ms delta, just return
|
---|
3069 | * the max and keep the polling over head to the deadicated timer EMT.
|
---|
3070 | */
|
---|
3071 | AssertCompile(IEM_TIMER_POLL_MAX_ITER * IEM_TIMER_POLL_DEFAULT_FACTOR <= RT_NS_100MS);
|
---|
3072 | cItersTillNextPoll = IEM_TIMER_POLL_MAX_ITER;
|
---|
3073 | }
|
---|
3074 | else
|
---|
3075 | {
|
---|
3076 | /*
|
---|
3077 | * This is the timer EMT.
|
---|
3078 | */
|
---|
3079 | if (cNsDelta <= IEM_TIMER_POLL_MIN_NS)
|
---|
3080 | {
|
---|
3081 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTimerPollTiny);
|
---|
3082 | cItersTillNextPoll = IEM_TIMER_POLL_MIN_ITER;
|
---|
3083 | }
|
---|
3084 | else
|
---|
3085 | {
|
---|
3086 | uint32_t const cNsDeltaAdj = cNsDelta >= IEM_TIMER_POLL_MAX_NS ? IEM_TIMER_POLL_MAX_NS : (uint32_t)cNsDelta;
|
---|
3087 | uint32_t const cNsDeltaSlack = cNsDelta >= IEM_TIMER_POLL_MAX_NS ? IEM_TIMER_POLL_MAX_NS / 2 : cNsDeltaAdj / 4;
|
---|
3088 | if ( cNsSinceLast < RT_MAX(IEM_TIMER_POLL_MIN_NS, 64)
|
---|
3089 | || cItersTillNextPoll < IEM_TIMER_POLL_MIN_ITER /* paranoia */)
|
---|
3090 | {
|
---|
3091 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTimerPollDefaultCalc);
|
---|
3092 | cItersTillNextPoll = iemPollTimersCalcDefaultCountdown(cNsDeltaAdj);
|
---|
3093 | }
|
---|
3094 | else if ( cNsSinceLast >= cNsDeltaAdj + cNsDeltaSlack
|
---|
3095 | || cNsSinceLast <= cNsDeltaAdj - cNsDeltaSlack)
|
---|
3096 | {
|
---|
3097 | if (cNsSinceLast >= cItersTillNextPoll)
|
---|
3098 | {
|
---|
3099 | uint32_t uFactor = (uint32_t)(cNsSinceLast + cItersTillNextPoll - 1) / cItersTillNextPoll;
|
---|
3100 | cItersTillNextPoll = cNsDeltaAdj / uFactor;
|
---|
3101 | STAM_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTimerPollFactorDivision, uFactor);
|
---|
3102 | }
|
---|
3103 | else
|
---|
3104 | {
|
---|
3105 | uint32_t uFactor = cItersTillNextPoll / (uint32_t)cNsSinceLast;
|
---|
3106 | cItersTillNextPoll = cNsDeltaAdj * uFactor;
|
---|
3107 | STAM_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTimerPollFactorMultiplication, uFactor);
|
---|
3108 | }
|
---|
3109 |
|
---|
3110 | if (cItersTillNextPoll >= IEM_TIMER_POLL_MIN_ITER)
|
---|
3111 | {
|
---|
3112 | if (cItersTillNextPoll <= IEM_TIMER_POLL_MAX_ITER)
|
---|
3113 | { /* likely */ }
|
---|
3114 | else
|
---|
3115 | {
|
---|
3116 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTimerPollMax);
|
---|
3117 | cItersTillNextPoll = IEM_TIMER_POLL_MAX_ITER;
|
---|
3118 | }
|
---|
3119 | }
|
---|
3120 | else
|
---|
3121 | cItersTillNextPoll = IEM_TIMER_POLL_MIN_ITER;
|
---|
3122 | }
|
---|
3123 | else
|
---|
3124 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTimerPollUnchanged);
|
---|
3125 | }
|
---|
3126 | pVCpu->iem.s.cTbsTillNextTimerPollPrev = cItersTillNextPoll;
|
---|
3127 | }
|
---|
3128 | #else
|
---|
3129 | /** Poll timers every 400 us / 2500 Hz. (source: thin air) */
|
---|
3130 | # define IEM_TIMER_POLL_IDEAL_NS (400U * RT_NS_1US)
|
---|
3131 | uint32_t cItersTillNextPoll = pVCpu->iem.s.cTbsTillNextTimerPollPrev;
|
---|
3132 | uint32_t const cNsIdealPollInterval = IEM_TIMER_POLL_IDEAL_NS;
|
---|
3133 | int64_t const nsFromIdeal = cNsSinceLast - cNsIdealPollInterval;
|
---|
3134 | if (nsFromIdeal < 0)
|
---|
3135 | {
|
---|
3136 | if ((uint64_t)-nsFromIdeal > cNsIdealPollInterval / 8 && cItersTillNextPoll < _64K)
|
---|
3137 | {
|
---|
3138 | cItersTillNextPoll += cItersTillNextPoll / 8;
|
---|
3139 | pVCpu->iem.s.cTbsTillNextTimerPollPrev = cItersTillNextPoll;
|
---|
3140 | }
|
---|
3141 | }
|
---|
3142 | else
|
---|
3143 | {
|
---|
3144 | if ((uint64_t)nsFromIdeal > cNsIdealPollInterval / 8 && cItersTillNextPoll > 256)
|
---|
3145 | {
|
---|
3146 | cItersTillNextPoll -= cItersTillNextPoll / 8;
|
---|
3147 | pVCpu->iem.s.cTbsTillNextTimerPollPrev = cItersTillNextPoll;
|
---|
3148 | }
|
---|
3149 | }
|
---|
3150 | #endif
|
---|
3151 | pVCpu->iem.s.cTbsTillNextTimerPoll = cItersTillNextPoll;
|
---|
3152 |
|
---|
3153 | /*
|
---|
3154 | * Repeat the IRQ and FF checks.
|
---|
3155 | */
|
---|
3156 | if (cNsDelta > 0)
|
---|
3157 | {
|
---|
3158 | uint32_t fCpu = pVCpu->fLocalForcedActions;
|
---|
3159 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
3160 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
3161 | | VMCPU_FF_TLB_FLUSH
|
---|
3162 | | VMCPU_FF_UNHALT );
|
---|
3163 | if (RT_LIKELY( ( !fCpu
|
---|
3164 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
3165 | && ( !pVCpu->cpum.GstCtx.rflags.Bits.u1IF
|
---|
3166 | || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)) ) )
|
---|
3167 | && !VM_FF_IS_ANY_SET(pVCpu->CTX_SUFF(pVM), VM_FF_ALL_MASK) ))
|
---|
3168 | {
|
---|
3169 | STAM_PROFILE_STOP(&pVCpu->iem.s.StatTimerPoll, a);
|
---|
3170 | return VINF_SUCCESS;
|
---|
3171 | }
|
---|
3172 | }
|
---|
3173 | STAM_PROFILE_STOP(&pVCpu->iem.s.StatTimerPoll, a);
|
---|
3174 | return VINF_IEM_REEXEC_BREAK_FF;
|
---|
3175 | }
|
---|
3176 |
|
---|
3177 |
|
---|
3178 | /** Helper for iemTbExec. */
|
---|
3179 | DECL_FORCE_INLINE(PIEMTB *) iemTbGetTbLookupEntryWithRip(PCIEMTB pTb, uint8_t uTbLookup, uint64_t uRip)
|
---|
3180 | {
|
---|
3181 | uint8_t const idx = IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(uTbLookup, uRip);
|
---|
3182 | Assert(idx < pTb->cTbLookupEntries);
|
---|
3183 | return IEMTB_GET_TB_LOOKUP_TAB_ENTRY(pTb, idx);
|
---|
3184 | }
|
---|
3185 |
|
---|
3186 |
|
---|
3187 | /**
|
---|
3188 | * Executes a translation block.
|
---|
3189 | *
|
---|
3190 | * @returns Strict VBox status code.
|
---|
3191 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
3192 | * thread.
|
---|
3193 | * @param pTb The translation block to execute.
|
---|
3194 | */
|
---|
3195 | static VBOXSTRICTRC iemTbExec(PVMCPUCC pVCpu, PIEMTB pTb) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
3196 | {
|
---|
3197 | Assert(!(pVCpu->iem.s.GCPhysInstrBuf & (RTGCPHYS)GUEST_PAGE_OFFSET_MASK));
|
---|
3198 |
|
---|
3199 | /*
|
---|
3200 | * Set the current TB so CIMPL functions may get at it.
|
---|
3201 | */
|
---|
3202 | pVCpu->iem.s.pCurTbR3 = pTb;
|
---|
3203 | pVCpu->iem.s.ppTbLookupEntryR3 = IEMTB_GET_TB_LOOKUP_TAB_ENTRY(pTb, 0);
|
---|
3204 |
|
---|
3205 | /*
|
---|
3206 | * Execute the block.
|
---|
3207 | */
|
---|
3208 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
3209 | if (pTb->fFlags & IEMTB_F_TYPE_NATIVE)
|
---|
3210 | {
|
---|
3211 | pVCpu->iem.s.cTbExecNative++;
|
---|
3212 | IEMTLBTRACE_TB_EXEC_N8VE(pVCpu, pTb);
|
---|
3213 | # ifdef LOG_ENABLED
|
---|
3214 | iemThreadedLogCurInstr(pVCpu, "EXn", 0);
|
---|
3215 | # endif
|
---|
3216 |
|
---|
3217 | # ifndef IEMNATIVE_WITH_RECOMPILER_PROLOGUE_SINGLETON
|
---|
3218 | # ifdef RT_ARCH_AMD64
|
---|
3219 | VBOXSTRICTRC const rcStrict = ((PFNIEMTBNATIVE)pTb->Native.paInstructions)(pVCpu);
|
---|
3220 | # else
|
---|
3221 | VBOXSTRICTRC const rcStrict = ((PFNIEMTBNATIVE)pTb->Native.paInstructions)(pVCpu, &pVCpu->cpum.GstCtx);
|
---|
3222 | # endif
|
---|
3223 | # else
|
---|
3224 | # ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
|
---|
3225 | AssertCompileMemberOffset(VMCPUCC, iem.s.pvTbFramePointerR3, 0x7c8); /* This is assumed in iemNativeTbEntry */
|
---|
3226 | # endif
|
---|
3227 | # ifdef RT_ARCH_AMD64
|
---|
3228 | VBOXSTRICTRC const rcStrict = iemNativeTbEntry(pVCpu, (uintptr_t)pTb->Native.paInstructions);
|
---|
3229 | # else
|
---|
3230 | VBOXSTRICTRC const rcStrict = iemNativeTbEntry(pVCpu, &pVCpu->cpum.GstCtx, (uintptr_t)pTb->Native.paInstructions);
|
---|
3231 | # endif
|
---|
3232 | # endif
|
---|
3233 |
|
---|
3234 | # ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
|
---|
3235 | pVCpu->iem.s.pvTbFramePointerR3 = NULL;
|
---|
3236 | # endif
|
---|
3237 | # ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
|
---|
3238 | /* Restore FPCR/MXCSR if the TB modified it. */
|
---|
3239 | if (pVCpu->iem.s.uRegFpCtrl != IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED)
|
---|
3240 | {
|
---|
3241 | iemNativeFpCtrlRegRestore(pVCpu->iem.s.uRegFpCtrl);
|
---|
3242 | /* Reset for the next round saving us an unconditional instruction on next TB entry. */
|
---|
3243 | pVCpu->iem.s.uRegFpCtrl = IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED;
|
---|
3244 | }
|
---|
3245 | # endif
|
---|
3246 | # ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
|
---|
3247 | Assert(pVCpu->iem.s.fSkippingEFlags == 0);
|
---|
3248 | # endif
|
---|
3249 | if (RT_LIKELY( rcStrict == VINF_SUCCESS
|
---|
3250 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */))
|
---|
3251 | { /* likely */ }
|
---|
3252 | else
|
---|
3253 | {
|
---|
3254 | /* pVCpu->iem.s.cInstructions is incremented by iemNativeHlpExecStatusCodeFiddling. */
|
---|
3255 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
3256 |
|
---|
3257 | /* VINF_IEM_REEXEC_BREAK should be treated as VINF_SUCCESS as it's
|
---|
3258 | only to break out of TB execution early. */
|
---|
3259 | if (rcStrict == VINF_IEM_REEXEC_BREAK)
|
---|
3260 | {
|
---|
3261 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeTbExitReturnBreak);
|
---|
3262 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
3263 | }
|
---|
3264 |
|
---|
3265 | /* VINF_IEM_REEXEC_BREAK_FF should be treated as VINF_SUCCESS as it's
|
---|
3266 | only to break out of TB execution early due to pending FFs. */
|
---|
3267 | if (rcStrict == VINF_IEM_REEXEC_BREAK_FF)
|
---|
3268 | {
|
---|
3269 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeTbExitReturnBreakFF);
|
---|
3270 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
3271 | }
|
---|
3272 |
|
---|
3273 | /* VINF_IEM_REEXEC_WITH_FLAGS needs to receive special treatment
|
---|
3274 | and converted to VINF_SUCCESS or whatever is appropriate. */
|
---|
3275 | if (rcStrict == VINF_IEM_REEXEC_FINISH_WITH_FLAGS)
|
---|
3276 | {
|
---|
3277 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeTbExitReturnWithFlags);
|
---|
3278 | return iemExecStatusCodeFiddling(pVCpu, iemFinishInstructionWithFlagsSet(pVCpu, VINF_SUCCESS));
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeTbExitReturnOtherStatus);
|
---|
3282 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
3283 | }
|
---|
3284 | }
|
---|
3285 | else
|
---|
3286 | #endif /* VBOX_WITH_IEM_NATIVE_RECOMPILER */
|
---|
3287 | {
|
---|
3288 | /*
|
---|
3289 | * The threaded execution loop.
|
---|
3290 | */
|
---|
3291 | pVCpu->iem.s.cTbExecThreaded++;
|
---|
3292 | IEMTLBTRACE_TB_EXEC_THRD(pVCpu, pTb);
|
---|
3293 | #ifdef LOG_ENABLED
|
---|
3294 | uint64_t uRipPrev = UINT64_MAX;
|
---|
3295 | #endif
|
---|
3296 | PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls;
|
---|
3297 | uint32_t cCallsLeft = pTb->Thrd.cCalls;
|
---|
3298 | while (cCallsLeft-- > 0)
|
---|
3299 | {
|
---|
3300 | #ifdef LOG_ENABLED
|
---|
3301 | if (pVCpu->cpum.GstCtx.rip != uRipPrev)
|
---|
3302 | {
|
---|
3303 | uRipPrev = pVCpu->cpum.GstCtx.rip;
|
---|
3304 | iemThreadedLogCurInstr(pVCpu, "EXt", pTb->Thrd.cCalls - cCallsLeft - 1);
|
---|
3305 | }
|
---|
3306 | Log9(("%04x:%08RX64: #%d/%d - %d %s\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
3307 | pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->idxInstr, pCallEntry->enmFunction,
|
---|
3308 | g_apszIemThreadedFunctions[pCallEntry->enmFunction]));
|
---|
3309 | #endif
|
---|
3310 | #ifdef VBOX_WITH_STATISTICS
|
---|
3311 | AssertCompile(RT_ELEMENTS(pVCpu->iem.s.acThreadedFuncStats) >= kIemThreadedFunc_End);
|
---|
3312 | pVCpu->iem.s.acThreadedFuncStats[pCallEntry->enmFunction] += 1;
|
---|
3313 | #endif
|
---|
3314 | VBOXSTRICTRC const rcStrict = g_apfnIemThreadedFunctions[pCallEntry->enmFunction](pVCpu,
|
---|
3315 | pCallEntry->auParams[0],
|
---|
3316 | pCallEntry->auParams[1],
|
---|
3317 | pCallEntry->auParams[2]);
|
---|
3318 | if (RT_LIKELY( rcStrict == VINF_SUCCESS
|
---|
3319 | && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */))
|
---|
3320 | pCallEntry++;
|
---|
3321 | else if (rcStrict == VINF_IEM_REEXEC_JUMP)
|
---|
3322 | {
|
---|
3323 | Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS);
|
---|
3324 | Assert(cCallsLeft == 0);
|
---|
3325 | uint32_t const idxTarget = (uint32_t)pCallEntry->auParams[0];
|
---|
3326 | cCallsLeft = pTb->Thrd.cCalls;
|
---|
3327 | AssertBreak(idxTarget < cCallsLeft - 1);
|
---|
3328 | cCallsLeft -= idxTarget;
|
---|
3329 | pCallEntry = &pTb->Thrd.paCalls[idxTarget];
|
---|
3330 | AssertBreak(pCallEntry->fFlags & IEMTHREADEDCALLENTRY_F_JUMP_TARGET);
|
---|
3331 | }
|
---|
3332 | else
|
---|
3333 | {
|
---|
3334 | pVCpu->iem.s.cInstructions += pCallEntry->idxInstr; /* This may be one short, but better than zero. */
|
---|
3335 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
3336 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatTbThreadedExecBreaks);
|
---|
3337 | pVCpu->iem.s.ppTbLookupEntryR3 = iemTbGetTbLookupEntryWithRip(pTb, pCallEntry->uTbLookup, pVCpu->cpum.GstCtx.rip);
|
---|
3338 |
|
---|
3339 | /* VINF_IEM_REEXEC_BREAK should be treated as VINF_SUCCESS as it's
|
---|
3340 | only to break out of TB execution early. */
|
---|
3341 | if (rcStrict == VINF_IEM_REEXEC_BREAK)
|
---|
3342 | {
|
---|
3343 | #ifdef VBOX_WITH_STATISTICS
|
---|
3344 | if (pCallEntry->uTbLookup)
|
---|
3345 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTbThreadedExecBreaksWithLookup);
|
---|
3346 | else
|
---|
3347 | STAM_COUNTER_INC(&pVCpu->iem.s.StatTbThreadedExecBreaksWithoutLookup);
|
---|
3348 | #endif
|
---|
3349 | return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS);
|
---|
3350 | }
|
---|
3351 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
3352 | }
|
---|
3353 | }
|
---|
3354 |
|
---|
3355 | /* Update the lookup entry. */
|
---|
3356 | pVCpu->iem.s.ppTbLookupEntryR3 = iemTbGetTbLookupEntryWithRip(pTb, pCallEntry[-1].uTbLookup, pVCpu->cpum.GstCtx.rip);
|
---|
3357 | }
|
---|
3358 |
|
---|
3359 | pVCpu->iem.s.cInstructions += pTb->cInstructions;
|
---|
3360 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
3361 | return VINF_SUCCESS;
|
---|
3362 | }
|
---|
3363 |
|
---|
3364 |
|
---|
3365 | /**
|
---|
3366 | * This is called when the PC doesn't match the current pbInstrBuf.
|
---|
3367 | *
|
---|
3368 | * Upon return, we're ready for opcode fetching. But please note that
|
---|
3369 | * pbInstrBuf can be NULL iff the memory doesn't have readable backing (i.e.
|
---|
3370 | * MMIO or unassigned).
|
---|
3371 | */
|
---|
3372 | static RTGCPHYS iemGetPcWithPhysAndCodeMissed(PVMCPUCC pVCpu)
|
---|
3373 | {
|
---|
3374 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
3375 | pVCpu->iem.s.offCurInstrStart = 0;
|
---|
3376 | pVCpu->iem.s.offInstrNextByte = 0;
|
---|
3377 | iemOpcodeFetchBytesJmp(pVCpu, 0, NULL);
|
---|
3378 | return pVCpu->iem.s.GCPhysInstrBuf + pVCpu->iem.s.offCurInstrStart;
|
---|
3379 | }
|
---|
3380 |
|
---|
3381 |
|
---|
3382 | /** @todo need private inline decl for throw/nothrow matching IEM_WITH_SETJMP? */
|
---|
3383 | DECL_FORCE_INLINE_THROW(RTGCPHYS) iemGetPcWithPhysAndCode(PVMCPUCC pVCpu)
|
---|
3384 | {
|
---|
3385 | /*
|
---|
3386 | * Set uCurTbStartPc to RIP and calc the effective PC.
|
---|
3387 | */
|
---|
3388 | uint64_t uPc = pVCpu->cpum.GstCtx.rip;
|
---|
3389 | #if 0 /* unused */
|
---|
3390 | pVCpu->iem.s.uCurTbStartPc = uPc;
|
---|
3391 | #endif
|
---|
3392 | Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu));
|
---|
3393 | uPc += pVCpu->cpum.GstCtx.cs.u64Base;
|
---|
3394 |
|
---|
3395 | /*
|
---|
3396 | * Advance within the current buffer (PAGE) when possible.
|
---|
3397 | */
|
---|
3398 | if (pVCpu->iem.s.pbInstrBuf)
|
---|
3399 | {
|
---|
3400 | uint64_t off = uPc - pVCpu->iem.s.uInstrBufPc;
|
---|
3401 | if (off < pVCpu->iem.s.cbInstrBufTotal)
|
---|
3402 | {
|
---|
3403 | pVCpu->iem.s.offInstrNextByte = (uint32_t)off;
|
---|
3404 | pVCpu->iem.s.offCurInstrStart = (uint16_t)off;
|
---|
3405 | if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal)
|
---|
3406 | pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15;
|
---|
3407 | else
|
---|
3408 | pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal;
|
---|
3409 |
|
---|
3410 | return pVCpu->iem.s.GCPhysInstrBuf + off;
|
---|
3411 | }
|
---|
3412 | }
|
---|
3413 | return iemGetPcWithPhysAndCodeMissed(pVCpu);
|
---|
3414 | }
|
---|
3415 |
|
---|
3416 |
|
---|
3417 | /**
|
---|
3418 | * Determines the extra IEMTB_F_XXX flags.
|
---|
3419 | *
|
---|
3420 | * @returns A mix of IEMTB_F_INHIBIT_SHADOW, IEMTB_F_INHIBIT_NMI and
|
---|
3421 | * IEMTB_F_CS_LIM_CHECKS (or zero).
|
---|
3422 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
3423 | * thread.
|
---|
3424 | */
|
---|
3425 | DECL_FORCE_INLINE(uint32_t) iemGetTbFlagsForCurrentPc(PVMCPUCC pVCpu)
|
---|
3426 | {
|
---|
3427 | uint32_t fRet = 0;
|
---|
3428 |
|
---|
3429 | /*
|
---|
3430 | * Determine the inhibit bits.
|
---|
3431 | */
|
---|
3432 | if (!(pVCpu->cpum.GstCtx.rflags.uBoth & (CPUMCTX_INHIBIT_SHADOW | CPUMCTX_INHIBIT_NMI)))
|
---|
3433 | { /* typical */ }
|
---|
3434 | else
|
---|
3435 | {
|
---|
3436 | if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx))
|
---|
3437 | fRet |= IEMTB_F_INHIBIT_SHADOW;
|
---|
3438 | if (CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx))
|
---|
3439 | fRet |= IEMTB_F_INHIBIT_NMI;
|
---|
3440 | }
|
---|
3441 |
|
---|
3442 | /*
|
---|
3443 | * Return IEMTB_F_CS_LIM_CHECKS if the current PC is invalid or if it is
|
---|
3444 | * likely to go invalid before the end of the translation block.
|
---|
3445 | */
|
---|
3446 | if (IEM_F_MODE_X86_IS_FLAT(pVCpu->iem.s.fExec))
|
---|
3447 | return fRet;
|
---|
3448 |
|
---|
3449 | int64_t const offFromLim = (int64_t)pVCpu->cpum.GstCtx.cs.u32Limit - (int64_t)pVCpu->cpum.GstCtx.eip;
|
---|
3450 | if (offFromLim >= X86_PAGE_SIZE + 16 - (int32_t)(pVCpu->cpum.GstCtx.cs.u64Base & GUEST_PAGE_OFFSET_MASK))
|
---|
3451 | return fRet;
|
---|
3452 | return fRet | IEMTB_F_CS_LIM_CHECKS;
|
---|
3453 | }
|
---|
3454 |
|
---|
3455 |
|
---|
3456 | VMM_INT_DECL(VBOXSTRICTRC) IEMExecRecompiler(PVMCC pVM, PVMCPUCC pVCpu, bool fWasHalted)
|
---|
3457 | {
|
---|
3458 | /*
|
---|
3459 | * See if there is an interrupt pending in TRPM, inject it if we can.
|
---|
3460 | */
|
---|
3461 | if (!TRPMHasTrap(pVCpu))
|
---|
3462 | { /* likely */ }
|
---|
3463 | else
|
---|
3464 | {
|
---|
3465 | VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu);
|
---|
3466 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
3467 | { /*likely */ }
|
---|
3468 | else
|
---|
3469 | return rcStrict;
|
---|
3470 | }
|
---|
3471 |
|
---|
3472 | /*
|
---|
3473 | * Init the execution environment.
|
---|
3474 | */
|
---|
3475 | #if 1 /** @todo this seems like a good idea, however if we ever share memory
|
---|
3476 | * directly with other threads on the host, it isn't necessarily... */
|
---|
3477 | if (pVM->cCpus == 1)
|
---|
3478 | iemInitExec(pVCpu, IEM_F_X86_DISREGARD_LOCK /*fExecOpts*/);
|
---|
3479 | else
|
---|
3480 | #endif
|
---|
3481 | iemInitExec(pVCpu, 0 /*fExecOpts*/);
|
---|
3482 |
|
---|
3483 | if (RT_LIKELY(!fWasHalted && pVCpu->iem.s.msRecompilerPollNow != 0))
|
---|
3484 | { }
|
---|
3485 | else
|
---|
3486 | {
|
---|
3487 | /* Do polling after halt and the first time we get here. */
|
---|
3488 | #ifdef IEM_WITH_ADAPTIVE_TIMER_POLLING
|
---|
3489 | uint64_t nsNow = 0;
|
---|
3490 | uint32_t const cItersTillPoll = iemPollTimersCalcDefaultCountdown(TMTimerPollBoolWithNanoTS(pVM, pVCpu, &nsNow));
|
---|
3491 | pVCpu->iem.s.cTbsTillNextTimerPollPrev = cItersTillPoll;
|
---|
3492 | pVCpu->iem.s.cTbsTillNextTimerPoll = cItersTillPoll;
|
---|
3493 | #else
|
---|
3494 | uint64_t const nsNow = TMVirtualGetNoCheck(pVM);
|
---|
3495 | #endif
|
---|
3496 | pVCpu->iem.s.nsRecompilerPollNow = nsNow;
|
---|
3497 | pVCpu->iem.s.msRecompilerPollNow = (uint32_t)(nsNow / RT_NS_1MS);
|
---|
3498 | }
|
---|
3499 | pVCpu->iem.s.ppTbLookupEntryR3 = &pVCpu->iem.s.pTbLookupEntryDummyR3;
|
---|
3500 |
|
---|
3501 | /*
|
---|
3502 | * Run-loop.
|
---|
3503 | *
|
---|
3504 | * If we're using setjmp/longjmp we combine all the catching here to avoid
|
---|
3505 | * having to call setjmp for each block we're executing.
|
---|
3506 | */
|
---|
3507 | PIEMTBCACHE const pTbCache = pVCpu->iem.s.pTbCacheR3;
|
---|
3508 | for (;;)
|
---|
3509 | {
|
---|
3510 | VBOXSTRICTRC rcStrict;
|
---|
3511 | IEM_TRY_SETJMP(pVCpu, rcStrict)
|
---|
3512 | {
|
---|
3513 | for (;;)
|
---|
3514 | {
|
---|
3515 | /* Translate PC to physical address, we'll need this for both lookup and compilation. */
|
---|
3516 | RTGCPHYS const GCPhysPc = iemGetPcWithPhysAndCode(pVCpu);
|
---|
3517 | if (RT_LIKELY(pVCpu->iem.s.pbInstrBuf != NULL))
|
---|
3518 | {
|
---|
3519 | uint32_t const fExtraFlags = iemGetTbFlagsForCurrentPc(pVCpu);
|
---|
3520 | PIEMTB const pTb = iemTbCacheLookup(pVCpu, pTbCache, GCPhysPc, fExtraFlags);
|
---|
3521 | if (pTb)
|
---|
3522 | rcStrict = iemTbExec(pVCpu, pTb);
|
---|
3523 | else
|
---|
3524 | rcStrict = iemThreadedCompile(pVM, pVCpu, GCPhysPc, fExtraFlags);
|
---|
3525 | }
|
---|
3526 | else
|
---|
3527 | {
|
---|
3528 | /* This can only happen if the current PC cannot be translated into a
|
---|
3529 | host pointer, which means we're in MMIO or unmapped memory... */
|
---|
3530 | #if defined(VBOX_STRICT) && defined(IN_RING3)
|
---|
3531 | rcStrict = DBGFSTOP(pVM);
|
---|
3532 | if (rcStrict != VINF_SUCCESS && rcStrict != VERR_DBGF_NOT_ATTACHED)
|
---|
3533 | return rcStrict;
|
---|
3534 | #endif
|
---|
3535 | rcStrict = IEMExecLots(pVCpu, 2048, 511, NULL);
|
---|
3536 | }
|
---|
3537 | if (rcStrict == VINF_SUCCESS)
|
---|
3538 | {
|
---|
3539 | Assert(pVCpu->iem.s.cActiveMappings == 0);
|
---|
3540 |
|
---|
3541 | /* Note! This IRQ/FF check is repeated in iemPollTimers, iemThreadedFunc_BltIn_CheckIrq
|
---|
3542 | and emitted by iemNativeRecompFunc_BltIn_CheckIrq. */
|
---|
3543 | uint64_t fCpu = pVCpu->fLocalForcedActions;
|
---|
3544 | fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3
|
---|
3545 | | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
