VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllThreadedFunctions.cpp@ 100337

Last change on this file since 100337 was 100326, checked in by vboxsync, 19 months ago

VMM/IEM: Fixed a problem with 'pop [rsp/esp]' that showed up in bs2-test-1 among other places. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 28.9 KB
Line 
1/* $Id: IEMAllThreadedFunctions.cpp 100326 2023-06-28 23:48:08Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation, Threaded Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */
33# define LOG_GROUP LOG_GROUP_IEM
34#endif
35#define VMCPU_INCL_CPUM_GST_CTX
36#define IEM_WITH_OPAQUE_DECODER_STATE
37#include <VBox/vmm/iem.h>
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/apic.h>
40#include <VBox/vmm/pdm.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/iom.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/nem.h>
46#include <VBox/vmm/gim.h>
47#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
48# include <VBox/vmm/em.h>
49# include <VBox/vmm/hm_svm.h>
50#endif
51#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
52# include <VBox/vmm/hmvmxinline.h>
53#endif
54#include <VBox/vmm/tm.h>
55#include <VBox/vmm/dbgf.h>
56#include <VBox/vmm/dbgftrace.h>
57#include "IEMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/log.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62#include <VBox/dis.h>
63#include <VBox/disopcode-x86-amd64.h>
64#include <iprt/asm-math.h>
65#include <iprt/assert.h>
66#include <iprt/string.h>
67#include <iprt/x86.h>
68
69#include "IEMInline.h"
70#include "IEMMc.h"
71
72#include "IEMThreadedFunctions.h"
73
74
75/*********************************************************************************************************************************
76* Defined Constants And Macros *
77*********************************************************************************************************************************/
78
79/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
80 * and only used when we're in 16-bit code on a pre-386 CPU. */
81#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr) \
82 return iemRegAddToIp16AndFinishingClearingRF(pVCpu, a_cbInstr)
83
84/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
85 * and used for 16-bit and 32-bit code on 386 and later CPUs. */
86#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr) \
87 return iemRegAddToEip32AndFinishingClearingRF(pVCpu, a_cbInstr)
88
89/** Variant of IEM_MC_ADVANCE_RIP_AND_FINISH with instruction length as param
90 * and only used when we're in 64-bit code. */
91#define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr) \
92 return iemRegAddToRip64AndFinishingClearingRF(pVCpu, a_cbInstr)
93
94#undef IEM_MC_ADVANCE_RIP_AND_FINISH
95
96
97/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length as extra
98 * parameter, for use in 16-bit code on a pre-386 CPU. */
99#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr) \
100 return iemRegIp16RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8))
101
102/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
103 * size as extra parameters, for use in 16-bit and 32-bit code on 386 and
104 * later CPUs. */
105#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize) \
106 return iemRegEip32RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
107
108/** Variant of IEM_MC_REL_JMP_S8_AND_FINISH with instruction length and operand
109 * size as extra parameters, for use in 64-bit code. */
110#define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize) \
111 return iemRegRip64RelativeJumpS8AndFinishClearingRF(pVCpu, a_cbInstr, (a_i8), a_enmEffOpSize)
112
113#undef IEM_MC_REL_JMP_S8_AND_FINISH
114
115
116/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
117 * param, for use in 16-bit code on a pre-386 CPU. */
118#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr) \
119 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
120
121/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
122 * param, for use in 16-bit and 32-bit code on 386 and later CPUs. */
123#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr) \
124 return iemRegEip32RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
125
126/** Variant of IEM_MC_REL_JMP_S16_AND_FINISH with instruction length as
127 * param, for use in 64-bit code. */
128#define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr) \
129 return iemRegRip64RelativeJumpS16AndFinishClearingRF(pVCpu, a_cbInstr, (a_i16))
130
131#undef IEM_MC_REL_JMP_S16_AND_FINISH
132
133
134/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
135 * an extra parameter - dummy for pre-386 variations not eliminated by the
136 * python script. */
137#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr) \
138 do { RT_NOREF(pVCpu, a_i32, a_cbInstr); AssertFailedReturn(VERR_IEM_IPE_9); } while (0)
139
140/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
141 * an extra parameter, for use in 16-bit and 32-bit code on 386+. */
142#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr) \
143 return iemRegEip32RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
144
145/** Variant of IEM_MC_REL_JMP_S32_AND_FINISH with instruction length as
146 * an extra parameter, for use in 64-bit code. */
147#define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr) \
148 return iemRegRip64RelativeJumpS32AndFinishClearingRF(pVCpu, a_cbInstr, (a_i32))
149
150#undef IEM_MC_REL_JMP_S32_AND_FINISH
151
152
153/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit. */
154#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
155 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr16(pVCpu, a_bRm, a_u16Disp)
156
157/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, pre-386 16-bit. */
158#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16_PRE386(a_GCPtrEff, a_bRm, a_u16Disp) \
159 IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp)
160
161/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit with address prefix. */
162#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32_ADDR16(a_GCPtrEff, a_bRm, a_u16Disp) \
163 IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp)
164
165
166/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit. */
167#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
168 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_uSibAndRspOffset, a_u32Disp)
169
170/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 32-bit flat. */
171#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32_FLAT(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
172 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_uSibAndRspOffset, a_u32Disp)
173
174/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters, 16-bit with address prefix. */
175#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16_ADDR32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
176 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr32(pVCpu, a_bRm, a_uSibAndRspOffset, a_u32Disp)
177
178
179/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters. */
180#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
181 (a_GCPtrEff) = iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
182
183/** Variant of IEM_MC_CALC_RM_EFF_ADDR with additional parameters.
184 * @todo How did that address prefix thing work for 64-bit code again? */
185#define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
186 (a_GCPtrEff) = (uint32_t)iemOpHlpCalcRmEffAddrThreadedAddr64(pVCpu, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm)
187
188#undef IEM_MC_CALC_RM_EFF_ADDR
189
190
191/** Variant of IEM_MC_CALL_CIMPL_1 with explicit instruction length parameter. */
192#define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0) \
193 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
194#undef IEM_MC_CALL_CIMPL_1
195
196/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
197#define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1) \
198 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
199#undef IEM_MC_CALL_CIMPL_2
200
201/** Variant of IEM_MC_CALL_CIMPL_3 with explicit instruction length parameter. */
202#define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2) \
203 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
204#undef IEM_MC_CALL_CIMPL_3
205
206/** Variant of IEM_MC_CALL_CIMPL_4 with explicit instruction length parameter. */
207#define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
208 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
209#undef IEM_MC_CALL_CIMPL_4
210
211/** Variant of IEM_MC_CALL_CIMPL_5 with explicit instruction length parameter. */
212#define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
213 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
214#undef IEM_MC_CALL_CIMPL_5
215
216
217/** Variant of IEM_MC_DEFER_TO_CIMPL_0_RET with explicit instruction
218 * length parameter. */
219#define IEM_MC_DEFER_TO_CIMPL_0_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl) \
220 return (a_pfnCImpl)(pVCpu, (a_cbInstr))
221#undef IEM_MC_DEFER_TO_CIMPL_0_RET
222
223/** Variant of IEM_MC_DEFER_TO_CIMPL_1_RET with explicit instruction
224 * length parameter. */
225#define IEM_MC_DEFER_TO_CIMPL_1_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0) \
226 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0)
227#undef IEM_MC_DEFER_TO_CIMPL_1_RET
228
229/** Variant of IEM_MC_CALL_CIMPL_2 with explicit instruction length parameter. */
230#define IEM_MC_DEFER_TO_CIMPL_2_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1) \
231 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1)
232#undef IEM_MC_DEFER_TO_CIMPL_2_RET
233
234/** Variant of IEM_MC_DEFER_TO_CIMPL_3 with explicit instruction length
235 * parameter. */
236#define IEM_MC_DEFER_TO_CIMPL_3_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2) \
237 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2)
238#undef IEM_MC_DEFER_TO_CIMPL_3_RET
239
240/** Variant of IEM_MC_DEFER_TO_CIMPL_4 with explicit instruction length
241 * parameter. */
242#define IEM_MC_DEFER_TO_CIMPL_4_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
243 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3)
244#undef IEM_MC_DEFER_TO_CIMPL_4_RET
245
246/** Variant of IEM_MC_DEFER_TO_CIMPL_5 with explicit instruction length
247 * parameter. */
248#define IEM_MC_DEFER_TO_CIMPL_5_RET_THREADED(a_cbInstr, a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
249 return (a_pfnCImpl)(pVCpu, (a_cbInstr), a0, a1, a2, a3, a4)
250#undef IEM_MC_DEFER_TO_CIMPL_5_RET
251
252
253/** Variant of IEM_MC_FETCH_GREG_U8 with extended (20) register index. */
254#define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
255 (a_u8Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
256
257/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U16 with extended (20) register index. */
258#define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
259 (a_u16Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
260
261/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U32 with extended (20) register index. */
262#define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
263 (a_u32Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
264
265/** Variant of IEM_MC_FETCH_GREG_U8_ZX_U64 with extended (20) register index. */
266#define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
267 (a_u64Dst) = iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
268
269/** Variant of IEM_MC_FETCH_GREG_U8_SX_U16 with extended (20) register index. */
270#define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
271 (a_u16Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
272
273/** Variant of IEM_MC_FETCH_GREG_U8_SX_U32 with extended (20) register index. */
274#define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
275 (a_u32Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
276#undef IEM_MC_FETCH_GREG_U8_SX_U32
277
278/** Variant of IEM_MC_FETCH_GREG_U8_SX_U64 with extended (20) register index. */
279#define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
280 (a_u64Dst) = (int8_t)iemGRegFetchU8Ex(pVCpu, (a_iGRegEx))
281#undef IEM_MC_FETCH_GREG_U8_SX_U64
282
283/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
284#define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
285 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
286#undef IEM_MC_STORE_GREG_U8
287
288/** Variant of IEM_MC_STORE_GREG_U8 with extended (20) register index. */
289#define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
290 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) = (a_u8Value)
291#undef IEM_MC_STORE_GREG_U8
292
293/** Variant of IEM_MC_REF_GREG_U8 with extended (20) register index. */
294#define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
295 (a_pu8Dst) = iemGRegRefU8Ex(pVCpu, (a_iGRegEx))
296#undef IEM_MC_REF_GREG_U8
297
298/** Variant of IEM_MC_ADD_GREG_U8 with extended (20) register index. */
299#define IEM_MC_ADD_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
300 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) += (a_u8Value)
301#undef IEM_MC_ADD_GREG_U8
302
303/** Variant of IEM_MC_SUB_GREG_U8 with extended (20) register index. */
304#define IEM_MC_SUB_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
305 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) -= (a_u8Value)
306#undef IEM_MC_SUB_GREG_U8
307
308/** Variant of IEM_MC_ADD_GREG_U8_TO_LOCAL with extended (20) register index. */
309#define IEM_MC_ADD_GREG_U8_TO_LOCAL_THREADED(a_u8Value, a_iGRegEx) \
310 do { (a_u8Value) += iemGRegFetchU8Ex(pVCpu, (a_iGRegEx)); } while (0)
311#undef IEM_MC_ADD_GREG_U8_TO_LOCAL
312
313/** Variant of IEM_MC_AND_GREG_U8 with extended (20) register index. */
314#define IEM_MC_AND_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
315 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) &= (a_u8Value)
316#undef IEM_MC_AND_GREG_U8
317
318/** Variant of IEM_MC_OR_GREG_U8 with extended (20) register index. */
319#define IEM_MC_OR_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
320 *iemGRegRefU8Ex(pVCpu, (a_iGRegEx)) |= (a_u8Value)
321#undef IEM_MC_OR_GREG_U8
322
323/**
324 * Calculates the effective address of a ModR/M memory operand, 16-bit
325 * addressing variant.
326 *
327 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR16.
328 *
329 * @returns The effective address.
330 * @param pVCpu The cross context virtual CPU structure of the calling thread.
331 * @param bRm The ModRM byte.
332 * @param u16Disp The displacement byte/word, if any.
333 * RIP relative addressing.
334 */
335static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr16(PVMCPUCC pVCpu, uint8_t bRm, uint16_t u16Disp) RT_NOEXCEPT
336{
337 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: bRm=%#x u16Disp=%#x\n", bRm, u16Disp));
338 Assert(!IEM_IS_64BIT_CODE(pVCpu));
339
340 /* Handle the disp16 form with no registers first. */
341 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
342 {
343 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16Disp));
344 return u16Disp;
345 }
346
347 /* Get the displacment. */
348 /** @todo we can eliminate this step by making u16Disp have this value
349 * already! */
350 uint16_t u16EffAddr;
351 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
352 {
353 case 0: u16EffAddr = 0; break;
354 case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
355 case 2: u16EffAddr = u16Disp; break;
356 default: AssertFailedStmt(u16EffAddr = 0);
357 }
358
359 /* Add the base and index registers to the disp. */
360 switch (bRm & X86_MODRM_RM_MASK)
361 {
362 case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break;
363 case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break;
364 case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; break;
365 case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; break;
366 case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break;
367 case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break;
368 case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; break;
369 case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break;
370 }
371
372 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr16: EffAddr=%#010RGv\n", (RTGCPTR)u16EffAddr));
373 return u16EffAddr;
374}
375
376
377/**
378 * Calculates the effective address of a ModR/M memory operand, 32-bit
379 * addressing variant.
380 *
381 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32 and
382 * IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR32FLAT.
383 *
384 * @returns The effective address.
385 * @param pVCpu The cross context virtual CPU structure of the
386 * calling thread.
387 * @param bRm The ModRM byte.
388 * @param uSibAndRspOffset Two parts:
389 * - The first 8 bits make up the SIB byte.
390 * - The next 8 bits are the fixed RSP/ESP offse
391 * in case of a pop [xSP].
392 * @param u32Disp The displacement byte/dword, if any.
393 */
394static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr32(PVMCPUCC pVCpu, uint8_t bRm, uint32_t uSibAndRspOffset,
395 uint32_t u32Disp) RT_NOEXCEPT
396{
397 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: bRm=%#x uSibAndRspOffset=%#x u32Disp=%#x\n", bRm, uSibAndRspOffset, u32Disp));
398
399 /* Handle the disp32 form with no registers first. */
400 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
401 {
402 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32Disp));
403 return u32Disp;
404 }
405
406 /* Get the register (or SIB) value. */
407 uint32_t u32EffAddr;
408#ifdef _MSC_VER
409 u32EffAddr = 0;/* MSC uninitialized variable analysis is too simple, it seems. */
410#endif
411 switch (bRm & X86_MODRM_RM_MASK)
412 {
413 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
414 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
415 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
416 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
417 case 4: /* SIB */
418 {
419 /* Get the index and scale it. */
420 switch ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
421 {
422 case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break;
423 case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break;
424 case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break;
425 case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break;
426 case 4: u32EffAddr = 0; /*none */ break;
427 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
428 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
429 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
430 }
431 u32EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
432
433 /* add base */
434 switch (uSibAndRspOffset & X86_SIB_BASE_MASK)
435 {
436 case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break;
437 case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break;
438 case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break;
439 case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break;
440 case 4:
441 u32EffAddr += pVCpu->cpum.GstCtx.esp;
442 u32EffAddr += uSibAndRspOffset >> 8;
443 break;
444 case 5:
445 if ((bRm & X86_MODRM_MOD_MASK) != 0)
446 u32EffAddr += pVCpu->cpum.GstCtx.ebp;
447 else
448 u32EffAddr += u32Disp;
449 break;
450 case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break;
451 case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break;
452 }
453 break;
454 }
455 case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break;
456 case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break;
457 case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break;
458 }
459
460 /* Get and add the displacement. */
461 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
462 {
463 case 0: break;
464 case 1: u32EffAddr += (int8_t)u32Disp; break;
465 case 2: u32EffAddr += u32Disp; break;
466 default: AssertFailed();
467 }
468
469 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr32: EffAddr=%#010RGv\n", (RTGCPTR)u32EffAddr));
470 return u32EffAddr;
471}
472
473
474/**
475 * Calculates the effective address of a ModR/M memory operand.
476 *
477 * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR_THREADED_ADDR64.
478 *
479 * @returns The effective address.
480 * @param pVCpu The cross context virtual CPU structure of the
481 * calling thread.
482 * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
483 * bit 4 to REX.X. The two bits are part of the
484 * REG sub-field, which isn't needed in this
485 * function.
486 * @param uSibAndRspOffset Two parts:
487 * - The first 8 bits make up the SIB byte.
488 * - The next 8 bits are the fixed RSP/ESP offse
489 * in case of a pop [xSP].
490 * @param u32Disp The displacement byte/word/dword, if any.
491 * @param cbInstr The size of the fully decoded instruction. Used
492 * for RIP relative addressing.
493 * @todo combine cbInstr and cbImm!
494 */
495static RTGCPTR iemOpHlpCalcRmEffAddrThreadedAddr64(PVMCPUCC pVCpu, uint8_t bRmEx, uint32_t uSibAndRspOffset,
496 uint32_t u32Disp, uint8_t cbInstr) RT_NOEXCEPT
497{
498 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: bRmEx=%#x\n", bRmEx));
499 Assert(IEM_IS_64BIT_CODE(pVCpu));
500
501 uint64_t u64EffAddr;
502
503 /* Handle the rip+disp32 form with no registers first. */
504 if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
505 {
506 u64EffAddr = (int32_t)u32Disp;
507 u64EffAddr += pVCpu->cpum.GstCtx.rip + cbInstr;
508 }
509 else
510 {
511 /* Get the register (or SIB) value. */
512#ifdef _MSC_VER
513 u64EffAddr = 0; /* MSC uninitialized variable analysis is too simple, it seems. */
514#endif
515 switch (bRmEx & (X86_MODRM_RM_MASK | 0x8)) /* bRmEx[bit 3] = REX.B */
516 {
517 default:
518 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
519 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
520 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
521 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
522 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
523 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
524 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
525 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
526 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
527 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
528 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
529 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
530 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
531 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
532 /* SIB */
533 case 4:
534 case 12:
535 {
536 /* Get the index and scale it. */
537 switch ( ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
538 | ((bRmEx & 0x10) >> 1)) /* bRmEx[bit 4] = REX.X */
539 {
540 case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break;
541 case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break;
542 case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break;
543 case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break;
544 case 4: u64EffAddr = 0; /*none */ break;
545 case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break;
546 case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break;
547 case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break;
548 case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break;
549 case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break;
550 case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break;
551 case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break;
552 case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break;
553 case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break;
554 case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break;
555 case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break;
556 }
557 u64EffAddr <<= (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
558
559 /* add base */
560 switch ((uSibAndRspOffset & X86_SIB_BASE_MASK) | (bRmEx & 0x8)) /* bRmEx[bit 3] = REX.B */
561 {
562 case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break;
563 case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break;
564 case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break;
565 case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break;
566 case 4:
567 u64EffAddr += pVCpu->cpum.GstCtx.rsp;
568 u64EffAddr += uSibAndRspOffset >> 8;
569 break;
570 case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break;
571 case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break;
572 case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break;
573 case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break;
574 case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break;
575 case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break;
576 case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break;
577 case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break;
578 case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break;
579 /* complicated encodings */
580 case 5:
581 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
582 u64EffAddr += pVCpu->cpum.GstCtx.rbp;
583 else
584 u64EffAddr += (int32_t)u32Disp;
585 break;
586 case 13:
587 if ((bRmEx & X86_MODRM_MOD_MASK) != 0)
588 u64EffAddr += pVCpu->cpum.GstCtx.r13;
589 else
590 u64EffAddr += (int32_t)u32Disp;
591 break;
592 }
593 break;
594 }
595 }
596
597 /* Get and add the displacement. */
598 switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
599 {
600 case 0: break;
601 case 1: u64EffAddr += (int8_t)u32Disp; break;
602 case 2: u64EffAddr += (int32_t)u32Disp; break;
603 default: AssertFailed();
604 }
605 }
606
607 Log5(("iemOpHlpCalcRmEffAddrThreadedAddr64: EffAddr=%#010RGv\n", u64EffAddr));
608 return u64EffAddr;
609}
610
611
612
613/**
614 * Built-in function that compares the fExec mask against uParam0.
615 */
616static IEM_DECL_IMPL_DEF(VBOXSTRICTRC, iemThreadedFunc_BltIn_CheckMode,
617 (PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2))
618{
619 uint32_t const fExpectedExec = (uint32_t)uParam0;
620 if (pVCpu->iem.s.fExec == fExpectedExec)
621 return VINF_SUCCESS;
622 Log12(("Mode changed at %04x:%08RX64: %#x -> %#x (xor: %#x)\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
623 fExpectedExec, pVCpu->iem.s.fExec, fExpectedExec ^ pVCpu->iem.s.fExec));
624 RT_NOREF(uParam1, uParam2);
625 return VINF_IEM_REEXEC_MODE_CHANGED;
626}
627
628
629/**
630 * Built-in function that checks the EIP/IP + uParam0 is within CS.LIM,
631 * raising a \#GP(0) if this isn't the case.
632 */
633static IEM_DECL_IMPL_DEF(VBOXSTRICTRC, iemThreadedFunc_BltIn_CheckCsLim,
634 (PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2))
635{
636 uint32_t const cbInstr = (uint32_t)uParam0;
637 if (pVCpu->cpum.GstCtx.eip - pVCpu->cpum.GstCtx.cs.u32Limit >= cbInstr)
638 return VINF_SUCCESS;
639 Log(("EIP out of bounds at %04x:%08RX32 LB %u - CS.LIM=%#RX32\n",
640 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip, cbInstr, pVCpu->cpum.GstCtx.cs.u32Limit));
641 RT_NOREF(uParam1, uParam2);
642 return iemRaiseGeneralProtectionFault0(pVCpu);
643}
644
645/*
646 * The threaded functions.
647 */
648#include "IEMThreadedFunctions.cpp.h"
649
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette