VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/NEMAllNativeTemplate-win.cpp.h@ 77847

Last change on this file since 77847 was 76553, checked in by vboxsync, 6 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 231.0 KB
Line 
1/* $Id: NEMAllNativeTemplate-win.cpp.h 76553 2019-01-01 01:45:53Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, Windows code template ring-0/3.
4 */
5
6/*
7 * Copyright (C) 2018-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Defined Constants And Macros *
21*********************************************************************************************************************************/
22/** Copy back a segment from hyper-V. */
23#define NEM_WIN_COPY_BACK_SEG(a_Dst, a_Src) \
24 do { \
25 (a_Dst).u64Base = (a_Src).Base; \
26 (a_Dst).u32Limit = (a_Src).Limit; \
27 (a_Dst).ValidSel = (a_Dst).Sel = (a_Src).Selector; \
28 (a_Dst).Attr.u = (a_Src).Attributes; \
29 (a_Dst).fFlags = CPUMSELREG_FLAGS_VALID; \
30 } while (0)
31
32/** @def NEMWIN_ASSERT_MSG_REG_VAL
33 * Asserts the correctness of a register value in a message/context.
34 */
35#if 0
36# define NEMWIN_NEED_GET_REGISTER
37# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
38# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
39 do { \
40 HV_REGISTER_VALUE TmpVal; \
41 nemHCWinGetRegister(a_pVCpu, a_pGVCpu, a_enmReg, &TmpVal); \
42 AssertMsg(a_Expr, a_Msg); \
43 } while (0)
44# else
45# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) \
46 do { \
47 WHV_REGISTER_VALUE TmpVal; \
48 nemR3WinGetRegister(a_pVCpu, a_enmReg, &TmpVal); \
49 AssertMsg(a_Expr, a_Msg); \
50 } while (0)
51# endif
52#else
53# define NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, a_Expr, a_Msg) do { } while (0)
54#endif
55
56/** @def NEMWIN_ASSERT_MSG_REG_VAL
57 * Asserts the correctness of a 64-bit register value in a message/context.
58 */
59#define NEMWIN_ASSERT_MSG_REG_VAL64(a_pVCpu, a_pGVCpu, a_enmReg, a_u64Val) \
60 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, (a_u64Val) == TmpVal.Reg64, \
61 (#a_u64Val "=%#RX64, expected %#RX64\n", (a_u64Val), TmpVal.Reg64))
62/** @def NEMWIN_ASSERT_MSG_REG_VAL
63 * Asserts the correctness of a segment register value in a message/context.
64 */
65#define NEMWIN_ASSERT_MSG_REG_SEG(a_pVCpu, a_pGVCpu, a_enmReg, a_SReg) \
66 NEMWIN_ASSERT_MSG_REG_VAL(a_pVCpu, a_pGVCpu, a_enmReg, \
67 (a_SReg).Base == TmpVal.Segment.Base \
68 && (a_SReg).Limit == TmpVal.Segment.Limit \
69 && (a_SReg).Selector == TmpVal.Segment.Selector \
70 && (a_SReg).Attributes == TmpVal.Segment.Attributes, \
71 ( #a_SReg "=%#RX16 {%#RX64 LB %#RX32,%#RX16} expected %#RX16 {%#RX64 LB %#RX32,%#RX16}\n", \
72 (a_SReg).Selector, (a_SReg).Base, (a_SReg).Limit, (a_SReg).Attributes, \
73 TmpVal.Segment.Selector, TmpVal.Segment.Base, TmpVal.Segment.Limit, TmpVal.Segment.Attributes))
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/** NEM_WIN_PAGE_STATE_XXX names. */
80NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
81
82/** HV_INTERCEPT_ACCESS_TYPE names. */
83static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" };
84
85
86/*********************************************************************************************************************************
87* Internal Functions *
88*********************************************************************************************************************************/
89NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
90 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
91
92
93
94#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
95
96/**
97 * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
98 *
99 * @returns VBox status code.
100 * @param pVM The cross context VM structure.
101 * @param pVCpu The cross context virtual CPU structure of the caller.
102 * @param GCPhysSrc The source page. Does not need to be page aligned.
103 * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
104 * when A20 is disabled.
105 * @param fFlags HV_MAP_GPA_XXX.
106 */
107DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
108{
109#ifdef IN_RING0
110 /** @todo optimize further, caller generally has the physical address. */
111 PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
112 AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
113 return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu],
114 GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
115 GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
116 1, fFlags);
117#else
118 pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
119 pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
120 pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
121 pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
122 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
123#endif
124}
125
126
127/**
128 * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
129 *
130 * @returns VBox status code.
131 * @param pVM The cross context VM structure.
132 * @param pVCpu The cross context virtual CPU structure of the caller.
133 * @param GCPhys The page to unmap. Does not need to be page aligned.
134 */
135DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
136{
137# ifdef IN_RING0
138 PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
139 AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
140 return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, 1);
141# else
142 pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
143 pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
144 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
145# endif
146}
147
148#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
149#ifndef IN_RING0
150
151NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu)
152{
153# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
154# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
155 if (pVM->nem.s.fUseRing0Runloop)
156# endif
157 {
158 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, 0, NULL);
159 AssertLogRelRCReturn(rc, rc);
160 return rc;
161 }
162# endif
163# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
164
165 /*
166 * The following is very similar to what nemR0WinExportState() does.
167 */
168 WHV_REGISTER_NAME aenmNames[128];
169 WHV_REGISTER_VALUE aValues[128];
170
171 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
172 if ( !fWhat
173 && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows)
174 return VINF_SUCCESS;
175 uintptr_t iReg = 0;
176
177# define ADD_REG64(a_enmName, a_uValue) do { \
178 aenmNames[iReg] = (a_enmName); \
179 aValues[iReg].Reg128.High64 = 0; \
180 aValues[iReg].Reg64 = (a_uValue); \
181 iReg++; \
182 } while (0)
183# define ADD_REG128(a_enmName, a_uValueLo, a_uValueHi) do { \
184 aenmNames[iReg] = (a_enmName); \
185 aValues[iReg].Reg128.Low64 = (a_uValueLo); \
186 aValues[iReg].Reg128.High64 = (a_uValueHi); \
187 iReg++; \
188 } while (0)
189
190 /* GPRs */
191 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
192 {
193 if (fWhat & CPUMCTX_EXTRN_RAX)
194 ADD_REG64(WHvX64RegisterRax, pVCpu->cpum.GstCtx.rax);
195 if (fWhat & CPUMCTX_EXTRN_RCX)
196 ADD_REG64(WHvX64RegisterRcx, pVCpu->cpum.GstCtx.rcx);
197 if (fWhat & CPUMCTX_EXTRN_RDX)
198 ADD_REG64(WHvX64RegisterRdx, pVCpu->cpum.GstCtx.rdx);
199 if (fWhat & CPUMCTX_EXTRN_RBX)
200 ADD_REG64(WHvX64RegisterRbx, pVCpu->cpum.GstCtx.rbx);
201 if (fWhat & CPUMCTX_EXTRN_RSP)
202 ADD_REG64(WHvX64RegisterRsp, pVCpu->cpum.GstCtx.rsp);
203 if (fWhat & CPUMCTX_EXTRN_RBP)
204 ADD_REG64(WHvX64RegisterRbp, pVCpu->cpum.GstCtx.rbp);
205 if (fWhat & CPUMCTX_EXTRN_RSI)
206 ADD_REG64(WHvX64RegisterRsi, pVCpu->cpum.GstCtx.rsi);
207 if (fWhat & CPUMCTX_EXTRN_RDI)
208 ADD_REG64(WHvX64RegisterRdi, pVCpu->cpum.GstCtx.rdi);
209 if (fWhat & CPUMCTX_EXTRN_R8_R15)
210 {
211 ADD_REG64(WHvX64RegisterR8, pVCpu->cpum.GstCtx.r8);
212 ADD_REG64(WHvX64RegisterR9, pVCpu->cpum.GstCtx.r9);
213 ADD_REG64(WHvX64RegisterR10, pVCpu->cpum.GstCtx.r10);
214 ADD_REG64(WHvX64RegisterR11, pVCpu->cpum.GstCtx.r11);
215 ADD_REG64(WHvX64RegisterR12, pVCpu->cpum.GstCtx.r12);
216 ADD_REG64(WHvX64RegisterR13, pVCpu->cpum.GstCtx.r13);
217 ADD_REG64(WHvX64RegisterR14, pVCpu->cpum.GstCtx.r14);
218 ADD_REG64(WHvX64RegisterR15, pVCpu->cpum.GstCtx.r15);
219 }
220 }
221
222 /* RIP & Flags */
223 if (fWhat & CPUMCTX_EXTRN_RIP)
224 ADD_REG64(WHvX64RegisterRip, pVCpu->cpum.GstCtx.rip);
225 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
226 ADD_REG64(WHvX64RegisterRflags, pVCpu->cpum.GstCtx.rflags.u);
227
228 /* Segments */
229# define ADD_SEG(a_enmName, a_SReg) \
230 do { \
231 aenmNames[iReg] = a_enmName; \
232 aValues[iReg].Segment.Base = (a_SReg).u64Base; \
233 aValues[iReg].Segment.Limit = (a_SReg).u32Limit; \
234 aValues[iReg].Segment.Selector = (a_SReg).Sel; \
235 aValues[iReg].Segment.Attributes = (a_SReg).Attr.u; \
236 iReg++; \
237 } while (0)
238 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
239 {
240 if (fWhat & CPUMCTX_EXTRN_ES)
241 ADD_SEG(WHvX64RegisterEs, pVCpu->cpum.GstCtx.es);
242 if (fWhat & CPUMCTX_EXTRN_CS)
243 ADD_SEG(WHvX64RegisterCs, pVCpu->cpum.GstCtx.cs);
244 if (fWhat & CPUMCTX_EXTRN_SS)
245 ADD_SEG(WHvX64RegisterSs, pVCpu->cpum.GstCtx.ss);
246 if (fWhat & CPUMCTX_EXTRN_DS)
247 ADD_SEG(WHvX64RegisterDs, pVCpu->cpum.GstCtx.ds);
248 if (fWhat & CPUMCTX_EXTRN_FS)
249 ADD_SEG(WHvX64RegisterFs, pVCpu->cpum.GstCtx.fs);
250 if (fWhat & CPUMCTX_EXTRN_GS)
251 ADD_SEG(WHvX64RegisterGs, pVCpu->cpum.GstCtx.gs);
252 }
253
254 /* Descriptor tables & task segment. */
255 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
256 {
257 if (fWhat & CPUMCTX_EXTRN_LDTR)
258 ADD_SEG(WHvX64RegisterLdtr, pVCpu->cpum.GstCtx.ldtr);
259 if (fWhat & CPUMCTX_EXTRN_TR)
260 ADD_SEG(WHvX64RegisterTr, pVCpu->cpum.GstCtx.tr);
261 if (fWhat & CPUMCTX_EXTRN_IDTR)
262 {
263 aenmNames[iReg] = WHvX64RegisterIdtr;
264 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.idtr.cbIdt;
265 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.idtr.pIdt;
266 iReg++;
267 }
268 if (fWhat & CPUMCTX_EXTRN_GDTR)
269 {
270 aenmNames[iReg] = WHvX64RegisterGdtr;
271 aValues[iReg].Table.Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
272 aValues[iReg].Table.Base = pVCpu->cpum.GstCtx.gdtr.pGdt;
273 iReg++;
274 }
275 }
276
277 /* Control registers. */
278 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
279 {
280 if (fWhat & CPUMCTX_EXTRN_CR0)
281 ADD_REG64(WHvX64RegisterCr0, pVCpu->cpum.GstCtx.cr0);
282 if (fWhat & CPUMCTX_EXTRN_CR2)
283 ADD_REG64(WHvX64RegisterCr2, pVCpu->cpum.GstCtx.cr2);
284 if (fWhat & CPUMCTX_EXTRN_CR3)
285 ADD_REG64(WHvX64RegisterCr3, pVCpu->cpum.GstCtx.cr3);
286 if (fWhat & CPUMCTX_EXTRN_CR4)
287 ADD_REG64(WHvX64RegisterCr4, pVCpu->cpum.GstCtx.cr4);
288 }
289 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
290 ADD_REG64(WHvX64RegisterCr8, CPUMGetGuestCR8(pVCpu));
291
292 /* Debug registers. */
293/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
294 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
295 {
296 ADD_REG64(WHvX64RegisterDr0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
297 ADD_REG64(WHvX64RegisterDr1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
298 ADD_REG64(WHvX64RegisterDr2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
299 ADD_REG64(WHvX64RegisterDr3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
300 }
301 if (fWhat & CPUMCTX_EXTRN_DR6)
302 ADD_REG64(WHvX64RegisterDr6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
303 if (fWhat & CPUMCTX_EXTRN_DR7)
304 ADD_REG64(WHvX64RegisterDr7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
305
306 /* Floating point state. */
307 if (fWhat & CPUMCTX_EXTRN_X87)
308 {
309 ADD_REG128(WHvX64RegisterFpMmx0, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1]);
310 ADD_REG128(WHvX64RegisterFpMmx1, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1]);
311 ADD_REG128(WHvX64RegisterFpMmx2, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1]);
312 ADD_REG128(WHvX64RegisterFpMmx3, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1]);
313 ADD_REG128(WHvX64RegisterFpMmx4, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1]);
314 ADD_REG128(WHvX64RegisterFpMmx5, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1]);
315 ADD_REG128(WHvX64RegisterFpMmx6, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1]);
316 ADD_REG128(WHvX64RegisterFpMmx7, pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1]);
317
318 aenmNames[iReg] = WHvX64RegisterFpControlStatus;
319 aValues[iReg].FpControlStatus.FpControl = pVCpu->cpum.GstCtx.pXStateR3->x87.FCW;
320 aValues[iReg].FpControlStatus.FpStatus = pVCpu->cpum.GstCtx.pXStateR3->x87.FSW;
321 aValues[iReg].FpControlStatus.FpTag = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW;
322 aValues[iReg].FpControlStatus.Reserved = pVCpu->cpum.GstCtx.pXStateR3->x87.FTW >> 8;
323 aValues[iReg].FpControlStatus.LastFpOp = pVCpu->cpum.GstCtx.pXStateR3->x87.FOP;
324 aValues[iReg].FpControlStatus.LastFpRip = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP)
325 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.CS << 32)
326 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 << 48);
327 iReg++;
328
329 aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
330 aValues[iReg].XmmControlStatus.LastFpRdp = (pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP)
331 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.DS << 32)
332 | ((uint64_t)pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 << 48);
333 aValues[iReg].XmmControlStatus.XmmStatusControl = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR;
334 aValues[iReg].XmmControlStatus.XmmStatusControlMask = pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
335 iReg++;
336 }
337
338 /* Vector state. */
339 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
340 {
341 ADD_REG128(WHvX64RegisterXmm0, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi);
342 ADD_REG128(WHvX64RegisterXmm1, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi);
343 ADD_REG128(WHvX64RegisterXmm2, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi);
344 ADD_REG128(WHvX64RegisterXmm3, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi);
345 ADD_REG128(WHvX64RegisterXmm4, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi);
346 ADD_REG128(WHvX64RegisterXmm5, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi);
347 ADD_REG128(WHvX64RegisterXmm6, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi);
348 ADD_REG128(WHvX64RegisterXmm7, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi);
349 ADD_REG128(WHvX64RegisterXmm8, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi);
350 ADD_REG128(WHvX64RegisterXmm9, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi);
351 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi);
