/* $Id: NEMAllNativeTemplate-win.cpp.h 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * NEM - Native execution manager, Windows code template ring-0/3. */ /* * Copyright (C) 2018-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #ifndef IN_RING3 # error "This is ring-3 only now" #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** Copy back a segment from hyper-V. */ #define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \ do { \ (a_Dst).u64Base = (a_Src).Base; \ (a_Dst).u32Limit = (a_Src).Limit; \ (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \ (a_Dst).Attr.u = (a_Src).Attributes; \ (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \ } while (0) /** @def NEMWIN_ASSERT_MSG_REG_VAL * Asserts the correctness of a register value in a message/context. */ #if 0 # define NEMWIN_NEED_GET_REGISTER # define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) \ do { \ WHV_REGISTER_VALUE TmpVal; \ nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \ AssertMsg(a_Expr, a_Msg); \ } while (0) #else # define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0) #endif /** @def NEMWIN_ASSERT_MSG_REG_VAL * Asserts the correctness of a 64-bit register value in a message/context. */ #define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_enmReg, a_u64Val) \ NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \ (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64)) /** @def NEMWIN_ASSERT_MSG_REG_VAL * Asserts the correctness of a segment register value in a message/context. */ #define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_enmReg, a_SReg) \ NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_enmReg, \ (a_SReg).Base == TmpVal.Segment.Base \ && (a_SReg).Limit == TmpVal.Segment.Limit \ && (a_SReg).Selector == TmpVal.Segment.Selector \ && (a_SReg).Attributes == TmpVal.Segment.Attributes, \ ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \ (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \ TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes)) #ifndef NTDDI_WIN10_19H1 # define NTDDI_WIN10_19H1 0x0a000007 #endif /** WHvRegisterPendingEvent0 was renamed to WHvRegisterPendingEvent between * SDK 17134 and 18362. */ #if WDK_NTDDI_VERSION < NTDDI_WIN10_19H1 # define WHvRegisterPendingEvent WHvRegisterPendingEvent0 #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** NEM_WIN_PAGE_STATE_XXX names. */ NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" }; /** HV_INTERCEPT_ACCESS_TYPE names. */ static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" }; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged); NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVMCC pVM, PVMCPUCC pVCpu) { /* * The following is very similar to what nemR0WinExportState() does. */ WHV_REGISTER_NAME aenmNames[128]; WHV_REGISTER_VALUE aValues[128]; uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK); if ( !fWhat && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows) return VINF_SUCCESS; uintptr_t iReg = 0; #define ADD_REG64(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.High64 = 0; \ aValues[iReg].Reg64 = (a_uValue); \ iReg++; \ } while (0) #define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.Low64 = (a_uValueLo); \ aValues[iReg].Reg128.High64 = (a_uValueHi); \ iReg++; \ } while (0) /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax); if (fWhat & CPUMCTX_EXTRN_RCX) ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx); if (fWhat & CPUMCTX_EXTRN_RDX) ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx); if (fWhat & CPUMCTX_EXTRN_RBX) ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx); if (fWhat & CPUMCTX_EXTRN_RSP) ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp); if (fWhat & CPUMCTX_EXTRN_RBP) ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp); if (fWhat & CPUMCTX_EXTRN_RSI) ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi); if (fWhat & CPUMCTX_EXTRN_RDI) ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi); if (fWhat & CPUMCTX_EXTRN_R8_R15) { ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8); ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9); ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10); ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11); ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12); ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13); ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14); ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15); } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip); if (fWhat & CPUMCTX_EXTRN_RFLAGS) ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u); /* Segments */ #define ADD_SEG(a_enmName, a_SReg) \ do { \ aenmNames[iReg] = a_enmName; \ aValues[iReg].Segment.Base = (a_SReg).u64Base; \ aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \ aValues[iReg].Segment.Selector = (a_SReg).Sel; \ aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \ iReg++; \ } while (0) if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_ES) ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es); if (fWhat & CPUMCTX_EXTRN_CS) ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs); if (fWhat & CPUMCTX_EXTRN_SS) ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss); if (fWhat & CPUMCTX_EXTRN_DS) ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds); if (fWhat & CPUMCTX_EXTRN_FS) ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs); if (fWhat & CPUMCTX_EXTRN_GS) ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs); } /* Descriptor tables & task segment. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr); if (fWhat & CPUMCTX_EXTRN_TR) ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr); if (fWhat & CPUMCTX_EXTRN_IDTR) { aenmNames[iReg] = WHvX64RegisterIdtr; aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt; aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt; iReg++; } if (fWhat & CPUMCTX_EXTRN_GDTR) { aenmNames[iReg] = WHvX64RegisterGdtr; aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt; aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt; iReg++; } } /* Control registers. */ if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0); if (fWhat & CPUMCTX_EXTRN_CR2) ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2); if (fWhat & CPUMCTX_EXTRN_CR3) ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3); if (fWhat & CPUMCTX_EXTRN_CR4) ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4); } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu)); /* Debug registers. */ /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */ if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu)); ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu)); ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu)); ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu)); } if (fWhat & CPUMCTX_EXTRN_DR6) ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu)); if (fWhat & CPUMCTX_EXTRN_DR7) ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu)); /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[1]); ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[1]); ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[1]); ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[1]); ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[1]); ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[1]); ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[1]); ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[1]); aenmNames[iReg] = WHvX64RegisterFpControlStatus; aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.XState.x87.FCW; aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.XState.x87.FSW; aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.XState.x87.FTW; aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.XState.x87.FTW >> 8; aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.XState.x87.FOP; aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.XState.x87.FPUIP) | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.CS << 32) | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.Rsrvd1 << 48); iReg++; aenmNames[iReg] = WHvX64RegisterXmmControlStatus; aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.XState.x87.FPUDP) | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.DS << 32) | ((uint64_t)pVCpu->cpum.GstCtx.XState.x87.Rsrvd2 << 48); aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.XState.x87.MXCSR; aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.XState.x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */ iReg++; } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm11, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm12, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm13, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm14, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Hi); ADD_REG128(WHvX64RegisterXmm15, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Hi); } /* MSRs */ // WHvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER); if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE); if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs); ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip); ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp); } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR); ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR); ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR); ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK); } if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) { PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); if (fWhat & CPUMCTX_EXTRN_TSC_AUX) ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux); if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu)); ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT); #if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */ ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu)); #endif ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType); ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000); ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000); ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000); ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000); #if 0 /** @todo these registers aren't available? Might explain something.. .