/* $Id: IEMAllThreadedRecompiler.cpp 100695 2023-07-25 11:03:20Z vboxsync $ */ /** @file * IEM - Instruction Decoding and Threaded Recompilation. * * Logging group IEM_RE_THREADED assignments: * - Level 1 (Log) : Errors, exceptions, interrupts and such major events. [same as IEM] * - Flow (LogFlow) : * - Level 2 (Log2) : * - Level 3 (Log3) : More detailed enter/exit IEM state info. [same as IEM] * - Level 4 (Log4) : Decoding mnemonics w/ EIP. [same as IEM] * - Level 5 (Log5) : Decoding details. [same as IEM] * - Level 6 (Log6) : * - Level 7 (Log7) : TB obsoletion. * - Level 8 (Log8) : TB compilation. * - Level 9 (Log9) : TB exec. * - Level 10 (Log10): TB block lookup. * - Level 11 (Log11): TB block lookup details. * - Level 12 (Log12): TB insertion. */ /* * Copyright (C) 2011-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #ifndef LOG_GROUP /* defined when included by tstIEMCheckMc.cpp */ # define LOG_GROUP LOG_GROUP_IEM_RE_THREADED #endif #define IEM_WITH_CODE_TLB_AND_OPCODE_BUF /* A bit hackish, but its all in IEMInline.h. */ #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_NESTED_HWVIRT_SVM # include # include #endif #ifdef VBOX_WITH_NESTED_HWVIRT_VMX # include #endif #include #include #include #ifndef TST_IEM_CHECK_MC # include "IEMInternal.h" #endif #include #include #include #include #include #include #include #include #include #include #include #ifndef TST_IEM_CHECK_MC # include "IEMInline.h" # include "IEMOpHlp.h" # include "IEMMc.h" #endif #include "IEMThreadedFunctions.h" /* * Narrow down configs here to avoid wasting time on unused configs here. */ #ifndef IEM_WITH_CODE_TLB # error The code TLB must be enabled for the recompiler. #endif #ifndef IEM_WITH_DATA_TLB # error The data TLB must be enabled for the recompiler. #endif #ifndef IEM_WITH_SETJMP # error The setjmp approach must be enabled for the recompiler. #endif /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb); static VBOXSTRICTRC iemThreadedTbExec(PVMCPUCC pVCpu, PIEMTB pTb); /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define g_apfnOneByteMap g_apfnIemThreadedRecompilerOneByteMap #undef IEM_MC_CALC_RM_EFF_ADDR #ifndef IEM_WITH_SETJMP # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \ uint64_t uEffAddrInfo; \ IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddrJmpEx(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff), &uEffAddrInfo)) #else # define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \ uint64_t uEffAddrInfo; \ ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmpEx(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &uEffAddrInfo)) #endif #define IEM_MC2_BEGIN_EMIT_CALLS() \ { \ PIEMTB const pTb = pVCpu->iem.s.pCurTbR3; \ uint8_t const cbInstrMc2 = IEM_GET_INSTR_LEN(pVCpu); \ AssertMsg(pVCpu->iem.s.offOpcode == cbInstrMc2, \ ("%u vs %u (%04x:%08RX64)\n", pVCpu->iem.s.offOpcode, cbInstrMc2, \ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); \ \ /* No page crossing, right? */ \ uint16_t const offOpcodeMc2 = pTb->cbOpcodes; \ uint8_t const idxRangeMc2 = pTb->cRanges - 1; \ if ( !pVCpu->iem.s.fTbCrossedPage \ && !pVCpu->iem.s.fTbCheckOpcodes \ && !pVCpu->iem.s.fTbBranched \ && !(pTb->fFlags & IEMTB_F_CS_LIM_CHECKS)) \ { \ /** @todo Custom copy function, given range is 1 thru 15 bytes. */ \ memcpy(&pTb->pabOpcodes[offOpcodeMc2], pVCpu->iem.s.abOpcode, pVCpu->iem.s.offOpcode); \ pTb->cbOpcodes = offOpcodeMc2 + pVCpu->iem.s.offOpcode; \ pTb->aRanges[idxRangeMc2].cbOpcodes += cbInstrMc2; \ Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated); \ } \ else if (iemThreadedCompileBeginEmitCallsComplications(pVCpu, pTb)) \ { /* likely */ } \ else \ return VINF_IEM_RECOMPILE_END_TB; \ \ do { } while (0) #define IEM_MC2_EMIT_CALL_0(a_enmFunction) do { \ IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \ \ PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \ pCall->enmFunction = a_enmFunction; \ pCall->offOpcode = offOpcodeMc2; \ pCall->cbOpcode = cbInstrMc2; \ pCall->idxRange = idxRangeMc2; \ pCall->auParams[0] = 0; \ pCall->auParams[1] = 0; \ pCall->auParams[2] = 0; \ } while (0) #define IEM_MC2_EMIT_CALL_1(a_enmFunction, a_uArg0) do { \ IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \ uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \ \ PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \ pCall->enmFunction = a_enmFunction; \ pCall->offOpcode = offOpcodeMc2; \ pCall->cbOpcode = cbInstrMc2; \ pCall->idxRange = idxRangeMc2; \ pCall->auParams[0] = a_uArg0; \ pCall->auParams[1] = 0; \ pCall->auParams[2] = 0; \ } while (0) #define IEM_MC2_EMIT_CALL_2(a_enmFunction, a_uArg0, a_uArg1) do { \ IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \ uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \ uint64_t const uArg1Check = (a_uArg1); RT_NOREF(uArg1Check); \ \ PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \ pCall->enmFunction = a_enmFunction; \ pCall->offOpcode = offOpcodeMc2; \ pCall->cbOpcode = cbInstrMc2; \ pCall->idxRange = idxRangeMc2; \ pCall->auParams[0] = a_uArg0; \ pCall->auParams[1] = a_uArg1; \ pCall->auParams[2] = 0; \ } while (0) #define IEM_MC2_EMIT_CALL_3(a_enmFunction, a_uArg0, a_uArg1, a_uArg2) do { \ IEMTHREADEDFUNCS const enmFunctionCheck = a_enmFunction; RT_NOREF(enmFunctionCheck); \ uint64_t const uArg0Check = (a_uArg0); RT_NOREF(uArg0Check); \ uint64_t const uArg1Check = (a_uArg1); RT_NOREF(uArg1Check); \ uint64_t const uArg2Check = (a_uArg2); RT_NOREF(uArg2Check); \ \ PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls++]; \ pCall->enmFunction = a_enmFunction; \ pCall->offOpcode = offOpcodeMc2; \ pCall->cbOpcode = cbInstrMc2; \ pCall->idxRange = idxRangeMc2; \ pCall->auParams[0] = a_uArg0; \ pCall->auParams[1] = a_uArg1; \ pCall->auParams[2] = a_uArg2; \ } while (0) #define IEM_MC2_END_EMIT_CALLS() \ pTb->cInstructions++; \ } while (0) /* * IEM_MC_DEFER_TO_CIMPL_0 is easily wrapped up. * * Doing so will also take care of IEMOP_RAISE_DIVIDE_ERROR, IEMOP_RAISE_INVALID_LOCK_PREFIX, * IEMOP_RAISE_INVALID_OPCODE and their users. */ #undef IEM_MC_DEFER_TO_CIMPL_0_RET #define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_pfnCImpl) return iemThreadedRecompilerMcDeferToCImpl0(pVCpu, a_pfnCImpl) typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0); typedef FNIEMCIMPL0 *PFNIEMCIMPL0; DECLINLINE(VBOXSTRICTRC) iemThreadedRecompilerMcDeferToCImpl0(PVMCPUCC pVCpu, PFNIEMCIMPL0 pfnCImpl) { return pfnCImpl(pVCpu, IEM_GET_INSTR_LEN(pVCpu)); } /** * Calculates the effective address of a ModR/M memory operand, extended version * for use in the recompilers. * * Meant to be used via IEM_MC_CALC_RM_EFF_ADDR. * * May longjmp on internal error. * * @return The effective address. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param bRm The ModRM byte. * @param cbImmAndRspOffset - First byte: The size of any immediate * following the effective address opcode bytes * (only for RIP relative addressing). * - Second byte: RSP displacement (for POP [ESP]). * @param puInfo Extra info: 32-bit displacement (bits 31:0) and * SIB byte (bits 39:32). * * @note This must be defined in a source file with matching * IEM_WITH_CODE_TLB_AND_OPCODE_BUF define till the define is made default * or implemented differently... */ RTGCPTR iemOpHlpCalcRmEffAddrJmpEx(PVMCPUCC pVCpu, uint8_t bRm, uint32_t cbImmAndRspOffset, uint64_t *puInfo) IEM_NOEXCEPT_MAY_LONGJMP { Log5(("iemOpHlpCalcRmEffAddrJmp: bRm=%#x\n", bRm)); # define SET_SS_DEF() \ do \ { \ if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SEG_MASK)) \ pVCpu->iem.s.iEffSeg = X86_SREG_SS; \ } while (0) if (!IEM_IS_64BIT_CODE(pVCpu)) { /** @todo Check the effective address size crap! */ if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT) { uint16_t u16EffAddr; /* Handle the disp16 form with no registers first. */ if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6) { IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); *puInfo = u16EffAddr; } else { /* Get the displacment. */ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) { case 0: u16EffAddr = 0; break; case 1: IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16EffAddr); break; case 2: IEM_OPCODE_GET_NEXT_U16(&u16EffAddr); break; default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_1)); /* (caller checked for these) */ } *puInfo = u16EffAddr; /* Add the base and index registers to the disp. */ switch (bRm & X86_MODRM_RM_MASK) { case 0: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.si; break; case 1: u16EffAddr += pVCpu->cpum.GstCtx.bx + pVCpu->cpum.GstCtx.di; break; case 2: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.si; SET_SS_DEF(); break; case 3: u16EffAddr += pVCpu->cpum.GstCtx.bp + pVCpu->cpum.GstCtx.di; SET_SS_DEF(); break; case 4: u16EffAddr += pVCpu->cpum.GstCtx.si; break; case 5: u16EffAddr += pVCpu->cpum.GstCtx.di; break; case 6: u16EffAddr += pVCpu->cpum.GstCtx.bp; SET_SS_DEF(); break; case 7: u16EffAddr += pVCpu->cpum.GstCtx.bx; break; } } Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#06RX16 uInfo=%#RX64\n", u16EffAddr, *puInfo)); return u16EffAddr; } Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT); uint32_t u32EffAddr; uint64_t uInfo; /* Handle the disp32 form with no registers first. */ if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5) { IEM_OPCODE_GET_NEXT_U32(&u32EffAddr); uInfo = u32EffAddr; } else { /* Get the register (or SIB) value. */ uInfo = 0; switch ((bRm & X86_MODRM_RM_MASK)) { case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break; case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break; case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break; case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break; case 4: /* SIB */ { uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib); uInfo = (uint64_t)bSib << 32; /* Get the index and scale it. */ switch ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) { case 0: u32EffAddr = pVCpu->cpum.GstCtx.eax; break; case 1: u32EffAddr = pVCpu->cpum.GstCtx.ecx; break; case 2: u32EffAddr = pVCpu->cpum.GstCtx.edx; break; case 3: u32EffAddr = pVCpu->cpum.GstCtx.ebx; break; case 4: u32EffAddr = 0; /*none */ break; case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; break; case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break; case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break; IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } u32EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK; /* add base */ switch (bSib & X86_SIB_BASE_MASK) { case 0: u32EffAddr += pVCpu->cpum.GstCtx.eax; break; case 1: u32EffAddr += pVCpu->cpum.GstCtx.ecx; break; case 2: u32EffAddr += pVCpu->cpum.GstCtx.edx; break; case 3: u32EffAddr += pVCpu->cpum.GstCtx.ebx; break; case 4: u32EffAddr += pVCpu->cpum.GstCtx.esp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break; case 5: if ((bRm & X86_MODRM_MOD_MASK) != 0) { u32EffAddr += pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); } else { uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp); u32EffAddr += u32Disp; uInfo |= u32Disp; } break; case 6: u32EffAddr += pVCpu->cpum.GstCtx.esi; break; case 7: u32EffAddr += pVCpu->cpum.GstCtx.edi; break; IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } break; } case 5: u32EffAddr = pVCpu->cpum.GstCtx.ebp; SET_SS_DEF(); break; case 6: u32EffAddr = pVCpu->cpum.GstCtx.esi; break; case 7: u32EffAddr = pVCpu->cpum.GstCtx.edi; break; IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } /* Get and add the displacement. */ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) { case 0: break; case 1: { int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp); u32EffAddr += i8Disp; uInfo |= (uint32_t)(int32_t)i8Disp; break; } case 2: { uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp); u32EffAddr += u32Disp; uInfo |= u32Disp; break; } default: AssertFailedStmt(IEM_DO_LONGJMP(pVCpu, VERR_IEM_IPE_2)); /* (caller checked for these) */ } } *puInfo = uInfo; Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RX32 uInfo=%#RX64\n", u32EffAddr, uInfo)); return u32EffAddr; } uint64_t u64EffAddr; uint64_t uInfo; /* Handle the rip+disp32 form with no registers first. */ if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5) { IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64EffAddr); uInfo = (uint32_t)u64EffAddr; u64EffAddr += pVCpu->cpum.GstCtx.rip + IEM_GET_INSTR_LEN(pVCpu) + (cbImmAndRspOffset & UINT32_C(0xff)); } else { /* Get the register (or SIB) value. */ uInfo = 0; switch ((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB) { case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break; case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break; case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break; case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break; case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); break; case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break; case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break; case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break; case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break; case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break; case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break; case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break; case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break; case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break; /* SIB */ case 4: case 12: { uint8_t bSib; IEM_OPCODE_GET_NEXT_U8(&bSib); uInfo = (uint64_t)bSib << 32; /* Get the index and scale it. */ switch (((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex) { case 0: u64EffAddr = pVCpu->cpum.GstCtx.rax; break; case 1: u64EffAddr = pVCpu->cpum.GstCtx.rcx; break; case 2: u64EffAddr = pVCpu->cpum.GstCtx.rdx; break; case 3: u64EffAddr = pVCpu->cpum.GstCtx.rbx; break; case 4: u64EffAddr = 0; /*none */ break; case 5: u64EffAddr = pVCpu->cpum.GstCtx.rbp; break; case 6: u64EffAddr = pVCpu->cpum.GstCtx.rsi; break; case 7: u64EffAddr = pVCpu->cpum.GstCtx.rdi; break; case 8: u64EffAddr = pVCpu->cpum.GstCtx.r8; break; case 9: u64EffAddr = pVCpu->cpum.GstCtx.r9; break; case 10: u64EffAddr = pVCpu->cpum.GstCtx.r10; break; case 11: u64EffAddr = pVCpu->cpum.GstCtx.r11; break; case 12: u64EffAddr = pVCpu->cpum.GstCtx.r12; break; case 13: u64EffAddr = pVCpu->cpum.GstCtx.r13; break; case 14: u64EffAddr = pVCpu->cpum.GstCtx.r14; break; case 15: u64EffAddr = pVCpu->cpum.GstCtx.r15; break; IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } u64EffAddr <<= (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK; /* add base */ switch ((bSib & X86_SIB_BASE_MASK) | pVCpu->iem.s.uRexB) { case 0: u64EffAddr += pVCpu->cpum.GstCtx.rax; break; case 1: u64EffAddr += pVCpu->cpum.GstCtx.rcx; break; case 2: u64EffAddr += pVCpu->cpum.GstCtx.rdx; break; case 3: u64EffAddr += pVCpu->cpum.GstCtx.rbx; break; case 4: u64EffAddr += pVCpu->cpum.GstCtx.rsp + (cbImmAndRspOffset >> 8); SET_SS_DEF(); break; case 6: u64EffAddr += pVCpu->cpum.GstCtx.rsi; break; case 7: u64EffAddr += pVCpu->cpum.GstCtx.rdi; break; case 8: u64EffAddr += pVCpu->cpum.GstCtx.r8; break; case 9: u64EffAddr += pVCpu->cpum.GstCtx.r9; break; case 10: u64EffAddr += pVCpu->cpum.GstCtx.r10; break; case 11: u64EffAddr += pVCpu->cpum.GstCtx.r11; break; case 12: u64EffAddr += pVCpu->cpum.GstCtx.r12; break; case 14: u64EffAddr += pVCpu->cpum.GstCtx.r14; break; case 15: u64EffAddr += pVCpu->cpum.GstCtx.r15; break; /* complicated encodings */ case 5: case 13: if ((bRm & X86_MODRM_MOD_MASK) != 0) { if (!pVCpu->iem.s.uRexB) { u64EffAddr += pVCpu->cpum.GstCtx.rbp; SET_SS_DEF(); } else u64EffAddr += pVCpu->cpum.GstCtx.r13; } else { uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp); u64EffAddr += (int32_t)u32Disp; uInfo |= u32Disp; } break; IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } break; } IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); } /* Get and add the displacement. */ switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) { case 0: break; case 1: { int8_t i8Disp; IEM_OPCODE_GET_NEXT_S8(&i8Disp); u64EffAddr += i8Disp; uInfo |= (uint32_t)(int32_t)i8Disp; break; } case 2: { uint32_t u32Disp; IEM_OPCODE_GET_NEXT_U32(&u32Disp); u64EffAddr += (int32_t)u32Disp; uInfo |= u32Disp; break; } IEM_NOT_REACHED_DEFAULT_CASE_RET2(RTGCPTR_MAX); /* (caller checked for these) */ } } *puInfo = uInfo; if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT) { Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr, uInfo)); return u64EffAddr; } Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT); Log5(("iemOpHlpCalcRmEffAddrJmp: EffAddr=%#010RGv uInfo=%#RX64\n", u64EffAddr & UINT32_MAX, uInfo)); return u64EffAddr & UINT32_MAX; } /* * Include the "annotated" IEMAllInstructions*.cpp.h files. */ #include "IEMThreadedInstructions.cpp.h" /* * Translation block management. */ typedef struct IEMTBCACHE { uint32_t cHash; uint32_t uHashMask; PIEMTB apHash[_64K]; } IEMTBCACHE; static IEMTBCACHE g_TbCache = { _64K, 0xffff, }; /**< Quick and dirty. */ #define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \ ( ((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask) /** * Allocate a translation block for threadeded recompilation. * * @returns Pointer to the translation block on success, NULL on failure. * @param pVM The cross context virtual machine structure. * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param GCPhysPc The physical address corresponding to RIP + CS.BASE. * @param fExtraFlags Extra flags (IEMTB_F_XXX). */ static PIEMTB iemThreadedTbAlloc(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags) { /* * Just using the heap for now. Will make this more efficient and * complicated later, don't worry. :-) */ PIEMTB pTb = (PIEMTB)RTMemAlloc(sizeof(IEMTB)); if (pTb) { unsigned const cCalls = 128; pTb->Thrd.paCalls = (PIEMTHRDEDCALLENTRY)RTMemAlloc(sizeof(IEMTHRDEDCALLENTRY) * cCalls); if (pTb->Thrd.paCalls) { pTb->pabOpcodes = (uint8_t *)RTMemAlloc(cCalls * 16); /* This will be reallocated later. */ if (pTb->pabOpcodes) { pTb->Thrd.cAllocated = cCalls; pTb->cbOpcodesAllocated = cCalls * 16; pTb->Thrd.cCalls = 0; pTb->cbOpcodes = 0; pTb->pNext = NULL; RTListInit(&pTb->LocalList); pTb->GCPhysPc = GCPhysPc; pTb->x86.fAttr = (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u; pTb->fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags; /* Init the first opcode range. */ pTb->cRanges = 1; pTb->aRanges[0].cbOpcodes = 0; pTb->aRanges[0].offOpcodes = 0; pTb->aRanges[0].offPhysPage = GCPhysPc & GUEST_PAGE_OFFSET_MASK; pTb->aRanges[0].u2Unused = 0; pTb->aRanges[0].idxPhysPage = 0; pTb->aGCPhysPages[0] = NIL_RTGCPHYS; pTb->aGCPhysPages[1] = NIL_RTGCPHYS; pVCpu->iem.s.cTbAllocs++; return pTb; } RTMemFree(pTb->Thrd.paCalls); } RTMemFree(pTb); } RT_NOREF(pVM); return NULL; } /** * Frees pTb. * * @param pVM The cross context virtual machine structure. * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param pTb The translation block to free.. */ static void iemThreadedTbFree(PVMCC pVM, PVMCPUCC pVCpu, PIEMTB pTb) { RT_NOREF(pVM); AssertPtr(pTb); AssertCompile(IEMTB_F_STATE_OBSOLETE == IEMTB_F_STATE_MASK); pTb->fFlags |= IEMTB_F_STATE_OBSOLETE; /* works, both bits set */ /* Unlink it from the hash table: */ uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, pTb->fFlags, pTb->GCPhysPc); PIEMTB pTbCur = g_TbCache.apHash[idxHash]; if (pTbCur == pTb) g_TbCache.apHash[idxHash] = pTb->pNext; else while (pTbCur) { PIEMTB const pNextTb = pTbCur->pNext; if (pNextTb == pTb) { pTbCur->pNext = pTb->pNext; break; } pTbCur = pNextTb; } /* Free it. */ RTMemFree(pTb->Thrd.paCalls); pTb->Thrd.paCalls = NULL; RTMemFree(pTb->pabOpcodes); pTb->pabOpcodes = NULL; RTMemFree(pTb); pVCpu->iem.s.cTbFrees++; } /** * Called by opcode verifier functions when they detect a problem. */ void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb) { iemThreadedTbFree(pVCpu->CTX_SUFF(pVM), pVCpu, pTb); } static PIEMTB iemThreadedTbLookup(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags) { uint32_t const fFlags = (pVCpu->iem.s.fExec & IEMTB_F_IEM_F_MASK) | fExtraFlags | IEMTB_F_STATE_READY; uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, fFlags, GCPhysPc); Log10(("TB lookup: idxHash=%#x fFlags=%#x GCPhysPc=%RGp\n", idxHash, fFlags, GCPhysPc)); PIEMTB pTb = g_TbCache.apHash[idxHash]; while (pTb) { if (pTb->GCPhysPc == GCPhysPc) { if (pTb->fFlags == fFlags) { if (pTb->x86.fAttr == (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u) { #ifdef VBOX_WITH_STATISTICS pVCpu->iem.s.cTbLookupHits++; #endif return pTb; } Log11(("TB miss: CS: %#x, wanted %#x\n", pTb->x86.fAttr, (uint16_t)pVCpu->cpum.GstCtx.cs.Attr.u)); } else Log11(("TB miss: fFlags: %#x, wanted %#x\n", pTb->fFlags, fFlags)); } else Log11(("TB miss: GCPhysPc: %#x, wanted %#x\n", pTb->GCPhysPc, GCPhysPc)); pTb = pTb->pNext; } RT_NOREF(pVM); pVCpu->iem.s.cTbLookupMisses++; return pTb; } static void iemThreadedTbAdd(PVMCC pVM, PVMCPUCC pVCpu, PIEMTB pTb) { uint32_t const idxHash = IEMTBCACHE_HASH(&g_TbCache, pTb->fFlags, pTb->GCPhysPc); pTb->pNext = g_TbCache.apHash[idxHash]; g_TbCache.apHash[idxHash] = pTb; STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedInstr, pTb->cInstructions); STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbThreadedCalls, pTb->Thrd.cCalls); Log12(("TB added: %p %RGp LB %#x fl=%#x idxHash=%#x\n", pTb, pTb->GCPhysPc, pTb->cbOpcodes, pTb->fFlags, idxHash)); RT_NOREF(pVM); } /* * Real code. */ #ifdef LOG_ENABLED /** * Logs the current instruction. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pszFunction The IEM function doing the execution. */ static void iemThreadedLogCurInstr(PVMCPUCC pVCpu, const char *pszFunction) RT_NOEXCEPT { # ifdef IN_RING3 if (LogIs2Enabled()) { char szInstr[256]; uint32_t cbInstr = 0; DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, 0, 0, DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE, szInstr, sizeof(szInstr), &cbInstr); PCX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87; Log2(("**** %s fExec=%x pTb=%p\n" " eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n" " eip=%08x esp=%08x ebp=%08x iopl=%d tr=%04x\n" " cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n" " fsw=%04x fcw=%04x ftw=%02x mxcsr=%04x/%04x\n" " %s\n" , pszFunction, pVCpu->iem.s.fExec, pVCpu->iem.s.pCurTbR3, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ebx, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.esi, pVCpu->cpum.GstCtx.edi, pVCpu->cpum.GstCtx.eip, pVCpu->cpum.GstCtx.esp, pVCpu->cpum.GstCtx.ebp, pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL, pVCpu->cpum.GstCtx.tr.Sel, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.ds.Sel, pVCpu->cpum.GstCtx.es.Sel, pVCpu->cpum.GstCtx.fs.Sel, pVCpu->cpum.GstCtx.gs.Sel, pVCpu->cpum.GstCtx.eflags.u, pFpuCtx->FSW, pFpuCtx->FCW, pFpuCtx->FTW, pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK, szInstr)); if (LogIs3Enabled()) DBGFR3InfoEx(pVCpu->pVMR3->pUVM, pVCpu->idCpu, "cpumguest", "verbose", NULL); } else # endif LogFlow(("%s: cs:rip=%04x:%08RX64 ss:rsp=%04x:%08RX64 EFL=%06x\n", pszFunction, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp, pVCpu->cpum.GstCtx.eflags.u)); } #endif /* LOG_ENABLED */ static VBOXSTRICTRC iemThreadedCompileLongJumped(PVMCC pVM, PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) { RT_NOREF(pVM, pVCpu); return rcStrict; } /** * Initializes the decoder state when compiling TBs. * * This presumes that fExec has already be initialized. * * This is very similar to iemInitDecoder() and iemReInitDecoder(), so may need * to apply fixes to them as well. * * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param fReInit Clear for the first call for a TB, set for subsequent calls * from inside the compile loop where we can skip a couple of * things. */ DECL_FORCE_INLINE(void) iemThreadedCompileInitDecoder(PVMCPUCC pVCpu, bool const fReInit) { /* ASSUMES: That iemInitExec was already called and that anyone changing CPU state affecting the fExec bits since then will have updated fExec! */ AssertMsg((pVCpu->iem.s.fExec & ~IEM_F_USER_OPTS) == iemCalcExecFlags(pVCpu), ("fExec=%#x iemCalcExecModeFlags=%#x\n", pVCpu->iem.s.fExec, iemCalcExecFlags(pVCpu))); IEMMODE const enmMode = IEM_GET_CPU_MODE(pVCpu); /* Decoder state: */ pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */ pVCpu->iem.s.enmEffAddrMode = enmMode; if (enmMode != IEMMODE_64BIT) { pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */ pVCpu->iem.s.enmEffOpSize = enmMode; } else { pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT; pVCpu->iem.s.enmEffOpSize = IEMMODE_32BIT; } pVCpu->iem.s.fPrefixes = 0; pVCpu->iem.s.uRexReg = 0; pVCpu->iem.s.uRexB = 0; pVCpu->iem.s.uRexIndex = 0; pVCpu->iem.s.idxPrefix = 0; pVCpu->iem.s.uVex3rdReg = 0; pVCpu->iem.s.uVexLength = 0; pVCpu->iem.s.fEvexStuff = 0; pVCpu->iem.s.iEffSeg = X86_SREG_DS; pVCpu->iem.s.offModRm = 0; pVCpu->iem.s.iNextMapping = 0; if (!fReInit) { pVCpu->iem.s.cActiveMappings = 0; pVCpu->iem.s.rcPassUp = VINF_SUCCESS; pVCpu->iem.s.fEndTb = false; pVCpu->iem.s.fTbCheckOpcodes = false; pVCpu->iem.s.fTbBranched = false; pVCpu->iem.s.fTbCrossedPage = false; } else { Assert(pVCpu->iem.s.cActiveMappings == 0); Assert(pVCpu->iem.s.rcPassUp == VINF_SUCCESS); Assert(pVCpu->iem.s.fEndTb == false); Assert(pVCpu->iem.s.fTbCrossedPage == false); } #ifdef DBGFTRACE_ENABLED switch (IEM_GET_CPU_MODE(pVCpu)) { case IEMMODE_64BIT: RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I64/%u %08llx", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.rip); break; case IEMMODE_32BIT: RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I32/%u %04x:%08x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip); break; case IEMMODE_16BIT: RTTraceBufAddMsgF(pVCpu->CTX_SUFF(pVM)->CTX_SUFF(hTraceBuf), "I16/%u %04x:%04x", IEM_GET_CPL(pVCpu), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.eip); break; } #endif } /** * Initializes the opcode fetcher when starting the compilation. * * @param pVCpu The cross context virtual CPU structure of the calling * thread. */ DECL_FORCE_INLINE(void) iemThreadedCompileInitOpcodeFetching(PVMCPUCC pVCpu) { /* Almost everything is done by iemGetPcWithPhysAndCode() already. We just need to initialize the index into abOpcode. */ #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF pVCpu->iem.s.offOpcode = 0; #else RT_NOREF(pVCpu); #endif } /** * Re-initializes the opcode fetcher between instructions while compiling. * * @param pVCpu The cross context virtual CPU structure of the calling * thread. */ DECL_FORCE_INLINE(void) iemThreadedCompileReInitOpcodeFetching(PVMCPUCC pVCpu) { if (pVCpu->iem.s.pbInstrBuf) { uint64_t off = pVCpu->cpum.GstCtx.rip; Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu)); off += pVCpu->cpum.GstCtx.cs.u64Base; off -= pVCpu->iem.s.uInstrBufPc; if (off < pVCpu->iem.s.cbInstrBufTotal) { pVCpu->iem.s.offInstrNextByte = (uint32_t)off; pVCpu->iem.s.offCurInstrStart = (uint16_t)off; if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal) pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15; else pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal; } else { pVCpu->iem.s.pbInstrBuf = NULL; pVCpu->iem.s.offInstrNextByte = 0; pVCpu->iem.s.offCurInstrStart = 0; pVCpu->iem.s.cbInstrBuf = 0; pVCpu->iem.s.cbInstrBufTotal = 0; pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS; } } else { pVCpu->iem.s.offInstrNextByte = 0; pVCpu->iem.s.offCurInstrStart = 0; pVCpu->iem.s.cbInstrBuf = 0; pVCpu->iem.s.cbInstrBufTotal = 0; #ifdef VBOX_STRICT pVCpu->iem.s.GCPhysInstrBuf = NIL_RTGCPHYS; #endif } #ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF pVCpu->iem.s.offOpcode = 0; #endif } DECLINLINE(void) iemThreadedCopyOpcodeBytesInline(PCVMCPUCC pVCpu, uint8_t *pbDst, uint8_t cbInstr) { switch (cbInstr) { default: AssertMsgFailed(("%#x\n", cbInstr)); RT_FALL_THROUGH(); case 15: pbDst[14] = pVCpu->iem.s.abOpcode[14]; RT_FALL_THROUGH(); case 14: pbDst[13] = pVCpu->iem.s.abOpcode[13]; RT_FALL_THROUGH(); case 13: pbDst[12] = pVCpu->iem.s.abOpcode[12]; RT_FALL_THROUGH(); case 12: pbDst[11] = pVCpu->iem.s.abOpcode[11]; RT_FALL_THROUGH(); case 11: pbDst[10] = pVCpu->iem.s.abOpcode[10]; RT_FALL_THROUGH(); case 10: pbDst[9] = pVCpu->iem.s.abOpcode[9]; RT_FALL_THROUGH(); case 9: pbDst[8] = pVCpu->iem.s.abOpcode[8]; RT_FALL_THROUGH(); case 8: pbDst[7] = pVCpu->iem.s.abOpcode[7]; RT_FALL_THROUGH(); case 7: pbDst[6] = pVCpu->iem.s.abOpcode[6]; RT_FALL_THROUGH(); case 6: pbDst[5] = pVCpu->iem.s.abOpcode[5]; RT_FALL_THROUGH(); case 5: pbDst[4] = pVCpu->iem.s.abOpcode[4]; RT_FALL_THROUGH(); case 4: pbDst[3] = pVCpu->iem.s.abOpcode[3]; RT_FALL_THROUGH(); case 3: pbDst[2] = pVCpu->iem.s.abOpcode[2]; RT_FALL_THROUGH(); case 2: pbDst[1] = pVCpu->iem.s.abOpcode[1]; RT_FALL_THROUGH(); case 1: pbDst[0] = pVCpu->iem.s.abOpcode[0]; break; } } /** * Called by IEM_MC2_BEGIN_EMIT_CALLS() under one of these conditions: * * - CS LIM check required. * - Must recheck opcode bytes. * - Previous instruction branched. * - TLB load detected, probably due to page crossing. * * @returns true if everything went well, false if we're out of space in the TB * (e.g. opcode ranges). * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param pTb The translation block being compiled. */ static bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb) { Assert((pVCpu->iem.s.GCPhysInstrBuf & GUEST_PAGE_OFFSET_MASK) == 0); /* * Prepare call now, even before we know if can accept the instruction in this TB. * This allows us amending parameters w/o making every case suffer. */ uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu); uint16_t const offOpcode = pTb->cbOpcodes; uint8_t idxRange = pTb->cRanges - 1; PIEMTHRDEDCALLENTRY const pCall = &pTb->Thrd.paCalls[pTb->Thrd.cCalls]; pCall->offOpcode = offOpcode; pCall->idxRange = idxRange; pCall->cbOpcode = cbInstr; pCall->auParams[0] = cbInstr; pCall->auParams[1] = idxRange; pCall->auParams[2] = offOpcode - pTb->aRanges[idxRange].offOpcodes; /** @todo check if we require IEMTB_F_CS_LIM_CHECKS for any new page we've * gotten onto. If we do, stop */ /* * Case 1: We've branched (RIP changed). * * Sub-case 1a: Same page, no TLB load, so fTbCrossedPage is false. * Req: 1 extra range, no extra phys. * * Sub-case 1b: Different page, so TLB load necessary and fTbCrossedPage is true. * Req: 1 extra range, probably 1 extra phys page entry. * * Sub-case 1c: Different page, so TLB load necessary and fTbCrossedPage is true, * but in addition we cross into the following page and require * another TLB load. * Req: 2 extra ranges, probably 2 extra phys page entries. * * Sub-case 1d: Same page, so no initial TLB load necessary, but we cross into * the following page and thus fTbCrossedPage is true. * Req: 2 extra ranges, probably 1 extra phys page entry. * * Note! We do not currently optimize branching to the next instruction (sorry * 32-bit PIC code). We could maybe do that in the branching code that sets (or not) fTbBranched. */ if (pVCpu->iem.s.fTbBranched) { AssertFailed(); /** @todo enable including branches in TBs and debug this code. */ if ( !pVCpu->iem.s.fTbCrossedPage /* 1a */ || pVCpu->iem.s.offCurInstrStart >= 0 /* 1b */ ) { /* 1a + 1b - instruction fully within the branched to page. */ Assert(pVCpu->iem.s.offCurInstrStart >= 0); Assert(pVCpu->iem.s.offCurInstrStart + cbInstr <= GUEST_PAGE_SIZE); /* Check that we've got a free range. */ idxRange += 1; if (idxRange < RT_ELEMENTS(pTb->aRanges)) { /* likely */ } else return false; pCall->idxRange = idxRange; pCall->auParams[1] = idxRange; pCall->auParams[2] = 0; /* Check that we've got a free page slot. */ AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2); RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew) pTb->aRanges[idxRange].idxPhysPage = 0; else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS || pTb->aGCPhysPages[0] == GCPhysNew) { pTb->aGCPhysPages[0] = GCPhysNew; pTb->aRanges[idxRange].idxPhysPage = 1; } else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS || pTb->aGCPhysPages[1] == GCPhysNew) { pTb->aGCPhysPages[1] = GCPhysNew; pTb->aRanges[idxRange].idxPhysPage = 2; } else return false; /* Finish setting up the new range. */ pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart; pTb->aRanges[idxRange].offOpcodes = offOpcode; pTb->aRanges[idxRange].cbOpcodes = cbInstr; pTb->cRanges++; /* Determin which function we need to load & check. Note! For jumps to a new page, we'll set both fTbBranched and fTbCrossedPage to avoid unnecessary TLB work for intra page branching */ if (pVCpu->iem.s.fTbCrossedPage) pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodesLoadingTlb : kIemThreadedFunc_CheckOpcodesLoadingTlb; else pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodes : kIemThreadedFunc_CheckOpcodes; } else { /* 1c + 1d - instruction crosses pages. */ Assert(pVCpu->iem.s.offCurInstrStart < 0); Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0); /* Lazy bird: Check that this isn't case 1c, since we've already load the first physical address. End the TB and make it a case 2b instead. Hmm. Too much bother to detect, so just do the same with case 1d as well. */ #if 0 /** @todo get back to this later when we've got the actual branch code in * place. */ uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart; /* Check that we've got two free ranges. */ if (idxRange + 2 < RT_ELEMENTS(pTb->aRanges)) { /* likely */ } else return false; idxRange += 1; pCall->idxRange = idxRange; pCall->auParams[1] = idxRange; pCall->auParams[2] = 0; /* ... */ #else return false; #endif } } /* * Case 2: Page crossing. * * Sub-case 2a: The instruction starts on the first byte in the next page. * * Sub-case 2b: The instruction has opcode bytes in both the current and * following page. * * Both cases requires a new range table entry and probably a new physical * page entry. The difference is in which functions to emit and whether to * add bytes to the current range. */ else if (pVCpu->iem.s.fTbCrossedPage) { /* Check that we've got a free range. */ idxRange += 1; if (idxRange < RT_ELEMENTS(pTb->aRanges)) { /* likely */ } else return false; /* Check that we've got a free page slot. */ AssertCompile(RT_ELEMENTS(pTb->aGCPhysPages) == 2); RTGCPHYS const GCPhysNew = pVCpu->iem.s.GCPhysInstrBuf & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; if ((pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK) == GCPhysNew) pTb->aRanges[idxRange].idxPhysPage = 0; else if ( pTb->aGCPhysPages[0] == NIL_RTGCPHYS || pTb->aGCPhysPages[0] == GCPhysNew) { pTb->aGCPhysPages[0] = GCPhysNew; pTb->aRanges[idxRange].idxPhysPage = 1; } else if ( pTb->aGCPhysPages[1] == NIL_RTGCPHYS || pTb->aGCPhysPages[1] == GCPhysNew) { pTb->aGCPhysPages[1] = GCPhysNew; pTb->aRanges[idxRange].idxPhysPage = 2; } else return false; if (((pTb->aRanges[idxRange - 1].offPhysPage + pTb->aRanges[idxRange - 1].cbOpcodes) & GUEST_PAGE_OFFSET_MASK) == 0) { Assert(pVCpu->iem.s.offCurInstrStart == 0); pCall->idxRange = idxRange; pCall->auParams[1] = idxRange; pCall->auParams[2] = 0; /* Finish setting up the new range. */ pTb->aRanges[idxRange].offPhysPage = pVCpu->iem.s.offCurInstrStart; pTb->aRanges[idxRange].offOpcodes = offOpcode; pTb->aRanges[idxRange].cbOpcodes = cbInstr; pTb->cRanges++; /* Determin which function we need to load & check. */ pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodesLoadingTlb : kIemThreadedFunc_CheckOpcodesLoadingTlb; } else { Assert(pVCpu->iem.s.offCurInstrStart < 0); Assert(pVCpu->iem.s.offCurInstrStart + cbInstr > 0); uint8_t const cbStartPage = (uint8_t)-pVCpu->iem.s.offCurInstrStart; pCall->auParams[0] |= (uint64_t)cbStartPage << 32; /* We've good. Split the instruction over the old and new range table entries. */ pTb->aRanges[idxRange - 1].cbOpcodes += cbStartPage; pTb->aRanges[idxRange].offPhysPage = 0; pTb->aRanges[idxRange].offOpcodes = offOpcode + cbStartPage; pTb->aRanges[idxRange].cbOpcodes = cbInstr - cbStartPage; pTb->cRanges++; /* Determin which function we need to load & check. */ if (pVCpu->iem.s.fTbCheckOpcodes) pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodesAcrossPageLoadingTlb : kIemThreadedFunc_CheckOpcodesAcrossPageLoadingTlb; else pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodesOnNextPageLoadingTlb : kIemThreadedFunc_CheckOpcodesOnNextPageLoadingTlb; } } /* * Regular case: No new range required. */ else { Assert(pVCpu->iem.s.fTbCheckOpcodes || (pTb->fFlags & IEMTB_F_CS_LIM_CHECKS)); if (pVCpu->iem.s.fTbCheckOpcodes) pCall->enmFunction = pTb->fFlags & IEMTB_F_CS_LIM_CHECKS ? kIemThreadedFunc_CheckCsLimAndOpcodes : kIemThreadedFunc_CheckOpcodes; else pCall->enmFunction = kIemThreadedFunc_CheckCsLim; iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr); pTb->cbOpcodes = offOpcode + cbInstr; pTb->aRanges[idxRange].cbOpcodes += cbInstr; Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated); } /* * Commit the call. */ pTb->Thrd.cCalls++; /* * Clear state. */ pVCpu->iem.s.fTbBranched = false; pVCpu->iem.s.fTbCrossedPage = false; pVCpu->iem.s.fTbCheckOpcodes = false; /* * Copy opcode bytes. */ iemThreadedCopyOpcodeBytesInline(pVCpu, &pTb->pabOpcodes[offOpcode], cbInstr); pTb->cbOpcodes = offOpcode + cbInstr; Assert(pTb->cbOpcodes <= pTb->cbOpcodesAllocated); return true; } /** * Compiles a new TB and executes it. * * We combine compilation and execution here as it makes it simpler code flow * in the main loop and it allows interpreting while compiling if we want to * explore that option. * * @returns Strict VBox status code. * @param pVM The cross context virtual machine structure. * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param GCPhysPc The physical address corresponding to the current * RIP+CS.BASE. * @param fExtraFlags Extra translation block flags: IEMTB_F_TYPE_THREADED and * maybe IEMTB_F_RIP_CHECKS. */ static VBOXSTRICTRC iemThreadedCompile(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysPc, uint32_t fExtraFlags) { /* * Allocate a new translation block. */ PIEMTB pTb = iemThreadedTbAlloc(pVM, pVCpu, GCPhysPc, fExtraFlags | IEMTB_F_STATE_COMPILING); AssertReturn(pTb, VERR_IEM_TB_ALLOC_FAILED); /* Set the current TB so iemThreadedCompileLongJumped and the CIMPL functions may get at it. */ pVCpu->iem.s.pCurTbR3 = pTb; /* * Now for the recomplication. (This mimicks IEMExecLots in many ways.) */ iemThreadedCompileInitDecoder(pVCpu, false /*fReInit*/); iemThreadedCompileInitOpcodeFetching(pVCpu); VBOXSTRICTRC rcStrict; for (;;) { /* Process the next instruction. */ #ifdef LOG_ENABLED iemThreadedLogCurInstr(pVCpu, "CC"); uint16_t const uCsLog = pVCpu->cpum.GstCtx.cs.Sel; uint64_t const uRipLog = pVCpu->cpum.GstCtx.rip; #endif uint8_t b; IEM_OPCODE_GET_FIRST_U8(&b); uint16_t const cCallsPrev = pTb->Thrd.cCalls; rcStrict = FNIEMOP_CALL(g_apfnIemThreadedRecompilerOneByteMap[b]); if ( rcStrict == VINF_SUCCESS && pVCpu->iem.s.rcPassUp == VINF_SUCCESS && !pVCpu->iem.s.fEndTb) { Assert(pTb->Thrd.cCalls > cCallsPrev); Assert(cCallsPrev - pTb->Thrd.cCalls < 5); pVCpu->iem.s.cInstructions++; } else { Log8(("%04x:%08RX64: End TB - %u instr, %u calls, rc=%d\n", uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, VBOXSTRICTRC_VAL(rcStrict))); if (rcStrict == VINF_IEM_RECOMPILE_END_TB) rcStrict = VINF_SUCCESS; if (pTb->Thrd.cCalls > 0) { if (cCallsPrev != pTb->Thrd.cCalls) pVCpu->iem.s.cInstructions++; break; } pVCpu->iem.s.pCurTbR3 = NULL; iemThreadedTbFree(pVM, pVCpu, pTb); return iemExecStatusCodeFiddling(pVCpu, rcStrict); } /* Still space in the TB? */ if ( pTb->Thrd.cCalls + 5 < pTb->Thrd.cAllocated && pTb->cbOpcodes + 16 <= pTb->cbOpcodesAllocated) iemThreadedCompileInitDecoder(pVCpu, true /*fReInit*/); else { Log8(("%04x:%08RX64: End TB - %u instr, %u calls, %u opcode bytes - full\n", uCsLog, uRipLog, pTb->cInstructions, pTb->Thrd.cCalls, pTb->cbOpcodes)); break; } iemThreadedCompileReInitOpcodeFetching(pVCpu); } /* * Complete the TB and link it. */ pTb->fFlags = (pTb->fFlags & ~IEMTB_F_STATE_MASK) | IEMTB_F_STATE_READY; iemThreadedTbAdd(pVM, pVCpu, pTb); #ifdef IEM_COMPILE_ONLY_MODE /* * Execute the translation block. */ #endif return iemExecStatusCodeFiddling(pVCpu, rcStrict); } /** * Executes a translation block. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling * thread. * @param pTb The translation block to execute. */ static VBOXSTRICTRC iemThreadedTbExec(PVMCPUCC pVCpu, PIEMTB pTb) { /* Check the opcodes in the first page before starting execution. */ uint32_t const cbLeadOpcodes = RT_MIN(pTb->cbOpcodes, pVCpu->iem.s.cbInstrBufTotal - pVCpu->iem.s.offInstrNextByte); if (memcmp(pTb->pabOpcodes, &pVCpu->iem.s.pbInstrBuf[pVCpu->iem.s.offInstrNextByte], cbLeadOpcodes) == 0) Assert( pTb->cbOpcodes == cbLeadOpcodes || cbLeadOpcodes == (GUEST_PAGE_SIZE - (pTb->GCPhysPc & GUEST_PAGE_OFFSET_MASK))); else { Log7(("TB obsolete: %p GCPhys=%RGp\n", pTb, pTb->GCPhysPc)); iemThreadedTbFree(pVCpu->pVMR3, pVCpu, pTb); return VINF_SUCCESS; } /* Set the current TB so CIMPL function may get at it. */ pVCpu->iem.s.pCurTbR3 = pTb; pVCpu->iem.s.cTbExec++; /* The execution loop. */ PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls; uint32_t cCallsLeft = pTb->Thrd.cCalls; while (cCallsLeft-- > 0) { #ifdef LOG_ENABLED iemThreadedLogCurInstr(pVCpu, "EX"); Log9(("%04x:%08RX64: #%d - %d %s\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->enmFunction, g_apszIemThreadedFunctions[pCallEntry->enmFunction])); #endif VBOXSTRICTRC const rcStrict = g_apfnIemThreadedFunctions[pCallEntry->enmFunction](pVCpu, pCallEntry->auParams[0], pCallEntry->auParams[1], pCallEntry->auParams[2]); if (RT_LIKELY( rcStrict == VINF_SUCCESS && pVCpu->iem.s.rcPassUp == VINF_SUCCESS /** @todo this isn't great. */)) pCallEntry++; else { pVCpu->iem.s.pCurTbR3 = NULL; /* Some status codes are just to get us out of this loop and continue in a different translation block. */ if (rcStrict == VINF_IEM_REEXEC_MODE_CHANGED) return iemExecStatusCodeFiddling(pVCpu, VINF_SUCCESS); return iemExecStatusCodeFiddling(pVCpu, rcStrict); } } pVCpu->iem.s.pCurTbR3 = NULL; return VINF_SUCCESS; } /** * This is called when the PC doesn't match the current pbInstrBuf. * * Upon return, we're ready for opcode fetching. But please note that * pbInstrBuf can be NULL iff the memory doesn't have readable backing (i.e. * MMIO or unassigned). */ static RTGCPHYS iemGetPcWithPhysAndCodeMissed(PVMCPUCC pVCpu) { pVCpu->iem.s.pbInstrBuf = NULL; pVCpu->iem.s.offCurInstrStart = 0; pVCpu->iem.s.offInstrNextByte = 0; iemOpcodeFetchBytesJmp(pVCpu, 0, NULL); return pVCpu->iem.s.GCPhysInstrBuf + pVCpu->iem.s.offCurInstrStart; } /** @todo need private inline decl for throw/nothrow matching IEM_WITH_SETJMP? */ DECL_FORCE_INLINE_THROW(RTGCPHYS) iemGetPcWithPhysAndCode(PVMCPUCC pVCpu) { /* * Set uCurTbStartPc to RIP and calc the effective PC. */ uint64_t uPc = pVCpu->cpum.GstCtx.rip; pVCpu->iem.s.uCurTbStartPc = uPc; Assert(pVCpu->cpum.GstCtx.cs.u64Base == 0 || !IEM_IS_64BIT_CODE(pVCpu)); uPc += pVCpu->cpum.GstCtx.cs.u64Base; /* * Advance within the current buffer (PAGE) when possible. */ if (pVCpu->iem.s.pbInstrBuf) { uint64_t off = uPc - pVCpu->iem.s.uInstrBufPc; if (off < pVCpu->iem.s.cbInstrBufTotal) { pVCpu->iem.s.offInstrNextByte = (uint32_t)off; pVCpu->iem.s.offCurInstrStart = (uint16_t)off; if ((uint16_t)off + 15 <= pVCpu->iem.s.cbInstrBufTotal) pVCpu->iem.s.cbInstrBuf = (uint16_t)off + 15; else pVCpu->iem.s.cbInstrBuf = pVCpu->iem.s.cbInstrBufTotal; return pVCpu->iem.s.GCPhysInstrBuf + off; } } return iemGetPcWithPhysAndCodeMissed(pVCpu); } /** * Determines the extra IEMTB_F_XXX flags. * * @returns IEMTB_F_TYPE_THREADED and maybe IEMTB_F_RIP_CHECKS. * @param pVCpu The cross context virtual CPU structure of the calling * thread. */ DECL_FORCE_INLINE(uint32_t) iemGetTbFlagsForCurrentPc(PVMCPUCC pVCpu) { /* * Return IEMTB_F_RIP_CHECKS if the current PC is invalid or if it is * likely to go invalid before the end of the translation block. */ if (IEM_IS_64BIT_CODE(pVCpu)) return IEMTB_F_TYPE_THREADED; if (RT_LIKELY( pVCpu->cpum.GstCtx.eip < pVCpu->cpum.GstCtx.cs.u32Limit && pVCpu->cpum.GstCtx.eip - pVCpu->cpum.GstCtx.cs.u32Limit >= X86_PAGE_SIZE)) return IEMTB_F_TYPE_THREADED; return IEMTB_F_TYPE_THREADED | IEMTB_F_CS_LIM_CHECKS; } VMMDECL(VBOXSTRICTRC) IEMExecRecompilerThreaded(PVMCC pVM, PVMCPUCC pVCpu) { /* * See if there is an interrupt pending in TRPM, inject it if we can. */ if (!TRPMHasTrap(pVCpu)) { /* likely */ } else { VBOXSTRICTRC rcStrict = iemExecInjectPendingTrap(pVCpu); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { /*likely */ } else return rcStrict; } /* * Init the execution environment. */ iemInitExec(pVCpu, 0 /*fExecOpts*/); /* * Run-loop. * * If we're using setjmp/longjmp we combine all the catching here to avoid * having to call setjmp for each block we're executing. */ for (;;) { PIEMTB pTb = NULL; VBOXSTRICTRC rcStrict; IEM_TRY_SETJMP(pVCpu, rcStrict) { uint32_t const cPollRate = 511; /* EM.cpp passes 4095 to IEMExecLots, so an eigth of that seems reasonable for now. */ for (uint32_t iIterations = 0; ; iIterations++) { /* Translate PC to physical address, we'll need this for both lookup and compilation. */ RTGCPHYS const GCPhysPc = iemGetPcWithPhysAndCode(pVCpu); uint32_t const fExtraFlags = iemGetTbFlagsForCurrentPc(pVCpu); pTb = iemThreadedTbLookup(pVM, pVCpu, GCPhysPc, fExtraFlags); if (pTb) rcStrict = iemThreadedTbExec(pVCpu, pTb); else rcStrict = iemThreadedCompile(pVM, pVCpu, GCPhysPc, fExtraFlags); if (rcStrict == VINF_SUCCESS) { Assert(pVCpu->iem.s.cActiveMappings == 0); uint64_t fCpu = pVCpu->fLocalForcedActions; fCpu &= VMCPU_FF_ALL_MASK & ~( VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_TLB_FLUSH | VMCPU_FF_UNHALT ); if (RT_LIKELY( ( !fCpu || ( !(fCpu & ~(VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)) && !pVCpu->cpum.GstCtx.rflags.Bits.u1IF) ) && !VM_FF_IS_ANY_SET(pVM, VM_FF_ALL_MASK) )) { if (RT_LIKELY( (iIterations & cPollRate) != 0 || !TMTimerPollBool(pVM, pVCpu))) { } else return VINF_SUCCESS; } else return VINF_SUCCESS; } else return rcStrict; } } IEM_CATCH_LONGJMP_BEGIN(pVCpu, rcStrict); { pVCpu->iem.s.cLongJumps++; if (pVCpu->iem.s.cActiveMappings > 0) iemMemRollback(pVCpu); /* If pTb isn't NULL we're in iemThreadedTbExec. */ if (!pTb) { /* If pCurTbR3 is NULL, we're in iemGetPcWithPhysAndCode.*/ pTb = pVCpu->iem.s.pCurTbR3; if (pTb) { /* If the pCurTbR3 block is in compiling state, we're in iemThreadedCompile, otherwise it's iemThreadedTbExec inside iemThreadedCompile (compile option). */ if ((pTb->fFlags & IEMTB_F_STATE_MASK) == IEMTB_F_STATE_COMPILING) return iemThreadedCompileLongJumped(pVM, pVCpu, rcStrict); } } return rcStrict; } IEM_CATCH_LONGJMP_END(pVCpu); } }