3546 | | VMCPU_FF_TLB_FLUSH
|
---|
3547 | | VMCPU_FF_UNHALT );
|
---|
3548 | /** @todo this isn't even close to the NMI/IRQ conditions in EM. */
|
---|
3549 | if (RT_LIKELY( ( !fCpu
|
---|
3550 | || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
3551 | && ( !pVCpu->cpum.GstCtx.rflags.Bits.u1IF
|
---|
3552 | || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) )) )
|
---|
3553 | && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) ))
|
---|
3554 | {
|
---|
3555 | /* Once in a while we need to poll timers here. */
|
---|
3556 | if ((int32_t)--pVCpu->iem.s.cTbsTillNextTimerPoll > 0)
|
---|
3557 | { /* likely */ }
|
---|
3558 | else
|
---|
3559 | {
|
---|
3560 | int rc = iemPollTimers(pVM, pVCpu);
|
---|
3561 | if (rc != VINF_SUCCESS)
|
---|
3562 | return VINF_SUCCESS;
|
---|
3563 | }
|
---|
3564 | }
|
---|
3565 | else
|
---|
3566 | return VINF_SUCCESS;
|
---|
3567 | }
|
---|
3568 | else
|
---|
3569 | return rcStrict;
|
---|
3570 | }
|
---|
3571 | }
|
---|
3572 | IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict);
|
---|
3573 | {
|
---|
3574 | Assert(rcStrict != VINF_IEM_REEXEC_BREAK);
|
---|
3575 | pVCpu->iem.s.cLongJumps++;
|
---|
3576 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
|
---|
3577 | pVCpu->iem.s.pvTbFramePointerR3 = NULL;
|
---|
3578 | #endif
|
---|
3579 | if (pVCpu->iem.s.cActiveMappings > 0)
|
---|
3580 | iemMemRollback(pVCpu);
|
---|
3581 |
|
---|
3582 | #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER
|
---|
3583 | PIEMTB const pTb = pVCpu->iem.s.pCurTbR3;
|
---|
3584 | if (pTb && (pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE)
|
---|
3585 | {
|
---|
3586 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeTbExitLongJump);
|
---|
3587 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
3588 | Assert(pVCpu->iem.s.idxTbCurInstr < pTb->cInstructions);
|
---|
3589 | pVCpu->iem.s.cInstructions += pVCpu->iem.s.idxTbCurInstr;
|
---|
3590 | # endif
|
---|
3591 |
|
---|
3592 | #ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
|
---|
3593 | /* Restore FPCR/MXCSR if the TB modified it. */
|
---|
3594 | if (pVCpu->iem.s.uRegFpCtrl != IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED)
|
---|
3595 | {
|
---|
3596 | iemNativeFpCtrlRegRestore(pVCpu->iem.s.uRegFpCtrl);
|
---|
3597 | /* Reset for the next round saving us an unconditional instruction on next TB entry. */
|
---|
3598 | pVCpu->iem.s.uRegFpCtrl = IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED;
|
---|
3599 | }
|
---|
3600 | #endif
|
---|
3601 | }
|
---|
3602 | #endif
|
---|
3603 |
|
---|
3604 | #if 0 /** @todo do we need to clean up anything? If not, we can drop the pTb = NULL some lines up and change the scope. */
|
---|
3605 | /* If pTb isn't NULL we're in iemTbExec. */
|
---|
3606 | if (!pTb)
|
---|
3607 | {
|
---|
3608 | /* If pCurTbR3 is NULL, we're in iemGetPcWithPhysAndCode.*/
|
---|
3609 | pTb = pVCpu->iem.s.pCurTbR3;
|
---|
3610 | if (pTb)
|
---|
3611 | {
|
---|
3612 | if (pTb == pVCpu->iem.s.pThrdCompileTbR3)
|
---|
3613 | return iemThreadedCompileLongJumped(pVM, pVCpu, rcStrict);
|
---|
3614 | Assert(pTb != pVCpu->iem.s.pNativeCompileTbR3);
|
---|
3615 | }
|
---|
3616 | }
|
---|
3617 | #endif
|
---|
3618 | pVCpu->iem.s.pCurTbR3 = NULL;
|
---|
3619 | return rcStrict;
|
---|
3620 | }
|
---|
3621 | IEM_CATCH_LONGJMP_END(pVCpu);
|
---|
3622 | }
|
---|
3623 | }
|
---|
3624 |
|
---|