/* $Id: IOMAllMMIO.cpp 45311 2013-04-03 14:55:30Z vboxsync $ */ /** @file * IOM - Input / Output Monitor - Any Context, MMIO & String I/O. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_IOM #include #include #include #include #include #include #include #include #if defined(IEM_VERIFICATION_MODE) && defined(IN_RING3) # include #endif #include "IOMInternal.h" #include #include #include #include "IOMInline.h" #include #include #include #include #include #include #include #include #include /******************************************************************************* * Global Variables * *******************************************************************************/ /** * Array for fast recode of the operand size (1/2/4/8 bytes) to bit shift value. */ static const unsigned g_aSize2Shift[] = { ~0U, /* 0 - invalid */ 0, /* *1 == 2^0 */ 1, /* *2 == 2^1 */ ~0U, /* 3 - invalid */ 2, /* *4 == 2^2 */ ~0U, /* 5 - invalid */ ~0U, /* 6 - invalid */ ~0U, /* 7 - invalid */ 3 /* *8 == 2^3 */ }; /** * Macro for fast recode of the operand size (1/2/4/8 bytes) to bit shift value. */ #define SIZE_2_SHIFT(cb) (g_aSize2Shift[cb]) /** * Deals with complicated MMIO writes. * * Complicated means unaligned or non-dword/qword sized accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_WRITE, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_READ may be returned. * * @param pVM Pointer to the VM. * @param pRange The range to write to. * @param GCPhys The physical address to start writing. * @param pvValue Where to store the value. * @param cbValue The size of the value to write. */ static VBOXSTRICTRC iomMMIODoComplicatedWrite(PVM pVM, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void const *pvValue, unsigned cbValue) { AssertReturn( (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) != IOMMMIO_FLAGS_WRITE_PASSTHRU || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) <= IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); RTGCPHYS const GCPhysStart = GCPhys; NOREF(GCPhysStart); bool const fReadMissing = (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_READ_MISSING || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING; /* * Do debug stop if requested. */ int rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (pRange->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_WRITE) { # ifdef IN_RING3 rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated write %#x byte at %RGp to %s\n", cbValue, GCPhys, R3STRING(pRange->pszDesc)); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_WRITE; # endif } #endif /* * Check if we should ignore the write. */ if ((pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD) { Assert(cbValue != 4 || (GCPhys & 3)); return VINF_SUCCESS; } if ((pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD_QWORD) { Assert((cbValue != 4 && cbValue != 8) || (GCPhys & (cbValue - 1))); return VINF_SUCCESS; } /* * Split and conquer. */ for (;;) { unsigned const offAccess = GCPhys & 3; unsigned cbThisPart = 4 - offAccess; if (cbThisPart > cbValue) cbThisPart = cbValue; /* * Get the missing bits (if any). */ uint32_t u32MissingValue = 0; if (fReadMissing && cbThisPart != 4) { int rc2 = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32MissingValue, sizeof(u32MissingValue)); switch (rc2) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: u32MissingValue = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: u32MissingValue = 0; break; case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: /** @todo What if we've split a transfer and already read * something? Since writes generally have sideeffects we * could be kind of screwed here... * * Fix: Save the current state and resume it in ring-3. Requires EM to not go * to REM for MMIO accesses (like may currently do). */ LogFlow(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } } /* * Merge missing and given bits. */ uint32_t u32GivenMask; uint32_t u32GivenValue; switch (cbThisPart) { case 1: u32GivenValue = *(uint8_t const *)pvValue; u32GivenMask = UINT32_C(0x000000ff); break; case 2: u32GivenValue = *(uint16_t const *)pvValue; u32GivenMask = UINT32_C(0x0000ffff); break; case 3: u32GivenValue = RT_MAKE_U32_FROM_U8(((uint8_t const *)pvValue)[0], ((uint8_t const *)pvValue)[1], ((uint8_t const *)pvValue)[2], 0); u32GivenMask = UINT32_C(0x00ffffff); break; case 4: u32GivenValue = *(uint32_t const *)pvValue; u32GivenMask = UINT32_C(0xffffffff); break; default: AssertFailedReturn(VERR_IOM_MMIO_IPE_3); } if (offAccess) { u32GivenValue <<= offAccess * 8; u32GivenMask <<= offAccess * 8; } uint32_t u32Value = (u32MissingValue & ~u32GivenMask) | (u32GivenValue & u32GivenMask); /* * Do DWORD write to the device. */ int rc2 = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (rc2) { case VINF_SUCCESS: break; case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: /** @todo What if we've split a transfer and already read * something? Since reads can have sideeffects we could be * kind of screwed here... * * Fix: Save the current state and resume it in ring-3. Requires EM to not go * to REM for MMIO accesses (like may currently do). */ LogFlow(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; pvValue = (uint8_t const *)pvValue + cbThisPart; } return rc; } /** * Wrapper which does the write and updates range statistics when such are enabled. * @warning RT_SUCCESS(rc=VINF_IOM_R3_MMIO_WRITE) is TRUE! */ static int iomMMIODoWrite(PVM pVM, PVMCPU pVCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhysFault, const void *pvData, unsigned cb) { #ifdef VBOX_WITH_STATISTICS int rcSem = IOM_LOCK_SHARED(pVM); if (rcSem == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhysFault, pRange); if (!pStats) # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_WRITE; # endif STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); #endif VBOXSTRICTRC rc; if (RT_LIKELY(pRange->CTX_SUFF(pfnWriteCallback))) { if ( (cb == 4 && !(GCPhysFault & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_PASSTHRU || (cb == 8 && !(GCPhysFault & 7) && IOMMMIO_DOES_WRITE_MODE_ALLOW_QWORD(pRange->fFlags)) ) rc = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhysFault, (void *)pvData, cb); /** @todo fix const!! */ else rc = iomMMIODoComplicatedWrite(pVM, pRange, GCPhysFault, pvData, cb); } else rc = VINF_SUCCESS; STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); STAM_COUNTER_INC(&pStats->Accesses); return VBOXSTRICTRC_TODO(rc); } /** * Deals with complicated MMIO reads. * * Complicatd means unaligned or non-dword/qword align accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_READ, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_WRITE may be returned. * * @param pVM Pointer to the VM. * @param pRange The range to read from. * @param GCPhys The physical address to start reading. * @param pvValue Where to store the value. * @param cbValue The size of the value to read. */ static VBOXSTRICTRC iomMMIODoComplicatedRead(PVM pVM, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void *pvValue, unsigned cbValue) { AssertReturn( (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); RTGCPHYS const GCPhysStart = GCPhys; NOREF(GCPhysStart); /* * Do debug stop if requested. */ int rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (pRange->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_READ) { # ifdef IN_RING3 rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated read %#x byte at %RGp to %s\n", cbValue, GCPhys, R3STRING(pRange->pszDesc)); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_READ; # endif } #endif /* * Split and conquer. */ for (;;) { /* * Do DWORD read from the device. */ uint32_t u32Value; int rc2 = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (rc2) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: u32Value = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: u32Value = 0; break; case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: /** @todo What if we've split a transfer and already read * something? Since reads can have sideeffects we could be * kind of screwed here... */ LogFlow(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; default: if (RT_FAILURE(rc2)) { Log(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc\n", GCPhys, GCPhysStart, cbValue, rc2)); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", rc2), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } u32Value >>= (GCPhys & 3) * 8; /* * Write what we've read. */ unsigned cbThisPart = 4 - (GCPhys & 3); if (cbThisPart > cbValue) cbThisPart = cbValue; switch (cbThisPart) { case 1: *(uint8_t *)pvValue = (uint8_t)u32Value; break; case 2: *(uint16_t *)pvValue = (uint16_t)u32Value; break; case 3: ((uint8_t *)pvValue)[0] = RT_BYTE1(u32Value); ((uint8_t *)pvValue)[1] = RT_BYTE2(u32Value); ((uint8_t *)pvValue)[2] = RT_BYTE3(u32Value); break; case 4: *(uint32_t *)pvValue = u32Value; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; pvValue = (uint8_t *)pvValue + cbThisPart; } return rc; } /** * Implements VINF_IOM_MMIO_UNUSED_FF. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. */ static int iomMMIODoReadFFs(void *pvValue, size_t cbValue) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0xff); break; case 2: *(uint16_t *)pvValue = UINT16_C(0xffff); break; case 4: *(uint32_t *)pvValue = UINT32_C(0xffffffff); break; case 8: *(uint64_t *)pvValue = UINT64_C(0xffffffffffffffff); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0xff); break; } } return VINF_SUCCESS; } /** * Implements VINF_IOM_MMIO_UNUSED_00. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. */ static int iomMMIODoRead00s(void *pvValue, size_t cbValue) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0x00); break; case 2: *(uint16_t *)pvValue = UINT16_C(0x0000); break; case 4: *(uint32_t *)pvValue = UINT32_C(0x00000000); break; case 8: *(uint64_t *)pvValue = UINT64_C(0x0000000000000000); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0x00); break; } } return VINF_SUCCESS; } /** * Wrapper which does the read and updates range statistics when such are enabled. */ DECLINLINE(int) iomMMIODoRead(PVM pVM, PVMCPU pVCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhys, void *pvValue, unsigned cbValue) { #ifdef VBOX_WITH_STATISTICS int rcSem = IOM_LOCK_SHARED(pVM); if (rcSem == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ; PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_READ; # endif STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); #endif VBOXSTRICTRC rc; if (RT_LIKELY(pRange->CTX_SUFF(pfnReadCallback))) { if ( ( cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_PASSTHRU || ( cbValue == 8 && !(GCPhys & 7) && (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD ) ) rc = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, pvValue, cbValue); else rc = iomMMIODoComplicatedRead(pVM, pRange, GCPhys, pvValue, cbValue); } else rc = VINF_IOM_MMIO_UNUSED_FF; if (rc != VINF_SUCCESS) { switch (VBOXSTRICTRC_VAL(rc)) { case VINF_IOM_MMIO_UNUSED_FF: rc = iomMMIODoReadFFs(pvValue, cbValue); break; case VINF_IOM_MMIO_UNUSED_00: rc = iomMMIODoRead00s(pvValue, cbValue); break; } } STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); STAM_COUNTER_INC(&pStats->Accesses); return VBOXSTRICTRC_VAL(rc); } /** * Internal - statistics only. */ DECLINLINE(void) iomMMIOStatLength(PVM pVM, unsigned cb) { #ifdef VBOX_WITH_STATISTICS switch (cb) { case 1: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO1Byte); break; case 2: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO2Bytes); break; case 4: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO4Bytes); break; case 8: STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIO8Bytes); break; default: /* No way. */ AssertMsgFailed(("Invalid data length %d\n", cb)); break; } #else NOREF(pVM); NOREF(cb); #endif } /** * MOV reg, mem (read) * MOVZX reg, mem (read) * MOVSX reg, mem (read) * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. * @param GCPhysFault The GC physical address corresponding to pvFault. */ static int iomInterpretMOVxXRead(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhysFault) { Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); /* * Get the data size from parameter 2, * and call the handler function to get the data. */ unsigned cb = DISGetParamSize(pCpu, &pCpu->Param2); AssertMsg(cb > 0 && cb <= sizeof(uint64_t), ("cb=%d\n", cb)); uint64_t u64Data = 0; int rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &u64Data, cb); if (rc == VINF_SUCCESS) { /* * Do sign extension for MOVSX. */ /** @todo checkup MOVSX implementation! */ if (pCpu->pCurInstr->uOpcode == OP_MOVSX) { if (cb == 1) { /* DWORD <- BYTE */ int64_t iData = (int8_t)u64Data; u64Data = (uint64_t)iData; } else { /* DWORD <- WORD */ int64_t iData = (int16_t)u64Data; u64Data = (uint64_t)iData; } } /* * Store the result to register (parameter 1). */ bool fRc = iomSaveDataToReg(pCpu, &pCpu->Param1, pRegFrame, u64Data); AssertMsg(fRc, ("Failed to store register value!\n")); NOREF(fRc); } if (rc == VINF_SUCCESS) iomMMIOStatLength(pVM, cb); return rc; } /** * MOV mem, reg|imm (write) * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. * @param GCPhysFault The GC physical address corresponding to pvFault. */ static int iomInterpretMOVxXWrite(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange, RTGCPHYS GCPhysFault) { Assert(pRange->CTX_SUFF(pfnWriteCallback) || !pRange->pfnWriteCallbackR3); /* * Get data to write from second parameter, * and call the callback to write it. */ unsigned cb = 0; uint64_t u64Data = 0; bool fRc = iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &u64Data, &cb); AssertMsg(fRc, ("Failed to get reg/imm port number!\n")); NOREF(fRc); int rc = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, &u64Data, cb); if (rc == VINF_SUCCESS) iomMMIOStatLength(pVM, cb); return rc; } /** Wrapper for reading virtual memory. */ DECLINLINE(int) iomRamRead(PVMCPU pVCpu, void *pDest, RTGCPTR GCSrc, uint32_t cb) { /* Note: This will fail in R0 or RC if it hits an access handler. That isn't a problem though since the operation can be restarted in REM. */ #ifdef IN_RC NOREF(pVCpu); int rc = MMGCRamReadNoTrapHandler(pDest, (void *)(uintptr_t)GCSrc, cb); /* Page may be protected and not directly accessible. */ if (rc == VERR_ACCESS_DENIED) rc = VINF_IOM_R3_IOPORT_WRITE; return rc; #else return PGMPhysReadGCPtr(pVCpu, pDest, GCSrc, cb); #endif } /** Wrapper for writing virtual memory. */ DECLINLINE(int) iomRamWrite(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, void *pvSrc, uint32_t cb) { /** @todo Need to update PGMVerifyAccess to take access handlers into account for Ring-0 and * raw mode code. Some thought needs to be spent on theoretical concurrency issues as * as well since we're not behind the pgm lock and handler may change between calls. * * PGMPhysInterpretedWriteNoHandlers/PGMPhysWriteGCPtr may mess up * the state of some shadowed structures. */ #if defined(IN_RING0) || defined(IN_RC) return PGMPhysInterpretedWriteNoHandlers(pVCpu, pCtxCore, GCPtrDst, pvSrc, cb, false /*fRaiseTrap*/); #else NOREF(pCtxCore); return PGMPhysWriteGCPtr(pVCpu, GCPtrDst, pvSrc, cb); #endif } #if defined(IOM_WITH_MOVS_SUPPORT) && 0 /* locking prevents this from working. has buggy ecx handling. */ /** * [REP] MOVSB * [REP] MOVSW * [REP] MOVSD * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param uErrorCode CPU Error code. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. * @param ppStat Which sub-sample to attribute this call to. */ static int iomInterpretMOVS(PVM pVM, bool fWriteAccess, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange, PSTAMPROFILE *ppStat) { /* * We do not support segment prefixes or REPNE. */ if (pCpu->fPrefix & (DISPREFIX_SEG | DISPREFIX_REPNE)) return VINF_IOM_R3_MMIO_READ_WRITE; /** @todo -> interpret whatever. */ PVMCPU pVCpu = VMMGetCpu(pVM); /* * Get bytes/words/dwords/qword count to copy. */ uint32_t cTransfers = 1; if (pCpu->fPrefix & DISPREFIX_REP) { #ifndef IN_RC if ( CPUMIsGuestIn64BitCode(pVCpu, pRegFrame) && pRegFrame->rcx >= _4G) return VINF_EM_RAW_EMULATE_INSTR; #endif cTransfers = pRegFrame->ecx; if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid) == DISCPUMODE_16BIT) cTransfers &= 0xffff; if (!cTransfers) return VINF_SUCCESS; } /* Get the current privilege level. */ uint32_t cpl = CPUMGetGuestCPL(pVCpu, pRegFrame); /* * Get data size. */ unsigned cb = DISGetParamSize(pCpu, &pCpu->Param1); AssertMsg(cb > 0 && cb <= sizeof(uint64_t), ("cb=%d\n", cb)); int offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cb : (signed)cb; #ifdef VBOX_WITH_STATISTICS if (pVM->iom.s.cMovsMaxBytes < (cTransfers << SIZE_2_SHIFT(cb))) pVM->iom.s.cMovsMaxBytes = cTransfers << SIZE_2_SHIFT(cb); #endif /** @todo re-evaluate on page boundaries. */ RTGCPHYS Phys = GCPhysFault; int rc; if (fWriteAccess) { /* * Write operation: [Mem] -> [MMIO] * ds:esi (Virt Src) -> es:edi (Phys Dst) */ STAM_STATS({ *ppStat = &pVM->iom.s.StatRZInstMovsToMMIO; }); /* Check callback. */ if (!pRange->CTX_SUFF(pfnWriteCallback)) return VINF_IOM_R3_MMIO_WRITE; /* Convert source address ds:esi. */ RTGCUINTPTR pu8Virt; rc = SELMToFlatEx(pVM, DISSELREG_DS, pRegFrame, (RTGCPTR)pRegFrame->rsi, SELMTOFLAT_FLAGS_HYPER | SELMTOFLAT_FLAGS_NO_PL, (PRTGCPTR)&pu8Virt); if (RT_SUCCESS(rc)) { /* Access verification first; we currently can't recover properly from traps inside this instruction */ rc = PGMVerifyAccess(pVCpu, pu8Virt, cTransfers * cb, (cpl == 3) ? X86_PTE_US : 0); if (rc != VINF_SUCCESS) { Log(("MOVS will generate a trap -> recompiler, rc=%d\n", rc)); return VINF_EM_RAW_EMULATE_INSTR; } #ifdef IN_RC MMGCRamRegisterTrapHandler(pVM); #endif /* copy loop. */ while (cTransfers) { uint32_t u32Data = 0; rc = iomRamRead(pVCpu, &u32Data, (RTGCPTR)pu8Virt, cb); if (rc != VINF_SUCCESS) break; rc = iomMMIODoWrite(pVM, pRange, Phys, &u32Data, cb); if (rc != VINF_SUCCESS) break; pu8Virt += offIncrement; Phys += offIncrement; pRegFrame->rsi += offIncrement; pRegFrame->rdi += offIncrement; cTransfers--; } #ifdef IN_RC MMGCRamDeregisterTrapHandler(pVM); #endif /* Update ecx. */ if (pCpu->fPrefix & DISPREFIX_REP) pRegFrame->ecx = cTransfers; } else rc = VINF_IOM_R3_MMIO_READ_WRITE; } else { /* * Read operation: [MMIO] -> [mem] or [MMIO] -> [MMIO] * ds:[eSI] (Phys Src) -> es:[eDI] (Virt Dst) */ STAM_STATS({ *ppStat = &pVM->iom.s.StatRZInstMovsFromMMIO; }); /* Check callback. */ if (!pRange->CTX_SUFF(pfnReadCallback)) return VINF_IOM_R3_MMIO_READ; /* Convert destination address. */ RTGCUINTPTR pu8Virt; rc = SELMToFlatEx(pVM, DISSELREG_ES, pRegFrame, (RTGCPTR)pRegFrame->rdi, SELMTOFLAT_FLAGS_HYPER | SELMTOFLAT_FLAGS_NO_PL, (RTGCPTR *)&pu8Virt); if (RT_FAILURE(rc)) return VINF_IOM_R3_MMIO_READ; /* Check if destination address is MMIO. */ PIOMMMIORANGE pMMIODst; RTGCPHYS PhysDst; rc = PGMGstGetPage(pVCpu, (RTGCPTR)pu8Virt, NULL, &PhysDst); PhysDst |= (RTGCUINTPTR)pu8Virt & PAGE_OFFSET_MASK; if ( RT_SUCCESS(rc) && (pMMIODst = iomMmioGetRangeWithRef(pVM, PhysDst))) { /** @todo implement per-device locks for MMIO access. */ Assert(!pMMIODst->CTX_SUFF(pDevIns)->CTX_SUFF(pCritSect)); /* * Extra: [MMIO] -> [MMIO] */ STAM_STATS({ *ppStat = &pVM->iom.s.StatRZInstMovsMMIO; }); if (!pMMIODst->CTX_SUFF(pfnWriteCallback) && pMMIODst->pfnWriteCallbackR3) { iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_READ_WRITE; } /* copy loop. */ while (cTransfers) { uint32_t u32Data; rc = iomMMIODoRead(pVM, pRange, Phys, &u32Data, cb); if (rc != VINF_SUCCESS) break; rc = iomMMIODoWrite(pVM, pMMIODst, PhysDst, &u32Data, cb); if (rc != VINF_SUCCESS) break; Phys += offIncrement; PhysDst += offIncrement; pRegFrame->rsi += offIncrement; pRegFrame->rdi += offIncrement; cTransfers--; } iomMmioReleaseRange(pVM, pRange); } else { /* * Normal: [MMIO] -> [Mem] */ /* Access verification first; we currently can't recover properly from traps inside this instruction */ rc = PGMVerifyAccess(pVCpu, pu8Virt, cTransfers * cb, X86_PTE_RW | ((cpl == 3) ? X86_PTE_US : 0)); if (rc != VINF_SUCCESS) { Log(("MOVS will generate a trap -> recompiler, rc=%d\n", rc)); return VINF_EM_RAW_EMULATE_INSTR; } /* copy loop. */ #ifdef IN_RC MMGCRamRegisterTrapHandler(pVM); #endif while (cTransfers) { uint32_t u32Data; rc = iomMMIODoRead(pVM, pRange, Phys, &u32Data, cb); if (rc != VINF_SUCCESS) break; rc = iomRamWrite(pVCpu, pRegFrame, (RTGCPTR)pu8Virt, &u32Data, cb); if (rc != VINF_SUCCESS) { Log(("iomRamWrite %08X size=%d failed with %d\n", pu8Virt, cb, rc)); break; } pu8Virt += offIncrement; Phys += offIncrement; pRegFrame->rsi += offIncrement; pRegFrame->rdi += offIncrement; cTransfers--; } #ifdef IN_RC MMGCRamDeregisterTrapHandler(pVM); #endif } /* Update ecx on exit. */ if (pCpu->fPrefix & DISPREFIX_REP) pRegFrame->ecx = cTransfers; } /* work statistics. */ if (rc == VINF_SUCCESS) iomMMIOStatLength(pVM, cb); NOREF(ppStat); return rc; } #endif /* IOM_WITH_MOVS_SUPPORT */ /** * Gets the address / opcode mask corresponding to the given CPU mode. * * @returns Mask. * @param enmCpuMode CPU mode. */ static uint64_t iomDisModeToMask(DISCPUMODE enmCpuMode) { switch (enmCpuMode) { case DISCPUMODE_16BIT: return UINT16_MAX; case DISCPUMODE_32BIT: return UINT32_MAX; case DISCPUMODE_64BIT: return UINT64_MAX; default: AssertFailedReturn(UINT32_MAX); } } /** * [REP] STOSB * [REP] STOSW * [REP] STOSD * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretSTOS(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { /* * We do not support segment prefixes or REPNE.. */ if (pCpu->fPrefix & (DISPREFIX_SEG | DISPREFIX_REPNE)) return VINF_IOM_R3_MMIO_READ_WRITE; /** @todo -> REM instead of HC */ /* * Get bytes/words/dwords/qwords count to copy. */ uint64_t const fAddrMask = iomDisModeToMask((DISCPUMODE)pCpu->uAddrMode); RTGCUINTREG cTransfers = 1; if (pCpu->fPrefix & DISPREFIX_REP) { #ifndef IN_RC if ( CPUMIsGuestIn64BitCode(pVCpu) && pRegFrame->rcx >= _4G) return VINF_EM_RAW_EMULATE_INSTR; #endif cTransfers = pRegFrame->rcx & fAddrMask; if (!cTransfers) return VINF_SUCCESS; } /** @todo r=bird: bounds checks! */ /* * Get data size. */ unsigned cb = DISGetParamSize(pCpu, &pCpu->Param1); AssertMsg(cb > 0 && cb <= sizeof(uint64_t), ("cb=%d\n", cb)); int offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cb : (signed)cb; #ifdef VBOX_WITH_STATISTICS if (pVM->iom.s.cStosMaxBytes < (cTransfers << SIZE_2_SHIFT(cb))) pVM->iom.s.cStosMaxBytes = cTransfers << SIZE_2_SHIFT(cb); #endif RTGCPHYS Phys = GCPhysFault; int rc; if ( pRange->CTX_SUFF(pfnFillCallback) && cb <= 4 /* can only fill 32-bit values */) { /* * Use the fill callback. */ /** @todo pfnFillCallback must return number of bytes successfully written!!! */ if (offIncrement > 0) { /* addr++ variant. */ rc = pRange->CTX_SUFF(pfnFillCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), Phys, pRegFrame->eax, cb, cTransfers); if (rc == VINF_SUCCESS) { /* Update registers. */ pRegFrame->rdi = ((pRegFrame->rdi + (cTransfers << SIZE_2_SHIFT(cb))) & fAddrMask) | (pRegFrame->rdi & ~fAddrMask); if (pCpu->fPrefix & DISPREFIX_REP) pRegFrame->rcx &= ~fAddrMask; } } else { /* addr-- variant. */ rc = pRange->CTX_SUFF(pfnFillCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), Phys - ((cTransfers - 1) << SIZE_2_SHIFT(cb)), pRegFrame->eax, cb, cTransfers); if (rc == VINF_SUCCESS) { /* Update registers. */ pRegFrame->rdi = ((pRegFrame->rdi - (cTransfers << SIZE_2_SHIFT(cb))) & fAddrMask) | (pRegFrame->rdi & ~fAddrMask); if (pCpu->fPrefix & DISPREFIX_REP) pRegFrame->rcx &= ~fAddrMask; } } } else { /* * Use the write callback. */ Assert(pRange->CTX_SUFF(pfnWriteCallback) || !pRange->pfnWriteCallbackR3); uint64_t u64Data = pRegFrame->rax; /* fill loop. */ do { rc = iomMMIODoWrite(pVM, pVCpu, pRange, Phys, &u64Data, cb); if (rc != VINF_SUCCESS) break; Phys += offIncrement; pRegFrame->rdi = ((pRegFrame->rdi + offIncrement) & fAddrMask) | (pRegFrame->rdi & ~fAddrMask); cTransfers--; } while (cTransfers); /* Update rcx on exit. */ if (pCpu->fPrefix & DISPREFIX_REP) pRegFrame->rcx = (cTransfers & fAddrMask) | (pRegFrame->rcx & ~fAddrMask); } /* * Work statistics and return. */ if (rc == VINF_SUCCESS) iomMMIOStatLength(pVM, cb); return rc; } /** * [REP] LODSB * [REP] LODSW * [REP] LODSD * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretLODS(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); /* * We do not support segment prefixes or REP*. */ if (pCpu->fPrefix & (DISPREFIX_SEG | DISPREFIX_REP | DISPREFIX_REPNE)) return VINF_IOM_R3_MMIO_READ_WRITE; /** @todo -> REM instead of HC */ /* * Get data size. */ unsigned cb = DISGetParamSize(pCpu, &pCpu->Param2); AssertMsg(cb > 0 && cb <= sizeof(uint64_t), ("cb=%d\n", cb)); int offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cb : (signed)cb; /* * Perform read. */ int rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &pRegFrame->rax, cb); if (rc == VINF_SUCCESS) { uint64_t const fAddrMask = iomDisModeToMask((DISCPUMODE)pCpu->uAddrMode); pRegFrame->rsi = ((pRegFrame->rsi + offIncrement) & fAddrMask) | (pRegFrame->rsi & ~fAddrMask); } /* * Work statistics and return. */ if (rc == VINF_SUCCESS) iomMMIOStatLength(pVM, cb); return rc; } /** * CMP [MMIO], reg|imm * CMP reg|imm, [MMIO] * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretCMP(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); /* * Get the operands. */ unsigned cb = 0; uint64_t uData1 = 0; uint64_t uData2 = 0; int rc; if (iomGetRegImmData(pCpu, &pCpu->Param1, pRegFrame, &uData1, &cb)) /* cmp reg, [MMIO]. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData2, cb); else if (iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &uData2, &cb)) /* cmp [MMIO], reg|imm. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); else { AssertMsgFailed(("Disassember CMP problem..\n")); rc = VERR_IOM_MMIO_HANDLER_DISASM_ERROR; } if (rc == VINF_SUCCESS) { #if HC_ARCH_BITS == 32 /* Can't deal with 8 byte operands in our 32-bit emulation code. */ if (cb > 4) return VINF_IOM_R3_MMIO_READ_WRITE; #endif /* Emulate CMP and update guest flags. */ uint32_t eflags = EMEmulateCmp(uData1, uData2, cb); pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)) | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)); iomMMIOStatLength(pVM, cb); } return rc; } /** * AND [MMIO], reg|imm * AND reg, [MMIO] * OR [MMIO], reg|imm * OR reg, [MMIO] * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. * @param pfnEmulate Instruction emulation function. */ static int iomInterpretOrXorAnd(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange, PFNEMULATEPARAM3 pfnEmulate) { unsigned cb = 0; uint64_t uData1 = 0; uint64_t uData2 = 0; bool fAndWrite; int rc; #ifdef LOG_ENABLED const char *pszInstr; if (pCpu->pCurInstr->uOpcode == OP_XOR) pszInstr = "Xor"; else if (pCpu->pCurInstr->uOpcode == OP_OR) pszInstr = "Or"; else if (pCpu->pCurInstr->uOpcode == OP_AND) pszInstr = "And"; else pszInstr = "OrXorAnd??"; #endif if (iomGetRegImmData(pCpu, &pCpu->Param1, pRegFrame, &uData1, &cb)) { #if HC_ARCH_BITS == 32 /* Can't deal with 8 byte operands in our 32-bit emulation code. */ if (cb > 4) return VINF_IOM_R3_MMIO_READ_WRITE; #endif /* and reg, [MMIO]. */ Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); fAndWrite = false; rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData2, cb); } else if (iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &uData2, &cb)) { #if HC_ARCH_BITS == 32 /* Can't deal with 8 byte operands in our 32-bit emulation code. */ if (cb > 4) return VINF_IOM_R3_MMIO_READ_WRITE; #endif /* and [MMIO], reg|imm. */ fAndWrite = true; if ( (pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3) && (pRange->CTX_SUFF(pfnWriteCallback) || !pRange->pfnWriteCallbackR3)) rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); else rc = VINF_IOM_R3_MMIO_READ_WRITE; } else { AssertMsgFailed(("Disassember AND problem..\n")); return VERR_IOM_MMIO_HANDLER_DISASM_ERROR; } if (rc == VINF_SUCCESS) { /* Emulate AND and update guest flags. */ uint32_t eflags = pfnEmulate((uint32_t *)&uData1, uData2, cb); LogFlow(("iomInterpretOrXorAnd %s result %RX64\n", pszInstr, uData1)); if (fAndWrite) /* Store result to MMIO. */ rc = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); else { /* Store result to register. */ bool fRc = iomSaveDataToReg(pCpu, &pCpu->Param1, pRegFrame, uData1); AssertMsg(fRc, ("Failed to store register value!\n")); NOREF(fRc); } if (rc == VINF_SUCCESS) { /* Update guest's eflags and finish. */ pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)) | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)); iomMMIOStatLength(pVM, cb); } } return rc; } /** * TEST [MMIO], reg|imm * TEST reg, [MMIO] * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretTEST(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); unsigned cb = 0; uint64_t uData1 = 0; uint64_t uData2 = 0; int rc; if (iomGetRegImmData(pCpu, &pCpu->Param1, pRegFrame, &uData1, &cb)) { /* and test, [MMIO]. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData2, cb); } else if (iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &uData2, &cb)) { /* test [MMIO], reg|imm. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); } else { AssertMsgFailed(("Disassember TEST problem..\n")); return VERR_IOM_MMIO_HANDLER_DISASM_ERROR; } if (rc == VINF_SUCCESS) { #if HC_ARCH_BITS == 32 /* Can't deal with 8 byte operands in our 32-bit emulation code. */ if (cb > 4) return VINF_IOM_R3_MMIO_READ_WRITE; #endif /* Emulate TEST (=AND without write back) and update guest EFLAGS. */ uint32_t eflags = EMEmulateAnd((uint32_t *)&uData1, uData2, cb); pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)) | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF)); iomMMIOStatLength(pVM, cb); } return rc; } /** * BT [MMIO], reg|imm * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretBT(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { Assert(pRange->CTX_SUFF(pfnReadCallback) || !pRange->pfnReadCallbackR3); uint64_t uBit = 0; uint64_t uData = 0; unsigned cbIgnored; if (!iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &uBit, &cbIgnored)) { AssertMsgFailed(("Disassember BT problem..\n")); return VERR_IOM_MMIO_HANDLER_DISASM_ERROR; } /* The size of the memory operand only matters here. */ unsigned cbData = DISGetParamSize(pCpu, &pCpu->Param1); /* bt [MMIO], reg|imm. */ int rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData, cbData); if (rc == VINF_SUCCESS) { /* Find the bit inside the faulting address */ pRegFrame->eflags.Bits.u1CF = (uData >> uBit); iomMMIOStatLength(pVM, cbData); } return rc; } /** * XCHG [MMIO], reg * XCHG reg, [MMIO] * * Restricted implementation. * * * @returns VBox status code. * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pCpu Disassembler CPU state. * @param pRange Pointer MMIO range. */ static int iomInterpretXCHG(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, PDISCPUSTATE pCpu, PIOMMMIORANGE pRange) { /* Check for read & write handlers since IOMMMIOHandler doesn't cover this. */ if ( (!pRange->CTX_SUFF(pfnReadCallback) && pRange->pfnReadCallbackR3) || (!pRange->CTX_SUFF(pfnWriteCallback) && pRange->pfnWriteCallbackR3)) return VINF_IOM_R3_MMIO_READ_WRITE; int rc; unsigned cb = 0; uint64_t uData1 = 0; uint64_t uData2 = 0; if (iomGetRegImmData(pCpu, &pCpu->Param1, pRegFrame, &uData1, &cb)) { /* xchg reg, [MMIO]. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData2, cb); if (rc == VINF_SUCCESS) { /* Store result to MMIO. */ rc = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); if (rc == VINF_SUCCESS) { /* Store result to register. */ bool fRc = iomSaveDataToReg(pCpu, &pCpu->Param1, pRegFrame, uData2); AssertMsg(fRc, ("Failed to store register value!\n")); NOREF(fRc); } else Assert(rc == VINF_IOM_R3_MMIO_WRITE || rc == VINF_PATM_HC_MMIO_PATCH_WRITE); } else Assert(rc == VINF_IOM_R3_MMIO_READ || rc == VINF_PATM_HC_MMIO_PATCH_READ); } else if (iomGetRegImmData(pCpu, &pCpu->Param2, pRegFrame, &uData2, &cb)) { /* xchg [MMIO], reg. */ rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, &uData1, cb); if (rc == VINF_SUCCESS) { /* Store result to MMIO. */ rc = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, &uData2, cb); if (rc == VINF_SUCCESS) { /* Store result to register. */ bool fRc = iomSaveDataToReg(pCpu, &pCpu->Param2, pRegFrame, uData1); AssertMsg(fRc, ("Failed to store register value!\n")); NOREF(fRc); } else AssertMsg(rc == VINF_IOM_R3_MMIO_READ_WRITE || rc == VINF_IOM_R3_MMIO_WRITE || rc == VINF_PATM_HC_MMIO_PATCH_WRITE, ("rc=%Rrc\n", rc)); } else AssertMsg(rc == VINF_IOM_R3_MMIO_READ_WRITE || rc == VINF_IOM_R3_MMIO_READ || rc == VINF_PATM_HC_MMIO_PATCH_READ, ("rc=%Rrc\n", rc)); } else { AssertMsgFailed(("Disassember XCHG problem..\n")); rc = VERR_IOM_MMIO_HANDLER_DISASM_ERROR; } return rc; } /** * \#PF Handler callback for MMIO ranges. * * @returns VBox status code (appropriate for GC return). * @param pVM Pointer to the VM. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param uErrorCode CPU Error code. This is UINT32_MAX when we don't have * any error code (the EPT misconfig hack). * @param pCtxCore Trap register frame. * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser Pointer to the MMIO ring-3 range entry. */ static int iomMMIOHandler(PVM pVM, PVMCPU pVCpu, uint32_t uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPHYS GCPhysFault, void *pvUser) { int rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ_WRITE; #endif AssertRC(rc); STAM_PROFILE_START(&pVM->iom.s.StatRZMMIOHandler, a); Log(("iomMMIOHandler: GCPhys=%RGp uErr=%#x rip=%RGv\n", GCPhysFault, uErrorCode, (RTGCPTR)pCtxCore->rip)); PIOMMMIORANGE pRange = (PIOMMMIORANGE)pvUser; Assert(pRange); Assert(pRange == iomMmioGetRange(pVM, pVCpu, GCPhysFault)); iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* * Locate the statistics. */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhysFault, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOFailures); return VINF_IOM_R3_MMIO_READ_WRITE; # endif } #endif #ifndef IN_RING3 /* * Should we defer the request right away? This isn't usually the case, so * do the simple test first and the try deal with uErrorCode being N/A. */ if (RT_UNLIKELY( ( !pRange->CTX_SUFF(pfnWriteCallback) || !pRange->CTX_SUFF(pfnReadCallback)) && ( uErrorCode == UINT32_MAX ? pRange->pfnWriteCallbackR3 || pRange->pfnReadCallbackR3 : uErrorCode & X86_TRAP_PF_RW ? !pRange->CTX_SUFF(pfnWriteCallback) && pRange->pfnWriteCallbackR3 : !pRange->CTX_SUFF(pfnReadCallback) && pRange->pfnReadCallbackR3 ) ) ) { if (uErrorCode & X86_TRAP_PF_RW) STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); else STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOFailures); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_READ_WRITE; } #endif /* !IN_RING3 */ /* * Retain the range and do locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ_WRITE); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Disassemble the instruction and interpret it. */ PDISCPUSTATE pDis = &pVCpu->iom.s.DisState; unsigned cbOp; rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); if (RT_FAILURE(rc)) { PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; } switch (pDis->pCurInstr->uOpcode) { case OP_MOV: case OP_MOVZX: case OP_MOVSX: { STAM_PROFILE_START(&pVM->iom.s.StatRZInstMov, b); AssertMsg(uErrorCode == UINT32_MAX || DISUSE_IS_EFFECTIVE_ADDR(pDis->Param1.fUse) == !!(uErrorCode & X86_TRAP_PF_RW), ("flags1=%#llx/%RTbool flags2=%#llx/%RTbool ErrCd=%#x\n", pDis->Param1.fUse, DISUSE_IS_EFFECTIVE_ADDR(pDis->Param1.fUse), pDis->Param2.fUse, DISUSE_IS_EFFECTIVE_ADDR(pDis->Param2.fUse), uErrorCode)); if (uErrorCode != UINT32_MAX /* EPT+MMIO optimization */ ? uErrorCode & X86_TRAP_PF_RW : DISUSE_IS_EFFECTIVE_ADDR(pDis->Param1.fUse)) rc = iomInterpretMOVxXWrite(pVM, pVCpu, pCtxCore, pDis, pRange, GCPhysFault); else rc = iomInterpretMOVxXRead(pVM, pVCpu, pCtxCore, pDis, pRange, GCPhysFault); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstMov, b); break; } #ifdef IOM_WITH_MOVS_SUPPORT case OP_MOVSB: case OP_MOVSWD: { if (uErrorCode == UINT32_MAX) rc = VINF_IOM_R3_MMIO_READ_WRITE; else { STAM_PROFILE_ADV_START(&pVM->iom.s.StatRZInstMovs, c); PSTAMPROFILE pStat = NULL; rc = iomInterpretMOVS(pVM, !!(uErrorCode & X86_TRAP_PF_RW), pCtxCore, GCPhysFault, pDis, pRange, &pStat); STAM_PROFILE_ADV_STOP_EX(&pVM->iom.s.StatRZInstMovs, pStat, c); } break; } #endif case OP_STOSB: case OP_STOSWD: Assert(uErrorCode & X86_TRAP_PF_RW); STAM_PROFILE_START(&pVM->iom.s.StatRZInstStos, d); rc = iomInterpretSTOS(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstStos, d); break; case OP_LODSB: case OP_LODSWD: Assert(!(uErrorCode & X86_TRAP_PF_RW) || uErrorCode == UINT32_MAX); STAM_PROFILE_START(&pVM->iom.s.StatRZInstLods, e); rc = iomInterpretLODS(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstLods, e); break; case OP_CMP: Assert(!(uErrorCode & X86_TRAP_PF_RW) || uErrorCode == UINT32_MAX); STAM_PROFILE_START(&pVM->iom.s.StatRZInstCmp, f); rc = iomInterpretCMP(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstCmp, f); break; case OP_AND: STAM_PROFILE_START(&pVM->iom.s.StatRZInstAnd, g); rc = iomInterpretOrXorAnd(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange, EMEmulateAnd); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstAnd, g); break; case OP_OR: STAM_PROFILE_START(&pVM->iom.s.StatRZInstOr, k); rc = iomInterpretOrXorAnd(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange, EMEmulateOr); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstOr, k); break; case OP_XOR: STAM_PROFILE_START(&pVM->iom.s.StatRZInstXor, m); rc = iomInterpretOrXorAnd(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange, EMEmulateXor); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstXor, m); break; case OP_TEST: Assert(!(uErrorCode & X86_TRAP_PF_RW) || uErrorCode == UINT32_MAX); STAM_PROFILE_START(&pVM->iom.s.StatRZInstTest, h); rc = iomInterpretTEST(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstTest, h); break; case OP_BT: Assert(!(uErrorCode & X86_TRAP_PF_RW) || uErrorCode == UINT32_MAX); STAM_PROFILE_START(&pVM->iom.s.StatRZInstBt, l); rc = iomInterpretBT(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstBt, l); break; case OP_XCHG: STAM_PROFILE_START(&pVM->iom.s.StatRZInstXchg, i); rc = iomInterpretXCHG(pVM, pVCpu, pCtxCore, GCPhysFault, pDis, pRange); STAM_PROFILE_STOP(&pVM->iom.s.StatRZInstXchg, i); break; /* * The instruction isn't supported. Hand it on to ring-3. */ default: STAM_COUNTER_INC(&pVM->iom.s.StatRZInstOther); rc = VINF_IOM_R3_MMIO_READ_WRITE; break; } /* * On success advance EIP. */ if (rc == VINF_SUCCESS) pCtxCore->rip += cbOp; else { STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOFailures); #if defined(VBOX_WITH_STATISTICS) && !defined(IN_RING3) switch (rc) { case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); break; case VINF_IOM_R3_MMIO_WRITE: STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); break; } #endif } STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; } /** * \#PF Handler callback for MMIO ranges. * * @returns VBox status code (appropriate for GC return). * @param pVM Pointer to the VM. * @param uErrorCode CPU Error code. * @param pCtxCore Trap register frame. * @param pvFault The fault address (cr2). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser Pointer to the MMIO ring-3 range entry. */ VMMDECL(int) IOMMMIOHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { LogFlow(("IOMMMIOHandler: GCPhys=%RGp uErr=%#x pvFault=%RGv rip=%RGv\n", GCPhysFault, (uint32_t)uErrorCode, pvFault, (RTGCPTR)pCtxCore->rip)); VBOXSTRICTRC rcStrict = iomMMIOHandler(pVM, VMMGetCpu(pVM), (uint32_t)uErrorCode, pCtxCore, GCPhysFault, pvUser); return VBOXSTRICTRC_VAL(rcStrict); } /** * Physical access handler for MMIO ranges. * * @returns VBox status code (appropriate for GC return). * @param pVM Pointer to the VM. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param uErrorCode CPU Error code. * @param pCtxCore Trap register frame. * @param GCPhysFault The GC physical address. */ VMMDECL(VBOXSTRICTRC) IOMMMIOPhysHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPHYS GCPhysFault) { int rc2 = IOM_LOCK_SHARED(pVM); NOREF(rc2); #ifndef IN_RING3 if (rc2 == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_READ_WRITE; #endif VBOXSTRICTRC rcStrict = iomMMIOHandler(pVM, pVCpu, (uint32_t)uErrorCode, pCtxCore, GCPhysFault, iomMmioGetRange(pVM, pVCpu, GCPhysFault)); IOM_UNLOCK_SHARED(pVM); return VBOXSTRICTRC_VAL(rcStrict); } #ifdef IN_RING3 /** * \#PF Handler callback for MMIO ranges. * * @returns VINF_SUCCESS if the handler have carried out the operation. * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation. * @param pVM Pointer to the VM. * @param GCPhys The physical address the guest is writing to. * @param pvPhys The HC mapping of that address. * @param pvBuf What the guest is reading/writing. * @param cbBuf How much it's reading/writing. * @param enmAccessType The access type. * @param pvUser Pointer to the MMIO range entry. */ DECLCALLBACK(int) IOMR3MMIOHandler(PVM pVM, RTGCPHYS GCPhysFault, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser) { PVMCPU pVCpu = VMMGetCpu(pVM); PIOMMMIORANGE pRange = (PIOMMMIORANGE)pvUser; STAM_COUNTER_INC(&pVM->iom.s.StatR3MMIOHandler); AssertMsg(cbBuf == 1 || cbBuf == 2 || cbBuf == 4 || cbBuf == 8, ("%zu\n", cbBuf)); AssertPtr(pRange); NOREF(pvPhys); /* * Validate the range. */ int rc = IOM_LOCK_SHARED(pVM); AssertRC(rc); Assert(pRange == iomMmioGetRange(pVM, pVCpu, GCPhysFault)); /* * Perform locking. */ iomMmioRetainRange(pRange); PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); IOM_UNLOCK_SHARED(pVM); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ_WRITE); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Perform the access. */ if (enmAccessType == PGMACCESSTYPE_READ) rc = iomMMIODoRead(pVM, pVCpu, pRange, GCPhysFault, pvBuf, (unsigned)cbBuf); else rc = iomMMIODoWrite(pVM, pVCpu, pRange, GCPhysFault, pvBuf, (unsigned)cbBuf); AssertRC(rc); iomMmioReleaseRange(pVM, pRange); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); return rc; } #endif /* IN_RING3 */ /** * Reads a MMIO register. * * @returns VBox status code. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param GCPhys The physical address to read. * @param pu32Value Where to store the value read. * @param cbValue The size of the register to read in bytes. 1, 2 or 4 bytes. */ VMMDECL(VBOXSTRICTRC) IOMMMIORead(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint32_t *pu32Value, size_t cbValue) { /* Take the IOM lock before performing any MMIO. */ VBOXSTRICTRC rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; #endif AssertRC(VBOXSTRICTRC_VAL(rc)); #if defined(IEM_VERIFICATION_MODE) && defined(IN_RING3) IEMNotifyMMIORead(pVM, GCPhys, cbValue); #endif /* * Lookup the current context range node and statistics. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); if (!pRange) { AssertMsgFailed(("Handlers and page tables are out of sync or something! GCPhys=%RGp cbValue=%d\n", GCPhys, cbValue)); IOM_UNLOCK_SHARED(pVM); return VERR_IOM_MMIO_RANGE_NOT_FOUND; } iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* VBOX_WITH_STATISTICS */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_READ; # endif } STAM_COUNTER_INC(&pStats->Accesses); #endif /* VBOX_WITH_STATISTICS */ if (pRange->CTX_SUFF(pfnReadCallback)) { /* * Perform locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_WRITE); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Perform the read and deal with the result. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); if ( (cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_PASSTHRU || (cbValue == 8 && !(GCPhys & 7)) ) rc = pRange->CTX_SUFF(pfnReadCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, pu32Value, (unsigned)cbValue); else rc = iomMMIODoComplicatedRead(pVM, pRange, GCPhys, pu32Value, (unsigned)cbValue); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); switch (VBOXSTRICTRC_VAL(rc)) { case VINF_SUCCESS: Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=VINF_SUCCESS\n", GCPhys, *pu32Value, cbValue)); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); #endif default: Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return rc; case VINF_IOM_MMIO_UNUSED_00: iomMMIODoRead00s(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; case VINF_IOM_MMIO_UNUSED_FF: iomMMIODoReadFFs(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, *pu32Value, cbValue, VBOXSTRICTRC_VAL(rc))); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } /* not reached */ } #ifndef IN_RING3 if (pRange->pfnReadCallbackR3) { STAM_COUNTER_INC(&pStats->CTX_MID_Z(Read,ToR3)); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_READ; } #endif /* * Unassigned memory - this is actually not supposed t happen... */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfRead), a); /** @todo STAM_PROFILE_ADD_ZERO_PERIOD */ STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), a); iomMMIODoReadFFs(pu32Value, cbValue); Log4(("IOMMMIORead: GCPhys=%RGp *pu32=%08RX32 cb=%d rc=VINF_SUCCESS\n", GCPhys, *pu32Value, cbValue)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } /** * Writes to a MMIO register. * * @returns VBox status code. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param GCPhys The physical address to write to. * @param u32Value The value to write. * @param cbValue The size of the register to read in bytes. 1, 2 or 4 bytes. */ VMMDECL(VBOXSTRICTRC) IOMMMIOWrite(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint32_t u32Value, size_t cbValue) { /* Take the IOM lock before performing any MMIO. */ VBOXSTRICTRC rc = IOM_LOCK_SHARED(pVM); #ifndef IN_RING3 if (rc == VERR_SEM_BUSY) return VINF_IOM_R3_MMIO_WRITE; #endif AssertRC(VBOXSTRICTRC_VAL(rc)); #if defined(IEM_VERIFICATION_MODE) && defined(IN_RING3) IEMNotifyMMIOWrite(pVM, GCPhys, u32Value, cbValue); #endif /* * Lookup the current context range node. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); if (!pRange) { AssertMsgFailed(("Handlers and page tables are out of sync or something! GCPhys=%RGp cbValue=%d\n", GCPhys, cbValue)); IOM_UNLOCK_SHARED(pVM); return VERR_IOM_MMIO_RANGE_NOT_FOUND; } iomMmioRetainRange(pRange); #ifndef VBOX_WITH_STATISTICS IOM_UNLOCK_SHARED(pVM); #else /* VBOX_WITH_STATISTICS */ PIOMMMIOSTATS pStats = iomMmioGetStats(pVM, pVCpu, GCPhys, pRange); if (!pStats) { iomMmioReleaseRange(pVM, pRange); # ifdef IN_RING3 return VERR_NO_MEMORY; # else return VINF_IOM_R3_MMIO_WRITE; # endif } STAM_COUNTER_INC(&pStats->Accesses); #endif /* VBOX_WITH_STATISTICS */ if (pRange->CTX_SUFF(pfnWriteCallback)) { /* * Perform locking. */ PPDMDEVINS pDevIns = pRange->CTX_SUFF(pDevIns); rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ); if (rc != VINF_SUCCESS) { iomMmioReleaseRange(pVM, pRange); return rc; } /* * Perform the write. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); if ( (cbValue == 4 && !(GCPhys & 3)) || (pRange->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_PASSTHRU || (cbValue == 8 && !(GCPhys & 7)) ) rc = pRange->CTX_SUFF(pfnWriteCallback)(pRange->CTX_SUFF(pDevIns), pRange->CTX_SUFF(pvUser), GCPhys, &u32Value, (unsigned)cbValue); else rc = iomMMIODoComplicatedWrite(pVM, pRange, GCPhys, &u32Value, (unsigned)cbValue); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); #ifndef IN_RING3 if ( rc == VINF_IOM_R3_MMIO_WRITE || rc == VINF_IOM_R3_MMIO_READ_WRITE) STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); #endif Log4(("IOMMMIOWrite: GCPhys=%RGp u32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, u32Value, cbValue, VBOXSTRICTRC_VAL(rc))); iomMmioReleaseRange(pVM, pRange); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); return rc; } #ifndef IN_RING3 if (pRange->pfnWriteCallbackR3) { STAM_COUNTER_INC(&pStats->CTX_MID_Z(Write,ToR3)); iomMmioReleaseRange(pVM, pRange); return VINF_IOM_R3_MMIO_WRITE; } #endif /* * No write handler, nothing to do. */ STAM_PROFILE_START(&pStats->CTX_SUFF_Z(ProfWrite), a); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), a); Log4(("IOMMMIOWrite: GCPhys=%RGp u32=%08RX32 cb=%d rc=%Rrc\n", GCPhys, u32Value, cbValue, VINF_SUCCESS)); iomMmioReleaseRange(pVM, pRange); return VINF_SUCCESS; } /** * [REP*] INSB/INSW/INSD * ES:EDI,DX[,ECX] * * @remark Assumes caller checked the access privileges (IOMInterpretCheckPortIOAccess) * * @returns Strict VBox status code. Informational status codes other than the one documented * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success. * @retval VINF_SUCCESS Success. * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the * status code must be passed on to EM. * @retval VINF_IOM_R3_IOPORT_READ Defer the read to ring-3. (R0/GC only) * @retval VINF_EM_RAW_EMULATE_INSTR Defer the read to the REM. * @retval VINF_EM_RAW_GUEST_TRAP The exception was left pending. (TRPMRaiseXcptErr) * @retval VINF_TRPM_XCPT_DISPATCHED The exception was raised and dispatched for raw-mode execution. (TRPMRaiseXcptErr) * @retval VINF_EM_RESCHEDULE_REM The exception was dispatched and cannot be executed in raw-mode. (TRPMRaiseXcptErr) * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param uPort IO Port * @param uPrefix IO instruction prefix * @param enmAddrMode The address mode. * @param cbTransfer Size of transfer unit */ VMMDECL(VBOXSTRICTRC) IOMInterpretINSEx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uPort, uint32_t uPrefix, DISCPUMODE enmAddrMode, uint32_t cbTransfer) { STAM_COUNTER_INC(&pVM->iom.s.StatInstIns); /* * We do not support REPNE or decrementing destination * pointer. Segment prefixes are deliberately ignored, as per the instruction specification. */ if ( (uPrefix & DISPREFIX_REPNE) || pRegFrame->eflags.Bits.u1DF) return VINF_EM_RAW_EMULATE_INSTR; /* * Get bytes/words/dwords count to transfer. */ uint64_t const fAddrMask = iomDisModeToMask(enmAddrMode); RTGCUINTREG cTransfers = 1; if (uPrefix & DISPREFIX_REP) { #ifndef IN_RC if ( CPUMIsGuestIn64BitCode(pVCpu) && pRegFrame->rcx >= _4G) return VINF_EM_RAW_EMULATE_INSTR; #endif cTransfers = pRegFrame->rcx & fAddrMask; if (!cTransfers) return VINF_SUCCESS; } /* Convert destination address es:edi. */ RTGCPTR GCPtrDst; int rc2 = SELMToFlatEx(pVCpu, DISSELREG_ES, pRegFrame, pRegFrame->rdi & fAddrMask, SELMTOFLAT_FLAGS_HYPER | SELMTOFLAT_FLAGS_NO_PL, &GCPtrDst); if (RT_FAILURE(rc2)) { Log(("INS destination address conversion failed -> fallback, rc2=%d\n", rc2)); return VINF_EM_RAW_EMULATE_INSTR; } /* Access verification first; we can't recover from traps inside this instruction, as the port read cannot be repeated. */ uint32_t const cpl = CPUMGetGuestCPL(pVCpu); rc2 = PGMVerifyAccess(pVCpu, (RTGCUINTPTR)GCPtrDst, cTransfers * cbTransfer, X86_PTE_RW | ((cpl == 3) ? X86_PTE_US : 0)); if (rc2 != VINF_SUCCESS) { Log(("INS will generate a trap -> fallback, rc2=%d\n", rc2)); return VINF_EM_RAW_EMULATE_INSTR; } Log(("IOM: rep ins%d port %#x count %d\n", cbTransfer * 8, uPort, cTransfers)); VBOXSTRICTRC rcStrict = VINF_SUCCESS; if (cTransfers > 1) { /* If the device supports string transfers, ask it to do as * much as it wants. The rest is done with single-word transfers. */ const RTGCUINTREG cTransfersOrg = cTransfers; rcStrict = IOMIOPortReadString(pVM, pVCpu, uPort, &GCPtrDst, &cTransfers, cbTransfer); AssertRC(VBOXSTRICTRC_VAL(rcStrict)); Assert(cTransfers <= cTransfersOrg); pRegFrame->rdi = ((pRegFrame->rdi + (cTransfersOrg - cTransfers) * cbTransfer) & fAddrMask) | (pRegFrame->rdi & ~fAddrMask); } #ifdef IN_RC MMGCRamRegisterTrapHandler(pVM); #endif while (cTransfers && rcStrict == VINF_SUCCESS) { uint32_t u32Value; rcStrict = IOMIOPortRead(pVM, pVCpu, uPort, &u32Value, cbTransfer); if (!IOM_SUCCESS(rcStrict)) break; rc2 = iomRamWrite(pVCpu, pRegFrame, GCPtrDst, &u32Value, cbTransfer); Assert(rc2 == VINF_SUCCESS); NOREF(rc2); GCPtrDst = (RTGCPTR)((RTGCUINTPTR)GCPtrDst + cbTransfer); pRegFrame->rdi = ((pRegFrame->rdi + cbTransfer) & fAddrMask) | (pRegFrame->rdi & ~fAddrMask); cTransfers--; } #ifdef IN_RC MMGCRamDeregisterTrapHandler(pVM); #endif /* Update rcx on exit. */ if (uPrefix & DISPREFIX_REP) pRegFrame->rcx = (cTransfers & fAddrMask) | (pRegFrame->rcx & ~fAddrMask); AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IOM_R3_IOPORT_READ || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) || RT_FAILURE(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /** * [REP*] INSB/INSW/INSD * ES:EDI,DX[,ECX] * * @returns Strict VBox status code. Informational status codes other than the one documented * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success. * @retval VINF_SUCCESS Success. * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the * status code must be passed on to EM. * @retval VINF_IOM_R3_IOPORT_READ Defer the read to ring-3. (R0/GC only) * @retval VINF_EM_RAW_EMULATE_INSTR Defer the read to the REM. * @retval VINF_EM_RAW_GUEST_TRAP The exception was left pending. (TRPMRaiseXcptErr) * @retval VINF_TRPM_XCPT_DISPATCHED The exception was raised and dispatched for raw-mode execution. (TRPMRaiseXcptErr) * @retval VINF_EM_RESCHEDULE_REM The exception was dispatched and cannot be executed in raw-mode. (TRPMRaiseXcptErr) * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param pCpu Disassembler CPU state. */ VMMDECL(VBOXSTRICTRC) IOMInterpretINS(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu) { /* * Get port number directly from the register (no need to bother the * disassembler). And get the I/O register size from the opcode / prefix. */ RTIOPORT Port = pRegFrame->edx & 0xffff; unsigned cb = 0; if (pCpu->pCurInstr->uOpcode == OP_INSB) cb = 1; else cb = (pCpu->uOpMode == DISCPUMODE_16BIT) ? 2 : 4; /* dword in both 32 & 64 bits mode */ VBOXSTRICTRC rcStrict = IOMInterpretCheckPortIOAccess(pVM, pRegFrame, Port, cb); if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) { AssertMsg(rcStrict == VINF_EM_RAW_GUEST_TRAP || rcStrict == VINF_TRPM_XCPT_DISPATCHED || rcStrict == VINF_TRPM_XCPT_DISPATCHED || RT_FAILURE(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } return IOMInterpretINSEx(pVM, pVCpu, pRegFrame, Port, pCpu->fPrefix, (DISCPUMODE)pCpu->uAddrMode, cb); } /** * [REP*] OUTSB/OUTSW/OUTSD * DS:ESI,DX[,ECX] * * @remark Assumes caller checked the access privileges (IOMInterpretCheckPortIOAccess) * * @returns Strict VBox status code. Informational status codes other than the one documented * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success. * @retval VINF_SUCCESS Success. * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the * status code must be passed on to EM. * @retval VINF_IOM_R3_IOPORT_WRITE Defer the write to ring-3. (R0/GC only) * @retval VINF_EM_RAW_GUEST_TRAP The exception was left pending. (TRPMRaiseXcptErr) * @retval VINF_TRPM_XCPT_DISPATCHED The exception was raised and dispatched for raw-mode execution. (TRPMRaiseXcptErr) * @retval VINF_EM_RESCHEDULE_REM The exception was dispatched and cannot be executed in raw-mode. (TRPMRaiseXcptErr) * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param uPort IO Port * @param uPrefix IO instruction prefix * @param enmAddrMode The address mode. * @param cbTransfer Size of transfer unit */ VMMDECL(VBOXSTRICTRC) IOMInterpretOUTSEx(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uPort, uint32_t uPrefix, DISCPUMODE enmAddrMode, uint32_t cbTransfer) { STAM_COUNTER_INC(&pVM->iom.s.StatInstOuts); /* * We do not support segment prefixes, REPNE or * decrementing source pointer. */ if ( (uPrefix & (DISPREFIX_SEG | DISPREFIX_REPNE)) || pRegFrame->eflags.Bits.u1DF) return VINF_EM_RAW_EMULATE_INSTR; /* * Get bytes/words/dwords count to transfer. */ uint64_t const fAddrMask = iomDisModeToMask(enmAddrMode); RTGCUINTREG cTransfers = 1; if (uPrefix & DISPREFIX_REP) { #ifndef IN_RC if ( CPUMIsGuestIn64BitCode(pVCpu) && pRegFrame->rcx >= _4G) return VINF_EM_RAW_EMULATE_INSTR; #endif cTransfers = pRegFrame->rcx & fAddrMask; if (!cTransfers) return VINF_SUCCESS; } /* Convert source address ds:esi. */ RTGCPTR GCPtrSrc; int rc2 = SELMToFlatEx(pVCpu, DISSELREG_DS, pRegFrame, pRegFrame->rsi & fAddrMask, SELMTOFLAT_FLAGS_HYPER | SELMTOFLAT_FLAGS_NO_PL, &GCPtrSrc); if (RT_FAILURE(rc2)) { Log(("OUTS source address conversion failed -> fallback, rc2=%Rrc\n", rc2)); return VINF_EM_RAW_EMULATE_INSTR; } /* Access verification first; we currently can't recover properly from traps inside this instruction */ uint32_t const cpl = CPUMGetGuestCPL(pVCpu); rc2 = PGMVerifyAccess(pVCpu, (RTGCUINTPTR)GCPtrSrc, cTransfers * cbTransfer, (cpl == 3) ? X86_PTE_US : 0); if (rc2 != VINF_SUCCESS) { Log(("OUTS will generate a trap -> fallback, rc2=%Rrc\n", rc2)); return VINF_EM_RAW_EMULATE_INSTR; } Log(("IOM: rep outs%d port %#x count %d\n", cbTransfer * 8, uPort, cTransfers)); VBOXSTRICTRC rcStrict = VINF_SUCCESS; if (cTransfers > 1) { /* * If the device supports string transfers, ask it to do as * much as it wants. The rest is done with single-word transfers. */ const RTGCUINTREG cTransfersOrg = cTransfers; rcStrict = IOMIOPortWriteString(pVM, pVCpu, uPort, &GCPtrSrc, &cTransfers, cbTransfer); AssertRC(VBOXSTRICTRC_VAL(rcStrict)); Assert(cTransfers <= cTransfersOrg); pRegFrame->rsi = ((pRegFrame->rsi + (cTransfersOrg - cTransfers) * cbTransfer) & fAddrMask) | (pRegFrame->rsi & ~fAddrMask); } #ifdef IN_RC MMGCRamRegisterTrapHandler(pVM); #endif while (cTransfers && rcStrict == VINF_SUCCESS) { uint32_t u32Value = 0; rcStrict = iomRamRead(pVCpu, &u32Value, GCPtrSrc, cbTransfer); if (rcStrict != VINF_SUCCESS) break; rcStrict = IOMIOPortWrite(pVM, pVCpu, uPort, u32Value, cbTransfer); if (!IOM_SUCCESS(rcStrict)) break; GCPtrSrc = (RTGCPTR)((RTUINTPTR)GCPtrSrc + cbTransfer); pRegFrame->rsi = ((pRegFrame->rsi + cbTransfer) & fAddrMask) | (pRegFrame->rsi & ~fAddrMask); cTransfers--; } #ifdef IN_RC MMGCRamDeregisterTrapHandler(pVM); #endif /* Update rcx on exit. */ if (uPrefix & DISPREFIX_REP) pRegFrame->rcx = (cTransfers & fAddrMask) | (pRegFrame->rcx & ~fAddrMask); AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IOM_R3_IOPORT_WRITE || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) || RT_FAILURE(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /** * [REP*] OUTSB/OUTSW/OUTSD * DS:ESI,DX[,ECX] * * @returns Strict VBox status code. Informational status codes other than the one documented * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success. * @retval VINF_SUCCESS Success. * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the * status code must be passed on to EM. * @retval VINF_IOM_R3_IOPORT_WRITE Defer the write to ring-3. (R0/GC only) * @retval VINF_EM_RAW_EMULATE_INSTR Defer the write to the REM. * @retval VINF_EM_RAW_GUEST_TRAP The exception was left pending. (TRPMRaiseXcptErr) * @retval VINF_TRPM_XCPT_DISPATCHED The exception was raised and dispatched for raw-mode execution. (TRPMRaiseXcptErr) * @retval VINF_EM_RESCHEDULE_REM The exception was dispatched and cannot be executed in raw-mode. (TRPMRaiseXcptErr) * * @param pVM The virtual machine. * @param pVCpu Pointer to the virtual CPU structure of the caller. * @param pRegFrame Pointer to CPUMCTXCORE guest registers structure. * @param pCpu Disassembler CPU state. */ VMMDECL(VBOXSTRICTRC) IOMInterpretOUTS(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu) { /* * Get port number from the first parameter. * And get the I/O register size from the opcode / prefix. */ uint64_t Port = 0; unsigned cb = 0; bool fRc = iomGetRegImmData(pCpu, &pCpu->Param1, pRegFrame, &Port, &cb); AssertMsg(fRc, ("Failed to get reg/imm port number!\n")); NOREF(fRc); if (pCpu->pCurInstr->uOpcode == OP_OUTSB) cb = 1; else cb = (pCpu->uOpMode == DISCPUMODE_16BIT) ? 2 : 4; /* dword in both 32 & 64 bits mode */ VBOXSTRICTRC rcStrict = IOMInterpretCheckPortIOAccess(pVM, pRegFrame, Port, cb); if (RT_UNLIKELY(rcStrict != VINF_SUCCESS)) { AssertMsg(rcStrict == VINF_EM_RAW_GUEST_TRAP || rcStrict == VINF_TRPM_XCPT_DISPATCHED || rcStrict == VINF_TRPM_XCPT_DISPATCHED || RT_FAILURE(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } return IOMInterpretOUTSEx(pVM, pVCpu, pRegFrame, Port, pCpu->fPrefix, (DISCPUMODE)pCpu->uAddrMode, cb); } #ifndef IN_RC /** * Mapping an MMIO2 page in place of an MMIO page for direct access. * * (This is a special optimization used by the VGA device.) * * @returns VBox status code. This API may return VINF_SUCCESS even if no * remapping is made,. * * @param pVM The virtual machine. * @param GCPhys The address of the MMIO page to be changed. * @param GCPhysRemapped The address of the MMIO2 page. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMMDECL(int) IOMMMIOMapMMIO2Page(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysRemapped, uint64_t fPageFlags) { /* Currently only called from the VGA device during MMIO. */ Log(("IOMMMIOMapMMIO2Page %RGp -> %RGp flags=%RX64\n", GCPhys, GCPhysRemapped, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); PVMCPU pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ int rc = IOM_LOCK_SHARED(pVM); if (RT_FAILURE(rc)) return VINF_SUCCESS; /* better luck the next time around */ /* * Lookup the context range node the page belongs to. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); /* * Do the aliasing; page align the addresses since PGM is picky. */ GCPhys &= ~(RTGCPHYS)PAGE_OFFSET_MASK; GCPhysRemapped &= ~(RTGCPHYS)PAGE_OFFSET_MASK; rc = PGMHandlerPhysicalPageAlias(pVM, pRange->GCPhys, GCPhys, GCPhysRemapped); IOM_UNLOCK_SHARED(pVM); AssertRCReturn(rc, rc); /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ #if 0 /* The assertion is wrong for the PGM_SYNC_CLEAR_PGM_POOL and VINF_PGM_HANDLER_ALREADY_ALIASED cases. */ # ifdef VBOX_STRICT uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); # endif #endif rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); return VINF_SUCCESS; } /** * Mapping a HC page in place of an MMIO page for direct access. * * (This is a special optimization used by the APIC in the VT-x case.) * * @returns VBox status code. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param GCPhys The address of the MMIO page to be changed. * @param HCPhys The address of the host physical page. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMMDECL(int) IOMMMIOMapMMIOHCPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint64_t fPageFlags) { /* Currently only called from VT-x code during a page fault. */ Log(("IOMMMIOMapMMIOHCPage %RGp -> %RGp flags=%RX64\n", GCPhys, HCPhys, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); Assert(HMIsEnabled(pVM)); /* * Lookup the context range node the page belongs to. */ #ifdef VBOX_STRICT /* Can't lock IOM here due to potential deadlocks in the VGA device; not safe to access. */ PIOMMMIORANGE pRange = iomMMIOGetRangeUnsafe(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); #endif /* * Do the aliasing; page align the addresses since PGM is picky. */ GCPhys &= ~(RTGCPHYS)PAGE_OFFSET_MASK; HCPhys &= ~(RTHCPHYS)PAGE_OFFSET_MASK; int rc = PGMHandlerPhysicalPageAliasHC(pVM, GCPhys, GCPhys, HCPhys); AssertRCReturn(rc, rc); /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); return VINF_SUCCESS; } /** * Reset a previously modified MMIO region; restore the access flags. * * @returns VBox status code. * * @param pVM The virtual machine. * @param GCPhys Physical address that's part of the MMIO region to be reset. */ VMMDECL(int) IOMMMIOResetRegion(PVM pVM, RTGCPHYS GCPhys) { Log(("IOMMMIOResetRegion %RGp\n", GCPhys)); PVMCPU pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ /* * Lookup the context range node the page belongs to. */ #ifdef VBOX_STRICT /* Can't lock IOM here due to potential deadlocks in the VGA device; not safe to access. */ PIOMMMIORANGE pRange = iomMMIOGetRangeUnsafe(pVM, pVCpu, GCPhys); AssertMsgReturn(pRange, ("Handlers and page tables are out of sync or something! GCPhys=%RGp\n", GCPhys), VERR_IOM_MMIO_RANGE_NOT_FOUND); Assert((pRange->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pRange->Core.KeyLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); #endif /* * Call PGM to do the job work. * * After the call, all the pages should be non-present... unless there is * a page pool flush pending (unlikely). */ int rc = PGMHandlerPhysicalReset(pVM, GCPhys); AssertRC(rc); #ifdef VBOX_STRICT if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) { uint32_t cb = pRange->cb; GCPhys = pRange->GCPhys; while (cb) { uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); cb -= PAGE_SIZE; GCPhys += PAGE_SIZE; } } #endif return rc; } #endif /* !IN_RC */