352 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi);
353 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi);
354 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi);
355 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi);
356 ADD_REG128(WHvX64RegisterXmm10, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi);
357 }
358
359 /* MSRs */
360 // WHvX64RegisterTsc - don't touch
361 if (fWhat & CPUMCTX_EXTRN_EFER)
362 ADD_REG64(WHvX64RegisterEfer, pVCpu->cpum.GstCtx.msrEFER);
363 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
364 ADD_REG64(WHvX64RegisterKernelGsBase, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
365 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
366 {
367 ADD_REG64(WHvX64RegisterSysenterCs, pVCpu->cpum.GstCtx.SysEnter.cs);
368 ADD_REG64(WHvX64RegisterSysenterEip, pVCpu->cpum.GstCtx.SysEnter.eip);
369 ADD_REG64(WHvX64RegisterSysenterEsp, pVCpu->cpum.GstCtx.SysEnter.esp);
370 }
371 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
372 {
373 ADD_REG64(WHvX64RegisterStar, pVCpu->cpum.GstCtx.msrSTAR);
374 ADD_REG64(WHvX64RegisterLstar, pVCpu->cpum.GstCtx.msrLSTAR);
375 ADD_REG64(WHvX64RegisterCstar, pVCpu->cpum.GstCtx.msrCSTAR);
376 ADD_REG64(WHvX64RegisterSfmask, pVCpu->cpum.GstCtx.msrSFMASK);
377 }
378 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
379 {
380 ADD_REG64(WHvX64RegisterApicBase, APICGetBaseMsrNoCheck(pVCpu));
381 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
382#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
383 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
384#endif
385 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
386 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
387 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
388 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
389 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
390 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
391 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
392 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
393 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
394 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
395 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
396 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
397 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
398 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
399#if 0 /** @todo these registers aren't available? Might explain something.. .*/
400 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
401 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
402 {
403 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
404 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
405 }
406#endif
407 }
408
409 /* event injection (clear it). */
410 if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
411 ADD_REG64(WHvRegisterPendingInterruption, 0);
412
413 /* Interruptibility state. This can get a little complicated since we get
414 half of the state via HV_X64_VP_EXECUTION_STATE. */
415 if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
416 == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
417 {
418 ADD_REG64(WHvRegisterInterruptState, 0);
419 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
420 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
421 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
422 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
423 aValues[iReg - 1].InterruptState.NmiMasked = 1;
424 }
425 else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
426 {
427 if ( pVCpu->nem.s.fLastInterruptShadow
428 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
429 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip))
430 {
431 ADD_REG64(WHvRegisterInterruptState, 0);
432 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
433 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip)
434 aValues[iReg - 1].InterruptState.InterruptShadow = 1;
435 /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
436 //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
437 // aValues[iReg - 1].InterruptState.NmiMasked = 1;
438 }
439 }
440 else
441 Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
442
443 /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
444 uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows;
445 if ( fDesiredIntWin
446 || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
447 {
448 pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows;
449 ADD_REG64(WHvX64RegisterDeliverabilityNotifications, fDesiredIntWin);
450 Assert(aValues[iReg - 1].DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
451 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
452 Assert(aValues[iReg - 1].DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
453 }
454
455 /// @todo WHvRegisterPendingEvent
456
457 /*
458 * Set the registers.
459 */
460 Assert(iReg < RT_ELEMENTS(aValues));
461 Assert(iReg < RT_ELEMENTS(aenmNames));
462# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
463 Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
464 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
465# endif
466 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
467 if (SUCCEEDED(hrc))
468 {
469 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
470 return VINF_SUCCESS;
471 }
472 AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
473 pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
474 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
475 return VERR_INTERNAL_ERROR;
476
477# undef ADD_REG64
478# undef ADD_REG128
479# undef ADD_SEG
480
481# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
482}
483
484
485NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, uint64_t fWhat)
486{
487# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
488# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
489 if (pVM->nem.s.fUseRing0Runloop)
490# endif
491 {
492 /* See NEMR0ImportState */
493 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, fWhat, NULL);
494 if (RT_SUCCESS(rc))
495 return rc;
496 if (rc == VERR_NEM_FLUSH_TLB)
497 return PGMFlushTLB(pVCpu, pVCpu->cpum.GstCtx.cr3, true /*fGlobal*/);
498 AssertLogRelRCReturn(rc, rc);
499 return rc;
500 }
501# endif
502# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
503 WHV_REGISTER_NAME aenmNames[128];
504
505 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
506 uintptr_t iReg = 0;
507
508 /* GPRs */
509 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
510 {
511 if (fWhat & CPUMCTX_EXTRN_RAX)
512 aenmNames[iReg++] = WHvX64RegisterRax;
513 if (fWhat & CPUMCTX_EXTRN_RCX)
514 aenmNames[iReg++] = WHvX64RegisterRcx;
515 if (fWhat & CPUMCTX_EXTRN_RDX)
516 aenmNames[iReg++] = WHvX64RegisterRdx;
517 if (fWhat & CPUMCTX_EXTRN_RBX)
518 aenmNames[iReg++] = WHvX64RegisterRbx;
519 if (fWhat & CPUMCTX_EXTRN_RSP)
520 aenmNames[iReg++] = WHvX64RegisterRsp;
521 if (fWhat & CPUMCTX_EXTRN_RBP)
522 aenmNames[iReg++] = WHvX64RegisterRbp;
523 if (fWhat & CPUMCTX_EXTRN_RSI)
524 aenmNames[iReg++] = WHvX64RegisterRsi;
525 if (fWhat & CPUMCTX_EXTRN_RDI)
526 aenmNames[iReg++] = WHvX64RegisterRdi;
527 if (fWhat & CPUMCTX_EXTRN_R8_R15)
528 {
529 aenmNames[iReg++] = WHvX64RegisterR8;
530 aenmNames[iReg++] = WHvX64RegisterR9;
531 aenmNames[iReg++] = WHvX64RegisterR10;
532 aenmNames[iReg++] = WHvX64RegisterR11;
533 aenmNames[iReg++] = WHvX64RegisterR12;
534 aenmNames[iReg++] = WHvX64RegisterR13;
535 aenmNames[iReg++] = WHvX64RegisterR14;
536 aenmNames[iReg++] = WHvX64RegisterR15;
537 }
538 }
539
540 /* RIP & Flags */
541 if (fWhat & CPUMCTX_EXTRN_RIP)
542 aenmNames[iReg++] = WHvX64RegisterRip;
543 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
544 aenmNames[iReg++] = WHvX64RegisterRflags;
545
546 /* Segments */
547 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
548 {
549 if (fWhat & CPUMCTX_EXTRN_ES)
550 aenmNames[iReg++] = WHvX64RegisterEs;
551 if (fWhat & CPUMCTX_EXTRN_CS)
552 aenmNames[iReg++] = WHvX64RegisterCs;
553 if (fWhat & CPUMCTX_EXTRN_SS)
554 aenmNames[iReg++] = WHvX64RegisterSs;
555 if (fWhat & CPUMCTX_EXTRN_DS)
556 aenmNames[iReg++] = WHvX64RegisterDs;
557 if (fWhat & CPUMCTX_EXTRN_FS)
558 aenmNames[iReg++] = WHvX64RegisterFs;
559 if (fWhat & CPUMCTX_EXTRN_GS)
560 aenmNames[iReg++] = WHvX64RegisterGs;
561 }
562
563 /* Descriptor tables. */
564 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
565 {
566 if (fWhat & CPUMCTX_EXTRN_LDTR)
567 aenmNames[iReg++] = WHvX64RegisterLdtr;
568 if (fWhat & CPUMCTX_EXTRN_TR)
569 aenmNames[iReg++] = WHvX64RegisterTr;
570 if (fWhat & CPUMCTX_EXTRN_IDTR)
571 aenmNames[iReg++] = WHvX64RegisterIdtr;
572 if (fWhat & CPUMCTX_EXTRN_GDTR)
573 aenmNames[iReg++] = WHvX64RegisterGdtr;
574 }
575
576 /* Control registers. */
577 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
578 {
579 if (fWhat & CPUMCTX_EXTRN_CR0)
580 aenmNames[iReg++] = WHvX64RegisterCr0;
581 if (fWhat & CPUMCTX_EXTRN_CR2)
582 aenmNames[iReg++] = WHvX64RegisterCr2;
583 if (fWhat & CPUMCTX_EXTRN_CR3)
584 aenmNames[iReg++] = WHvX64RegisterCr3;
585 if (fWhat & CPUMCTX_EXTRN_CR4)
586 aenmNames[iReg++] = WHvX64RegisterCr4;
587 }
588 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
589 aenmNames[iReg++] = WHvX64RegisterCr8;
590
591 /* Debug registers. */
592 if (fWhat & CPUMCTX_EXTRN_DR7)
593 aenmNames[iReg++] = WHvX64RegisterDr7;
594 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
595 {
596 if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_DR7))
597 {
598 fWhat |= CPUMCTX_EXTRN_DR7;
599 aenmNames[iReg++] = WHvX64RegisterDr7;
600 }
601 aenmNames[iReg++] = WHvX64RegisterDr0;
602 aenmNames[iReg++] = WHvX64RegisterDr1;
603 aenmNames[iReg++] = WHvX64RegisterDr2;
604 aenmNames[iReg++] = WHvX64RegisterDr3;
605 }
606 if (fWhat & CPUMCTX_EXTRN_DR6)
607 aenmNames[iReg++] = WHvX64RegisterDr6;
608
609 /* Floating point state. */
610 if (fWhat & CPUMCTX_EXTRN_X87)
611 {
612 aenmNames[iReg++] = WHvX64RegisterFpMmx0;
613 aenmNames[iReg++] = WHvX64RegisterFpMmx1;
614 aenmNames[iReg++] = WHvX64RegisterFpMmx2;
615 aenmNames[iReg++] = WHvX64RegisterFpMmx3;
616 aenmNames[iReg++] = WHvX64RegisterFpMmx4;
617 aenmNames[iReg++] = WHvX64RegisterFpMmx5;
618 aenmNames[iReg++] = WHvX64RegisterFpMmx6;
619 aenmNames[iReg++] = WHvX64RegisterFpMmx7;
620 aenmNames[iReg++] = WHvX64RegisterFpControlStatus;
621 }
622 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
623 aenmNames[iReg++] = WHvX64RegisterXmmControlStatus;
624
625 /* Vector state. */
626 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
627 {
628 aenmNames[iReg++] = WHvX64RegisterXmm0;
629 aenmNames[iReg++] = WHvX64RegisterXmm1;
630 aenmNames[iReg++] = WHvX64RegisterXmm2;
631 aenmNames[iReg++] = WHvX64RegisterXmm3;
632 aenmNames[iReg++] = WHvX64RegisterXmm4;
633 aenmNames[iReg++] = WHvX64RegisterXmm5;
634 aenmNames[iReg++] = WHvX64RegisterXmm6;
635 aenmNames[iReg++] = WHvX64RegisterXmm7;
636 aenmNames[iReg++] = WHvX64RegisterXmm8;
637 aenmNames[iReg++] = WHvX64RegisterXmm9;
638 aenmNames[iReg++] = WHvX64RegisterXmm10;
639 aenmNames[iReg++] = WHvX64RegisterXmm11;
640 aenmNames[iReg++] = WHvX64RegisterXmm12;
641 aenmNames[iReg++] = WHvX64RegisterXmm13;
642 aenmNames[iReg++] = WHvX64RegisterXmm14;
643 aenmNames[iReg++] = WHvX64RegisterXmm15;
644 }
645
646 /* MSRs */
647 // WHvX64RegisterTsc - don't touch
648 if (fWhat & CPUMCTX_EXTRN_EFER)
649 aenmNames[iReg++] = WHvX64RegisterEfer;
650 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
651 aenmNames[iReg++] = WHvX64RegisterKernelGsBase;
652 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
653 {
654 aenmNames[iReg++] = WHvX64RegisterSysenterCs;
655 aenmNames[iReg++] = WHvX64RegisterSysenterEip;
656 aenmNames[iReg++] = WHvX64RegisterSysenterEsp;
657 }
658 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
659 {
660 aenmNames[iReg++] = WHvX64RegisterStar;
661 aenmNames[iReg++] = WHvX64RegisterLstar;
