1 | /* $Id: NEMAllNativeTemplate-win.cpp.h 71293 2018-03-09 21:11:20Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager, Windows code template ring-0/3.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | /** Copy back a segment from hyper-V. */
|
---|
23 | #define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
|
---|
24 | do { \
|
---|
25 | (a_Dst).u64Base = (a_Src).Base; \
|
---|
26 | (a_Dst).u32Limit = (a_Src).Limit; \
|
---|
27 | (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
|
---|
28 | (a_Dst).Attr.u = (a_Src).Attributes; \
|
---|
29 | (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
30 | } while (0)
|
---|
31 |
|
---|
32 |
|
---|
33 | /*********************************************************************************************************************************
|
---|
34 | * Global Variables *
|
---|
35 | *********************************************************************************************************************************/
|
---|
36 | /** NEM_WIN_PAGE_STATE_XXX names. */
|
---|
37 | NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
|
---|
38 |
|
---|
39 | /** HV_INTERCEPT_ACCESS_TYPE names. */
|
---|
40 | static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
|
---|
41 |
|
---|
42 |
|
---|
43 | /*********************************************************************************************************************************
|
---|
44 | * Internal Functions *
|
---|
45 | *********************************************************************************************************************************/
|
---|
46 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
47 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
|
---|
48 |
|
---|
49 |
|
---|
50 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
|
---|
54 | *
|
---|
55 | * @returns VBox status code.
|
---|
56 | * @param pVM The cross context VM structure.
|
---|
57 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
58 | * @param GCPhysSrc The source page. Does not need to be page aligned.
|
---|
59 | * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
|
---|
60 | * when A20 is disabled.
|
---|
61 | * @param fFlags HV_MAP_GPA_XXX.
|
---|
62 | */
|
---|
63 | DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
|
---|
64 | {
|
---|
65 | #ifdef IN_RING0
|
---|
66 | /** @todo optimize further, caller generally has the physical address. */
|
---|
67 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
68 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
69 | return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu],
|
---|
70 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
71 | GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
72 | 1, fFlags);
|
---|
73 | #else
|
---|
74 | pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
75 | pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
76 | pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
|
---|
77 | pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
|
---|
78 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
|
---|
79 | #endif
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | /**
|
---|
84 | * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
|
---|
85 | *
|
---|
86 | * @returns VBox status code.
|
---|
87 | * @param pVM The cross context VM structure.
|
---|
88 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
89 | * @param GCPhys The page to unmap. Does not need to be page aligned.
|
---|
90 | */
|
---|
91 | DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
92 | {
|
---|
93 | # ifdef IN_RING0
|
---|
94 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
95 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
96 | return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
|
---|
97 | # else
|
---|
98 | pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
99 | pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
|
---|
100 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
|
---|
101 | # endif
|
---|
102 | }
|
---|
103 |
|
---|
104 | #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
105 | #ifndef IN_RING0
|
---|
106 |
|
---|
107 | NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
108 | {
|
---|
109 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
110 | NOREF(pCtx);
|
---|
111 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
|
---|
112 | AssertLogRelRCReturn(rc, rc);
|
---|
113 | return rc;
|
---|
114 |
|
---|
115 | # else
|
---|
116 | WHV_REGISTER_NAME aenmNames[128];
|
---|
117 | WHV_REGISTER_VALUE aValues[128];
|
---|
118 |
|
---|
119 | /* GPRs */
|
---|
120 | aenmNames[0] = WHvX64RegisterRax;
|
---|
121 | aValues[0].Reg64 = pCtx->rax;
|
---|
122 | aenmNames[1] = WHvX64RegisterRcx;
|
---|
123 | aValues[1].Reg64 = pCtx->rcx;
|
---|
124 | aenmNames[2] = WHvX64RegisterRdx;
|
---|
125 | aValues[2].Reg64 = pCtx->rdx;
|
---|
126 | aenmNames[3] = WHvX64RegisterRbx;
|
---|
127 | aValues[3].Reg64 = pCtx->rbx;
|
---|
128 | aenmNames[4] = WHvX64RegisterRsp;
|
---|
129 | aValues[4].Reg64 = pCtx->rsp;
|
---|
130 | aenmNames[5] = WHvX64RegisterRbp;
|
---|
131 | aValues[5].Reg64 = pCtx->rbp;
|
---|
132 | aenmNames[6] = WHvX64RegisterRsi;
|
---|
133 | aValues[6].Reg64 = pCtx->rsi;
|
---|
134 | aenmNames[7] = WHvX64RegisterRdi;
|
---|
135 | aValues[7].Reg64 = pCtx->rdi;
|
---|
136 | aenmNames[8] = WHvX64RegisterR8;
|
---|
137 | aValues[8].Reg64 = pCtx->r8;
|
---|
138 | aenmNames[9] = WHvX64RegisterR9;
|
---|
139 | aValues[9].Reg64 = pCtx->r9;
|
---|
140 | aenmNames[10] = WHvX64RegisterR10;
|
---|
141 | aValues[10].Reg64 = pCtx->r10;
|
---|
142 | aenmNames[11] = WHvX64RegisterR11;
|
---|
143 | aValues[11].Reg64 = pCtx->r11;
|
---|
144 | aenmNames[12] = WHvX64RegisterR12;
|
---|
145 | aValues[12].Reg64 = pCtx->r12;
|
---|
146 | aenmNames[13] = WHvX64RegisterR13;
|
---|
147 | aValues[13].Reg64 = pCtx->r13;
|
---|
148 | aenmNames[14] = WHvX64RegisterR14;
|
---|
149 | aValues[14].Reg64 = pCtx->r14;
|
---|
150 | aenmNames[15] = WHvX64RegisterR15;
|
---|
151 | aValues[15].Reg64 = pCtx->r15;
|
---|
152 |
|
---|
153 | /* RIP & Flags */
|
---|
154 | aenmNames[16] = WHvX64RegisterRip;
|
---|
155 | aValues[16].Reg64 = pCtx->rip;
|
---|
156 | aenmNames[17] = WHvX64RegisterRflags;
|
---|
157 | aValues[17].Reg64 = pCtx->rflags.u;
|
---|
158 |
|
---|
159 | /* Segments */
|
---|
160 | # define COPY_OUT_SEG(a_idx, a_enmName, a_SReg) \
|
---|
161 | do { \
|
---|
162 | aenmNames[a_idx] = a_enmName; \
|
---|
163 | aValues[a_idx].Segment.Base = (a_SReg).u64Base; \
|
---|
164 | aValues[a_idx].Segment.Limit = (a_SReg).u32Limit; \
|
---|
165 | aValues[a_idx].Segment.Selector = (a_SReg).Sel; \
|
---|
166 | aValues[a_idx].Segment.Attributes = (a_SReg).Attr.u; \
|
---|
167 | } while (0)
|
---|
168 | COPY_OUT_SEG(18, WHvX64RegisterEs, pCtx->es);
|
---|
169 | COPY_OUT_SEG(19, WHvX64RegisterCs, pCtx->cs);
|
---|
170 | COPY_OUT_SEG(20, WHvX64RegisterSs, pCtx->ss);
|
---|
171 | COPY_OUT_SEG(21, WHvX64RegisterDs, pCtx->ds);
|
---|
172 | COPY_OUT_SEG(22, WHvX64RegisterFs, pCtx->fs);
|
---|
173 | COPY_OUT_SEG(23, WHvX64RegisterGs, pCtx->gs);
|
---|
174 | COPY_OUT_SEG(24, WHvX64RegisterLdtr, pCtx->ldtr);
|
---|
175 | COPY_OUT_SEG(25, WHvX64RegisterTr, pCtx->tr);
|
---|
176 |
|
---|
177 | uintptr_t iReg = 26;
|
---|
178 | /* Descriptor tables. */
|
---|
179 | aenmNames[iReg] = WHvX64RegisterIdtr;
|
---|
180 | aValues[iReg].Table.Limit = pCtx->idtr.cbIdt;
|
---|
181 | aValues[iReg].Table.Base = pCtx->idtr.pIdt;
|
---|
182 | iReg++;
|
---|
183 | aenmNames[iReg] = WHvX64RegisterGdtr;
|
---|
184 | aValues[iReg].Table.Limit = pCtx->gdtr.cbGdt;
|
---|
185 | aValues[iReg].Table.Base = pCtx->gdtr.pGdt;
|
---|
186 | iReg++;
|
---|
187 |
|
---|
188 | /* Control registers. */
|
---|
189 | aenmNames[iReg] = WHvX64RegisterCr0;
|
---|
190 | aValues[iReg].Reg64 = pCtx->cr0;
|
---|
191 | iReg++;
|
---|
192 | aenmNames[iReg] = WHvX64RegisterCr2;
|
---|
193 | aValues[iReg].Reg64 = pCtx->cr2;
|
---|
194 | iReg++;
|
---|
195 | aenmNames[iReg] = WHvX64RegisterCr3;
|
---|
196 | aValues[iReg].Reg64 = pCtx->cr3;
|
---|
197 | iReg++;
|
---|
198 | aenmNames[iReg] = WHvX64RegisterCr4;
|
---|
199 | aValues[iReg].Reg64 = pCtx->cr4;
|
---|
200 | iReg++;
|
---|
201 | aenmNames[iReg] = WHvX64RegisterCr8;
|
---|
202 | aValues[iReg].Reg64 = CPUMGetGuestCR8(pVCpu);
|
---|
203 | iReg++;
|
---|
204 |
|
---|
205 | /* Debug registers. */
|
---|
206 | /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
|
---|
207 | aenmNames[iReg] = WHvX64RegisterDr0;
|
---|
208 | //aValues[iReg].Reg64 = CPUMGetHyperDR0(pVCpu);
|
---|
209 | aValues[iReg].Reg64 = pCtx->dr[0];
|
---|
210 | iReg++;
|
---|
211 | aenmNames[iReg] = WHvX64RegisterDr1;
|
---|
212 | //aValues[iReg].Reg64 = CPUMGetHyperDR1(pVCpu);
|
---|
213 | aValues[iReg].Reg64 = pCtx->dr[1];
|
---|
214 | iReg++;
|
---|
215 | aenmNames[iReg] = WHvX64RegisterDr2;
|
---|
216 | //aValues[iReg].Reg64 = CPUMGetHyperDR2(pVCpu);
|
---|
217 | aValues[iReg].Reg64 = pCtx->dr[2];
|
---|
218 | iReg++;
|
---|
219 | aenmNames[iReg] = WHvX64RegisterDr3;
|
---|
220 | //aValues[iReg].Reg64 = CPUMGetHyperDR3(pVCpu);
|
---|
221 | aValues[iReg].Reg64 = pCtx->dr[3];
|
---|
222 | iReg++;
|
---|
223 | aenmNames[iReg] = WHvX64RegisterDr6;
|
---|
224 | //aValues[iReg].Reg64 = CPUMGetHyperDR6(pVCpu);
|
---|
225 | aValues[iReg].Reg64 = pCtx->dr[6];
|
---|
226 | iReg++;
|
---|
227 | aenmNames[iReg] = WHvX64RegisterDr7;
|
---|
228 | //aValues[iReg].Reg64 = CPUMGetHyperDR7(pVCpu);
|
---|
229 | aValues[iReg].Reg64 = pCtx->dr[7];
|
---|
230 | iReg++;
|
---|
231 |
|
---|
232 | /* Vector state. */
|
---|
233 | aenmNames[iReg] = WHvX64RegisterXmm0;
|
---|
234 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Lo;
|
---|
235 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Hi;
|
---|
236 | iReg++;
|
---|
237 | aenmNames[iReg] = WHvX64RegisterXmm1;
|
---|
238 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Lo;
|
---|
239 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Hi;
|
---|
240 | iReg++;
|
---|
241 | aenmNames[iReg] = WHvX64RegisterXmm2;
|
---|
242 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Lo;
|
---|
243 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Hi;
|
---|
244 | iReg++;
|
---|
245 | aenmNames[iReg] = WHvX64RegisterXmm3;
|
---|
246 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Lo;
|
---|
247 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Hi;
|
---|
248 | iReg++;
|
---|
249 | aenmNames[iReg] = WHvX64RegisterXmm4;
|
---|
250 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Lo;
|
---|
251 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Hi;
|
---|
252 | iReg++;
|
---|
253 | aenmNames[iReg] = WHvX64RegisterXmm5;
|
---|
254 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Lo;
|
---|
255 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Hi;
|
---|
256 | iReg++;
|
---|
257 | aenmNames[iReg] = WHvX64RegisterXmm6;
|
---|
258 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Lo;
|
---|
259 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Hi;
|
---|
260 | iReg++;
|
---|
261 | aenmNames[iReg] = WHvX64RegisterXmm7;
|
---|
262 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Lo;
|
---|
263 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Hi;
|
---|
264 | iReg++;
|
---|
265 | aenmNames[iReg] = WHvX64RegisterXmm8;
|
---|
266 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Lo;
|
---|
267 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Hi;
|
---|
268 | iReg++;
|
---|
269 | aenmNames[iReg] = WHvX64RegisterXmm9;
|
---|
270 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Lo;
|
---|
271 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Hi;
|
---|
272 | iReg++;
|
---|
273 | aenmNames[iReg] = WHvX64RegisterXmm10;
|
---|
274 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo;
|
---|
275 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi;
|
---|
276 | iReg++;
|
---|
277 | aenmNames[iReg] = WHvX64RegisterXmm11;
|
---|
278 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo;
|
---|
279 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi;
|
---|
280 | iReg++;
|
---|
281 | aenmNames[iReg] = WHvX64RegisterXmm12;
|
---|
282 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo;
|
---|
283 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi;
|
---|
284 | iReg++;
|
---|
285 | aenmNames[iReg] = WHvX64RegisterXmm13;
|
---|
286 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo;
|
---|
287 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi;
|
---|
288 | iReg++;
|
---|
289 | aenmNames[iReg] = WHvX64RegisterXmm14;
|
---|
290 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo;
|
---|
291 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi;
|
---|
292 | iReg++;
|
---|
293 | aenmNames[iReg] = WHvX64RegisterXmm15;
|
---|
294 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo;
|
---|
295 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi;
|
---|
296 | iReg++;
|
---|
297 |
|
---|
298 | /* Floating point state. */
|
---|
299 | aenmNames[iReg] = WHvX64RegisterFpMmx0;
|
---|
300 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[0].au64[0];
|
---|
301 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[0].au64[1];
|
---|
302 | iReg++;
|
---|
303 | aenmNames[iReg] = WHvX64RegisterFpMmx1;
|
---|
304 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[1].au64[0];
|
---|
305 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[1].au64[1];
|
---|
306 | iReg++;
|
---|
307 | aenmNames[iReg] = WHvX64RegisterFpMmx2;
|
---|
308 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[2].au64[0];
|
---|
309 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[2].au64[1];
|
---|
310 | iReg++;
|
---|
311 | aenmNames[iReg] = WHvX64RegisterFpMmx3;
|
---|
312 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[3].au64[0];
|
---|
313 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[3].au64[1];
|
---|
314 | iReg++;
|
---|
315 | aenmNames[iReg] = WHvX64RegisterFpMmx4;
|
---|
316 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[4].au64[0];
|
---|
317 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[4].au64[1];
|
---|
318 | iReg++;
|
---|
319 | aenmNames[iReg] = WHvX64RegisterFpMmx5;
|
---|
320 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[5].au64[0];
|
---|
321 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[5].au64[1];
|
---|
322 | iReg++;
|
---|
323 | aenmNames[iReg] = WHvX64RegisterFpMmx6;
|
---|
324 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[6].au64[0];
|
---|
325 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[6].au64[1];
|
---|
326 | iReg++;
|
---|
327 | aenmNames[iReg] = WHvX64RegisterFpMmx7;
|
---|
328 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[7].au64[0];
|
---|
329 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[7].au64[1];
|
---|
330 | iReg++;
|
---|
331 |
|
---|
332 | aenmNames[iReg] = WHvX64RegisterFpControlStatus;
|
---|
333 | aValues[iReg].FpControlStatus.FpControl = pCtx->pXStateR3->x87.FCW;
|
---|
334 | aValues[iReg].FpControlStatus.FpStatus = pCtx->pXStateR3->x87.FSW;
|
---|
335 | aValues[iReg].FpControlStatus.FpTag = pCtx->pXStateR3->x87.FTW;
|
---|
336 | aValues[iReg].FpControlStatus.Reserved = pCtx->pXStateR3->x87.FTW >> 8;
|
---|
337 | aValues[iReg].FpControlStatus.LastFpOp = pCtx->pXStateR3->x87.FOP;
|
---|
338 | aValues[iReg].FpControlStatus.LastFpRip = (pCtx->pXStateR3->x87.FPUIP)
|
---|
339 | | ((uint64_t)pCtx->pXStateR3->x87.CS << 32)
|
---|
340 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd1 << 48);
|
---|
341 | iReg++;
|
---|
342 |
|
---|
343 | aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
|
---|
344 | aValues[iReg].XmmControlStatus.LastFpRdp = (pCtx->pXStateR3->x87.FPUDP)
|
---|
345 | | ((uint64_t)pCtx->pXStateR3->x87.DS << 32)
|
---|
346 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd2 << 48);
|
---|
347 | aValues[iReg].XmmControlStatus.XmmStatusControl = pCtx->pXStateR3->x87.MXCSR;
|
---|
348 | aValues[iReg].XmmControlStatus.XmmStatusControlMask = pCtx->pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
|
---|
349 | iReg++;
|
---|
350 |
|
---|
351 | /* MSRs */
|
---|
352 | // WHvX64RegisterTsc - don't touch
|
---|
353 | aenmNames[iReg] = WHvX64RegisterEfer;
|
---|
354 | aValues[iReg].Reg64 = pCtx->msrEFER;
|
---|
355 | iReg++;
|
---|
356 | aenmNames[iReg] = WHvX64RegisterKernelGsBase;
|
---|
357 | aValues[iReg].Reg64 = pCtx->msrKERNELGSBASE;
|
---|
358 | iReg++;
|
---|
359 | aenmNames[iReg] = WHvX64RegisterApicBase;
|
---|
360 | aValues[iReg].Reg64 = APICGetBaseMsrNoCheck(pVCpu);
|
---|
361 | iReg++;
|
---|
362 | aenmNames[iReg] = WHvX64RegisterPat;
|
---|
363 | aValues[iReg].Reg64 = pCtx->msrPAT;
|
---|
364 | iReg++;
|
---|
365 | /// @todo WHvX64RegisterSysenterCs
|
---|
366 | /// @todo WHvX64RegisterSysenterEip
|
---|
367 | /// @todo WHvX64RegisterSysenterEsp
|
---|
368 | aenmNames[iReg] = WHvX64RegisterStar;
|
---|
369 | aValues[iReg].Reg64 = pCtx->msrSTAR;
|
---|
370 | iReg++;
|
---|
371 | aenmNames[iReg] = WHvX64RegisterLstar;
|
---|
372 | aValues[iReg].Reg64 = pCtx->msrLSTAR;
|
---|
373 | iReg++;
|
---|
374 | aenmNames[iReg] = WHvX64RegisterCstar;
|
---|
375 | aValues[iReg].Reg64 = pCtx->msrCSTAR;
|
---|
376 | iReg++;
|
---|
377 | aenmNames[iReg] = WHvX64RegisterSfmask;
|
---|
378 | aValues[iReg].Reg64 = pCtx->msrSFMASK;
|
---|
379 | iReg++;
|
---|
380 |
|
---|
381 | /* event injection (always clear it). */
|
---|
382 | aenmNames[iReg] = WHvRegisterPendingInterruption;
|
---|
383 | aValues[iReg].Reg64 = 0;
|
---|
384 | iReg++;
|
---|
385 | /// @todo WHvRegisterInterruptState
|
---|
386 | /// @todo WHvRegisterPendingEvent0
|
---|
387 | /// @todo WHvRegisterPendingEvent1
|
---|
388 |
|
---|
389 | /*
|
---|
390 | * Set the registers.
|
---|
391 | */
|
---|
392 | Assert(iReg < RT_ELEMENTS(aValues));
|
---|
393 | Assert(iReg < RT_ELEMENTS(aenmNames));
|
---|
394 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
395 | Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
396 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
|
---|
397 | # endif
|
---|
398 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
|
---|
399 | if (SUCCEEDED(hrc))
|
---|
400 | return VINF_SUCCESS;
|
---|
401 | AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
402 | pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
|
---|
403 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
404 | return VERR_INTERNAL_ERROR;
|
---|
405 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
406 | }
|
---|
407 |
|
---|
408 |
|
---|
409 | NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t fWhat)
|
---|
410 | {
|
---|
411 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
412 | /* See NEMR0ImportState */
|
---|
413 | NOREF(pCtx);
|
---|
414 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
|
---|
415 | if (RT_SUCCESS(rc))
|
---|
416 | return rc;
|
---|
417 | if (rc == VERR_NEM_FLUSH_TLB)
|
---|
418 | return PGMFlushTLB(pVCpu, pCtx->cr3, true /*fGlobal*/);
|
---|
419 | if (rc == VERR_NEM_CHANGE_PGM_MODE)
|
---|
420 | return PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
421 | AssertLogRelRCReturn(rc, rc);
|
---|
422 | return rc;
|
---|
423 |
|
---|
424 | # else
|
---|
425 | WHV_REGISTER_NAME aenmNames[128];
|
---|
426 |
|
---|
427 | /* GPRs */
|
---|
428 | aenmNames[0] = WHvX64RegisterRax;
|
---|
429 | aenmNames[1] = WHvX64RegisterRcx;
|
---|
430 | aenmNames[2] = WHvX64RegisterRdx;
|
---|
431 | aenmNames[3] = WHvX64RegisterRbx;
|
---|
432 | aenmNames[4] = WHvX64RegisterRsp;
|
---|
433 | aenmNames[5] = WHvX64RegisterRbp;
|
---|
434 | aenmNames[6] = WHvX64RegisterRsi;
|
---|
435 | aenmNames[7] = WHvX64RegisterRdi;
|
---|
436 | aenmNames[8] = WHvX64RegisterR8;
|
---|
437 | aenmNames[9] = WHvX64RegisterR9;
|
---|
438 | aenmNames[10] = WHvX64RegisterR10;
|
---|
439 | aenmNames[11] = WHvX64RegisterR11;
|
---|
440 | aenmNames[12] = WHvX64RegisterR12;
|
---|
441 | aenmNames[13] = WHvX64RegisterR13;
|
---|
442 | aenmNames[14] = WHvX64RegisterR14;
|
---|
443 | aenmNames[15] = WHvX64RegisterR15;
|
---|
444 |
|
---|
445 | /* RIP & Flags */
|
---|
446 | aenmNames[16] = WHvX64RegisterRip;
|
---|
447 | aenmNames[17] = WHvX64RegisterRflags;
|
---|
448 |
|
---|
449 | /* Segments */
|
---|
450 | aenmNames[18] = WHvX64RegisterEs;
|
---|
451 | aenmNames[19] = WHvX64RegisterCs;
|
---|
452 | aenmNames[20] = WHvX64RegisterSs;
|
---|
453 | aenmNames[21] = WHvX64RegisterDs;
|
---|
454 | aenmNames[22] = WHvX64RegisterFs;
|
---|
455 | aenmNames[23] = WHvX64RegisterGs;
|
---|
456 | aenmNames[24] = WHvX64RegisterLdtr;
|
---|
457 | aenmNames[25] = WHvX64RegisterTr;
|
---|
458 |
|
---|
459 | /* Descriptor tables. */
|
---|
460 | aenmNames[26] = WHvX64RegisterIdtr;
|
---|
461 | aenmNames[27] = WHvX64RegisterGdtr;
|
---|
462 |
|
---|
463 | /* Control registers. */
|
---|
464 | aenmNames[28] = WHvX64RegisterCr0;
|
---|
465 | aenmNames[29] = WHvX64RegisterCr2;
|
---|
466 | aenmNames[30] = WHvX64RegisterCr3;
|
---|
467 | aenmNames[31] = WHvX64RegisterCr4;
|
---|
468 | aenmNames[32] = WHvX64RegisterCr8;
|
---|
469 |
|
---|
470 | /* Debug registers. */
|
---|
471 | aenmNames[33] = WHvX64RegisterDr0;
|
---|
472 | aenmNames[34] = WHvX64RegisterDr1;
|
---|
473 | aenmNames[35] = WHvX64RegisterDr2;
|
---|
474 | aenmNames[36] = WHvX64RegisterDr3;
|
---|
475 | aenmNames[37] = WHvX64RegisterDr6;
|
---|
476 | aenmNames[38] = WHvX64RegisterDr7;
|
---|
477 |
|
---|
478 | /* Vector state. */
|
---|
479 | aenmNames[39] = WHvX64RegisterXmm0;
|
---|
480 | aenmNames[40] = WHvX64RegisterXmm1;
|
---|
481 | aenmNames[41] = WHvX64RegisterXmm2;
|
---|
482 | aenmNames[42] = WHvX64RegisterXmm3;
|
---|
483 | aenmNames[43] = WHvX64RegisterXmm4;
|
---|
484 | aenmNames[44] = WHvX64RegisterXmm5;
|
---|
485 | aenmNames[45] = WHvX64RegisterXmm6;
|
---|
486 | aenmNames[46] = WHvX64RegisterXmm7;
|
---|
487 | aenmNames[47] = WHvX64RegisterXmm8;
|
---|
488 | aenmNames[48] = WHvX64RegisterXmm9;
|
---|
489 | aenmNames[49] = WHvX64RegisterXmm10;
|
---|
490 | aenmNames[50] = WHvX64RegisterXmm11;
|
---|
491 | aenmNames[51] = WHvX64RegisterXmm12;
|
---|
492 | aenmNames[52] = WHvX64RegisterXmm13;
|
---|
493 | aenmNames[53] = WHvX64RegisterXmm14;
|
---|
494 | aenmNames[54] = WHvX64RegisterXmm15;
|
---|
495 |
|
---|
496 | /* Floating point state. */
|
---|
497 | aenmNames[55] = WHvX64RegisterFpMmx0;
|
---|
498 | aenmNames[56] = WHvX64RegisterFpMmx1;
|
---|
499 | aenmNames[57] = WHvX64RegisterFpMmx2;
|
---|
500 | aenmNames[58] = WHvX64RegisterFpMmx3;
|
---|
501 | aenmNames[59] = WHvX64RegisterFpMmx4;
|
---|
502 | aenmNames[60] = WHvX64RegisterFpMmx5;
|
---|
503 | aenmNames[61] = WHvX64RegisterFpMmx6;
|
---|
504 | aenmNames[62] = WHvX64RegisterFpMmx7;
|
---|
505 | aenmNames[63] = WHvX64RegisterFpControlStatus;
|
---|
506 | aenmNames[64] = WHvX64RegisterXmmControlStatus;
|
---|
507 |
|
---|
508 | /* MSRs */
|
---|
509 | // WHvX64RegisterTsc - don't touch
|
---|
510 | aenmNames[65] = WHvX64RegisterEfer;
|
---|
511 | aenmNames[66] = WHvX64RegisterKernelGsBase;
|
---|
512 | aenmNames[67] = WHvX64RegisterApicBase;
|
---|
513 | aenmNames[68] = WHvX64RegisterPat;
|
---|
514 | aenmNames[69] = WHvX64RegisterSysenterCs;
|
---|
515 | aenmNames[70] = WHvX64RegisterSysenterEip;
|
---|
516 | aenmNames[71] = WHvX64RegisterSysenterEsp;
|
---|
517 | aenmNames[72] = WHvX64RegisterStar;
|
---|
518 | aenmNames[73] = WHvX64RegisterLstar;
|
---|
519 | aenmNames[74] = WHvX64RegisterCstar;
|
---|
520 | aenmNames[75] = WHvX64RegisterSfmask;
|
---|
521 |
|
---|
522 | /* event injection */
|
---|
523 | aenmNames[76] = WHvRegisterPendingInterruption;
|
---|
524 | aenmNames[77] = WHvRegisterInterruptState;
|
---|
525 | aenmNames[78] = WHvRegisterInterruptState;
|
---|
526 | aenmNames[79] = WHvRegisterPendingEvent0;
|
---|
527 | aenmNames[80] = WHvRegisterPendingEvent1;
|
---|
528 | unsigned const cRegs = 81;
|
---|
529 |
|
---|
530 | /*
|
---|
531 | * Get the registers.
|
---|
532 | */
|
---|
533 | WHV_REGISTER_VALUE aValues[cRegs];
|
---|
534 | RT_ZERO(aValues);
|
---|
535 | Assert(RT_ELEMENTS(aValues) >= cRegs);
|
---|
536 | Assert(RT_ELEMENTS(aenmNames) >= cRegs);
|
---|
537 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
538 | Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
539 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
|
---|
540 | # endif
|
---|
541 | HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues);
|
---|
542 | if (SUCCEEDED(hrc))
|
---|
543 | {
|
---|
544 | /* GPRs */
|
---|
545 | Assert(aenmNames[0] == WHvX64RegisterRax);
|
---|
546 | Assert(aenmNames[15] == WHvX64RegisterR15);
|
---|
547 | pCtx->rax = aValues[0].Reg64;
|
---|
548 | pCtx->rcx = aValues[1].Reg64;
|
---|
549 | pCtx->rdx = aValues[2].Reg64;
|
---|
550 | pCtx->rbx = aValues[3].Reg64;
|
---|
551 | pCtx->rsp = aValues[4].Reg64;
|
---|
552 | pCtx->rbp = aValues[5].Reg64;
|
---|
553 | pCtx->rsi = aValues[6].Reg64;
|
---|
554 | pCtx->rdi = aValues[7].Reg64;
|
---|
555 | pCtx->r8 = aValues[8].Reg64;
|
---|
556 | pCtx->r9 = aValues[9].Reg64;
|
---|
557 | pCtx->r10 = aValues[10].Reg64;
|
---|
558 | pCtx->r11 = aValues[11].Reg64;
|
---|
559 | pCtx->r12 = aValues[12].Reg64;
|
---|
560 | pCtx->r13 = aValues[13].Reg64;
|
---|
561 | pCtx->r14 = aValues[14].Reg64;
|
---|
562 | pCtx->r15 = aValues[15].Reg64;
|
---|
563 |
|
---|
564 | /* RIP & Flags */
|
---|
565 | Assert(aenmNames[16] == WHvX64RegisterRip);
|
---|
566 | pCtx->rip = aValues[16].Reg64;
|
---|
567 | pCtx->rflags.u = aValues[17].Reg64;
|
---|
568 |
|
---|
569 | /* Segments */
|
---|
570 | # define COPY_BACK_SEG(a_idx, a_enmName, a_SReg) \
|
---|
571 | do { \
|
---|
572 | Assert(aenmNames[a_idx] == a_enmName); \
|
---|
573 | NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[a_idx]); \
|
---|
574 | } while (0)
|
---|
575 | COPY_BACK_SEG(18, WHvX64RegisterEs, pCtx->es);
|
---|
576 | COPY_BACK_SEG(19, WHvX64RegisterCs, pCtx->cs);
|
---|
577 | COPY_BACK_SEG(20, WHvX64RegisterSs, pCtx->ss);
|
---|
578 | COPY_BACK_SEG(21, WHvX64RegisterDs, pCtx->ds);
|
---|
579 | COPY_BACK_SEG(22, WHvX64RegisterFs, pCtx->fs);
|
---|
580 | COPY_BACK_SEG(23, WHvX64RegisterGs, pCtx->gs);
|
---|
581 | COPY_BACK_SEG(24, WHvX64RegisterLdtr, pCtx->ldtr);
|
---|
582 | COPY_BACK_SEG(25, WHvX64RegisterTr, pCtx->tr);
|
---|
583 |
|
---|
584 | /* Descriptor tables. */
|
---|
585 | Assert(aenmNames[26] == WHvX64RegisterIdtr);
|
---|
586 | pCtx->idtr.cbIdt = aValues[26].Table.Limit;
|
---|
587 | pCtx->idtr.pIdt = aValues[26].Table.Base;
|
---|
588 | Assert(aenmNames[27] == WHvX64RegisterGdtr);
|
---|
589 | pCtx->gdtr.cbGdt = aValues[27].Table.Limit;
|
---|
590 | pCtx->gdtr.pGdt = aValues[27].Table.Base;
|
---|
591 |
|
---|
592 | /* Control registers. */
|
---|
593 | Assert(aenmNames[28] == WHvX64RegisterCr0);
|
---|
594 | bool fMaybeChangedMode = false;
|
---|
595 | bool fFlushTlb = false;
|
---|
596 | bool fFlushGlobalTlb = false;
|
---|
597 | if (pCtx->cr0 != aValues[28].Reg64)
|
---|
598 | {
|
---|
599 | CPUMSetGuestCR0(pVCpu, aValues[28].Reg64);
|
---|
600 | fMaybeChangedMode = true;
|
---|
601 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
602 | }
|
---|
603 | Assert(aenmNames[29] == WHvX64RegisterCr2);
|
---|
604 | pCtx->cr2 = aValues[29].Reg64;
|
---|
605 | if (pCtx->cr3 != aValues[30].Reg64)
|
---|
606 | {
|
---|
607 | CPUMSetGuestCR3(pVCpu, aValues[30].Reg64);
|
---|
608 | fFlushTlb = true;
|
---|
609 | }
|
---|
610 | if (pCtx->cr4 != aValues[31].Reg64)
|
---|
611 | {
|
---|
612 | CPUMSetGuestCR4(pVCpu, aValues[31].Reg64);
|
---|
613 | fMaybeChangedMode = true;
|
---|
614 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
615 | }
|
---|
616 | APICSetTpr(pVCpu, (uint8_t)aValues[32].Reg64 << 4);
|
---|
617 |
|
---|
618 | /* Debug registers. */
|
---|
619 | Assert(aenmNames[33] == WHvX64RegisterDr0);
|
---|
620 | /** @todo fixme */
|
---|
621 | if (pCtx->dr[0] != aValues[33].Reg64)
|
---|
622 | CPUMSetGuestDR0(pVCpu, aValues[33].Reg64);
|
---|
623 | if (pCtx->dr[1] != aValues[34].Reg64)
|
---|
624 | CPUMSetGuestDR1(pVCpu, aValues[34].Reg64);
|
---|
625 | if (pCtx->dr[2] != aValues[35].Reg64)
|
---|
626 | CPUMSetGuestDR2(pVCpu, aValues[35].Reg64);
|
---|
627 | if (pCtx->dr[3] != aValues[36].Reg64)
|
---|
628 | CPUMSetGuestDR3(pVCpu, aValues[36].Reg64);
|
---|
629 | Assert(aenmNames[37] == WHvX64RegisterDr6);
|
---|
630 | Assert(aenmNames[38] == WHvX64RegisterDr7);
|
---|
631 | if (pCtx->dr[6] != aValues[37].Reg64)
|
---|
632 | CPUMSetGuestDR6(pVCpu, aValues[37].Reg64);
|
---|
633 | if (pCtx->dr[7] != aValues[38].Reg64)
|
---|
634 | CPUMSetGuestDR6(pVCpu, aValues[38].Reg64);
|
---|
635 |
|
---|
636 | /* Vector state. */
|
---|
637 | Assert(aenmNames[39] == WHvX64RegisterXmm0);
|
---|
638 | Assert(aenmNames[54] == WHvX64RegisterXmm15);
|
---|
639 | pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Lo = aValues[39].Reg128.Low64;
|
---|
640 | pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Hi = aValues[39].Reg128.High64;
|
---|
641 | pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Lo = aValues[40].Reg128.Low64;
|
---|
642 | pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Hi = aValues[40].Reg128.High64;
|
---|
643 | pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Lo = aValues[41].Reg128.Low64;
|
---|
644 | pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Hi = aValues[41].Reg128.High64;
|
---|
645 | pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Lo = aValues[42].Reg128.Low64;
|
---|
646 | pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Hi = aValues[42].Reg128.High64;
|
---|
647 | pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Lo = aValues[43].Reg128.Low64;
|
---|
648 | pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Hi = aValues[43].Reg128.High64;
|
---|
649 | pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Lo = aValues[44].Reg128.Low64;
|
---|
650 | pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Hi = aValues[44].Reg128.High64;
|
---|
651 | pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Lo = aValues[45].Reg128.Low64;
|
---|
652 | pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Hi = aValues[45].Reg128.High64;
|
---|
653 | pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Lo = aValues[46].Reg128.Low64;
|
---|
654 | pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Hi = aValues[46].Reg128.High64;
|
---|
655 | pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Lo = aValues[47].Reg128.Low64;
|
---|
656 | pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Hi = aValues[47].Reg128.High64;
|
---|
657 | pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Lo = aValues[48].Reg128.Low64;
|
---|
658 | pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Hi = aValues[48].Reg128.High64;
|
---|
659 | pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo = aValues[49].Reg128.Low64;
|
---|
660 | pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi = aValues[49].Reg128.High64;
|
---|
661 | pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo = aValues[50].Reg128.Low64;
|
---|
662 | pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi = aValues[50].Reg128.High64;
|
---|
663 | pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo = aValues[51].Reg128.Low64;
|
---|
664 | pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi = aValues[51].Reg128.High64;
|
---|
665 | pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo = aValues[52].Reg128.Low64;
|
---|
666 | pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi = aValues[52].Reg128.High64;
|
---|
667 | pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo = aValues[53].Reg128.Low64;
|
---|
668 | pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi = aValues[53].Reg128.High64;
|
---|
669 | pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo = aValues[54].Reg128.Low64;
|
---|
670 | pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi = aValues[54].Reg128.High64;
|
---|
671 |
|
---|
672 | /* Floating point state. */
|
---|
673 | Assert(aenmNames[55] == WHvX64RegisterFpMmx0);
|
---|
674 | Assert(aenmNames[62] == WHvX64RegisterFpMmx7);
|
---|
675 | pCtx->pXStateR3->x87.aRegs[0].au64[0] = aValues[55].Fp.AsUINT128.Low64;
|
---|
676 | pCtx->pXStateR3->x87.aRegs[0].au64[1] = aValues[55].Fp.AsUINT128.High64;
|
---|
677 | pCtx->pXStateR3->x87.aRegs[1].au64[0] = aValues[56].Fp.AsUINT128.Low64;
|
---|
678 | pCtx->pXStateR3->x87.aRegs[1].au64[1] = aValues[56].Fp.AsUINT128.High64;
|
---|
679 | pCtx->pXStateR3->x87.aRegs[2].au64[0] = aValues[57].Fp.AsUINT128.Low64;
|
---|
680 | pCtx->pXStateR3->x87.aRegs[2].au64[1] = aValues[57].Fp.AsUINT128.High64;
|
---|
681 | pCtx->pXStateR3->x87.aRegs[3].au64[0] = aValues[58].Fp.AsUINT128.Low64;
|
---|
682 | pCtx->pXStateR3->x87.aRegs[3].au64[1] = aValues[58].Fp.AsUINT128.High64;
|
---|
683 | pCtx->pXStateR3->x87.aRegs[4].au64[0] = aValues[59].Fp.AsUINT128.Low64;
|
---|
684 | pCtx->pXStateR3->x87.aRegs[4].au64[1] = aValues[59].Fp.AsUINT128.High64;
|
---|
685 | pCtx->pXStateR3->x87.aRegs[5].au64[0] = aValues[60].Fp.AsUINT128.Low64;
|
---|
686 | pCtx->pXStateR3->x87.aRegs[5].au64[1] = aValues[60].Fp.AsUINT128.High64;
|
---|
687 | pCtx->pXStateR3->x87.aRegs[6].au64[0] = aValues[61].Fp.AsUINT128.Low64;
|
---|
688 | pCtx->pXStateR3->x87.aRegs[6].au64[1] = aValues[61].Fp.AsUINT128.High64;
|
---|
689 | pCtx->pXStateR3->x87.aRegs[7].au64[0] = aValues[62].Fp.AsUINT128.Low64;
|
---|
690 | pCtx->pXStateR3->x87.aRegs[7].au64[1] = aValues[62].Fp.AsUINT128.High64;
|
---|
691 |
|
---|
692 | Assert(aenmNames[63] == WHvX64RegisterFpControlStatus);
|
---|
693 | pCtx->pXStateR3->x87.FCW = aValues[63].FpControlStatus.FpControl;
|
---|
694 | pCtx->pXStateR3->x87.FSW = aValues[63].FpControlStatus.FpStatus;
|
---|
695 | pCtx->pXStateR3->x87.FTW = aValues[63].FpControlStatus.FpTag
|
---|
696 | /*| (aValues[63].FpControlStatus.Reserved << 8)*/;
|
---|
697 | pCtx->pXStateR3->x87.FOP = aValues[63].FpControlStatus.LastFpOp;
|
---|
698 | pCtx->pXStateR3->x87.FPUIP = (uint32_t)aValues[63].FpControlStatus.LastFpRip;
|
---|
699 | pCtx->pXStateR3->x87.CS = (uint16_t)(aValues[63].FpControlStatus.LastFpRip >> 32);
|
---|
700 | pCtx->pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[63].FpControlStatus.LastFpRip >> 48);
|
---|
701 |
|
---|
702 | Assert(aenmNames[64] == WHvX64RegisterXmmControlStatus);
|
---|
703 | pCtx->pXStateR3->x87.FPUDP = (uint32_t)aValues[64].XmmControlStatus.LastFpRdp;
|
---|
704 | pCtx->pXStateR3->x87.DS = (uint16_t)(aValues[64].XmmControlStatus.LastFpRdp >> 32);
|
---|
705 | pCtx->pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[64].XmmControlStatus.LastFpRdp >> 48);
|
---|
706 | pCtx->pXStateR3->x87.MXCSR = aValues[64].XmmControlStatus.XmmStatusControl;
|
---|
707 | pCtx->pXStateR3->x87.MXCSR_MASK = aValues[64].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
|
---|
708 |
|
---|
709 | /* MSRs */
|
---|
710 | // WHvX64RegisterTsc - don't touch
|
---|
711 | Assert(aenmNames[65] == WHvX64RegisterEfer);
|
---|
712 | if (aValues[65].Reg64 != pCtx->msrEFER)
|
---|
713 | {
|
---|
714 | pCtx->msrEFER = aValues[65].Reg64;
|
---|
715 | fMaybeChangedMode = true;
|
---|
716 | }
|
---|
717 |
|
---|
718 | Assert(aenmNames[66] == WHvX64RegisterKernelGsBase);
|
---|
719 | pCtx->msrKERNELGSBASE = aValues[66].Reg64;
|
---|
720 |
|
---|
721 | Assert(aenmNames[67] == WHvX64RegisterApicBase);
|
---|
722 | if (aValues[67].Reg64 != APICGetBaseMsrNoCheck(pVCpu))
|
---|
723 | {
|
---|
724 | VBOXSTRICTRC rc2 = APICSetBaseMsr(pVCpu, aValues[67].Reg64);
|
---|
725 | Assert(rc2 == VINF_SUCCESS); NOREF(rc2);
|
---|
726 | }
|
---|
727 |
|
---|
728 | Assert(aenmNames[68] == WHvX64RegisterPat);
|
---|
729 | pCtx->msrPAT = aValues[68].Reg64;
|
---|
730 | /// @todo WHvX64RegisterSysenterCs
|
---|
731 | /// @todo WHvX64RegisterSysenterEip
|
---|
732 | /// @todo WHvX64RegisterSysenterEsp
|
---|
733 | Assert(aenmNames[72] == WHvX64RegisterStar);
|
---|
734 | pCtx->msrSTAR = aValues[72].Reg64;
|
---|
735 | Assert(aenmNames[73] == WHvX64RegisterLstar);
|
---|
736 | pCtx->msrLSTAR = aValues[73].Reg64;
|
---|
737 | Assert(aenmNames[74] == WHvX64RegisterCstar);
|
---|
738 | pCtx->msrCSTAR = aValues[74].Reg64;
|
---|
739 | Assert(aenmNames[75] == WHvX64RegisterSfmask);
|
---|
740 | pCtx->msrSFMASK = aValues[75].Reg64;
|
---|
741 |
|
---|
742 | /// @todo WHvRegisterPendingInterruption
|
---|
743 | Assert(aenmNames[76] == WHvRegisterPendingInterruption);
|
---|
744 | WHV_X64_PENDING_INTERRUPTION_REGISTER const * pPendingInt = (WHV_X64_PENDING_INTERRUPTION_REGISTER const *)&aValues[76];
|
---|
745 | if (pPendingInt->InterruptionPending)
|
---|
746 | {
|
---|
747 | Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
|
---|
748 | pPendingInt->InterruptionType, pPendingInt->InterruptionVector, pPendingInt->DeliverErrorCode,
|
---|
749 | pPendingInt->ErrorCode, pPendingInt->InstructionLength, pPendingInt->NestedEvent));
|
---|
750 | AssertMsg((pPendingInt->AsUINT64 & UINT64_C(0xfc00)) == 0, ("%#RX64\n", pPendingInt->AsUINT64));
|
---|
751 | }
|
---|
752 |
|
---|
753 | /// @todo WHvRegisterInterruptState
|
---|
754 | /// @todo WHvRegisterPendingEvent0
|
---|
755 | /// @todo WHvRegisterPendingEvent1
|
---|
756 |
|
---|
757 | pCtx->fExtrn = 0;
|
---|
758 |
|
---|
759 | if (fMaybeChangedMode)
|
---|
760 | {
|
---|
761 | int rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
762 | AssertRC(rc);
|
---|
763 | }
|
---|
764 | if (fFlushTlb)
|
---|
765 | {
|
---|
766 | int rc = PGMFlushTLB(pVCpu, pCtx->cr3, fFlushGlobalTlb);
|
---|
767 | AssertRC(rc);
|
---|
768 | }
|
---|
769 |
|
---|
770 | return VINF_SUCCESS;
|
---|
771 | }
|
---|
772 |
|
---|
773 | AssertLogRelMsgFailed(("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
774 | pVM->nem.s.hPartition, pVCpu->idCpu, cRegs,
|
---|
775 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
776 | return VERR_INTERNAL_ERROR;
|
---|
777 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
778 | }
|
---|
779 |
|
---|
780 | #endif /* !IN_RING0 */
|
---|
781 |
|
---|
782 |
|
---|
783 | #ifdef LOG_ENABLED
|
---|
784 | /**
|
---|
785 | * Get the virtual processor running status.
|
---|
786 | */
|
---|
787 | DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
|
---|
788 | {
|
---|
789 | # ifdef IN_RING0
|
---|
790 | NOREF(pVCpu);
|
---|
791 | return VidProcessorStatusUndefined;
|
---|
792 | # else
|
---|
793 | RTERRVARS Saved;
|
---|
794 | RTErrVarsSave(&Saved);
|
---|
795 |
|
---|
796 | /*
|
---|
797 | * This API is disabled in release builds, it seems. On build 17101 it requires
|
---|
798 | * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
|
---|
799 | */
|
---|
800 | VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
|
---|
801 | NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
|
---|
802 | AssertRC(rcNt);
|
---|
803 |
|
---|
804 | RTErrVarsRestore(&Saved);
|
---|
805 | return enmCpuStatus;
|
---|
806 | # endif
|
---|
807 | }
|
---|
808 | #endif
|
---|
809 |
|
---|
810 |
|
---|
811 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
812 | # ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
|
---|
813 | /**
|
---|
814 | * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
|
---|
815 | *
|
---|
816 | * This is an experiment only.
|
---|
817 | *
|
---|
818 | * @returns VBox status code.
|
---|
819 | * @param pVM The cross context VM structure.
|
---|
820 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
821 | * calling EMT.
|
---|
822 | */
|
---|
823 | NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
|
---|
824 | {
|
---|
825 | /*
|
---|
826 | * Work the state.
|
---|
827 | *
|
---|
828 | * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
|
---|
829 | * So, we just need to modify the state and kick the EMT if it's waiting on
|
---|
830 | * messages. For the latter we use QueueUserAPC / KeAlterThread.
|
---|
831 | */
|
---|
832 | for (;;)
|
---|
833 | {
|
---|
834 | VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
|
---|
835 | switch (enmState)
|
---|
836 | {
|
---|
837 | case VMCPUSTATE_STARTED_EXEC_NEM:
|
---|
838 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
839 | {
|
---|
840 | Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
|
---|
841 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
|
---|
842 | return VINF_SUCCESS;
|
---|
843 | }
|
---|
844 | break;
|
---|
845 |
|
---|
846 | case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
|
---|
847 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
|
---|
848 | {
|
---|
849 | # ifdef IN_RING0
|
---|
850 | NTSTATUS rcNt = KeAlertThread(??);
|
---|
851 | # else
|
---|
852 | NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
|
---|
853 | # endif
|
---|
854 | Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
|
---|
855 | Assert(rcNt == STATUS_SUCCESS);
|
---|
856 | if (NT_SUCCESS(rcNt))
|
---|
857 | {
|
---|
858 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
|
---|
859 | return VINF_SUCCESS;
|
---|
860 | }
|
---|
861 | AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
|
---|
862 | }
|
---|
863 | break;
|
---|
864 |
|
---|
865 | default:
|
---|
866 | return VINF_SUCCESS;
|
---|
867 | }
|
---|
868 |
|
---|
869 | ASMNopPause();
|
---|
870 | RT_NOREF(pVM);
|
---|
871 | }
|
---|
872 | }
|
---|
873 | # endif /* IN_RING3 */
|
---|
874 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
875 |
|
---|
876 |
|
---|
877 | #ifdef LOG_ENABLED
|
---|
878 | /**
|
---|
879 | * Logs the current CPU state.
|
---|
880 | */
|
---|
881 | NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
|
---|
882 | {
|
---|
883 | if (LogIs3Enabled())
|
---|
884 | {
|
---|
885 | # ifdef IN_RING3
|
---|
886 | char szRegs[4096];
|
---|
887 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
888 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
889 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
890 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
891 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
892 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
893 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
894 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
895 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
896 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
897 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
898 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
899 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
900 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
901 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
902 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
903 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
904 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
905 | " efer=%016VR{efer}\n"
|
---|
906 | " pat=%016VR{pat}\n"
|
---|
907 | " sf_mask=%016VR{sf_mask}\n"
|
---|
908 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
909 | " lstar=%016VR{lstar}\n"
|
---|
910 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
911 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
912 | );
|
---|
913 |
|
---|
914 | char szInstr[256];
|
---|
915 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
916 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
917 | szInstr, sizeof(szInstr), NULL);
|
---|
918 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
919 | # else
|
---|
920 | /** @todo stat logging in ring-0 */
|
---|
921 | RT_NOREF(pVM, pVCpu);
|
---|
922 | # endif
|
---|
923 | }
|
---|
924 | }
|
---|
925 | #endif /* LOG_ENABLED */
|
---|
926 |
|
---|
927 |
|
---|
928 | /**
|
---|
929 | * Advances the guest RIP and clear EFLAGS.RF.
|
---|
930 | *
|
---|
931 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
932 | *
|
---|
933 | * @param pVCpu The cross context virtual CPU structure.
|
---|
934 | * @param pCtx The CPU context to update.
|
---|
935 | * @param pExitCtx The exit context.
|
---|
936 | */
|
---|
937 | DECLINLINE(void) nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
|
---|
938 | {
|
---|
939 | Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
|
---|
940 |
|
---|
941 | /* Advance the RIP. */
|
---|
942 | Assert(pMsgHdr->InstructionLength > 0 && pMsgHdr->InstructionLength < 16);
|
---|
943 | pCtx->rip += pMsgHdr->InstructionLength;
|
---|
944 | pCtx->rflags.Bits.u1RF = 0;
|
---|
945 |
|
---|
946 | /* Update interrupt inhibition. */
|
---|
947 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
948 | { /* likely */ }
|
---|
949 | else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
950 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
951 | }
|
---|
952 |
|
---|
953 |
|
---|
954 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
955 | nemHCWinHandleHalt(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
956 | {
|
---|
957 | NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
|
---|
958 | LogFlow(("nemHCWinHandleHalt\n"));
|
---|
959 | return VINF_EM_HALT;
|
---|
960 | }
|
---|
961 |
|
---|
962 |
|
---|
963 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
964 | nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
|
---|
965 | {
|
---|
966 | RT_NOREF_PV(pvUser);
|
---|
967 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
968 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
969 | AssertRC(rc);
|
---|
970 | if (RT_SUCCESS(rc))
|
---|
971 | #else
|
---|
972 | RT_NOREF_PV(pVCpu);
|
---|
973 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
974 | if (SUCCEEDED(hrc))
|
---|
975 | #endif
|
---|
976 | {
|
---|
977 | Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
|
---|
978 | *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
979 | }
|
---|
980 | else
|
---|
981 | {
|
---|
982 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
983 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
984 | #else
|
---|
985 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
986 | GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
|
---|
987 | RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
|
---|
988 | #endif
|
---|
989 | *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
|
---|
990 | }
|
---|
991 | if (pVM->nem.s.cMappedPages > 0)
|
---|
992 | ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
|
---|
993 | return VINF_SUCCESS;
|
---|
994 | }
|
---|
995 |
|
---|
996 |
|
---|
997 | /**
|
---|
998 | * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
|
---|
999 | * and nemHCWinHandleMemoryAccessPageCheckerCallback.
|
---|
1000 | */
|
---|
1001 | typedef struct NEMHCWINHMACPCCSTATE
|
---|
1002 | {
|
---|
1003 | /** Input: Write access. */
|
---|
1004 | bool fWriteAccess;
|
---|
1005 | /** Output: Set if we did something. */
|
---|
1006 | bool fDidSomething;
|
---|
1007 | /** Output: Set it we should resume. */
|
---|
1008 | bool fCanResume;
|
---|
1009 | } NEMHCWINHMACPCCSTATE;
|
---|
1010 |
|
---|
1011 | /**
|
---|
1012 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
|
---|
1013 | * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
|
---|
1014 | * NEMHCWINHMACPCCSTATE structure. }
|
---|
1015 | */
|
---|
1016 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1017 | nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1018 | {
|
---|
1019 | NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
|
---|
1020 | pState->fDidSomething = false;
|
---|
1021 | pState->fCanResume = false;
|
---|
1022 |
|
---|
1023 | /* If A20 is disabled, we may need to make another query on the masked
|
---|
1024 | page to get the correct protection information. */
|
---|
1025 | uint8_t u2State = pInfo->u2NemState;
|
---|
1026 | RTGCPHYS GCPhysSrc;
|
---|
1027 | if ( pVM->nem.s.fA20Enabled
|
---|
1028 | || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
1029 | GCPhysSrc = GCPhys;
|
---|
1030 | else
|
---|
1031 | {
|
---|
1032 | GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
|
---|
1033 | PGMPHYSNEMPAGEINFO Info2;
|
---|
1034 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
|
---|
1035 | AssertRCReturn(rc, rc);
|
---|
1036 |
|
---|
1037 | *pInfo = Info2;
|
---|
1038 | pInfo->u2NemState = u2State;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | /*
|
---|
1042 | * Consolidate current page state with actual page protection and access type.
|
---|
1043 | * We don't really consider downgrades here, as they shouldn't happen.
|
---|
1044 | */
|
---|
1045 | #ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1046 | /** @todo Someone at microsoft please explain:
|
---|
1047 | * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
|
---|
1048 | * readonly page as writable (unmap, then map again). Specifically, this was an
|
---|
1049 | * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
|
---|
1050 | * a hope to work around that we no longer pre-map anything, just unmap stuff
|
---|
1051 | * and do it lazily here. And here we will first unmap, restart, and then remap
|
---|
1052 | * with new protection or backing.
|
---|
1053 | */
|
---|
1054 | #endif
|
---|
1055 | int rc;
|
---|
1056 | switch (u2State)
|
---|
1057 | {
|
---|
1058 | case NEM_WIN_PAGE_STATE_UNMAPPED:
|
---|
1059 | case NEM_WIN_PAGE_STATE_NOT_SET:
|
---|
1060 | if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
|
---|
1061 | {
|
---|
1062 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
|
---|
1063 | return VINF_SUCCESS;
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | /* Don't bother remapping it if it's a write request to a non-writable page. */
|
---|
1067 | if ( pState->fWriteAccess
|
---|
1068 | && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
|
---|
1069 | {
|
---|
1070 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
|
---|
1071 | return VINF_SUCCESS;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | /* Map the page. */
|
---|
1075 | rc = nemHCNativeSetPhysPage(pVM,
|
---|
1076 | pVCpu,
|
---|
1077 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1078 | GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1079 | pInfo->fNemProt,
|
---|
1080 | &u2State,
|
---|
1081 | true /*fBackingState*/);
|
---|
1082 | pInfo->u2NemState = u2State;
|
---|
1083 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
|
---|
1084 | GCPhys, g_apszPageStates[u2State], rc));
|
---|
1085 | pState->fDidSomething = true;
|
---|
1086 | pState->fCanResume = true;
|
---|
1087 | return rc;
|
---|
1088 |
|
---|
1089 | case NEM_WIN_PAGE_STATE_READABLE:
|
---|
1090 | if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1091 | && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
|
---|
1092 | {
|
---|
1093 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
|
---|
1094 | return VINF_SUCCESS;
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1098 | /* Upgrade page to writable. */
|
---|
1099 | /** @todo test this*/
|
---|
1100 | if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1101 | && pState->fWriteAccess)
|
---|
1102 | {
|
---|
1103 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
|
---|
1104 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1105 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1106 | AssertRC(rc);
|
---|
1107 | if (RT_SUCCESS(rc))
|
---|
1108 | {
|
---|
1109 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1110 | pState->fDidSomething = true;
|
---|
1111 | pState->fCanResume = true;
|
---|
1112 | Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1113 | GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
|
---|
1114 | }
|
---|
1115 | }
|
---|
1116 | else
|
---|
1117 | {
|
---|
1118 | /* Need to emulate the acces. */
|
---|
1119 | AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
|
---|
1120 | rc = VINF_SUCCESS;
|
---|
1121 | }
|
---|
1122 | return rc;
|
---|
1123 | #else
|
---|
1124 | break;
|
---|
1125 | #endif
|
---|
1126 |
|
---|
1127 | case NEM_WIN_PAGE_STATE_WRITABLE:
|
---|
1128 | if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1129 | {
|
---|
1130 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3\n", GCPhys));
|
---|
1131 | return VINF_SUCCESS;
|
---|
1132 | }
|
---|
1133 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1134 | AssertFailed(); /* There should be no downgrades. */
|
---|
1135 | #endif
|
---|
1136 | break;
|
---|
1137 |
|
---|
1138 | default:
|
---|
1139 | AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_INTERNAL_ERROR_3);
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 | /*
|
---|
1143 | * Unmap and restart the instruction.
|
---|
1144 | * If this fails, which it does every so often, just unmap everything for now.
|
---|
1145 | */
|
---|
1146 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1147 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1148 | AssertRC(rc);
|
---|
1149 | if (RT_SUCCESS(rc))
|
---|
1150 | #else
|
---|
1151 | /** @todo figure out whether we mess up the state or if it's WHv. */
|
---|
1152 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1153 | if (SUCCEEDED(hrc))
|
---|
1154 | #endif
|
---|
1155 | {
|
---|
1156 | pState->fDidSomething = true;
|
---|
1157 | pState->fCanResume = true;
|
---|
1158 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1159 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1160 | Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
|
---|
1161 | return VINF_SUCCESS;
|
---|
1162 | }
|
---|
1163 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1164 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1165 | return rc;
|
---|
1166 | #else
|
---|
1167 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1168 | GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
|
---|
1169 | pVM->nem.s.cMappedPages));
|
---|
1170 |
|
---|
1171 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
|
---|
1172 | Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
|
---|
1173 |
|
---|
1174 | pState->fDidSomething = true;
|
---|
1175 | pState->fCanResume = true;
|
---|
1176 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1177 | return VINF_SUCCESS;
|
---|
1178 | #endif
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 |
|
---|
1182 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1183 |
|
---|
1184 | # ifdef IN_RING0
|
---|
1185 | /**
|
---|
1186 | * Wrapper around nemR0WinImportState that converts VERR_NEM_CHANGE_PGM_MODE and
|
---|
1187 | * VERR_NEM_FLUSH_TBL into informational status codes and logs+asserts statuses.
|
---|
1188 | *
|
---|
1189 | * @returns VBox strict status code.
|
---|
1190 | * @param pGVM The global (ring-0) VM structure.
|
---|
1191 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
1192 | * @param pCtx The CPU context to import into.
|
---|
1193 | * @param fWhat What to import.
|
---|
1194 | * @param pszCaller Whoe is doing the importing.
|
---|
1195 | */
|
---|
1196 | DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, const char *pszCaller)
|
---|
1197 | {
|
---|
1198 | int rc = nemR0WinImportState(pGVM, pGVCpu, pCtx, fWhat);
|
---|
1199 | if (RT_SUCCESS(rc))
|
---|
1200 | {
|
---|
1201 | Assert(rc == VINF_SUCCESS);
|
---|
1202 | return VINF_SUCCESS;
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | if (rc == VERR_NEM_CHANGE_PGM_MODE || rc == VERR_NEM_FLUSH_TLB)
|
---|
1206 | {
|
---|
1207 | Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
|
---|
1208 | return -rc;
|
---|
1209 | }
|
---|
1210 | RT_NOREF(pszCaller);
|
---|
1211 | AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
|
---|
1212 | }
|
---|
1213 | # endif /* IN_RING0 */
|
---|
1214 |
|
---|
1215 | /**
|
---|
1216 | * Copies register state from the X64 intercept message header.
|
---|
1217 | *
|
---|
1218 | * ASSUMES no state copied yet.
|
---|
1219 | *
|
---|
1220 | * @param pCtx The registe rcontext.
|
---|
1221 | * @param pHdr The X64 intercept message header.
|
---|
1222 | */
|
---|
1223 | DECLINLINE(void) nemHCWinCopyStateFromX64Header(PCPUMCTX pCtx, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
|
---|
1224 | {
|
---|
1225 | Assert( (pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS))
|
---|
1226 | == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS));
|
---|
1227 | NEM_WIN_COPY_BACK_SEG(pCtx->cs, pHdr->CsSegment);
|
---|
1228 | pCtx->rip = pHdr->Rip;
|
---|
1229 | pCtx->rflags.u = pHdr->Rflags;
|
---|
1230 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 |
|
---|
1234 | /**
|
---|
1235 | * Deals with memory intercept message.
|
---|
1236 | *
|
---|
1237 | * @returns Strict VBox status code.
|
---|
1238 | * @param pVM The cross context VM structure.
|
---|
1239 | * @param pVCpu The cross context per CPU structure.
|
---|
1240 | * @param pMsg The message.
|
---|
1241 | * @param pCtx The register context.
|
---|
1242 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1243 | */
|
---|
1244 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMemory(PVM pVM, PVMCPU pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg,
|
---|
1245 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
1246 | {
|
---|
1247 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
1248 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
1249 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
|
---|
1250 |
|
---|
1251 | /*
|
---|
1252 | * Whatever we do, we must clear pending event ejection upon resume.
|
---|
1253 | */
|
---|
1254 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
1255 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_MASK;
|
---|
1256 |
|
---|
1257 | /*
|
---|
1258 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
1259 | * out of sync first.
|
---|
1260 | */
|
---|
1261 | NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
|
---|
1262 | PGMPHYSNEMPAGEINFO Info;
|
---|
1263 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
|
---|
1264 | nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
1265 | if (RT_SUCCESS(rc))
|
---|
1266 | {
|
---|
1267 | if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
1268 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
1269 | {
|
---|
1270 | if (State.fCanResume)
|
---|
1271 | {
|
---|
1272 | Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
|
---|
1273 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
1274 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1275 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1276 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1277 | return VINF_SUCCESS;
|
---|
1278 | }
|
---|
1279 | }
|
---|
1280 | Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
|
---|
1281 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
1282 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1283 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1284 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1285 | }
|
---|
1286 | else
|
---|
1287 | Log4(("MemExit/%u: %04x:%08RX64: %RGp rc=%Rrc%s; emulating (%s)\n",
|
---|
1288 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, pMsg->GuestPhysicalAddress, rc,
|
---|
1289 | State.fDidSomething ? " modified-backing" : "", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1290 |
|
---|
1291 | /*
|
---|
1292 | * Emulate the memory access, either access handler or special memory.
|
---|
1293 | */
|
---|
1294 | nemHCWinCopyStateFromX64Header(pCtx, &pMsg->Header);
|
---|
1295 | VBOXSTRICTRC rcStrict;
|
---|
1296 | # ifdef IN_RING0
|
---|
1297 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "MemExit");
|
---|
1298 | if (rcStrict != VINF_SUCCESS)
|
---|
1299 | return rcStrict;
|
---|
1300 | # else
|
---|
1301 | rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
1302 | AssertRCReturn(rc, rc);
|
---|
1303 | NOREF(pGVCpu);
|
---|
1304 | # endif
|
---|
1305 |
|
---|
1306 | if (pMsg->InstructionByteCount > 0)
|
---|
1307 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pMsg->Header.Rip,
|
---|
1308 | pMsg->InstructionBytes, pMsg->InstructionByteCount);
|
---|
1309 | else
|
---|
1310 | rcStrict = IEMExecOne(pVCpu);
|
---|
1311 | /** @todo do we need to do anything wrt debugging here? */
|
---|
1312 | return rcStrict;
|
---|
1313 |
|
---|
1314 | }
|
---|
1315 |
|
---|
1316 |
|
---|
1317 | /**
|
---|
1318 | * Deals with I/O port intercept message.
|
---|
1319 | *
|
---|
1320 | * @returns Strict VBox status code.
|
---|
1321 | * @param pVM The cross context VM structure.
|
---|
1322 | * @param pVCpu The cross context per CPU structure.
|
---|
1323 | * @param pMsg The message.
|
---|
1324 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1325 | */
|
---|
1326 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageIoPort(PVM pVM, PVMCPU pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg,
|
---|
1327 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
1328 | {
|
---|
1329 | Assert( pMsg->AccessInfo.AccessSize == 1
|
---|
1330 | || pMsg->AccessInfo.AccessSize == 2
|
---|
1331 | || pMsg->AccessInfo.AccessSize == 4);
|
---|
1332 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
1333 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
1334 |
|
---|
1335 | /*
|
---|
1336 | * Whatever we do, we must clear pending event ejection upon resume.
|
---|
1337 | */
|
---|
1338 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
1339 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_MASK;
|
---|
1340 |
|
---|
1341 | VBOXSTRICTRC rcStrict;
|
---|
1342 | if (!pMsg->AccessInfo.StringOp)
|
---|
1343 | {
|
---|
1344 | /*
|
---|
1345 | * Simple port I/O.
|
---|
1346 | */
|
---|
1347 | static uint32_t const s_fAndMask[8] =
|
---|
1348 | { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
|
---|
1349 | uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
|
---|
1350 | if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
1351 | {
|
---|
1352 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
|
---|
1353 | Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
|
---|
1354 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, pMsg->PortNumber,
|
---|
1355 | (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1356 | if (IOM_SUCCESS(rcStrict))
|
---|
1357 | {
|
---|
1358 | nemHCWinCopyStateFromX64Header(pCtx, &pMsg->Header);
|
---|
1359 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
1360 | }
|
---|
1361 | }
|
---|
1362 | else
|
---|
1363 | {
|
---|
1364 | uint32_t uValue = 0;
|
---|
1365 | rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
|
---|
1366 | Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
|
---|
1367 | pMsg->Header.Rip, pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1368 | if (IOM_SUCCESS(rcStrict))
|
---|
1369 | {
|
---|
1370 | if (pMsg->AccessInfo.AccessSize != 4)
|
---|
1371 | pCtx->rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
|
---|
1372 | else
|
---|
1373 | pCtx->rax = uValue;
|
---|
1374 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
1375 | Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pCtx->rax));
|
---|
1376 | nemHCWinCopyStateFromX64Header(pCtx, &pMsg->Header);
|
---|
1377 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
1378 | }
|
---|
1379 | }
|
---|
1380 | }
|
---|
1381 | else
|
---|
1382 | {
|
---|
1383 | /*
|
---|
1384 | * String port I/O.
|
---|
1385 | */
|
---|
1386 | /** @todo Someone at Microsoft please explain how we can get the address mode
|
---|
1387 | * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
|
---|
1388 | * getting the default mode, it can always be overridden by a prefix. This
|
---|
1389 | * forces us to interpret the instruction from opcodes, which is suboptimal.
|
---|
1390 | * Both AMD-V and VT-x includes the address size in the exit info, at least on
|
---|
1391 | * CPUs that are reasonably new.
|
---|
1392 | *
|
---|
1393 | * Of course, it's possible this is an undocumented and we just need to do some
|
---|
1394 | * experiments to figure out how it's communicated. Alternatively, we can scan
|
---|
1395 | * the opcode bytes for possible evil prefixes.
|
---|
1396 | */
|
---|
1397 | nemHCWinCopyStateFromX64Header(pCtx, &pMsg->Header);
|
---|
1398 | pCtx->fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
1399 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
1400 | NEM_WIN_COPY_BACK_SEG(pCtx->ds, pMsg->DsSegment);
|
---|
1401 | NEM_WIN_COPY_BACK_SEG(pCtx->es, pMsg->EsSegment);
|
---|
1402 | pCtx->rax = pMsg->Rax;
|
---|
1403 | pCtx->rcx = pMsg->Rcx;
|
---|
1404 | pCtx->rdi = pMsg->Rdi;
|
---|
1405 | pCtx->rsi = pMsg->Rsi;
|
---|
1406 | # ifdef IN_RING0
|
---|
1407 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
|
---|
1408 | if (rcStrict != VINF_SUCCESS)
|
---|
1409 | return rcStrict;
|
---|
1410 | # else
|
---|
1411 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
1412 | AssertRCReturn(rc, rc);
|
---|
1413 | RT_NOREF(pGVCpu);
|
---|
1414 | # endif
|
---|
1415 |
|
---|
1416 | Log4(("IOExit/%u: %04x:%08RX64: %s%s %#x LB %u (emulating)\n",
|
---|
1417 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
1418 | pMsg->AccessInfo.RepPrefix ? "REP " : "",
|
---|
1419 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
|
---|
1420 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
|
---|
1421 | rcStrict = IEMExecOne(pVCpu);
|
---|
1422 | }
|
---|
1423 | if (IOM_SUCCESS(rcStrict))
|
---|
1424 | {
|
---|
1425 | /*
|
---|
1426 | * Do debug checks.
|
---|
1427 | */
|
---|
1428 | if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflext DR7? */
|
---|
1429 | || (pMsg->Header.Rflags & X86_EFL_TF)
|
---|
1430 | || DBGFBpIsHwIoArmed(pVM) )
|
---|
1431 | {
|
---|
1432 | /** @todo Debugging. */
|
---|
1433 | }
|
---|
1434 | }
|
---|
1435 | return rcStrict;
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 |
|
---|
1439 | /**
|
---|
1440 | * Handles messages (VM exits).
|
---|
1441 | *
|
---|
1442 | * @returns Strict VBox status code.
|
---|
1443 | * @param pVM The cross context VM structure.
|
---|
1444 | * @param pVCpu The cross context per CPU structure.
|
---|
1445 | * @param pMappingHeader The message slot mapping.
|
---|
1446 | * @param pCtx The register context.
|
---|
1447 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1448 | */
|
---|
1449 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessage(PVM pVM, PVMCPU pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
|
---|
1450 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
1451 | {
|
---|
1452 | if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
|
---|
1453 | {
|
---|
1454 | AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
|
---|
1455 | HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
|
---|
1456 | switch (pMsg->Header.MessageType)
|
---|
1457 | {
|
---|
1458 | case HvMessageTypeUnmappedGpa:
|
---|
1459 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
1460 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
|
---|
1461 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pCtx, pGVCpu);
|
---|
1462 |
|
---|
1463 | case HvMessageTypeGpaIntercept:
|
---|
1464 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
1465 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
|
---|
1466 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pCtx, pGVCpu);
|
---|
1467 |
|
---|
1468 | case HvMessageTypeX64IoPortIntercept:
|
---|
1469 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
|
---|
1470 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
|
---|
1471 | return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept, pCtx, pGVCpu);
|
---|
1472 |
|
---|
1473 | case HvMessageTypeX64Halt:
|
---|
1474 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
|
---|
1475 | return VINF_EM_HALT;
|
---|
1476 |
|
---|
1477 | case HvMessageTypeX64InterruptWindow:
|
---|
1478 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n", pMsg->Header.MessageType),
|
---|
1479 | VERR_INTERNAL_ERROR_2);
|
---|
1480 |
|
---|
1481 | case HvMessageTypeInvalidVpRegisterValue:
|
---|
1482 | case HvMessageTypeUnrecoverableException:
|
---|
1483 | case HvMessageTypeUnsupportedFeature:
|
---|
1484 | case HvMessageTypeTlbPageSizeMismatch:
|
---|
1485 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n", pMsg->Header.MessageType),
|
---|
1486 | VERR_INTERNAL_ERROR_2);
|
---|
1487 |
|
---|
1488 | case HvMessageTypeX64MsrIntercept:
|
---|
1489 | case HvMessageTypeX64CpuidIntercept:
|
---|
1490 | case HvMessageTypeX64ExceptionIntercept:
|
---|
1491 | case HvMessageTypeX64ApicEoi:
|
---|
1492 | case HvMessageTypeX64LegacyFpError:
|
---|
1493 | case HvMessageTypeX64RegisterIntercept:
|
---|
1494 | case HvMessageTypeApicEoi:
|
---|
1495 | case HvMessageTypeFerrAsserted:
|
---|
1496 | case HvMessageTypeEventLogBufferComplete:
|
---|
1497 | case HvMessageTimerExpired:
|
---|
1498 | AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: #x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
1499 | VERR_INTERNAL_ERROR_2);
|
---|
1500 |
|
---|
1501 | default:
|
---|
1502 | AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: #x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
1503 | VERR_INTERNAL_ERROR_2);
|
---|
1504 | }
|
---|
1505 | }
|
---|
1506 | else
|
---|
1507 | AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
|
---|
1508 | pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
|
---|
1509 | VERR_INTERNAL_ERROR_3);
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 |
|
---|
1513 | /**
|
---|
1514 | * Worker for nemHCWinRunGC that stops the execution on the way out.
|
---|
1515 | *
|
---|
1516 | * The CPU was running the last time we checked, no there are no messages that
|
---|
1517 | * needs being marked handled/whatever. Caller checks this.
|
---|
1518 | *
|
---|
1519 | * @returns rcStrict on success, error status on failure.
|
---|
1520 | * @param pVM The cross context VM structure.
|
---|
1521 | * @param pVCpu The cross context per CPU structure.
|
---|
1522 | * @param rcStrict The nemHCWinRunGC return status. This is a little
|
---|
1523 | * bit unnecessary, except in internal error cases,
|
---|
1524 | * since we won't need to stop the CPU if we took an
|
---|
1525 | * exit.
|
---|
1526 | * @param pMappingHeader The message slot mapping.
|
---|
1527 | * @param pGVM The global (ring-0) VM structure (NULL in r3).
|
---|
1528 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1529 | */
|
---|
1530 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict,
|
---|
1531 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
|
---|
1532 | PGVM pGVM, PGVMCPU pGVCpu)
|
---|
1533 | {
|
---|
1534 | /*
|
---|
1535 | * Try stopping the processor. If we're lucky we manage to do this before it
|
---|
1536 | * does another VM exit.
|
---|
1537 | */
|
---|
1538 | # ifdef IN_RING0
|
---|
1539 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
1540 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction,
|
---|
1541 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
1542 | NULL, 0);
|
---|
1543 | if (NT_SUCCESS(rcNt))
|
---|
1544 | {
|
---|
1545 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1546 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
1547 | return rcStrict;
|
---|
1548 | }
|
---|
1549 | # else
|
---|
1550 | BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
|
---|
1551 | if (fRet)
|
---|
1552 | {
|
---|
1553 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1554 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
1555 | return rcStrict;
|
---|
1556 | }
|
---|
1557 | RT_NOREF(pGVM, pGVCpu);
|
---|
1558 | # endif
|
---|
1559 |
|
---|
1560 | /*
|
---|
1561 | * Dang. The CPU stopped by itself and we got a couple of message to deal with.
|
---|
1562 | */
|
---|
1563 | # ifdef IN_RING0
|
---|
1564 | AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
|
---|
1565 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1566 | # else
|
---|
1567 | DWORD dwErr = RTNtLastErrorValue();
|
---|
1568 | AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
|
---|
1569 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1570 | # endif
|
---|
1571 | Log8(("nemHCWinStopCpu: Stopping CPU pending...\n"));
|
---|
1572 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
|
---|
1573 |
|
---|
1574 | /*
|
---|
1575 | * First message: Exit or similar.
|
---|
1576 | * Note! We can safely ASSUME that rcStrict isn't an important information one.
|
---|
1577 | */
|
---|
1578 | # ifdef IN_RING0
|
---|
1579 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
1580 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1581 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
1582 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
1583 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
1584 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
1585 | NULL, 0);
|
---|
1586 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
1587 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1588 | # else
|
---|
1589 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1590 | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
1591 | AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
1592 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1593 | # endif
|
---|
1594 |
|
---|
1595 | /* It should be a hypervisor message and definitely not a stop request completed message. */
|
---|
1596 | VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
1597 | AssertLogRelMsgReturn(enmVidMsgType != VidMessageStopRequestComplete,
|
---|
1598 | ("Unexpected 1st message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
|
---|
1599 | enmVidMsgType, pMappingHeader->cbMessage),
|
---|
1600 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1601 |
|
---|
1602 | VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, CPUMQueryGuestCtxPtr(pVCpu), pGVCpu);
|
---|
1603 | if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
|
---|
1604 | rcStrict = rcStrict2;
|
---|
1605 |
|
---|
1606 | /*
|
---|
1607 | * Mark it as handled and get the stop request completed message, then mark
|
---|
1608 | * that as handled too. CPU is back into fully stopped stated then.
|
---|
1609 | */
|
---|
1610 | # ifdef IN_RING0
|
---|
1611 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
1612 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1613 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
1614 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
1615 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
1616 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
1617 | NULL, 0);
|
---|
1618 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("2st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
1619 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1620 | # else
|
---|
1621 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1622 | VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
1623 | AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
1624 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1625 | # endif
|
---|
1626 |
|
---|
1627 | /* It should be a stop request completed message. */
|
---|
1628 | enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
1629 | AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
|
---|
1630 | ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
|
---|
1631 | enmVidMsgType, pMappingHeader->cbMessage),
|
---|
1632 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1633 |
|
---|
1634 | /* Mark this as handled. */
|
---|
1635 | # ifdef IN_RING0
|
---|
1636 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
1637 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
1638 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
1639 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
1640 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
1641 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
1642 | NULL, 0);
|
---|
1643 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
1644 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1645 | # else
|
---|
1646 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
|
---|
1647 | AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
1648 | RT_SUCCESS(rcStrict) ? VERR_INTERNAL_ERROR_3 : rcStrict);
|
---|
1649 | # endif
|
---|
1650 | Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1651 | return rcStrict;
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 |
|
---|
1655 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu, PGVM pGVM, PGVMCPU pGVCpu)
|
---|
1656 | {
|
---|
1657 | PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
1658 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, pCtx->rflags));
|
---|
1659 | # ifdef LOG_ENABLED
|
---|
1660 | if (LogIs3Enabled())
|
---|
1661 | nemHCWinLogState(pVM, pVCpu);
|
---|
1662 | # endif
|
---|
1663 |
|
---|
1664 | /*
|
---|
1665 | * Try switch to NEM runloop state.
|
---|
1666 | */
|
---|
1667 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
|
---|
1668 | { /* likely */ }
|
---|
1669 | else
|
---|
1670 | {
|
---|
1671 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
1672 | LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
|
---|
1673 | return VINF_SUCCESS;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | /*
|
---|
1677 | * The run loop.
|
---|
1678 | *
|
---|
1679 | * Current approach to state updating to use the sledgehammer and sync
|
---|
1680 | * everything every time. This will be optimized later.
|
---|
1681 | */
|
---|
1682 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
|
---|
1683 | uint32_t cMillies = 5000; /** @todo lower this later... */
|
---|
1684 | const bool fSingleStepping = false; /** @todo get this from somewhere. */
|
---|
1685 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
1686 | for (unsigned iLoop = 0;;iLoop++)
|
---|
1687 | {
|
---|
1688 | /*
|
---|
1689 | * Ensure that hyper-V has the whole state.
|
---|
1690 | */
|
---|
1691 | if ((pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)) != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
|
---|
1692 | {
|
---|
1693 | # ifdef IN_RING0
|
---|
1694 | int rc2 = nemR0WinExportState(pGVM, pGVCpu, pCtx);
|
---|
1695 | # else
|
---|
1696 | int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
|
---|
1697 | RT_NOREF(pGVM, pGVCpu);
|
---|
1698 | # endif
|
---|
1699 | AssertRCReturn(rc2, rc2);
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /*
|
---|
1703 | * Run a bit.
|
---|
1704 | */
|
---|
1705 | if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
1706 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
1707 | {
|
---|
1708 | if (pVCpu->nem.s.fHandleAndGetFlags)
|
---|
1709 | { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
|
---|
1710 | else
|
---|
1711 | {
|
---|
1712 | # ifdef IN_RING0
|
---|
1713 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
1714 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction,
|
---|
1715 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
1716 | NULL, 0);
|
---|
1717 | LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
1718 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pGVCpu->idCpu, rcNt),
|
---|
1719 | VERR_INTERNAL_ERROR_3);
|
---|
1720 | # else
|
---|
1721 | AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
|
---|
1722 | ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
|
---|
1723 | pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
|
---|
1724 | VERR_INTERNAL_ERROR_3);
|
---|
1725 | # endif
|
---|
1726 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1727 | }
|
---|
1728 |
|
---|
1729 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
1730 | {
|
---|
1731 | # ifdef IN_RING0
|
---|
1732 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
1733 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
|
---|
1734 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
|
---|
1735 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
1736 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
1737 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
1738 | NULL, 0);
|
---|
1739 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
1740 | if (rcNt == STATUS_SUCCESS)
|
---|
1741 | # else
|
---|
1742 | BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1743 | pVCpu->nem.s.fHandleAndGetFlags, cMillies);
|
---|
1744 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
1745 | if (fRet)
|
---|
1746 | # endif
|
---|
1747 | {
|
---|
1748 | /*
|
---|
1749 | * Deal with the message.
|
---|
1750 | */
|
---|
1751 | rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pCtx, pGVCpu);
|
---|
1752 | pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
1753 | if (rcStrict == VINF_SUCCESS)
|
---|
1754 | { /* hopefully likely */ }
|
---|
1755 | else
|
---|
1756 | {
|
---|
1757 | LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1758 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
1759 | break;
|
---|
1760 | }
|
---|
1761 | }
|
---|
1762 | else
|
---|
1763 | {
|
---|
1764 | /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
|
---|
1765 | so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
|
---|
1766 | the error code conversion is into WAIT_XXX, i.e. NT status codes. */
|
---|
1767 | # ifndef IN_RING0
|
---|
1768 | DWORD rcNt = GetLastError();
|
---|
1769 | # endif
|
---|
1770 | LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
1771 | AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
|
---|
1772 | || rcNt == STATUS_ALERTED /* just in case */
|
---|
1773 | || rcNt == STATUS_USER_APC /* ditto */
|
---|
1774 | , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n", pVCpu->idCpu, rcNt, rcNt),
|
---|
1775 | VERR_INTERNAL_ERROR_3);
|
---|
1776 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1777 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | /*
|
---|
1781 | * If no relevant FFs are pending, loop.
|
---|
1782 | */
|
---|
1783 | if ( !VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
1784 | && !VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
1785 | continue;
|
---|
1786 |
|
---|
1787 | /** @todo Try handle pending flags, not just return to EM loops. Take care
|
---|
1788 | * not to set important RCs here unless we've handled a message. */
|
---|
1789 | LogFlow(("NEM/%u: breaking: pending FF (%#x / %#x)\n",
|
---|
1790 | pVCpu->idCpu, pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
|
---|
1791 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
|
---|
1792 | }
|
---|
1793 | else
|
---|
1794 | {
|
---|
1795 | LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
|
---|
1796 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
|
---|
1797 | }
|
---|
1798 | }
|
---|
1799 | else
|
---|
1800 | {
|
---|
1801 | LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
|
---|
1802 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
|
---|
1803 | }
|
---|
1804 | break;
|
---|
1805 | } /* the run loop */
|
---|
1806 |
|
---|
1807 |
|
---|
1808 | /*
|
---|
1809 | * If the CPU is running, make sure to stop it before we try sync back the
|
---|
1810 | * state and return to EM.
|
---|
1811 | */
|
---|
1812 | if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
|
---|
1813 | {
|
---|
1814 | pVCpu->nem.s.fHandleAndGetFlags = 0;
|
---|
1815 | rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
1819 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
1820 |
|
---|
1821 | if (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
|
---|
1822 | {
|
---|
1823 | # ifdef IN_RING0
|
---|
1824 | int rc2 = nemR0WinImportState(pGVM, pGVCpu, pCtx, CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
|
---|
1825 | if (RT_SUCCESS(rc2))
|
---|
1826 | pCtx->fExtrn = 0;
|
---|
1827 | else if (rc2 == VERR_NEM_CHANGE_PGM_MODE || rc2 == VERR_NEM_FLUSH_TLB)
|
---|
1828 | {
|
---|
1829 | pCtx->fExtrn = 0;
|
---|
1830 | if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
|
---|
1831 | rcStrict = -rc2;
|
---|
1832 | else
|
---|
1833 | {
|
---|
1834 | pVCpu->nem.s.rcPgmPending = -rc2;
|
---|
1835 | LogFlow(("NEM/%u: rcPgmPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1836 | }
|
---|
1837 | }
|
---|
1838 | # else
|
---|
1839 | int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
|
---|
1840 | if (RT_SUCCESS(rc2))
|
---|
1841 | pCtx->fExtrn = 0;
|
---|
1842 | # endif
|
---|
1843 | else if (RT_SUCCESS(rcStrict))
|
---|
1844 | rcStrict = rc2;
|
---|
1845 | }
|
---|
1846 | else
|
---|
1847 | pCtx->fExtrn = 0;
|
---|
1848 |
|
---|
1849 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
|
---|
1850 | pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, pCtx->rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1851 | return rcStrict;
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1855 |
|
---|
1856 |
|
---|
1857 | /**
|
---|
1858 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
|
---|
1859 | */
|
---|
1860 | NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
|
---|
1861 | PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1862 | {
|
---|
1863 | /* We'll just unmap the memory. */
|
---|
1864 | if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1865 | {
|
---|
1866 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1867 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1868 | AssertRC(rc);
|
---|
1869 | if (RT_SUCCESS(rc))
|
---|
1870 | #else
|
---|
1871 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1872 | if (SUCCEEDED(hrc))
|
---|
1873 | #endif
|
---|
1874 | {
|
---|
1875 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1876 | Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
|
---|
1877 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1878 | }
|
---|
1879 | else
|
---|
1880 | {
|
---|
1881 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1882 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1883 | return rc;
|
---|
1884 | #else
|
---|
1885 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1886 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1887 | return VERR_INTERNAL_ERROR_2;
|
---|
1888 | #endif
|
---|
1889 | }
|
---|
1890 | }
|
---|
1891 | RT_NOREF(pVCpu, pvUser);
|
---|
1892 | return VINF_SUCCESS;
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 |
|
---|
1896 | /**
|
---|
1897 | * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
|
---|
1898 | *
|
---|
1899 | * @returns The PGMPhysNemQueryPageInfo result.
|
---|
1900 | * @param pVM The cross context VM structure.
|
---|
1901 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1902 | * @param GCPhys The page to unmap.
|
---|
1903 | */
|
---|
1904 | NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
1905 | {
|
---|
1906 | PGMPHYSNEMPAGEINFO Info;
|
---|
1907 | return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
|
---|
1908 | nemHCWinUnsetForA20CheckerCallback, NULL);
|
---|
1909 | }
|
---|
1910 |
|
---|
1911 |
|
---|
1912 | void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
1913 | {
|
---|
1914 | Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
|
---|
1915 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 |
|
---|
1919 | void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
1920 | int fRestoreAsRAM, bool fRestoreAsRAM2)
|
---|
1921 | {
|
---|
1922 | Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
|
---|
1923 | GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
|
---|
1924 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 |
|
---|
1928 | void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
|
---|
1929 | RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
|
---|
1930 | {
|
---|
1931 | Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
|
---|
1932 | GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
|
---|
1933 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 |
|
---|
1937 | /**
|
---|
1938 | * Worker that maps pages into Hyper-V.
|
---|
1939 | *
|
---|
1940 | * This is used by the PGM physical page notifications as well as the memory
|
---|
1941 | * access VMEXIT handlers.
|
---|
1942 | *
|
---|
1943 | * @returns VBox status code.
|
---|
1944 | * @param pVM The cross context VM structure.
|
---|
1945 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1946 | * calling EMT.
|
---|
1947 | * @param GCPhysSrc The source page address.
|
---|
1948 | * @param GCPhysDst The hyper-V destination page. This may differ from
|
---|
1949 | * GCPhysSrc when A20 is disabled.
|
---|
1950 | * @param fPageProt NEM_PAGE_PROT_XXX.
|
---|
1951 | * @param pu2State Our page state (input/output).
|
---|
1952 | * @param fBackingChanged Set if the page backing is being changed.
|
---|
1953 | * @thread EMT(pVCpu)
|
---|
1954 | */
|
---|
1955 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
1956 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
|
---|
1957 | {
|
---|
1958 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1959 | /*
|
---|
1960 | * When using the hypercalls instead of the ring-3 APIs, we don't need to
|
---|
1961 | * unmap memory before modifying it. We still want to track the state though,
|
---|
1962 | * since unmap will fail when called an unmapped page and we don't want to redo
|
---|
1963 | * upgrades/downgrades.
|
---|
1964 | */
|
---|
1965 | uint8_t const u2OldState = *pu2State;
|
---|
1966 | int rc;
|
---|
1967 | if (fPageProt == NEM_PAGE_PROT_NONE)
|
---|
1968 | {
|
---|
1969 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1970 | {
|
---|
1971 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
1972 | if (RT_SUCCESS(rc))
|
---|
1973 | {
|
---|
1974 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1975 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1976 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1977 | }
|
---|
1978 | else
|
---|
1979 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1980 | }
|
---|
1981 | else
|
---|
1982 | rc = VINF_SUCCESS;
|
---|
1983 | }
|
---|
1984 | else if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
1985 | {
|
---|
1986 | if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
|
---|
1987 | {
|
---|
1988 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
1989 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1990 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1991 | if (RT_SUCCESS(rc))
|
---|
1992 | {
|
---|
1993 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1994 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
1995 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
1996 | Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1997 | NOREF(cMappedPages);
|
---|
1998 | }
|
---|
1999 | else
|
---|
2000 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2001 | }
|
---|
2002 | else
|
---|
2003 | rc = VINF_SUCCESS;
|
---|
2004 | }
|
---|
2005 | else
|
---|
2006 | {
|
---|
2007 | if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
|
---|
2008 | {
|
---|
2009 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
2010 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
2011 | if (RT_SUCCESS(rc))
|
---|
2012 | {
|
---|
2013 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
2014 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
2015 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
2016 | Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
2017 | NOREF(cMappedPages);
|
---|
2018 | }
|
---|
2019 | else
|
---|
2020 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2021 | }
|
---|
2022 | else
|
---|
2023 | rc = VINF_SUCCESS;
|
---|
2024 | }
|
---|
2025 |
|
---|
2026 | return VINF_SUCCESS;
|
---|
2027 |
|
---|
2028 | #else
|
---|
2029 | /*
|
---|
2030 | * Looks like we need to unmap a page before we can change the backing
|
---|
2031 | * or even modify the protection. This is going to be *REALLY* efficient.
|
---|
2032 | * PGM lends us two bits to keep track of the state here.
|
---|
2033 | */
|
---|
2034 | uint8_t const u2OldState = *pu2State;
|
---|
2035 | uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
|
---|
2036 | : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2037 | if ( fBackingChanged
|
---|
2038 | || u2NewState != u2OldState)
|
---|
2039 | {
|
---|
2040 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
2041 | {
|
---|
2042 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
2043 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
2044 | AssertRC(rc);
|
---|
2045 | if (RT_SUCCESS(rc))
|
---|
2046 | {
|
---|
2047 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2048 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2049 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
2050 | {
|
---|
2051 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
2052 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
2053 | return VINF_SUCCESS;
|
---|
2054 | }
|
---|
2055 | }
|
---|
2056 | else
|
---|
2057 | {
|
---|
2058 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2059 | return rc;
|
---|
2060 | }
|
---|
2061 | # else
|
---|
2062 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
|
---|
2063 | if (SUCCEEDED(hrc))
|
---|
2064 | {
|
---|
2065 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2066 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2067 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
2068 | {
|
---|
2069 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
2070 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
2071 | return VINF_SUCCESS;
|
---|
2072 | }
|
---|
2073 | }
|
---|
2074 | else
|
---|
2075 | {
|
---|
2076 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
2077 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
2078 | return VERR_NEM_INIT_FAILED;
|
---|
2079 | }
|
---|
2080 | # endif
|
---|
2081 | }
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 | /*
|
---|
2085 | * Writeable mapping?
|
---|
2086 | */
|
---|
2087 | if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
2088 | {
|
---|
2089 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
2090 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
2091 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
2092 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
2093 | AssertRC(rc);
|
---|
2094 | if (RT_SUCCESS(rc))
|
---|
2095 | {
|
---|
2096 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
2097 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2098 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
2099 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
2100 | return VINF_SUCCESS;
|
---|
2101 | }
|
---|
2102 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2103 | return rc;
|
---|
2104 | # else
|
---|
2105 | void *pvPage;
|
---|
2106 | int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
|
---|
2107 | if (RT_SUCCESS(rc))
|
---|
2108 | {
|
---|
2109 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
2110 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
|
---|
2111 | if (SUCCEEDED(hrc))
|
---|
2112 | {
|
---|
2113 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
2114 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2115 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
2116 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
2117 | return VINF_SUCCESS;
|
---|
2118 | }
|
---|
2119 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
2120 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
2121 | return VERR_NEM_INIT_FAILED;
|
---|
2122 | }
|
---|
2123 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
2124 | return rc;
|
---|
2125 | # endif
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | if (fPageProt & NEM_PAGE_PROT_READ)
|
---|
2129 | {
|
---|
2130 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
2131 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
2132 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
2133 | AssertRC(rc);
|
---|
2134 | if (RT_SUCCESS(rc))
|
---|
2135 | {
|
---|
2136 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
2137 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2138 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
2139 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
2140 | return VINF_SUCCESS;
|
---|
2141 | }
|
---|
2142 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2143 | return rc;
|
---|
2144 | # else
|
---|
2145 | const void *pvPage;
|
---|
2146 | int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
|
---|
2147 | if (RT_SUCCESS(rc))
|
---|
2148 | {
|
---|
2149 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
2150 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
|
---|
2151 | if (SUCCEEDED(hrc))
|
---|
2152 | {
|
---|
2153 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
2154 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2155 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
2156 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
2157 | return VINF_SUCCESS;
|
---|
2158 | }
|
---|
2159 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
2160 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
2161 | return VERR_NEM_INIT_FAILED;
|
---|
2162 | }
|
---|
2163 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
2164 | return rc;
|
---|
2165 | # endif
|
---|
2166 | }
|
---|
2167 |
|
---|
2168 | /* We already unmapped it above. */
|
---|
2169 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2170 | return VINF_SUCCESS;
|
---|
2171 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 |
|
---|
2175 | NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
|
---|
2176 | {
|
---|
2177 | if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
2178 | {
|
---|
2179 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
|
---|
2180 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2181 | return VINF_SUCCESS;
|
---|
2182 | }
|
---|
2183 |
|
---|
2184 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2185 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2186 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
2187 | AssertRC(rc);
|
---|
2188 | if (RT_SUCCESS(rc))
|
---|
2189 | {
|
---|
2190 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2191 | Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
|
---|
2192 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2193 | return VINF_SUCCESS;
|
---|
2194 | }
|
---|
2195 | LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2196 | return rc;
|
---|
2197 | #else
|
---|
2198 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
|
---|
2199 | if (SUCCEEDED(hrc))
|
---|
2200 | {
|
---|
2201 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2202 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2203 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
|
---|
2204 | return VINF_SUCCESS;
|
---|
2205 | }
|
---|
2206 | LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
2207 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
2208 | return VERR_INTERNAL_ERROR_3;
|
---|
2209 | #endif
|
---|
2210 | }
|
---|
2211 |
|
---|
2212 |
|
---|
2213 | int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
2214 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2215 | {
|
---|
2216 | Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2217 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
2218 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
2219 |
|
---|
2220 | int rc;
|
---|
2221 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2222 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2223 | if ( pVM->nem.s.fA20Enabled
|
---|
2224 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2225 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2226 | else
|
---|
2227 | {
|
---|
2228 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2229 | rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2230 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
|
---|
2231 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2232 |
|
---|
2233 | }
|
---|
2234 | #else
|
---|
2235 | RT_NOREF_PV(fPageProt);
|
---|
2236 | if ( pVM->nem.s.fA20Enabled
|
---|
2237 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2238 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2239 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2240 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2241 | else
|
---|
2242 | rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
|
---|
2243 | #endif
|
---|
2244 | return rc;
|
---|
2245 | }
|
---|
2246 |
|
---|
2247 |
|
---|
2248 | void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
2249 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2250 | {
|
---|
2251 | Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2252 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
2253 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
2254 |
|
---|
2255 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2256 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2257 | if ( pVM->nem.s.fA20Enabled
|
---|
2258 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2259 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
2260 | else
|
---|
2261 | {
|
---|
2262 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2263 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2264 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2265 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
2266 | }
|
---|
2267 | #else
|
---|
2268 | RT_NOREF_PV(fPageProt);
|
---|
2269 | if ( pVM->nem.s.fA20Enabled
|
---|
2270 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2271 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2272 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2273 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2274 | /* else: ignore since we've got the alias page at this address. */
|
---|
2275 | #endif
|
---|
2276 | }
|
---|
2277 |
|
---|
2278 |
|
---|
2279 | void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
|
---|
2280 | uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2281 | {
|
---|
2282 | Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2283 | GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
|
---|
2284 | RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
|
---|
2285 |
|
---|
2286 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2287 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2288 | if ( pVM->nem.s.fA20Enabled
|
---|
2289 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2290 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2291 | else
|
---|
2292 | {
|
---|
2293 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2294 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2295 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2296 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2297 | }
|
---|
2298 | #else
|
---|
2299 | RT_NOREF_PV(fPageProt);
|
---|
2300 | if ( pVM->nem.s.fA20Enabled
|
---|
2301 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2302 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2303 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2304 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2305 | /* else: ignore since we've got the alias page at this address. */
|
---|
2306 | #endif
|
---|
2307 | }
|
---|
2308 |
|
---|