1 | /* $Id: NEMAllNativeTemplate-win.cpp.h 73282 2018-07-20 20:04:26Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager, Windows code template ring-0/3.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | /** Copy back a segment from hyper-V. */
|
---|
23 | #define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
|
---|
24 | do { \
|
---|
25 | (a_Dst).u64Base = (a_Src).Base; \
|
---|
26 | (a_Dst).u32Limit = (a_Src).Limit; \
|
---|
27 | (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
|
---|
28 | (a_Dst).Attr.u = (a_Src).Attributes; \
|
---|
29 | (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
30 | } while (0)
|
---|
31 |
|
---|
32 | /** @def NEMWIN_ASSERT_MSG_REG_VAL
|
---|
33 | * Asserts the correctness of a register value in a message/context.
|
---|
34 | */
|
---|
35 | #if 0
|
---|
36 | # define NEMWIN_NEED_GET_REGISTER
|
---|
37 | # if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
|
---|
38 | # define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
|
---|
39 | do { \
|
---|
40 | HV_REGISTER_VALUE TmpVal; \
|
---|
41 | nemHCWinGetRegister(a_pVCpu, a_pGVCpu, a_enmReg, &TmpVal); \
|
---|
42 | AssertMsg(a_Expr, a_Msg); \
|
---|
43 | } while (0)
|
---|
44 | # else
|
---|
45 | # define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
|
---|
46 | do { \
|
---|
47 | WHV_REGISTER_VALUE TmpVal; \
|
---|
48 | nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
|
---|
49 | AssertMsg(a_Expr, a_Msg); \
|
---|
50 | } while (0)
|
---|
51 | # endif
|
---|
52 | #else
|
---|
53 | # define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0)
|
---|
54 | #endif
|
---|
55 |
|
---|
56 | /** @def NEMWIN_ASSERT_MSG_REG_VAL
|
---|
57 | * Asserts the correctness of a 64-bit register value in a message/context.
|
---|
58 | */
|
---|
59 | #define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_pGVCpu, a_enmReg, a_u64Val) \
|
---|
60 | NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \
|
---|
61 | (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64))
|
---|
62 | /** @def NEMWIN_ASSERT_MSG_REG_VAL
|
---|
63 | * Asserts the correctness of a segment register value in a message/context.
|
---|
64 | */
|
---|
65 | #define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_pGVCpu, a_enmReg, a_SReg) \
|
---|
66 | NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, \
|
---|
67 | (a_SReg).Base == TmpVal.Segment.Base \
|
---|
68 | && (a_SReg).Limit == TmpVal.Segment.Limit \
|
---|
69 | && (a_SReg).Selector == TmpVal.Segment.Selector \
|
---|
70 | && (a_SReg).Attributes == TmpVal.Segment.Attributes, \
|
---|
71 | ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \
|
---|
72 | (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \
|
---|
73 | TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes))
|
---|
74 |
|
---|
75 |
|
---|
76 | /*********************************************************************************************************************************
|
---|
77 | * Global Variables *
|
---|
78 | *********************************************************************************************************************************/
|
---|
79 | /** NEM_WIN_PAGE_STATE_XXX names. */
|
---|
80 | NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
|
---|
81 |
|
---|
82 | /** HV_INTERCEPT_ACCESS_TYPE names. */
|
---|
83 | static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
|
---|
84 |
|
---|
85 |
|
---|
86 | /*********************************************************************************************************************************
|
---|
87 | * Internal Functions *
|
---|
88 | *********************************************************************************************************************************/
|
---|
89 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
90 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
|
---|
91 |
|
---|
92 |
|
---|
93 |
|
---|
94 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
95 |
|
---|
96 | /**
|
---|
97 | * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
|
---|
98 | *
|
---|
99 | * @returns VBox status code.
|
---|
100 | * @param pVM The cross context VM structure.
|
---|
101 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
102 | * @param GCPhysSrc The source page. Does not need to be page aligned.
|
---|
103 | * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
|
---|
104 | * when A20 is disabled.
|
---|
105 | * @param fFlags HV_MAP_GPA_XXX.
|
---|
106 | */
|
---|
107 | DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
|
---|
108 | {
|
---|
109 | #ifdef IN_RING0
|
---|
110 | /** @todo optimize further, caller generally has the physical address. */
|
---|
111 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
112 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
113 | return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu],
|
---|
114 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
115 | GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
116 | 1, fFlags);
|
---|
117 | #else
|
---|
118 | pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
119 | pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
120 | pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
|
---|
121 | pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
|
---|
122 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
|
---|
123 | #endif
|
---|
124 | }
|
---|
125 |
|
---|
126 |
|
---|
127 | /**
|
---|
128 | * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
|
---|
129 | *
|
---|
130 | * @returns VBox status code.
|
---|
131 | * @param pVM The cross context VM structure.
|
---|
132 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
133 | * @param GCPhys The page to unmap. Does not need to be page aligned.
|
---|
134 | */
|
---|
135 | DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
136 | {
|
---|
137 | # ifdef IN_RING0
|
---|
138 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
139 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
140 | return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
|
---|
141 | # else
|
---|
142 | pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
143 | pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
|
---|
144 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
|
---|
145 | # endif
|
---|
146 | }
|
---|
147 |
|
---|
148 | #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
149 | #ifndef IN_RING0
|
---|
150 |
|
---|
151 | NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu)
|
---|
152 | {
|
---|
153 | # if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
154 | # if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
155 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
156 | # endif
|
---|
157 | {
|
---|
158 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
|
---|
159 | AssertLogRelRCReturn(rc, rc);
|
---|
160 | return rc;
|
---|
161 | }
|
---|
162 | # endif
|
---|
163 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
164 |
|
---|
165 | /*
|
---|
166 | * The following is very similar to what nemR0WinExportState() does.
|
---|
167 | */
|
---|
168 | WHV_REGISTER_NAME aenmNames[128];
|
---|
169 | WHV_REGISTER_VALUE aValues[128];
|
---|
170 |
|
---|
171 | uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
|
---|
172 | if ( !fWhat
|
---|
173 | && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
|
---|
174 | return VINF_SUCCESS;
|
---|
175 | uintptr_t iReg = 0;
|
---|
176 |
|
---|
177 | # define ADD_REG64(a_enmName, a_uValue) do { \
|
---|
178 | aenmNames[iReg] = (a_enmName); \
|
---|
179 | aValues[iReg].Reg128.High64 = 0; \
|
---|
180 | aValues[iReg].Reg64 = (a_uValue); \
|
---|
181 | iReg++; \
|
---|
182 | } while (0)
|
---|
183 | # define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
|
---|
184 | aenmNames[iReg] = (a_enmName); \
|
---|
185 | aValues[iReg].Reg128.Low64 = (a_uValueLo); \
|
---|
186 | aValues[iReg].Reg128.High64 = (a_uValueHi); \
|
---|
187 | iReg++; \
|
---|
188 | } while (0)
|
---|
189 |
|
---|
190 | /* GPRs */
|
---|
191 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
192 | {
|
---|
193 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
194 | ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax);
|
---|
195 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
196 | ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx);
|
---|
197 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
198 | ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx);
|
---|
199 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
200 | ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx);
|
---|
201 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
202 | ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp);
|
---|
203 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
204 | ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp);
|
---|
205 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
206 | ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi);
|
---|
207 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
208 | ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi);
|
---|
209 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
210 | {
|
---|
211 | ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8);
|
---|
212 | ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9);
|
---|
213 | ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10);
|
---|
214 | ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11);
|
---|
215 | ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12);
|
---|
216 | ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13);
|
---|
217 | ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14);
|
---|
218 | ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15);
|
---|
219 | }
|
---|
220 | }
|
---|
221 |
|
---|
222 | /* RIP & Flags */
|
---|
223 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
224 | ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip);
|
---|
225 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
226 | ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u);
|
---|
227 |
|
---|
228 | /* Segments */
|
---|
229 | # define ADD_SEG(a_enmName, a_SReg) \
|
---|
230 | do { \
|
---|
231 | aenmNames[iReg] = a_enmName; \
|
---|
232 | aValues[iReg].Segment.Base = (a_SReg).u64Base; \
|
---|
233 | aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
|
---|
234 | aValues[iReg].Segment.Selector = (a_SReg).Sel; \
|
---|
235 | aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
|
---|
236 | iReg++; \
|
---|
237 | } while (0)
|
---|
238 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
239 | {
|
---|
240 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
241 | ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es);
|
---|
242 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
243 | ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs);
|
---|
244 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
245 | ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss);
|
---|
246 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
247 | ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds);
|
---|
248 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
249 | ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs);
|
---|
250 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
251 | ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs);
|
---|
252 | }
|
---|
253 |
|
---|
254 | /* Descriptor tables & task segment. */
|
---|
255 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
256 | {
|
---|
257 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
258 | ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr);
|
---|
259 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
260 | ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr);
|
---|
261 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
262 | {
|
---|
263 | aenmNames[iReg] = WHvX64RegisterIdtr;
|
---|
264 | aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
|
---|
265 | aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt;
|
---|
266 | iReg++;
|
---|
267 | }
|
---|
268 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
269 | {
|
---|
270 | aenmNames[iReg] = WHvX64RegisterGdtr;
|
---|
271 | aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
|
---|
272 | aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
|
---|
273 | iReg++;
|
---|
274 | }
|
---|
275 | }
|
---|
276 |
|
---|
277 | /* Control registers. */
|
---|
278 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
279 | {
|
---|
280 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
281 | ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0);
|
---|
282 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
283 | ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2);
|
---|
284 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
285 | ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3);
|
---|
286 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
287 | ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4);
|
---|
288 | }
|
---|
289 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
290 | ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
|
---|
291 |
|
---|
292 | /* Debug registers. */
|
---|
293 | /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
|
---|
294 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
295 | {
|
---|
296 | ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
|
---|
297 | ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
|
---|
298 | ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
|
---|
299 | ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
|
---|
300 | }
|
---|
301 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
302 | ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
|
---|
303 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
304 | ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
|
---|
305 |
|
---|
306 | /* Floating point state. */
|
---|
307 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
308 | {
|
---|
309 | ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1]);
|
---|
310 | ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1]);
|
---|
311 | ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1]);
|
---|
312 | ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1]);
|
---|
313 | ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1]);
|
---|
314 | ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1]);
|
---|
315 | ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1]);
|
---|
316 | ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1]);
|
---|
317 |
|
---|
318 | aenmNames[iReg] = WHvX64RegisterFpControlStatus;
|
---|
319 | aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.pXStateR3->x87.FCW;
|
---|
320 | aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.pXStateR3->x87.FSW;
|
---|
321 | aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW;
|
---|
322 | aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW >> 8;
|
---|
323 | aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.pXStateR3->x87.FOP;
|
---|
324 | aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP)
|
---|
325 | | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.CS << 32)
|
---|
326 | | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 << 48);
|
---|
327 | iReg++;
|
---|
328 |
|
---|
329 | aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
|
---|
330 | aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP)
|
---|
331 | | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.DS << 32)
|
---|
332 | | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 << 48);
|
---|
333 | aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR;
|
---|
334 | aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
|
---|
335 | iReg++;
|
---|
336 | }
|
---|
337 |
|
---|
338 | /* Vector state. */
|
---|
339 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
340 | {
|
---|
341 | ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi);
|
---|
342 | ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi);
|
---|
343 | ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi);
|
---|
344 | ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi);
|
---|
345 | ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi);
|
---|
346 | ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi);
|
---|
347 | ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi);
|
---|
348 | ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi);
|
---|
349 | ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi);
|
---|
350 | ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi);
|
---|
351 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi);
|
---|
352 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi);
|
---|
353 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi);
|
---|
354 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi);
|
---|
355 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi);
|
---|
356 | ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi);
|
---|
357 | }
|
---|
358 |
|
---|
359 | /* MSRs */
|
---|
360 | // WHvX64RegisterTsc - don't touch
|
---|
361 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
362 | ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER);
|
---|
363 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
364 | ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
|
---|
365 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
366 | {
|
---|
367 | ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs);
|
---|
368 | ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip);
|
---|
369 | ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp);
|
---|
370 | }
|
---|
371 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
372 | {
|
---|
373 | ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR);
|
---|
374 | ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR);
|
---|
375 | ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR);
|
---|
376 | ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK);
|
---|
377 | }
|
---|
378 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
379 | {
|
---|
380 | ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu));
|
---|
381 | ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
|
---|
382 | #if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
|
---|
383 | ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
|
---|
384 | #endif
|
---|
385 | PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
|
---|
386 | ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
|
---|
387 | ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
|
---|
388 | ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
|
---|
389 | ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
|
---|
390 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
|
---|
391 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
|
---|
392 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
|
---|
393 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
|
---|
394 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
|
---|
395 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
|
---|
396 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
|
---|
397 | ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
|
---|
398 | ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
|
---|
399 | #if 0 /** @todo these registers aren't available? Might explain something.. .*/
|
---|
400 | const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
|
---|
401 | if (enmCpuVendor != CPUMCPUVENDOR_AMD)
|
---|
402 | {
|
---|
403 | ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
|
---|
404 | ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
|
---|
405 | }
|
---|
406 | #endif
|
---|
407 | }
|
---|
408 |
|
---|
409 | /* event injection (clear it). */
|
---|
410 | if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
|
---|
411 | ADD_REG64(WHvRegisterPendingInterruption, 0);
|
---|
412 |
|
---|
413 | /* Interruptibility state. This can get a little complicated since we get
|
---|
414 | half of the state via HV_X64_VP_EXECUTION_STATE. */
|
---|
415 | if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
416 | == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
|
---|
417 | {
|
---|
418 | ADD_REG64(WHvRegisterInterruptState, 0);
|
---|
419 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
420 | && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
|
---|
421 | aValues[iReg - 1].InterruptState.InterruptShadow = 1;
|
---|
422 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
423 | aValues[iReg - 1].InterruptState.NmiMasked = 1;
|
---|
424 | }
|
---|
425 | else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
|
---|
426 | {
|
---|
427 | if ( pVCpu->nem.s.fLastInterruptShadow
|
---|
428 | || ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
429 | && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip))
|
---|
430 | {
|
---|
431 | ADD_REG64(WHvRegisterInterruptState, 0);
|
---|
432 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
433 | && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
|
---|
434 | aValues[iReg - 1].InterruptState.InterruptShadow = 1;
|
---|
435 | /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
|
---|
436 | //if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
437 | // aValues[iReg - 1].InterruptState.NmiMasked = 1;
|
---|
438 | }
|
---|
439 | }
|
---|
440 | else
|
---|
441 | Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
|
---|
442 |
|
---|
443 | /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
|
---|
444 | uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
|
---|
445 | if ( fDesiredIntWin
|
---|
446 | || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
|
---|
447 | {
|
---|
448 | pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
|
---|
449 | ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
|
---|
450 | Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
|
---|
451 | Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
|
---|
452 | Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
|
---|
453 | }
|
---|
454 |
|
---|
455 | /// @todo WHvRegisterPendingEvent0
|
---|
456 | /// @todo WHvRegisterPendingEvent1
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * Set the registers.
|
---|
460 | */
|
---|
461 | Assert(iReg < RT_ELEMENTS(aValues));
|
---|
462 | Assert(iReg < RT_ELEMENTS(aenmNames));
|
---|
463 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
464 | Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
465 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
|
---|
466 | # endif
|
---|
467 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
|
---|
468 | if (SUCCEEDED(hrc))
|
---|
469 | {
|
---|
470 | pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
|
---|
471 | return VINF_SUCCESS;
|
---|
472 | }
|
---|
473 | AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
474 | pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
|
---|
475 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
476 | return VERR_INTERNAL_ERROR;
|
---|
477 |
|
---|
478 | # undef ADD_REG64
|
---|
479 | # undef ADD_REG128
|
---|
480 | # undef ADD_SEG
|
---|
481 |
|
---|
482 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
483 | }
|
---|
484 |
|
---|
485 |
|
---|
486 | NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, uint64_t fWhat)
|
---|
487 | {
|
---|
488 | # if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
489 | # if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
490 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
491 | # endif
|
---|
492 | {
|
---|
493 | /* See NEMR0ImportState */
|
---|
494 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
|
---|
495 | if (RT_SUCCESS(rc))
|
---|
496 | return rc;
|
---|
497 | if (rc == VERR_NEM_FLUSH_TLB)
|
---|
498 | return PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /*fGlobal*/);
|
---|
499 | AssertLogRelRCReturn(rc, rc);
|
---|
500 | return rc;
|
---|
501 | }
|
---|
502 | # endif
|
---|
503 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
504 | WHV_REGISTER_NAME aenmNames[128];
|
---|
505 |
|
---|
506 | fWhat &= pVCpu->cpum.GstCtx.fExtrn;
|
---|
507 | uintptr_t iReg = 0;
|
---|
508 |
|
---|
509 | /* GPRs */
|
---|
510 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
511 | {
|
---|
512 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
513 | aenmNames[iReg++] = WHvX64RegisterRax;
|
---|
514 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
515 | aenmNames[iReg++] = WHvX64RegisterRcx;
|
---|
516 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
517 | aenmNames[iReg++] = WHvX64RegisterRdx;
|
---|
518 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
519 | aenmNames[iReg++] = WHvX64RegisterRbx;
|
---|
520 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
521 | aenmNames[iReg++] = WHvX64RegisterRsp;
|
---|
522 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
523 | aenmNames[iReg++] = WHvX64RegisterRbp;
|
---|
524 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
525 | aenmNames[iReg++] = WHvX64RegisterRsi;
|
---|
526 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
527 | aenmNames[iReg++] = WHvX64RegisterRdi;
|
---|
528 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
529 | {
|
---|
530 | aenmNames[iReg++] = WHvX64RegisterR8;
|
---|
531 | aenmNames[iReg++] = WHvX64RegisterR9;
|
---|
532 | aenmNames[iReg++] = WHvX64RegisterR10;
|
---|
533 | aenmNames[iReg++] = WHvX64RegisterR11;
|
---|
534 | aenmNames[iReg++] = WHvX64RegisterR12;
|
---|
535 | aenmNames[iReg++] = WHvX64RegisterR13;
|
---|
536 | aenmNames[iReg++] = WHvX64RegisterR14;
|
---|
537 | aenmNames[iReg++] = WHvX64RegisterR15;
|
---|
538 | }
|
---|
539 | }
|
---|
540 |
|
---|
541 | /* RIP & Flags */
|
---|
542 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
543 | aenmNames[iReg++] = WHvX64RegisterRip;
|
---|
544 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
545 | aenmNames[iReg++] = WHvX64RegisterRflags;
|
---|
546 |
|
---|
547 | /* Segments */
|
---|
548 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
549 | {
|
---|
550 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
551 | aenmNames[iReg++] = WHvX64RegisterEs;
|
---|
552 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
553 | aenmNames[iReg++] = WHvX64RegisterCs;
|
---|
554 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
555 | aenmNames[iReg++] = WHvX64RegisterSs;
|
---|
556 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
557 | aenmNames[iReg++] = WHvX64RegisterDs;
|
---|
558 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
559 | aenmNames[iReg++] = WHvX64RegisterFs;
|
---|
560 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
561 | aenmNames[iReg++] = WHvX64RegisterGs;
|
---|
562 | }
|
---|
563 |
|
---|
564 | /* Descriptor tables. */
|
---|
565 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
566 | {
|
---|
567 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
568 | aenmNames[iReg++] = WHvX64RegisterLdtr;
|
---|
569 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
570 | aenmNames[iReg++] = WHvX64RegisterTr;
|
---|
571 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
572 | aenmNames[iReg++] = WHvX64RegisterIdtr;
|
---|
573 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
574 | aenmNames[iReg++] = WHvX64RegisterGdtr;
|
---|
575 | }
|
---|
576 |
|
---|
577 | /* Control registers. */
|
---|
578 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
579 | {
|
---|
580 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
581 | aenmNames[iReg++] = WHvX64RegisterCr0;
|
---|
582 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
583 | aenmNames[iReg++] = WHvX64RegisterCr2;
|
---|
584 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
585 | aenmNames[iReg++] = WHvX64RegisterCr3;
|
---|
586 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
587 | aenmNames[iReg++] = WHvX64RegisterCr4;
|
---|
588 | }
|
---|
589 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
590 | aenmNames[iReg++] = WHvX64RegisterCr8;
|
---|
591 |
|
---|
592 | /* Debug registers. */
|
---|
593 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
594 | {
|
---|
595 | aenmNames[iReg++] = WHvX64RegisterDr0;
|
---|
596 | aenmNames[iReg++] = WHvX64RegisterDr1;
|
---|
597 | aenmNames[iReg++] = WHvX64RegisterDr2;
|
---|
598 | aenmNames[iReg++] = WHvX64RegisterDr3;
|
---|
599 | }
|
---|
600 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
601 | aenmNames[iReg++] = WHvX64RegisterDr6;
|
---|
602 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
603 | aenmNames[iReg++] = WHvX64RegisterDr7;
|
---|
604 |
|
---|
605 | /* Floating point state. */
|
---|
606 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
607 | {
|
---|
608 | aenmNames[iReg++] = WHvX64RegisterFpMmx0;
|
---|
609 | aenmNames[iReg++] = WHvX64RegisterFpMmx1;
|
---|
610 | aenmNames[iReg++] = WHvX64RegisterFpMmx2;
|
---|
611 | aenmNames[iReg++] = WHvX64RegisterFpMmx3;
|
---|
612 | aenmNames[iReg++] = WHvX64RegisterFpMmx4;
|
---|
613 | aenmNames[iReg++] = WHvX64RegisterFpMmx5;
|
---|
614 | aenmNames[iReg++] = WHvX64RegisterFpMmx6;
|
---|
615 | aenmNames[iReg++] = WHvX64RegisterFpMmx7;
|
---|
616 | aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
|
---|
617 | }
|
---|
618 | if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
|
---|
619 | aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
|
---|
620 |
|
---|
621 | /* Vector state. */
|
---|
622 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
623 | {
|
---|
624 | aenmNames[iReg++] = WHvX64RegisterXmm0;
|
---|
625 | aenmNames[iReg++] = WHvX64RegisterXmm1;
|
---|
626 | aenmNames[iReg++] = WHvX64RegisterXmm2;
|
---|
627 | aenmNames[iReg++] = WHvX64RegisterXmm3;
|
---|
628 | aenmNames[iReg++] = WHvX64RegisterXmm4;
|
---|
629 | aenmNames[iReg++] = WHvX64RegisterXmm5;
|
---|
630 | aenmNames[iReg++] = WHvX64RegisterXmm6;
|
---|
631 | aenmNames[iReg++] = WHvX64RegisterXmm7;
|
---|
632 | aenmNames[iReg++] = WHvX64RegisterXmm8;
|
---|
633 | aenmNames[iReg++] = WHvX64RegisterXmm9;
|
---|
634 | aenmNames[iReg++] = WHvX64RegisterXmm10;
|
---|
635 | aenmNames[iReg++] = WHvX64RegisterXmm11;
|
---|
636 | aenmNames[iReg++] = WHvX64RegisterXmm12;
|
---|
637 | aenmNames[iReg++] = WHvX64RegisterXmm13;
|
---|
638 | aenmNames[iReg++] = WHvX64RegisterXmm14;
|
---|
639 | aenmNames[iReg++] = WHvX64RegisterXmm15;
|
---|
640 | }
|
---|
641 |
|
---|
642 | /* MSRs */
|
---|
643 | // WHvX64RegisterTsc - don't touch
|
---|
644 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
645 | aenmNames[iReg++] = WHvX64RegisterEfer;
|
---|
646 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
647 | aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
|
---|
648 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
649 | {
|
---|
650 | aenmNames[iReg++] = WHvX64RegisterSysenterCs;
|
---|
651 | aenmNames[iReg++] = WHvX64RegisterSysenterEip;
|
---|
652 | aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
|
---|
653 | }
|
---|
654 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
655 | {
|
---|
656 | aenmNames[iReg++] = WHvX64RegisterStar;
|
---|
657 | aenmNames[iReg++] = WHvX64RegisterLstar;
|
---|
658 | aenmNames[iReg++] = WHvX64RegisterCstar;
|
---|
659 | aenmNames[iReg++] = WHvX64RegisterSfmask;
|
---|
660 | }
|
---|
661 |
|
---|
662 | //#ifdef LOG_ENABLED
|
---|
663 | // const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
|
---|
664 | //#endif
|
---|
665 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
666 | {
|
---|
667 | aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
|
---|
668 | aenmNames[iReg++] = WHvX64RegisterPat;
|
---|
669 | #if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
|
---|
670 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
|
---|
671 | #endif
|
---|
672 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
|
---|
673 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
|
---|
674 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
|
---|
675 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
|
---|
676 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
|
---|
677 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
|
---|
678 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
|
---|
679 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
|
---|
680 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
|
---|
681 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
|
---|
682 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
|
---|
683 | aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
|
---|
684 | aenmNames[iReg++] = WHvX64RegisterTscAux;
|
---|
685 | /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
|
---|
686 | //#ifdef LOG_ENABLED
|
---|
687 | // if (enmCpuVendor != CPUMCPUVENDOR_AMD)
|
---|
688 | // aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
|
---|
689 | //#endif
|
---|
690 | }
|
---|
691 |
|
---|
692 | /* Interruptibility. */
|
---|
693 | if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
694 | {
|
---|
695 | aenmNames[iReg++] = WHvRegisterInterruptState;
|
---|
696 | aenmNames[iReg++] = WHvX64RegisterRip;
|
---|
697 | }
|
---|
698 |
|
---|
699 | /* event injection */
|
---|
700 | aenmNames[iReg++] = WHvRegisterPendingInterruption;
|
---|
701 | aenmNames[iReg++] = WHvRegisterPendingEvent0;
|
---|
702 | aenmNames[iReg++] = WHvRegisterPendingEvent1;
|
---|
703 |
|
---|
704 | size_t const cRegs = iReg;
|
---|
705 | Assert(cRegs < RT_ELEMENTS(aenmNames));
|
---|
706 |
|
---|
707 | /*
|
---|
708 | * Get the registers.
|
---|
709 | */
|
---|
710 | WHV_REGISTER_VALUE aValues[128];
|
---|
711 | RT_ZERO(aValues);
|
---|
712 | Assert(RT_ELEMENTS(aValues) >= cRegs);
|
---|
713 | Assert(RT_ELEMENTS(aenmNames) >= cRegs);
|
---|
714 | # ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
715 | Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
716 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
|
---|
717 | # endif
|
---|
718 | HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
|
---|
719 | AssertLogRelMsgReturn(SUCCEEDED(hrc),
|
---|
720 | ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
721 | pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
|
---|
722 | , VERR_NEM_GET_REGISTERS_FAILED);
|
---|
723 |
|
---|
724 | iReg = 0;
|
---|
725 | # define GET_REG64(a_DstVar, a_enmName) do { \
|
---|
726 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
727 | (a_DstVar) = aValues[iReg].Reg64; \
|
---|
728 | iReg++; \
|
---|
729 | } while (0)
|
---|
730 | # define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
|
---|
731 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
732 | if ((a_DstVar) != aValues[iReg].Reg64) \
|
---|
733 | Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
|
---|
734 | (a_DstVar) = aValues[iReg].Reg64; \
|
---|
735 | iReg++; \
|
---|
736 | } while (0)
|
---|
737 | # define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
|
---|
738 | Assert(aenmNames[iReg] == a_enmName); \
|
---|
739 | (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
|
---|
740 | (a_DstVarHi) = aValues[iReg].Reg128.High64; \
|
---|
741 | iReg++; \
|
---|
742 | } while (0)
|
---|
743 | # define GET_SEG(a_SReg, a_enmName) do { \
|
---|
744 | Assert(aenmNames[iReg] == (a_enmName)); \
|
---|
745 | NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
|
---|
746 | iReg++; \
|
---|
747 | } while (0)
|
---|
748 |
|
---|
749 | /* GPRs */
|
---|
750 | if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
|
---|
751 | {
|
---|
752 | if (fWhat & CPUMCTX_EXTRN_RAX)
|
---|
753 | GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax);
|
---|
754 | if (fWhat & CPUMCTX_EXTRN_RCX)
|
---|
755 | GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx);
|
---|
756 | if (fWhat & CPUMCTX_EXTRN_RDX)
|
---|
757 | GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx);
|
---|
758 | if (fWhat & CPUMCTX_EXTRN_RBX)
|
---|
759 | GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx);
|
---|
760 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
761 | GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp);
|
---|
762 | if (fWhat & CPUMCTX_EXTRN_RBP)
|
---|
763 | GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp);
|
---|
764 | if (fWhat & CPUMCTX_EXTRN_RSI)
|
---|
765 | GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi);
|
---|
766 | if (fWhat & CPUMCTX_EXTRN_RDI)
|
---|
767 | GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi);
|
---|
768 | if (fWhat & CPUMCTX_EXTRN_R8_R15)
|
---|
769 | {
|
---|
770 | GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8);
|
---|
771 | GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9);
|
---|
772 | GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10);
|
---|
773 | GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11);
|
---|
774 | GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12);
|
---|
775 | GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13);
|
---|
776 | GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14);
|
---|
777 | GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15);
|
---|
778 | }
|
---|
779 | }
|
---|
780 |
|
---|
781 | /* RIP & Flags */
|
---|
782 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
783 | GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip);
|
---|
784 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
785 | GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags);
|
---|
786 |
|
---|
787 | /* Segments */
|
---|
788 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
789 | {
|
---|
790 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
791 | GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs);
|
---|
792 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
793 | GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs);
|
---|
794 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
795 | GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs);
|
---|
796 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
797 | GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs);
|
---|
798 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
799 | GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs);
|
---|
800 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
801 | GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs);
|
---|
802 | }
|
---|
803 |
|
---|
804 | /* Descriptor tables and the task segment. */
|
---|
805 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
806 | {
|
---|
807 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
808 | GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr);
|
---|
809 |
|
---|
810 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
811 | {
|
---|
812 | /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
|
---|
813 | avoid to trigger sanity assertions around the code, always fix this. */
|
---|
814 | GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr);
|
---|
815 | switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
|
---|
816 | {
|
---|
817 | case X86_SEL_TYPE_SYS_386_TSS_BUSY:
|
---|
818 | case X86_SEL_TYPE_SYS_286_TSS_BUSY:
|
---|
819 | break;
|
---|
820 | case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
|
---|
821 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
822 | break;
|
---|
823 | case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
|
---|
824 | pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
825 | break;
|
---|
826 | }
|
---|
827 | }
|
---|
828 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
829 | {
|
---|
830 | Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
|
---|
831 | pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit;
|
---|
832 | pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base;
|
---|
833 | iReg++;
|
---|
834 | }
|
---|
835 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
836 | {
|
---|
837 | Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
|
---|
838 | pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit;
|
---|
839 | pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base;
|
---|
840 | iReg++;
|
---|
841 | }
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* Control registers. */
|
---|
845 | bool fMaybeChangedMode = false;
|
---|
846 | bool fFlushTlb = false;
|
---|
847 | bool fFlushGlobalTlb = false;
|
---|
848 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
849 | {
|
---|
850 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
851 | {
|
---|
852 | Assert(aenmNames[iReg] == WHvX64RegisterCr0);
|
---|
853 | if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64)
|
---|
854 | {
|
---|
855 | CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
|
---|
856 | fMaybeChangedMode = true;
|
---|
857 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
858 | }
|
---|
859 | iReg++;
|
---|
860 | }
|
---|
861 | if (fWhat & CPUMCTX_EXTRN_CR2)
|
---|
862 | GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2);
|
---|
863 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
864 | {
|
---|
865 | if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64)
|
---|
866 | {
|
---|
867 | CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
|
---|
868 | fFlushTlb = true;
|
---|
869 | }
|
---|
870 | iReg++;
|
---|
871 | }
|
---|
872 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
873 | {
|
---|
874 | if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64)
|
---|
875 | {
|
---|
876 | CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
|
---|
877 | fMaybeChangedMode = true;
|
---|
878 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
879 | }
|
---|
880 | iReg++;
|
---|
881 | }
|
---|
882 | }
|
---|
883 | if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
|
---|
884 | {
|
---|
885 | Assert(aenmNames[iReg] == WHvX64RegisterCr8);
|
---|
886 | APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
|
---|
887 | iReg++;
|
---|
888 | }
|
---|
889 |
|
---|
890 | /* Debug registers. */
|
---|
891 | /** @todo fixme */
|
---|
892 | if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
|
---|
893 | {
|
---|
894 | Assert(aenmNames[iReg] == WHvX64RegisterDr0);
|
---|
895 | Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
|
---|
896 | if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64)
|
---|
897 | CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
|
---|
898 | iReg++;
|
---|
899 | if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64)
|
---|
900 | CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
|
---|
901 | iReg++;
|
---|
902 | if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64)
|
---|
903 | CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
|
---|
904 | iReg++;
|
---|
905 | if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64)
|
---|
906 | CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
|
---|
907 | iReg++;
|
---|
908 | }
|
---|
909 | if (fWhat & CPUMCTX_EXTRN_DR6)
|
---|
910 | {
|
---|
911 | Assert(aenmNames[iReg] == WHvX64RegisterDr6);
|
---|
912 | if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64)
|
---|
913 | CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
|
---|
914 | iReg++;
|
---|
915 | }
|
---|
916 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
917 | {
|
---|
918 | Assert(aenmNames[iReg] == WHvX64RegisterDr7);
|
---|
919 | if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64)
|
---|
920 | CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
|
---|
921 | iReg++;
|
---|
922 | }
|
---|
923 |
|
---|
924 | /* Floating point state. */
|
---|
925 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
926 | {
|
---|
927 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
|
---|
928 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
|
---|
929 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
|
---|
930 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
|
---|
931 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
|
---|
932 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
|
---|
933 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
|
---|
934 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
|
---|
935 |
|
---|
936 | Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
|
---|
937 | pVCpu->cpum.GstCtx.pXStateR3->x87.FCW = aValues[iReg].FpControlStatus.FpControl;
|
---|
938 | pVCpu->cpum.GstCtx.pXStateR3->x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
|
---|
939 | pVCpu->cpum.GstCtx.pXStateR3->x87.FTW = aValues[iReg].FpControlStatus.FpTag
|
---|
940 | /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
|
---|
941 | pVCpu->cpum.GstCtx.pXStateR3->x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
|
---|
942 | pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
|
---|
943 | pVCpu->cpum.GstCtx.pXStateR3->x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
|
---|
944 | pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
|
---|
945 | iReg++;
|
---|
946 | }
|
---|
947 |
|
---|
948 | if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
|
---|
949 | {
|
---|
950 | Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
|
---|
951 | if (fWhat & CPUMCTX_EXTRN_X87)
|
---|
952 | {
|
---|
953 | pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
|
---|
954 | pVCpu->cpum.GstCtx.pXStateR3->x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
|
---|
955 | pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
|
---|
956 | }
|
---|
957 | pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
|
---|
958 | pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
|
---|
959 | iReg++;
|
---|
960 | }
|
---|
961 |
|
---|
962 | /* Vector state. */
|
---|
963 | if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
|
---|
964 | {
|
---|
965 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
|
---|
966 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
|
---|
967 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
|
---|
968 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
|
---|
969 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
|
---|
970 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
|
---|
971 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
|
---|
972 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
|
---|
973 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
|
---|
974 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
|
---|
975 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
|
---|
976 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
|
---|
977 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
|
---|
978 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
|
---|
979 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
|
---|
980 | GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
|
---|
981 | }
|
---|
982 |
|
---|
983 | /* MSRs */
|
---|
984 | // WHvX64RegisterTsc - don't touch
|
---|
985 | if (fWhat & CPUMCTX_EXTRN_EFER)
|
---|
986 | {
|
---|
987 | Assert(aenmNames[iReg] == WHvX64RegisterEfer);
|
---|
988 | if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER)
|
---|
989 | {
|
---|
990 | Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64));
|
---|
991 | if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
|
---|
992 | PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
|
---|
993 | pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64;
|
---|
994 | fMaybeChangedMode = true;
|
---|
995 | }
|
---|
996 | iReg++;
|
---|
997 | }
|
---|
998 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
999 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
|
---|
1000 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
1001 | {
|
---|
1002 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
|
---|
1003 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
|
---|
1004 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
|
---|
1005 | }
|
---|
1006 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
1007 | {
|
---|
1008 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR");
|
---|
1009 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
|
---|
1010 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
|
---|
1011 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
|
---|
1012 | }
|
---|
1013 | if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
|
---|
1014 | {
|
---|
1015 | Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
|
---|
1016 | const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
1017 | if (aValues[iReg].Reg64 != uOldBase)
|
---|
1018 | {
|
---|
1019 | Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
|
---|
1020 | pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
|
---|
1021 | int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
|
---|
1022 | AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
|
---|
1023 | }
|
---|
1024 | iReg++;
|
---|
1025 |
|
---|
1026 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
|
---|
1027 | #if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
|
---|
1028 | GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
|
---|
1029 | #endif
|
---|
1030 | PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
|
---|
1031 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
|
---|
1032 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
|
---|
1033 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
|
---|
1034 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
|
---|
1035 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
|
---|
1036 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
|
---|
1037 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
|
---|
1038 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
|
---|
1039 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
|
---|
1040 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
|
---|
1041 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
|
---|
1042 | GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
|
---|
1043 | GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
|
---|
1044 | /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | /* Interruptibility. */
|
---|
1048 | if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
1049 | {
|
---|
1050 | Assert(aenmNames[iReg] == WHvRegisterInterruptState);
|
---|
1051 | Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
|
---|
1052 |
|
---|
1053 | if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1054 | {
|
---|
1055 | pVCpu->nem.s.fLastInterruptShadow = aValues[iReg].InterruptState.InterruptShadow;
|
---|
1056 | if (aValues[iReg].InterruptState.InterruptShadow)
|
---|
1057 | EMSetInhibitInterruptsPC(pVCpu, aValues[iReg + 1].Reg64);
|
---|
1058 | else
|
---|
1059 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
|
---|
1063 | {
|
---|
1064 | if (aValues[iReg].InterruptState.NmiMasked)
|
---|
1065 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
1066 | else
|
---|
1067 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
|
---|
1071 | iReg += 2;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | /* Event injection. */
|
---|
1075 | /// @todo WHvRegisterPendingInterruption
|
---|
1076 | Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
|
---|
1077 | if (aValues[iReg].PendingInterruption.InterruptionPending)
|
---|
1078 | {
|
---|
1079 | Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
|
---|
1080 | aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
|
---|
1081 | aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
|
---|
1082 | aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
|
---|
1083 | AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
|
---|
1084 | ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | /// @todo WHvRegisterPendingEvent0
|
---|
1088 | /// @todo WHvRegisterPendingEvent1
|
---|
1089 |
|
---|
1090 | /* Almost done, just update extrn flags and maybe change PGM mode. */
|
---|
1091 | pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
|
---|
1092 | if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
|
---|
1093 | pVCpu->cpum.GstCtx.fExtrn = 0;
|
---|
1094 |
|
---|
1095 | /* Typical. */
|
---|
1096 | if (!fMaybeChangedMode && !fFlushTlb)
|
---|
1097 | return VINF_SUCCESS;
|
---|
1098 |
|
---|
1099 | /*
|
---|
1100 | * Slow.
|
---|
1101 | */
|
---|
1102 | if (fMaybeChangedMode)
|
---|
1103 | {
|
---|
1104 | int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
|
---|
1105 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | if (fFlushTlb)
|
---|
1109 | {
|
---|
1110 | int rc = PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, fFlushGlobalTlb);
|
---|
1111 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | return VINF_SUCCESS;
|
---|
1115 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | #endif /* !IN_RING0 */
|
---|
1119 |
|
---|
1120 |
|
---|
1121 | /**
|
---|
1122 | * Interface for importing state on demand (used by IEM).
|
---|
1123 | *
|
---|
1124 | * @returns VBox status code.
|
---|
1125 | * @param pVCpu The cross context CPU structure.
|
---|
1126 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
1127 | */
|
---|
1128 | VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
|
---|
1129 | {
|
---|
1130 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
|
---|
1131 |
|
---|
1132 | #ifdef IN_RING0
|
---|
1133 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1134 | /** @todo improve and secure this translation */
|
---|
1135 | PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
|
---|
1136 | AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
|
---|
1137 | VMCPUID idCpu = pVCpu->idCpu;
|
---|
1138 | ASMCompilerBarrier();
|
---|
1139 | AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
|
---|
1140 |
|
---|
1141 | return nemR0WinImportState(pGVM, &pGVM->aCpus[idCpu], &pVCpu->cpum.GstCtx, fWhat);
|
---|
1142 | # else
|
---|
1143 | RT_NOREF(pVCpu, fWhat);
|
---|
1144 | return VERR_NOT_IMPLEMENTED;
|
---|
1145 | # endif
|
---|
1146 | #else
|
---|
1147 | return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
|
---|
1148 | #endif
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 |
|
---|
1152 | /**
|
---|
1153 | * Query the CPU tick counter and optionally the TSC_AUX MSR value.
|
---|
1154 | *
|
---|
1155 | * @returns VBox status code.
|
---|
1156 | * @param pVCpu The cross context CPU structure.
|
---|
1157 | * @param pcTicks Where to return the CPU tick count.
|
---|
1158 | * @param puAux Where to return the TSC_AUX register value.
|
---|
1159 | */
|
---|
1160 | VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPU pVCpu, uint64_t *pcTicks, uint32_t *puAux)
|
---|
1161 | {
|
---|
1162 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
|
---|
1163 |
|
---|
1164 | #ifdef IN_RING3
|
---|
1165 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1166 | VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
|
---|
1167 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
|
---|
1168 |
|
---|
1169 | # if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
1170 | # if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
1171 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
1172 | # endif
|
---|
1173 | {
|
---|
1174 | /* Call ring-0 and get the values. */
|
---|
1175 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_QUERY_CPU_TICK, 0, NULL);
|
---|
1176 | AssertLogRelRCReturn(rc, rc);
|
---|
1177 | *pcTicks = pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks;
|
---|
1178 | if (puAux)
|
---|
1179 | *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX
|
---|
1180 | ? pVCpu->nem.s.Hypercall.QueryCpuTick.uAux : CPUMGetGuestTscAux(pVCpu);
|
---|
1181 | return VINF_SUCCESS;
|
---|
1182 | }
|
---|
1183 | # endif
|
---|
1184 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
1185 | /* Call the offical API. */
|
---|
1186 | WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux };
|
---|
1187 | WHV_REGISTER_VALUE aValues[2] = { {0, 0}, {0, 0} };
|
---|
1188 | Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues));
|
---|
1189 | HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues);
|
---|
1190 | AssertLogRelMsgReturn(SUCCEEDED(hrc),
|
---|
1191 | ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
1192 | pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
|
---|
1193 | , VERR_NEM_GET_REGISTERS_FAILED);
|
---|
1194 | *pcTicks = aValues[0].Reg64;
|
---|
1195 | if (puAux)
|
---|
1196 | *pcTicks = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[0].Reg64 : CPUMGetGuestTscAux(pVCpu);
|
---|
1197 | return VINF_SUCCESS;
|
---|
1198 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
1199 | #else /* IN_RING0 */
|
---|
1200 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1201 | /** @todo improve and secure this translation */
|
---|
1202 | PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
|
---|
1203 | AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
|
---|
1204 | VMCPUID idCpu = pVCpu->idCpu;
|
---|
1205 | ASMCompilerBarrier();
|
---|
1206 | AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
|
---|
1207 |
|
---|
1208 | int rc = nemR0WinQueryCpuTick(pGVM, &pGVM->aCpus[idCpu], pcTicks, puAux);
|
---|
1209 | if (RT_SUCCESS(rc) && puAux && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX))
|
---|
1210 | *puAux = CPUMGetGuestTscAux(pVCpu);
|
---|
1211 | return rc;
|
---|
1212 | # else
|
---|
1213 | RT_NOREF(pVCpu, pcTicks, puAux);
|
---|
1214 | return VERR_NOT_IMPLEMENTED;
|
---|
1215 | # endif
|
---|
1216 | #endif /* IN_RING0 */
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 |
|
---|
1220 | /**
|
---|
1221 | * Resumes CPU clock (TSC) on all virtual CPUs.
|
---|
1222 | *
|
---|
1223 | * This is called by TM when the VM is started, restored, resumed or similar.
|
---|
1224 | *
|
---|
1225 | * @returns VBox status code.
|
---|
1226 | * @param pVM The cross context VM structure.
|
---|
1227 | * @param pVCpu The cross context CPU structure of the calling EMT.
|
---|
1228 | * @param uPausedTscValue The TSC value at the time of pausing.
|
---|
1229 | */
|
---|
1230 | VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVM pVM, PVMCPU pVCpu, uint64_t uPausedTscValue)
|
---|
1231 | {
|
---|
1232 | #ifdef IN_RING0
|
---|
1233 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1234 | /** @todo improve and secure this translation */
|
---|
1235 | PGVM pGVM = GVMMR0ByHandle(pVM->hSelf);
|
---|
1236 | AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
|
---|
1237 | VMCPUID idCpu = pVCpu->idCpu;
|
---|
1238 | ASMCompilerBarrier();
|
---|
1239 | AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
|
---|
1240 |
|
---|
1241 | return nemR0WinResumeCpuTickOnAll(pGVM, &pGVM->aCpus[idCpu], uPausedTscValue);
|
---|
1242 | # else
|
---|
1243 | RT_NOREF(pVM, pVCpu, uPausedTscValue);
|
---|
1244 | return VERR_NOT_IMPLEMENTED;
|
---|
1245 | # endif
|
---|
1246 | #else /* IN_RING3 */
|
---|
1247 | VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
|
---|
1248 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
|
---|
1249 |
|
---|
1250 | # if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
1251 | # if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
1252 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
1253 | # endif
|
---|
1254 | {
|
---|
1255 | /* Call ring-0 and do it all there. */
|
---|
1256 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL, uPausedTscValue, NULL);
|
---|
1257 | }
|
---|
1258 | # endif
|
---|
1259 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
1260 | /*
|
---|
1261 | * Call the offical API to do the job.
|
---|
1262 | */
|
---|
1263 | if (pVM->cCpus > 1)
|
---|
1264 | RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */
|
---|
1265 |
|
---|
1266 | /* Start with the first CPU. */
|
---|
1267 | WHV_REGISTER_NAME enmName = WHvX64RegisterTsc;
|
---|
1268 | WHV_REGISTER_VALUE Value = {0, 0};
|
---|
1269 | Value.Reg64 = uPausedTscValue;
|
---|
1270 | uint64_t const uFirstTsc = ASMReadTSC();
|
---|
1271 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value);
|
---|
1272 | AssertLogRelMsgReturn(SUCCEEDED(hrc),
|
---|
1273 | ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n",
|
---|
1274 | pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
|
---|
1275 | , VERR_NEM_SET_TSC);
|
---|
1276 |
|
---|
1277 | /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed
|
---|
1278 | that we don't introduce too much drift here. */
|
---|
1279 | for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++)
|
---|
1280 | {
|
---|
1281 | Assert(enmName == WHvX64RegisterTsc);
|
---|
1282 | const uint64_t offDelta = (ASMReadTSC() - uFirstTsc);
|
---|
1283 | Value.Reg64 = uPausedTscValue + offDelta;
|
---|
1284 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value);
|
---|
1285 | AssertLogRelMsgReturn(SUCCEEDED(hrc),
|
---|
1286 | ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n",
|
---|
1287 | pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
|
---|
1288 | , VERR_NEM_SET_TSC);
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | return VINF_SUCCESS;
|
---|
1292 | # endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
1293 | #endif /* IN_RING3 */
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | #ifdef NEMWIN_NEED_GET_REGISTER
|
---|
1297 | # if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
|
---|
1298 | /** Worker for assertion macro. */
|
---|
1299 | NEM_TMPL_STATIC int nemHCWinGetRegister(PVMCPU pVCpu, PGVMCPU pGVCpu, uint32_t enmReg, HV_REGISTER_VALUE *pRetValue)
|
---|
1300 | {
|
---|
1301 | RT_ZERO(*pRetValue);
|
---|
1302 | # ifdef IN_RING3
|
---|
1303 | RT_NOREF(pVCpu, pGVCpu, enmReg);
|
---|
1304 | return VERR_NOT_IMPLEMENTED;
|
---|
1305 | # else
|
---|
1306 | NOREF(pVCpu);
|
---|
1307 |
|
---|
1308 | /*
|
---|
1309 | * Hypercall parameters.
|
---|
1310 | */
|
---|
1311 | HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage;
|
---|
1312 | AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
|
---|
1313 | AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API);
|
---|
1314 |
|
---|
1315 | pInput->PartitionId = pGVCpu->pGVM->nem.s.idHvPartition;
|
---|
1316 | pInput->VpIndex = pGVCpu->idCpu;
|
---|
1317 | pInput->fFlags = 0;
|
---|
1318 | pInput->Names[0] = (HV_REGISTER_NAME)enmReg;
|
---|
1319 |
|
---|
1320 | size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32);
|
---|
1321 | HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
|
---|
1322 | RT_BZERO(paValues, sizeof(paValues[0]) * 1);
|
---|
1323 |
|
---|
1324 | /*
|
---|
1325 | * Make the hypercall and copy out the value.
|
---|
1326 | */
|
---|
1327 | uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1),
|
---|
1328 | pGVCpu->nem.s.HypercallData.HCPhysPage,
|
---|
1329 | pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput);
|
---|
1330 | AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 cRegs=%#x\n", uResult, 1),
|
---|
1331 | VERR_NEM_GET_REGISTERS_FAILED);
|
---|
1332 |
|
---|
1333 | *pRetValue = paValues[0];
|
---|
1334 | return VINF_SUCCESS;
|
---|
1335 | # endif
|
---|
1336 | }
|
---|
1337 | # else
|
---|
1338 | /** Worker for assertion macro. */
|
---|
1339 | NEM_TMPL_STATIC int nemR3WinGetRegister(PVMCPU a_pVCpu, uint32_t a_enmReg, WHV_REGISTER_VALUE pValue)
|
---|
1340 | {
|
---|
1341 | RT_ZERO(*pRetValue);
|
---|
1342 | RT_NOREF(pVCpu, pGVCpu, enmReg);
|
---|
1343 | return VERR_NOT_IMPLEMENTED;
|
---|
1344 | }
|
---|
1345 | # endif
|
---|
1346 | #endif
|
---|
1347 |
|
---|
1348 |
|
---|
1349 | #ifdef LOG_ENABLED
|
---|
1350 | /**
|
---|
1351 | * Get the virtual processor running status.
|
---|
1352 | */
|
---|
1353 | DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
|
---|
1354 | {
|
---|
1355 | # ifdef IN_RING0
|
---|
1356 | NOREF(pVCpu);
|
---|
1357 | return VidProcessorStatusUndefined;
|
---|
1358 | # else
|
---|
1359 | RTERRVARS Saved;
|
---|
1360 | RTErrVarsSave(&Saved);
|
---|
1361 |
|
---|
1362 | /*
|
---|
1363 | * This API is disabled in release builds, it seems. On build 17101 it requires
|
---|
1364 | * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
|
---|
1365 | */
|
---|
1366 | VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
|
---|
1367 | NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
|
---|
1368 | AssertRC(rcNt);
|
---|
1369 |
|
---|
1370 | RTErrVarsRestore(&Saved);
|
---|
1371 | return enmCpuStatus;
|
---|
1372 | # endif
|
---|
1373 | }
|
---|
1374 | #endif /* LOG_ENABLED */
|
---|
1375 |
|
---|
1376 |
|
---|
1377 | #if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
|
---|
1378 | # ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
|
---|
1379 | /**
|
---|
1380 | * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
|
---|
1381 | *
|
---|
1382 | * This is an experiment only.
|
---|
1383 | *
|
---|
1384 | * @returns VBox status code.
|
---|
1385 | * @param pVM The cross context VM structure.
|
---|
1386 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1387 | * calling EMT.
|
---|
1388 | */
|
---|
1389 | NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
|
---|
1390 | {
|
---|
1391 | /*
|
---|
1392 | * Work the state.
|
---|
1393 | *
|
---|
1394 | * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
|
---|
1395 | * So, we just need to modify the state and kick the EMT if it's waiting on
|
---|
1396 | * messages. For the latter we use QueueUserAPC / KeAlterThread.
|
---|
1397 | */
|
---|
1398 | for (;;)
|
---|
1399 | {
|
---|
1400 | VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
|
---|
1401 | switch (enmState)
|
---|
1402 | {
|
---|
1403 | case VMCPUSTATE_STARTED_EXEC_NEM:
|
---|
1404 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
1405 | {
|
---|
1406 | DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM -> CANCELED");
|
---|
1407 | Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
|
---|
1408 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
|
---|
1409 | return VINF_SUCCESS;
|
---|
1410 | }
|
---|
1411 | break;
|
---|
1412 |
|
---|
1413 | case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
|
---|
1414 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
|
---|
1415 | {
|
---|
1416 | DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM_WAIT -> CANCELED");
|
---|
1417 | # ifdef IN_RING0
|
---|
1418 | NTSTATUS rcNt = KeAlertThread(??);
|
---|
1419 | DBGFTRACE_CUSTOM(pVM, "KeAlertThread -> %#x", rcNt);
|
---|
1420 | # else
|
---|
1421 | NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
|
---|
1422 | DBGFTRACE_CUSTOM(pVM, "NtAlertThread -> %#x", rcNt);
|
---|
1423 | # endif
|
---|
1424 | Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
|
---|
1425 | Assert(rcNt == STATUS_SUCCESS);
|
---|
1426 | if (NT_SUCCESS(rcNt))
|
---|
1427 | {
|
---|
1428 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
|
---|
1429 | return VINF_SUCCESS;
|
---|
1430 | }
|
---|
1431 | AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
|
---|
1432 | }
|
---|
1433 | break;
|
---|
1434 |
|
---|
1435 | default:
|
---|
1436 | return VINF_SUCCESS;
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | ASMNopPause();
|
---|
1440 | RT_NOREF(pVM);
|
---|
1441 | }
|
---|
1442 | }
|
---|
1443 | # endif /* IN_RING3 */
|
---|
1444 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API || NEM_WIN_WITH_RING0_RUNLOOP */
|
---|
1445 |
|
---|
1446 |
|
---|
1447 | #ifdef LOG_ENABLED
|
---|
1448 | /**
|
---|
1449 | * Logs the current CPU state.
|
---|
1450 | */
|
---|
1451 | NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
|
---|
1452 | {
|
---|
1453 | if (LogIs3Enabled())
|
---|
1454 | {
|
---|
1455 | # if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM.
|
---|
1456 | char szRegs[4096];
|
---|
1457 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
1458 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
1459 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
1460 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
1461 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
1462 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
1463 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
1464 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
1465 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
1466 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
1467 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
1468 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
1469 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
1470 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
1471 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
1472 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
1473 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
1474 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
1475 | " efer=%016VR{efer}\n"
|
---|
1476 | " pat=%016VR{pat}\n"
|
---|
1477 | " sf_mask=%016VR{sf_mask}\n"
|
---|
1478 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
1479 | " lstar=%016VR{lstar}\n"
|
---|
1480 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
1481 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
1482 | );
|
---|
1483 |
|
---|
1484 | char szInstr[256];
|
---|
1485 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
1486 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
1487 | szInstr, sizeof(szInstr), NULL);
|
---|
1488 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
1489 | # else
|
---|
1490 | /** @todo stat logging in ring-0 */
|
---|
1491 | RT_NOREF(pVM, pVCpu);
|
---|
1492 | # endif
|
---|
1493 | }
|
---|
1494 | }
|
---|
1495 | #endif /* LOG_ENABLED */
|
---|
1496 |
|
---|
1497 |
|
---|
1498 | /** Macro used by nemHCWinExecStateToLogStr and nemR3WinExecStateToLogStr. */
|
---|
1499 | #define SWITCH_IT(a_szPrefix) \
|
---|
1500 | do \
|
---|
1501 | switch (u)\
|
---|
1502 | { \
|
---|
1503 | case 0x00: return a_szPrefix ""; \
|
---|
1504 | case 0x01: return a_szPrefix ",Pnd"; \
|
---|
1505 | case 0x02: return a_szPrefix ",Dbg"; \
|
---|
1506 | case 0x03: return a_szPrefix ",Pnd,Dbg"; \
|
---|
1507 | case 0x04: return a_szPrefix ",Shw"; \
|
---|
1508 | case 0x05: return a_szPrefix ",Pnd,Shw"; \
|
---|
1509 | case 0x06: return a_szPrefix ",Shw,Dbg"; \
|
---|
1510 | case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
|
---|
1511 | default: AssertFailedReturn("WTF?"); \
|
---|
1512 | } \
|
---|
1513 | while (0)
|
---|
1514 |
|
---|
1515 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
1516 | /**
|
---|
1517 | * Translates the execution stat bitfield into a short log string, VID version.
|
---|
1518 | *
|
---|
1519 | * @returns Read-only log string.
|
---|
1520 | * @param pMsgHdr The header which state to summarize.
|
---|
1521 | */
|
---|
1522 | static const char *nemHCWinExecStateToLogStr(HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
|
---|
1523 | {
|
---|
1524 | unsigned u = (unsigned)pMsgHdr->ExecutionState.InterruptionPending
|
---|
1525 | | ((unsigned)pMsgHdr->ExecutionState.DebugActive << 1)
|
---|
1526 | | ((unsigned)pMsgHdr->ExecutionState.InterruptShadow << 2);
|
---|
1527 | if (pMsgHdr->ExecutionState.EferLma)
|
---|
1528 | SWITCH_IT("LM");
|
---|
1529 | else if (pMsgHdr->ExecutionState.Cr0Pe)
|
---|
1530 | SWITCH_IT("PM");
|
---|
1531 | else
|
---|
1532 | SWITCH_IT("RM");
|
---|
1533 | }
|
---|
1534 | #elif defined(IN_RING3)
|
---|
1535 | /**
|
---|
1536 | * Translates the execution stat bitfield into a short log string, WinHv version.
|
---|
1537 | *
|
---|
1538 | * @returns Read-only log string.
|
---|
1539 | * @param pExitCtx The exit context which state to summarize.
|
---|
1540 | */
|
---|
1541 | static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1542 | {
|
---|
1543 | unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
|
---|
1544 | | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
|
---|
1545 | | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
|
---|
1546 | if (pExitCtx->ExecutionState.EferLma)
|
---|
1547 | SWITCH_IT("LM");
|
---|
1548 | else if (pExitCtx->ExecutionState.Cr0Pe)
|
---|
1549 | SWITCH_IT("PM");
|
---|
1550 | else
|
---|
1551 | SWITCH_IT("RM");
|
---|
1552 | }
|
---|
1553 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
1554 | #undef SWITCH_IT
|
---|
1555 |
|
---|
1556 |
|
---|
1557 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
1558 | /**
|
---|
1559 | * Advances the guest RIP and clear EFLAGS.RF, VID version.
|
---|
1560 | *
|
---|
1561 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
1562 | *
|
---|
1563 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1564 | * @param pExitCtx The exit context.
|
---|
1565 | * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
|
---|
1566 | */
|
---|
1567 | DECLINLINE(void)
|
---|
1568 | nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, uint8_t cbMinInstr)
|
---|
1569 | {
|
---|
1570 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
|
---|
1571 |
|
---|
1572 | /* Advance the RIP. */
|
---|
1573 | Assert(pMsgHdr->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
|
---|
1574 | pVCpu->cpum.GstCtx.rip += pMsgHdr->InstructionLength;
|
---|
1575 | pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
|
---|
1576 |
|
---|
1577 | /* Update interrupt inhibition. */
|
---|
1578 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1579 | { /* likely */ }
|
---|
1580 | else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1581 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1582 | }
|
---|
1583 | #elif defined(IN_RING3)
|
---|
1584 | /**
|
---|
1585 | * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
|
---|
1586 | *
|
---|
1587 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
1588 | *
|
---|
1589 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1590 | * @param pExitCtx The exit context.
|
---|
1591 | * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
|
---|
1592 | */
|
---|
1593 | DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr)
|
---|
1594 | {
|
---|
1595 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
|
---|
1596 |
|
---|
1597 | /* Advance the RIP. */
|
---|
1598 | Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
|
---|
1599 | pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength;
|
---|
1600 | pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
|
---|
1601 |
|
---|
1602 | /* Update interrupt inhibition. */
|
---|
1603 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1604 | { /* likely */ }
|
---|
1605 | else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1606 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1607 | }
|
---|
1608 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
1609 |
|
---|
1610 |
|
---|
1611 |
|
---|
1612 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1613 | nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
|
---|
1614 | {
|
---|
1615 | RT_NOREF_PV(pvUser);
|
---|
1616 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1617 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1618 | AssertRC(rc);
|
---|
1619 | if (RT_SUCCESS(rc))
|
---|
1620 | #else
|
---|
1621 | RT_NOREF_PV(pVCpu);
|
---|
1622 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1623 | if (SUCCEEDED(hrc))
|
---|
1624 | #endif
|
---|
1625 | {
|
---|
1626 | Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
|
---|
1627 | *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1628 | }
|
---|
1629 | else
|
---|
1630 | {
|
---|
1631 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1632 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1633 | #else
|
---|
1634 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1635 | GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
|
---|
1636 | RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
|
---|
1637 | #endif
|
---|
1638 | *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
|
---|
1639 | }
|
---|
1640 | if (pVM->nem.s.cMappedPages > 0)
|
---|
1641 | ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
|
---|
1642 | return VINF_SUCCESS;
|
---|
1643 | }
|
---|
1644 |
|
---|
1645 |
|
---|
1646 | /**
|
---|
1647 | * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
|
---|
1648 | * and nemHCWinHandleMemoryAccessPageCheckerCallback.
|
---|
1649 | */
|
---|
1650 | typedef struct NEMHCWINHMACPCCSTATE
|
---|
1651 | {
|
---|
1652 | /** Input: Write access. */
|
---|
1653 | bool fWriteAccess;
|
---|
1654 | /** Output: Set if we did something. */
|
---|
1655 | bool fDidSomething;
|
---|
1656 | /** Output: Set it we should resume. */
|
---|
1657 | bool fCanResume;
|
---|
1658 | } NEMHCWINHMACPCCSTATE;
|
---|
1659 |
|
---|
1660 | /**
|
---|
1661 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
|
---|
1662 | * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
|
---|
1663 | * NEMHCWINHMACPCCSTATE structure. }
|
---|
1664 | */
|
---|
1665 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1666 | nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1667 | {
|
---|
1668 | NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
|
---|
1669 | pState->fDidSomething = false;
|
---|
1670 | pState->fCanResume = false;
|
---|
1671 |
|
---|
1672 | /* If A20 is disabled, we may need to make another query on the masked
|
---|
1673 | page to get the correct protection information. */
|
---|
1674 | uint8_t u2State = pInfo->u2NemState;
|
---|
1675 | RTGCPHYS GCPhysSrc;
|
---|
1676 | if ( pVM->nem.s.fA20Enabled
|
---|
1677 | || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
1678 | GCPhysSrc = GCPhys;
|
---|
1679 | else
|
---|
1680 | {
|
---|
1681 | GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
|
---|
1682 | PGMPHYSNEMPAGEINFO Info2;
|
---|
1683 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
|
---|
1684 | AssertRCReturn(rc, rc);
|
---|
1685 |
|
---|
1686 | *pInfo = Info2;
|
---|
1687 | pInfo->u2NemState = u2State;
|
---|
1688 | }
|
---|
1689 |
|
---|
1690 | /*
|
---|
1691 | * Consolidate current page state with actual page protection and access type.
|
---|
1692 | * We don't really consider downgrades here, as they shouldn't happen.
|
---|
1693 | */
|
---|
1694 | #ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1695 | /** @todo Someone at microsoft please explain:
|
---|
1696 | * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
|
---|
1697 | * readonly page as writable (unmap, then map again). Specifically, this was an
|
---|
1698 | * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
|
---|
1699 | * a hope to work around that we no longer pre-map anything, just unmap stuff
|
---|
1700 | * and do it lazily here. And here we will first unmap, restart, and then remap
|
---|
1701 | * with new protection or backing.
|
---|
1702 | */
|
---|
1703 | #endif
|
---|
1704 | int rc;
|
---|
1705 | switch (u2State)
|
---|
1706 | {
|
---|
1707 | case NEM_WIN_PAGE_STATE_UNMAPPED:
|
---|
1708 | case NEM_WIN_PAGE_STATE_NOT_SET:
|
---|
1709 | if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
|
---|
1710 | {
|
---|
1711 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
|
---|
1712 | return VINF_SUCCESS;
|
---|
1713 | }
|
---|
1714 |
|
---|
1715 | /* Don't bother remapping it if it's a write request to a non-writable page. */
|
---|
1716 | if ( pState->fWriteAccess
|
---|
1717 | && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
|
---|
1718 | {
|
---|
1719 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
|
---|
1720 | return VINF_SUCCESS;
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 | /* Map the page. */
|
---|
1724 | rc = nemHCNativeSetPhysPage(pVM,
|
---|
1725 | pVCpu,
|
---|
1726 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1727 | GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1728 | pInfo->fNemProt,
|
---|
1729 | &u2State,
|
---|
1730 | true /*fBackingState*/);
|
---|
1731 | pInfo->u2NemState = u2State;
|
---|
1732 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
|
---|
1733 | GCPhys, g_apszPageStates[u2State], rc));
|
---|
1734 | pState->fDidSomething = true;
|
---|
1735 | pState->fCanResume = true;
|
---|
1736 | return rc;
|
---|
1737 |
|
---|
1738 | case NEM_WIN_PAGE_STATE_READABLE:
|
---|
1739 | if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1740 | && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
|
---|
1741 | {
|
---|
1742 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
|
---|
1743 | return VINF_SUCCESS;
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1747 | /* Upgrade page to writable. */
|
---|
1748 | /** @todo test this*/
|
---|
1749 | if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1750 | && pState->fWriteAccess)
|
---|
1751 | {
|
---|
1752 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
|
---|
1753 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1754 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1755 | AssertRC(rc);
|
---|
1756 | if (RT_SUCCESS(rc))
|
---|
1757 | {
|
---|
1758 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1759 | pState->fDidSomething = true;
|
---|
1760 | pState->fCanResume = true;
|
---|
1761 | Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1762 | GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
|
---|
1763 | }
|
---|
1764 | }
|
---|
1765 | else
|
---|
1766 | {
|
---|
1767 | /* Need to emulate the acces. */
|
---|
1768 | AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
|
---|
1769 | rc = VINF_SUCCESS;
|
---|
1770 | }
|
---|
1771 | return rc;
|
---|
1772 | #else
|
---|
1773 | break;
|
---|
1774 | #endif
|
---|
1775 |
|
---|
1776 | case NEM_WIN_PAGE_STATE_WRITABLE:
|
---|
1777 | if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1778 | {
|
---|
1779 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3\n", GCPhys));
|
---|
1780 | return VINF_SUCCESS;
|
---|
1781 | }
|
---|
1782 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1783 | AssertFailed(); /* There should be no downgrades. */
|
---|
1784 | #endif
|
---|
1785 | break;
|
---|
1786 |
|
---|
1787 | default:
|
---|
1788 | AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 | /*
|
---|
1792 | * Unmap and restart the instruction.
|
---|
1793 | * If this fails, which it does every so often, just unmap everything for now.
|
---|
1794 | */
|
---|
1795 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1796 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1797 | AssertRC(rc);
|
---|
1798 | if (RT_SUCCESS(rc))
|
---|
1799 | #else
|
---|
1800 | /** @todo figure out whether we mess up the state or if it's WHv. */
|
---|
1801 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1802 | if (SUCCEEDED(hrc))
|
---|
1803 | #endif
|
---|
1804 | {
|
---|
1805 | pState->fDidSomething = true;
|
---|
1806 | pState->fCanResume = true;
|
---|
1807 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1808 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1809 | Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
|
---|
1810 | return VINF_SUCCESS;
|
---|
1811 | }
|
---|
1812 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1813 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1814 | return rc;
|
---|
1815 | #else
|
---|
1816 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1817 | GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
|
---|
1818 | pVM->nem.s.cMappedPages));
|
---|
1819 |
|
---|
1820 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
|
---|
1821 | Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
|
---|
1822 |
|
---|
1823 | pState->fDidSomething = true;
|
---|
1824 | pState->fCanResume = true;
|
---|
1825 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1826 | return VINF_SUCCESS;
|
---|
1827 | #endif
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 |
|
---|
1831 |
|
---|
1832 | #if defined(IN_RING0) && defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API)
|
---|
1833 | /**
|
---|
1834 | * Wrapper around nemR0WinImportState that converts VERR_NEM_FLUSH_TLB
|
---|
1835 | * into informational status codes and logs+asserts statuses.
|
---|
1836 | *
|
---|
1837 | * @returns VBox strict status code.
|
---|
1838 | * @param pGVM The global (ring-0) VM structure.
|
---|
1839 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
1840 | * @param pVCpu The cross context per CPU structure.
|
---|
1841 | * @param fWhat What to import.
|
---|
1842 | * @param pszCaller Who is doing the importing.
|
---|
1843 | */
|
---|
1844 | DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu, uint64_t fWhat, const char *pszCaller)
|
---|
1845 | {
|
---|
1846 | int rc = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fWhat);
|
---|
1847 | if (RT_SUCCESS(rc))
|
---|
1848 | {
|
---|
1849 | Assert(rc == VINF_SUCCESS);
|
---|
1850 | return VINF_SUCCESS;
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | if (rc == VERR_NEM_FLUSH_TLB)
|
---|
1854 | {
|
---|
1855 | Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
|
---|
1856 | return -rc;
|
---|
1857 | }
|
---|
1858 | RT_NOREF(pszCaller);
|
---|
1859 | AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
|
---|
1860 | }
|
---|
1861 | #endif /* IN_RING0 && NEM_WIN_TEMPLATE_MODE_OWN_RUN_API*/
|
---|
1862 |
|
---|
1863 | #if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
|
---|
1864 | /**
|
---|
1865 | * Wrapper around nemR0WinImportStateStrict and nemHCWinCopyStateFromHyperV.
|
---|
1866 | *
|
---|
1867 | * Unlike the wrapped APIs, this checks whether it's necessary.
|
---|
1868 | *
|
---|
1869 | * @returns VBox strict status code.
|
---|
1870 | * @param pGVM The global (ring-0) VM structure.
|
---|
1871 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
1872 | * @param fWhat What to import.
|
---|
1873 | * @param pszCaller Who is doing the importing.
|
---|
1874 | */
|
---|
1875 | DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPU pVCpu, PGVMCPU pGVCpu, uint64_t fWhat, const char *pszCaller)
|
---|
1876 | {
|
---|
1877 | if (pVCpu->cpum.GstCtx.fExtrn & fWhat)
|
---|
1878 | {
|
---|
1879 | # ifdef IN_RING0
|
---|
1880 | return nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, fWhat, pszCaller);
|
---|
1881 | # else
|
---|
1882 | RT_NOREF(pGVCpu, pszCaller);
|
---|
1883 | int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
|
---|
1884 | AssertRCReturn(rc, rc);
|
---|
1885 | # endif
|
---|
1886 | }
|
---|
1887 | return VINF_SUCCESS;
|
---|
1888 | }
|
---|
1889 | #endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API || IN_RING3 */
|
---|
1890 |
|
---|
1891 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
1892 | /**
|
---|
1893 | * Copies register state from the X64 intercept message header.
|
---|
1894 | *
|
---|
1895 | * ASSUMES no state copied yet.
|
---|
1896 | *
|
---|
1897 | * @param pVCpu The cross context per CPU structure.
|
---|
1898 | * @param pHdr The X64 intercept message header.
|
---|
1899 | * @sa nemR3WinCopyStateFromX64Header
|
---|
1900 | */
|
---|
1901 | DECLINLINE(void) nemHCWinCopyStateFromX64Header(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
|
---|
1902 | {
|
---|
1903 | Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1904 | == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
|
---|
1905 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pHdr->CsSegment);
|
---|
1906 | pVCpu->cpum.GstCtx.rip = pHdr->Rip;
|
---|
1907 | pVCpu->cpum.GstCtx.rflags.u = pHdr->Rflags;
|
---|
1908 |
|
---|
1909 | pVCpu->nem.s.fLastInterruptShadow = pHdr->ExecutionState.InterruptShadow;
|
---|
1910 | if (!pHdr->ExecutionState.InterruptShadow)
|
---|
1911 | {
|
---|
1912 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1913 | { /* likely */ }
|
---|
1914 | else
|
---|
1915 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1916 | }
|
---|
1917 | else
|
---|
1918 | EMSetInhibitInterruptsPC(pVCpu, pHdr->Rip);
|
---|
1919 |
|
---|
1920 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
|
---|
1921 | }
|
---|
1922 | #elif defined(IN_RING3)
|
---|
1923 | /**
|
---|
1924 | * Copies register state from the (common) exit context.
|
---|
1925 | *
|
---|
1926 | * ASSUMES no state copied yet.
|
---|
1927 | *
|
---|
1928 | * @param pVCpu The cross context per CPU structure.
|
---|
1929 | * @param pExitCtx The common exit context.
|
---|
1930 | * @sa nemHCWinCopyStateFromX64Header
|
---|
1931 | */
|
---|
1932 | DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1933 | {
|
---|
1934 | Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
|
---|
1935 | == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
|
---|
1936 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs);
|
---|
1937 | pVCpu->cpum.GstCtx.rip = pExitCtx->Rip;
|
---|
1938 | pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags;
|
---|
1939 |
|
---|
1940 | pVCpu->nem.s.fLastInterruptShadow = pExitCtx->ExecutionState.InterruptShadow;
|
---|
1941 | if (!pExitCtx->ExecutionState.InterruptShadow)
|
---|
1942 | {
|
---|
1943 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1944 | { /* likely */ }
|
---|
1945 | else
|
---|
1946 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1947 | }
|
---|
1948 | else
|
---|
1949 | EMSetInhibitInterruptsPC(pVCpu, pExitCtx->Rip);
|
---|
1950 |
|
---|
1951 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
|
---|
1952 | }
|
---|
1953 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
1954 |
|
---|
1955 |
|
---|
1956 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
1957 | /**
|
---|
1958 | * Deals with memory intercept message.
|
---|
1959 | *
|
---|
1960 | * @returns Strict VBox status code.
|
---|
1961 | * @param pVM The cross context VM structure.
|
---|
1962 | * @param pVCpu The cross context per CPU structure.
|
---|
1963 | * @param pMsg The message.
|
---|
1964 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
1965 | * @sa nemR3WinHandleExitMemory
|
---|
1966 | */
|
---|
1967 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
1968 | nemHCWinHandleMessageMemory(PVM pVM, PVMCPU pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
|
---|
1969 | {
|
---|
1970 | uint64_t const uHostTsc = ASMReadTSC();
|
---|
1971 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
1972 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
1973 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
|
---|
1974 |
|
---|
1975 | /*
|
---|
1976 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
1977 | */
|
---|
1978 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
1979 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
1980 |
|
---|
1981 | # if 0 /* Experiment: 20K -> 34K exit/s. */
|
---|
1982 | if ( pMsg->Header.ExecutionState.EferLma
|
---|
1983 | && pMsg->Header.CsSegment.Long
|
---|
1984 | && pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
1985 | {
|
---|
1986 | if ( pMsg->Header.Rip - (uint64_t)0xf65a < (uint64_t)(0xf662 - 0xf65a)
|
---|
1987 | && pMsg->InstructionBytes[0] == 0x89
|
---|
1988 | && pMsg->InstructionBytes[1] == 0x03)
|
---|
1989 | {
|
---|
1990 | pVCpu->cpum.GstCtx.rip = pMsg->Header.Rip + 2;
|
---|
1991 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
|
---|
1992 | AssertMsg(pMsg->Header.InstructionLength == 2, ("%#x\n", pMsg->Header.InstructionLength));
|
---|
1993 | //Log(("%RX64 msg:\n%.80Rhxd\n", pVCpu->cpum.GstCtx.rip, pMsg));
|
---|
1994 | return VINF_SUCCESS;
|
---|
1995 | }
|
---|
1996 | }
|
---|
1997 | # endif
|
---|
1998 |
|
---|
1999 | /*
|
---|
2000 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
2001 | * out of sync first.
|
---|
2002 | */
|
---|
2003 | NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
|
---|
2004 | PGMPHYSNEMPAGEINFO Info;
|
---|
2005 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
|
---|
2006 | nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
2007 | if (RT_SUCCESS(rc))
|
---|
2008 | {
|
---|
2009 | if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2010 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
2011 | {
|
---|
2012 | if (State.fCanResume)
|
---|
2013 | {
|
---|
2014 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
|
---|
2015 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2016 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
2017 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
2018 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
2019 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
|
---|
2020 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
|
---|
2021 | return VINF_SUCCESS;
|
---|
2022 | }
|
---|
2023 | }
|
---|
2024 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
|
---|
2025 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2026 | pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
2027 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
2028 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
2029 | }
|
---|
2030 | else
|
---|
2031 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
|
---|
2032 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2033 | pMsg->GuestPhysicalAddress, rc, State.fDidSomething ? " modified-backing" : "",
|
---|
2034 | g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
|
---|
2035 |
|
---|
2036 | /*
|
---|
2037 | * Emulate the memory access, either access handler or special memory.
|
---|
2038 | */
|
---|
2039 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2040 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2041 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
|
---|
2042 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
|
---|
2043 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
|
---|
2044 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2045 | VBOXSTRICTRC rcStrict;
|
---|
2046 | # ifdef IN_RING0
|
---|
2047 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu,
|
---|
2048 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES, "MemExit");
|
---|
2049 | if (rcStrict != VINF_SUCCESS)
|
---|
2050 | return rcStrict;
|
---|
2051 | # else
|
---|
2052 | rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2053 | AssertRCReturn(rc, rc);
|
---|
2054 | NOREF(pGVCpu);
|
---|
2055 | # endif
|
---|
2056 |
|
---|
2057 | if (pMsg->Reserved1)
|
---|
2058 | Log(("MemExit/Reserved1=%#x\n", pMsg->Reserved1));
|
---|
2059 | if (pMsg->Header.ExecutionState.Reserved0 || pMsg->Header.ExecutionState.Reserved1)
|
---|
2060 | Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pMsg->Header.ExecutionState.Reserved0, pMsg->Header.ExecutionState.Reserved1));
|
---|
2061 |
|
---|
2062 | if (!pExitRec)
|
---|
2063 | {
|
---|
2064 | //if (pMsg->InstructionByteCount > 0)
|
---|
2065 | // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
|
---|
2066 | if (pMsg->InstructionByteCount > 0)
|
---|
2067 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
|
---|
2068 | pMsg->InstructionBytes, pMsg->InstructionByteCount);
|
---|
2069 | else
|
---|
2070 | rcStrict = IEMExecOne(pVCpu);
|
---|
2071 | /** @todo do we need to do anything wrt debugging here? */
|
---|
2072 | }
|
---|
2073 | else
|
---|
2074 | {
|
---|
2075 | /* Frequent access or probing. */
|
---|
2076 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2077 | Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2078 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2079 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2080 | }
|
---|
2081 | return rcStrict;
|
---|
2082 | }
|
---|
2083 | #elif defined(IN_RING3)
|
---|
2084 | /**
|
---|
2085 | * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
|
---|
2086 | *
|
---|
2087 | * @returns Strict VBox status code.
|
---|
2088 | * @param pVM The cross context VM structure.
|
---|
2089 | * @param pVCpu The cross context per CPU structure.
|
---|
2090 | * @param pExit The VM exit information to handle.
|
---|
2091 | * @sa nemHCWinHandleMessageMemory
|
---|
2092 | */
|
---|
2093 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2094 | nemR3WinHandleExitMemory(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
2095 | {
|
---|
2096 | uint64_t const uHostTsc = ASMReadTSC();
|
---|
2097 | Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
|
---|
2098 |
|
---|
2099 | /*
|
---|
2100 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
2101 | */
|
---|
2102 | if (pExit->VpContext.ExecutionState.InterruptionPending)
|
---|
2103 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
2104 |
|
---|
2105 | /*
|
---|
2106 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
2107 | * out of sync first.
|
---|
2108 | */
|
---|
2109 | NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
|
---|
2110 | PGMPHYSNEMPAGEINFO Info;
|
---|
2111 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
|
---|
2112 | nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
2113 | if (RT_SUCCESS(rc))
|
---|
2114 | {
|
---|
2115 | if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
|
---|
2116 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
2117 | {
|
---|
2118 | if (State.fCanResume)
|
---|
2119 | {
|
---|
2120 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
|
---|
2121 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2122 | pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
2123 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
2124 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
2125 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
|
---|
2126 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
|
---|
2127 | return VINF_SUCCESS;
|
---|
2128 | }
|
---|
2129 | }
|
---|
2130 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
|
---|
2131 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2132 | pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
2133 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
2134 | State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
2135 | }
|
---|
2136 | else
|
---|
2137 | Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
|
---|
2138 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2139 | pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
|
---|
2140 | g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
|
---|
2141 |
|
---|
2142 | /*
|
---|
2143 | * Emulate the memory access, either access handler or special memory.
|
---|
2144 | */
|
---|
2145 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2146 | pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
|
---|
2147 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
|
---|
2148 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
|
---|
2149 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
|
---|
2150 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2151 | rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2152 | AssertRCReturn(rc, rc);
|
---|
2153 | if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
|
---|
2154 | Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
|
---|
2155 |
|
---|
2156 | VBOXSTRICTRC rcStrict;
|
---|
2157 | if (!pExitRec)
|
---|
2158 | {
|
---|
2159 | //if (pMsg->InstructionByteCount > 0)
|
---|
2160 | // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
|
---|
2161 | if (pExit->MemoryAccess.InstructionByteCount > 0)
|
---|
2162 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
|
---|
2163 | pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
|
---|
2164 | else
|
---|
2165 | rcStrict = IEMExecOne(pVCpu);
|
---|
2166 | /** @todo do we need to do anything wrt debugging here? */
|
---|
2167 | }
|
---|
2168 | else
|
---|
2169 | {
|
---|
2170 | /* Frequent access or probing. */
|
---|
2171 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2172 | Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2173 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2174 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2175 | }
|
---|
2176 | return rcStrict;
|
---|
2177 | }
|
---|
2178 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
2179 |
|
---|
2180 |
|
---|
2181 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
2182 | /**
|
---|
2183 | * Deals with I/O port intercept message.
|
---|
2184 | *
|
---|
2185 | * @returns Strict VBox status code.
|
---|
2186 | * @param pVM The cross context VM structure.
|
---|
2187 | * @param pVCpu The cross context per CPU structure.
|
---|
2188 | * @param pMsg The message.
|
---|
2189 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2190 | */
|
---|
2191 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2192 | nemHCWinHandleMessageIoPort(PVM pVM, PVMCPU pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
|
---|
2193 | {
|
---|
2194 | /*
|
---|
2195 | * Assert message sanity.
|
---|
2196 | */
|
---|
2197 | Assert( pMsg->AccessInfo.AccessSize == 1
|
---|
2198 | || pMsg->AccessInfo.AccessSize == 2
|
---|
2199 | || pMsg->AccessInfo.AccessSize == 4);
|
---|
2200 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
2201 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
2202 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
|
---|
2203 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
|
---|
2204 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
|
---|
2205 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
|
---|
2206 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
|
---|
2207 | if (pMsg->AccessInfo.StringOp)
|
---|
2208 | {
|
---|
2209 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
|
---|
2210 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterEs, pMsg->EsSegment);
|
---|
2211 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
|
---|
2212 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
|
---|
2213 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
|
---|
2214 | }
|
---|
2215 |
|
---|
2216 | /*
|
---|
2217 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
2218 | */
|
---|
2219 | if (pMsg->Header.ExecutionState.InterruptionPending)
|
---|
2220 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
2221 |
|
---|
2222 | /*
|
---|
2223 | * Add history first to avoid two paths doing EMHistoryExec calls.
|
---|
2224 | */
|
---|
2225 | VBOXSTRICTRC rcStrict;
|
---|
2226 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2227 | !pMsg->AccessInfo.StringOp
|
---|
2228 | ? ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2229 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
|
---|
2230 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
|
---|
2231 | : ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2232 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
|
---|
2233 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
|
---|
2234 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
2235 | if (!pExitRec)
|
---|
2236 | {
|
---|
2237 | if (!pMsg->AccessInfo.StringOp)
|
---|
2238 | {
|
---|
2239 | /*
|
---|
2240 | * Simple port I/O.
|
---|
2241 | */
|
---|
2242 | static uint32_t const s_fAndMask[8] =
|
---|
2243 | { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
|
---|
2244 | uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
|
---|
2245 |
|
---|
2246 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2247 | if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
2248 | {
|
---|
2249 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
|
---|
2250 | Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
|
---|
2251 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2252 | pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2253 | if (IOM_SUCCESS(rcStrict))
|
---|
2254 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
|
---|
2255 | # ifdef IN_RING0
|
---|
2256 | else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
2257 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
|
---|
2258 | /** @todo check for debug breakpoints */ )
|
---|
2259 | return EMRZSetPendingIoPortWrite(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
|
---|
2260 | pMsg->AccessInfo.AccessSize, (uint32_t)pMsg->Rax & fAndMask);
|
---|
2261 | # endif
|
---|
2262 | else
|
---|
2263 | {
|
---|
2264 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
2265 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2266 | }
|
---|
2267 | }
|
---|
2268 | else
|
---|
2269 | {
|
---|
2270 | uint32_t uValue = 0;
|
---|
2271 | rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
|
---|
2272 | Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
|
---|
2273 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2274 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2275 | if (IOM_SUCCESS(rcStrict))
|
---|
2276 | {
|
---|
2277 | if (pMsg->AccessInfo.AccessSize != 4)
|
---|
2278 | pVCpu->cpum.GstCtx.rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
|
---|
2279 | else
|
---|
2280 | pVCpu->cpum.GstCtx.rax = uValue;
|
---|
2281 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2282 | Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pVCpu->cpum.GstCtx.rax));
|
---|
2283 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
|
---|
2284 | }
|
---|
2285 | else
|
---|
2286 | {
|
---|
2287 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
2288 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2289 | # ifdef IN_RING0
|
---|
2290 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
2291 | && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
|
---|
2292 | /** @todo check for debug breakpoints */ )
|
---|
2293 | return EMRZSetPendingIoPortRead(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
|
---|
2294 | pMsg->AccessInfo.AccessSize);
|
---|
2295 | # endif
|
---|
2296 | }
|
---|
2297 | }
|
---|
2298 | }
|
---|
2299 | else
|
---|
2300 | {
|
---|
2301 | /*
|
---|
2302 | * String port I/O.
|
---|
2303 | */
|
---|
2304 | /** @todo Someone at Microsoft please explain how we can get the address mode
|
---|
2305 | * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
|
---|
2306 | * getting the default mode, it can always be overridden by a prefix. This
|
---|
2307 | * forces us to interpret the instruction from opcodes, which is suboptimal.
|
---|
2308 | * Both AMD-V and VT-x includes the address size in the exit info, at least on
|
---|
2309 | * CPUs that are reasonably new.
|
---|
2310 | *
|
---|
2311 | * Of course, it's possible this is an undocumented and we just need to do some
|
---|
2312 | * experiments to figure out how it's communicated. Alternatively, we can scan
|
---|
2313 | * the opcode bytes for possible evil prefixes.
|
---|
2314 | */
|
---|
2315 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2316 | pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2317 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2318 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
|
---|
2319 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
|
---|
2320 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
2321 | pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
|
---|
2322 | pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
|
---|
2323 | pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
|
---|
2324 | # ifdef IN_RING0
|
---|
2325 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
|
---|
2326 | if (rcStrict != VINF_SUCCESS)
|
---|
2327 | return rcStrict;
|
---|
2328 | # else
|
---|
2329 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2330 | AssertRCReturn(rc, rc);
|
---|
2331 | RT_NOREF(pGVCpu);
|
---|
2332 | # endif
|
---|
2333 |
|
---|
2334 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
|
---|
2335 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2336 | pMsg->AccessInfo.RepPrefix ? "REP " : "",
|
---|
2337 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
|
---|
2338 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
|
---|
2339 | rcStrict = IEMExecOne(pVCpu);
|
---|
2340 | }
|
---|
2341 | if (IOM_SUCCESS(rcStrict))
|
---|
2342 | {
|
---|
2343 | /*
|
---|
2344 | * Do debug checks.
|
---|
2345 | */
|
---|
2346 | if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
|
---|
2347 | || (pMsg->Header.Rflags & X86_EFL_TF)
|
---|
2348 | || DBGFBpIsHwIoArmed(pVM) )
|
---|
2349 | {
|
---|
2350 | /** @todo Debugging. */
|
---|
2351 | }
|
---|
2352 | }
|
---|
2353 | return rcStrict;
|
---|
2354 | }
|
---|
2355 |
|
---|
2356 | /*
|
---|
2357 | * Frequent exit or something needing probing.
|
---|
2358 | * Get state and call EMHistoryExec.
|
---|
2359 | */
|
---|
2360 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2361 | if (!pMsg->AccessInfo.StringOp)
|
---|
2362 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2363 | else
|
---|
2364 | {
|
---|
2365 | pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2366 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2367 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
|
---|
2368 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
|
---|
2369 | pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
|
---|
2370 | pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
|
---|
2371 | pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
|
---|
2372 | }
|
---|
2373 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
2374 |
|
---|
2375 | # ifdef IN_RING0
|
---|
2376 | rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
|
---|
2377 | if (rcStrict != VINF_SUCCESS)
|
---|
2378 | return rcStrict;
|
---|
2379 | # else
|
---|
2380 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2381 | AssertRCReturn(rc, rc);
|
---|
2382 | RT_NOREF(pGVCpu);
|
---|
2383 | # endif
|
---|
2384 |
|
---|
2385 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
|
---|
2386 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2387 | pMsg->AccessInfo.RepPrefix ? "REP " : "",
|
---|
2388 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUT" : "IN",
|
---|
2389 | pMsg->AccessInfo.StringOp ? "S" : "",
|
---|
2390 | pMsg->PortNumber, pMsg->AccessInfo.AccessSize));
|
---|
2391 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2392 | Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2393 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2394 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2395 | return rcStrict;
|
---|
2396 | }
|
---|
2397 | #elif defined(IN_RING3)
|
---|
2398 | /**
|
---|
2399 | * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
|
---|
2400 | *
|
---|
2401 | * @returns Strict VBox status code.
|
---|
2402 | * @param pVM The cross context VM structure.
|
---|
2403 | * @param pVCpu The cross context per CPU structure.
|
---|
2404 | * @param pExit The VM exit information to handle.
|
---|
2405 | * @sa nemHCWinHandleMessageIoPort
|
---|
2406 | */
|
---|
2407 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
2408 | {
|
---|
2409 | Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
|
---|
2410 | || pExit->IoPortAccess.AccessInfo.AccessSize == 2
|
---|
2411 | || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
|
---|
2412 |
|
---|
2413 | /*
|
---|
2414 | * Whatever we do, we must clear pending event injection upon resume.
|
---|
2415 | */
|
---|
2416 | if (pExit->VpContext.ExecutionState.InterruptionPending)
|
---|
2417 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
2418 |
|
---|
2419 | /*
|
---|
2420 | * Add history first to avoid two paths doing EMHistoryExec calls.
|
---|
2421 | */
|
---|
2422 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2423 | !pExit->IoPortAccess.AccessInfo.StringOp
|
---|
2424 | ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
|
---|
2425 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
|
---|
2426 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
|
---|
2427 | : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
|
---|
2428 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
|
---|
2429 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
|
---|
2430 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
2431 | if (!pExitRec)
|
---|
2432 | {
|
---|
2433 | VBOXSTRICTRC rcStrict;
|
---|
2434 | if (!pExit->IoPortAccess.AccessInfo.StringOp)
|
---|
2435 | {
|
---|
2436 | /*
|
---|
2437 | * Simple port I/O.
|
---|
2438 | */
|
---|
2439 | static uint32_t const s_fAndMask[8] =
|
---|
2440 | { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
|
---|
2441 | uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
|
---|
2442 | if (pExit->IoPortAccess.AccessInfo.IsWrite)
|
---|
2443 | {
|
---|
2444 | rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber,
|
---|
2445 | (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
|
---|
2446 | pExit->IoPortAccess.AccessInfo.AccessSize);
|
---|
2447 | Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
|
---|
2448 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2449 | pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
|
---|
2450 | pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2451 | if (IOM_SUCCESS(rcStrict))
|
---|
2452 | {
|
---|
2453 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2454 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
|
---|
2455 | }
|
---|
2456 | }
|
---|
2457 | else
|
---|
2458 | {
|
---|
2459 | uint32_t uValue = 0;
|
---|
2460 | rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue,
|
---|
2461 | pExit->IoPortAccess.AccessInfo.AccessSize);
|
---|
2462 | Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
|
---|
2463 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2464 | pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2465 | if (IOM_SUCCESS(rcStrict))
|
---|
2466 | {
|
---|
2467 | if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
|
---|
2468 | pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
|
---|
2469 | else
|
---|
2470 | pVCpu->cpum.GstCtx.rax = uValue;
|
---|
2471 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2472 | Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax));
|
---|
2473 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2474 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
|
---|
2475 | }
|
---|
2476 | }
|
---|
2477 | }
|
---|
2478 | else
|
---|
2479 | {
|
---|
2480 | /*
|
---|
2481 | * String port I/O.
|
---|
2482 | */
|
---|
2483 | /** @todo Someone at Microsoft please explain how we can get the address mode
|
---|
2484 | * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
|
---|
2485 | * getting the default mode, it can always be overridden by a prefix. This
|
---|
2486 | * forces us to interpret the instruction from opcodes, which is suboptimal.
|
---|
2487 | * Both AMD-V and VT-x includes the address size in the exit info, at least on
|
---|
2488 | * CPUs that are reasonably new.
|
---|
2489 | *
|
---|
2490 | * Of course, it's possible this is an undocumented and we just need to do some
|
---|
2491 | * experiments to figure out how it's communicated. Alternatively, we can scan
|
---|
2492 | * the opcode bytes for possible evil prefixes.
|
---|
2493 | */
|
---|
2494 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2495 | pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2496 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2497 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
|
---|
2498 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
|
---|
2499 | pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
|
---|
2500 | pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
|
---|
2501 | pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
|
---|
2502 | pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
|
---|
2503 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2504 | AssertRCReturn(rc, rc);
|
---|
2505 |
|
---|
2506 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
|
---|
2507 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2508 | pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
|
---|
2509 | pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
|
---|
2510 | pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
|
---|
2511 | rcStrict = IEMExecOne(pVCpu);
|
---|
2512 | }
|
---|
2513 | if (IOM_SUCCESS(rcStrict))
|
---|
2514 | {
|
---|
2515 | /*
|
---|
2516 | * Do debug checks.
|
---|
2517 | */
|
---|
2518 | if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
|
---|
2519 | || (pExit->VpContext.Rflags & X86_EFL_TF)
|
---|
2520 | || DBGFBpIsHwIoArmed(pVM) )
|
---|
2521 | {
|
---|
2522 | /** @todo Debugging. */
|
---|
2523 | }
|
---|
2524 | }
|
---|
2525 | return rcStrict;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 | /*
|
---|
2529 | * Frequent exit or something needing probing.
|
---|
2530 | * Get state and call EMHistoryExec.
|
---|
2531 | */
|
---|
2532 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2533 | if (!pExit->IoPortAccess.AccessInfo.StringOp)
|
---|
2534 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
|
---|
2535 | else
|
---|
2536 | {
|
---|
2537 | pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
|
---|
2538 | | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
|
---|
2539 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
|
---|
2540 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
|
---|
2541 | pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
|
---|
2542 | pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
|
---|
2543 | pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
|
---|
2544 | }
|
---|
2545 | pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
|
---|
2546 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2547 | AssertRCReturn(rc, rc);
|
---|
2548 | Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
|
---|
2549 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2550 | pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
|
---|
2551 | pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN",
|
---|
2552 | pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "",
|
---|
2553 | pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize));
|
---|
2554 | VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2555 | Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2556 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2557 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2558 | return rcStrict;
|
---|
2559 | }
|
---|
2560 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
2561 |
|
---|
2562 |
|
---|
2563 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
2564 | /**
|
---|
2565 | * Deals with interrupt window message.
|
---|
2566 | *
|
---|
2567 | * @returns Strict VBox status code.
|
---|
2568 | * @param pVM The cross context VM structure.
|
---|
2569 | * @param pVCpu The cross context per CPU structure.
|
---|
2570 | * @param pMsg The message.
|
---|
2571 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2572 | * @sa nemR3WinHandleExitInterruptWindow
|
---|
2573 | */
|
---|
2574 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2575 | nemHCWinHandleMessageInterruptWindow(PVM pVM, PVMCPU pVCpu, HV_X64_INTERRUPT_WINDOW_MESSAGE const *pMsg, PGVMCPU pGVCpu)
|
---|
2576 | {
|
---|
2577 | /*
|
---|
2578 | * Assert message sanity.
|
---|
2579 | */
|
---|
2580 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE
|
---|
2581 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ // READ & WRITE are probably not used here
|
---|
2582 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
2583 | AssertMsg(pMsg->Type == HvX64PendingInterrupt || pMsg->Type == HvX64PendingNmi, ("%#x\n", pMsg->Type));
|
---|
2584 |
|
---|
2585 | /*
|
---|
2586 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2587 | */
|
---|
2588 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
|
---|
2589 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
2590 |
|
---|
2591 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2592 | Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
|
---|
2593 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2594 | pMsg->Type, RT_BOOL(pMsg->Header.Rflags & X86_EFL_IF), pMsg->Header.ExecutionState.InterruptShadow));
|
---|
2595 |
|
---|
2596 | /** @todo call nemHCWinHandleInterruptFF */
|
---|
2597 | RT_NOREF(pVM, pGVCpu);
|
---|
2598 | return VINF_SUCCESS;
|
---|
2599 | }
|
---|
2600 | #elif defined(IN_RING3)
|
---|
2601 | /**
|
---|
2602 | * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
|
---|
2603 | *
|
---|
2604 | * @returns Strict VBox status code.
|
---|
2605 | * @param pVM The cross context VM structure.
|
---|
2606 | * @param pVCpu The cross context per CPU structure.
|
---|
2607 | * @param pExit The VM exit information to handle.
|
---|
2608 | * @sa nemHCWinHandleMessageInterruptWindow
|
---|
2609 | */
|
---|
2610 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
2611 | {
|
---|
2612 | /*
|
---|
2613 | * Assert message sanity.
|
---|
2614 | */
|
---|
2615 | AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
|
---|
2616 | || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
|
---|
2617 | ("%#x\n", pExit->InterruptWindow.DeliverableType));
|
---|
2618 |
|
---|
2619 | /*
|
---|
2620 | * Just copy the state we've got and handle it in the loop for now.
|
---|
2621 | */
|
---|
2622 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
|
---|
2623 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
2624 |
|
---|
2625 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2626 | Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
|
---|
2627 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2628 | pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
|
---|
2629 | pExit->VpContext.ExecutionState.InterruptShadow));
|
---|
2630 |
|
---|
2631 | /** @todo call nemHCWinHandleInterruptFF */
|
---|
2632 | RT_NOREF(pVM);
|
---|
2633 | return VINF_SUCCESS;
|
---|
2634 | }
|
---|
2635 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
2636 |
|
---|
2637 |
|
---|
2638 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
2639 | /**
|
---|
2640 | * Deals with CPUID intercept message.
|
---|
2641 | *
|
---|
2642 | * @returns Strict VBox status code.
|
---|
2643 | * @param pVM The cross context VM structure.
|
---|
2644 | * @param pVCpu The cross context per CPU structure.
|
---|
2645 | * @param pMsg The message.
|
---|
2646 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2647 | * @sa nemR3WinHandleExitCpuId
|
---|
2648 | */
|
---|
2649 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageCpuId(PVM pVM, PVMCPU pVCpu, HV_X64_CPUID_INTERCEPT_MESSAGE const *pMsg,
|
---|
2650 | PGVMCPU pGVCpu)
|
---|
2651 | {
|
---|
2652 | /* Check message register value sanity. */
|
---|
2653 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
|
---|
2654 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
|
---|
2655 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
|
---|
2656 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
|
---|
2657 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
|
---|
2658 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
|
---|
2659 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
|
---|
2660 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
|
---|
2661 |
|
---|
2662 | /* Do exit history. */
|
---|
2663 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
|
---|
2664 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
2665 | if (!pExitRec)
|
---|
2666 | {
|
---|
2667 | /*
|
---|
2668 | * Soak up state and execute the instruction.
|
---|
2669 | *
|
---|
2670 | * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
|
---|
2671 | * function and make everyone use it.
|
---|
2672 | */
|
---|
2673 | /** @todo Combine implementations into IEMExecDecodedCpuId as this will
|
---|
2674 | * only get weirder with nested VT-x and AMD-V support. */
|
---|
2675 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2676 |
|
---|
2677 | /* Copy in the low register values (top is always cleared). */
|
---|
2678 | pVCpu->cpum.GstCtx.rax = (uint32_t)pMsg->Rax;
|
---|
2679 | pVCpu->cpum.GstCtx.rcx = (uint32_t)pMsg->Rcx;
|
---|
2680 | pVCpu->cpum.GstCtx.rdx = (uint32_t)pMsg->Rdx;
|
---|
2681 | pVCpu->cpum.GstCtx.rbx = (uint32_t)pMsg->Rbx;
|
---|
2682 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2683 |
|
---|
2684 | /* Get the correct values. */
|
---|
2685 | CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
|
---|
2686 | &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
|
---|
2687 |
|
---|
2688 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
|
---|
2689 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2690 | pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
|
---|
2691 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
|
---|
2692 | pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
|
---|
2693 |
|
---|
2694 | /* Move RIP and we're done. */
|
---|
2695 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
|
---|
2696 |
|
---|
2697 | return VINF_SUCCESS;
|
---|
2698 | }
|
---|
2699 |
|
---|
2700 | /*
|
---|
2701 | * Frequent exit or something needing probing.
|
---|
2702 | * Get state and call EMHistoryExec.
|
---|
2703 | */
|
---|
2704 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2705 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
2706 | pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
|
---|
2707 | pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
|
---|
2708 | pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
|
---|
2709 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2710 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
|
---|
2711 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2712 | pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
|
---|
2713 | pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
|
---|
2714 | # ifdef IN_RING0
|
---|
2715 | VBOXSTRICTRC rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "CpuIdExit");
|
---|
2716 | if (rcStrict != VINF_SUCCESS)
|
---|
2717 | return rcStrict;
|
---|
2718 | RT_NOREF(pVM);
|
---|
2719 | # else
|
---|
2720 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2721 | AssertRCReturn(rc, rc);
|
---|
2722 | RT_NOREF(pGVCpu);
|
---|
2723 | # endif
|
---|
2724 | VBOXSTRICTRC rcStrictExec = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2725 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2726 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2727 | VBOXSTRICTRC_VAL(rcStrictExec), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2728 | return rcStrictExec;
|
---|
2729 | }
|
---|
2730 | #elif defined(IN_RING3)
|
---|
2731 | /**
|
---|
2732 | * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
|
---|
2733 | *
|
---|
2734 | * @returns Strict VBox status code.
|
---|
2735 | * @param pVM The cross context VM structure.
|
---|
2736 | * @param pVCpu The cross context per CPU structure.
|
---|
2737 | * @param pExit The VM exit information to handle.
|
---|
2738 | * @sa nemHCWinHandleMessageCpuId
|
---|
2739 | */
|
---|
2740 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
2741 | nemR3WinHandleExitCpuId(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
2742 | {
|
---|
2743 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
|
---|
2744 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
2745 | if (!pExitRec)
|
---|
2746 | {
|
---|
2747 | /*
|
---|
2748 | * Soak up state and execute the instruction.
|
---|
2749 | *
|
---|
2750 | * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
|
---|
2751 | * function and make everyone use it.
|
---|
2752 | */
|
---|
2753 | /** @todo Combine implementations into IEMExecDecodedCpuId as this will
|
---|
2754 | * only get weirder with nested VT-x and AMD-V support. */
|
---|
2755 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2756 |
|
---|
2757 | /* Copy in the low register values (top is always cleared). */
|
---|
2758 | pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax;
|
---|
2759 | pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx;
|
---|
2760 | pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx;
|
---|
2761 | pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx;
|
---|
2762 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2763 |
|
---|
2764 | /* Get the correct values. */
|
---|
2765 | CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
|
---|
2766 | &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
|
---|
2767 |
|
---|
2768 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
|
---|
2769 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2770 | pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
|
---|
2771 | pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
|
---|
2772 | pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
|
---|
2773 |
|
---|
2774 | /* Move RIP and we're done. */
|
---|
2775 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
|
---|
2776 |
|
---|
2777 | RT_NOREF_PV(pVM);
|
---|
2778 | return VINF_SUCCESS;
|
---|
2779 | }
|
---|
2780 |
|
---|
2781 | /*
|
---|
2782 | * Frequent exit or something needing probing.
|
---|
2783 | * Get state and call EMHistoryExec.
|
---|
2784 | */
|
---|
2785 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2786 | pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax;
|
---|
2787 | pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx;
|
---|
2788 | pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx;
|
---|
2789 | pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx;
|
---|
2790 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
|
---|
2791 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
|
---|
2792 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2793 | pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
|
---|
2794 | pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
|
---|
2795 | int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
|
---|
2796 | AssertRCReturn(rc, rc);
|
---|
2797 | VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2798 | Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2799 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
2800 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2801 | return rcStrict;
|
---|
2802 | }
|
---|
2803 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
2804 |
|
---|
2805 |
|
---|
2806 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
2807 | /**
|
---|
2808 | * Deals with MSR intercept message.
|
---|
2809 | *
|
---|
2810 | * @returns Strict VBox status code.
|
---|
2811 | * @param pVCpu The cross context per CPU structure.
|
---|
2812 | * @param pMsg The message.
|
---|
2813 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
2814 | * @sa nemR3WinHandleExitMsr
|
---|
2815 | */
|
---|
2816 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMsr(PVMCPU pVCpu, HV_X64_MSR_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
|
---|
2817 | {
|
---|
2818 | /*
|
---|
2819 | * A wee bit of sanity first.
|
---|
2820 | */
|
---|
2821 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
2822 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
|
---|
2823 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
|
---|
2824 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
|
---|
2825 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
|
---|
2826 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
|
---|
2827 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
|
---|
2828 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
|
---|
2829 |
|
---|
2830 | /*
|
---|
2831 | * Check CPL as that's common to both RDMSR and WRMSR.
|
---|
2832 | */
|
---|
2833 | VBOXSTRICTRC rcStrict;
|
---|
2834 | if (pMsg->Header.ExecutionState.Cpl == 0)
|
---|
2835 | {
|
---|
2836 | /*
|
---|
2837 | * Get all the MSR state. Since we're getting EFER, we also need to
|
---|
2838 | * get CR0, CR4 and CR3.
|
---|
2839 | */
|
---|
2840 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2841 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
2842 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
|
---|
2843 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
|
---|
2844 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
2845 |
|
---|
2846 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
2847 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
|
---|
2848 | (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
|
---|
2849 | | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
|
---|
2850 | | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
|
---|
2851 | "MSRs");
|
---|
2852 | if (rcStrict == VINF_SUCCESS)
|
---|
2853 | {
|
---|
2854 | if (!pExitRec)
|
---|
2855 | {
|
---|
2856 | /*
|
---|
2857 | * Handle writes.
|
---|
2858 | */
|
---|
2859 | if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
2860 | {
|
---|
2861 | rcStrict = CPUMSetGuestMsr(pVCpu, pMsg->MsrNumber, RT_MAKE_U64((uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx));
|
---|
2862 | Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n",
|
---|
2863 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2864 | pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2865 | if (rcStrict == VINF_SUCCESS)
|
---|
2866 | {
|
---|
2867 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
|
---|
2868 | return VINF_SUCCESS;
|
---|
2869 | }
|
---|
2870 | # ifndef IN_RING3
|
---|
2871 | /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
|
---|
2872 | if (rcStrict == VERR_CPUM_RAISE_GP_0)
|
---|
2873 | rcStrict = VINF_CPUM_R3_MSR_WRITE;
|
---|
2874 | return rcStrict;
|
---|
2875 | # else
|
---|
2876 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n",
|
---|
2877 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2878 | pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2879 | # endif
|
---|
2880 | }
|
---|
2881 | /*
|
---|
2882 | * Handle reads.
|
---|
2883 | */
|
---|
2884 | else
|
---|
2885 | {
|
---|
2886 | uint64_t uValue = 0;
|
---|
2887 | rcStrict = CPUMQueryGuestMsr(pVCpu, pMsg->MsrNumber, &uValue);
|
---|
2888 | Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
|
---|
2889 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2890 | pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2891 | if (rcStrict == VINF_SUCCESS)
|
---|
2892 | {
|
---|
2893 | pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
|
---|
2894 | pVCpu->cpum.GstCtx.rdx = uValue >> 32;
|
---|
2895 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
|
---|
2896 | nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
|
---|
2897 | return VINF_SUCCESS;
|
---|
2898 | }
|
---|
2899 | # ifndef IN_RING3
|
---|
2900 | /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
|
---|
2901 | if (rcStrict == VERR_CPUM_RAISE_GP_0)
|
---|
2902 | rcStrict = VINF_CPUM_R3_MSR_READ;
|
---|
2903 | return rcStrict;
|
---|
2904 | # else
|
---|
2905 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
|
---|
2906 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2907 | pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2908 | # endif
|
---|
2909 | }
|
---|
2910 | }
|
---|
2911 | else
|
---|
2912 | {
|
---|
2913 | /*
|
---|
2914 | * Handle frequent exit or something needing probing.
|
---|
2915 | */
|
---|
2916 | Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
|
---|
2917 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2918 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD", pMsg->MsrNumber));
|
---|
2919 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
2920 | Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
2921 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2922 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
2923 | return rcStrict;
|
---|
2924 | }
|
---|
2925 | }
|
---|
2926 | else
|
---|
2927 | {
|
---|
2928 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
|
---|
2929 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2930 | pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD",
|
---|
2931 | pMsg->MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2932 | return rcStrict;
|
---|
2933 | }
|
---|
2934 | }
|
---|
2935 | else if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
|
---|
2936 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n",
|
---|
2937 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2938 | pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx ));
|
---|
2939 | else
|
---|
2940 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n",
|
---|
2941 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
2942 | pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber));
|
---|
2943 |
|
---|
2944 | /*
|
---|
2945 | * If we get down here, we're supposed to #GP(0).
|
---|
2946 | */
|
---|
2947 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
|
---|
2948 | if (rcStrict == VINF_SUCCESS)
|
---|
2949 | {
|
---|
2950 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
|
---|
2951 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
2952 | rcStrict = VINF_SUCCESS;
|
---|
2953 | else if (rcStrict != VINF_SUCCESS)
|
---|
2954 | Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
2955 | }
|
---|
2956 | return rcStrict;
|
---|
2957 | }
|
---|
2958 | #elif defined(IN_RING3)
|
---|
2959 | /**
|
---|
2960 | * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
|
---|
2961 | *
|
---|
2962 | * @returns Strict VBox status code.
|
---|
2963 | * @param pVM The cross context VM structure.
|
---|
2964 | * @param pVCpu The cross context per CPU structure.
|
---|
2965 | * @param pExit The VM exit information to handle.
|
---|
2966 | * @sa nemHCWinHandleMessageMsr
|
---|
2967 | */
|
---|
2968 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
2969 | {
|
---|
2970 | /*
|
---|
2971 | * Check CPL as that's common to both RDMSR and WRMSR.
|
---|
2972 | */
|
---|
2973 | VBOXSTRICTRC rcStrict;
|
---|
2974 | if (pExit->VpContext.ExecutionState.Cpl == 0)
|
---|
2975 | {
|
---|
2976 | /*
|
---|
2977 | * Get all the MSR state. Since we're getting EFER, we also need to
|
---|
2978 | * get CR0, CR4 and CR3.
|
---|
2979 | */
|
---|
2980 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
2981 | pExit->MsrAccess.AccessInfo.IsWrite
|
---|
2982 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
|
---|
2983 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
|
---|
2984 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
2985 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
2986 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
|
---|
2987 | (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
|
---|
2988 | | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
|
---|
2989 | | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
|
---|
2990 | "MSRs");
|
---|
2991 | if (rcStrict == VINF_SUCCESS)
|
---|
2992 | {
|
---|
2993 | if (!pExitRec)
|
---|
2994 | {
|
---|
2995 | /*
|
---|
2996 | * Handle writes.
|
---|
2997 | */
|
---|
2998 | if (pExit->MsrAccess.AccessInfo.IsWrite)
|
---|
2999 | {
|
---|
3000 | rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
|
---|
3001 | RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
|
---|
3002 | Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3003 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
|
---|
3004 | (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3005 | if (rcStrict == VINF_SUCCESS)
|
---|
3006 | {
|
---|
3007 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
|
---|
3008 | return VINF_SUCCESS;
|
---|
3009 | }
|
---|
3010 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
|
---|
3011 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3012 | pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
|
---|
3013 | VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3014 | }
|
---|
3015 | /*
|
---|
3016 | * Handle reads.
|
---|
3017 | */
|
---|
3018 | else
|
---|
3019 | {
|
---|
3020 | uint64_t uValue = 0;
|
---|
3021 | rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
|
---|
3022 | Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
|
---|
3023 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3024 | pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3025 | if (rcStrict == VINF_SUCCESS)
|
---|
3026 | {
|
---|
3027 | pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
|
---|
3028 | pVCpu->cpum.GstCtx.rdx = uValue >> 32;
|
---|
3029 | pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
|
---|
3030 | nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
|
---|
3031 | return VINF_SUCCESS;
|
---|
3032 | }
|
---|
3033 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3034 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
|
---|
3035 | uValue, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3036 | }
|
---|
3037 | }
|
---|
3038 | else
|
---|
3039 | {
|
---|
3040 | /*
|
---|
3041 | * Handle frequent exit or something needing probing.
|
---|
3042 | */
|
---|
3043 | Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
|
---|
3044 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3045 | pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber));
|
---|
3046 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
3047 | Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
3048 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3049 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
3050 | return rcStrict;
|
---|
3051 | }
|
---|
3052 | }
|
---|
3053 | else
|
---|
3054 | {
|
---|
3055 | LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
|
---|
3056 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3057 | pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3058 | return rcStrict;
|
---|
3059 | }
|
---|
3060 | }
|
---|
3061 | else if (pExit->MsrAccess.AccessInfo.IsWrite)
|
---|
3062 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3063 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
|
---|
3064 | pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
|
---|
3065 | else
|
---|
3066 | Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3067 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
|
---|
3068 | pExit->MsrAccess.MsrNumber));
|
---|
3069 |
|
---|
3070 | /*
|
---|
3071 | * If we get down here, we're supposed to #GP(0).
|
---|
3072 | */
|
---|
3073 | rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
|
---|
3074 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
|
---|
3075 | if (rcStrict == VINF_SUCCESS)
|
---|
3076 | {
|
---|
3077 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
|
---|
3078 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
3079 | rcStrict = VINF_SUCCESS;
|
---|
3080 | else if (rcStrict != VINF_SUCCESS)
|
---|
3081 | Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3082 | }
|
---|
3083 |
|
---|
3084 | RT_NOREF_PV(pVM);
|
---|
3085 | return rcStrict;
|
---|
3086 | }
|
---|
3087 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3088 |
|
---|
3089 |
|
---|
3090 | /**
|
---|
3091 | * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
|
---|
3092 | * checks if the given opcodes are of interest at all.
|
---|
3093 | *
|
---|
3094 | * @returns true if interesting, false if not.
|
---|
3095 | * @param cbOpcodes Number of opcode bytes available.
|
---|
3096 | * @param pbOpcodes The opcode bytes.
|
---|
3097 | * @param f64BitMode Whether we're in 64-bit mode.
|
---|
3098 | */
|
---|
3099 | DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
|
---|
3100 | {
|
---|
3101 | /*
|
---|
3102 | * Currently only interested in VMCALL and VMMCALL.
|
---|
3103 | */
|
---|
3104 | while (cbOpcodes >= 3)
|
---|
3105 | {
|
---|
3106 | switch (pbOpcodes[0])
|
---|
3107 | {
|
---|
3108 | case 0x0f:
|
---|
3109 | switch (pbOpcodes[1])
|
---|
3110 | {
|
---|
3111 | case 0x01:
|
---|
3112 | switch (pbOpcodes[2])
|
---|
3113 | {
|
---|
3114 | case 0xc1: /* 0f 01 c1 VMCALL */
|
---|
3115 | return true;
|
---|
3116 | case 0xd9: /* 0f 01 d9 VMMCALL */
|
---|
3117 | return true;
|
---|
3118 | default:
|
---|
3119 | break;
|
---|
3120 | }
|
---|
3121 | break;
|
---|
3122 | }
|
---|
3123 | break;
|
---|
3124 |
|
---|
3125 | default:
|
---|
3126 | return false;
|
---|
3127 |
|
---|
3128 | /* prefixes */
|
---|
3129 | case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
|
---|
3130 | case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
|
---|
3131 | if (!f64BitMode)
|
---|
3132 | return false;
|
---|
3133 | RT_FALL_THRU();
|
---|
3134 | case X86_OP_PRF_CS:
|
---|
3135 | case X86_OP_PRF_SS:
|
---|
3136 | case X86_OP_PRF_DS:
|
---|
3137 | case X86_OP_PRF_ES:
|
---|
3138 | case X86_OP_PRF_FS:
|
---|
3139 | case X86_OP_PRF_GS:
|
---|
3140 | case X86_OP_PRF_SIZE_OP:
|
---|
3141 | case X86_OP_PRF_SIZE_ADDR:
|
---|
3142 | case X86_OP_PRF_LOCK:
|
---|
3143 | case X86_OP_PRF_REPZ:
|
---|
3144 | case X86_OP_PRF_REPNZ:
|
---|
3145 | cbOpcodes--;
|
---|
3146 | pbOpcodes++;
|
---|
3147 | continue;
|
---|
3148 | }
|
---|
3149 | break;
|
---|
3150 | }
|
---|
3151 | return false;
|
---|
3152 | }
|
---|
3153 |
|
---|
3154 |
|
---|
3155 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
3156 | /**
|
---|
3157 | * Copies state included in a exception intercept message.
|
---|
3158 | *
|
---|
3159 | * @param pVCpu The cross context per CPU structure.
|
---|
3160 | * @param pMsg The message.
|
---|
3161 | * @param fClearXcpt Clear pending exception.
|
---|
3162 | */
|
---|
3163 | DECLINLINE(void)
|
---|
3164 | nemHCWinCopyStateFromExceptionMessage(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, bool fClearXcpt)
|
---|
3165 | {
|
---|
3166 | nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
|
---|
3167 | pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_DS
|
---|
3168 | | (fClearXcpt ? CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT : 0) );
|
---|
3169 | pVCpu->cpum.GstCtx.rax = pMsg->Rax;
|
---|
3170 | pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
|
---|
3171 | pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
|
---|
3172 | pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
|
---|
3173 | pVCpu->cpum.GstCtx.rsp = pMsg->Rsp;
|
---|
3174 | pVCpu->cpum.GstCtx.rbp = pMsg->Rbp;
|
---|
3175 | pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
|
---|
3176 | pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
|
---|
3177 | pVCpu->cpum.GstCtx.r8 = pMsg->R8;
|
---|
3178 | pVCpu->cpum.GstCtx.r9 = pMsg->R9;
|
---|
3179 | pVCpu->cpum.GstCtx.r10 = pMsg->R10;
|
---|
3180 | pVCpu->cpum.GstCtx.r11 = pMsg->R11;
|
---|
3181 | pVCpu->cpum.GstCtx.r12 = pMsg->R12;
|
---|
3182 | pVCpu->cpum.GstCtx.r13 = pMsg->R13;
|
---|
3183 | pVCpu->cpum.GstCtx.r14 = pMsg->R14;
|
---|
3184 | pVCpu->cpum.GstCtx.r15 = pMsg->R15;
|
---|
3185 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
|
---|
3186 | NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ss, pMsg->SsSegment);
|
---|
3187 | }
|
---|
3188 | #elif defined(IN_RING3)
|
---|
3189 | /**
|
---|
3190 | * Copies state included in a exception intercept exit.
|
---|
3191 | *
|
---|
3192 | * @param pVCpu The cross context per CPU structure.
|
---|
3193 | * @param pExit The VM exit information.
|
---|
3194 | * @param fClearXcpt Clear pending exception.
|
---|
3195 | */
|
---|
3196 | DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt)
|
---|
3197 | {
|
---|
3198 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
3199 | if (fClearXcpt)
|
---|
3200 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
3201 | }
|
---|
3202 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3203 |
|
---|
3204 |
|
---|
3205 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
3206 | /**
|
---|
3207 | * Deals with exception intercept message (HvMessageTypeX64ExceptionIntercept).
|
---|
3208 | *
|
---|
3209 | * @returns Strict VBox status code.
|
---|
3210 | * @param pVCpu The cross context per CPU structure.
|
---|
3211 | * @param pMsg The message.
|
---|
3212 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3213 | * @sa nemR3WinHandleExitMsr
|
---|
3214 | */
|
---|
3215 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
3216 | nemHCWinHandleMessageException(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
|
---|
3217 | {
|
---|
3218 | /*
|
---|
3219 | * Assert sanity.
|
---|
3220 | */
|
---|
3221 | Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
|
---|
3222 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
|
---|
3223 | || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
|
---|
3224 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
|
---|
3225 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
|
---|
3226 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
|
---|
3227 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
|
---|
3228 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
|
---|
3229 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterSs, pMsg->SsSegment);
|
---|
3230 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
|
---|
3231 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
|
---|
3232 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
|
---|
3233 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
|
---|
3234 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsp, pMsg->Rsp);
|
---|
3235 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbp, pMsg->Rbp);
|
---|
3236 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
|
---|
3237 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
|
---|
3238 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR8, pMsg->R8);
|
---|
3239 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR9, pMsg->R9);
|
---|
3240 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR10, pMsg->R10);
|
---|
3241 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR11, pMsg->R11);
|
---|
3242 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR12, pMsg->R12);
|
---|
3243 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR13, pMsg->R13);
|
---|
3244 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR14, pMsg->R14);
|
---|
3245 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR15, pMsg->R15);
|
---|
3246 |
|
---|
3247 | /*
|
---|
3248 | * Get most of the register state since we'll end up making IEM inject the
|
---|
3249 | * event. The exception isn't normally flaged as a pending event, so duh.
|
---|
3250 | *
|
---|
3251 | * Note! We can optimize this later with event injection.
|
---|
3252 | */
|
---|
3253 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n",
|
---|
3254 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
|
---|
3255 | pMsg->ExceptionVector, pMsg->ErrorCode, pMsg->ExceptionParameter));
|
---|
3256 | nemHCWinCopyStateFromExceptionMessage(pVCpu, pMsg, true /*fClearXcpt*/);
|
---|
3257 | uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
|
---|
3258 | if (pMsg->ExceptionVector == X86_XCPT_DB)
|
---|
3259 | fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
|
---|
3260 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, fWhat, "Xcpt");
|
---|
3261 | if (rcStrict != VINF_SUCCESS)
|
---|
3262 | return rcStrict;
|
---|
3263 |
|
---|
3264 | /*
|
---|
3265 | * Handle the intercept.
|
---|
3266 | */
|
---|
3267 | TRPMEVENT enmEvtType = TRPM_TRAP;
|
---|
3268 | switch (pMsg->ExceptionVector)
|
---|
3269 | {
|
---|
3270 | /*
|
---|
3271 | * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
|
---|
3272 | * and need to turn them over to GIM.
|
---|
3273 | *
|
---|
3274 | * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
|
---|
3275 | * #UD for handling non-native hypercall instructions. (IEM will
|
---|
3276 | * decode both and let the GIM provider decide whether to accept it.)
|
---|
3277 | */
|
---|
3278 | case X86_XCPT_UD:
|
---|
3279 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
|
---|
3280 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
|
---|
3281 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
3282 |
|
---|
3283 | if (nemHcWinIsInterestingUndefinedOpcode(pMsg->InstructionByteCount, pMsg->InstructionBytes,
|
---|
3284 | pMsg->Header.ExecutionState.EferLma && pMsg->Header.CsSegment.Long ))
|
---|
3285 | {
|
---|
3286 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
|
---|
3287 | pMsg->InstructionBytes, pMsg->InstructionByteCount);
|
---|
3288 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
|
---|
3289 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
3290 | nemHCWinExecStateToLogStr(&pMsg->Header), VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3291 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
|
---|
3292 | return rcStrict;
|
---|
3293 | }
|
---|
3294 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
|
---|
3295 | pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->InstructionByteCount, pMsg->InstructionBytes ));
|
---|
3296 | break;
|
---|
3297 |
|
---|
3298 | /*
|
---|
3299 | * Filter debug exceptions.
|
---|
3300 | */
|
---|
3301 | case X86_XCPT_DB:
|
---|
3302 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
|
---|
3303 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
|
---|
3304 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
3305 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
|
---|
3306 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header) ));
|
---|
3307 | break;
|
---|
3308 |
|
---|
3309 | case X86_XCPT_BP:
|
---|
3310 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
|
---|
3311 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
|
---|
3312 | pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
|
---|
3313 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
|
---|
3314 | pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->Header.InstructionLength));
|
---|
3315 | enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
|
---|
3316 | break;
|
---|
3317 |
|
---|
3318 | /* This shouldn't happen. */
|
---|
3319 | default:
|
---|
3320 | AssertLogRelMsgFailedReturn(("ExceptionVector=%#x\n", pMsg->ExceptionVector), VERR_IEM_IPE_6);
|
---|
3321 | }
|
---|
3322 |
|
---|
3323 | /*
|
---|
3324 | * Inject it.
|
---|
3325 | */
|
---|
3326 | rcStrict = IEMInjectTrap(pVCpu, pMsg->ExceptionVector, enmEvtType, pMsg->ErrorCode,
|
---|
3327 | pMsg->ExceptionParameter /*??*/, pMsg->Header.InstructionLength);
|
---|
3328 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
|
---|
3329 | pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
|
---|
3330 | nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->ExceptionVector, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3331 | return rcStrict;
|
---|
3332 | }
|
---|
3333 | #elif defined(IN_RING3)
|
---|
3334 | /**
|
---|
3335 | * Deals with MSR access exits (WHvRunVpExitReasonException).
|
---|
3336 | *
|
---|
3337 | * @returns Strict VBox status code.
|
---|
3338 | * @param pVM The cross context VM structure.
|
---|
3339 | * @param pVCpu The cross context per CPU structure.
|
---|
3340 | * @param pExit The VM exit information to handle.
|
---|
3341 | * @sa nemR3WinHandleExitException
|
---|
3342 | */
|
---|
3343 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
3344 | {
|
---|
3345 | /*
|
---|
3346 | * Get most of the register state since we'll end up making IEM inject the
|
---|
3347 | * event. The exception isn't normally flaged as a pending event, so duh.
|
---|
3348 | *
|
---|
3349 | * Note! We can optimize this later with event injection.
|
---|
3350 | */
|
---|
3351 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3352 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
|
---|
3353 | pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
|
---|
3354 | nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/);
|
---|
3355 | uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
|
---|
3356 | if (pExit->VpException.ExceptionType == X86_XCPT_DB)
|
---|
3357 | fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
|
---|
3358 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, fWhat, "Xcpt");
|
---|
3359 | if (rcStrict != VINF_SUCCESS)
|
---|
3360 | return rcStrict;
|
---|
3361 |
|
---|
3362 | /*
|
---|
3363 | * Handle the intercept.
|
---|
3364 | */
|
---|
3365 | TRPMEVENT enmEvtType = TRPM_TRAP;
|
---|
3366 | switch (pExit->VpException.ExceptionType)
|
---|
3367 | {
|
---|
3368 | /*
|
---|
3369 | * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
|
---|
3370 | * and need to turn them over to GIM.
|
---|
3371 | *
|
---|
3372 | * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
|
---|
3373 | * #UD for handling non-native hypercall instructions. (IEM will
|
---|
3374 | * decode both and let the GIM provider decide whether to accept it.)
|
---|
3375 | */
|
---|
3376 | case X86_XCPT_UD:
|
---|
3377 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
|
---|
3378 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
|
---|
3379 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
3380 | if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
|
---|
3381 | pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
|
---|
3382 | {
|
---|
3383 | rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
|
---|
3384 | pExit->VpException.InstructionBytes,
|
---|
3385 | pExit->VpException.InstructionByteCount);
|
---|
3386 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
|
---|
3387 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
|
---|
3388 | nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3389 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
|
---|
3390 | return rcStrict;
|
---|
3391 | }
|
---|
3392 |
|
---|
3393 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
|
---|
3394 | pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
|
---|
3395 | pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
|
---|
3396 | break;
|
---|
3397 |
|
---|
3398 | /*
|
---|
3399 | * Filter debug exceptions.
|
---|
3400 | */
|
---|
3401 | case X86_XCPT_DB:
|
---|
3402 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
|
---|
3403 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
|
---|
3404 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
3405 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
|
---|
3406 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
|
---|
3407 | break;
|
---|
3408 |
|
---|
3409 | case X86_XCPT_BP:
|
---|
3410 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
|
---|
3411 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
|
---|
3412 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
3413 | Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3414 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
|
---|
3415 | enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
|
---|
3416 | break;
|
---|
3417 |
|
---|
3418 | /* This shouldn't happen. */
|
---|
3419 | default:
|
---|
3420 | AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
|
---|
3421 | }
|
---|
3422 |
|
---|
3423 | /*
|
---|
3424 | * Inject it.
|
---|
3425 | */
|
---|
3426 | rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
|
---|
3427 | pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
|
---|
3428 | Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
|
---|
3429 | pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
|
---|
3430 | nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3431 |
|
---|
3432 | RT_NOREF_PV(pVM);
|
---|
3433 | return rcStrict;
|
---|
3434 | }
|
---|
3435 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3436 |
|
---|
3437 |
|
---|
3438 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
3439 | /**
|
---|
3440 | * Deals with unrecoverable exception (triple fault).
|
---|
3441 | *
|
---|
3442 | * Seen WRMSR 0x201 (IA32_MTRR_PHYSMASK0) writes from grub / debian9 ending up
|
---|
3443 | * here too. So we'll leave it to IEM to decide.
|
---|
3444 | *
|
---|
3445 | * @returns Strict VBox status code.
|
---|
3446 | * @param pVCpu The cross context per CPU structure.
|
---|
3447 | * @param pMsgHdr The message header.
|
---|
3448 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3449 | * @sa nemR3WinHandleExitUnrecoverableException
|
---|
3450 | */
|
---|
3451 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
3452 | nemHCWinHandleMessageUnrecoverableException(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, PGVMCPU pGVCpu)
|
---|
3453 | {
|
---|
3454 | /* Check message register value sanity. */
|
---|
3455 | NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsgHdr->CsSegment);
|
---|
3456 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsgHdr->Rip);
|
---|
3457 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsgHdr->Rflags);
|
---|
3458 | NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsgHdr->Cr8);
|
---|
3459 |
|
---|
3460 | # if 0
|
---|
3461 | /*
|
---|
3462 | * Just copy the state we've got and handle it in the loop for now.
|
---|
3463 | */
|
---|
3464 | nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
|
---|
3465 | Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n",
|
---|
3466 | pVCpu->idCpu, pMsgHdr->CsSegment.Selector, pMsgHdr->Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsgHdr->Rflags));
|
---|
3467 | return VINF_EM_TRIPLE_FAULT;
|
---|
3468 | # else
|
---|
3469 | /*
|
---|
3470 | * Let IEM decide whether this is really it.
|
---|
3471 | */
|
---|
3472 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
|
---|
3473 | pMsgHdr->Rip + pMsgHdr->CsSegment.Base, ASMReadTSC());
|
---|
3474 | nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
|
---|
3475 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
|
---|
3476 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
|
---|
3477 | if (rcStrict == VINF_SUCCESS)
|
---|
3478 | {
|
---|
3479 | rcStrict = IEMExecOne(pVCpu);
|
---|
3480 | if (rcStrict == VINF_SUCCESS)
|
---|
3481 | {
|
---|
3482 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
3483 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags ));
|
---|
3484 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
|
---|
3485 | return VINF_SUCCESS;
|
---|
3486 | }
|
---|
3487 | if (rcStrict == VINF_EM_TRIPLE_FAULT)
|
---|
3488 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
3489 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3490 | else
|
---|
3491 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
3492 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3493 | }
|
---|
3494 | else
|
---|
3495 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
|
---|
3496 | pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3497 | return rcStrict;
|
---|
3498 | # endif
|
---|
3499 | }
|
---|
3500 | #elif defined(IN_RING3)
|
---|
3501 | /**
|
---|
3502 | * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
|
---|
3503 | *
|
---|
3504 | * @returns Strict VBox status code.
|
---|
3505 | * @param pVM The cross context VM structure.
|
---|
3506 | * @param pVCpu The cross context per CPU structure.
|
---|
3507 | * @param pExit The VM exit information to handle.
|
---|
3508 | * @sa nemHCWinHandleMessageUnrecoverableException
|
---|
3509 | */
|
---|
3510 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
3511 | {
|
---|
3512 | # if 0
|
---|
3513 | /*
|
---|
3514 | * Just copy the state we've got and handle it in the loop for now.
|
---|
3515 | */
|
---|
3516 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
3517 | Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3518 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
|
---|
3519 | RT_NOREF_PV(pVM);
|
---|
3520 | return VINF_EM_TRIPLE_FAULT;
|
---|
3521 | # else
|
---|
3522 | /*
|
---|
3523 | * Let IEM decide whether this is really it.
|
---|
3524 | */
|
---|
3525 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
|
---|
3526 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
3527 | nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
|
---|
3528 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
|
---|
3529 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
|
---|
3530 | if (rcStrict == VINF_SUCCESS)
|
---|
3531 | {
|
---|
3532 | rcStrict = IEMExecOne(pVCpu);
|
---|
3533 | if (rcStrict == VINF_SUCCESS)
|
---|
3534 | {
|
---|
3535 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3536 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
|
---|
3537 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
|
---|
3538 | return VINF_SUCCESS;
|
---|
3539 | }
|
---|
3540 | if (rcStrict == VINF_EM_TRIPLE_FAULT)
|
---|
3541 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3542 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3543 | else
|
---|
3544 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3545 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3546 | }
|
---|
3547 | else
|
---|
3548 | Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
|
---|
3549 | pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3550 | RT_NOREF_PV(pVM);
|
---|
3551 | return rcStrict;
|
---|
3552 | # endif
|
---|
3553 |
|
---|
3554 | }
|
---|
3555 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3556 |
|
---|
3557 |
|
---|
3558 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
3559 | /**
|
---|
3560 | * Handles messages (VM exits).
|
---|
3561 | *
|
---|
3562 | * @returns Strict VBox status code.
|
---|
3563 | * @param pVM The cross context VM structure.
|
---|
3564 | * @param pVCpu The cross context per CPU structure.
|
---|
3565 | * @param pMappingHeader The message slot mapping.
|
---|
3566 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3567 | * @sa nemR3WinHandleExit
|
---|
3568 | */
|
---|
3569 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
3570 | nemHCWinHandleMessage(PVM pVM, PVMCPU pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader, PGVMCPU pGVCpu)
|
---|
3571 | {
|
---|
3572 | if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
|
---|
3573 | {
|
---|
3574 | AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
|
---|
3575 | HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
|
---|
3576 | switch (pMsg->Header.MessageType)
|
---|
3577 | {
|
---|
3578 | case HvMessageTypeUnmappedGpa:
|
---|
3579 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
3580 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
|
---|
3581 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
|
---|
3582 |
|
---|
3583 | case HvMessageTypeGpaIntercept:
|
---|
3584 | Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
3585 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
|
---|
3586 | return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
|
---|
3587 |
|
---|
3588 | case HvMessageTypeX64IoPortIntercept:
|
---|
3589 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
|
---|
3590 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
|
---|
3591 | return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept, pGVCpu);
|
---|
3592 |
|
---|
3593 | case HvMessageTypeX64Halt:
|
---|
3594 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
|
---|
3595 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
|
---|
3596 | pMsg->X64InterceptHeader.Rip + pMsg->X64InterceptHeader.CsSegment.Base, ASMReadTSC());
|
---|
3597 | Log4(("HaltExit\n"));
|
---|
3598 | return VINF_EM_HALT;
|
---|
3599 |
|
---|
3600 | case HvMessageTypeX64InterruptWindow:
|
---|
3601 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterruptWindow));
|
---|
3602 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
|
---|
3603 | return nemHCWinHandleMessageInterruptWindow(pVM, pVCpu, &pMsg->X64InterruptWindow, pGVCpu);
|
---|
3604 |
|
---|
3605 | case HvMessageTypeX64CpuidIntercept:
|
---|
3606 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64CpuIdIntercept));
|
---|
3607 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
|
---|
3608 | return nemHCWinHandleMessageCpuId(pVM, pVCpu, &pMsg->X64CpuIdIntercept, pGVCpu);
|
---|
3609 |
|
---|
3610 | case HvMessageTypeX64MsrIntercept:
|
---|
3611 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64MsrIntercept));
|
---|
3612 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
|
---|
3613 | return nemHCWinHandleMessageMsr(pVCpu, &pMsg->X64MsrIntercept, pGVCpu);
|
---|
3614 |
|
---|
3615 | case HvMessageTypeX64ExceptionIntercept:
|
---|
3616 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64ExceptionIntercept));
|
---|
3617 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
|
---|
3618 | return nemHCWinHandleMessageException(pVCpu, &pMsg->X64ExceptionIntercept, pGVCpu);
|
---|
3619 |
|
---|
3620 | case HvMessageTypeUnrecoverableException:
|
---|
3621 | Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterceptHeader));
|
---|
3622 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
|
---|
3623 | return nemHCWinHandleMessageUnrecoverableException(pVCpu, &pMsg->X64InterceptHeader, pGVCpu);
|
---|
3624 |
|
---|
3625 | case HvMessageTypeInvalidVpRegisterValue:
|
---|
3626 | case HvMessageTypeUnsupportedFeature:
|
---|
3627 | case HvMessageTypeTlbPageSizeMismatch:
|
---|
3628 | LogRel(("Unimplemented msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3629 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n%.32Rhxd\n", pMsg->Header.MessageType, pMsg),
|
---|
3630 | VERR_NEM_IPE_3);
|
---|
3631 |
|
---|
3632 | case HvMessageTypeX64ApicEoi:
|
---|
3633 | case HvMessageTypeX64LegacyFpError:
|
---|
3634 | case HvMessageTypeX64RegisterIntercept:
|
---|
3635 | case HvMessageTypeApicEoi:
|
---|
3636 | case HvMessageTypeFerrAsserted:
|
---|
3637 | case HvMessageTypeEventLogBufferComplete:
|
---|
3638 | case HvMessageTimerExpired:
|
---|
3639 | LogRel(("Unexpected msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3640 | AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
3641 | VERR_NEM_IPE_3);
|
---|
3642 |
|
---|
3643 | default:
|
---|
3644 | LogRel(("Unknown msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
|
---|
3645 | AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
|
---|
3646 | VERR_NEM_IPE_3);
|
---|
3647 | }
|
---|
3648 | }
|
---|
3649 | else
|
---|
3650 | AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
|
---|
3651 | pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
|
---|
3652 | VERR_NEM_IPE_4);
|
---|
3653 | }
|
---|
3654 | #elif defined(IN_RING3)
|
---|
3655 | /**
|
---|
3656 | * Handles VM exits.
|
---|
3657 | *
|
---|
3658 | * @returns Strict VBox status code.
|
---|
3659 | * @param pVM The cross context VM structure.
|
---|
3660 | * @param pVCpu The cross context per CPU structure.
|
---|
3661 | * @param pExit The VM exit information to handle.
|
---|
3662 | * @sa nemHCWinHandleMessage
|
---|
3663 | */
|
---|
3664 | NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
|
---|
3665 | {
|
---|
3666 | switch (pExit->ExitReason)
|
---|
3667 | {
|
---|
3668 | case WHvRunVpExitReasonMemoryAccess:
|
---|
3669 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
|
---|
3670 | return nemR3WinHandleExitMemory(pVM, pVCpu, pExit);
|
---|
3671 |
|
---|
3672 | case WHvRunVpExitReasonX64IoPortAccess:
|
---|
3673 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
|
---|
3674 | return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit);
|
---|
3675 |
|
---|
3676 | case WHvRunVpExitReasonX64Halt:
|
---|
3677 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
|
---|
3678 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
|
---|
3679 | pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
|
---|
3680 | Log4(("HaltExit\n"));
|
---|
3681 | return VINF_EM_HALT;
|
---|
3682 |
|
---|
3683 | case WHvRunVpExitReasonCanceled:
|
---|
3684 | return VINF_SUCCESS;
|
---|
3685 |
|
---|
3686 | case WHvRunVpExitReasonX64InterruptWindow:
|
---|
3687 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
|
---|
3688 | return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit);
|
---|
3689 |
|
---|
3690 | case WHvRunVpExitReasonX64Cpuid:
|
---|
3691 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
|
---|
3692 | return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit);
|
---|
3693 |
|
---|
3694 | case WHvRunVpExitReasonX64MsrAccess:
|
---|
3695 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
|
---|
3696 | return nemR3WinHandleExitMsr(pVM, pVCpu, pExit);
|
---|
3697 |
|
---|
3698 | case WHvRunVpExitReasonException:
|
---|
3699 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
|
---|
3700 | return nemR3WinHandleExitException(pVM, pVCpu, pExit);
|
---|
3701 |
|
---|
3702 | case WHvRunVpExitReasonUnrecoverableException:
|
---|
3703 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
|
---|
3704 | return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit);
|
---|
3705 |
|
---|
3706 | case WHvRunVpExitReasonUnsupportedFeature:
|
---|
3707 | case WHvRunVpExitReasonInvalidVpRegisterValue:
|
---|
3708 | LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
|
---|
3709 | AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
|
---|
3710 | pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
|
---|
3711 |
|
---|
3712 | /* Undesired exits: */
|
---|
3713 | case WHvRunVpExitReasonNone:
|
---|
3714 | default:
|
---|
3715 | LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
|
---|
3716 | AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
|
---|
3717 | }
|
---|
3718 | }
|
---|
3719 | #endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3720 |
|
---|
3721 |
|
---|
3722 | #ifdef IN_RING0
|
---|
3723 | /**
|
---|
3724 | * Perform an I/O control operation on the partition handle (VID.SYS),
|
---|
3725 | * restarting on alert-like behaviour.
|
---|
3726 | *
|
---|
3727 | * @returns NT status code.
|
---|
3728 | * @param pGVM The ring-0 VM structure.
|
---|
3729 | * @param pGVCpu The ring-0 CPU structure.
|
---|
3730 | * @param pVCpu The calling cross context CPU structure.
|
---|
3731 | * @param fFlags The wait flags.
|
---|
3732 | * @param cMillies The timeout in milliseconds
|
---|
3733 | */
|
---|
3734 | static NTSTATUS nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu,
|
---|
3735 | uint32_t fFlags, uint32_t cMillies)
|
---|
3736 | {
|
---|
3737 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
3738 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags;
|
---|
3739 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
|
---|
3740 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3741 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3742 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3743 | NULL, 0);
|
---|
3744 | if (rcNt == STATUS_SUCCESS)
|
---|
3745 | { /* likely */ }
|
---|
3746 | /*
|
---|
3747 | * Generally, if we get down here, we have been interrupted between ACK'ing
|
---|
3748 | * a message and waiting for the next due to a NtAlertThread call. So, we
|
---|
3749 | * should stop ACK'ing the previous message and get on waiting on the next.
|
---|
3750 | * See similar stuff in nemHCWinRunGC().
|
---|
3751 | */
|
---|
3752 | else if ( rcNt == STATUS_TIMEOUT
|
---|
3753 | || rcNt == STATUS_ALERTED /* just in case */
|
---|
3754 | || rcNt == STATUS_KERNEL_APC /* just in case */
|
---|
3755 | || rcNt == STATUS_USER_APC /* just in case */)
|
---|
3756 | {
|
---|
3757 | DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/1 %#x (f=%#x)", rcNt, fFlags);
|
---|
3758 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingAlerts);
|
---|
3759 | Assert(fFlags & VID_MSHAGN_F_GET_NEXT_MESSAGE);
|
---|
3760 |
|
---|
3761 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pVCpu->idCpu;
|
---|
3762 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags & ~VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
3763 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
|
---|
3764 | rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
3765 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
3766 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
3767 | NULL, 0);
|
---|
3768 | DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/2 %#x", rcNt);
|
---|
3769 | }
|
---|
3770 | return rcNt;
|
---|
3771 | }
|
---|
3772 |
|
---|
3773 | #endif /* IN_RING0 */
|
---|
3774 |
|
---|
3775 |
|
---|
3776 | #ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
3777 | /**
|
---|
3778 | * Worker for nemHCWinRunGC that stops the execution on the way out.
|
---|
3779 | *
|
---|
3780 | * The CPU was running the last time we checked, no there are no messages that
|
---|
3781 | * needs being marked handled/whatever. Caller checks this.
|
---|
3782 | *
|
---|
3783 | * @returns rcStrict on success, error status on failure.
|
---|
3784 | * @param pVM The cross context VM structure.
|
---|
3785 | * @param pVCpu The cross context per CPU structure.
|
---|
3786 | * @param rcStrict The nemHCWinRunGC return status. This is a little
|
---|
3787 | * bit unnecessary, except in internal error cases,
|
---|
3788 | * since we won't need to stop the CPU if we took an
|
---|
3789 | * exit.
|
---|
3790 | * @param pMappingHeader The message slot mapping.
|
---|
3791 | * @param pGVM The global (ring-0) VM structure (NULL in r3).
|
---|
3792 | * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
|
---|
3793 | */
|
---|
3794 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict,
|
---|
3795 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
|
---|
3796 | PGVM pGVM, PGVMCPU pGVCpu)
|
---|
3797 | {
|
---|
3798 | # ifdef DBGFTRACE_ENABLED
|
---|
3799 | HV_MESSAGE const volatile *pMsgForTrace = (HV_MESSAGE const volatile *)(pMappingHeader + 1);
|
---|
3800 | # endif
|
---|
3801 |
|
---|
3802 | /*
|
---|
3803 | * Try stopping the processor. If we're lucky we manage to do this before it
|
---|
3804 | * does another VM exit.
|
---|
3805 | */
|
---|
3806 | DBGFTRACE_CUSTOM(pVM, "nemStop#0");
|
---|
3807 | # ifdef IN_RING0
|
---|
3808 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
3809 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction,
|
---|
3810 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
3811 | NULL, 0);
|
---|
3812 | if (NT_SUCCESS(rcNt))
|
---|
3813 | {
|
---|
3814 | DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay (%#x)", rcNt);
|
---|
3815 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
3816 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
3817 | return rcStrict;
|
---|
3818 | }
|
---|
3819 | # else
|
---|
3820 | BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
|
---|
3821 | if (fRet)
|
---|
3822 | {
|
---|
3823 | DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay");
|
---|
3824 | Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
3825 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
|
---|
3826 | return rcStrict;
|
---|
3827 | }
|
---|
3828 | RT_NOREF(pGVM, pGVCpu);
|
---|
3829 | # endif
|
---|
3830 |
|
---|
3831 | /*
|
---|
3832 | * Dang. The CPU stopped by itself and we got a couple of message to deal with.
|
---|
3833 | */
|
---|
3834 | # ifdef IN_RING0
|
---|
3835 | DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", rcNt);
|
---|
3836 | AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
|
---|
3837 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3838 | # else
|
---|
3839 | DWORD dwErr = RTNtLastErrorValue();
|
---|
3840 | DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", dwErr);
|
---|
3841 | AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
|
---|
3842 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3843 | # endif
|
---|
3844 | Log8(("nemHCWinStopCpu: Stopping CPU #%u pending...\n", pVCpu->idCpu));
|
---|
3845 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
|
---|
3846 |
|
---|
3847 | /*
|
---|
3848 | * First message: Exit or similar, sometimes VidMessageStopRequestComplete.
|
---|
3849 | * Note! We can safely ASSUME that rcStrict isn't an important information one.
|
---|
3850 | */
|
---|
3851 | # ifdef IN_RING0
|
---|
3852 | rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
3853 | DBGFTRACE_CUSTOM(pVM, "nemStop#1: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
|
---|
3854 | pMsgForTrace->Header.MessageType);
|
---|
3855 | AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
|
---|
3856 | ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3857 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3858 | # else
|
---|
3859 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
3860 | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
3861 | DBGFTRACE_CUSTOM(pVM, "nemStop#1: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
|
---|
3862 | pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
|
---|
3863 | AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3864 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3865 | # endif
|
---|
3866 |
|
---|
3867 | VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
3868 | if (enmVidMsgType != VidMessageStopRequestComplete)
|
---|
3869 | {
|
---|
3870 | VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
|
---|
3871 | if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
|
---|
3872 | rcStrict = rcStrict2;
|
---|
3873 | DBGFTRACE_CUSTOM(pVM, "nemStop#1: handled %#x -> %d", pMsgForTrace->Header.MessageType, VBOXSTRICTRC_VAL(rcStrict));
|
---|
3874 |
|
---|
3875 | /*
|
---|
3876 | * Mark it as handled and get the stop request completed message, then mark
|
---|
3877 | * that as handled too. CPU is back into fully stopped stated then.
|
---|
3878 | */
|
---|
3879 | # ifdef IN_RING0
|
---|
3880 | rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu,
|
---|
3881 | VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE,
|
---|
3882 | 30000 /*ms*/);
|
---|
3883 | DBGFTRACE_CUSTOM(pVM, "nemStop#2: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
|
---|
3884 | pMsgForTrace->Header.MessageType);
|
---|
3885 | AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
|
---|
3886 | ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3887 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3888 | # else
|
---|
3889 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
3890 | VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
|
---|
3891 | DBGFTRACE_CUSTOM(pVM, "nemStop#2: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
|
---|
3892 | pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
|
---|
3893 | AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3894 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3895 | # endif
|
---|
3896 |
|
---|
3897 | /* It should be a stop request completed message. */
|
---|
3898 | enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
3899 | AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
|
---|
3900 | ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
|
---|
3901 | enmVidMsgType, pMappingHeader->cbMessage),
|
---|
3902 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3903 |
|
---|
3904 | /*
|
---|
3905 | * Mark the VidMessageStopRequestComplete message as handled.
|
---|
3906 | */
|
---|
3907 | # ifdef IN_RING0
|
---|
3908 | rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
|
---|
3909 | DBGFTRACE_CUSTOM(pVM, "nemStop#3: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType,
|
---|
3910 | pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
|
---|
3911 | AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
|
---|
3912 | ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
|
---|
3913 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3914 | # else
|
---|
3915 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
|
---|
3916 | DBGFTRACE_CUSTOM(pVM, "nemStop#3: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
|
---|
3917 | pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
|
---|
3918 | AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
|
---|
3919 | RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
|
---|
3920 | # endif
|
---|
3921 | Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3922 | }
|
---|
3923 | else
|
---|
3924 | {
|
---|
3925 | /** @todo I'm not so sure about this now... */
|
---|
3926 | DBGFTRACE_CUSTOM(pVM, "nemStop#9: %#x %#x %#x", pMappingHeader->enmVidMsgType,
|
---|
3927 | pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
|
---|
3928 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingOdd);
|
---|
3929 | Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc) - 1st VidMessageSlotHandleAndGetNext got VidMessageStopRequestComplete.\n",
|
---|
3930 | VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
3931 | }
|
---|
3932 | return rcStrict;
|
---|
3933 | }
|
---|
3934 | #endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
3935 |
|
---|
3936 | #if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
|
---|
3937 |
|
---|
3938 | /**
|
---|
3939 | * Deals with pending interrupt related force flags, may inject interrupt.
|
---|
3940 | *
|
---|
3941 | * @returns VBox strict status code.
|
---|
3942 | * @param pVM The cross context VM structure.
|
---|
3943 | * @param pVCpu The cross context per CPU structure.
|
---|
3944 | * @param pGVCpu The global (ring-0) per CPU structure.
|
---|
3945 | * @param pfInterruptWindows Where to return interrupt window flags.
|
---|
3946 | */
|
---|
3947 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVM pVM, PVMCPU pVCpu, PGVMCPU pGVCpu, uint8_t *pfInterruptWindows)
|
---|
3948 | {
|
---|
3949 | Assert(!TRPMHasTrap(pVCpu));
|
---|
3950 | RT_NOREF_PV(pVM);
|
---|
3951 |
|
---|
3952 | /*
|
---|
3953 | * First update APIC. We ASSUME this won't need TPR/CR8.
|
---|
3954 | */
|
---|
3955 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
3956 | {
|
---|
3957 | APICUpdatePendingInterrupts(pVCpu);
|
---|
3958 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
|
---|
3959 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
3960 | return VINF_SUCCESS;
|
---|
3961 | }
|
---|
3962 |
|
---|
3963 | /*
|
---|
3964 | * We don't currently implement SMIs.
|
---|
3965 | */
|
---|
3966 | AssertReturn(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
|
---|
3967 |
|
---|
3968 | /*
|
---|
3969 | * Check if we've got the minimum of state required for deciding whether we
|
---|
3970 | * can inject interrupts and NMIs. If we don't have it, get all we might require
|
---|
3971 | * for injection via IEM.
|
---|
3972 | */
|
---|
3973 | bool const fPendingNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3974 | uint64_t fNeedExtrn = CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
|
---|
3975 | | (fPendingNmi ? CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI : 0);
|
---|
3976 | if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn)
|
---|
3977 | {
|
---|
3978 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
|
---|
3979 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
|
---|
3980 | if (rcStrict != VINF_SUCCESS)
|
---|
3981 | return rcStrict;
|
---|
3982 | }
|
---|
3983 | bool const fInhibitInterrupts = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
3984 | && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip;
|
---|
3985 |
|
---|
3986 | /*
|
---|
3987 | * NMI? Try deliver it first.
|
---|
3988 | */
|
---|
3989 | if (fPendingNmi)
|
---|
3990 | {
|
---|
3991 | if ( !fInhibitInterrupts
|
---|
3992 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3993 | {
|
---|
3994 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
|
---|
3995 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
|
---|
3996 | if (rcStrict == VINF_SUCCESS)
|
---|
3997 | {
|
---|
3998 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3999 | rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
|
---|
4000 | Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4001 | }
|
---|
4002 | return rcStrict;
|
---|
4003 | }
|
---|
4004 | *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
|
---|
4005 | Log8(("NMI window pending on %u\n", pVCpu->idCpu));
|
---|
4006 | }
|
---|
4007 |
|
---|
4008 | /*
|
---|
4009 | * APIC or PIC interrupt?
|
---|
4010 | */
|
---|
4011 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
4012 | {
|
---|
4013 | if ( !fInhibitInterrupts
|
---|
4014 | && pVCpu->cpum.GstCtx.rflags.Bits.u1IF)
|
---|
4015 | {
|
---|
4016 | AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
|
---|
4017 | VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
|
---|
4018 | NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
|
---|
4019 | if (rcStrict == VINF_SUCCESS)
|
---|
4020 | {
|
---|
4021 | uint8_t bInterrupt;
|
---|
4022 | int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
|
---|
4023 | if (RT_SUCCESS(rc))
|
---|
4024 | {
|
---|
4025 | rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
|
---|
4026 | Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4027 | }
|
---|
4028 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
4029 | {
|
---|
4030 | *pfInterruptWindows |= (bInterrupt >> 4 /*??*/) << NEM_WIN_INTW_F_PRIO_SHIFT;
|
---|
4031 | Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
|
---|
4032 | }
|
---|
4033 | else
|
---|
4034 | Log8(("PDMGetInterrupt failed -> %d\n", rc));
|
---|
4035 | }
|
---|
4036 | return rcStrict;
|
---|
4037 | }
|
---|
4038 | *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
|
---|
4039 | Log8(("Interrupt window pending on %u\n", pVCpu->idCpu));
|
---|
4040 | }
|
---|
4041 |
|
---|
4042 | return VINF_SUCCESS;
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 |
|
---|
4046 | /**
|
---|
4047 | * Inner NEM runloop for windows.
|
---|
4048 | *
|
---|
4049 | * @returns Strict VBox status code.
|
---|
4050 | * @param pVM The cross context VM structure.
|
---|
4051 | * @param pVCpu The cross context per CPU structure.
|
---|
4052 | * @param pGVM The ring-0 VM structure (NULL in ring-3).
|
---|
4053 | * @param pGVCpu The ring-0 per CPU structure (NULL in ring-3).
|
---|
4054 | */
|
---|
4055 | NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu, PGVM pGVM, PGVMCPU pGVCpu)
|
---|
4056 | {
|
---|
4057 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
|
---|
4058 | # ifdef LOG_ENABLED
|
---|
4059 | if (LogIs3Enabled())
|
---|
4060 | nemHCWinLogState(pVM, pVCpu);
|
---|
4061 | # endif
|
---|
4062 | # ifdef IN_RING0
|
---|
4063 | Assert(pVCpu->idCpu == pGVCpu->idCpu);
|
---|
4064 | # endif
|
---|
4065 |
|
---|
4066 | /*
|
---|
4067 | * Try switch to NEM runloop state.
|
---|
4068 | */
|
---|
4069 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
|
---|
4070 | { /* likely */ }
|
---|
4071 | else
|
---|
4072 | {
|
---|
4073 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
4074 | LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
|
---|
4075 | return VINF_SUCCESS;
|
---|
4076 | }
|
---|
4077 |
|
---|
4078 | /*
|
---|
4079 | * The run loop.
|
---|
4080 | *
|
---|
4081 | * Current approach to state updating to use the sledgehammer and sync
|
---|
4082 | * everything every time. This will be optimized later.
|
---|
4083 | */
|
---|
4084 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4085 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
|
---|
4086 | # endif
|
---|
4087 | const bool fSingleStepping = DBGFIsStepping(pVCpu);
|
---|
4088 | // const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
|
---|
4089 | // : VM_FF_HP_R0_PRE_HM_STEP_MASK;
|
---|
4090 | // const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
|
---|
4091 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
4092 | for (unsigned iLoop = 0;; iLoop++)
|
---|
4093 | {
|
---|
4094 | # ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4095 | /*
|
---|
4096 | * Hack alert!
|
---|
4097 | */
|
---|
4098 | uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
|
---|
4099 | if (cMappedPages >= 4000)
|
---|
4100 | {
|
---|
4101 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
|
---|
4102 | Log(("nemHCWinRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
|
---|
4103 | }
|
---|
4104 | # endif
|
---|
4105 |
|
---|
4106 | /*
|
---|
4107 | * Pending interrupts or such? Need to check and deal with this prior
|
---|
4108 | * to the state syncing.
|
---|
4109 | */
|
---|
4110 | pVCpu->nem.s.fDesiredInterruptWindows = 0;
|
---|
4111 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
|
---|
4112 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
4113 | {
|
---|
4114 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4115 | /* Make sure the CPU isn't executing. */
|
---|
4116 | if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
|
---|
4117 | {
|
---|
4118 | pVCpu->nem.s.fHandleAndGetFlags = 0;
|
---|
4119 | rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
|
---|
4120 | if (rcStrict == VINF_SUCCESS)
|
---|
4121 | { /* likely */ }
|
---|
4122 | else
|
---|
4123 | {
|
---|
4124 | LogFlow(("NEM/%u: breaking: nemHCWinStopCpu -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4125 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
4126 | break;
|
---|
4127 | }
|
---|
4128 | }
|
---|
4129 | # endif
|
---|
4130 |
|
---|
4131 | /* Try inject interrupt. */
|
---|
4132 | rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, pGVCpu, &pVCpu->nem.s.fDesiredInterruptWindows);
|
---|
4133 | if (rcStrict == VINF_SUCCESS)
|
---|
4134 | { /* likely */ }
|
---|
4135 | else
|
---|
4136 | {
|
---|
4137 | LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4138 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
4139 | break;
|
---|
4140 | }
|
---|
4141 | }
|
---|
4142 |
|
---|
4143 | /*
|
---|
4144 | * Ensure that hyper-V has the whole state.
|
---|
4145 | * (We always update the interrupt windows settings when active as hyper-V seems
|
---|
4146 | * to forget about it after an exit.)
|
---|
4147 | */
|
---|
4148 | if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
|
---|
4149 | != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
|
---|
4150 | || ( ( pVCpu->nem.s.fDesiredInterruptWindows
|
---|
4151 | || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows)
|
---|
4152 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4153 | && pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */
|
---|
4154 | # endif
|
---|
4155 | )
|
---|
4156 | )
|
---|
4157 | {
|
---|
4158 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4159 | AssertMsg(pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */,
|
---|
4160 | ("%#x fExtrn=%#RX64 (%#RX64) fDesiredInterruptWindows=%d fCurrentInterruptWindows=%#x vs %#x\n",
|
---|
4161 | pVCpu->nem.s.fHandleAndGetFlags, pVCpu->cpum.GstCtx.fExtrn, ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK),
|
---|
4162 | pVCpu->nem.s.fDesiredInterruptWindows, pVCpu->nem.s.fCurrentInterruptWindows, pVCpu->nem.s.fDesiredInterruptWindows));
|
---|
4163 | # endif
|
---|
4164 | # ifdef IN_RING0
|
---|
4165 | int rc2 = nemR0WinExportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx);
|
---|
4166 | # else
|
---|
4167 | int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu);
|
---|
4168 | RT_NOREF(pGVM, pGVCpu);
|
---|
4169 | # endif
|
---|
4170 | AssertRCReturn(rc2, rc2);
|
---|
4171 | }
|
---|
4172 |
|
---|
4173 | /*
|
---|
4174 | * Poll timers and run for a bit.
|
---|
4175 | *
|
---|
4176 | * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
|
---|
4177 | * so we take the time of the next timer event and uses that as a deadline.
|
---|
4178 | * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
|
---|
4179 | */
|
---|
4180 | /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
|
---|
4181 | * the whole polling job when timers have changed... */
|
---|
4182 | uint64_t offDeltaIgnored;
|
---|
4183 | uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
|
---|
4184 | if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
4185 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
4186 | {
|
---|
4187 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4188 | if (pVCpu->nem.s.fHandleAndGetFlags)
|
---|
4189 | { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
|
---|
4190 | else
|
---|
4191 | {
|
---|
4192 | # ifdef IN_RING0
|
---|
4193 | pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
|
---|
4194 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction,
|
---|
4195 | &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
|
---|
4196 | NULL, 0);
|
---|
4197 | LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
4198 | AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pGVCpu->idCpu, rcNt),
|
---|
4199 | VERR_NEM_IPE_5);
|
---|
4200 | # else
|
---|
4201 | AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
|
---|
4202 | ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
|
---|
4203 | pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
|
---|
4204 | VERR_NEM_IPE_5);
|
---|
4205 | # endif
|
---|
4206 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
4207 | }
|
---|
4208 | # endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
|
---|
4209 |
|
---|
4210 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
4211 | {
|
---|
4212 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4213 | uint64_t const nsNow = RTTimeNanoTS();
|
---|
4214 | int64_t const cNsNextTimerEvt = nsNow - nsNextTimerEvt;
|
---|
4215 | uint32_t cMsWait;
|
---|
4216 | if (cNsNextTimerEvt < 100000 /* ns */)
|
---|
4217 | cMsWait = 0;
|
---|
4218 | else if ((uint64_t)cNsNextTimerEvt < RT_NS_1SEC)
|
---|
4219 | {
|
---|
4220 | if ((uint32_t)cNsNextTimerEvt < 2*RT_NS_1MS)
|
---|
4221 | cMsWait = 1;
|
---|
4222 | else
|
---|
4223 | cMsWait = ((uint32_t)cNsNextTimerEvt - 100000 /*ns*/) / RT_NS_1MS;
|
---|
4224 | }
|
---|
4225 | else
|
---|
4226 | cMsWait = RT_MS_1SEC;
|
---|
4227 | # ifdef IN_RING0
|
---|
4228 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
|
---|
4229 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
|
---|
4230 | pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMsWait;
|
---|
4231 | NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
|
---|
4232 | &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
|
---|
4233 | sizeof(pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext),
|
---|
4234 | NULL, 0);
|
---|
4235 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
4236 | if (rcNt == STATUS_SUCCESS)
|
---|
4237 | # else
|
---|
4238 | BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
4239 | pVCpu->nem.s.fHandleAndGetFlags, cMsWait);
|
---|
4240 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
4241 | if (fRet)
|
---|
4242 | # endif
|
---|
4243 | # else
|
---|
4244 | WHV_RUN_VP_EXIT_CONTEXT ExitReason;
|
---|
4245 | RT_ZERO(ExitReason);
|
---|
4246 | HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
|
---|
4247 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
4248 | if (SUCCEEDED(hrc))
|
---|
4249 | # endif
|
---|
4250 | {
|
---|
4251 | /*
|
---|
4252 | * Deal with the message.
|
---|
4253 | */
|
---|
4254 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4255 | rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
|
---|
4256 | pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
4257 | # else
|
---|
4258 | rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason);
|
---|
4259 | # endif
|
---|
4260 | if (rcStrict == VINF_SUCCESS)
|
---|
4261 | { /* hopefully likely */ }
|
---|
4262 | else
|
---|
4263 | {
|
---|
4264 | LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4265 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
|
---|
4266 | break;
|
---|
4267 | }
|
---|
4268 | }
|
---|
4269 | else
|
---|
4270 | {
|
---|
4271 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4272 |
|
---|
4273 | /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
|
---|
4274 | so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
|
---|
4275 | the error code conversion is into WAIT_XXX, i.e. NT status codes. */
|
---|
4276 | # ifndef IN_RING0
|
---|
4277 | DWORD rcNt = GetLastError();
|
---|
4278 | # endif
|
---|
4279 | LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
|
---|
4280 | AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
|
---|
4281 | || rcNt == STATUS_ALERTED /* just in case */
|
---|
4282 | || rcNt == STATUS_USER_APC /* ditto */
|
---|
4283 | || rcNt == STATUS_KERNEL_APC /* ditto */
|
---|
4284 | , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n",
|
---|
4285 | pVCpu->idCpu, rcNt, rcNt),
|
---|
4286 | VERR_NEM_IPE_0);
|
---|
4287 | pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
4288 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
|
---|
4289 | # else
|
---|
4290 | AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
|
---|
4291 | pVCpu->idCpu, hrc, GetLastError()),
|
---|
4292 | VERR_NEM_IPE_0);
|
---|
4293 | # endif
|
---|
4294 | }
|
---|
4295 |
|
---|
4296 | /*
|
---|
4297 | * If no relevant FFs are pending, loop.
|
---|
4298 | */
|
---|
4299 | if ( !VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
4300 | && !VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
4301 | continue;
|
---|
4302 |
|
---|
4303 | /** @todo Try handle pending flags, not just return to EM loops. Take care
|
---|
4304 | * not to set important RCs here unless we've handled a message. */
|
---|
4305 | LogFlow(("NEM/%u: breaking: pending FF (%#x / %#x)\n",
|
---|
4306 | pVCpu->idCpu, pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
|
---|
4307 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
|
---|
4308 | }
|
---|
4309 | else
|
---|
4310 | {
|
---|
4311 | LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
|
---|
4312 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
|
---|
4313 | }
|
---|
4314 | }
|
---|
4315 | else
|
---|
4316 | {
|
---|
4317 | LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
|
---|
4318 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
|
---|
4319 | }
|
---|
4320 | break;
|
---|
4321 | } /* the run loop */
|
---|
4322 |
|
---|
4323 |
|
---|
4324 | /*
|
---|
4325 | * If the CPU is running, make sure to stop it before we try sync back the
|
---|
4326 | * state and return to EM. We don't sync back the whole state if we can help it.
|
---|
4327 | */
|
---|
4328 | # ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
4329 | if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
|
---|
4330 | {
|
---|
4331 | pVCpu->nem.s.fHandleAndGetFlags = 0;
|
---|
4332 | rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
|
---|
4333 | }
|
---|
4334 | # endif
|
---|
4335 |
|
---|
4336 | if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
4337 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
4338 |
|
---|
4339 | if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
|
---|
4340 | {
|
---|
4341 | /* Try anticipate what we might need. */
|
---|
4342 | uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
|
---|
4343 | if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
4344 | || RT_FAILURE(rcStrict))
|
---|
4345 | fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
4346 | # ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
|
---|
4347 | else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
4348 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
|
---|
4349 | fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
|
---|
4350 | else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
|
---|
4351 | fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
|
---|
4352 | # endif
|
---|
4353 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
|
---|
4354 | | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
|
---|
4355 | fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
|
---|
4356 |
|
---|
4357 | if (pVCpu->cpum.GstCtx.fExtrn & fImport)
|
---|
4358 | {
|
---|
4359 | # ifdef IN_RING0
|
---|
4360 | int rc2 = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
4361 | if (RT_SUCCESS(rc2))
|
---|
4362 | pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
|
---|
4363 | else if (rc2 == VERR_NEM_FLUSH_TLB)
|
---|
4364 | {
|
---|
4365 | pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
|
---|
4366 | if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
|
---|
4367 | rcStrict = -rc2;
|
---|
4368 | else
|
---|
4369 | {
|
---|
4370 | pVCpu->nem.s.rcPending = -rc2;
|
---|
4371 | LogFlow(("NEM/%u: rcPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4372 | }
|
---|
4373 | }
|
---|
4374 | # else
|
---|
4375 | int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
|
---|
4376 | if (RT_SUCCESS(rc2))
|
---|
4377 | pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
|
---|
4378 | # endif
|
---|
4379 | else if (RT_SUCCESS(rcStrict))
|
---|
4380 | rcStrict = rc2;
|
---|
4381 | if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
|
---|
4382 | pVCpu->cpum.GstCtx.fExtrn = 0;
|
---|
4383 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
|
---|
4384 | }
|
---|
4385 | else
|
---|
4386 | {
|
---|
4387 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
|
---|
4388 | pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
|
---|
4389 | }
|
---|
4390 | }
|
---|
4391 | else
|
---|
4392 | {
|
---|
4393 | STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
|
---|
4394 | pVCpu->cpum.GstCtx.fExtrn = 0;
|
---|
4395 | }
|
---|
4396 |
|
---|
4397 | LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
|
---|
4398 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
4399 | return rcStrict;
|
---|
4400 | }
|
---|
4401 |
|
---|
4402 | #endif /* defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3) */
|
---|
4403 |
|
---|
4404 | /**
|
---|
4405 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
|
---|
4406 | */
|
---|
4407 | NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
|
---|
4408 | PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
4409 | {
|
---|
4410 | /* We'll just unmap the memory. */
|
---|
4411 | if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4412 | {
|
---|
4413 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4414 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
4415 | AssertRC(rc);
|
---|
4416 | if (RT_SUCCESS(rc))
|
---|
4417 | #else
|
---|
4418 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
4419 | if (SUCCEEDED(hrc))
|
---|
4420 | #endif
|
---|
4421 | {
|
---|
4422 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4423 | Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
|
---|
4424 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4425 | }
|
---|
4426 | else
|
---|
4427 | {
|
---|
4428 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4429 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
4430 | return rc;
|
---|
4431 | #else
|
---|
4432 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4433 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4434 | return VERR_NEM_IPE_2;
|
---|
4435 | #endif
|
---|
4436 | }
|
---|
4437 | }
|
---|
4438 | RT_NOREF(pVCpu, pvUser);
|
---|
4439 | return VINF_SUCCESS;
|
---|
4440 | }
|
---|
4441 |
|
---|
4442 |
|
---|
4443 | /**
|
---|
4444 | * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
|
---|
4445 | *
|
---|
4446 | * @returns The PGMPhysNemQueryPageInfo result.
|
---|
4447 | * @param pVM The cross context VM structure.
|
---|
4448 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4449 | * @param GCPhys The page to unmap.
|
---|
4450 | */
|
---|
4451 | NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
4452 | {
|
---|
4453 | PGMPHYSNEMPAGEINFO Info;
|
---|
4454 | return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
|
---|
4455 | nemHCWinUnsetForA20CheckerCallback, NULL);
|
---|
4456 | }
|
---|
4457 |
|
---|
4458 |
|
---|
4459 | void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
4460 | {
|
---|
4461 | Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
|
---|
4462 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
|
---|
4463 | }
|
---|
4464 |
|
---|
4465 |
|
---|
4466 | void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
4467 | int fRestoreAsRAM, bool fRestoreAsRAM2)
|
---|
4468 | {
|
---|
4469 | Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
|
---|
4470 | GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
|
---|
4471 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
|
---|
4472 | }
|
---|
4473 |
|
---|
4474 |
|
---|
4475 | void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
|
---|
4476 | RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
|
---|
4477 | {
|
---|
4478 | Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
|
---|
4479 | GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
|
---|
4480 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
|
---|
4481 | }
|
---|
4482 |
|
---|
4483 |
|
---|
4484 | /**
|
---|
4485 | * Worker that maps pages into Hyper-V.
|
---|
4486 | *
|
---|
4487 | * This is used by the PGM physical page notifications as well as the memory
|
---|
4488 | * access VMEXIT handlers.
|
---|
4489 | *
|
---|
4490 | * @returns VBox status code.
|
---|
4491 | * @param pVM The cross context VM structure.
|
---|
4492 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
4493 | * calling EMT.
|
---|
4494 | * @param GCPhysSrc The source page address.
|
---|
4495 | * @param GCPhysDst The hyper-V destination page. This may differ from
|
---|
4496 | * GCPhysSrc when A20 is disabled.
|
---|
4497 | * @param fPageProt NEM_PAGE_PROT_XXX.
|
---|
4498 | * @param pu2State Our page state (input/output).
|
---|
4499 | * @param fBackingChanged Set if the page backing is being changed.
|
---|
4500 | * @thread EMT(pVCpu)
|
---|
4501 | */
|
---|
4502 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
4503 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
|
---|
4504 | {
|
---|
4505 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4506 | /*
|
---|
4507 | * When using the hypercalls instead of the ring-3 APIs, we don't need to
|
---|
4508 | * unmap memory before modifying it. We still want to track the state though,
|
---|
4509 | * since unmap will fail when called an unmapped page and we don't want to redo
|
---|
4510 | * upgrades/downgrades.
|
---|
4511 | */
|
---|
4512 | uint8_t const u2OldState = *pu2State;
|
---|
4513 | int rc;
|
---|
4514 | if (fPageProt == NEM_PAGE_PROT_NONE)
|
---|
4515 | {
|
---|
4516 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4517 | {
|
---|
4518 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
4519 | if (RT_SUCCESS(rc))
|
---|
4520 | {
|
---|
4521 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4522 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4523 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
4524 | }
|
---|
4525 | else
|
---|
4526 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4527 | }
|
---|
4528 | else
|
---|
4529 | rc = VINF_SUCCESS;
|
---|
4530 | }
|
---|
4531 | else if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
4532 | {
|
---|
4533 | if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
|
---|
4534 | {
|
---|
4535 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4536 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
4537 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4538 | if (RT_SUCCESS(rc))
|
---|
4539 | {
|
---|
4540 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
4541 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
4542 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
4543 | Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
4544 | NOREF(cMappedPages);
|
---|
4545 | }
|
---|
4546 | else
|
---|
4547 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4548 | }
|
---|
4549 | else
|
---|
4550 | rc = VINF_SUCCESS;
|
---|
4551 | }
|
---|
4552 | else
|
---|
4553 | {
|
---|
4554 | if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
|
---|
4555 | {
|
---|
4556 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4557 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4558 | if (RT_SUCCESS(rc))
|
---|
4559 | {
|
---|
4560 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
4561 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
4562 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
4563 | Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
4564 | NOREF(cMappedPages);
|
---|
4565 | }
|
---|
4566 | else
|
---|
4567 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4568 | }
|
---|
4569 | else
|
---|
4570 | rc = VINF_SUCCESS;
|
---|
4571 | }
|
---|
4572 |
|
---|
4573 | return VINF_SUCCESS;
|
---|
4574 |
|
---|
4575 | #else
|
---|
4576 | /*
|
---|
4577 | * Looks like we need to unmap a page before we can change the backing
|
---|
4578 | * or even modify the protection. This is going to be *REALLY* efficient.
|
---|
4579 | * PGM lends us two bits to keep track of the state here.
|
---|
4580 | */
|
---|
4581 | uint8_t const u2OldState = *pu2State;
|
---|
4582 | uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
|
---|
4583 | : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4584 | if ( fBackingChanged
|
---|
4585 | || u2NewState != u2OldState)
|
---|
4586 | {
|
---|
4587 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4588 | {
|
---|
4589 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4590 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
4591 | AssertRC(rc);
|
---|
4592 | if (RT_SUCCESS(rc))
|
---|
4593 | {
|
---|
4594 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4595 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4596 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4597 | {
|
---|
4598 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
4599 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
4600 | return VINF_SUCCESS;
|
---|
4601 | }
|
---|
4602 | }
|
---|
4603 | else
|
---|
4604 | {
|
---|
4605 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4606 | return rc;
|
---|
4607 | }
|
---|
4608 | # else
|
---|
4609 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
|
---|
4610 | if (SUCCEEDED(hrc))
|
---|
4611 | {
|
---|
4612 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4613 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4614 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4615 | {
|
---|
4616 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
4617 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
4618 | return VINF_SUCCESS;
|
---|
4619 | }
|
---|
4620 | }
|
---|
4621 | else
|
---|
4622 | {
|
---|
4623 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4624 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4625 | return VERR_NEM_INIT_FAILED;
|
---|
4626 | }
|
---|
4627 | # endif
|
---|
4628 | }
|
---|
4629 | }
|
---|
4630 |
|
---|
4631 | /*
|
---|
4632 | * Writeable mapping?
|
---|
4633 | */
|
---|
4634 | if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
4635 | {
|
---|
4636 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4637 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4638 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
4639 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4640 | AssertRC(rc);
|
---|
4641 | if (RT_SUCCESS(rc))
|
---|
4642 | {
|
---|
4643 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
4644 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4645 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4646 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4647 | return VINF_SUCCESS;
|
---|
4648 | }
|
---|
4649 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4650 | return rc;
|
---|
4651 | # else
|
---|
4652 | void *pvPage;
|
---|
4653 | int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
|
---|
4654 | if (RT_SUCCESS(rc))
|
---|
4655 | {
|
---|
4656 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
4657 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
|
---|
4658 | if (SUCCEEDED(hrc))
|
---|
4659 | {
|
---|
4660 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
4661 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4662 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4663 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4664 | return VINF_SUCCESS;
|
---|
4665 | }
|
---|
4666 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4667 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4668 | return VERR_NEM_INIT_FAILED;
|
---|
4669 | }
|
---|
4670 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
4671 | return rc;
|
---|
4672 | # endif
|
---|
4673 | }
|
---|
4674 |
|
---|
4675 | if (fPageProt & NEM_PAGE_PROT_READ)
|
---|
4676 | {
|
---|
4677 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
4678 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
4679 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
4680 | AssertRC(rc);
|
---|
4681 | if (RT_SUCCESS(rc))
|
---|
4682 | {
|
---|
4683 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
4684 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4685 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4686 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4687 | return VINF_SUCCESS;
|
---|
4688 | }
|
---|
4689 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4690 | return rc;
|
---|
4691 | # else
|
---|
4692 | const void *pvPage;
|
---|
4693 | int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
|
---|
4694 | if (RT_SUCCESS(rc))
|
---|
4695 | {
|
---|
4696 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
4697 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
|
---|
4698 | if (SUCCEEDED(hrc))
|
---|
4699 | {
|
---|
4700 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
4701 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4702 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
4703 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
4704 | return VINF_SUCCESS;
|
---|
4705 | }
|
---|
4706 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4707 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4708 | return VERR_NEM_INIT_FAILED;
|
---|
4709 | }
|
---|
4710 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
4711 | return rc;
|
---|
4712 | # endif
|
---|
4713 | }
|
---|
4714 |
|
---|
4715 | /* We already unmapped it above. */
|
---|
4716 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4717 | return VINF_SUCCESS;
|
---|
4718 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
4719 | }
|
---|
4720 |
|
---|
4721 |
|
---|
4722 | NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
|
---|
4723 | {
|
---|
4724 | if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
4725 | {
|
---|
4726 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
|
---|
4727 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4728 | return VINF_SUCCESS;
|
---|
4729 | }
|
---|
4730 |
|
---|
4731 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4732 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4733 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
4734 | AssertRC(rc);
|
---|
4735 | if (RT_SUCCESS(rc))
|
---|
4736 | {
|
---|
4737 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4738 | Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
|
---|
4739 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4740 | return VINF_SUCCESS;
|
---|
4741 | }
|
---|
4742 | LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
4743 | return rc;
|
---|
4744 | #else
|
---|
4745 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
|
---|
4746 | if (SUCCEEDED(hrc))
|
---|
4747 | {
|
---|
4748 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
4749 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
4750 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
|
---|
4751 | return VINF_SUCCESS;
|
---|
4752 | }
|
---|
4753 | LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
4754 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
4755 | return VERR_NEM_IPE_6;
|
---|
4756 | #endif
|
---|
4757 | }
|
---|
4758 |
|
---|
4759 |
|
---|
4760 | int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
4761 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4762 | {
|
---|
4763 | Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4764 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
4765 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
4766 |
|
---|
4767 | int rc;
|
---|
4768 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4769 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4770 | if ( pVM->nem.s.fA20Enabled
|
---|
4771 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4772 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4773 | else
|
---|
4774 | {
|
---|
4775 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4776 | rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4777 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
|
---|
4778 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4779 |
|
---|
4780 | }
|
---|
4781 | #else
|
---|
4782 | RT_NOREF_PV(fPageProt);
|
---|
4783 | if ( pVM->nem.s.fA20Enabled
|
---|
4784 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4785 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4786 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4787 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4788 | else
|
---|
4789 | rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
|
---|
4790 | #endif
|
---|
4791 | return rc;
|
---|
4792 | }
|
---|
4793 |
|
---|
4794 |
|
---|
4795 | void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
4796 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4797 | {
|
---|
4798 | Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4799 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
4800 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
4801 |
|
---|
4802 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4803 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4804 | if ( pVM->nem.s.fA20Enabled
|
---|
4805 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4806 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
4807 | else
|
---|
4808 | {
|
---|
4809 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4810 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4811 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4812 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
4813 | }
|
---|
4814 | #else
|
---|
4815 | RT_NOREF_PV(fPageProt);
|
---|
4816 | if ( pVM->nem.s.fA20Enabled
|
---|
4817 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4818 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4819 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4820 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4821 | /* else: ignore since we've got the alias page at this address. */
|
---|
4822 | #endif
|
---|
4823 | }
|
---|
4824 |
|
---|
4825 |
|
---|
4826 | void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
|
---|
4827 | uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
4828 | {
|
---|
4829 | Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
4830 | GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
|
---|
4831 | RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
|
---|
4832 |
|
---|
4833 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
4834 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4835 | if ( pVM->nem.s.fA20Enabled
|
---|
4836 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4837 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4838 | else
|
---|
4839 | {
|
---|
4840 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
4841 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
4842 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4843 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
4844 | }
|
---|
4845 | #else
|
---|
4846 | RT_NOREF_PV(fPageProt);
|
---|
4847 | if ( pVM->nem.s.fA20Enabled
|
---|
4848 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
4849 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4850 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
4851 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
4852 | /* else: ignore since we've got the alias page at this address. */
|
---|
4853 | #endif
|
---|
4854 | }
|
---|
4855 |
|
---|