662 aenmNames[iReg++] = WHvX64RegisterCstar;
663 aenmNames[iReg++] = WHvX64RegisterSfmask;
664 }
665
666//#ifdef LOG_ENABLED
667// const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM);
668//#endif
669 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
670 {
671 aenmNames[iReg++] = WHvX64RegisterApicBase; /// @todo APIC BASE
672 aenmNames[iReg++] = WHvX64RegisterPat;
673#if 0 /*def LOG_ENABLED*/ /** @todo Check if WHvX64RegisterMsrMtrrCap works... */
674 aenmNames[iReg++] = WHvX64RegisterMsrMtrrCap;
675#endif
676 aenmNames[iReg++] = WHvX64RegisterMsrMtrrDefType;
677 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix64k00000;
678 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16k80000;
679 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix16kA0000;
680 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC0000;
681 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kC8000;
682 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD0000;
683 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kD8000;
684 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE0000;
685 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kE8000;
686 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF0000;
687 aenmNames[iReg++] = WHvX64RegisterMsrMtrrFix4kF8000;
688 aenmNames[iReg++] = WHvX64RegisterTscAux;
689 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
690//#ifdef LOG_ENABLED
691// if (enmCpuVendor != CPUMCPUVENDOR_AMD)
692// aenmNames[iReg++] = HvX64RegisterIa32FeatureControl;
693//#endif
694 }
695
696 /* Interruptibility. */
697 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
698 {
699 aenmNames[iReg++] = WHvRegisterInterruptState;
700 aenmNames[iReg++] = WHvX64RegisterRip;
701 }
702
703 /* event injection */
704 aenmNames[iReg++] = WHvRegisterPendingInterruption;
705 aenmNames[iReg++] = WHvRegisterPendingEvent0; /** @todo renamed to WHvRegisterPendingEvent */
706
707 size_t const cRegs = iReg;
708 Assert(cRegs < RT_ELEMENTS(aenmNames));
709
710 /*
711 * Get the registers.
712 */
713 WHV_REGISTER_VALUE aValues[128];
714 RT_ZERO(aValues);
715 Assert(RT_ELEMENTS(aValues) >= cRegs);
716 Assert(RT_ELEMENTS(aenmNames) >= cRegs);
717# ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
718 Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
719 pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
720# endif
721 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues);
722 AssertLogRelMsgReturn(SUCCEEDED(hrc),
723 ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
724 pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
725 , VERR_NEM_GET_REGISTERS_FAILED);
726
727 iReg = 0;
728# define GET_REG64(a_DstVar, a_enmName) do { \
729 Assert(aenmNames[iReg] == (a_enmName)); \
730 (a_DstVar) = aValues[iReg].Reg64; \
731 iReg++; \
732 } while (0)
733# define GET_REG64_LOG7(a_DstVar, a_enmName, a_szLogName) do { \
734 Assert(aenmNames[iReg] == (a_enmName)); \
735 if ((a_DstVar) != aValues[iReg].Reg64) \
736 Log7(("NEM/%u: " a_szLogName " changed %RX64 -> %RX64\n", pVCpu->idCpu, (a_DstVar), aValues[iReg].Reg64)); \
737 (a_DstVar) = aValues[iReg].Reg64; \
738 iReg++; \
739 } while (0)
740# define GET_REG128(a_DstVarLo, a_DstVarHi, a_enmName) do { \
741 Assert(aenmNames[iReg] == a_enmName); \
742 (a_DstVarLo) = aValues[iReg].Reg128.Low64; \
743 (a_DstVarHi) = aValues[iReg].Reg128.High64; \
744 iReg++; \
745 } while (0)
746# define GET_SEG(a_SReg, a_enmName) do { \
