VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllThreadedFunctions.cpp@ 100050

Last change on this file since 100050 was 99301, checked in by vboxsync, 21 months ago

VMM/IEM: IEMThreadedFunctions.cpp -> IEMAllThreadedFunctions.cpp. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 22.3 KB
Line 
1/* $Id: IEMAllThreadedFunctions.cpp 99301 2023-04-06 00:09:21Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation, Threaded Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
33# define LOG_GROUP LOG_GROUP_IEM
34#endif
35#define VMCPU_INCL_CPUM_GST_CTX
36#define IEM_WITH_OPAQUE_DECODER_STATE
37#include <VBox/vmm/iem.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/apic.h>
40#include <VBox/vmm/pdm.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/iom.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/nem.h>
46#include <VBox/vmm/gim.h>
47#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
48# include <VBox/vmm/em.h>
49# include <VBox/vmm/hm_svm.h>
50#endif
51#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
52# include <VBox/vmm/hmvmxinline.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode-x86-amd64.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70#include "IEMMc.h"
71
72#include "IEMThreadedFunctions.h"
73
74
75/*********************************************************************************************************************************
76* Defined Constants And Macros *
77*********************************************************************************************************************************/
78
79/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param. */
80#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED(a_cbInstr) \
81 return iemRegAddToRipAndFinishingClearingRF(pVCpu, a_cbInstr)
82#undef IEM_MC_ADVANCE_RIP_AND_FINISH
83
84/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
85 * and only used when we're in 64-bit code. */
86#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_LM64(a_cbInstr) \
87 return iemRegAddToRip64AndFinishingClearingRF(pVCpu, a_cbInstr)
88#undef IEM_MC_ADVANCE_RIP_AND_FINISH
89
90/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
91 * and never used in 64-bit code. */
92#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_NOT64(a_cbInstr) \
93 return iemRegAddToEip32AndFinishingClearingRF(pVCpu, a_cbInstr)
94#undef IEM_MC_ADVANCE_RIP_AND_FINISH
95
96/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as param. */
97#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED(a_i8, a_cbInstr, a_enmEffOpSize) \
98 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
99#undef IEM_MC_REL_JMP_S8_AND_FINISH
100
101/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as param. */
102#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED(a_i16, a_cbInstr) \
103 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
104#undef IEM_MC_REL_JMP_S16_AND_FINISH
105
106/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as param. */
107#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED(a_i32, a_cbInstr, a_enmEffOpSize) \
108 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32), a_enmEffOpSize)
109#undef IEM_MC_REL_JMP_S32_AND_FINISH
110
111/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
112#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16(a_GCPtrEff, a_bRm, a_u16Disp) \
113 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr16(pVCpu, a_bRm, a_u16Disp)
114#undef IEM_MC_CALC_RM_EFF_ADDR
115
116/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
117#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32(a_GCPtrEff, a_bRm, a_bSib, a_u32Disp) \
118 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_bSib, a_u32Disp)
119#undef IEM_MC_CALC_RM_EFF_ADDR
120
121/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
122#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT(a_GCPtrEff, a_bRm, a_bSib, a_u32Disp) \
123 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_bSib, a_u32Disp)
124#undef IEM_MC_CALC_RM_EFF_ADDR
125
126/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
127#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64(a_GCPtrEff, a_bRmEx, a_bSib, a_u32Disp, a_cbImm) \
128 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_bSib, a_u32Disp, a_cbImm)
129#undef IEM_MC_CALC_RM_EFF_ADDR
130
131/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
132#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR6432(a_GCPtrEff, a_bRmEx, a_bSib, a_u32Disp, a_cbImm) \
133 (a_GCPtrEff) = (uint32_t)iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_bSib, a_u32Disp, a_cbImm)
134#undef IEM_MC_CALC_RM_EFF_ADDR
135
136/** Variant of IEM_MC_CALL_CIMPL_1 with explicit instruction length parameter. */
137#define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_pfnCImpl, a0) \
138 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
139#undef IEM_MC_CALL_CIMPL_1
140
141/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
142#define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_pfnCImpl, a0, a1) \
143 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
144#undef IEM_MC_CALL_CIMPL_2
145
146/** Variant of IEM_MC_CALL_CIMPL_3 with explicit instruction length parameter. */
147#define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_pfnCImpl, a0, a1, a2) \
148 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
149#undef IEM_MC_CALL_CIMPL_3
150
151/** Variant of IEM_MC_CALL_CIMPL_4 with explicit instruction length parameter. */
152#define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_pfnCImpl, a0, a1, a2, a3) \
153 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
154#undef IEM_MC_CALL_CIMPL_4
155
156/** Variant of IEM_MC_CALL_CIMPL_5 with explicit instruction length parameter. */
157#define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_pfnCImpl, a0, a1, a2, a3, a4) \
158 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
159#undef IEM_MC_CALL_CIMPL_5
160
161/** Variant of IEM_MC_FETCH_GREG_U8 with extended (20) register index. */
162#define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
163 (a_u8Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
164
165/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U16 with extended (20) register index. */
166#define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
167 (a_u16Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
168
169/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U32 with extended (20) register index. */
170#define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
171 (a_u32Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
172
173/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U64 with extended (20) register index. */
174#define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
175 (a_u64Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
176
177/** Variant of IEM_MC_FETCH_GREG_U8_SX_U16 with extended (20) register index. */
178#define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
179 (a_u16Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
180
181/** Variant of IEM_MC_FETCH_GREG_U8_SX_U32 with extended (20) register index. */
182#define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
183 (a_u32Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
184#undef IEM_MC_FETCH_GREG_U8_SX_U32
185
186/** Variant of IEM_MC_FETCH_GREG_U8_SX_U64 with extended (20) register index. */
187#define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
188 (a_u64Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
189#undef IEM_MC_FETCH_GREG_U8_SX_U64
190
191/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
192#define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
193 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
194#undef IEM_MC_STORE_GREG_U8
195
196/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
197#define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
198 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
199#undef IEM_MC_STORE_GREG_U8
200
201/** Variant of IEM_MC_REF_GREG_U8 with extended (20) register index. */
202#define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
203 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
204#undef IEM_MC_REF_GREG_U8
205
206/** Variant of IEM_MC_ADD_GREG_U8 with extended (20) register index. */
207#define IEM_MC_ADD_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
208 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) += (a_u8Value)
209#undef IEM_MC_ADD_GREG_U8
210
211/** Variant of IEM_MC_SUB_GREG_U8 with extended (20) register index. */
212#define IEM_MC_SUB_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
213 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) -= (a_u8Value)
214#undef IEM_MC_SUB_GREG_U8
215
216/** Variant of IEM_MC_ADD_GREG_U8_TO_LOCAL with extended (20) register index. */
217#define IEM_MC_ADD_GREG_U8_TO_LOCAL_THREADED(a_u8Value, a_iGRegEx) \
218 do { (a_u8Value) += iemGRegFetchU8Ex(pVCpu, (a_iGRegEx)); } while (0)
219#undef IEM_MC_ADD_GREG_U8_TO_LOCAL
220
221/** Variant of IEM_MC_AND_GREG_U8 with extended (20) register index. */
222#define IEM_MC_AND_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
223 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) &= (a_u8Value)
224#undef IEM_MC_AND_GREG_U8
225
226/** Variant of IEM_MC_OR_GREG_U8 with extended (20) register index. */
227#define IEM_MC_OR_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
228 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) |= (a_u8Value)
229#undef IEM_MC_OR_GREG_U8
230
231/**
232 * Calculates the effective address of a ModR/M memory operand, 16-bit
233 * addressing variant.
234 *
235 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16.
236 *
237 * @returns The effective address.
238 * @param pVCpu The cross context virtual CPU structure of the calling thread.
239 * @param bRm The ModRM byte.
240 * @param u16Disp The displacement byte/word, if any.
241 * RIP relative addressing.
242 */
243static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr16(PVMCPUCC pVCpu, uint8_t bRm, uint16_t u16Disp) RT_NOEXCEPT
244{
245 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: bRm=%#x\n", bRm));
246 Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
247
248 /* Handle the disp16 form with no registers first. */
249 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
250 {
251 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16Disp));
252 return u16Disp;
253 }
254
255 /* Get the displacment. */
256 /** @todo we can eliminate this step by making u16Disp have this value
257 * already! */
258 uint16_t u16EffAddr;
259 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
260 {
261 case 0: u16EffAddr = 0; break;
262 case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
263 case 2: u16EffAddr = u16Disp; break;
264 default: AssertFailedStmt(u16EffAddr = 0);
265 }
266
267 /* Add the base and index registers to the disp. */
268 switch (bRm & X86_MODRM_RM_MASK)
269 {
270 case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
271 case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
272 case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; break;
273 case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; break;
274 case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
275 case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
276 case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; break;
277 case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
278 }
279
280 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16EffAddr));
281 return u16EffAddr;
282}
283
284
285/**
286 * Calculates the effective address of a ModR/M memory operand, 32-bit
287 * addressing variant.
288 *
289 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32 and
290 * IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT.
291 *
292 * @returns The effective address.
293 * @param pVCpu The cross context virtual CPU structure of the calling thread.
294 * @param bRm The ModRM byte.
295 * @param bSib The SIB byte, if any.
296 * @param u32Disp The displacement byte/dword, if any.
297 */
298static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr32(PVMCPUCC pVCpu, uint8_t bRm, uint8_t bSib, uint32_t u32Disp) RT_NOEXCEPT
299{
300 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: bRm=%#x\n", bRm));
301 Assert(pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT);
302
303 /* Handle the disp32 form with no registers first. */
304 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
305 {
306 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32Disp));
307 return u32Disp;
308 }
309
310 /* Get the register (or SIB) value. */
311 uint32_t u32EffAddr;
312#ifdef _MSC_VER
313 u32EffAddr = 0;/* MSC uninitialized variable analysis is too simple, it seems. */
314#endif
315 switch (bRm & X86_MODRM_RM_MASK)
316 {
317 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
318 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
319 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
320 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
321 case 4: /* SIB */
322 {
323 /* Get the index and scale it. */
324 switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
325 {
326 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
327 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
328 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
329 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
330 case 4: u32EffAddr = 0; /*none */ break;
331 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
332 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
333 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
334 }
335 u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
336
337 /* add base */
338 switch (bSib & X86_SIB_BASE_MASK)
339 {
340 case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
341 case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
342 case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
343 case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
344 case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp; break;
345 case 5:
346 if ((bRm & X86_MODRM_MOD_MASK) != 0)
347 u32EffAddr += pVCpu->cpum.GstCtx.ebp;
348 else
349 u32EffAddr += u32Disp;
350 break;
351 case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
352 case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
353 }
354 break;
355 }
356 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
357 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
358 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
359 }
360
361 /* Get and add the displacement. */
362 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
363 {
364 case 0: break;
365 case 1: u32EffAddr += (int8_t)u32Disp; break;
366 case 2: u32EffAddr += u32Disp; break;
367 default: AssertFailed();
368 }
369
370 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32EffAddr));
371 return u32EffAddr;
372}
373
374
375/**
376 * Calculates the effective address of a ModR/M memory operand.
377 *
378 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64.
379 *
380 * @returns The effective address.
381 * @param pVCpu The cross context virtual CPU structure of the calling thread.
382 * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
383 * bit 4 to REX.X. The two bits are part of the
384 * REG sub-field, which isn't needed in this
385 * function.
386 * @param bSib The SIB byte, if any.
387 * @param u32Disp The displacement byte/word/dword, if any.
388 * @param cbInstr The size of the fully decoded instruction. Used
389 * for RIP relative addressing.
390 * @todo combine cbInstr and cbImm!
391 */
392static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr64(PVMCPUCC pVCpu, uint8_t bRmEx, uint8_t bSib,
393 uint32_t u32Disp, uint8_t cbInstr) RT_NOEXCEPT
394{
395 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: bRmEx=%#x\n", bRmEx));
396 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
397
398 uint64_t u64EffAddr;
399
400 /* Handle the rip+disp32 form with no registers first. */
401 if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
402 {
403 u64EffAddr = (int32_t)u32Disp;
404 u64EffAddr += pVCpu->cpum.GstCtx.rip + cbInstr;
405 }
406 else
407 {
408 /* Get the register (or SIB) value. */
409#ifdef _MSC_VER
410 u64EffAddr = 0; /* MSC uninitialized variable analysis is too simple, it seems. */
411#endif
412 switch (bRmEx & (X86_MODRM_RM_MASK | 0x8)) /* bRmEx[bit 3] = REX.B */
413 {
414 default:
415 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
416 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
417 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
418 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
419 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
420 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
421 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
422 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
423 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
424 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
425 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
426 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
427 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
428 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
429 /* SIB */
430 case 4:
431 case 12:
432 {
433 /* Get the index and scale it. */
434 switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | ((bRmEx & 0x10) >> 1)) /* bRmEx[bit 4] = REX.X */
435 {
436 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
437 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
438 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
439 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
440 case 4: u64EffAddr = 0; /*none */ break;
441 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
442 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
443 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
444 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
445 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
446 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
447 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
448 case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
449 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
450 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
451 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
452 }
453 u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
454
455 /* add base */
456 switch ((bSib & X86_SIB_BASE_MASK) | (bRmEx & 0x8)) /* bRmEx[bit 3] = REX.B */
457 {
458 case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
459 case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
460 case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
461 case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
462 case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp; break;
463 case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
464 case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
465 case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
466 case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
467 case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
468 case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
469 case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
470 case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
471 case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
472 /* complicated encodings */
473 case 5:
474 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
475 u64EffAddr += pVCpu->cpum.GstCtx.rbp;
476 else
477 u64EffAddr += (int32_t)u32Disp;
478 break;
479 case 13:
480 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
481 u64EffAddr += pVCpu->cpum.GstCtx.r13;
482 else
483 u64EffAddr += (int32_t)u32Disp;
484 break;
485 }
486 break;
487 }
488 }
489
490 /* Get and add the displacement. */
491 switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
492 {
493 case 0: break;
494 case 1: u64EffAddr += (int8_t)u32Disp; break;
495 case 2: u64EffAddr += (int32_t)u32Disp; break;
496 default: AssertFailed();
497 }
498 }
499
500 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: EffAddr=%#010RGv\n", u64EffAddr));
501 return u64EffAddr;
502}
503
504
505
506/*
507 * The threaded functions.
508 */
509#include "IEMThreadedFunctions.cpp.h"
510
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette