1 | /* $Id: NEMAllNativeTemplate-win.cpp.h 72490 2018-06-09 15:11:13Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager, Windows code template ring-0/3.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | /** Copy back a segment from hyper-V. */
|
---|
23 | #define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
|
---|
24 | do { \
|
---|
25 | (a_Dst).u64Base = (a_Src).Base; \
|
---|
26 | (a_Dst).u32Limit = (a_Src).Limit; \
|
---|
27 | (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
|
---|
28 | (a_Dst).Attr.u = (a_Src).Attributes; \
|
---|
29 | (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
30 | } while (0)
|
---|
31 |
|
---|
32 |
|
---|
33 | /*********************************************************************************************************************************
|
---|
34 | * Global Variables *
|
---|
35 | *********************************************************************************************************************************/
|
---|
36 | /** NEM_WIN_PAGE_STATE_XXX names. */
|
---|
37 | NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
|
---|
38 |
|
---|
39 | /** HV_INTERCEPT_ACCESS_TYPE names. */
|
---|
40 | static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
|
---|
41 |
|
---|
42 |
|
---|
43 | /*********************************************************************************************************************************
|
---|
44 | * Internal Functions *
|
---|
45 | *********************************************************************************************************************************/
|
---|
46 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
47 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
|
---|
48 |
|
---|
49 |
|
---|
50 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
|
---|
54 | *
|
---|
55 | * @returns VBox status code.
|
---|
56 | * @param pVM The cross context VM structure.
|
---|
57 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
58 | * @param GCPhysSrc The source page. Does not need to be page aligned.
|
---|
59 | * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
|
---|
60 | * when A20 is disabled.
|
---|
61 | * @param fFlags HV_MAP_GPA_XXX.
|
---|
62 | */
|
---|
63 | DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
|
---|
64 | {
|
---|
65 | #ifdef IN_RING0
|
---|
66 | /** @todo optimize further, caller generally has the physical address. */
|
---|
67 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
68 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
69 | return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu],
|
---|
70 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
71 | GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
72 | 1, fFlags);
|
---|
73 | #else
|
---|
74 | pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
75 | pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
76 | pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
|
---|
77 | pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
|
---|
78 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
|
---|
79 | #endif
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | /**
|
---|
84 | * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
|
---|
85 | *
|
---|
86 | * @returns VBox status code.
|
---|
87 | * @param pVM The cross context VM structure.
|
---|
88 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
89 | * @param GCPhys The page to unmap. Does not need to be page aligned.
|
---|
90 | */
|
---|
91 | DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
92 | {
|
---|
93 | # ifdef IN_RING0
|
---|
94 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
95 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
96 | return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
|
---|
97 | # else
|
---|
98 | pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
99 | pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
|
---|
100 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
|
---|
101 | # endif
|
---|
102 | }
|
---|
103 |
|
---|
104 | #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
105 | #ifndef IN_RING0
|
---|
106 |
|
---|
107 | NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
108 | {
|
---|
109 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
110 | NOREF(pCtx);
|
---|
111 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
|
---|
112 | AssertLogRelRCReturn(rc, rc);
|
---|
113 | return rc;
|
---|
114 |
|
---|
115 | # else
|
---|
116 | /*
|
---|
117 | * The following is very similar to what nemR0WinExportState() does.
|
---|
118 | */
|
---|
119 | WHV_REGISTER_NAME aenmNames[128];
|
---|
120 | WHV_REGISTER_VALUE aValues[128];
|
---|
121 |
|
---|
122 | uint64_t const fWhat = ~pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
|
---|
123 | if ( !fWhat
|
---|
124 | && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
|
---|
125 | return VINF_SUCCESS;
|
---|
126 | uintptr_t iReg = 0;
|
---|
127 |
|
---|
128 | # define ADD_REG64(a_enmName, a_uValue) do { \
|
---|
129 | aenmNames[iReg] = (a_enmName); \
|
---|
130 | aValues[iReg].Reg128.High64 = 0; \
|
---|
131 | aValues[iReg].Reg64 = (a_uValue); \
|
---|
132 | iReg++; \
|
---|
133 | } while (0)
|
---|
134 | # define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
|
---|
135 | aenmNames[iReg] = (a_enmName); \
|
---|
136 | aValues[iReg].Reg128.Low64 = (a_uValueLo); \
|
---|
137 | aValues[iReg].Reg128.High64 = (a_uValueHi); \
|
---|
138 | iReg++; \
|
---|
139 | } while (0)
|
---|
140 |
|
---|
141 | /* GPRs */
|
---|
142 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
143 | {
|
---|
144 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
145 | ADD_REG64(WHvX64RegisterRax, pCtx->rax);
|
---|
146 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
147 | ADD_REG64(WHvX64RegisterRcx, pCtx->rcx);
|
---|
148 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
149 | ADD_REG64(WHvX64RegisterRdx, pCtx->rdx);
|
---|
150 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
151 | ADD_REG64(WHvX64RegisterRbx, pCtx->rbx);
|
---|
152 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
153 | ADD_REG64(WHvX64RegisterRsp, pCtx->rsp);
|
---|
154 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
155 | ADD_REG64(WHvX64RegisterRbp, pCtx->rbp);
|
---|
156 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
157 | ADD_REG64(WHvX64RegisterRsi, pCtx->rsi);
|
---|
158 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
159 | ADD_REG64(WHvX64RegisterRdi, pCtx->rdi);
|
---|
160 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
161 | {
|
---|
162 | ADD_REG64(WHvX64RegisterR8, pCtx->r8);
|
---|
163 | ADD_REG64(WHvX64RegisterR9, pCtx->r9);
|
---|
164 | ADD_REG64(WHvX64RegisterR10, pCtx->r10);
|
---|
165 | ADD_REG64(WHvX64RegisterR11, pCtx->r11);
|
---|
166 | ADD_REG64(WHvX64RegisterR12, pCtx->r12);
|
---|
167 | ADD_REG64(WHvX64RegisterR13, pCtx->r13);
|
---|
168 | ADD_REG64(WHvX64RegisterR14, pCtx->r14);
|
---|
169 | ADD_REG64(WHvX64RegisterR15, pCtx->r15);
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* RIP & Flags */
|
---|
174 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
175 | ADD_REG64(WHvX64RegisterRip, pCtx->rip);
|
---|
176 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
177 | ADD_REG64(WHvX64RegisterRflags, pCtx->rflags.u);
|
---|
178 |
|
---|
179 | /* Segments */
|
---|
180 | # define ADD_SEG(a_enmName, a_SReg) \
|
---|
181 | do { \
|
---|
182 | aenmNames[iReg] = a_enmName; \
|
---|
183 | aValues[iReg].Segment.Base = (a_SReg).u64Base; \
|
---|
184 | aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
|
---|
185 | aValues[iReg].Segment.Selector = (a_SReg).Sel; \
|
---|
186 | aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
|
---|
187 | iReg++; \
|
---|
188 | } while (0)
|
---|
189 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
190 | {
|
---|
191 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
192 | ADD_SEG(WHvX64RegisterEs, pCtx->es);
|
---|
193 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
194 | ADD_SEG(WHvX64RegisterCs, pCtx->cs);
|
---|
195 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
196 | ADD_SEG(WHvX64RegisterSs, pCtx->ss);
|
---|
197 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
198 | ADD_SEG(WHvX64RegisterDs, pCtx->ds);
|
---|
199 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
200 | ADD_SEG(WHvX64RegisterFs, pCtx->fs);
|
---|
201 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
202 | ADD_SEG(WHvX64RegisterGs, pCtx->gs);
|
---|
203 | }
|
---|
204 |
|
---|
205 | /* Descriptor tables & task segment. */
|
---|
206 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
207 | {
|
---|
208 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
209 | ADD_SEG(WHvX64RegisterLdtr, pCtx->ldtr);
|
---|
210 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
211 | ADD_SEG(WHvX64RegisterTr, pCtx->tr);
|
---|
212 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
213 | {
|
---|
214 | aenmNames[iReg] = WHvX64RegisterIdtr;
|
---|
215 | aValues[iReg].Table.Limit = pCtx->idtr.cbIdt;
|
---|
216 | aValues[iReg].Table.Base = pCtx->idtr.pIdt;
|
---|
217 | iReg++;
|
---|
218 | }
|
---|
219 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
220 | {
|
---|
221 | aenmNames[iReg] = WHvX64RegisterGdtr;
|
---|
222 | aValues[iReg].Table.Limit = pCtx->gdtr.cbGdt;
|
---|
223 | aValues[iReg].Table.Base = pCtx->gdtr.pGdt;
|
---|
224 | iReg++;
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | /* Control registers. */
|
---|
229 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
230 | {
|
---|
231 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
232 | ADD_REG64(WHvX64RegisterCr0, pCtx->cr0);
|
---|
233 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
234 | ADD_REG64(WHvX64RegisterCr2, pCtx->cr2);
|
---|
235 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
236 | ADD_REG64(WHvX64RegisterCr3, pCtx->cr3);
|
---|
237 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
238 | ADD_REG64(WHvX64RegisterCr4, pCtx->cr4);
|
---|
239 | }
|
---|
240 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
241 | ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
|
---|
242 |
|
---|
243 | /* Debug registers. */
|
---|
244 | /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
|
---|
245 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
246 | {
|
---|
247 | ADD_REG64(WHvX64RegisterDr0, pCtx->dr[0]); // CPUMGetHyperDR0(pVCpu));
|
---|
248 | ADD_REG64(WHvX64RegisterDr1, pCtx->dr[1]); // CPUMGetHyperDR1(pVCpu));
|
---|
249 | ADD_REG64(WHvX64RegisterDr2, pCtx->dr[2]); // CPUMGetHyperDR2(pVCpu));
|
---|
250 | ADD_REG64(WHvX64RegisterDr3, pCtx->dr[3]); // CPUMGetHyperDR3(pVCpu));
|
---|
251 | }
|
---|
252 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
253 | ADD_REG64(WHvX64RegisterDr6, pCtx->dr[6]); // CPUMGetHyperDR6(pVCpu));
|
---|
254 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
255 | ADD_REG64(WHvX64RegisterDr7, pCtx->dr[7]); // CPUMGetHyperDR7(pVCpu));
|
---|
256 |
|
---|
257 | /* Floating point state. */
|
---|
258 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
259 | {
|
---|
260 | ADD_REG128(WHvX64RegisterFpMmx0, pCtx->pXStateR3->x87.aRegs[0].au64[0], pCtx->pXStateR3->x87.aRegs[0].au64[1]);
|
---|
261 | ADD_REG128(WHvX64RegisterFpMmx1, pCtx->pXStateR3->x87.aRegs[1].au64[0], pCtx->pXStateR3->x87.aRegs[1].au64[1]);
|
---|
262 | ADD_REG128(WHvX64RegisterFpMmx2, pCtx->pXStateR3->x87.aRegs[2].au64[0], pCtx->pXStateR3->x87.aRegs[2].au64[1]);
|
---|
263 | ADD_REG128(WHvX64RegisterFpMmx3, pCtx->pXStateR3->x87.aRegs[3].au64[0], pCtx->pXStateR3->x87.aRegs[3].au64[1]);
|
---|
264 | ADD_REG128(WHvX64RegisterFpMmx4, pCtx->pXStateR3->x87.aRegs[4].au64[0], pCtx->pXStateR3->x87.aRegs[4].au64[1]);
|
---|
265 | ADD_REG128(WHvX64RegisterFpMmx5, pCtx->pXStateR3->x87.aRegs[5].au64[0], pCtx->pXStateR3->x87.aRegs[5].au64[1]);
|
---|
266 | ADD_REG128(WHvX64RegisterFpMmx6, pCtx->pXStateR3->x87.aRegs[6].au64[0], pCtx->pXStateR3->x87.aRegs[6].au64[1]);
|
---|
267 | ADD_REG128(WHvX64RegisterFpMmx7, pCtx->pXStateR3->x87.aRegs[7].au64[0], pCtx->pXStateR3->x87.aRegs[7].au64[1]);
|
---|
268 |
|
---|
269 | aenmNames[iReg] = WHvX64RegisterFpControlStatus;
|
---|
270 | aValues[iReg].FpControlStatus.FpControl = pCtx->pXStateR3->x87.FCW;
|
---|
271 | aValues[iReg].FpControlStatus.FpStatus = pCtx->pXStateR3->x87.FSW;
|
---|
272 | aValues[iReg].FpControlStatus.FpTag = pCtx->pXStateR3->x87.FTW;
|
---|
273 | aValues[iReg].FpControlStatus.Reserved = pCtx->pXStateR3->x87.FTW >> 8;
|
---|
274 | aValues[iReg].FpControlStatus.LastFpOp = pCtx->pXStateR3->x87.FOP;
|
---|
275 | aValues[iReg].FpControlStatus.LastFpRip = (pCtx->pXStateR3->x87.FPUIP)
|
---|
276 | | ((uint64_t)pCtx->pXStateR3->x87.CS << 32)
|
---|
277 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd1 << 48);
|
---|
278 | iReg++;
|
---|
279 |
|
---|
280 | aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
|
---|
281 | aValues[iReg].XmmControlStatus.LastFpRdp = (pCtx->pXStateR3->x87.FPUDP)
|
---|
282 | | ((uint64_t)pCtx->pXStateR3->x87.DS << 32)
|
---|
283 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd2 << 48);
|
---|
284 | aValues[iReg].XmmControlStatus.XmmStatusControl = pCtx->pXStateR3->x87.MXCSR;
|
---|
285 | aValues[iReg].XmmControlStatus.XmmStatusControlMask = pCtx->pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
|
---|
286 | iReg++;
|
---|
287 | }
|
---|
288 |
|
---|
289 | /* Vector state. */
|
---|
290 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
291 | {
|
---|
292 | ADD_REG128(WHvX64RegisterXmm0, pCtx->pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 0].uXmm.s.Hi);
|
---|
293 | ADD_REG128(WHvX64RegisterXmm1, pCtx->pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 1].uXmm.s.Hi);
|
---|
294 | ADD_REG128(WHvX64RegisterXmm2, pCtx->pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 2].uXmm.s.Hi);
|
---|
295 | ADD_REG128(WHvX64RegisterXmm3, pCtx->pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 3].uXmm.s.Hi);
|
---|
296 | ADD_REG128(WHvX64RegisterXmm4, pCtx->pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 4].uXmm.s.Hi);
|
---|
297 | ADD_REG128(WHvX64RegisterXmm5, pCtx->pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 5].uXmm.s.Hi);
|
---|
298 | ADD_REG128(WHvX64RegisterXmm6, pCtx->pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 6].uXmm.s.Hi);
|
---|
299 | ADD_REG128(WHvX64RegisterXmm7, pCtx->pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 7].uXmm.s.Hi);
|
---|
300 | ADD_REG128(WHvX64RegisterXmm8, pCtx->pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 8].uXmm.s.Hi);
|
---|
301 | ADD_REG128(WHvX64RegisterXmm9, pCtx->pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 9].uXmm.s.Hi);
|
---|
302 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi);
|
---|
303 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi);
|
---|
304 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi);
|
---|
305 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi);
|
---|
306 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi);
|
---|
307 | ADD_REG128(WHvX64RegisterXmm10, pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi);
|
---|
308 | }
|
---|
309 |
|
---|
310 | /* MSRs */
|
---|
311 | // WHvX64RegisterTsc - don't touch
|
---|
312 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
313 | ADD_REG64(WHvX64RegisterEfer, pCtx->msrEFER);
|
---|
314 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
315 | ADD_REG64(WHvX64RegisterKernelGsBase, pCtx->msrKERNELGSBASE);
|
---|
316 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
317 | {
|
---|
318 | ADD_REG64(WHvX64RegisterSysenterCs, pCtx->SysEnter.cs);
|
---|
319 | ADD_REG64(WHvX64RegisterSysenterEip, pCtx->SysEnter.eip);
|
---|
320 | ADD_REG64(WHvX64RegisterSysenterEsp, pCtx->SysEnter.esp);
|
---|
321 | }
|
---|
322 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
323 | {
|
---|
324 | ADD_REG64(WHvX64RegisterStar, pCtx->msrSTAR);
|
---|
325 | ADD_REG64(WHvX64RegisterLstar, pCtx->msrLSTAR);
|
---|
326 | ADD_REG64(WHvX64RegisterCstar, pCtx->msrCSTAR);
|
---|
327 | ADD_REG64(WHvX64RegisterSfmask, pCtx->msrSFMASK);
|
---|
328 | }
|
---|
329 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
330 | {
|
---|
331 | ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu));
|
---|
332 | ADD_REG64(WHvX64RegisterPat, pCtx->msrPAT);
|
---|
333 | #if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
|
---|
334 | ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
|
---|
335 | #endif
|
---|
336 | PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
|
---|
337 | ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
|
---|
338 | ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
|
---|
339 | ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
|
---|
340 | ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
|
---|
341 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
|
---|
342 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
|
---|
343 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
|
---|
344 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
|
---|
345 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
|
---|
346 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
|
---|
347 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
|
---|
348 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
|
---|
349 | ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
|
---|
350 | #if 0 /** @todo these registers aren't available? Might explain something.. .*/
|
---|
351 | const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
|
---|
352 | if (enmCpuVendor != CPUMCPUVENDOR_AMD)
|
---|
353 | {
|
---|
354 | ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
|
---|
355 | ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
|
---|
356 | }
|
---|
357 | #endif
|
---|
358 | }
|
---|
359 |
|
---|
360 | /* event injection (clear it). */
|
---|
361 | if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
|
---|
362 | ADD_REG64(WHvRegisterPendingInterruption, 0);
|
---|
363 |
|
---|
364 | /* Interruptibility state. This can get a little complicated since we get
|
---|
365 | half of the state via HV_X64_VP_EXECUTION_STATE. */
|
---|
366 | if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
367 | == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
|
---|
368 | {
|
---|
369 | ADD_REG64(WHvRegisterInterruptState, 0);
|
---|
370 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
371 | && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
|
---|
372 | aValues[iReg - 1].InterruptState.InterruptShadow = 1;
|
---|
373 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
374 | aValues[iReg - 1].InterruptState.NmiMasked = 1;
|
---|
375 | }
|
---|
376 | else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
|
---|
377 | {
|
---|
378 | if ( pVCpu->nem.s.fLastInterruptShadow
|
---|
379 | || ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
380 | && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip))
|
---|
381 | {
|
---|
382 | ADD_REG64(WHvRegisterInterruptState, 0);
|
---|
383 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
384 | && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)
|
---|
385 | aValues[iReg - 1].InterruptState.InterruptShadow = 1;
|
---|
386 | /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
|
---|
387 | //if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
388 | // aValues[iReg - 1].InterruptState.NmiMasked = 1;
|
---|
389 | }
|
---|
390 | }
|
---|
391 | else
|
---|
392 | Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
|
---|
393 |
|
---|
394 | /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
|
---|
395 | uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
|
---|
396 | if ( fDesiredIntWin
|
---|
397 | || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
|
---|
398 | {
|
---|
399 | pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
|
---|
400 | ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
|
---|
401 | Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
|
---|
402 | Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
|
---|
403 | Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
|
---|
404 | }
|
---|
405 |
|
---|
406 | /// @todo WHvRegisterPendingEvent0
|
---|
407 | /// @todo WHvRegisterPendingEvent1
|
---|
408 |
|
---|
409 | /*
|
---|
410 | * Set the registers.
|
---|
411 | */
|
---|
412 | Assert(iReg < RT_ELEMENTS(aValues));
|
---|
413 | Assert(iReg < RT_ELEMENTS(aenmNames));
|
---|
414 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
415 | Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
416 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
|
---|
417 | # endif
|
---|
418 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
|
---|
419 | if (SUCCEEDED(hrc))
|
---|
420 | {
|
---|
421 | pCtx->fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
|
---|
422 | return VINF_SUCCESS;
|
---|
423 | }
|
---|
424 | AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
425 | pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
|
---|
426 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
427 | return VERR_INTERNAL_ERROR;
|
---|
428 |
|
---|
429 | # undef ADD_REG64
|
---|
430 | # undef ADD_REG128
|
---|
431 | # undef ADD_SEG
|
---|
432 |
|
---|
433 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t fWhat)
|
---|
438 | {
|
---|
439 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
440 | /* See NEMR0ImportState */
|
---|
441 | NOREF(pCtx);
|
---|
442 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
|
---|
443 | if (RT_SUCCESS(rc))
|
---|
444 | return rc;
|
---|
445 | if (rc == VERR_NEM_FLUSH_TLB)
|
---|
446 | return PGMFlushTLB(pVCpu, pCtx->cr3, true /*fGlobal*/);
|
---|
447 | if (rc == VERR_NEM_CHANGE_PGM_MODE)
|
---|
448 | return PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
449 | AssertLogRelRCReturn(rc, rc);
|
---|
450 | return rc;
|
---|
451 |
|
---|
452 | # else
|
---|
453 | WHV_REGISTER_NAME aenmNames[128];
|
---|
454 |
|
---|
455 | fWhat &= pCtx->fExtrn;
|
---|
456 | uintptr_t iReg = 0;
|
---|
457 |
|
---|
458 | /* GPRs */
|
---|
459 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
460 | {
|
---|
461 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
462 | aenmNames[iReg++] = WHvX64RegisterRax;
|
---|
463 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
464 | aenmNames[iReg++] = WHvX64RegisterRcx;
|
---|
465 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
466 | aenmNames[iReg++] = WHvX64RegisterRdx;
|
---|
467 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
468 | aenmNames[iReg++] = WHvX64RegisterRbx;
|
---|
469 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
470 | aenmNames[iReg++] = WHvX64RegisterRsp;
|
---|
471 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
472 | aenmNames[iReg++] = WHvX64RegisterRbp;
|
---|
473 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
474 | aenmNames[iReg++] = WHvX64RegisterRsi;
|
---|
475 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
476 | aenmNames[iReg++] = WHvX64RegisterRdi;
|
---|
477 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
478 | {
|
---|
479 | aenmNames[iReg++] = WHvX64RegisterR8;
|
---|
480 | aenmNames[iReg++] = WHvX64RegisterR9;
|
---|
481 | aenmNames[iReg++] = WHvX64RegisterR10;
|
---|
482 | aenmNames[iReg++] = WHvX64RegisterR11;
|
---|
483 | aenmNames[iReg++] = WHvX64RegisterR12;
|
---|
484 | aenmNames[iReg++] = WHvX64RegisterR13;
|
---|
485 | aenmNames[iReg++] = WHvX64RegisterR14;
|
---|
486 | aenmNames[iReg++] = WHvX64RegisterR15;
|
---|
487 | }
|
---|
488 | }
|
---|
489 |
|
---|
490 | /* RIP & Flags */
|
---|
491 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
492 | aenmNames[iReg++] = WHvX64RegisterRip;
|
---|
493 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
494 | aenmNames[iReg++] = WHvX64RegisterRflags;
|
---|
495 |
|
---|
496 | /* Segments */
|
---|
497 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
498 | {
|
---|
499 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
500 | aenmNames[iReg++] = WHvX64RegisterEs;
|
---|
501 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
502 | aenmNames[iReg++] = WHvX64RegisterCs;
|
---|
503 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
504 | aenmNames[iReg++] = WHvX64RegisterSs;
|
---|
505 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
506 | aenmNames[iReg++] = WHvX64RegisterDs;
|
---|
507 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
508 | aenmNames[iReg++] = WHvX64RegisterFs;
|
---|
509 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
510 | aenmNames[iReg++] = WHvX64RegisterGs;
|
---|
511 | }
|
---|
512 |
|
---|
513 | /* Descriptor tables. */
|
---|
514 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
515 | {
|
---|
516 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
517 | aenmNames[iReg++] = WHvX64RegisterLdtr;
|
---|
518 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
519 | aenmNames[iReg++] = WHvX64RegisterTr;
|
---|
520 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
521 | aenmNames[iReg++] = WHvX64RegisterIdtr;
|
---|
522 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
523 | aenmNames[iReg++] = WHvX64RegisterGdtr;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /* Control registers. */
|
---|
527 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
528 | {
|
---|
529 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
530 | aenmNames[iReg++] = WHvX64RegisterCr0;
|
---|
531 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
532 | aenmNames[iReg++] = WHvX64RegisterCr2;
|
---|
533 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
534 | aenmNames[iReg++] = WHvX64RegisterCr3;
|
---|
535 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
536 | aenmNames[iReg++] = WHvX64RegisterCr4;
|
---|
537 | }
|
---|
538 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
539 | aenmNames[iReg++] = WHvX64RegisterCr8;
|
---|
540 |
|
---|
541 | /* Debug registers. */
|
---|
542 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
543 | {
|
---|
544 | aenmNames[iReg++] = WHvX64RegisterDr0;
|
---|
545 | aenmNames[iReg++] = WHvX64RegisterDr1;
|
---|
546 | aenmNames[iReg++] = WHvX64RegisterDr2;
|
---|
547 | aenmNames[iReg++] = WHvX64RegisterDr3;
|
---|
548 | }
|
---|
549 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
550 | aenmNames[iReg++] = WHvX64RegisterDr6;
|
---|
551 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
552 | aenmNames[iReg++] = WHvX64RegisterDr7;
|
---|
553 |
|
---|
554 | /* Floating point state. */
|
---|
555 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
556 | {
|
---|
557 | aenmNames[iReg++] = WHvX64RegisterFpMmx0;
|
---|
558 | aenmNames[iReg++] = WHvX64RegisterFpMmx1;
|
---|
559 | aenmNames[iReg++] = WHvX64RegisterFpMmx2;
|
---|
560 | aenmNames[iReg++] = WHvX64RegisterFpMmx3;
|
---|
561 | aenmNames[iReg++] = WHvX64RegisterFpMmx4;
|
---|
562 | aenmNames[iReg++] = WHvX64RegisterFpMmx5;
|
---|
563 | aenmNames[iReg++] = WHvX64RegisterFpMmx6;
|
---|
564 | aenmNames[iReg++] = WHvX64RegisterFpMmx7;
|
---|
565 | aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
|
---|
566 | }
|
---|
567 | if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
|
---|
568 | aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
|
---|
569 |
|
---|
570 | /* Vector state. */
|
---|
571 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
572 | {
|
---|
573 | aenmNames[iReg++] = WHvX64RegisterXmm0;
|
---|
574 | aenmNames[iReg++] = WHvX64RegisterXmm1;
|
---|
575 | aenmNames[iReg++] = WHvX64RegisterXmm2;
|
---|
576 | aenmNames[iReg++] = WHvX64RegisterXmm3;
|
---|
577 | aenmNames[iReg++] = WHvX64RegisterXmm4;
|
---|
578 | aenmNames[iReg++] = WHvX64RegisterXmm5;
|
---|
579 | aenmNames[iReg++] = WHvX64RegisterXmm6;
|
---|
580 | aenmNames[iReg++] = WHvX64RegisterXmm7;
|
---|
581 | aenmNames[iReg++] = WHvX64RegisterXmm8;
|
---|
582 | aenmNames[iReg++] = WHvX64RegisterXmm9;
|
---|
583 | aenmNames[iReg++] = WHvX64RegisterXmm10;
|
---|
584 | aenmNames[iReg++] = WHvX64RegisterXmm11;
|
---|
585 | aenmNames[iReg++] = WHvX64RegisterXmm12;
|
---|
586 | aenmNames[iReg++] = WHvX64RegisterXmm13;
|
---|
587 | aenmNames[iReg++] = WHvX64RegisterXmm14;
|
---|
588 | aenmNames[iReg++] = WHvX64RegisterXmm15;
|
---|
589 | }
|
---|
590 |
|
---|
591 | /* MSRs */
|
---|
592 | // WHvX64RegisterTsc - don't touch
|
---|
593 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
594 | aenmNames[iReg++] = WHvX64RegisterEfer;
|
---|
595 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
596 | aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
|
---|
597 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
598 | {
|
---|
599 | aenmNames[iReg++] = WHvX64RegisterSysenterCs;
|
---|
600 | aenmNames[iReg++] = WHvX64RegisterSysenterEip;
|
---|
601 | aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
|
---|
602 | }
|
---|
603 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
604 | {
|
---|
605 | aenmNames[iReg++] = WHvX64RegisterStar;
|
---|
606 | aenmNames[iReg++] = WHvX64RegisterLstar;
|
---|
607 | aenmNames[iReg++] = WHvX64RegisterCstar;
|
---|
608 | aenmNames[iReg++] = WHvX64RegisterSfmask;
|
---|
609 | }
|
---|
610 |
|
---|
611 | //#ifdef LOG_ENABLED
|
---|
612 | // const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
|
---|
613 | //#endif
|
---|
614 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
615 | {
|
---|
616 | aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
|
---|
617 | aenmNames[iReg++] = WHvX64RegisterPat;
|
---|
618 | #if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
|
---|
619 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
|
---|
620 | #endif
|
---|
621 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
|
---|
622 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
|
---|
623 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
|
---|
624 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
|
---|
625 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
|
---|
626 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
|
---|
627 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
|
---|
628 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
|
---|
629 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
|
---|
630 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
|
---|
631 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
|
---|
632 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
|
---|
633 | aenmNames[iReg++] = WHvX64RegisterTscAux;
|
---|
634 | /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
|
---|
635 | //#ifdef LOG_ENABLED
|
---|
636 | // if (enmCpuVendor != CPUMCPUVENDOR_AMD)
|
---|
637 | // aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
|
---|
638 | //#endif
|
---|
639 | }
|
---|
640 |
|
---|
641 | /* Interruptibility. */
|
---|
642 | if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
643 | {
|
---|
644 | aenmNames[iReg++] = WHvRegisterInterruptState;
|
---|
645 | aenmNames[iReg++] = WHvX64RegisterRip;
|
---|
646 | }
|
---|
647 |
|
---|
648 | /* event injection */
|
---|
649 | aenmNames[iReg++] = WHvRegisterPendingInterruption;
|
---|
650 | aenmNames[iReg++] = WHvRegisterPendingEvent0;
|
---|
651 | aenmNames[iReg++] = WHvRegisterPendingEvent1;
|
---|
652 |
|
---|
653 | size_t const cRegs = iReg;
|
---|
654 | Assert(cRegs < RT_ELEMENTS(aenmNames));
|
---|
655 |
|
---|
656 | /*
|
---|
657 | * Get the registers.
|
---|
658 | */
|
---|
659 | WHV_REGISTER_VALUE aValues[128];
|
---|
660 | RT_ZERO(aValues);
|
---|
661 | Assert(RT_ELEMENTS(aValues) >= cRegs);
|
---|
662 | Assert(RT_ELEMENTS(aenmNames) >= cRegs);
|
---|
663 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
664 | Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
665 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
|
---|
666 | # endif
|
---|
667 | HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
|
---|
668 | AssertLogRelMsgReturn(SUCCEEDED(hrc),
|
---|
669 | ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
670 | pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
|
---|
671 | , VERR_NEM_GET_REGISTERS_FAILED);
|
---|
672 |
|
---|
673 | iReg = 0;
|
---|
674 | # define GET_REG64(a_DstVar, a_enmName) do { \
|
---|
675 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
676 | (a_DstVar) = aValues[iReg].Reg64; \
|
---|
677 | iReg++; \
|
---|
678 | } while (0)
|
---|
679 | # define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
|
---|
680 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
681 | if ((a_DstVar) != aValues[iReg].Reg64) \
|
---|
682 | Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
|
---|
683 | (a_DstVar) = aValues[iReg].Reg64; \
|
---|
684 | iReg++; \
|
---|
685 | } while (0)
|
---|
686 | # define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
|
---|
687 | Assert(aenmNames[iReg] == a_enmName); \
|
---|
688 | (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
|
---|
689 | (a_DstVarHi) = aValues[iReg].Reg128.High64; \
|
---|
690 | iReg++; \
|
---|
691 | } while (0)
|
---|
692 | # define GET_SEG(a_SReg, a_enmName) do { \
|
---|
693 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
694 | NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
|
---|
695 | iReg++; \
|
---|
696 | } while (0)
|
---|
697 |
|
---|
698 | /* GPRs */
|
---|
699 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
700 | {
|
---|
701 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
702 | GET_REG64(pCtx->rax, WHvX64RegisterRax);
|
---|
703 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
704 | GET_REG64(pCtx->rcx, WHvX64RegisterRcx);
|
---|
705 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
706 | GET_REG64(pCtx->rdx, WHvX64RegisterRdx);
|
---|
707 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
708 | GET_REG64(pCtx->rbx, WHvX64RegisterRbx);
|
---|
709 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
710 | GET_REG64(pCtx->rsp, WHvX64RegisterRsp);
|
---|
711 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
712 | GET_REG64(pCtx->rbp, WHvX64RegisterRbp);
|
---|
713 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
714 | GET_REG64(pCtx->rsi, WHvX64RegisterRsi);
|
---|
715 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
716 | GET_REG64(pCtx->rdi, WHvX64RegisterRdi);
|
---|
717 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
718 | {
|
---|
719 | GET_REG64(pCtx->r8, WHvX64RegisterR8);
|
---|
720 | GET_REG64(pCtx->r9, WHvX64RegisterR9);
|
---|
721 | GET_REG64(pCtx->r10, WHvX64RegisterR10);
|
---|
722 | GET_REG64(pCtx->r11, WHvX64RegisterR11);
|
---|
723 | GET_REG64(pCtx->r12, WHvX64RegisterR12);
|
---|
724 | GET_REG64(pCtx->r13, WHvX64RegisterR13);
|
---|
725 | GET_REG64(pCtx->r14, WHvX64RegisterR14);
|
---|
726 | GET_REG64(pCtx->r15, WHvX64RegisterR15);
|
---|
727 | }
|
---|
728 | }
|
---|
729 |
|
---|
730 | /* RIP & Flags */
|
---|
731 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
732 | GET_REG64(pCtx->rip, WHvX64RegisterRip);
|
---|
733 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
734 | GET_REG64(pCtx->rflags.u, WHvX64RegisterRflags);
|
---|
735 |
|
---|
736 | /* Segments */
|
---|
737 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
738 | {
|
---|
739 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
740 | GET_SEG(pCtx->es, WHvX64RegisterEs);
|
---|
741 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
742 | GET_SEG(pCtx->cs, WHvX64RegisterCs);
|
---|
743 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
744 | GET_SEG(pCtx->ss, WHvX64RegisterSs);
|
---|
745 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
746 | GET_SEG(pCtx->ds, WHvX64RegisterDs);
|
---|
747 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
748 | GET_SEG(pCtx->fs, WHvX64RegisterFs);
|
---|
749 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
750 | GET_SEG(pCtx->gs, WHvX64RegisterGs);
|
---|
751 | }
|
---|
752 |
|
---|
753 | /* Descriptor tables and the task segment. */
|
---|
754 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
755 | {
|
---|
756 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
757 | GET_SEG(pCtx->ldtr, WHvX64RegisterLdtr);
|
---|
758 |
|
---|
759 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
760 | {
|
---|
761 | /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
|
---|
762 | avoid to trigger sanity assertions around the code, always fix this. */
|
---|
763 | GET_SEG(pCtx->tr, WHvX64RegisterTr);
|
---|
764 | switch (pCtx->tr.Attr.n.u4Type)
|
---|
765 | {
|
---|
766 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
767 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
768 | break;
|
---|
769 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
770 | pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
771 | break;
|
---|
772 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
773 | pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
774 | break;
|
---|
775 | }
|
---|
776 | }
|
---|
777 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
778 | {
|
---|
779 | Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
|
---|
780 | pCtx->idtr.cbIdt = aValues[iReg].Table.Limit;
|
---|
781 | pCtx->idtr.pIdt = aValues[iReg].Table.Base;
|
---|
782 | iReg++;
|
---|
783 | }
|
---|
784 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
785 | {
|
---|
786 | Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
|
---|
787 | pCtx->gdtr.cbGdt = aValues[iReg].Table.Limit;
|
---|
788 | pCtx->gdtr.pGdt = aValues[iReg].Table.Base;
|
---|
789 | iReg++;
|
---|
790 | }
|
---|
791 | }
|
---|
792 |
|
---|
793 | /* Control registers. */
|
---|
794 | bool fMaybeChangedMode = false;
|
---|
795 | bool fFlushTlb = false;
|
---|
796 | bool fFlushGlobalTlb = false;
|
---|
797 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
798 | {
|
---|
799 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
800 | {
|
---|
801 | Assert(aenmNames[iReg] == WHvX64RegisterCr0);
|
---|
802 | if (pCtx->cr0 != aValues[iReg].Reg64)
|
---|
803 | {
|
---|
804 | CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
|
---|
805 | fMaybeChangedMode = true;
|
---|
806 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
807 | }
|
---|
808 | iReg++;
|
---|
809 | }
|
---|
810 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
811 | GET_REG64(pCtx->cr2, WHvX64RegisterCr2);
|
---|
812 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
813 | {
|
---|
814 | if (pCtx->cr3 != aValues[iReg].Reg64)
|
---|
815 | {
|
---|
816 | CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
|
---|
817 | fFlushTlb = true;
|
---|
818 | }
|
---|
819 | iReg++;
|
---|
820 | }
|
---|
821 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
822 | {
|
---|
823 | if (pCtx->cr4 != aValues[iReg].Reg64)
|
---|
824 | {
|
---|
825 | CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
|
---|
826 | fMaybeChangedMode = true;
|
---|
827 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
828 | }
|
---|
829 | iReg++;
|
---|
830 | }
|
---|
831 | }
|
---|
832 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
833 | {
|
---|
834 | Assert(aenmNames[iReg] == WHvX64RegisterCr8);
|
---|
835 | APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
|
---|
836 | iReg++;
|
---|
837 | }
|
---|
838 |
|
---|
839 | /* Debug registers. */
|
---|
840 | /** @todo fixme */
|
---|
841 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
842 | {
|
---|
843 | Assert(aenmNames[iReg] == WHvX64RegisterDr0);
|
---|
844 | Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
|
---|
845 | if (pCtx->dr[0] != aValues[iReg].Reg64)
|
---|
846 | CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
|
---|
847 | iReg++;
|
---|
848 | if (pCtx->dr[1] != aValues[iReg].Reg64)
|
---|
849 | CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
|
---|
850 | iReg++;
|
---|
851 | if (pCtx->dr[2] != aValues[iReg].Reg64)
|
---|
852 | CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
|
---|
853 | iReg++;
|
---|
854 | if (pCtx->dr[3] != aValues[iReg].Reg64)
|
---|
855 | CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
|
---|
856 | iReg++;
|
---|
857 | }
|
---|
858 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
859 | {
|
---|
860 | Assert(aenmNames[iReg] == WHvX64RegisterDr6);
|
---|
861 | if (pCtx->dr[6] != aValues[iReg].Reg64)
|
---|
862 | CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
|
---|
863 | iReg++;
|
---|
864 | }
|
---|
865 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
866 | {
|
---|
867 | Assert(aenmNames[iReg] == WHvX64RegisterDr7);
|
---|
868 | if (pCtx->dr[7] != aValues[iReg].Reg64)
|
---|
869 | CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
|
---|
870 | iReg++;
|
---|
871 | }
|
---|
872 |
|
---|
873 | /* Floating point state. */
|
---|
874 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
875 | {
|
---|
876 | GET_REG128(pCtx->pXStateR3->x87.aRegs[0].au64[0], pCtx->pXStateR3->x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
|
---|
877 | GET_REG128(pCtx->pXStateR3->x87.aRegs[1].au64[0], pCtx->pXStateR3->x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
|
---|
878 | GET_REG128(pCtx->pXStateR3->x87.aRegs[2].au64[0], pCtx->pXStateR3->x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
|
---|
879 | GET_REG128(pCtx->pXStateR3->x87.aRegs[3].au64[0], pCtx->pXStateR3->x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
|
---|
880 | GET_REG128(pCtx->pXStateR3->x87.aRegs[4].au64[0], pCtx->pXStateR3->x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
|
---|
881 | GET_REG128(pCtx->pXStateR3->x87.aRegs[5].au64[0], pCtx->pXStateR3->x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
|
---|
882 | GET_REG128(pCtx->pXStateR3->x87.aRegs[6].au64[0], pCtx->pXStateR3->x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
|
---|
883 | GET_REG128(pCtx->pXStateR3->x87.aRegs[7].au64[0], pCtx->pXStateR3->x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
|
---|
884 |
|
---|
885 | Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
|
---|
886 | pCtx->pXStateR3->x87.FCW = aValues[iReg].FpControlStatus.FpControl;
|
---|
887 | pCtx->pXStateR3->x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
|
---|
888 | pCtx->pXStateR3->x87.FTW = aValues[iReg].FpControlStatus.FpTag
|
---|
889 | /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
|
---|
890 | pCtx->pXStateR3->x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
|
---|
891 | pCtx->pXStateR3->x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
|
---|
892 | pCtx->pXStateR3->x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
|
---|
893 | pCtx->pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
|
---|
894 | iReg++;
|
---|
895 | }
|
---|
896 |
|
---|
897 | if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
|
---|
898 | {
|
---|
899 | Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
|
---|
900 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
901 | {
|
---|
902 | pCtx->pXStateR3->x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
|
---|
903 | pCtx->pXStateR3->x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
|
---|
904 | pCtx->pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
|
---|
905 | }
|
---|
906 | pCtx->pXStateR3->x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
|
---|
907 | pCtx->pXStateR3->x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
|
---|
908 | iReg++;
|
---|
909 | }
|
---|
910 |
|
---|
911 | /* Vector state. */
|
---|
912 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
913 | {
|
---|
914 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
|
---|
915 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
|
---|
916 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
|
---|
917 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
|
---|
918 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
|
---|
919 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
|
---|
920 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
|
---|
921 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
|
---|
922 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
|
---|
923 | GET_REG128(pCtx->pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
|
---|
924 | GET_REG128(pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
|
---|
925 | GET_REG128(pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
|
---|
926 | GET_REG128(pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
|
---|
927 | GET_REG128(pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
|
---|
928 | GET_REG128(pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
|
---|
929 | GET_REG128(pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo, pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
|
---|
930 | }
|
---|
931 |
|
---|
932 | /* MSRs */
|
---|
933 | // WHvX64RegisterTsc - don't touch
|
---|
934 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
935 | {
|
---|
936 | Assert(aenmNames[iReg] == WHvX64RegisterEfer);
|
---|
937 | if (aValues[iReg].Reg64 != pCtx->msrEFER)
|
---|
938 | {
|
---|
939 | Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrEFER, aValues[iReg].Reg64));
|
---|
940 | if ((aValues[iReg].Reg64 ^ pCtx->msrEFER) & MSR_K6_EFER_NXE)
|
---|
941 | PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
|
---|
942 | pCtx->msrEFER = aValues[iReg].Reg64;
|
---|
943 | fMaybeChangedMode = true;
|
---|
944 | }
|
---|
945 | iReg++;
|
---|
946 | }
|
---|
947 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
948 | GET_REG64_LOG7(pCtx->msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
|
---|
949 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
950 | {
|
---|
951 | GET_REG64_LOG7(pCtx->SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
|
---|
952 | GET_REG64_LOG7(pCtx->SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
|
---|
953 | GET_REG64_LOG7(pCtx->SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
|
---|
954 | }
|
---|
955 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
956 | {
|
---|
957 | GET_REG64_LOG7(pCtx->msrSTAR, WHvX64RegisterStar, "MSR STAR");
|
---|
958 | GET_REG64_LOG7(pCtx->msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
|
---|
959 | GET_REG64_LOG7(pCtx->msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
|
---|
960 | GET_REG64_LOG7(pCtx->msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
|
---|
961 | }
|
---|
962 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
963 | {
|
---|
964 | Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
|
---|
965 | const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
966 | if (aValues[iReg].Reg64 != uOldBase)
|
---|
967 | {
|
---|
968 | Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
|
---|
969 | pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
|
---|
970 | VBOXSTRICTRC rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
|
---|
971 | AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", VBOXSTRICTRC_VAL(rc2), aValues[iReg].Reg64));
|
---|
972 | }
|
---|
973 | iReg++;
|
---|
974 |
|
---|
975 | GET_REG64_LOG7(pCtx->msrPAT, WHvX64RegisterPat, "MSR PAT");
|
---|
976 | #if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
|
---|
977 | GET_REG64_LOG7(pCtx->msrPAT, WHvX64RegisterMsrMtrrCap);
|
---|
978 | #endif
|
---|
979 | PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
|
---|
980 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
|
---|
981 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
|
---|
982 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
|
---|
983 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
|
---|
984 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
|
---|
985 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
|
---|
986 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
|
---|
987 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
|
---|
988 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
|
---|
989 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
|
---|
990 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
|
---|
991 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
|
---|
992 | GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
|
---|
993 | /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
|
---|
994 | }
|
---|
995 |
|
---|
996 | /* Interruptibility. */
|
---|
997 | if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
998 | {
|
---|
999 | Assert(aenmNames[iReg] == WHvRegisterInterruptState);
|
---|
1000 | Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
|
---|
1001 |
|
---|
1002 | if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1003 | {
|
---|
1004 | pVCpu->nem.s.fLastInterruptShadow = aValues[iReg].InterruptState.InterruptShadow;
|
---|
1005 | if (aValues[iReg].InterruptState.InterruptShadow)
|
---|
1006 | EMSetInhibitInterruptsPC(pVCpu, aValues[iReg + 1].Reg64);
|
---|
1007 | else
|
---|
1008 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
1012 | {
|
---|
1013 | if (aValues[iReg].InterruptState.NmiMasked)
|
---|
1014 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
1015 | else
|
---|
1016 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
|
---|
1020 | iReg += 2;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /* Event injection. */
|
---|
1024 | /// @todo WHvRegisterPendingInterruption
|
---|
1025 | Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
|
---|
1026 | if (aValues[iReg].PendingInterruption.InterruptionPending)
|
---|
1027 | {
|
---|
1028 | Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
|
---|
1029 | aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
|
---|
1030 | aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
|
---|
1031 | aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
|
---|
1032 | AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
|
---|
1033 | ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | /// @todo WHvRegisterPendingEvent0
|
---|
1037 | /// @todo WHvRegisterPendingEvent1
|
---|
1038 |
|
---|
1039 | /* Almost done, just update extrn flags and maybe change PGM mode. */
|
---|
1040 | pCtx->fExtrn &= ~fWhat;
|
---|
1041 | if (!(pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
|
---|
1042 | pCtx->fExtrn = 0;
|
---|
1043 |
|
---|
1044 | /* Typical. */
|
---|
1045 | if (!fMaybeChangedMode && !fFlushTlb)
|
---|
1046 | return VINF_SUCCESS;
|
---|
1047 |
|
---|
1048 | /*
|
---|
1049 | * Slow.
|
---|
1050 | */
|
---|
1051 | if (fMaybeChangedMode)
|
---|
1052 | {
|
---|
1053 | int rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
1054 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | if (fFlushTlb)
|
---|
1058 | {
|
---|
1059 | int rc = PGMFlushTLB(pVCpu, pCtx->cr3, fFlushGlobalTlb);
|
---|
1060 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 | return VINF_SUCCESS;
|
---|
1064 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | #endif /* !IN_RING0 */
|
---|
1068 |
|
---|
1069 |
|
---|
1070 | /**
|
---|
1071 | * Interface for importing state on demand (used by IEM).
|
---|
1072 | *
|
---|
1073 | * @returns VBox status code.
|
---|
1074 | * @param pVCpu The cross context CPU structure.
|
---|
1075 | * @param pCtx The target CPU context.
|
---|
1076 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
1077 | */
|
---|
1078 | VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t fWhat)
|
---|
1079 | {
|
---|
1080 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
|
---|
1081 |
|
---|
1082 | #ifdef IN_RING0
|
---|
1083 | /** @todo improve and secure this translation */
|
---|
1084 | PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
|
---|
1085 | AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
|
---|
1086 | VMCPUID idCpu = pVCpu->idCpu;
|
---|
1087 | ASMCompilerBarrier();
|
---|
1088 | AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
|
---|
1089 |
|
---|
1090 | return nemR0WinImportState(pGVM, &pGVM->aCpus[idCpu], pCtx, fWhat);
|
---|
1091 | #else
|
---|
1092 | return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, pCtx, fWhat);
|
---|
1093 | #endif
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 |
|
---|
1097 | #ifdef LOG_ENABLED
|
---|
1098 | /**
|
---|
1099 | * Get the virtual processor running status.
|
---|
1100 | */
|
---|
1101 | DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
|
---|
1102 | {
|
---|
1103 | # ifdef IN_RING0
|
---|
1104 | NOREF(pVCpu);
|
---|
1105 | return VidProcessorStatusUndefined;
|
---|
1106 | # else
|
---|
1107 | RTERRVARS Saved;
|
---|
1108 | RTErrVarsSave(&Saved);
|
---|
1109 |
|
---|
1110 | /*
|
---|
1111 | * This API is disabled in release builds, it seems. On build 17101 it requires
|
---|
1112 | * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
|
---|
1113 | */
|
---|
1114 | VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
|
---|
1115 | NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
|
---|
1116 | AssertRC(rcNt);
|
---|
1117 |
|
---|
1118 | RTErrVarsRestore(&Saved);
|
---|
1119 | return enmCpuStatus;
|
---|
1120 | # endif
|
---|
1121 | }
|
---|
1122 | #endif
|
---|
1123 |
|
---|
1124 |
|
---|
1125 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1126 | # ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
|
---|
1127 | /**
|
---|
1128 | * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
|
---|
1129 | *
|
---|
1130 | * This is an experiment only.
|
---|
1131 | *
|
---|
1132 | * @returns VBox status code.
|
---|
1133 | * @param pVM The cross context VM structure.
|
---|
1134 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1135 | * calling EMT.
|
---|
1136 | */
|
---|
1137 | NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
|
---|
1138 | {
|
---|
1139 | /*
|
---|
1140 | * Work the state.
|
---|
1141 | *
|
---|
1142 | * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
|
---|
1143 | * So, we just need to modify the state and kick the EMT if it's waiting on
|
---|
1144 | * messages. For the latter we use QueueUserAPC / KeAlterThread.
|
---|
1145 | */
|
---|
1146 | for (;;)
|
---|
1147 | {
|
---|
1148 | VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
|
---|
1149 | switch (enmState)
|
---|
1150 | {
|
---|
1151 | case VMCPUSTATE_STARTED_EXEC_NEM:
|
---|
1152 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
1153 | {
|
---|
1154 | Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
|
---|
1155 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
|
---|
1156 | return VINF_SUCCESS;
|
---|
1157 | }
|
---|
1158 | break;
|
---|
1159 |
|
---|
1160 | case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
|
---|
1161 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
|
---|
1162 | {
|
---|
1163 | # ifdef IN_RING0
|
---|
1164 | NTSTATUS rcNt = KeAlertThread(??);
|
---|
1165 | # else
|
---|
1166 | NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
|
---|
1167 | # endif
|
---|
1168 | Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
|
---|
1169 | Assert(rcNt == STATUS_SUCCESS);
|
---|
1170 | if (NT_SUCCESS(rcNt))
|
---|
1171 | {
|
---|
1172 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
|
---|
1173 | return VINF_SUCCESS;
|
---|
1174 | }
|
---|
1175 | AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
|
---|
1176 | }
|
---|
1177 | break;
|
---|
1178 |
|
---|
1179 | default:
|
---|
1180 | return VINF_SUCCESS;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | ASMNopPause();
|
---|
1184 | RT_NOREF(pVM);
|
---|
1185 | }
|
---|
1186 | }
|
---|
1187 | # endif /* IN_RING3 */
|
---|
1188 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1189 |
|
---|
1190 |
|
---|
1191 | #ifdef LOG_ENABLED
|
---|
1192 | /**
|
---|
1193 | * Logs the current CPU state.
|
---|
1194 | */
|
---|
1195 | NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
|
---|
1196 | {
|
---|
1197 | if (LogIs3Enabled())
|
---|
1198 | {
|
---|
1199 | # ifdef IN_RING3
|
---|
1200 | char szRegs[4096];
|
---|
1201 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
1202 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
1203 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
1204 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
1205 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
1206 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
1207 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
1208 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
1209 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
1210 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
1211 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
1212 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
1213 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
1214 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
1215 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
1216 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
1217 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
1218 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
1219 | " efer=%016VR{efer}\n"
|
---|
1220 | " pat=%016VR{pat}\n"
|
---|
1221 | " sf_mask=%016VR{sf_mask}\n"
|
---|
1222 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
1223 | " lstar=%016VR{lstar}\n"
|
---|
1224 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
1225 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
1226 | );
|
---|
1227 |
|
---|
1228 | char szInstr[256];
|
---|
1229 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
1230 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
1231 | szInstr, sizeof(szInstr), NULL);
|
---|
1232 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
1233 | # else
|
---|
1234 | /** @todo stat logging in ring-0 */
|
---|
1235 | RT_NOREF(pVM, pVCpu);
|
---|
1236 | # endif
|
---|
1237 | }
|
---|
1238 | }
|
---|
1239 | #endif /* LOG_ENABLED */
|
---|
1240 |
|
---|
1241 |
|
---|
1242 | /** Macro used by nemHCWinExecStateToLogStr and nemR3WinExecStateToLogStr. */
|
---|
1243 | #define SWITCH_IT(a_szPrefix) \
|
---|
1244 | do \
|
---|
1245 | switch (u)\
|
---|
1246 | { \
|
---|
1247 | case 0x00: return a_szPrefix ""; \
|
---|
1248 | case 0x01: return a_szPrefix ",Pnd"; \
|
---|
1249 | case 0x02: return a_szPrefix ",Dbg"; \
|
---|
1250 | case 0x03: return a_szPrefix ",Pnd,Dbg"; \
|
---|
1251 | case 0x04: return a_szPrefix ",Shw"; \
|
---|
1252 | case 0x05: return a_szPrefix ",Pnd,Shw"; \
|
---|
1253 | case 0x06: return a_szPrefix ",Shw,Dbg"; \
|
---|
1254 | case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
|
---|
1255 | default: AssertFailedReturn("WTF?"); \
|
---|
1256 | } \
|
---|
1257 | while (0)
|
---|
1258 |
|
---|
1259 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1260 | /**
|
---|
1261 | * Translates the execution stat bitfield into a short log string, VID version.
|
---|
1262 | *
|
---|
1263 | * @returns Read-only log string.
|
---|
1264 | * @param pMsgHdr The header which state to summarize.
|
---|
1265 | */
|
---|
1266 | static const char *nemHCWinExecStateToLogStr(HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
|
---|
1267 | {
|
---|
1268 | unsigned u = (unsigned)pMsgHdr->ExecutionState.InterruptionPending
|
---|
1269 | | ((unsigned)pMsgHdr->ExecutionState.DebugActive << 1)
|
---|
1270 | | ((unsigned)pMsgHdr->ExecutionState.InterruptShadow << 2);
|
---|
1271 | if (pMsgHdr->ExecutionState.EferLma)
|
---|
1272 | SWITCH_IT("LM");
|
---|
1273 | else if (pMsgHdr->ExecutionState.Cr0Pe)
|
---|
1274 | SWITCH_IT("PM");
|
---|
1275 | else
|
---|
1276 | SWITCH_IT("RM");
|
---|
1277 | }
|
---|
1278 | #elif defined(IN_RING3)
|
---|
1279 | /**
|
---|
1280 | * Translates the execution stat bitfield into a short log string, WinHv version.
|
---|
1281 | *
|
---|
1282 | * @returns Read-only log string.
|
---|
1283 | * @param pExitCtx The exit context which state to summarize.
|
---|
1284 | */
|
---|
1285 | static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1286 | {
|
---|
1287 | unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
|
---|
1288 | | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
|
---|
1289 | | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
|
---|
1290 | if (pExitCtx->ExecutionState.EferLma)
|
---|
1291 | SWITCH_IT("LM");
|
---|
1292 | else if (pExitCtx->ExecutionState.Cr0Pe)
|
---|
1293 | SWITCH_IT("PM");
|
---|
1294 | else
|
---|
1295 | SWITCH_IT("RM");
|
---|
1296 | }
|
---|
1297 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1298 | #undef SWITCH_IT
|
---|
1299 |
|
---|
1300 |
|
---|
1301 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1302 | /**
|
---|
1303 | * Advances the guest RIP and clear EFLAGS.RF, VID version.
|
---|
1304 | *
|
---|
1305 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
1306 | *
|
---|
1307 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1308 | * @param pCtx The CPU context to update.
|
---|
1309 | * @param pExitCtx The exit context.
|
---|
1310 | */
|
---|
1311 | DECLINLINE(void) nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
|
---|
1312 | {
|
---|
1313 | Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
|
---|
1314 |
|
---|
1315 | /* Advance the RIP. */
|
---|
1316 | Assert(pMsgHdr->InstructionLength > 0 && pMsgHdr->InstructionLength < 16);
|
---|
1317 | pCtx->rip += pMsgHdr->InstructionLength;
|
---|
1318 | pCtx->rflags.Bits.u1RF = 0;
|
---|
1319 |
|
---|
1320 | /* Update interrupt inhibition. */
|
---|
1321 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1322 | { /* likely */ }
|
---|
1323 | else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1324 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1325 | }
|
---|
1326 | #elif defined(IN_RING3)
|
---|
1327 | /**
|
---|
1328 | * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
|
---|
1329 | *
|
---|
1330 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
1331 | *
|
---|
1332 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1333 | * @param pCtx The CPU context to update.
|
---|
1334 | * @param pExitCtx The exit context.
|
---|
1335 | */
|
---|
1336 | DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1337 | {
|
---|
1338 | Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
|
---|
1339 |
|
---|
1340 | /* Advance the RIP. */
|
---|
1341 | Assert(pExitCtx->InstructionLength > 0 && pExitCtx->InstructionLength < 16);
|
---|
1342 | pCtx->rip += pExitCtx->InstructionLength;
|
---|
1343 | pCtx->rflags.Bits.u1RF = 0;
|
---|
1344 |
|
---|
1345 | /* Update interrupt inhibition. */
|
---|
1346 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1347 | { /* likely */ }
|
---|
1348 | else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1349 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1350 | }
|
---|
1351 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1352 |
|
---|
1353 |
|
---|
1354 |
|
---|
1355 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1356 | nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
|
---|
1357 | {
|
---|
1358 | RT_NOREF_PV(pvUser);
|
---|
1359 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1360 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1361 | AssertRC(rc);
|
---|
1362 | if (RT_SUCCESS(rc))
|
---|
1363 | #else
|
---|
1364 | RT_NOREF_PV(pVCpu);
|
---|
1365 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1366 | if (SUCCEEDED(hrc))
|
---|
1367 | #endif
|
---|
1368 | {
|
---|
1369 | Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
|
---|
1370 | *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1371 | }
|
---|
1372 | else
|
---|
1373 | {
|
---|
1374 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1375 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1376 | #else
|
---|
1377 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1378 | GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
|
---|
1379 | RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
|
---|
1380 | #endif
|
---|
1381 | *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
|
---|
1382 | }
|
---|
1383 | if (pVM->nem.s.cMappedPages > 0)
|
---|
1384 | ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
|
---|
1385 | return VINF_SUCCESS;
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 |
|
---|
1389 | /**
|
---|
1390 | * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
|
---|
1391 | * and nemHCWinHandleMemoryAccessPageCheckerCallback.
|
---|
1392 | */
|
---|
1393 | typedef struct NEMHCWINHMACPCCSTATE
|
---|
1394 | {
|
---|
1395 | /** Input: Write access. */
|
---|
1396 | bool fWriteAccess;
|
---|
1397 | /** Output: Set if we did something. */
|
---|
1398 | bool fDidSomething;
|
---|
1399 | /** Output: Set it we should resume. */
|
---|
1400 | bool fCanResume;
|
---|
1401 | } NEMHCWINHMACPCCSTATE;
|
---|
1402 |
|
---|
1403 | /**
|
---|
1404 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
|
---|
1405 | * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
|
---|
1406 | * NEMHCWINHMACPCCSTATE structure. }
|
---|
1407 | */
|
---|
1408 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1409 | nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1410 | {
|
---|
1411 | NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
|
---|
1412 | pState->fDidSomething = false;
|
---|
1413 | pState->fCanResume = false;
|
---|
1414 |
|
---|
1415 | /* If A20 is disabled, we may need to make another query on the masked
|
---|
1416 | page to get the correct protection information. */
|
---|
1417 | uint8_t u2State = pInfo->u2NemState;
|
---|
1418 | RTGCPHYS GCPhysSrc;
|
---|
1419 | if ( pVM->nem.s.fA20Enabled
|
---|
1420 | || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
1421 | GCPhysSrc = GCPhys;
|
---|
1422 | else
|
---|
1423 | {
|
---|
1424 | GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
|
---|
1425 | PGMPHYSNEMPAGEINFO Info2;
|
---|
1426 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
|
---|
1427 | AssertRCReturn(rc, rc);
|
---|
1428 |
|
---|
1429 | *pInfo = Info2;
|
---|
1430 | pInfo->u2NemState = u2State;
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | /*
|
---|
1434 | * Consolidate current page state with actual page protection and access type.
|
---|
1435 | * We don't really consider downgrades here, as they shouldn't happen.
|
---|
1436 | */
|
---|
1437 | #ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1438 | /** @todo Someone at microsoft please explain:
|
---|
1439 | * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
|
---|
1440 | * readonly page as writable (unmap, then map again). Specifically, this was an
|
---|
1441 | * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
|
---|
1442 | * a hope to work around that we no longer pre-map anything, just unmap stuff
|
---|
1443 | * and do it lazily here. And here we will first unmap, restart, and then remap
|
---|
1444 | * with new protection or backing.
|
---|
1445 | */
|
---|
1446 | #endif
|
---|
1447 | int rc;
|
---|
1448 | switch (u2State)
|
---|
1449 | {
|
---|
1450 | case NEM_WIN_PAGE_STATE_UNMAPPED:
|
---|
1451 | case NEM_WIN_PAGE_STATE_NOT_SET:
|
---|
1452 | if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
|
---|
1453 | {
|
---|
1454 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
|
---|
1455 | return VINF_SUCCESS;
|
---|
1456 | }
|
---|
1457 |
|
---|
1458 | /* Don't bother remapping it if it's a write request to a non-writable page. */
|
---|
1459 | if ( pState->fWriteAccess
|
---|
1460 | && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
|
---|
1461 | {
|
---|
1462 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
|
---|
1463 | return VINF_SUCCESS;
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 | /* Map the page. */
|
---|
1467 | rc = nemHCNativeSetPhysPage(pVM,
|
---|
1468 | pVCpu,
|
---|
1469 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1470 | GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1471 | pInfo->fNemProt,
|
---|
1472 | &u2State,
|
---|
1473 | true /*fBackingState*/);
|
---|
1474 | pInfo->u2NemState = u2State;
|
---|
1475 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
|
---|
1476 | GCPhys, g_apszPageStates[u2State], rc));
|
---|
1477 | pState->fDidSomething = true;
|
---|
1478 | pState->fCanResume = true;
|
---|
1479 | return rc;
|
---|
1480 |
|
---|
1481 | case NEM_WIN_PAGE_STATE_READABLE:
|
---|
1482 | if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1483 | && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
|
---|
1484 | {
|
---|
1485 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
|
---|
1486 | return VINF_SUCCESS;
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1490 | /* Upgrade page to writable. */
|
---|
1491 | /** @todo test this*/
|
---|
1492 | if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1493 | && pState->fWriteAccess)
|
---|
1494 | {
|
---|
1495 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
|
---|
1496 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1497 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1498 | AssertRC(rc);
|
---|
1499 | if (RT_SUCCESS(rc))
|
---|
1500 | {
|
---|
1501 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1502 | pState->fDidSomething = true;
|
---|
1503 | pState->fCanResume = true;
|
---|
1504 | Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1505 | GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
|
---|
1506 | }
|
---|
1507 | }
|
---|
1508 | else
|
---|
1509 | {
|
---|
1510 | /* Need to emulate the acces. */
|
---|
1511 | AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
|
---|
1512 | rc = VINF_SUCCESS;
|
---|
1513 | }
|
---|
1514 | return rc;
|
---|
1515 | #else
|
---|
1516 | break;
|
---|
1517 | #endif
|
---|
1518 |
|
---|
1519 | case NEM_WIN_PAGE_STATE_WRITABLE:
|
---|
1520 | if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1521 | {
|
---|
1522 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3\n", GCPhys));
|
---|
1523 | return VINF_SUCCESS;
|
---|
1524 | }
|
---|
1525 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1526 | AssertFailed(); /* There should be no downgrades. */
|
---|
1527 | #endif
|
---|
1528 | break;
|
---|
1529 |
|
---|
1530 | default:
|
---|
1531 | AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | /*
|
---|
1535 | * Unmap and restart the instruction.
|
---|
1536 | * If this fails, which it does every so often, just unmap everything for now.
|
---|
1537 | */
|
---|
1538 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1539 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1540 | AssertRC(rc);
|
---|
1541 | if (RT_SUCCESS(rc))
|
---|
1542 | #else
|
---|
1543 | /** @todo figure out whether we mess up the state or if it's WHv. */
|
---|
1544 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1545 | if (SUCCEEDED(hrc))
|
---|
1546 | #endif
|
---|
1547 | {
|
---|
1548 | pState->fDidSomething = true;
|
---|
1549 | pState->fCanResume = true;
|
---|
1550 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1551 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1552 | Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
|
---|
1553 | return VINF_SUCCESS;
|
---|
1554 | }
|
---|
1555 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1556 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1557 | return rc;
|
---|
1558 | #else
|
---|
1559 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1560 | GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
|
---|
1561 | pVM->nem.s.cMappedPages));
|
---|
1562 |
|
---|
1563 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
|
---|
1564 | Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
|
---|
1565 |
|
---|
1566 | pState->fDidSomething = true;
|
---|
1567 | pState->fCanResume = true;
|
---|
1568 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1569 | return VINF_SUCCESS;
|
---|
1570 | #endif
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 |
|
---|
1574 |
|
---|
1575 | #if defined(IN_RING0) && defined(NEM_WIN_USE_OUR_OWN_RUN_API)
|
---|
1576 | /**
|
---|
1577 | * Wrapper around nemR0WinImportState that converts VERR_NEM_CHANGE_PGM_MODE and
|
---|
1578 | * VERR_NEM_FLUSH_TBL into informational status codes and logs+asserts statuses.
|
---|
1579 | *
|
---|
1580 | * @returns VBox strict status code.
|
---|
1581 | * @param pGVM The global (ring-0) VM structure.
|
---|
1582 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
1583 | * @param pCtx The CPU context to import into.
|
---|
1584 | * @param fWhat What to import.
|
---|
1585 | * @param pszCaller Who is doing the importing.
|
---|
1586 | */
|
---|
1587 | DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, const char *pszCaller)
|
---|
1588 | {
|
---|
1589 | int rc = nemR0WinImportState(pGVM, pGVCpu, pCtx, fWhat);
|
---|
1590 | if (RT_SUCCESS(rc))
|
---|
1591 | {
|
---|
1592 | Assert(rc == VINF_SUCCESS);
|
---|
1593 | return VINF_SUCCESS;
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | if (rc == VERR_NEM_CHANGE_PGM_MODE || rc == VERR_NEM_FLUSH_TLB || rc == VERR_NEM_UPDATE_APIC_BASE)
|
---|
1597 | {
|
---|
1598 | Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
|
---|
1599 | return -rc;
|
---|
1600 | }
|
---|
1601 | RT_NOREF(pszCaller);
|
---|
1602 | AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
|
---|
1603 | }
|
---|
1604 | #endif /* IN_RING0 && NEM_WIN_USE_OUR_OWN_RUN_API*/
|
---|
1605 |
|
---|
1606 | #if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(IN_RING3)
|
---|
1607 | /**
|
---|
1608 | * Wrapper around nemR0WinImportStateStrict and nemHCWinCopyStateFromHyperV.
|
---|
1609 | *
|
---|
1610 | * Unlike the wrapped APIs, this checks whether it's necessary.
|
---|
1611 | *
|
---|
1612 | * @returns VBox strict status code.
|
---|
1613 | * @param pGVM The global (ring-0) VM structure.
|
---|
1614 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
1615 | * @param pCtx The CPU context to import into.
|
---|
1616 | * @param fWhat What to import.
|
---|
1617 | * @param pszCaller Who is doing the importing.
|
---|
1618 | */
|
---|
1619 | DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPU pVCpu, PGVMCPU pGVCpu, PCPUMCTX pCtx,
|
---|
1620 | uint64_t fWhat, const char *pszCaller)
|
---|
1621 | {
|
---|
1622 | if (pCtx->fExtrn & fWhat)
|
---|
1623 | {
|
---|
1624 | #ifdef IN_RING0
|
---|
1625 | RT_NOREF(pVCpu);
|
---|
1626 | return nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx, fWhat, pszCaller);
|
---|
1627 | #else
|
---|
1628 | RT_NOREF(pGVCpu, pszCaller);
|
---|
1629 | int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, pCtx, fWhat);
|
---|
1630 | AssertRCReturn(rc, rc);
|
---|
1631 | #endif
|
---|
1632 | }
|
---|
1633 | return VINF_SUCCESS;
|
---|
1634 | }
|
---|
1635 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API || IN_RING3 */
|
---|
1636 |
|
---|
1637 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1638 | /**
|
---|
1639 | * Copies register state from the X64 intercept message header.
|
---|
1640 | *
|
---|
1641 | * ASSUMES no state copied yet.
|
---|
1642 | *
|
---|
1643 | * @param pVCpu The cross context per CPU structure.
|
---|
1644 | * @param pCtx The registe rcontext.
|
---|
1645 | * @param pHdr The X64 intercept message header.
|
---|
1646 | * @sa nemR3WinCopyStateFromX64Header
|
---|
1647 | */
|
---|
1648 | DECLINLINE(void) nemHCWinCopyStateFromX64Header(PVMCPU pVCpu, PCPUMCTX pCtx, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
|
---|
1649 | {
|
---|
1650 | Assert( (pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1651 | == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
|
---|
1652 | NEM_WIN_COPY_BACK_SEG(pCtx->cs, pHdr->CsSegment);
|
---|
1653 | pCtx->rip = pHdr->Rip;
|
---|
1654 | pCtx->rflags.u = pHdr->Rflags;
|
---|
1655 |
|
---|
1656 | pVCpu->nem.s.fLastInterruptShadow = pHdr->ExecutionState.InterruptShadow;
|
---|
1657 | if (!pHdr->ExecutionState.InterruptShadow)
|
---|
1658 | {
|
---|
1659 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1660 | { /* likely */ }
|
---|
1661 | else
|
---|
1662 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1663 | }
|
---|
1664 | else
|
---|
1665 | EMSetInhibitInterruptsPC(pVCpu, pHdr->Rip);
|
---|
1666 |
|
---|
1667 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
|
---|
1668 | }
|
---|
1669 | #elif defined(IN_RING3)
|
---|
1670 | /**
|
---|
1671 | * Copies register state from the (common) exit context.
|
---|
1672 | *
|
---|
1673 | * ASSUMES no state copied yet.
|
---|
1674 | *
|
---|
1675 | * @param pVCpu The cross context per CPU structure.
|
---|
1676 | * @param pCtx The registe rcontext.
|
---|
1677 | * @param pExitCtx The common exit context.
|
---|
1678 | * @sa nemHCWinCopyStateFromX64Header
|
---|
1679 | */
|
---|
1680 | DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPU pVCpu, PCPUMCTX pCtx, WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1681 | {
|
---|
1682 | Assert( (pCtx->fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1683 | == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
|
---|
1684 | NEM_WIN_COPY_BACK_SEG(pCtx->cs, pExitCtx->Cs);
|
---|
1685 | pCtx->rip = pExitCtx->Rip;
|
---|
1686 | pCtx->rflags.u = pExitCtx->Rflags;
|
---|
1687 |
|
---|
1688 | pVCpu->nem.s.fLastInterruptShadow = pExitCtx->ExecutionState.InterruptShadow;
|
---|
1689 | if (!pExitCtx->ExecutionState.InterruptShadow)
|
---|
1690 | {
|
---|
1691 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1692 | { /* likely */ }
|
---|
1693 | else
|
---|
1694 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1695 | }
|
---|
1696 | else
|
---|
1697 | EMSetInhibitInterruptsPC(pVCpu, pExitCtx->Rip);
|
---|
1698 |
|
---|
1699 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
|
---|
1700 | }
|
---|
1701 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1702 |
|
---|
1703 |
|
---|
1704 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1705 | /**
|
---|
1706 | * Deals with memory intercept message.
|
---|
1707 | *
|
---|
1708 | * @returns Strict VBox status code.
|
---|
1709 | * @param pVM The cross context VM structure.
|
---|
1710 | * @param pVCpu The cross context per CPU structure.
|
---|
1711 | * @param pMsg The message.
|
---|
1712 | * @param pCtx The register context.
|
---|
1713 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1714 | * @sa nemR3WinHandleExitMemory
|
---|
1715 | */
|
---|
1716 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
1717 | nemHCWinHandleMessageMemory(PVM pVM, PVMCPU pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg, PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
1718 | {
|
---|
1719 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
1720 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
1721 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
|
---|
1722 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
1723 |
|
---|
1724 | /*
|
---|
1725 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
1726 | */
|
---|
1727 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
1728 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
1729 |
|
---|
1730 | #if 0 /* Experiment: 20K -> 34K exit/s. */
|
---|
1731 | if ( pMsg->Header.ExecutionState.EferLma
|
---|
1732 | && pMsg->Header.CsSegment.Long
|
---|
1733 | && pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
1734 | {
|
---|
1735 | if ( pMsg->Header.Rip - (uint64_t)0xf65a < (uint64_t)(0xf662 - 0xf65a)
|
---|
1736 | && pMsg->InstructionBytes[0] == 0x89
|
---|
1737 | && pMsg->InstructionBytes[1] == 0x03)
|
---|
1738 | {
|
---|
1739 | pCtx->rip = pMsg->Header.Rip + 2;
|
---|
1740 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
|
---|
1741 | AssertMsg(pMsg->Header.InstructionLength == 2, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
1742 | //Log(("%RX64 msg:\n%.80Rhxd\n", pCtx->rip, pMsg));
|
---|
1743 | return VINF_SUCCESS;
|
---|
1744 | }
|
---|
1745 | }
|
---|
1746 | #endif
|
---|
1747 |
|
---|
1748 | /*
|
---|
1749 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
1750 | * out of sync first.
|
---|
1751 | */
|
---|
1752 | NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
|
---|
1753 | PGMPHYSNEMPAGEINFO Info;
|
---|
1754 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
|
---|
1755 | nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
1756 | if (RT_SUCCESS(rc))
|
---|
1757 | {
|
---|
1758 | if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
1759 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
1760 | {
|
---|
1761 | if (State.fCanResume)
|
---|
1762 | {
|
---|
1763 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
|
---|
1764 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
1765 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1766 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1767 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1768 | return VINF_SUCCESS;
|
---|
1769 | }
|
---|
1770 | }
|
---|
1771 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
|
---|
1772 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
1773 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1774 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1775 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1776 | }
|
---|
1777 | else
|
---|
1778 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
|
---|
1779 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
1780 | pMsg->GuestPhysicalAddress, rc, State.fDidSomething ? " modified-backing" : "",
|
---|
1781 | g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
1782 |
|
---|
1783 | /*
|
---|
1784 | * Emulate the memory access, either access handler or special memory.
|
---|
1785 | */
|
---|
1786 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
1787 | VBOXSTRICTRC rcStrict;
|
---|
1788 | # ifdef IN_RING0
|
---|
1789 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx,
|
---|
1790 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES, "MemExit");
|
---|
1791 | if (rcStrict != VINF_SUCCESS)
|
---|
1792 | return rcStrict;
|
---|
1793 | # else
|
---|
1794 | rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
1795 | AssertRCReturn(rc, rc);
|
---|
1796 | NOREF(pGVCpu);
|
---|
1797 | # endif
|
---|
1798 |
|
---|
1799 | if (pMsg->Reserved1)
|
---|
1800 | Log(("MemExit/Reserved1=%#x\n", pMsg->Reserved1));
|
---|
1801 | if (pMsg->Header.ExecutionState.Reserved0 || pMsg->Header.ExecutionState.Reserved1)
|
---|
1802 | Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pMsg->Header.ExecutionState.Reserved0, pMsg->Header.ExecutionState.Reserved1));
|
---|
1803 | //if (pMsg->InstructionByteCount > 0)
|
---|
1804 | // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
|
---|
1805 |
|
---|
1806 | if (pMsg->InstructionByteCount > 0)
|
---|
1807 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pMsg->Header.Rip,
|
---|
1808 | pMsg->InstructionBytes, pMsg->InstructionByteCount);
|
---|
1809 | else
|
---|
1810 | rcStrict = IEMExecOne(pVCpu);
|
---|
1811 | /** @todo do we need to do anything wrt debugging here? */
|
---|
1812 | return rcStrict;
|
---|
1813 | }
|
---|
1814 | #elif defined(IN_RING3)
|
---|
1815 | /**
|
---|
1816 | * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
|
---|
1817 | *
|
---|
1818 | * @returns Strict VBox status code.
|
---|
1819 | * @param pVM The cross context VM structure.
|
---|
1820 | * @param pVCpu The cross context per CPU structure.
|
---|
1821 | * @param pExit The VM exit information to handle.
|
---|
1822 | * @param pCtx The register context.
|
---|
1823 | * @sa nemHCWinHandleMessageMemory
|
---|
1824 | */
|
---|
1825 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
1826 | nemR3WinHandleExitMemory(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
1827 | {
|
---|
1828 | Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
|
---|
1829 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
1830 |
|
---|
1831 | /*
|
---|
1832 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
1833 | */
|
---|
1834 | if (pExit->VpContext.ExecutionState.InterruptionPending)
|
---|
1835 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
1836 |
|
---|
1837 | /*
|
---|
1838 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
1839 | * out of sync first.
|
---|
1840 | */
|
---|
1841 | NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
|
---|
1842 | PGMPHYSNEMPAGEINFO Info;
|
---|
1843 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
|
---|
1844 | nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
1845 | if (RT_SUCCESS(rc))
|
---|
1846 | {
|
---|
1847 | if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
|
---|
1848 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
1849 | {
|
---|
1850 | if (State.fCanResume)
|
---|
1851 | {
|
---|
1852 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
|
---|
1853 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
1854 | pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1855 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1856 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
1857 | return VINF_SUCCESS;
|
---|
1858 | }
|
---|
1859 | }
|
---|
1860 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
|
---|
1861 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
1862 | pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
1863 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
1864 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
1865 | }
|
---|
1866 | else
|
---|
1867 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
|
---|
1868 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
1869 | pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
|
---|
1870 | g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
1871 |
|
---|
1872 | /*
|
---|
1873 | * Emulate the memory access, either access handler or special memory.
|
---|
1874 | */
|
---|
1875 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
1876 | rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
1877 | AssertRCReturn(rc, rc);
|
---|
1878 |
|
---|
1879 | if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
|
---|
1880 | Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
|
---|
1881 | //if (pMsg->InstructionByteCount > 0)
|
---|
1882 | // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
|
---|
1883 |
|
---|
1884 | VBOXSTRICTRC rcStrict;
|
---|
1885 | if (pExit->MemoryAccess.InstructionByteCount > 0)
|
---|
1886 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pExit->VpContext.Rip,
|
---|
1887 | pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
|
---|
1888 | else
|
---|
1889 | rcStrict = IEMExecOne(pVCpu);
|
---|
1890 | /** @todo do we need to do anything wrt debugging here? */
|
---|
1891 | return rcStrict;
|
---|
1892 | }
|
---|
1893 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1894 |
|
---|
1895 |
|
---|
1896 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1897 | /**
|
---|
1898 | * Deals with I/O port intercept message.
|
---|
1899 | *
|
---|
1900 | * @returns Strict VBox status code.
|
---|
1901 | * @param pVM The cross context VM structure.
|
---|
1902 | * @param pVCpu The cross context per CPU structure.
|
---|
1903 | * @param pMsg The message.
|
---|
1904 | * @param pCtx The register context.
|
---|
1905 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1906 | */
|
---|
1907 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
1908 | nemHCWinHandleMessageIoPort(PVM pVM, PVMCPU pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg, PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
1909 | {
|
---|
1910 | Assert( pMsg->AccessInfo.AccessSize == 1
|
---|
1911 | || pMsg->AccessInfo.AccessSize == 2
|
---|
1912 | || pMsg->AccessInfo.AccessSize == 4);
|
---|
1913 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
1914 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
1915 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
1916 |
|
---|
1917 | /*
|
---|
1918 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
1919 | */
|
---|
1920 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
1921 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
1922 |
|
---|
1923 | VBOXSTRICTRC rcStrict;
|
---|
1924 | if (!pMsg->AccessInfo.StringOp)
|
---|
1925 | {
|
---|
1926 | /*
|
---|
1927 | * Simple port I/O.
|
---|
1928 | */
|
---|
1929 | static uint32_t const s_fAndMask[8] =
|
---|
1930 | { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
|
---|
1931 | uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
|
---|
1932 |
|
---|
1933 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
1934 | if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
1935 | {
|
---|
1936 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
|
---|
1937 | Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
|
---|
1938 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
1939 | pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1940 | if (IOM_SUCCESS(rcStrict))
|
---|
1941 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
1942 | # ifdef IN_RING0
|
---|
1943 | else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
1944 | && !pCtx->rflags.Bits.u1TF
|
---|
1945 | /** @todo check for debug breakpoints */ )
|
---|
1946 | return EMRZSetPendingIoPortWrite(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
|
---|
1947 | pMsg->AccessInfo.AccessSize, (uint32_t)pMsg->Rax & fAndMask);
|
---|
1948 | # endif
|
---|
1949 | else
|
---|
1950 | {
|
---|
1951 | pCtx->rax = pMsg->Rax;
|
---|
1952 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
1953 | }
|
---|
1954 | }
|
---|
1955 | else
|
---|
1956 | {
|
---|
1957 | uint32_t uValue = 0;
|
---|
1958 | rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
|
---|
1959 | Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
|
---|
1960 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
1961 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1962 | if (IOM_SUCCESS(rcStrict))
|
---|
1963 | {
|
---|
1964 | if (pMsg->AccessInfo.AccessSize != 4)
|
---|
1965 | pCtx->rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
|
---|
1966 | else
|
---|
1967 | pCtx->rax = uValue;
|
---|
1968 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
1969 | Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pCtx->rax));
|
---|
1970 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
1971 | }
|
---|
1972 | else
|
---|
1973 | {
|
---|
1974 | pCtx->rax = pMsg->Rax;
|
---|
1975 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
1976 | # ifdef IN_RING0
|
---|
1977 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
1978 | && !pCtx->rflags.Bits.u1TF
|
---|
1979 | /** @todo check for debug breakpoints */ )
|
---|
1980 | return EMRZSetPendingIoPortRead(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
|
---|
1981 | pMsg->AccessInfo.AccessSize);
|
---|
1982 | # endif
|
---|
1983 | }
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 | else
|
---|
1987 | {
|
---|
1988 | /*
|
---|
1989 | * String port I/O.
|
---|
1990 | */
|
---|
1991 | /** @todo Someone at Microsoft please explain how we can get the address mode
|
---|
1992 | * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
|
---|
1993 | * getting the default mode, it can always be overridden by a prefix. This
|
---|
1994 | * forces us to interpret the instruction from opcodes, which is suboptimal.
|
---|
1995 | * Both AMD-V and VT-x includes the address size in the exit info, at least on
|
---|
1996 | * CPUs that are reasonably new.
|
---|
1997 | *
|
---|
1998 | * Of course, it's possible this is an undocumented and we just need to do some
|
---|
1999 | * experiments to figure out how it's communicated. Alternatively, we can scan
|
---|
2000 | * the opcode bytes for possible evil prefixes.
|
---|
2001 | */
|
---|
2002 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
2003 | pCtx->fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2004 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2005 | NEM_WIN_COPY_BACK_SEG(pCtx->ds, pMsg->DsSegment);
|
---|
2006 | NEM_WIN_COPY_BACK_SEG(pCtx->es, pMsg->EsSegment);
|
---|
2007 | pCtx->rax = pMsg->Rax;
|
---|
2008 | pCtx->rcx = pMsg->Rcx;
|
---|
2009 | pCtx->rdi = pMsg->Rdi;
|
---|
2010 | pCtx->rsi = pMsg->Rsi;
|
---|
2011 | # ifdef IN_RING0
|
---|
2012 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
|
---|
2013 | if (rcStrict != VINF_SUCCESS)
|
---|
2014 | return rcStrict;
|
---|
2015 | # else
|
---|
2016 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2017 | AssertRCReturn(rc, rc);
|
---|
2018 | RT_NOREF(pGVCpu);
|
---|
2019 | # endif
|
---|
2020 |
|
---|
2021 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
|
---|
2022 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2023 | pMsg->AccessInfo.RepPrefix ? "REP " : "",
|
---|
2024 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
|
---|
2025 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
|
---|
2026 | rcStrict = IEMExecOne(pVCpu);
|
---|
2027 | }
|
---|
2028 | if (IOM_SUCCESS(rcStrict))
|
---|
2029 | {
|
---|
2030 | /*
|
---|
2031 | * Do debug checks.
|
---|
2032 | */
|
---|
2033 | if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
|
---|
2034 | || (pMsg->Header.Rflags & X86_EFL_TF)
|
---|
2035 | || DBGFBpIsHwIoArmed(pVM) )
|
---|
2036 | {
|
---|
2037 | /** @todo Debugging. */
|
---|
2038 | }
|
---|
2039 | }
|
---|
2040 | return rcStrict;
|
---|
2041 | }
|
---|
2042 | #elif defined(IN_RING3)
|
---|
2043 | /**
|
---|
2044 | * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
|
---|
2045 | *
|
---|
2046 | * @returns Strict VBox status code.
|
---|
2047 | * @param pVM The cross context VM structure.
|
---|
2048 | * @param pVCpu The cross context per CPU structure.
|
---|
2049 | * @param pExit The VM exit information to handle.
|
---|
2050 | * @param pCtx The register context.
|
---|
2051 | * @sa nemHCWinHandleMessageIoPort
|
---|
2052 | */
|
---|
2053 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2054 | nemR3WinHandleExitIoPort(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2055 | {
|
---|
2056 | Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
|
---|
2057 | || pExit->IoPortAccess.AccessInfo.AccessSize == 2
|
---|
2058 | || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
|
---|
2059 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2060 |
|
---|
2061 | /*
|
---|
2062 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
2063 | */
|
---|
2064 | if (pExit->VpContext.ExecutionState.InterruptionPending)
|
---|
2065 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
2066 |
|
---|
2067 | VBOXSTRICTRC rcStrict;
|
---|
2068 | if (!pExit->IoPortAccess.AccessInfo.StringOp)
|
---|
2069 | {
|
---|
2070 | /*
|
---|
2071 | * Simple port I/O.
|
---|
2072 | */
|
---|
2073 | static uint32_t const s_fAndMask[8] =
|
---|
2074 | { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
|
---|
2075 | uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
|
---|
2076 | if (pExit->IoPortAccess.AccessInfo.IsWrite)
|
---|
2077 | {
|
---|
2078 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
|
---|
2079 | pExit->IoPortAccess.AccessInfo.AccessSize);
|
---|
2080 | Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
|
---|
2081 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2082 | pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
|
---|
2083 | pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2084 | if (IOM_SUCCESS(rcStrict))
|
---|
2085 | {
|
---|
2086 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2087 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pExit->VpContext);
|
---|
2088 | }
|
---|
2089 | }
|
---|
2090 | else
|
---|
2091 | {
|
---|
2092 | uint32_t uValue = 0;
|
---|
2093 | rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue, pExit->IoPortAccess.AccessInfo.AccessSize);
|
---|
2094 | Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
|
---|
2095 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2096 | pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2097 | if (IOM_SUCCESS(rcStrict))
|
---|
2098 | {
|
---|
2099 | if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
|
---|
2100 | pCtx->rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
|
---|
2101 | else
|
---|
2102 | pCtx->rax = uValue;
|
---|
2103 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2104 | Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pCtx->rax));
|
---|
2105 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2106 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pExit->VpContext);
|
---|
2107 | }
|
---|
2108 | }
|
---|
2109 | }
|
---|
2110 | else
|
---|
2111 | {
|
---|
2112 | /*
|
---|
2113 | * String port I/O.
|
---|
2114 | */
|
---|
2115 | /** @todo Someone at Microsoft please explain how we can get the address mode
|
---|
2116 | * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
|
---|
2117 | * getting the default mode, it can always be overridden by a prefix. This
|
---|
2118 | * forces us to interpret the instruction from opcodes, which is suboptimal.
|
---|
2119 | * Both AMD-V and VT-x includes the address size in the exit info, at least on
|
---|
2120 | * CPUs that are reasonably new.
|
---|
2121 | *
|
---|
2122 | * Of course, it's possible this is an undocumented and we just need to do some
|
---|
2123 | * experiments to figure out how it's communicated. Alternatively, we can scan
|
---|
2124 | * the opcode bytes for possible evil prefixes.
|
---|
2125 | */
|
---|
2126 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2127 | pCtx->fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2128 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2129 | NEM_WIN_COPY_BACK_SEG(pCtx->ds, pExit->IoPortAccess.Ds);
|
---|
2130 | NEM_WIN_COPY_BACK_SEG(pCtx->es, pExit->IoPortAccess.Es);
|
---|
2131 | pCtx->rax = pExit->IoPortAccess.Rax;
|
---|
2132 | pCtx->rcx = pExit->IoPortAccess.Rcx;
|
---|
2133 | pCtx->rdi = pExit->IoPortAccess.Rdi;
|
---|
2134 | pCtx->rsi = pExit->IoPortAccess.Rsi;
|
---|
2135 | # ifdef IN_RING0
|
---|
2136 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
|
---|
2137 | if (rcStrict != VINF_SUCCESS)
|
---|
2138 | return rcStrict;
|
---|
2139 | # else
|
---|
2140 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2141 | AssertRCReturn(rc, rc);
|
---|
2142 | # endif
|
---|
2143 |
|
---|
2144 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
|
---|
2145 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2146 | pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
|
---|
2147 | pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
|
---|
2148 | pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
|
---|
2149 | rcStrict = IEMExecOne(pVCpu);
|
---|
2150 | }
|
---|
2151 | if (IOM_SUCCESS(rcStrict))
|
---|
2152 | {
|
---|
2153 | /*
|
---|
2154 | * Do debug checks.
|
---|
2155 | */
|
---|
2156 | if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
|
---|
2157 | || (pExit->VpContext.Rflags & X86_EFL_TF)
|
---|
2158 | || DBGFBpIsHwIoArmed(pVM) )
|
---|
2159 | {
|
---|
2160 | /** @todo Debugging. */
|
---|
2161 | }
|
---|
2162 | }
|
---|
2163 | return rcStrict;
|
---|
2164 |
|
---|
2165 | }
|
---|
2166 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2167 |
|
---|
2168 |
|
---|
2169 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2170 | /**
|
---|
2171 | * Deals with interrupt window message.
|
---|
2172 | *
|
---|
2173 | * @returns Strict VBox status code.
|
---|
2174 | * @param pVM The cross context VM structure.
|
---|
2175 | * @param pVCpu The cross context per CPU structure.
|
---|
2176 | * @param pMsg The message.
|
---|
2177 | * @param pCtx The register context.
|
---|
2178 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2179 | * @sa nemR3WinHandleExitInterruptWindow
|
---|
2180 | */
|
---|
2181 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2182 | nemHCWinHandleMessageInterruptWindow(PVM pVM, PVMCPU pVCpu, HV_X64_INTERRUPT_WINDOW_MESSAGE const *pMsg,
|
---|
2183 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
2184 | {
|
---|
2185 | /*
|
---|
2186 | * Assert message sanity.
|
---|
2187 | */
|
---|
2188 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE
|
---|
2189 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ // READ & WRITE are probably not used here
|
---|
2190 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
2191 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
2192 | AssertMsg(pMsg->Type == HvX64PendingInterrupt || pMsg->Type == HvX64PendingNmi, ("%#x\n", pMsg->Type));
|
---|
2193 |
|
---|
2194 | /*
|
---|
2195 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2196 | */
|
---|
2197 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
2198 | Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
|
---|
2199 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2200 | pMsg->Type, RT_BOOL(pMsg->Header.Rflags & X86_EFL_IF), pMsg->Header.ExecutionState.InterruptShadow));
|
---|
2201 |
|
---|
2202 | /** @todo call nemHCWinHandleInterruptFF */
|
---|
2203 | RT_NOREF(pVM, pGVCpu);
|
---|
2204 | return VINF_SUCCESS;
|
---|
2205 | }
|
---|
2206 | #elif defined(IN_RING3)
|
---|
2207 | /**
|
---|
2208 | * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
|
---|
2209 | *
|
---|
2210 | * @returns Strict VBox status code.
|
---|
2211 | * @param pVM The cross context VM structure.
|
---|
2212 | * @param pVCpu The cross context per CPU structure.
|
---|
2213 | * @param pExit The VM exit information to handle.
|
---|
2214 | * @param pCtx The register context.
|
---|
2215 | * @sa nemHCWinHandleMessageInterruptWindow
|
---|
2216 | */
|
---|
2217 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2218 | nemR3WinHandleExitInterruptWindow(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2219 | {
|
---|
2220 | /*
|
---|
2221 | * Assert message sanity.
|
---|
2222 | */
|
---|
2223 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2224 | AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
|
---|
2225 | || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
|
---|
2226 | ("%#x\n", pExit->InterruptWindow.DeliverableType));
|
---|
2227 |
|
---|
2228 | /*
|
---|
2229 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2230 | */
|
---|
2231 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2232 | Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
|
---|
2233 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2234 | pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
|
---|
2235 | pExit->VpContext.ExecutionState.InterruptShadow));
|
---|
2236 |
|
---|
2237 | /** @todo call nemHCWinHandleInterruptFF */
|
---|
2238 | RT_NOREF(pVM);
|
---|
2239 | return VINF_SUCCESS;
|
---|
2240 | }
|
---|
2241 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2242 |
|
---|
2243 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2244 | /**
|
---|
2245 | * Deals with CPUID intercept message.
|
---|
2246 | *
|
---|
2247 | * @returns Strict VBox status code.
|
---|
2248 | * @param pVCpu The cross context per CPU structure.
|
---|
2249 | * @param pMsg The message.
|
---|
2250 | * @param pCtx The register context.
|
---|
2251 | */
|
---|
2252 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageCpuId(PVMCPU pVCpu, HV_X64_CPUID_INTERCEPT_MESSAGE const *pMsg, PCPUMCTX pCtx)
|
---|
2253 | {
|
---|
2254 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
2255 |
|
---|
2256 | /*
|
---|
2257 | * Soak up state and execute the instruction.
|
---|
2258 | *
|
---|
2259 | * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
|
---|
2260 | * function and make everyone use it.
|
---|
2261 | */
|
---|
2262 | /** @todo Combine implementations into IEMExecDecodedCpuId as this will
|
---|
2263 | * only get weirder with nested VT-x and AMD-V support. */
|
---|
2264 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
2265 |
|
---|
2266 | /* Copy in the low register values (top is always cleared). */
|
---|
2267 | pCtx->rax = (uint32_t)pMsg->Rax;
|
---|
2268 | pCtx->rcx = (uint32_t)pMsg->Rcx;
|
---|
2269 | pCtx->rdx = (uint32_t)pMsg->Rdx;
|
---|
2270 | pCtx->rbx = (uint32_t)pMsg->Rbx;
|
---|
2271 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2272 |
|
---|
2273 | /* Get the correct values. */
|
---|
2274 | CPUMGetGuestCpuId(pVCpu, pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
|
---|
2275 |
|
---|
2276 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
|
---|
2277 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2278 | pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
|
---|
2279 | pCtx->eax, pCtx->ecx, pCtx->edx, pCtx->ebx,
|
---|
2280 | pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
|
---|
2281 |
|
---|
2282 | /* Move RIP and we're done. */
|
---|
2283 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
2284 |
|
---|
2285 | return VINF_SUCCESS;
|
---|
2286 | }
|
---|
2287 | #elif defined(IN_RING3)
|
---|
2288 | /**
|
---|
2289 | * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
|
---|
2290 | *
|
---|
2291 | * @returns Strict VBox status code.
|
---|
2292 | * @param pVM The cross context VM structure.
|
---|
2293 | * @param pVCpu The cross context per CPU structure.
|
---|
2294 | * @param pExit The VM exit information to handle.
|
---|
2295 | * @param pCtx The register context.
|
---|
2296 | * @sa nemHCWinHandleMessageInterruptWindow
|
---|
2297 | */
|
---|
2298 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2299 | nemR3WinHandleExitCpuId(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2300 | {
|
---|
2301 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2302 |
|
---|
2303 | /*
|
---|
2304 | * Soak up state and execute the instruction.
|
---|
2305 | *
|
---|
2306 | * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
|
---|
2307 | * function and make everyone use it.
|
---|
2308 | */
|
---|
2309 | /** @todo Combine implementations into IEMExecDecodedCpuId as this will
|
---|
2310 | * only get weirder with nested VT-x and AMD-V support. */
|
---|
2311 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2312 |
|
---|
2313 | /* Copy in the low register values (top is always cleared). */
|
---|
2314 | pCtx->rax = (uint32_t)pExit->CpuidAccess.Rax;
|
---|
2315 | pCtx->rcx = (uint32_t)pExit->CpuidAccess.Rcx;
|
---|
2316 | pCtx->rdx = (uint32_t)pExit->CpuidAccess.Rdx;
|
---|
2317 | pCtx->rbx = (uint32_t)pExit->CpuidAccess.Rbx;
|
---|
2318 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2319 |
|
---|
2320 | /* Get the correct values. */
|
---|
2321 | CPUMGetGuestCpuId(pVCpu, pCtx->eax, pCtx->ecx, &pCtx->eax, &pCtx->ebx, &pCtx->ecx, &pCtx->edx);
|
---|
2322 |
|
---|
2323 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
|
---|
2324 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2325 | pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
|
---|
2326 | pCtx->eax, pCtx->ecx, pCtx->edx, pCtx->ebx,
|
---|
2327 | pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
|
---|
2328 |
|
---|
2329 | /* Move RIP and we're done. */
|
---|
2330 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pExit->VpContext);
|
---|
2331 |
|
---|
2332 | RT_NOREF_PV(pVM);
|
---|
2333 | return VINF_SUCCESS;
|
---|
2334 | }
|
---|
2335 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2336 |
|
---|
2337 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2338 | /**
|
---|
2339 | * Deals with MSR intercept message.
|
---|
2340 | *
|
---|
2341 | * @returns Strict VBox status code.
|
---|
2342 | * @param pVCpu The cross context per CPU structure.
|
---|
2343 | * @param pMsg The message.
|
---|
2344 | * @param pCtx The register context.
|
---|
2345 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2346 | * @sa nemR3WinHandleExitMsr
|
---|
2347 | */
|
---|
2348 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMsr(PVMCPU pVCpu, HV_X64_MSR_INTERCEPT_MESSAGE const *pMsg,
|
---|
2349 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
2350 | {
|
---|
2351 | /*
|
---|
2352 | * A wee bit of sanity first.
|
---|
2353 | */
|
---|
2354 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
2355 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
2356 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
2357 |
|
---|
2358 | /*
|
---|
2359 | * Check CPL as that's common to both RDMSR and WRMSR.
|
---|
2360 | */
|
---|
2361 | VBOXSTRICTRC rcStrict;
|
---|
2362 | if (pMsg->Header.ExecutionState.Cpl == 0)
|
---|
2363 | {
|
---|
2364 | /*
|
---|
2365 | * Get all the MSR state. Since we're getting EFER, we also need to
|
---|
2366 | * get CR0, CR4 and CR3.
|
---|
2367 | */
|
---|
2368 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
2369 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
2370 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
|
---|
2371 | | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
|
---|
2372 | "MSRs");
|
---|
2373 | if (rcStrict == VINF_SUCCESS)
|
---|
2374 | {
|
---|
2375 |
|
---|
2376 | /*
|
---|
2377 | * Handle writes.
|
---|
2378 | */
|
---|
2379 | if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
2380 | {
|
---|
2381 | rcStrict = CPUMSetGuestMsr(pVCpu, pMsg->MsrNumber, RT_MAKE_U64((uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx));
|
---|
2382 | Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n",
|
---|
2383 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2384 | pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2385 | if (rcStrict == VINF_SUCCESS)
|
---|
2386 | {
|
---|
2387 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
2388 | return VINF_SUCCESS;
|
---|
2389 | }
|
---|
2390 | # ifndef IN_RING3
|
---|
2391 | /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
|
---|
2392 | if (rcStrict == VERR_CPUM_RAISE_GP_0)
|
---|
2393 | rcStrict = VINF_CPUM_R3_MSR_WRITE;
|
---|
2394 | return rcStrict;
|
---|
2395 | # else
|
---|
2396 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n",
|
---|
2397 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2398 | pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2399 | # endif
|
---|
2400 | }
|
---|
2401 | /*
|
---|
2402 | * Handle reads.
|
---|
2403 | */
|
---|
2404 | else
|
---|
2405 | {
|
---|
2406 | uint64_t uValue = 0;
|
---|
2407 | rcStrict = CPUMQueryGuestMsr(pVCpu, pMsg->MsrNumber, &uValue);
|
---|
2408 | Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
|
---|
2409 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2410 | pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2411 | if (rcStrict == VINF_SUCCESS)
|
---|
2412 | {
|
---|
2413 | pCtx->rax = (uint32_t)uValue;
|
---|
2414 | pCtx->rdx = uValue >> 32;
|
---|
2415 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
|
---|
2416 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pMsg->Header);
|
---|
2417 | return VINF_SUCCESS;
|
---|
2418 | }
|
---|
2419 | # ifndef IN_RING3
|
---|
2420 | /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
|
---|
2421 | if (rcStrict == VERR_CPUM_RAISE_GP_0)
|
---|
2422 | rcStrict = VINF_CPUM_R3_MSR_READ;
|
---|
2423 | return rcStrict;
|
---|
2424 | # else
|
---|
2425 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
|
---|
2426 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2427 | pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2428 | # endif
|
---|
2429 | }
|
---|
2430 | }
|
---|
2431 | else
|
---|
2432 | {
|
---|
2433 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
|
---|
2434 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2435 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD",
|
---|
2436 | pMsg->MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2437 | return rcStrict;
|
---|
2438 | }
|
---|
2439 | }
|
---|
2440 | else if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
2441 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n",
|
---|
2442 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2443 | pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx ));
|
---|
2444 | else
|
---|
2445 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n",
|
---|
2446 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2447 | pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber));
|
---|
2448 |
|
---|
2449 | /*
|
---|
2450 | * If we get down here, we're supposed to #GP(0).
|
---|
2451 | */
|
---|
2452 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
2453 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
|
---|
2454 | if (rcStrict == VINF_SUCCESS)
|
---|
2455 | {
|
---|
2456 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
|
---|
2457 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
2458 | rcStrict = VINF_SUCCESS;
|
---|
2459 | else if (rcStrict != VINF_SUCCESS)
|
---|
2460 | Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2461 | }
|
---|
2462 | return rcStrict;
|
---|
2463 | }
|
---|
2464 | #elif defined(IN_RING3)
|
---|
2465 | /**
|
---|
2466 | * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
|
---|
2467 | *
|
---|
2468 | * @returns Strict VBox status code.
|
---|
2469 | * @param pVM The cross context VM structure.
|
---|
2470 | * @param pVCpu The cross context per CPU structure.
|
---|
2471 | * @param pExit The VM exit information to handle.
|
---|
2472 | * @param pCtx The register context.
|
---|
2473 | * @sa nemHCWinHandleMessageMsr
|
---|
2474 | */
|
---|
2475 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2476 | nemR3WinHandleExitMsr(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2477 | {
|
---|
2478 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2479 |
|
---|
2480 | /*
|
---|
2481 | * Check CPL as that's common to both RDMSR and WRMSR.
|
---|
2482 | */
|
---|
2483 | VBOXSTRICTRC rcStrict;
|
---|
2484 | if (pExit->VpContext.ExecutionState.Cpl == 0)
|
---|
2485 | {
|
---|
2486 | /*
|
---|
2487 | * Get all the MSR state. Since we're getting EFER, we also need to
|
---|
2488 | * get CR0, CR4 and CR3.
|
---|
2489 | */
|
---|
2490 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2491 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, pCtx,
|
---|
2492 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
|
---|
2493 | | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
|
---|
2494 | "MSRs");
|
---|
2495 | if (rcStrict == VINF_SUCCESS)
|
---|
2496 | {
|
---|
2497 | /*
|
---|
2498 | * Handle writes.
|
---|
2499 | */
|
---|
2500 | if (pExit->MsrAccess.AccessInfo.IsWrite)
|
---|
2501 | {
|
---|
2502 | rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
|
---|
2503 | RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
|
---|
2504 | Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2505 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
|
---|
2506 | (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2507 | if (rcStrict == VINF_SUCCESS)
|
---|
2508 | {
|
---|
2509 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pExit->VpContext);
|
---|
2510 | return VINF_SUCCESS;
|
---|
2511 | }
|
---|
2512 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
|
---|
2513 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2514 | pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
|
---|
2515 | VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2516 | }
|
---|
2517 | /*
|
---|
2518 | * Handle reads.
|
---|
2519 | */
|
---|
2520 | else
|
---|
2521 | {
|
---|
2522 | uint64_t uValue = 0;
|
---|
2523 | rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
|
---|
2524 | Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
|
---|
2525 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2526 | pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2527 | if (rcStrict == VINF_SUCCESS)
|
---|
2528 | {
|
---|
2529 | pCtx->rax = (uint32_t)uValue;
|
---|
2530 | pCtx->rdx = uValue >> 32;
|
---|
2531 | pCtx->fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
|
---|
2532 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pExit->VpContext);
|
---|
2533 | return VINF_SUCCESS;
|
---|
2534 | }
|
---|
2535 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2536 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
|
---|
2537 | uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2538 | }
|
---|
2539 | }
|
---|
2540 | else
|
---|
2541 | {
|
---|
2542 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
|
---|
2543 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2544 | pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2545 | return rcStrict;
|
---|
2546 | }
|
---|
2547 | }
|
---|
2548 | else if (pExit->MsrAccess.AccessInfo.IsWrite)
|
---|
2549 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2550 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
|
---|
2551 | pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
|
---|
2552 | else
|
---|
2553 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2554 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
|
---|
2555 | pExit->MsrAccess.MsrNumber));
|
---|
2556 |
|
---|
2557 | /*
|
---|
2558 | * If we get down here, we're supposed to #GP(0).
|
---|
2559 | */
|
---|
2560 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, pCtx,
|
---|
2561 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
|
---|
2562 | if (rcStrict == VINF_SUCCESS)
|
---|
2563 | {
|
---|
2564 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
|
---|
2565 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
2566 | rcStrict = VINF_SUCCESS;
|
---|
2567 | else if (rcStrict != VINF_SUCCESS)
|
---|
2568 | Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2569 | }
|
---|
2570 |
|
---|
2571 | RT_NOREF_PV(pVM);
|
---|
2572 | return rcStrict;
|
---|
2573 | }
|
---|
2574 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2575 |
|
---|
2576 |
|
---|
2577 | /**
|
---|
2578 | * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
|
---|
2579 | * checks if the given opcodes are of interest at all.
|
---|
2580 | *
|
---|
2581 | * @returns true if interesting, false if not.
|
---|
2582 | * @param cbOpcodes Number of opcode bytes available.
|
---|
2583 | * @param pbOpcodes The opcode bytes.
|
---|
2584 | * @param f64BitMode Whether we're in 64-bit mode.
|
---|
2585 | */
|
---|
2586 | DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
|
---|
2587 | {
|
---|
2588 | /*
|
---|
2589 | * Currently only interested in VMCALL and VMMCALL.
|
---|
2590 | */
|
---|
2591 | while (cbOpcodes >= 3)
|
---|
2592 | {
|
---|
2593 | switch (pbOpcodes[0])
|
---|
2594 | {
|
---|
2595 | case 0x0f:
|
---|
2596 | switch (pbOpcodes[1])
|
---|
2597 | {
|
---|
2598 | case 0x01:
|
---|
2599 | switch (pbOpcodes[2])
|
---|
2600 | {
|
---|
2601 | case 0xc1: /* 0f 01 c1 VMCALL */
|
---|
2602 | return true;
|
---|
2603 | case 0xd9: /* 0f 01 d9 VMMCALL */
|
---|
2604 | return true;
|
---|
2605 | default:
|
---|
2606 | break;
|
---|
2607 | }
|
---|
2608 | break;
|
---|
2609 | }
|
---|
2610 | break;
|
---|
2611 |
|
---|
2612 | default:
|
---|
2613 | return false;
|
---|
2614 |
|
---|
2615 | /* prefixes */
|
---|
2616 | case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
|
---|
2617 | case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
|
---|
2618 | if (!f64BitMode)
|
---|
2619 | return false;
|
---|
2620 | RT_FALL_THRU();
|
---|
2621 | case X86_OP_PRF_CS:
|
---|
2622 | case X86_OP_PRF_SS:
|
---|
2623 | case X86_OP_PRF_DS:
|
---|
2624 | case X86_OP_PRF_ES:
|
---|
2625 | case X86_OP_PRF_FS:
|
---|
2626 | case X86_OP_PRF_GS:
|
---|
2627 | case X86_OP_PRF_SIZE_OP:
|
---|
2628 | case X86_OP_PRF_SIZE_ADDR:
|
---|
2629 | case X86_OP_PRF_LOCK:
|
---|
2630 | case X86_OP_PRF_REPZ:
|
---|
2631 | case X86_OP_PRF_REPNZ:
|
---|
2632 | cbOpcodes--;
|
---|
2633 | pbOpcodes++;
|
---|
2634 | continue;
|
---|
2635 | }
|
---|
2636 | break;
|
---|
2637 | }
|
---|
2638 | return false;
|
---|
2639 | }
|
---|
2640 |
|
---|
2641 |
|
---|
2642 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2643 | /**
|
---|
2644 | * Copies state included in a exception intercept message.
|
---|
2645 | *
|
---|
2646 | * @param pVCpu The cross context per CPU structure.
|
---|
2647 | * @param pMsg The message.
|
---|
2648 | * @param pCtx The register context.
|
---|
2649 | * @param fClearXcpt Clear pending exception.
|
---|
2650 | */
|
---|
2651 | DECLINLINE(void) nemHCWinCopyStateFromExceptionMessage(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg,
|
---|
2652 | PCPUMCTX pCtx, bool fClearXcpt)
|
---|
2653 | {
|
---|
2654 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, &pMsg->Header);
|
---|
2655 | pCtx->fExtrn &= ~( CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_DS
|
---|
2656 | | (fClearXcpt ? CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT : 0) );
|
---|
2657 | pCtx->rax = pMsg->Rax;
|
---|
2658 | pCtx->rcx = pMsg->Rcx;
|
---|
2659 | pCtx->rdx = pMsg->Rdx;
|
---|
2660 | pCtx->rbx = pMsg->Rbx;
|
---|
2661 | pCtx->rsp = pMsg->Rsp;
|
---|
2662 | pCtx->rbp = pMsg->Rbp;
|
---|
2663 | pCtx->rsi = pMsg->Rsi;
|
---|
2664 | pCtx->rdi = pMsg->Rdi;
|
---|
2665 | pCtx->r8 = pMsg->R8;
|
---|
2666 | pCtx->r9 = pMsg->R9;
|
---|
2667 | pCtx->r10 = pMsg->R10;
|
---|
2668 | pCtx->r11 = pMsg->R11;
|
---|
2669 | pCtx->r12 = pMsg->R12;
|
---|
2670 | pCtx->r13 = pMsg->R13;
|
---|
2671 | pCtx->r14 = pMsg->R14;
|
---|
2672 | pCtx->r15 = pMsg->R15;
|
---|
2673 | NEM_WIN_COPY_BACK_SEG(pCtx->ds, pMsg->DsSegment);
|
---|
2674 | NEM_WIN_COPY_BACK_SEG(pCtx->ss, pMsg->SsSegment);
|
---|
2675 | }
|
---|
2676 | #elif defined(IN_RING3)
|
---|
2677 | /**
|
---|
2678 | * Copies state included in a exception intercept exit.
|
---|
2679 | *
|
---|
2680 | * @param pVCpu The cross context per CPU structure.
|
---|
2681 | * @param pExit The VM exit information.
|
---|
2682 | * @param pCtx The register context.
|
---|
2683 | * @param fClearXcpt Clear pending exception.
|
---|
2684 | */
|
---|
2685 | DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit,
|
---|
2686 | PCPUMCTX pCtx, bool fClearXcpt)
|
---|
2687 | {
|
---|
2688 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2689 | if (fClearXcpt)
|
---|
2690 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
2691 | }
|
---|
2692 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2693 |
|
---|
2694 |
|
---|
2695 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2696 | /**
|
---|
2697 | * Deals with exception intercept message (HvMessageTypeX64ExceptionIntercept).
|
---|
2698 | *
|
---|
2699 | * @returns Strict VBox status code.
|
---|
2700 | * @param pVCpu The cross context per CPU structure.
|
---|
2701 | * @param pMsg The message.
|
---|
2702 | * @param pCtx The register context.
|
---|
2703 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2704 | * @sa nemR3WinHandleExitMsr
|
---|
2705 | */
|
---|
2706 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2707 | nemHCWinHandleMessageException(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
2708 | {
|
---|
2709 | /*
|
---|
2710 | * Assert sanity.
|
---|
2711 | */
|
---|
2712 | AssertMsg(pMsg->Header.InstructionLength < 0x10, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
2713 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
2714 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2715 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
|
---|
2716 |
|
---|
2717 | /*
|
---|
2718 | * Get most of the register state since we'll end up making IEM inject the
|
---|
2719 | * event. The exception isn't normally flaged as a pending event, so duh.
|
---|
2720 | *
|
---|
2721 | * Note! We can optimize this later with event injection.
|
---|
2722 | */
|
---|
2723 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n",
|
---|
2724 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2725 | pMsg->ExceptionVector, pMsg->ErrorCode, pMsg->ExceptionParameter));
|
---|
2726 | nemHCWinCopyStateFromExceptionMessage(pVCpu, pMsg, pCtx, true /*fClearXcpt*/);
|
---|
2727 | uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
|
---|
2728 | if (pMsg->ExceptionVector == X86_XCPT_DB)
|
---|
2729 | fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
|
---|
2730 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx, fWhat, "Xcpt");
|
---|
2731 | if (rcStrict != VINF_SUCCESS)
|
---|
2732 | return rcStrict;
|
---|
2733 |
|
---|
2734 | /*
|
---|
2735 | * Handle the intercept.
|
---|
2736 | */
|
---|
2737 | TRPMEVENT enmEvtType = TRPM_TRAP;
|
---|
2738 | switch (pMsg->ExceptionVector)
|
---|
2739 | {
|
---|
2740 | /*
|
---|
2741 | * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
|
---|
2742 | * and need to turn them over to GIM.
|
---|
2743 | *
|
---|
2744 | * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
|
---|
2745 | * #UD for handling non-native hypercall instructions. (IEM will
|
---|
2746 | * decode both and let the GIM provider decide whether to accept it.)
|
---|
2747 | */
|
---|
2748 | case X86_XCPT_UD:
|
---|
2749 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
|
---|
2750 | if (nemHcWinIsInterestingUndefinedOpcode(pMsg->InstructionByteCount, pMsg->InstructionBytes,
|
---|
2751 | pMsg->Header.ExecutionState.EferLma && pMsg->Header.CsSegment.Long ))
|
---|
2752 | {
|
---|
2753 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pMsg->Header.Rip, pMsg->InstructionBytes,
|
---|
2754 | pMsg->InstructionByteCount);
|
---|
2755 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
|
---|
2756 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
2757 | nemHCWinExecStateToLogStr(&pMsg->Header), VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2758 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
|
---|
2759 | return rcStrict;
|
---|
2760 | }
|
---|
2761 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
|
---|
2762 | pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->InstructionByteCount, pMsg->InstructionBytes ));
|
---|
2763 | break;
|
---|
2764 |
|
---|
2765 | /*
|
---|
2766 | * Filter debug exceptions.
|
---|
2767 | */
|
---|
2768 | case X86_XCPT_DB:
|
---|
2769 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
|
---|
2770 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
|
---|
2771 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header) ));
|
---|
2772 | break;
|
---|
2773 |
|
---|
2774 | case X86_XCPT_BP:
|
---|
2775 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
|
---|
2776 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
|
---|
2777 | pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->Header.InstructionLength));
|
---|
2778 | enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
|
---|
2779 | break;
|
---|
2780 |
|
---|
2781 | /* This shouldn't happen. */
|
---|
2782 | default:
|
---|
2783 | AssertLogRelMsgFailedReturn(("ExceptionVector=%#x\n", pMsg->ExceptionVector), VERR_IEM_IPE_6);
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | /*
|
---|
2787 | * Inject it.
|
---|
2788 | */
|
---|
2789 | rcStrict = IEMInjectTrap(pVCpu, pMsg->ExceptionVector, enmEvtType, pMsg->ErrorCode,
|
---|
2790 | pMsg->ExceptionParameter /*??*/, pMsg->Header.InstructionLength);
|
---|
2791 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
|
---|
2792 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
2793 | nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->ExceptionVector, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2794 | return rcStrict;
|
---|
2795 | }
|
---|
2796 | #elif defined(IN_RING3)
|
---|
2797 | /**
|
---|
2798 | * Deals with MSR access exits (WHvRunVpExitReasonException).
|
---|
2799 | *
|
---|
2800 | * @returns Strict VBox status code.
|
---|
2801 | * @param pVM The cross context VM structure.
|
---|
2802 | * @param pVCpu The cross context per CPU structure.
|
---|
2803 | * @param pExit The VM exit information to handle.
|
---|
2804 | * @param pCtx The register context.
|
---|
2805 | * @sa nemR3WinHandleExitException
|
---|
2806 | */
|
---|
2807 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2808 | nemR3WinHandleExitException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2809 | {
|
---|
2810 | /*
|
---|
2811 | * Assert sanity.
|
---|
2812 | */
|
---|
2813 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2814 |
|
---|
2815 | /*
|
---|
2816 | * Get most of the register state since we'll end up making IEM inject the
|
---|
2817 | * event. The exception isn't normally flaged as a pending event, so duh.
|
---|
2818 | *
|
---|
2819 | * Note! We can optimize this later with event injection.
|
---|
2820 | */
|
---|
2821 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2822 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
|
---|
2823 | pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
|
---|
2824 | nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, pCtx, true /*fClearXcpt*/);
|
---|
2825 | uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
|
---|
2826 | if (pExit->VpException.ExceptionType == X86_XCPT_DB)
|
---|
2827 | fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
|
---|
2828 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, pCtx, fWhat, "Xcpt");
|
---|
2829 | if (rcStrict != VINF_SUCCESS)
|
---|
2830 | return rcStrict;
|
---|
2831 |
|
---|
2832 | /*
|
---|
2833 | * Handle the intercept.
|
---|
2834 | */
|
---|
2835 | TRPMEVENT enmEvtType = TRPM_TRAP;
|
---|
2836 | switch (pExit->VpException.ExceptionType)
|
---|
2837 | {
|
---|
2838 | /*
|
---|
2839 | * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
|
---|
2840 | * and need to turn them over to GIM.
|
---|
2841 | *
|
---|
2842 | * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
|
---|
2843 | * #UD for handling non-native hypercall instructions. (IEM will
|
---|
2844 | * decode both and let the GIM provider decide whether to accept it.)
|
---|
2845 | */
|
---|
2846 | case X86_XCPT_UD:
|
---|
2847 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
|
---|
2848 | if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
|
---|
2849 | pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
|
---|
2850 | {
|
---|
2851 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pExit->VpContext.Rip,
|
---|
2852 | pExit->VpException.InstructionBytes,
|
---|
2853 | pExit->VpException.InstructionByteCount);
|
---|
2854 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
|
---|
2855 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
|
---|
2856 | nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2857 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
|
---|
2858 | return rcStrict;
|
---|
2859 | }
|
---|
2860 |
|
---|
2861 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
|
---|
2862 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2863 | pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
|
---|
2864 | break;
|
---|
2865 |
|
---|
2866 | /*
|
---|
2867 | * Filter debug exceptions.
|
---|
2868 | */
|
---|
2869 | case X86_XCPT_DB:
|
---|
2870 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
|
---|
2871 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
|
---|
2872 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
|
---|
2873 | break;
|
---|
2874 |
|
---|
2875 | case X86_XCPT_BP:
|
---|
2876 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
|
---|
2877 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2878 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
|
---|
2879 | enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
|
---|
2880 | break;
|
---|
2881 |
|
---|
2882 | /* This shouldn't happen. */
|
---|
2883 | default:
|
---|
2884 | AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
|
---|
2885 | }
|
---|
2886 |
|
---|
2887 | /*
|
---|
2888 | * Inject it.
|
---|
2889 | */
|
---|
2890 | rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
|
---|
2891 | pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
|
---|
2892 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
|
---|
2893 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
|
---|
2894 | nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2895 |
|
---|
2896 | RT_NOREF_PV(pVM);
|
---|
2897 | return rcStrict;
|
---|
2898 | }
|
---|
2899 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
2900 |
|
---|
2901 |
|
---|
2902 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
2903 | /**
|
---|
2904 | * Deals with unrecoverable exception (triple fault).
|
---|
2905 | *
|
---|
2906 | * Seen WRMSR 0x201 (IA32_MTRR_PHYSMASK0) writes from grub / debian9 ending up
|
---|
2907 | * here too. So we'll leave it to IEM to decide.
|
---|
2908 | *
|
---|
2909 | * @returns Strict VBox status code.
|
---|
2910 | * @param pVCpu The cross context per CPU structure.
|
---|
2911 | * @param pMsgHdr The message header.
|
---|
2912 | * @param pCtx The register context.
|
---|
2913 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2914 | * @sa nemR3WinHandleExitUnrecoverableException
|
---|
2915 | */
|
---|
2916 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageUnrecoverableException(PVMCPU pVCpu,
|
---|
2917 | HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr,
|
---|
2918 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
2919 | {
|
---|
2920 | AssertMsg(pMsgHdr->InstructionLength < 0x10, ("%#x\n", pMsgHdr->InstructionLength));
|
---|
2921 |
|
---|
2922 | # if 0
|
---|
2923 | /*
|
---|
2924 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2925 | */
|
---|
2926 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, pMsgHdr);
|
---|
2927 | Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n",
|
---|
2928 | pVCpu->idCpu, pMsgHdr->CsSegment.Selector, pMsgHdr->Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsgHdr->Rflags));
|
---|
2929 | return VINF_EM_TRIPLE_FAULT;
|
---|
2930 | # else
|
---|
2931 | /*
|
---|
2932 | * Let IEM decide whether this is really it.
|
---|
2933 | */
|
---|
2934 | nemHCWinCopyStateFromX64Header(pVCpu, pCtx, pMsgHdr);
|
---|
2935 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
2936 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
|
---|
2937 | if (rcStrict == VINF_SUCCESS)
|
---|
2938 | {
|
---|
2939 | rcStrict = IEMExecOne(pVCpu);
|
---|
2940 | if (rcStrict == VINF_SUCCESS)
|
---|
2941 | {
|
---|
2942 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
2943 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags ));
|
---|
2944 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
|
---|
2945 | return VINF_SUCCESS;
|
---|
2946 | }
|
---|
2947 | if (rcStrict == VINF_EM_TRIPLE_FAULT)
|
---|
2948 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
2949 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2950 | else
|
---|
2951 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
2952 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2953 | }
|
---|
2954 | else
|
---|
2955 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
2956 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2957 | return rcStrict;
|
---|
2958 | # endif
|
---|
2959 | }
|
---|
2960 | #elif defined(IN_RING3)
|
---|
2961 | /**
|
---|
2962 | * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
|
---|
2963 | *
|
---|
2964 | * @returns Strict VBox status code.
|
---|
2965 | * @param pVM The cross context VM structure.
|
---|
2966 | * @param pVCpu The cross context per CPU structure.
|
---|
2967 | * @param pExit The VM exit information to handle.
|
---|
2968 | * @param pCtx The register context.
|
---|
2969 | * @sa nemHCWinHandleMessageUnrecoverableException
|
---|
2970 | */
|
---|
2971 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2972 | nemR3WinHandleExitUnrecoverableException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
2973 | {
|
---|
2974 | AssertMsg(pExit->VpContext.InstructionLength < 0x10, ("%#x\n", pExit->VpContext.InstructionLength));
|
---|
2975 |
|
---|
2976 | # if 0
|
---|
2977 | /*
|
---|
2978 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2979 | */
|
---|
2980 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2981 | Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2982 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
|
---|
2983 | RT_NOREF_PV(pVM);
|
---|
2984 | return VINF_EM_TRIPLE_FAULT;
|
---|
2985 | # else
|
---|
2986 | /*
|
---|
2987 | * Let IEM decide whether this is really it.
|
---|
2988 | */
|
---|
2989 | nemR3WinCopyStateFromX64Header(pVCpu, pCtx, &pExit->VpContext);
|
---|
2990 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, pCtx,
|
---|
2991 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
|
---|
2992 | if (rcStrict == VINF_SUCCESS)
|
---|
2993 | {
|
---|
2994 | rcStrict = IEMExecOne(pVCpu);
|
---|
2995 | if (rcStrict == VINF_SUCCESS)
|
---|
2996 | {
|
---|
2997 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
2998 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
|
---|
2999 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
|
---|
3000 | return VINF_SUCCESS;
|
---|
3001 | }
|
---|
3002 | if (rcStrict == VINF_EM_TRIPLE_FAULT)
|
---|
3003 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3004 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3005 | else
|
---|
3006 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3007 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3008 | }
|
---|
3009 | else
|
---|
3010 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3011 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3012 | RT_NOREF_PV(pVM);
|
---|
3013 | return rcStrict;
|
---|
3014 | # endif
|
---|
3015 |
|
---|
3016 | }
|
---|
3017 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
3018 |
|
---|
3019 |
|
---|
3020 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3021 | /**
|
---|
3022 | * Handles messages (VM exits).
|
---|
3023 | *
|
---|
3024 | * @returns Strict VBox status code.
|
---|
3025 | * @param pVM The cross context VM structure.
|
---|
3026 | * @param pVCpu The cross context per CPU structure.
|
---|
3027 | * @param pMappingHeader The message slot mapping.
|
---|
3028 | * @param pCtx The register context.
|
---|
3029 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3030 | * @sa nemR3WinHandleExit
|
---|
3031 | */
|
---|
3032 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessage(PVM pVM, PVMCPU pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
|
---|
3033 | PCPUMCTX pCtx, PGVMCPU pGVCpu)
|
---|
3034 | {
|
---|
3035 | if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
|
---|
3036 | {
|
---|
3037 | AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
|
---|
3038 | HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
|
---|
3039 | switch (pMsg->Header.MessageType)
|
---|
3040 | {
|
---|
3041 | case HvMessageTypeUnmappedGpa:
|
---|
3042 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
3043 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
|
---|
3044 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pCtx, pGVCpu);
|
---|
3045 |
|
---|
3046 | case HvMessageTypeGpaIntercept:
|
---|
3047 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
3048 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
|
---|
3049 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pCtx, pGVCpu);
|
---|
3050 |
|
---|
3051 | case HvMessageTypeX64IoPortIntercept:
|
---|
3052 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
|
---|
3053 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
|
---|
3054 | return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept, pCtx, pGVCpu);
|
---|
3055 |
|
---|
3056 | case HvMessageTypeX64Halt:
|
---|
3057 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
|
---|
3058 | Log4(("HaltExit\n"));
|
---|
3059 | return VINF_EM_HALT;
|
---|
3060 |
|
---|
3061 | case HvMessageTypeX64InterruptWindow:
|
---|
3062 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterruptWindow));
|
---|
3063 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
|
---|
3064 | return nemHCWinHandleMessageInterruptWindow(pVM, pVCpu, &pMsg->X64InterruptWindow, pCtx, pGVCpu);
|
---|
3065 |
|
---|
3066 | case HvMessageTypeX64CpuidIntercept:
|
---|
3067 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64CpuIdIntercept));
|
---|
3068 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
|
---|
3069 | return nemHCWinHandleMessageCpuId(pVCpu, &pMsg->X64CpuIdIntercept, pCtx);
|
---|
3070 |
|
---|
3071 | case HvMessageTypeX64MsrIntercept:
|
---|
3072 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64MsrIntercept));
|
---|
3073 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
|
---|
3074 | return nemHCWinHandleMessageMsr(pVCpu, &pMsg->X64MsrIntercept, pCtx, pGVCpu);
|
---|
3075 |
|
---|
3076 | case HvMessageTypeX64ExceptionIntercept:
|
---|
3077 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64ExceptionIntercept));
|
---|
3078 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
|
---|
3079 | return nemHCWinHandleMessageException(pVCpu, &pMsg->X64ExceptionIntercept, pCtx, pGVCpu);
|
---|
3080 |
|
---|
3081 | case HvMessageTypeUnrecoverableException:
|
---|
3082 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterceptHeader));
|
---|
3083 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
|
---|
3084 | return nemHCWinHandleMessageUnrecoverableException(pVCpu, &pMsg->X64InterceptHeader, pCtx, pGVCpu);
|
---|
3085 |
|
---|
3086 | case HvMessageTypeInvalidVpRegisterValue:
|
---|
3087 | case HvMessageTypeUnsupportedFeature:
|
---|
3088 | case HvMessageTypeTlbPageSizeMismatch:
|
---|
3089 | LogRel(("Unimplemented msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3090 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n%.32Rhxd\n", pMsg->Header.MessageType, pMsg),
|
---|
3091 | VERR_NEM_IPE_3);
|
---|
3092 |
|
---|
3093 | case HvMessageTypeX64ApicEoi:
|
---|
3094 | case HvMessageTypeX64LegacyFpError:
|
---|
3095 | case HvMessageTypeX64RegisterIntercept:
|
---|
3096 | case HvMessageTypeApicEoi:
|
---|
3097 | case HvMessageTypeFerrAsserted:
|
---|
3098 | case HvMessageTypeEventLogBufferComplete:
|
---|
3099 | case HvMessageTimerExpired:
|
---|
3100 | LogRel(("Unexpected msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3101 | AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
3102 | VERR_NEM_IPE_3);
|
---|
3103 |
|
---|
3104 | default:
|
---|
3105 | LogRel(("Unknown msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3106 | AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
3107 | VERR_NEM_IPE_3);
|
---|
3108 | }
|
---|
3109 | }
|
---|
3110 | else
|
---|
3111 | AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
|
---|
3112 | pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
|
---|
3113 | VERR_NEM_IPE_4);
|
---|
3114 | }
|
---|
3115 | #elif defined(IN_RING3)
|
---|
3116 | /**
|
---|
3117 | * Handles VM exits.
|
---|
3118 | *
|
---|
3119 | * @returns Strict VBox status code.
|
---|
3120 | * @param pVM The cross context VM structure.
|
---|
3121 | * @param pVCpu The cross context per CPU structure.
|
---|
3122 | * @param pExit The VM exit information to handle.
|
---|
3123 | * @param pCtx The register context.
|
---|
3124 | * @sa nemHCWinHandleMessage
|
---|
3125 | */
|
---|
3126 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, PCPUMCTX pCtx)
|
---|
3127 | {
|
---|
3128 | switch (pExit->ExitReason)
|
---|
3129 | {
|
---|
3130 | case WHvRunVpExitReasonMemoryAccess:
|
---|
3131 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
|
---|
3132 | return nemR3WinHandleExitMemory(pVM, pVCpu, pExit, pCtx);
|
---|
3133 |
|
---|
3134 | case WHvRunVpExitReasonX64IoPortAccess:
|
---|
3135 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
|
---|
3136 | return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit, pCtx);
|
---|
3137 |
|
---|
3138 | case WHvRunVpExitReasonX64Halt:
|
---|
3139 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
|
---|
3140 | Log4(("HaltExit\n"));
|
---|
3141 | return VINF_EM_HALT;
|
---|
3142 |
|
---|
3143 | case WHvRunVpExitReasonCanceled:
|
---|
3144 | return VINF_SUCCESS;
|
---|
3145 |
|
---|
3146 | case WHvRunVpExitReasonX64InterruptWindow:
|
---|
3147 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
|
---|
3148 | return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit, pCtx);
|
---|
3149 |
|
---|
3150 | case WHvRunVpExitReasonX64Cpuid:
|
---|
3151 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
|
---|
3152 | return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit, pCtx);
|
---|
3153 |
|
---|
3154 | case WHvRunVpExitReasonX64MsrAccess:
|
---|
3155 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
|
---|
3156 | return nemR3WinHandleExitMsr(pVM, pVCpu, pExit, pCtx);
|
---|
3157 |
|
---|
3158 | case WHvRunVpExitReasonException:
|
---|
3159 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
|
---|
3160 | return nemR3WinHandleExitException(pVM, pVCpu, pExit, pCtx);
|
---|
3161 |
|
---|
3162 | case WHvRunVpExitReasonUnrecoverableException:
|
---|
3163 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
|
---|
3164 | return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit, pCtx);
|
---|
3165 |
|
---|
3166 | case WHvRunVpExitReasonUnsupportedFeature:
|
---|
3167 | case WHvRunVpExitReasonInvalidVpRegisterValue:
|
---|
3168 | LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
|
---|
3169 | AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
|
---|
3170 | pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
|
---|
3171 |
|
---|
3172 | /* Undesired exits: */
|
---|
3173 | case WHvRunVpExitReasonNone:
|
---|
3174 | default:
|
---|
3175 | LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
|
---|
3176 | AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
|
---|
3177 | }
|
---|
3178 | }
|
---|
3179 | #endif /* IN_RING3 && !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
3180 |
|
---|
3181 |
|
---|
3182 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3183 | /**
|
---|
3184 | * Worker for nemHCWinRunGC that stops the execution on the way out.
|
---|
3185 | *
|
---|
3186 | * The CPU was running the last time we checked, no there are no messages that
|
---|
3187 | * needs being marked handled/whatever. Caller checks this.
|
---|
3188 | *
|
---|
3189 | * @returns rcStrict on success, error status on failure.
|
---|
3190 | * @param pVM The cross context VM structure.
|
---|
3191 | * @param pVCpu The cross context per CPU structure.
|
---|
3192 | * @param rcStrict The nemHCWinRunGC return status. This is a little
|
---|
3193 | * bit unnecessary, except in internal error cases,
|
---|
3194 | * since we won't need to stop the CPU if we took an
|
---|
3195 | * exit.
|
---|
3196 | * @param pMappingHeader The message slot mapping.
|
---|
3197 | * @param pGVM The global (ring-0) VM structure (NULL in r3).
|
---|
3198 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3199 | */
|
---|
3200 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict,
|
---|
3201 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
|
---|
3202 | PGVM pGVM, PGVMCPU pGVCpu)
|
---|
3203 | {
|
---|
3204 | /*
|
---|
3205 | * Try stopping the processor. If we're lucky we manage to do this before it
|
---|
3206 | * does another VM exit.
|
---|
3207 | */
|
---|
3208 | # ifdef IN_RING0
|
---|
3209 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
3210 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction,
|
---|
3211 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
3212 | NULL, 0);
|
---|
3213 | if (NT_SUCCESS(rcNt))
|
---|
3214 | {
|
---|
3215 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
3216 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
3217 | return rcStrict;
|
---|
3218 | }
|
---|
3219 | # else
|
---|
3220 | BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
|
---|
3221 | if (fRet)
|
---|
3222 | {
|
---|
3223 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
3224 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
3225 | return rcStrict;
|
---|
3226 | }
|
---|
3227 | RT_NOREF(pGVM, pGVCpu);
|
---|
3228 | # endif
|
---|
3229 |
|
---|
3230 | /*
|
---|
3231 | * Dang. The CPU stopped by itself and we got a couple of message to deal with.
|
---|
3232 | */
|
---|
3233 | # ifdef IN_RING0
|
---|
3234 | AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
|
---|
3235 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3236 | # else
|
---|
3237 | DWORD dwErr = RTNtLastErrorValue();
|
---|
3238 | AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
|
---|
3239 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3240 | # endif
|
---|
3241 | Log8(("nemHCWinStopCpu: Stopping CPU #%u pending...\n", pVCpu->idCpu));
|
---|
3242 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
|
---|
3243 |
|
---|
3244 | /*
|
---|
3245 | * First message: Exit or similar, sometimes VidMessageStopRequestComplete.
|
---|
3246 | * Note! We can safely ASSUME that rcStrict isn't an important information one.
|
---|
3247 | */
|
---|
3248 | # ifdef IN_RING0
|
---|
3249 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
3250 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
3251 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
3252 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3253 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3254 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3255 | NULL, 0);
|
---|
3256 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3257 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3258 | # else
|
---|
3259 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
3260 | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
3261 | AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3262 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3263 | # endif
|
---|
3264 |
|
---|
3265 | VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
3266 | if (enmVidMsgType != VidMessageStopRequestComplete)
|
---|
3267 | {
|
---|
3268 | VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, CPUMQueryGuestCtxPtr(pVCpu), pGVCpu);
|
---|
3269 | if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
|
---|
3270 | rcStrict = rcStrict2;
|
---|
3271 |
|
---|
3272 | /*
|
---|
3273 | * Mark it as handled and get the stop request completed message, then mark
|
---|
3274 | * that as handled too. CPU is back into fully stopped stated then.
|
---|
3275 | */
|
---|
3276 | # ifdef IN_RING0
|
---|
3277 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
3278 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
3279 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
3280 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3281 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3282 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3283 | NULL, 0);
|
---|
3284 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3285 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3286 | # else
|
---|
3287 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
3288 | VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
3289 | AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3290 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3291 | # endif
|
---|
3292 |
|
---|
3293 | /* It should be a stop request completed message. */
|
---|
3294 | enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
3295 | AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
|
---|
3296 | ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
|
---|
3297 | enmVidMsgType, pMappingHeader->cbMessage),
|
---|
3298 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3299 |
|
---|
3300 | /*
|
---|
3301 | * Mark the VidMessageStopRequestComplete message as handled.
|
---|
3302 | */
|
---|
3303 | # ifdef IN_RING0
|
---|
3304 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
3305 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
3306 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = 30000; /*ms*/
|
---|
3307 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3308 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3309 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3310 | NULL, 0);
|
---|
3311 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3312 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3313 | # else
|
---|
3314 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
|
---|
3315 | AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3316 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3317 | # endif
|
---|
3318 | Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3319 | }
|
---|
3320 | else
|
---|
3321 | {
|
---|
3322 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingOdd);
|
---|
3323 | Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc) - 1st VidMessageSlotHandleAndGetNext got VidMessageStopRequestComplete.\n",
|
---|
3324 | VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3325 | }
|
---|
3326 | return rcStrict;
|
---|
3327 | }
|
---|
3328 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
3329 |
|
---|
3330 | #if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(IN_RING3)
|
---|
3331 |
|
---|
3332 | /**
|
---|
3333 | * Deals with pending interrupt related force flags, may inject interrupt.
|
---|
3334 | *
|
---|
3335 | * @returns VBox strict status code.
|
---|
3336 | * @param pVM The cross context VM structure.
|
---|
3337 | * @param pVCpu The cross context per CPU structure.
|
---|
3338 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
3339 | * @param pCtx The register context.
|
---|
3340 | * @param pfInterruptWindows Where to return interrupt window flags.
|
---|
3341 | */
|
---|
3342 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
3343 | nemHCWinHandleInterruptFF(PVM pVM, PVMCPU pVCpu, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint8_t *pfInterruptWindows)
|
---|
3344 | {
|
---|
3345 | Assert(!TRPMHasTrap(pVCpu));
|
---|
3346 | RT_NOREF_PV(pVM);
|
---|
3347 |
|
---|
3348 | /*
|
---|
3349 | * First update APIC. We ASSUME this won't need TPR/CR8.
|
---|
3350 | */
|
---|
3351 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
3352 | {
|
---|
3353 | APICUpdatePendingInterrupts(pVCpu);
|
---|
3354 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
|
---|
3355 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
3356 | return VINF_SUCCESS;
|
---|
3357 | }
|
---|
3358 |
|
---|
3359 | /*
|
---|
3360 | * We don't currently implement SMIs.
|
---|
3361 | */
|
---|
3362 | AssertReturn(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
|
---|
3363 |
|
---|
3364 | /*
|
---|
3365 | * Check if we've got the minimum of state required for deciding whether we
|
---|
3366 | * can inject interrupts and NMIs. If we don't have it, get all we might require
|
---|
3367 | * for injection via IEM.
|
---|
3368 | */
|
---|
3369 | bool const fPendingNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3370 | uint64_t fNeedExtrn = CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
|
---|
3371 | | (fPendingNmi ? CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI : 0);
|
---|
3372 | if (pCtx->fExtrn & fNeedExtrn)
|
---|
3373 | {
|
---|
3374 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
3375 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
|
---|
3376 | if (rcStrict != VINF_SUCCESS)
|
---|
3377 | return rcStrict;
|
---|
3378 | }
|
---|
3379 | bool const fInhibitInterrupts = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
3380 | && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip;
|
---|
3381 |
|
---|
3382 | /*
|
---|
3383 | * NMI? Try deliver it first.
|
---|
3384 | */
|
---|
3385 | if (fPendingNmi)
|
---|
3386 | {
|
---|
3387 | if ( !fInhibitInterrupts
|
---|
3388 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3389 | {
|
---|
3390 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
3391 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
|
---|
3392 | if (rcStrict == VINF_SUCCESS)
|
---|
3393 | {
|
---|
3394 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3395 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
|
---|
3396 | Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3397 | }
|
---|
3398 | return rcStrict;
|
---|
3399 | }
|
---|
3400 | *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
|
---|
3401 | Log8(("NMI window pending on %u\n", pVCpu->idCpu));
|
---|
3402 | }
|
---|
3403 |
|
---|
3404 | /*
|
---|
3405 | * APIC or PIC interrupt?
|
---|
3406 | */
|
---|
3407 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
3408 | {
|
---|
3409 | if ( !fInhibitInterrupts
|
---|
3410 | && pCtx->rflags.Bits.u1IF)
|
---|
3411 | {
|
---|
3412 | AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
|
---|
3413 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, pCtx,
|
---|
3414 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
|
---|
3415 | if (rcStrict == VINF_SUCCESS)
|
---|
3416 | {
|
---|
3417 | uint8_t bInterrupt;
|
---|
3418 | int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
|
---|
3419 | if (RT_SUCCESS(rc))
|
---|
3420 | {
|
---|
3421 | rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
|
---|
3422 | Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3423 | }
|
---|
3424 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3425 | {
|
---|
3426 | *pfInterruptWindows |= (bInterrupt >> 4 /*??*/) << NEM_WIN_INTW_F_PRIO_SHIFT;
|
---|
3427 | Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
|
---|
3428 | }
|
---|
3429 | else
|
---|
3430 | Log8(("PDMGetInterrupt failed -> %d\n", rc));
|
---|
3431 | }
|
---|
3432 | return rcStrict;
|
---|
3433 | }
|
---|
3434 | *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
|
---|
3435 | Log8(("Interrupt window pending on %u\n", pVCpu->idCpu));
|
---|
3436 | }
|
---|
3437 |
|
---|
3438 | return VINF_SUCCESS;
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 |
|
---|
3442 | /**
|
---|
3443 | * Inner NEM runloop for windows.
|
---|
3444 | *
|
---|
3445 | * @returns Strict VBox status code.
|
---|
3446 | * @param pVM The cross context VM structure.
|
---|
3447 | * @param pVCpu The cross context per CPU structure.
|
---|
3448 | * @param pGVM The ring-0 VM structure (NULL in ring-3).
|
---|
3449 | * @param pGVCpu The ring-0 per CPU structure (NULL in ring-3).
|
---|
3450 | */
|
---|
3451 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu, PGVM pGVM, PGVMCPU pGVCpu)
|
---|
3452 | {
|
---|
3453 | PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
3454 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, pCtx->rflags));
|
---|
3455 | # ifdef LOG_ENABLED
|
---|
3456 | if (LogIs3Enabled())
|
---|
3457 | nemHCWinLogState(pVM, pVCpu);
|
---|
3458 | # endif
|
---|
3459 | # ifdef IN_RING0
|
---|
3460 | Assert(pVCpu->idCpu == pGVCpu->idCpu);
|
---|
3461 | # endif
|
---|
3462 |
|
---|
3463 | /*
|
---|
3464 | * Try switch to NEM runloop state.
|
---|
3465 | */
|
---|
3466 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
|
---|
3467 | { /* likely */ }
|
---|
3468 | else
|
---|
3469 | {
|
---|
3470 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
3471 | LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
|
---|
3472 | return VINF_SUCCESS;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 | /*
|
---|
3476 | * The run loop.
|
---|
3477 | *
|
---|
3478 | * Current approach to state updating to use the sledgehammer and sync
|
---|
3479 | * everything every time. This will be optimized later.
|
---|
3480 | */
|
---|
3481 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3482 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
|
---|
3483 | uint32_t cMillies = 5000; /** @todo lower this later... */
|
---|
3484 | # endif
|
---|
3485 | const bool fSingleStepping = DBGFIsStepping(pVCpu);
|
---|
3486 | // const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
|
---|
3487 | // : VM_FF_HP_R0_PRE_HM_STEP_MASK;
|
---|
3488 | // const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
|
---|
3489 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
3490 | for (unsigned iLoop = 0;; iLoop++)
|
---|
3491 | {
|
---|
3492 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
3493 | /*
|
---|
3494 | * Hack alert!
|
---|
3495 | */
|
---|
3496 | uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
|
---|
3497 | if (cMappedPages >= 4000)
|
---|
3498 | {
|
---|
3499 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
|
---|
3500 | Log(("nemHCWinRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
|
---|
3501 | }
|
---|
3502 | # endif
|
---|
3503 |
|
---|
3504 | /*
|
---|
3505 | * Pending interrupts or such? Need to check and deal with this prior
|
---|
3506 | * to the state syncing.
|
---|
3507 | */
|
---|
3508 | pVCpu->nem.s.fDesiredInterruptWindows = 0;
|
---|
3509 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
|
---|
3510 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
3511 | {
|
---|
3512 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3513 | /* Make sure the CPU isn't executing. */
|
---|
3514 | if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
|
---|
3515 | {
|
---|
3516 | pVCpu->nem.s.fHandleAndGetFlags = 0;
|
---|
3517 | rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
|
---|
3518 | if (rcStrict == VINF_SUCCESS)
|
---|
3519 | { /* likely */ }
|
---|
3520 | else
|
---|
3521 | {
|
---|
3522 | LogFlow(("NEM/%u: breaking: nemHCWinStopCpu -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3523 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
3524 | break;
|
---|
3525 | }
|
---|
3526 | }
|
---|
3527 | # endif
|
---|
3528 |
|
---|
3529 | /* Try inject interrupt. */
|
---|
3530 | rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, pGVCpu, pCtx, &pVCpu->nem.s.fDesiredInterruptWindows);
|
---|
3531 | if (rcStrict == VINF_SUCCESS)
|
---|
3532 | { /* likely */ }
|
---|
3533 | else
|
---|
3534 | {
|
---|
3535 | LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3536 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
3537 | break;
|
---|
3538 | }
|
---|
3539 | }
|
---|
3540 |
|
---|
3541 | /*
|
---|
3542 | * Ensure that hyper-V has the whole state.
|
---|
3543 | * (We always update the interrupt windows settings when active as hyper-V seems
|
---|
3544 | * to forget about it after an exit.)