*/ const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM); if (enmCpuVendor != CPUMCPUVENDOR_AMD) { ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable); ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu)); } #endif } } /* event injection (clear it). */ if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT) ADD_REG64(WHvRegisterPendingInterruption, 0); /* Interruptibility state. This can get a little complicated since we get half of the state via HV_X64_VP_EXECUTION_STATE. */ if ( (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI) ) { ADD_REG64(WHvRegisterInterruptState, 0); if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)) aValues[iReg - 1].InterruptState.InterruptShadow = 1; aValues[iReg - 1].InterruptState.NmiMasked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx); } else if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT) { if ( pVCpu->nem.s.fLastInterruptShadow || CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)) { ADD_REG64(WHvRegisterInterruptState, 0); if (CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx)) aValues[iReg - 1].InterruptState.InterruptShadow = 1; /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */ //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) // aValues[iReg - 1].InterruptState.NmiMasked = 1; } } else Assert(!(fWhat & CPUMCTX_EXTRN_INHIBIT_NMI)); /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */ uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows; if ( fDesiredIntWin || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin) { pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows; Log8(("Setting WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin=%X\n", fDesiredIntWin)); ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin); Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI)); Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR)); Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (unsigned)((fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT)); } /// @todo WHvRegisterPendingEvent #undef ADD_REG64 #undef ADD_REG128 #undef ADD_SEG /* * Set the registers. */ Assert(iReg < RT_ELEMENTS(aValues)); Assert(iReg < RT_ELEMENTS(aenmNames)); #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n", pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues)); #endif HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues); if (SUCCEEDED(hrc)) { pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM; return VINF_SUCCESS; } AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, iReg, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_INTERNAL_ERROR; } NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat) { WHV_REGISTER_NAME aenmNames[128]; fWhat &= pVCpu->cpum.GstCtx.fExtrn; uintptr_t iReg = 0; /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) aenmNames[iReg++] = WHvX64RegisterRax; if (fWhat & CPUMCTX_EXTRN_RCX) aenmNames[iReg++] = WHvX64RegisterRcx; if (fWhat & CPUMCTX_EXTRN_RDX) aenmNames[iReg++] = WHvX64RegisterRdx; if (fWhat & CPUMCTX_EXTRN_RBX) aenmNames[iReg++] = WHvX64RegisterRbx; if (fWhat & CPUMCTX_EXTRN_RSP) aenmNames[iReg++] = WHvX64RegisterRsp; if (fWhat & CPUMCTX_EXTRN_RBP) aenmNames[iReg++] = WHvX64RegisterRbp; if (fWhat & CPUMCTX_EXTRN_RSI) aenmNames[iReg++] = WHvX64RegisterRsi; if (fWhat & CPUMCTX_EXTRN_RDI) aenmNames[iReg++] = WHvX64RegisterRdi; if (fWhat & CPUMCTX_EXTRN_R8_R15) { aenmNames[iReg++] = WHvX64RegisterR8; aenmNames[iReg++] = WHvX64RegisterR9; aenmNames[iReg++] = WHvX64RegisterR10; aenmNames[iReg++] = WHvX64RegisterR11; aenmNames[iReg++] = WHvX64RegisterR12; aenmNames[iReg++] = WHvX64RegisterR13; aenmNames[iReg++] = WHvX64RegisterR14; aenmNames[iReg++] = WHvX64RegisterR15; } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) aenmNames[iReg++] = WHvX64RegisterRip; if (fWhat & CPUMCTX_EXTRN_RFLAGS) aenmNames[iReg++] = WHvX64RegisterRflags; /* Segments */ if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_ES) aenmNames[iReg++] = WHvX64RegisterEs; if (fWhat & CPUMCTX_EXTRN_CS) aenmNames[iReg++] = WHvX64RegisterCs; if (fWhat & CPUMCTX_EXTRN_SS) aenmNames[iReg++] = WHvX64RegisterSs; if (fWhat & CPUMCTX_EXTRN_DS) aenmNames[iReg++] = WHvX64RegisterDs; if (fWhat & CPUMCTX_EXTRN_FS) aenmNames[iReg++] = WHvX64RegisterFs; if (fWhat & CPUMCTX_EXTRN_GS) aenmNames[iReg++] = WHvX64RegisterGs; } /* Descriptor tables. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) aenmNames[iReg++] = WHvX64RegisterLdtr; if (fWhat & CPUMCTX_EXTRN_TR) aenmNames[iReg++] = WHvX64RegisterTr; if (fWhat & CPUMCTX_EXTRN_IDTR) aenmNames[iReg++] = WHvX64RegisterIdtr; if (fWhat & CPUMCTX_EXTRN_GDTR) aenmNames[iReg++] = WHvX64RegisterGdtr; } /* Control registers. */ if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) aenmNames[iReg++] = WHvX64RegisterCr0; if (fWhat & CPUMCTX_EXTRN_CR2) aenmNames[iReg++] = WHvX64RegisterCr2; if (fWhat & CPUMCTX_EXTRN_CR3) aenmNames[iReg++] = WHvX64RegisterCr3; if (fWhat & CPUMCTX_EXTRN_CR4) aenmNames[iReg++] = WHvX64RegisterCr4; } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) aenmNames[iReg++] = WHvX64RegisterCr8; /* Debug registers. */ if (fWhat & CPUMCTX_EXTRN_DR7) aenmNames[iReg++] = WHvX64RegisterDr7; if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_DR7)) { fWhat |= CPUMCTX_EXTRN_DR7; aenmNames[iReg++] = WHvX64RegisterDr7; } aenmNames[iReg++] = WHvX64RegisterDr0; aenmNames[iReg++] = WHvX64RegisterDr1; aenmNames[iReg++] = WHvX64RegisterDr2; aenmNames[iReg++] = WHvX64RegisterDr3; } if (fWhat & CPUMCTX_EXTRN_DR6) aenmNames[iReg++] = WHvX64RegisterDr6; /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { aenmNames[iReg++] = WHvX64RegisterFpMmx0; aenmNames[iReg++] = WHvX64RegisterFpMmx1; aenmNames[iReg++] = WHvX64RegisterFpMmx2; aenmNames[iReg++] = WHvX64RegisterFpMmx3; aenmNames[iReg++] = WHvX64RegisterFpMmx4; aenmNames[iReg++] = WHvX64RegisterFpMmx5; aenmNames[iReg++] = WHvX64RegisterFpMmx6; aenmNames[iReg++] = WHvX64RegisterFpMmx7; aenmNames[iReg++] = WHvX64RegisterFpControlStatus; } if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) aenmNames[iReg++] = WHvX64RegisterXmmControlStatus; /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { aenmNames[iReg++] = WHvX64RegisterXmm0; aenmNames[iReg++] = WHvX64RegisterXmm1; aenmNames[iReg++] = WHvX64RegisterXmm2; aenmNames[iReg++] = WHvX64RegisterXmm3; aenmNames[iReg++] = WHvX64RegisterXmm4; aenmNames[iReg++] = WHvX64RegisterXmm5; aenmNames[iReg++] = WHvX64RegisterXmm6; aenmNames[iReg++] = WHvX64RegisterXmm7; aenmNames[iReg++] = WHvX64RegisterXmm8; aenmNames[iReg++] = WHvX64RegisterXmm9; aenmNames[iReg++] = WHvX64RegisterXmm10; aenmNames[iReg++] = WHvX64RegisterXmm11; aenmNames[iReg++] = WHvX64RegisterXmm12; aenmNames[iReg++] = WHvX64RegisterXmm13; aenmNames[iReg++] = WHvX64RegisterXmm14; aenmNames[iReg++] = WHvX64RegisterXmm15; } /* MSRs */ // WHvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) aenmNames[iReg++] = WHvX64RegisterEfer; if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) aenmNames[iReg++] = WHvX64RegisterKernelGsBase; if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { aenmNames[iReg++] = WHvX64RegisterSysenterCs; aenmNames[iReg++] = WHvX64RegisterSysenterEip; aenmNames[iReg++] = WHvX64RegisterSysenterEsp; } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { aenmNames[iReg++] = WHvX64RegisterStar; aenmNames[iReg++] = WHvX64RegisterLstar; aenmNames[iReg++] = WHvX64RegisterCstar; aenmNames[iReg++] = WHvX64RegisterSfmask; } //#ifdef LOG_ENABLED // const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM); //#endif if (fWhat & CPUMCTX_EXTRN_TSC_AUX) aenmNames[iReg++] = WHvX64RegisterTscAux; if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE aenmNames[iReg++] = WHvX64RegisterPat; #if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */ aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap; #endif aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000; aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000; /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */ //#ifdef LOG_ENABLED // if (enmCpuVendor != CPUMCPUVENDOR_AMD) // aenmNames[iReg++] = HvX64RegisterIa32FeatureControl; //#endif } /* Interruptibility. */ if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) { aenmNames[iReg++] = WHvRegisterInterruptState; aenmNames[iReg++] = WHvX64RegisterRip; } /* event injection */ aenmNames[iReg++] = WHvRegisterPendingInterruption; aenmNames[iReg++] = WHvRegisterPendingEvent; size_t const cRegs = iReg; Assert(cRegs < RT_ELEMENTS(aenmNames)); /* * Get the registers. */ WHV_REGISTER_VALUE aValues[128]; RT_ZERO(aValues); Assert(RT_ELEMENTS(aValues) >= cRegs); Assert(RT_ELEMENTS(aenmNames) >= cRegs); #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n", pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues)); #endif HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_GET_REGISTERS_FAILED); iReg = 0; #define GET_REG64(a_DstVar, a_enmName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ (a_DstVar) = aValues[iReg].Reg64; \ iReg++; \ } while (0) #define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ if ((a_DstVar) != aValues[iReg].Reg64) \ Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \ (a_DstVar) = aValues[iReg].Reg64; \ iReg++; \ } while (0) #define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \ Assert(aenmNames[iReg] == a_enmName); \ (a_DstVarLo) = aValues[iReg].Reg128.Low64; \ (a_DstVarHi) = aValues[iReg].Reg128.High64; \ iReg++; \ } while (0) #define GET_SEG(a_SReg, a_enmName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \ iReg++; \ } while (0) /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_RAX) GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax); if (fWhat & CPUMCTX_EXTRN_RCX) GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx); if (fWhat & CPUMCTX_EXTRN_RDX) GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx); if (fWhat & CPUMCTX_EXTRN_RBX) GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx); if (fWhat & CPUMCTX_EXTRN_RSP) GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp); if (fWhat & CPUMCTX_EXTRN_RBP) GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp); if (fWhat & CPUMCTX_EXTRN_RSI) GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi); if (fWhat & CPUMCTX_EXTRN_RDI) GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi); if (fWhat & CPUMCTX_EXTRN_R8_R15) { GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8); GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9); GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10); GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11); GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12); GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13); GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14); GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15); } } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_RIP) GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip); if (fWhat & CPUMCTX_EXTRN_RFLAGS) GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags); /* Segments */ if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_ES) GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs); if (fWhat & CPUMCTX_EXTRN_CS) GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs); if (fWhat & CPUMCTX_EXTRN_SS) GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs); if (fWhat & CPUMCTX_EXTRN_DS) GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs); if (fWhat & CPUMCTX_EXTRN_FS) GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs); if (fWhat & CPUMCTX_EXTRN_GS) GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs); } /* Descriptor tables and the task segment. */ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_LDTR) GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr); if (fWhat & CPUMCTX_EXTRN_TR) { /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So, avoid to trigger sanity assertions around the code, always fix this. */ GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr); switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type) { case X86_SEL_TYPE_SYS_386_TSS_BUSY: case X86_SEL_TYPE_SYS_286_TSS_BUSY: break; case X86_SEL_TYPE_SYS_386_TSS_AVAIL: pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; break; case X86_SEL_TYPE_SYS_286_TSS_AVAIL: pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY; break; } } if (fWhat & CPUMCTX_EXTRN_IDTR) { Assert(aenmNames[iReg] == WHvX64RegisterIdtr); pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit; pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base; iReg++; } if (fWhat & CPUMCTX_EXTRN_GDTR) { Assert(aenmNames[iReg] == WHvX64RegisterGdtr); pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit; pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base; iReg++; } } /* Control registers. */ bool fMaybeChangedMode = false; bool fUpdateCr3 = false; if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) { Assert(aenmNames[iReg] == WHvX64RegisterCr0); if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64) { CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64); fMaybeChangedMode = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_CR2) GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2); if (fWhat & CPUMCTX_EXTRN_CR3) { if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64) { CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64); fUpdateCr3 = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_CR4) { if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64) { CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64); fMaybeChangedMode = true; } iReg++; } } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) { Assert(aenmNames[iReg] == WHvX64RegisterCr8); APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4); iReg++; } /* Debug registers. */ if (fWhat & CPUMCTX_EXTRN_DR7) { Assert(aenmNames[iReg] == WHvX64RegisterDr7); if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64) CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64); pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */ iReg++; } if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { Assert(aenmNames[iReg] == WHvX64RegisterDr0); Assert(aenmNames[iReg+3] == WHvX64RegisterDr3); if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64) CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64); iReg++; if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64) CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64); iReg++; if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64) CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64); iReg++; if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64) CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64); iReg++; } if (fWhat & CPUMCTX_EXTRN_DR6) { Assert(aenmNames[iReg] == WHvX64RegisterDr6); if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64) CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64); iReg++; } /* Floating point state. */ if (fWhat & CPUMCTX_EXTRN_X87) { GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.XState.x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7); Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus); pVCpu->cpum.GstCtx.XState.x87.FCW = aValues[iReg].FpControlStatus.FpControl; pVCpu->cpum.GstCtx.XState.x87.FSW = aValues[iReg].FpControlStatus.FpStatus; pVCpu->cpum.GstCtx.XState.x87.FTW = aValues[iReg].FpControlStatus.FpTag /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/; pVCpu->cpum.GstCtx.XState.x87.FOP = aValues[iReg].FpControlStatus.LastFpOp; pVCpu->cpum.GstCtx.XState.x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip; pVCpu->cpum.GstCtx.XState.x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32); pVCpu->cpum.GstCtx.XState.x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48); iReg++; } if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) { Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus); if (fWhat & CPUMCTX_EXTRN_X87) { pVCpu->cpum.GstCtx.XState.x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp; pVCpu->cpum.GstCtx.XState.x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32); pVCpu->cpum.GstCtx.XState.x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48); } pVCpu->cpum.GstCtx.XState.x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl; pVCpu->cpum.GstCtx.XState.x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */ iReg++; } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_SSE_AVX) { GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14); GET_REG128(pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.XState.x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15); } /* MSRs */ // WHvX64RegisterTsc - don't touch if (fWhat & CPUMCTX_EXTRN_EFER) { Assert(aenmNames[iReg] == WHvX64RegisterEfer); if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER) { Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64)); if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE) PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE)); pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64; fMaybeChangedMode = true; } iReg++; } if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE"); if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS"); GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP"); GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP"); } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR"); GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR"); GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR"); GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK"); } if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) { PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); if (fWhat & CPUMCTX_EXTRN_TSC_AUX) GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX"); if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { Assert(aenmNames[iReg] == WHvX64RegisterApicBase); const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu); if (aValues[iReg].Reg64 != uOldBase) { Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n", pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase)); int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64); AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64)); } iReg++; GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT"); #if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */ GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap); #endif GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000"); GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000"); /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */ } } /* Interruptibility. */ if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) { Assert(aenmNames[iReg] == WHvRegisterInterruptState); Assert(aenmNames[iReg + 1] == WHvX64RegisterRip); if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT)) pVCpu->nem.s.fLastInterruptShadow = CPUMUpdateInterruptShadowEx(&pVCpu->cpum.GstCtx, aValues[iReg].InterruptState.InterruptShadow, aValues[iReg + 1].Reg64); if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI)) CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, aValues[iReg].InterruptState.NmiMasked); fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; iReg += 2; } /* Event injection. */ /// @todo WHvRegisterPendingInterruption Assert(aenmNames[iReg] == WHvRegisterPendingInterruption); if (aValues[iReg].PendingInterruption.InterruptionPending) { Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n", aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector, aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode, aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent)); AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0, ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64)); } /// @todo WHvRegisterPendingEvent /* Almost done, just update extrn flags and maybe change PGM mode. */ pVCpu->cpum.GstCtx.fExtrn &= ~fWhat; if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))) pVCpu->cpum.GstCtx.fExtrn = 0; /* Typical. */ if (!fMaybeChangedMode && !fUpdateCr3) return VINF_SUCCESS; /* * Slow. */ if (fMaybeChangedMode) { int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, false /* fForce */); AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1); } if (fUpdateCr3) { int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3); if (rc == VINF_SUCCESS) { /* likely */ } else AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2); } return VINF_SUCCESS; } /** * Interface for importing state on demand (used by IEM). * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand); return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat); } /** * Query the CPU tick counter and optionally the TSC_AUX MSR value. * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param pcTicks Where to return the CPU tick count. * @param puAux Where to return the TSC_AUX register value. */ VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick); PVMCC pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT); AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9); /* Call the offical API. */ WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux }; WHV_REGISTER_VALUE aValues[2] = { { {0, 0} }, { {0, 0} } }; Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues)); HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_GET_REGISTERS_FAILED); *pcTicks = aValues[0].Reg64; if (puAux) *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[1].Reg64 : CPUMGetGuestTscAux(pVCpu); return VINF_SUCCESS; } /** * Resumes CPU clock (TSC) on all virtual CPUs. * * This is called by TM when the VM is started, restored, resumed or similar. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context CPU structure of the calling EMT. * @param uPausedTscValue The TSC value at the time of pausing. */ VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue) { VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT); AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9); /* * Call the offical API to do the job. */ if (pVM->cCpus > 1) RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */ /* Start with the first CPU. */ WHV_REGISTER_NAME enmName = WHvX64RegisterTsc; WHV_REGISTER_VALUE Value = { {0, 0} }; Value.Reg64 = uPausedTscValue; uint64_t const uFirstTsc = ASMReadTSC(); HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_SET_TSC); /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed that we don't introduce too much drift here. */ for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++) { Assert(enmName == WHvX64RegisterTsc); const uint64_t offDelta = (ASMReadTSC() - uFirstTsc); Value.Reg64 = uPausedTscValue + offDelta; hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_SET_TSC); } return VINF_SUCCESS; } #ifdef LOG_ENABLED /** * Get the virtual processor running status. */ DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPUCC pVCpu) { RTERRVARS Saved; RTErrVarsSave(&Saved); /* * This API is disabled in release builds, it seems. On build 17101 it requires * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00 */ VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined; NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus); AssertMsg(NT_SUCCESS(rcNt), ("rcNt=%#x\n", rcNt)); RTErrVarsRestore(&Saved); return enmCpuStatus; } /** * Logs the current CPU state. */ NEM_TMPL_STATIC void nemHCWinLogState(PVMCC pVM, PVMCPUCC pVCpu) { if (LogIs3Enabled()) { # if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM. char szRegs[4096]; DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs), "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n" "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n" "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n" "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n" "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n" "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n" "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n" "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n" "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n" "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n" "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n" "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n" "dr6=%016VR{dr6} dr7=%016VR{dr7}\n" "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n" "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n" "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n" " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n" " efer=%016VR{efer}\n" " pat=%016VR{pat}\n" " sf_mask=%016VR{sf_mask}\n" "krnl_gs_base=%016VR{krnl_gs_base}\n" " lstar=%016VR{lstar}\n" " star=%016VR{star} cstar=%016VR{cstar}\n" "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n" ); char szInstr[256]; DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0, DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE, szInstr, sizeof(szInstr), NULL); Log3(("%s%s\n", szRegs, szInstr)); # else /** @todo stat logging in ring-0 */ RT_NOREF(pVM, pVCpu); # endif } } #endif /* LOG_ENABLED */ /** * Translates the execution stat bitfield into a short log string, WinHv version. * * @returns Read-only log string. * @param pExitCtx The exit context which state to summarize. */ static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx) { unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1) | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2); #define SWITCH_IT(a_szPrefix) \ do \ switch (u)\ { \ case 0x00: return a_szPrefix ""; \ case 0x01: return a_szPrefix ",Pnd"; \ case 0x02: return a_szPrefix ",Dbg"; \ case 0x03: return a_szPrefix ",Pnd,Dbg"; \ case 0x04: return a_szPrefix ",Shw"; \ case 0x05: return a_szPrefix ",Pnd,Shw"; \ case 0x06: return a_szPrefix ",Shw,Dbg"; \ case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \ default: AssertFailedReturn("WTF?"); \ } \ while (0) if (pExitCtx->ExecutionState.EferLma) SWITCH_IT("LM"); else if (pExitCtx->ExecutionState.Cr0Pe) SWITCH_IT("PM"); else SWITCH_IT("RM"); #undef SWITCH_IT } /** * Advances the guest RIP and clear EFLAGS.RF, WinHv version. * * This may clear VMCPU_FF_INHIBIT_INTERRUPTS. * * @param pVCpu The cross context virtual CPU structure. * @param pExitCtx The exit context. * @param cbMinInstr The minimum instruction length, or 1 if not unknown. */ DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr) { Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS))); /* Advance the RIP. */ Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr); pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength; pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0; CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); } /** * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess * and nemHCWinHandleMemoryAccessPageCheckerCallback. */ typedef struct NEMHCWINHMACPCCSTATE { /** Input: Write access. */ bool fWriteAccess; /** Output: Set if we did something. */ bool fDidSomething; /** Output: Set it we should resume. */ bool fCanResume; } NEMHCWINHMACPCCSTATE; /** * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE, * Worker for nemR3WinHandleMemoryAccess; pvUser points to a * NEMHCWINHMACPCCSTATE structure. } */ NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser) { NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser; pState->fDidSomething = false; pState->fCanResume = false; /* If A20 is disabled, we may need to make another query on the masked page to get the correct protection information. */ uint8_t u2State = pInfo->u2NemState; RTGCPHYS GCPhysSrc; #ifdef NEM_WIN_WITH_A20 if ( pVM->nem.s.fA20Enabled || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys)) #endif GCPhysSrc = GCPhys; #ifdef NEM_WIN_WITH_A20 else { GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20); PGMPHYSNEMPAGEINFO Info2; int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL); AssertRCReturn(rc, rc); *pInfo = Info2; pInfo->u2NemState = u2State; } #endif /* * Consolidate current page state with actual page protection and access type. * We don't really consider downgrades here, as they shouldn't happen. */ /** @todo Someone at microsoft please explain: * I'm not sure WTF was going on, but I ended up in a loop if I remapped a * readonly page as writable (unmap, then map again). Specifically, this was an * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in * a hope to work around that we no longer pre-map anything, just unmap stuff * and do it lazily here. And here we will first unmap, restart, and then remap * with new protection or backing. */ int rc; switch (u2State) { case NEM_WIN_PAGE_STATE_UNMAPPED: case NEM_WIN_PAGE_STATE_NOT_SET: if (pInfo->fNemProt == NEM_PAGE_PROT_NONE) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys)); return VINF_SUCCESS; } /* Don't bother remapping it if it's a write request to a non-writable page. */ if ( pState->fWriteAccess && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys)); return VINF_SUCCESS; } /* Map the page. */ rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pInfo->fNemProt, &u2State, true /*fBackingState*/); pInfo->u2NemState = u2State; Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n", GCPhys, g_apszPageStates[u2State], rc)); pState->fDidSomething = true; pState->fCanResume = true; return rc; case NEM_WIN_PAGE_STATE_READABLE: if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE) && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE))) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys)); return VINF_SUCCESS; } break; case NEM_WIN_PAGE_STATE_WRITABLE: if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE) { if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE) Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys)); else { pState->fCanResume = true; Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n", GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State])); } return VINF_SUCCESS; } break; default: AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4); } /* * Unmap and restart the instruction. * If this fails, which it does every so often, just unmap everything for now. */ /** @todo figure out whether we mess up the state or if it's WHv. */ STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { pState->fDidSomething = true; pState->fCanResume = true; pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x)\n", GCPhys, g_apszPageStates[u2State], hrc, hrc)); return VERR_NEM_UNMAP_PAGES_FAILED; } /** * Wrapper around nemHCWinCopyStateFromHyperV. * * Unlike the wrapped APIs, this checks whether it's necessary. * * @returns VBox strict status code. * @param pVCpu The cross context per CPU structure. * @param fWhat What to import. * @param pszCaller Who is doing the importing. */ DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPUCC pVCpu, uint64_t fWhat, const char *pszCaller) { if (pVCpu->cpum.GstCtx.fExtrn & fWhat) { RT_NOREF(pszCaller); int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Copies register state from the (common) exit context. * * ASSUMES no state copied yet. * * @param pVCpu The cross context per CPU structure. * @param pExitCtx The common exit context. * @sa nemHCWinCopyStateFromX64Header */ DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPUCC pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx) { Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT)) == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT)); NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs); pVCpu->cpum.GstCtx.rip = pExitCtx->Rip; pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags; pVCpu->nem.s.fLastInterruptShadow = CPUMUpdateInterruptShadowEx(&pVCpu->cpum.GstCtx, pExitCtx->ExecutionState.InterruptShadow, pExitCtx->Rip); APICSetTpr(pVCpu, pExitCtx->Cr8 << 4); pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_APIC_TPR); } /** * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageMemory */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMemory(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { uint64_t const uHostTsc = ASMReadTSC(); Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3); /* * Whatever we do, we must clear pending event injection upon resume. */ if (pExit->VpContext.ExecutionState.InterruptionPending) pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* * Ask PGM for information about the given GCPhys. We need to check if we're * out of sync first. */ NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false }; PGMPHYSNEMPAGEINFO Info; int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info, nemHCWinHandleMemoryAccessPageCheckerCallback, &State); if (RT_SUCCESS(rc)) { if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ)) { if (State.fCanResume) { Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType])); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc); return VINF_SUCCESS; } } Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType])); } else Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType])); /* * Emulate the memory access, either access handler or special memory. */ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc); nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES); AssertRCReturn(rc, rc); if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1) Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1)); VBOXSTRICTRC rcStrict; if (!pExitRec) { //if (pMsg->InstructionByteCount > 0) // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes)); if (pExit->MemoryAccess.InstructionByteCount > 0) rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip, pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount); else rcStrict = IEMExecOne(pVCpu); /** @todo do we need to do anything wrt debugging here? */ } else { /* Frequent access or probing. */ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); } return rcStrict; } /** * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageIoPort */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1 || pExit->IoPortAccess.AccessInfo.AccessSize == 2 || pExit->IoPortAccess.AccessInfo.AccessSize == 4); /* * Whatever we do, we must clear pending event injection upon resume. */ if (pExit->VpContext.ExecutionState.InterruptionPending) pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* * Add history first to avoid two paths doing EMHistoryExec calls. */ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, !pExit->IoPortAccess.AccessInfo.StringOp ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)) : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); if (!pExitRec) { VBOXSTRICTRC rcStrict; if (!pExit->IoPortAccess.AccessInfo.StringOp) { /* * Simple port I/O. */ static uint32_t const s_fAndMask[8] = { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX }; uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize]; if (pExit->IoPortAccess.AccessInfo.IsWrite) { rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask, pExit->IoPortAccess.AccessInfo.AccessSize); Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask, pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) )); if (IOM_SUCCESS(rcStrict)) { nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1); } } else { uint32_t uValue = 0; rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue, pExit->IoPortAccess.AccessInfo.AccessSize); Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) )); if (IOM_SUCCESS(rcStrict)) { if (pExit->IoPortAccess.AccessInfo.AccessSize != 4) pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask); else pVCpu->cpum.GstCtx.rax = uValue; pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX; Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax)); nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1); } } } else { /* * String port I/O. */ /** @todo Someone at Microsoft please explain how we can get the address mode * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for * getting the default mode, it can always be overridden by a prefix. This * forces us to interpret the instruction from opcodes, which is suboptimal. * Both AMD-V and VT-x includes the address size in the exit info, at least on * CPUs that are reasonably new. * * Of course, it's possible this is an undocumented and we just need to do some * experiments to figure out how it's communicated. Alternatively, we can scan * the opcode bytes for possible evil prefixes. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES); NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds); NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es); pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax; pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx; pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi; pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi; int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM); AssertRCReturn(rc, rc); Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "", pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS", pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize )); rcStrict = IEMExecOne(pVCpu); } if (IOM_SUCCESS(rcStrict)) { /* * Do debug checks. */ if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */ || (pExit->VpContext.Rflags & X86_EFL_TF) || DBGFBpIsHwIoArmed(pVM) ) { /** @todo Debugging. */ } } return rcStrict; } /* * Frequent exit or something needing probing. * Get state and call EMHistoryExec. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); if (!pExit->IoPortAccess.AccessInfo.StringOp) pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX; else { pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES); NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds); NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es); pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx; pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi; pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi; } pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax; int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM); AssertRCReturn(rc, rc); Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "", pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN", pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "", pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize)); VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); return rcStrict; } /** * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageInterruptWindow */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { /* * Assert message sanity. */ AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi, ("%#x\n", pExit->InterruptWindow.DeliverableType)); /* * Just copy the state we've got and handle it in the loop for now. */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d CR8=%#x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF), pExit->VpContext.ExecutionState.InterruptShadow, pExit->VpContext.Cr8)); /** @todo call nemHCWinHandleInterruptFF */ RT_NOREF(pVM); return VINF_SUCCESS; } /** * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageCpuId */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitCpuId(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); if (!pExitRec) { /* * Soak up state and execute the instruction. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR3, /* May call PGMChangeMode() requiring cr3 (due to cr0 being imported). */ "CPUID"); if (rcStrict == VINF_SUCCESS) { /* Copy in the low register values (top is always cleared). */ pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax; pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx; pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx; pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx; pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX); /* Execute the decoded instruction. */ rcStrict = IEMExecDecodedCpuid(pVCpu, pExit->VpContext.InstructionLength); Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx, pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx)); } RT_NOREF_PV(pVM); return rcStrict; } /* * Frequent exit or something needing probing. * Get state and call EMHistoryExec. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax; pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx; pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx; pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx; pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX); Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx, pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx)); int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM); AssertRCReturn(rc, rc); VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); return rcStrict; } /** * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageMsr */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { /* * Check CPL as that's common to both RDMSR and WRMSR. */ VBOXSTRICTRC rcStrict; if (pExit->VpContext.ExecutionState.Cpl == 0) { /* * Get all the MSR state. Since we're getting EFER, we also need to * get CR0, CR4 and CR3. */ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, pExit->MsrAccess.AccessInfo.IsWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK) | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4, "MSRs"); if (rcStrict == VINF_SUCCESS) { if (!pExitRec) { /* * Handle writes. */ if (pExit->MsrAccess.AccessInfo.IsWrite) { rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx)); Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) )); if (rcStrict == VINF_SUCCESS) { nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2); return VINF_SUCCESS; } LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) )); } /* * Handle reads. */ else { uint64_t uValue = 0; rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue); Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) )); if (rcStrict == VINF_SUCCESS) { pVCpu->cpum.GstCtx.rax = (uint32_t)uValue; pVCpu->cpum.GstCtx.rdx = uValue >> 32; pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX); nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2); return VINF_SUCCESS; } LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) )); } } else { /* * Handle frequent exit or something needing probing. */ Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber)); rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); return rcStrict; } } else { LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) )); return rcStrict; } } else if (pExit->MsrAccess.AccessInfo.IsWrite) Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl, pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx )); else Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl, pExit->MsrAccess.MsrNumber)); /* * If we get down here, we're supposed to #GP(0). */ rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR"); if (rcStrict == VINF_SUCCESS) { rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0); if (rcStrict == VINF_IEM_RAISED_XCPT) rcStrict = VINF_SUCCESS; else if (rcStrict != VINF_SUCCESS) Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) )); } RT_NOREF_PV(pVM); return rcStrict; } /** * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that * checks if the given opcodes are of interest at all. * * @returns true if interesting, false if not. * @param cbOpcodes Number of opcode bytes available. * @param pbOpcodes The opcode bytes. * @param f64BitMode Whether we're in 64-bit mode. */ DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode) { /* * Currently only interested in VMCALL and VMMCALL. */ while (cbOpcodes >= 3) { switch (pbOpcodes[0]) { case 0x0f: switch (pbOpcodes[1]) { case 0x01: switch (pbOpcodes[2]) { case 0xc1: /* 0f 01 c1 VMCALL */ return true; case 0xd9: /* 0f 01 d9 VMMCALL */ return true; default: break; } break; } break; default: return false; /* prefixes */ case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: if (!f64BitMode) return false; RT_FALL_THRU(); case X86_OP_PRF_CS: case X86_OP_PRF_SS: case X86_OP_PRF_DS: case X86_OP_PRF_ES: case X86_OP_PRF_FS: case X86_OP_PRF_GS: case X86_OP_PRF_SIZE_OP: case X86_OP_PRF_SIZE_ADDR: case X86_OP_PRF_LOCK: case X86_OP_PRF_REPZ: case X86_OP_PRF_REPNZ: cbOpcodes--; pbOpcodes++; continue; } break; } return false; } /** * Copies state included in a exception intercept exit. * * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information. * @param fClearXcpt Clear pending exception. */ DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt) { nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); if (fClearXcpt) pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; } /** * Advances the guest RIP by the number of bytes specified in @a cb. * * @param pVCpu The cross context virtual CPU structure. * @param cb RIP increment value in bytes. */ DECLINLINE(void) nemHcWinAdvanceRip(PVMCPUCC pVCpu, uint32_t cb) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; pCtx->rip += cb; /** @todo Why not clear RF too? */ CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); } /** * Hacks its way around the lovely mesa driver's backdoor accesses. * * @sa hmR0VmxHandleMesaDrvGp * @sa hmR0SvmHandleMesaDrvGp */ static int nemHcWinHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx) { Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))); RT_NOREF(pCtx); /* For now we'll just skip the instruction. */ nemHcWinAdvanceRip(pVCpu, 1); return VINF_SUCCESS; } /** * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely * backdoor logging w/o checking what it is running inside. * * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the * backdoor port and magic numbers loaded in registers. * * @returns true if it is, false if it isn't. * @sa hmR0VmxIsMesaDrvGp * @sa hmR0SvmIsMesaDrvGp */ DECLINLINE(bool) nemHcWinIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, const uint8_t *pbInsn, uint32_t cbInsn) { /* #GP(0) is already checked by caller. */ /* Check magic and port. */ Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RAX))); if (pCtx->dx != UINT32_C(0x5658)) return false; if (pCtx->rax != UINT32_C(0x564d5868)) return false; /* Flat ring-3 CS. */ if (CPUMGetGuestCPL(pVCpu) != 3) return false; if (pCtx->cs.u64Base != 0) return false; /* 0xed: IN eAX,dx */ if (cbInsn < 1) /* Play safe (shouldn't happen). */ { uint8_t abInstr[1]; int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr)); if (RT_FAILURE(rc)) return false; if (abInstr[0] != 0xed) return false; } else { if (pbInsn[0] != 0xed) return false; } return true; } /** * Deals with MSR access exits (WHvRunVpExitReasonException). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemR3WinHandleExitException */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { /* * Get most of the register state since we'll end up making IEM inject the * event. The exception isn't normally flaged as a pending event, so duh. * * Note! We can optimize this later with event injection. */ Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter )); nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/); uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM; if (pExit->VpException.ExceptionType == X86_XCPT_DB) fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6; VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, fWhat, "Xcpt"); if (rcStrict != VINF_SUCCESS) return rcStrict; /* * Handle the intercept. */ TRPMEVENT enmEvtType = TRPM_TRAP; switch (pExit->VpException.ExceptionType) { /* * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions * and need to turn them over to GIM. * * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants * #UD for handling non-native hypercall instructions. (IEM will * decode both and let the GIM provider decide whether to accept it.) */ case X86_XCPT_UD: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes, pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long )) { rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip, pExit->VpException.InstructionBytes, pExit->VpException.InstructionByteCount); Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled); return rcStrict; } Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes )); break; /* * Workaround the lovely mesa driver assuming that vmsvga means vmware * hypervisor and tries to log stuff to the host. */ case X86_XCPT_GP: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionGp); /** @todo r=bird: Need workaround in IEM for this, right? EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_GP), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); */ if ( !pVCpu->nem.s.fTrapXcptGpForLovelyMesaDrv || !nemHcWinIsMesaDrvGp(pVCpu, &pVCpu->cpum.GstCtx, pExit->VpException.InstructionBytes, pExit->VpException.InstructionByteCount)) { #if 1 /** @todo Need to emulate instruction or we get a triple fault when trying to inject the \#GP... */ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, pExit->VpContext.Rip, pExit->VpException.InstructionBytes, pExit->VpException.InstructionByteCount); Log4(("XcptExit/%u: %04x:%08RX64/%s: #GP -> emulated -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled); return rcStrict; #else break; #endif } STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionGpMesa); return nemHcWinHandleMesaDrvGp(pVCpu, &pVCpu->cpum.GstCtx); /* * Filter debug exceptions. */ case X86_XCPT_DB: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) )); break; case X86_XCPT_BP: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength)); enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */ break; /* This shouldn't happen. */ default: AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6); } /* * Inject it. */ rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength); Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) )); RT_NOREF_PV(pVM); return rcStrict; } /** * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageUnrecoverableException */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { #if 0 /* * Just copy the state we've got and handle it in the loop for now. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags)); RT_NOREF_PV(pVM); return VINF_EM_TRIPLE_FAULT; #else /* * Let IEM decide whether this is really it. */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit"); if (rcStrict == VINF_SUCCESS) { rcStrict = IEMExecOne(pVCpu); if (rcStrict == VINF_SUCCESS) { Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags)); pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */ return VINF_SUCCESS; } if (rcStrict == VINF_EM_TRIPLE_FAULT) Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) )); else Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) )); } else Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) )); RT_NOREF_PV(pVM); return rcStrict; #endif } /** * Handles VM exits. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessage */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { switch (pExit->ExitReason) { case WHvRunVpExitReasonMemoryAccess: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped); return nemR3WinHandleExitMemory(pVM, pVCpu, pExit); case WHvRunVpExitReasonX64IoPortAccess: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo); return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit); case WHvRunVpExitReasonX64Halt: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT), pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC()); Log4(("HaltExit/%u\n", pVCpu->idCpu)); return VINF_EM_HALT; case WHvRunVpExitReasonCanceled: Log4(("CanceledExit/%u\n", pVCpu->idCpu)); return VINF_SUCCESS; case WHvRunVpExitReasonX64InterruptWindow: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow); return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit); case WHvRunVpExitReasonX64Cpuid: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId); return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit); case WHvRunVpExitReasonX64MsrAccess: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr); return nemR3WinHandleExitMsr(pVM, pVCpu, pExit); case WHvRunVpExitReasonException: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException); return nemR3WinHandleExitException(pVM, pVCpu, pExit); case WHvRunVpExitReasonUnrecoverableException: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable); return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit); case WHvRunVpExitReasonUnsupportedFeature: case WHvRunVpExitReasonInvalidVpRegisterValue: LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit)); AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n", pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3); /* Undesired exits: */ case WHvRunVpExitReasonNone: default: LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit)); AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3); } } /** * Deals with pending interrupt related force flags, may inject interrupt. * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pfInterruptWindows Where to return interrupt window flags. */ NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVMCC pVM, PVMCPUCC pVCpu, uint8_t *pfInterruptWindows) { Assert(!TRPMHasTrap(pVCpu)); RT_NOREF_PV(pVM); /* * First update APIC. We ASSUME this won't need TPR/CR8. */ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC)) { APICUpdatePendingInterrupts(pVCpu); if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) return VINF_SUCCESS; } /* * We don't currently implement SMIs. */ AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0); /* * Check if we've got the minimum of state required for deciding whether we * can inject interrupts and NMIs. If we don't have it, get all we might require * for injection via IEM. */ bool const fPendingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI); uint64_t fNeedExtrn = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | (fPendingNmi ? CPUMCTX_EXTRN_INHIBIT_NMI : 0); if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn) { VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF"); if (rcStrict != VINF_SUCCESS) return rcStrict; } /* * NMI? Try deliver it first. */ if (fPendingNmi) { if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) && !CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx)) { VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI"); if (rcStrict == VINF_SUCCESS) { VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI); rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0); Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); } return rcStrict; } *pfInterruptWindows |= NEM_WIN_INTW_F_NMI; Log8(("NMI window pending on %u\n", pVCpu->idCpu)); } /* * APIC or PIC interrupt? */ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)) { /** @todo check NMI inhibiting here too! */ if ( !CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx) && pVCpu->cpum.GstCtx.rflags.Bits.u1IF) { AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR); VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI"); if (rcStrict == VINF_SUCCESS) { uint8_t bInterrupt; int rc = PDMGetInterrupt(pVCpu, &bInterrupt); if (RT_SUCCESS(rc)) { Log8(("Injecting interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u)); rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0); Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); } else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) { *pfInterruptWindows |= ((bInterrupt >> 4) << NEM_WIN_INTW_F_PRIO_SHIFT) | NEM_WIN_INTW_F_REGULAR; Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows)); } else Log8(("PDMGetInterrupt failed -> %Rrc\n", rc)); } return rcStrict; } if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC) && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC)) { /* If only an APIC interrupt is pending, we need to know its priority. Otherwise we'll * likely get pointless deliverability notifications with IF=1 but TPR still too high. */ bool fPendingIntr = false; uint8_t bTpr = 0; uint8_t bPendingIntr = 0; int rc = APICGetTpr(pVCpu, &bTpr, &fPendingIntr, &bPendingIntr); AssertRC(rc); *pfInterruptWindows |= ((bPendingIntr >> 4) << NEM_WIN_INTW_F_PRIO_SHIFT) | NEM_WIN_INTW_F_REGULAR; Log8(("Interrupt window pending on %u: %#x (bTpr=%#x fPendingIntr=%d bPendingIntr=%#x)\n", pVCpu->idCpu, *pfInterruptWindows, bTpr, fPendingIntr, bPendingIntr)); } else { *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR; Log8(("Interrupt window pending on %u: %#x\n", pVCpu->idCpu, *pfInterruptWindows)); } } return VINF_SUCCESS; } /** * Inner NEM runloop for windows. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. */ NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVMCC pVM, PVMCPUCC pVCpu) { LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u)); #ifdef LOG_ENABLED if (LogIs3Enabled()) nemHCWinLogState(pVM, pVCpu); #endif /* * Try switch to NEM runloop state. */ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED)) { /* likely */ } else { VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu)); return VINF_SUCCESS; } /* * The run loop. * * Current approach to state updating to use the sledgehammer and sync * everything every time. This will be optimized later. */ const bool fSingleStepping = DBGFIsStepping(pVCpu); // const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK // : VM_FF_HP_R0_PRE_HM_STEP_MASK; // const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK; VBOXSTRICTRC rcStrict = VINF_SUCCESS; for (unsigned iLoop = 0;; iLoop++) { /* * Pending interrupts or such? Need to check and deal with this prior * to the state syncing. */ pVCpu->nem.s.fDesiredInterruptWindows = 0; if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) { /* Try inject interrupt. */ rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, &pVCpu->nem.s.fDesiredInterruptWindows); if (rcStrict == VINF_SUCCESS) { /* likely */ } else { LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } #ifndef NEM_WIN_WITH_A20 /* * Do not execute in hyper-V if the A20 isn't enabled. */ if (PGMPhysIsA20Enabled(pVCpu)) { /* likely */ } else { rcStrict = VINF_EM_RESCHEDULE_REM; LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu)); break; } #endif /* * Ensure that hyper-V has the whole state. * (We always update the interrupt windows settings when active as hyper-V seems * to forget about it after an exit.) */ if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)) != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK) || ( ( pVCpu->nem.s.fDesiredInterruptWindows || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows) ) ) { int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu); AssertRCReturn(rc2, rc2); } /* * Poll timers and run for a bit. * * With the VID approach (ring-0 or ring-3) we can specify a timeout here, * so we take the time of the next timer event and uses that as a deadline. * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine. */ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing * the whole polling job when timers have changed... */ uint64_t offDeltaIgnored; uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt); if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC) && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM)) { #ifdef LOG_ENABLED if (LogIsFlowEnabled()) { static const WHV_REGISTER_NAME s_aNames[6] = { WHvX64RegisterCs, WHvX64RegisterRip, WHvX64RegisterRflags, WHvX64RegisterSs, WHvX64RegisterRsp, WHvX64RegisterCr0 }; WHV_REGISTER_VALUE aRegs[RT_ELEMENTS(s_aNames)] = { {{0, 0} } }; WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, s_aNames, RT_ELEMENTS(s_aNames), aRegs); LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n", pVCpu->idCpu, aRegs[0].Segment.Selector, aRegs[1].Reg64, RT_BOOL(aRegs[2].Reg64 & X86_EFL_IF), aRegs[2].Reg64, aRegs[3].Segment.Selector, aRegs[4].Reg64, aRegs[5].Reg64)); } #endif WHV_RUN_VP_EXIT_CONTEXT ExitReason = {0}; TMNotifyStartOfExecution(pVM, pVCpu); HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason)); VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT); TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC()); #ifdef LOG_ENABLED LogFlow(("NEM/%u: Exit @ %04X:%08RX64 IF=%d CR8=%#x Reason=%#x\n", pVCpu->idCpu, ExitReason.VpContext.Cs.Selector, ExitReason.VpContext.Rip, RT_BOOL(ExitReason.VpContext.Rflags & X86_EFL_IF), ExitReason.VpContext.Cr8, ExitReason.ExitReason)); #endif if (SUCCEEDED(hrc)) { /* * Deal with the message. */ rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason); if (rcStrict == VINF_SUCCESS) { /* hopefully likely */ } else { LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } else AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n", pVCpu->idCpu, hrc, GetLastError()), VERR_NEM_IPE_0); /* * If no relevant FFs are pending, loop. */ if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK) && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) continue; /** @todo Try handle pending flags, not just return to EM loops. Take care * not to set important RCs here unless we've handled a message. */ LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n", pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost); } else { LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel); } } else { LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre); } break; } /* the run loop */ /* * If the CPU is running, make sure to stop it before we try sync back the * state and return to EM. We don't sync back the whole state if we can help it. */ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM)) VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))) { /* Try anticipate what we might need. */ uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) || RT_FAILURE(rcStrict)) fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT); else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK; if (pVCpu->cpum.GstCtx.fExtrn & fImport) { int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT); if (RT_SUCCESS(rc2)) pVCpu->cpum.GstCtx.fExtrn &= ~fImport; else if (RT_SUCCESS(rcStrict)) rcStrict = rc2; if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))) pVCpu->cpum.GstCtx.fExtrn = 0; STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn); } else { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; } } else { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); pVCpu->cpum.GstCtx.fExtrn = 0; } LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) )); return rcStrict; } /** * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE} */ NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser) { /* We'll just unmap the memory. */ if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED) { HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE); if (SUCCEEDED(hrc)) { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages)); pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED; } else { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_IPE_2; } } RT_NOREF(pVCpu, pvUser); return VINF_SUCCESS; } /** * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior. * * @returns The PGMPhysNemQueryPageInfo result. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param GCPhys The page to unmap. */ NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys) { PGMPHYSNEMPAGEINFO Info; return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info, nemHCWinUnsetForA20CheckerCallback, NULL); } void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb) { Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind)); NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); } VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb, RTR3PTR pvMemR3, uint8_t *pu2State) { Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n", GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State)); *pu2State = UINT8_MAX; if (pvMemR3) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvMemR3, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; else AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: WHvMapGpaRange(,%p,%RGp,%RGp,) -> %Rhrc\n", pvMemR3, GCPhys, cb, hrc)); } RT_NOREF(enmKind); } void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM) { Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n", GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM)); NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM); } /** * Worker that maps pages into Hyper-V. * * This is used by the PGM physical page notifications as well as the memory * access VMEXIT handlers. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param GCPhysSrc The source page address. * @param GCPhysDst The hyper-V destination page. This may differ from * GCPhysSrc when A20 is disabled. * @param fPageProt NEM_PAGE_PROT_XXX. * @param pu2State Our page state (input/output). * @param fBackingChanged Set if the page backing is being changed. * @thread EMT(pVCpu) */ NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged) { /* * Looks like we need to unmap a page before we can change the backing * or even modify the protection. This is going to be *REALLY* efficient. * PGM lends us two bits to keep track of the state here. */ RT_NOREF(pVCpu); uint8_t const u2OldState = *pu2State; uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED; if ( fBackingChanged || u2NewState != u2OldState) { if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED) { Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } } else { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } } } /* * Writeable mapping? */ if (fPageProt & NEM_PAGE_PROT_WRITE) { void *pvPage; int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage); if (RT_SUCCESS(rc)) { HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage); uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc)); return rc; } if (fPageProt & NEM_PAGE_PROT_READ) { const void *pvPage; int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage); if (RT_SUCCESS(rc)) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRangePage, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRangePage, a); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_READABLE; STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage); uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc)); return rc; } /* We already unmapped it above. */ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; return VINF_SUCCESS; } NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State) { if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED) { Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst)); *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; return VINF_SUCCESS; } STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_IPE_6; } int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType); int rc; RT_NOREF_PV(fPageProt); #ifdef NEM_WIN_WITH_A20 if ( pVM->nem.s.fA20Enabled || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys)) #endif rc = nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); #ifdef NEM_WIN_WITH_A20 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys)) rc = nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); else rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */ #endif return rc; } VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(HCPhys, enmType, pvR3); RT_NOREF_PV(fPageProt); #ifdef NEM_WIN_WITH_A20 if ( pVM->nem.s.fA20Enabled || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys)) #endif nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); #ifdef NEM_WIN_WITH_A20 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys)) nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); /* else: ignore since we've got the alias page at this address. */ #endif } VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew, RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, enmType); RT_NOREF_PV(fPageProt); #ifdef NEM_WIN_WITH_A20 if ( pVM->nem.s.fA20Enabled || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys)) #endif nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); #ifdef NEM_WIN_WITH_A20 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys)) nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); /* else: ignore since we've got the alias page at this address. */ #endif } /** * Returns features supported by the NEM backend. * * @returns Flags of features supported by the native NEM backend. * @param pVM The cross context VM structure. */ VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM) { RT_NOREF(pVM); /** @todo Make use of the WHvGetVirtualProcessorXsaveState/WHvSetVirtualProcessorXsaveState * interface added in 2019 to enable passthrough of xsave/xrstor (and depending) features to the guest. */ /** @todo Is NEM_FEAT_F_FULL_GST_EXEC always true? */ return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC; }