|
---|
3545 | */
|
---|
3546 | if ( (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
|
---|
3547 | != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
|
---|
3548 | || pVCpu->nem.s.fDesiredInterruptWindows
|
---|
3549 | || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows)
|
---|
3550 | {
|
---|
3551 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3552 | Assert(pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */);
|
---|
3553 | # endif
|
---|
3554 | # ifdef IN_RING0
|
---|
3555 | int rc2 = nemR0WinExportState(pGVM, pGVCpu, pCtx);
|
---|
3556 | # else
|
---|
3557 | int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
|
---|
3558 | RT_NOREF(pGVM, pGVCpu);
|
---|
3559 | # endif
|
---|
3560 | AssertRCReturn(rc2, rc2);
|
---|
3561 | }
|
---|
3562 |
|
---|
3563 | /*
|
---|
3564 | * Run a bit.
|
---|
3565 | */
|
---|
3566 | if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
3567 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3568 | {
|
---|
3569 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3570 | if (pVCpu->nem.s.fHandleAndGetFlags)
|
---|
3571 | { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
|
---|
3572 | else
|
---|
3573 | {
|
---|
3574 | # ifdef IN_RING0
|
---|
3575 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
3576 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction,
|
---|
3577 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
3578 | NULL, 0);
|
---|
3579 | LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
3580 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pGVCpu->idCpu, rcNt),
|
---|
3581 | VERR_NEM_IPE_5);
|
---|
3582 | # else
|
---|
3583 | AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
|
---|
3584 | ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
|
---|
3585 | pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
|
---|
3586 | VERR_NEM_IPE_5);
|
---|
3587 | # endif
|
---|
3588 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
3589 | }
|
---|
3590 | # endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
3591 |
|
---|
3592 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
3593 | {
|
---|
3594 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3595 | # ifdef IN_RING0
|
---|
3596 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
3597 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
|
---|
3598 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
|
---|
3599 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3600 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3601 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3602 | NULL, 0);
|
---|
3603 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
3604 | if (rcNt == STATUS_SUCCESS)
|
---|
3605 | # else
|
---|
3606 | BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
3607 | pVCpu->nem.s.fHandleAndGetFlags, cMillies);
|
---|
3608 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
3609 | if (fRet)
|
---|
3610 | # endif
|
---|
3611 | # else
|
---|
3612 | WHV_RUN_VP_EXIT_CONTEXT ExitReason;
|
---|
3613 | RT_ZERO(ExitReason);
|
---|
3614 | HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
|
---|
3615 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
3616 | if (SUCCEEDED(hrc))
|
---|
3617 | # endif
|
---|
3618 | {
|
---|
3619 | /*
|
---|
3620 | * Deal with the message.
|
---|
3621 | */
|
---|
3622 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3623 | rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pCtx, pGVCpu);
|
---|
3624 | pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
3625 | # else
|
---|
3626 | rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason, pCtx);
|
---|
3627 | # endif
|
---|
3628 | if (rcStrict == VINF_SUCCESS)
|
---|
3629 | { /* hopefully likely */ }
|
---|
3630 | else
|
---|
3631 | {
|
---|
3632 | LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3633 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
3634 | break;
|
---|
3635 | }
|
---|
3636 | }
|
---|
3637 | else
|
---|
3638 | {
|
---|
3639 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3640 |
|
---|
3641 | /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
|
---|
3642 | so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
|
---|
3643 | the error code conversion is into WAIT_XXX, i.e. NT status codes. */
|
---|
3644 | # ifndef IN_RING0
|
---|
3645 | DWORD rcNt = GetLastError();
|
---|
3646 | # endif
|
---|
3647 | LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
3648 | AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
|
---|
3649 | || rcNt == STATUS_ALERTED /* just in case */
|
---|
3650 | || rcNt == STATUS_USER_APC /* ditto */
|
---|
3651 | , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n",
|
---|
3652 | pVCpu->idCpu, rcNt, rcNt),
|
---|
3653 | VERR_NEM_IPE_0);
|
---|
3654 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
3655 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
|
---|
3656 | # else
|
---|
3657 | AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
|
---|
3658 | pVCpu->idCpu, hrc, GetLastError()),
|
---|
3659 | VERR_NEM_IPE_0);
|
---|
3660 |
|
---|
3661 | # endif
|
---|
3662 | }
|
---|
3663 |
|
---|
3664 | /*
|
---|
3665 | * If no relevant FFs are pending, loop.
|
---|
3666 | */
|
---|
3667 | if ( !VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
3668 | && !VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
3669 | continue;
|
---|
3670 |
|
---|
3671 | /** @todo Try handle pending flags, not just return to EM loops. Take care
|
---|
3672 | * not to set important RCs here unless we've handled a message. */
|
---|
3673 | LogFlow(("NEM/%u: breaking: pending FF (%#x / %#x)\n",
|
---|
3674 | pVCpu->idCpu, pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
|
---|
3675 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
|
---|
3676 | }
|
---|
3677 | else
|
---|
3678 | {
|
---|
3679 | LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
|
---|
3680 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
|
---|
3681 | }
|
---|
3682 | }
|
---|
3683 | else
|
---|
3684 | {
|
---|
3685 | LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
|
---|
3686 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
|
---|
3687 | }
|
---|
3688 | break;
|
---|
3689 | } /* the run loop */
|
---|
3690 |
|
---|
3691 |
|
---|
3692 | /*
|
---|
3693 | * If the CPU is running, make sure to stop it before we try sync back the
|
---|
3694 | * state and return to EM. We don't sync back the whole state if we can help it.
|
---|
3695 | */
|
---|
3696 | # ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
3697 | if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
|
---|
3698 | {
|
---|
3699 | pVCpu->nem.s.fHandleAndGetFlags = 0;
|
---|
3700 | rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
|
---|
3701 | }
|
---|
3702 | # endif
|
---|
3703 |
|
---|
3704 | if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
3705 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
3706 |
|
---|
3707 | if (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
|
---|
3708 | {
|
---|
3709 | /* Try anticipate what we might need. */
|
---|
3710 | uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
|
---|
3711 | if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
3712 | || RT_FAILURE(rcStrict))
|
---|
3713 | fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
3714 | # ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
|
---|
3715 | else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
3716 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
|
---|
3717 | fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
|
---|
3718 | else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
|
---|
3719 | fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
|
---|
3720 | # endif
|
---|
3721 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
|
---|
3722 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
3723 | fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
|
---|
3724 |
|
---|
3725 | if (pCtx->fExtrn & fImport)
|
---|
3726 | {
|
---|
3727 | # ifdef IN_RING0
|
---|
3728 | int rc2 = nemR0WinImportState(pGVM, pGVCpu, pCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
3729 | if (RT_SUCCESS(rc2))
|
---|
3730 | pCtx->fExtrn &= ~fImport;
|
---|
3731 | else if (rc2 == VERR_NEM_CHANGE_PGM_MODE || rc2 == VERR_NEM_FLUSH_TLB || rc2 == VERR_NEM_UPDATE_APIC_BASE)
|
---|
3732 | {
|
---|
3733 | pCtx->fExtrn &= ~fImport;
|
---|
3734 | if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
|
---|
3735 | rcStrict = -rc2;
|
---|
3736 | else
|
---|
3737 | {
|
---|
3738 | pVCpu->nem.s.rcPending = -rc2;
|
---|
3739 | LogFlow(("NEM/%u: rcPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3740 | }
|
---|
3741 | }
|
---|
3742 | # else
|
---|
3743 | int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
3744 | if (RT_SUCCESS(rc2))
|
---|
3745 | pCtx->fExtrn &= ~fImport;
|
---|
3746 | # endif
|
---|
3747 | else if (RT_SUCCESS(rcStrict))
|
---|
3748 | rcStrict = rc2;
|
---|
3749 | if (!(pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
|
---|
3750 | pCtx->fExtrn = 0;
|
---|
3751 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
|
---|
3752 | }
|
---|
3753 | else
|
---|
3754 | {
|
---|
3755 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
|
---|
3756 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
3757 | }
|
---|
3758 | }
|
---|
3759 | else
|
---|
3760 | {
|
---|
3761 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
|
---|
3762 | pCtx->fExtrn = 0;
|
---|
3763 | }
|
---|
3764 |
|
---|
3765 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
|
---|
3766 | pVCpu->idCpu, pCtx->cs.Sel, pCtx->rip, pCtx->rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3767 | return rcStrict;
|
---|
3768 | }
|
---|
3769 |
|
---|
3770 | #endif /* defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(IN_RING3) */
|
---|
3771 |
|
---|
3772 | /**
|
---|
3773 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
|
---|
3774 | */
|
---|
3775 | NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
|
---|
3776 | PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
3777 | {
|
---|
3778 | /* We'll just unmap the memory. */
|
---|
3779 | if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
3780 | {
|
---|
3781 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
3782 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
3783 | AssertRC(rc);
|
---|
3784 | if (RT_SUCCESS(rc))
|
---|
3785 | #else
|
---|
3786 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
3787 | if (SUCCEEDED(hrc))
|
---|
3788 | #endif
|
---|
3789 | {
|
---|
3790 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
3791 | Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
|
---|
3792 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
3793 | }
|
---|
3794 | else
|
---|
3795 | {
|
---|
3796 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
3797 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
3798 | return rc;
|
---|
3799 | #else
|
---|
3800 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
3801 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
3802 | return VERR_NEM_IPE_2;
|
---|
3803 | #endif
|
---|
3804 | }
|
---|
3805 | }
|
---|
3806 | RT_NOREF(pVCpu, pvUser);
|
---|
3807 | return VINF_SUCCESS;
|
---|
3808 | }
|
---|
3809 |
|
---|
3810 |
|
---|
3811 | /**
|
---|
3812 | * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
|
---|
3813 | *
|
---|
3814 | * @returns The PGMPhysNemQueryPageInfo result.
|
---|
3815 | * @param pVM The cross context VM structure.
|
---|
3816 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3817 | * @param GCPhys The page to unmap.
|
---|
3818 | */
|
---|
3819 | NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
3820 | {
|
---|
3821 | PGMPHYSNEMPAGEINFO Info;
|
---|
3822 | return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
|
---|
3823 | nemHCWinUnsetForA20CheckerCallback, NULL);
|
---|
3824 | }
|
---|
3825 |
|
---|
3826 |
|
---|
3827 | void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
3828 | {
|
---|
3829 | Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
|
---|
3830 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
|
---|
3831 | }
|
---|
3832 |
|
---|
3833 |
|
---|
3834 | void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
3835 | int fRestoreAsRAM, bool fRestoreAsRAM2)
|
---|
3836 | {
|
---|
3837 | Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
|
---|
3838 | GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
|
---|
3839 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
|
---|
3840 | }
|
---|
3841 |
|
---|
3842 |
|
---|
3843 | void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
|
---|
3844 | RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
|
---|
3845 | {
|
---|
3846 | Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
|
---|
3847 | GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
|
---|
3848 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
|
---|
3849 | }
|
---|
3850 |
|
---|
3851 |
|
---|
3852 | /**
|
---|
3853 | * Worker that maps pages into Hyper-V.
|
---|
3854 | *
|
---|
3855 | * This is used by the PGM physical page notifications as well as the memory
|
---|
3856 | * access VMEXIT handlers.
|
---|
3857 | *
|
---|
3858 | * @returns VBox status code.
|
---|
3859 | * @param pVM The cross context VM structure.
|
---|
3860 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
3861 | * calling EMT.
|
---|
3862 | * @param GCPhysSrc The source page address.
|
---|
3863 | * @param GCPhysDst The hyper-V destination page. This may differ from
|
---|
3864 | * GCPhysSrc when A20 is disabled.
|
---|
3865 | * @param fPageProt NEM_PAGE_PROT_XXX.
|
---|
3866 | * @param pu2State Our page state (input/output).
|
---|
3867 | * @param fBackingChanged Set if the page backing is being changed.
|
---|
3868 | * @thread EMT(pVCpu)
|
---|
3869 | */
|
---|
3870 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
3871 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
|
---|
3872 | {
|
---|
3873 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
3874 | /*
|
---|
3875 | * When using the hypercalls instead of the ring-3 APIs, we don't need to
|
---|
3876 | * unmap memory before modifying it. We still want to track the state though,
|
---|
3877 | * since unmap will fail when called an unmapped page and we don't want to redo
|
---|
3878 | * upgrades/downgrades.
|
---|
3879 | */
|
---|
3880 | uint8_t const u2OldState = *pu2State;
|
---|
3881 | int rc;
|
---|
3882 | if (fPageProt == NEM_PAGE_PROT_NONE)
|
---|
3883 | {
|
---|
3884 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
3885 | {
|
---|
3886 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
3887 | if (RT_SUCCESS(rc))
|
---|
3888 | {
|
---|
3889 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
3890 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
3891 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
3892 | }
|
---|
3893 | else
|
---|
3894 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
3895 | }
|
---|
3896 | else
|
---|
3897 | rc = VINF_SUCCESS;
|
---|
3898 | }
|
---|
3899 | else if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
3900 | {
|
---|
3901 | if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
|
---|
3902 | {
|
---|
3903 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
3904 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
3905 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
3906 | if (RT_SUCCESS(rc))
|
---|
3907 | {
|
---|
3908 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
3909 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
3910 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
3911 | Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
3912 | NOREF(cMappedPages);
|
---|
3913 | }
|
---|
3914 | else
|
---|
3915 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
3916 | }
|
---|
3917 | else
|
---|
3918 | rc = VINF_SUCCESS;
|
---|
3919 | }
|
---|
3920 | else
|
---|
3921 | {
|
---|
3922 | if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
|
---|
3923 | {
|
---|
3924 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
3925 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
3926 | if (RT_SUCCESS(rc))
|
---|
3927 | {
|
---|
3928 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
3929 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
3930 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
3931 | Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
3932 | NOREF(cMappedPages);
|
---|
3933 | }
|
---|
3934 | else
|
---|
3935 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
3936 | }
|
---|
3937 | else
|
---|
3938 | rc = VINF_SUCCESS;
|
---|
3939 | }
|
---|
3940 |
|
---|
3941 | return VINF_SUCCESS;
|
---|
3942 |
|
---|
3943 | #else
|
---|
3944 | /*
|
---|
3945 | * Looks like we need to unmap a page before we can change the backing
|
---|
3946 | * or even modify the protection. This is going to be *REALLY* efficient.
|
---|
3947 | * PGM lends us two bits to keep track of the state here.
|
---|
3948 | */
|
---|
3949 | uint8_t const u2OldState = *pu2State;
|
---|
3950 | uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
|
---|
3951 | : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
3952 | if ( fBackingChanged
|
---|
3953 | || u2NewState != u2OldState)
|
---|
3954 | {
|
---|
3955 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
3956 | {
|
---|
3957 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
3958 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
3959 | AssertRC(rc);
|
---|
3960 | if (RT_SUCCESS(rc))
|
---|
3961 | {
|
---|
3962 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
3963 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
3964 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
3965 | {
|
---|
3966 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
3967 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
3968 | return VINF_SUCCESS;
|
---|
3969 | }
|
---|
3970 | }
|
---|
3971 | else
|
---|
3972 | {
|
---|
3973 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
3974 | return rc;
|
---|
3975 | }
|
---|
3976 | # else
|
---|
3977 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
|
---|
3978 | if (SUCCEEDED(hrc))
|
---|
3979 | {
|
---|
3980 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
3981 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
3982 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
3983 | {
|
---|
3984 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
3985 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
3986 | return VINF_SUCCESS;
|
---|
3987 | }
|
---|
3988 | }
|
---|
3989 | else
|
---|
3990 | {
|
---|
3991 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
3992 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
3993 | return VERR_NEM_INIT_FAILED;
|
---|
3994 | }
|
---|
3995 | # endif
|
---|
3996 | }
|
---|
3997 | }
|
---|
3998 |
|
---|
3999 | /*
|
---|
4000 | * Writeable mapping?
|
---|
4001 | */
|
---|
4002 | if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
4003 | {
|
---|
4004 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4005 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4006 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
4007 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4008 | AssertRC(rc);
|
---|
4009 | if (RT_SUCCESS(rc))
|
---|
4010 | {
|
---|
4011 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
4012 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4013 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4014 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4015 | return VINF_SUCCESS;
|
---|
4016 | }
|
---|
4017 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4018 | return rc;
|
---|
4019 | # else
|
---|
4020 | void *pvPage;
|
---|
4021 | int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
|
---|
4022 | if (RT_SUCCESS(rc))
|
---|
4023 | {
|
---|
4024 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
4025 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
|
---|
4026 | if (SUCCEEDED(hrc))
|
---|
4027 | {
|
---|
4028 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
4029 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4030 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4031 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4032 | return VINF_SUCCESS;
|
---|
4033 | }
|
---|
4034 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4035 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4036 | return VERR_NEM_INIT_FAILED;
|
---|
4037 | }
|
---|
4038 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
4039 | return rc;
|
---|
4040 | # endif
|
---|
4041 | }
|
---|
4042 |
|
---|
4043 | if (fPageProt & NEM_PAGE_PROT_READ)
|
---|
4044 | {
|
---|
4045 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4046 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4047 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4048 | AssertRC(rc);
|
---|
4049 | if (RT_SUCCESS(rc))
|
---|
4050 | {
|
---|
4051 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
4052 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4053 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4054 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4055 | return VINF_SUCCESS;
|
---|
4056 | }
|
---|
4057 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4058 | return rc;
|
---|
4059 | # else
|
---|
4060 | const void *pvPage;
|
---|
4061 | int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
|
---|
4062 | if (RT_SUCCESS(rc))
|
---|
4063 | {
|
---|
4064 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
4065 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
|
---|
4066 | if (SUCCEEDED(hrc))
|
---|
4067 | {
|
---|
4068 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
4069 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4070 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4071 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4072 | return VINF_SUCCESS;
|
---|
4073 | }
|
---|
4074 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4075 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4076 | return VERR_NEM_INIT_FAILED;
|
---|
4077 | }
|
---|
4078 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
4079 | return rc;
|
---|
4080 | # endif
|
---|
4081 | }
|
---|
4082 |
|
---|
4083 | /* We already unmapped it above. */
|
---|
4084 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4085 | return VINF_SUCCESS;
|
---|
4086 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
4087 | }
|
---|
4088 |
|
---|
4089 |
|
---|
4090 | NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
|
---|
4091 | {
|
---|
4092 | if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4093 | {
|
---|
4094 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
|
---|
4095 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4096 | return VINF_SUCCESS;
|
---|
4097 | }
|
---|
4098 |
|
---|
4099 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4100 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4101 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
4102 | AssertRC(rc);
|
---|
4103 | if (RT_SUCCESS(rc))
|
---|
4104 | {
|
---|
4105 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4106 | Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
|
---|
4107 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4108 | return VINF_SUCCESS;
|
---|
4109 | }
|
---|
4110 | LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4111 | return rc;
|
---|
4112 | #else
|
---|
4113 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
|
---|
4114 | if (SUCCEEDED(hrc))
|
---|
4115 | {
|
---|
4116 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4117 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4118 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
|
---|
4119 | return VINF_SUCCESS;
|
---|
4120 | }
|
---|
4121 | LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4122 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4123 | return VERR_NEM_IPE_6;
|
---|
4124 | #endif
|
---|
4125 | }
|
---|
4126 |
|
---|
4127 |
|
---|
4128 | int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
4129 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4130 | {
|
---|
4131 | Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4132 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
4133 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
4134 |
|
---|
4135 | int rc;
|
---|
4136 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4137 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4138 | if ( pVM->nem.s.fA20Enabled
|
---|
4139 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4140 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4141 | else
|
---|
4142 | {
|
---|
4143 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4144 | rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4145 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
|
---|
4146 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4147 |
|
---|
4148 | }
|
---|
4149 | #else
|
---|
4150 | RT_NOREF_PV(fPageProt);
|
---|
4151 | if ( pVM->nem.s.fA20Enabled
|
---|
4152 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4153 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4154 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4155 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4156 | else
|
---|
4157 | rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
|
---|
4158 | #endif
|
---|
4159 | return rc;
|
---|
4160 | }
|
---|
4161 |
|
---|
4162 |
|
---|
4163 | void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
4164 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4165 | {
|
---|
4166 | Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4167 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
4168 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
4169 |
|
---|
4170 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4171 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4172 | if ( pVM->nem.s.fA20Enabled
|
---|
4173 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4174 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
4175 | else
|
---|
4176 | {
|
---|
4177 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4178 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4179 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4180 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
4181 | }
|
---|
4182 | #else
|
---|
4183 | RT_NOREF_PV(fPageProt);
|
---|
4184 | if ( pVM->nem.s.fA20Enabled
|
---|
4185 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4186 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4187 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4188 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4189 | /* else: ignore since we've got the alias page at this address. */
|
---|
4190 | #endif
|
---|
4191 | }
|
---|
4192 |
|
---|
4193 |
|
---|
4194 | void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
|
---|
4195 | uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4196 | {
|
---|
4197 | Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4198 | GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
|
---|
4199 | RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
|
---|
4200 |
|
---|
4201 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4202 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4203 | if ( pVM->nem.s.fA20Enabled
|
---|
4204 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4205 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4206 | else
|
---|
4207 | {
|
---|
4208 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4209 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4210 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4211 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4212 | }
|
---|
4213 | #else
|
---|
4214 | RT_NOREF_PV(fPageProt);
|
---|
4215 | if ( pVM->nem.s.fA20Enabled
|
---|
4216 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4217 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4218 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4219 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4220 | /* else: ignore since we've got the alias page at this address. */
|
---|
4221 | #endif
|
---|
4222 | }
|
---|
4223 |
|
---|