747 Assert(aenmNames[iReg] == (a_enmName)); \
748 NEM_WIN_COPY_BACK_SEG(a_SReg, aValues[iReg].Segment); \
749 iReg++; \
750 } while (0)
751
752 /* GPRs */
753 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
754 {
755 if (fWhat & CPUMCTX_EXTRN_RAX)
756 GET_REG64(pVCpu->cpum.GstCtx.rax, WHvX64RegisterRax);
757 if (fWhat & CPUMCTX_EXTRN_RCX)
758 GET_REG64(pVCpu->cpum.GstCtx.rcx, WHvX64RegisterRcx);
759 if (fWhat & CPUMCTX_EXTRN_RDX)
760 GET_REG64(pVCpu->cpum.GstCtx.rdx, WHvX64RegisterRdx);
761 if (fWhat & CPUMCTX_EXTRN_RBX)
762 GET_REG64(pVCpu->cpum.GstCtx.rbx, WHvX64RegisterRbx);
763 if (fWhat & CPUMCTX_EXTRN_RSP)
764 GET_REG64(pVCpu->cpum.GstCtx.rsp, WHvX64RegisterRsp);
765 if (fWhat & CPUMCTX_EXTRN_RBP)
766 GET_REG64(pVCpu->cpum.GstCtx.rbp, WHvX64RegisterRbp);
767 if (fWhat & CPUMCTX_EXTRN_RSI)
768 GET_REG64(pVCpu->cpum.GstCtx.rsi, WHvX64RegisterRsi);
769 if (fWhat & CPUMCTX_EXTRN_RDI)
770 GET_REG64(pVCpu->cpum.GstCtx.rdi, WHvX64RegisterRdi);
771 if (fWhat & CPUMCTX_EXTRN_R8_R15)
772 {
773 GET_REG64(pVCpu->cpum.GstCtx.r8, WHvX64RegisterR8);
774 GET_REG64(pVCpu->cpum.GstCtx.r9, WHvX64RegisterR9);
775 GET_REG64(pVCpu->cpum.GstCtx.r10, WHvX64RegisterR10);
776 GET_REG64(pVCpu->cpum.GstCtx.r11, WHvX64RegisterR11);
777 GET_REG64(pVCpu->cpum.GstCtx.r12, WHvX64RegisterR12);
778 GET_REG64(pVCpu->cpum.GstCtx.r13, WHvX64RegisterR13);
779 GET_REG64(pVCpu->cpum.GstCtx.r14, WHvX64RegisterR14);
780 GET_REG64(pVCpu->cpum.GstCtx.r15, WHvX64RegisterR15);
781 }
782 }
783
784 /* RIP & Flags */
785 if (fWhat & CPUMCTX_EXTRN_RIP)
786 GET_REG64(pVCpu->cpum.GstCtx.rip, WHvX64RegisterRip);
787 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
788 GET_REG64(pVCpu->cpum.GstCtx.rflags.u, WHvX64RegisterRflags);
789
790 /* Segments */
791 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
792 {
793 if (fWhat & CPUMCTX_EXTRN_ES)
794 GET_SEG(pVCpu->cpum.GstCtx.es, WHvX64RegisterEs);
795 if (fWhat & CPUMCTX_EXTRN_CS)
796 GET_SEG(pVCpu->cpum.GstCtx.cs, WHvX64RegisterCs);
797 if (fWhat & CPUMCTX_EXTRN_SS)
798 GET_SEG(pVCpu->cpum.GstCtx.ss, WHvX64RegisterSs);
799 if (fWhat & CPUMCTX_EXTRN_DS)
800 GET_SEG(pVCpu->cpum.GstCtx.ds, WHvX64RegisterDs);
801 if (fWhat & CPUMCTX_EXTRN_FS)
802 GET_SEG(pVCpu->cpum.GstCtx.fs, WHvX64RegisterFs);
803 if (fWhat & CPUMCTX_EXTRN_GS)
804 GET_SEG(pVCpu->cpum.GstCtx.gs, WHvX64RegisterGs);
805 }
806
807 /* Descriptor tables and the task segment. */
808 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
809 {
810 if (fWhat & CPUMCTX_EXTRN_LDTR)
811 GET_SEG(pVCpu->cpum.GstCtx.ldtr, WHvX64RegisterLdtr);
812
813 if (fWhat & CPUMCTX_EXTRN_TR)
814 {
815 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
816 avoid to trigger sanity assertions around the code, always fix this. */
817 GET_SEG(pVCpu->cpum.GstCtx.tr, WHvX64RegisterTr);
818 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
819 {
820 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
821 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
822 break;
823 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
824 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
825 break;
826 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
827 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
828 break;
829 }
830 }
831 if (fWhat & CPUMCTX_EXTRN_IDTR)
832 {
833 Assert(aenmNames[iReg] == WHvX64RegisterIdtr);
834 pVCpu->cpum.GstCtx.idtr.cbIdt = aValues[iReg].Table.Limit;
835 pVCpu->cpum.GstCtx.idtr.pIdt = aValues[iReg].Table.Base;
836 iReg++;
837 }
838 if (fWhat & CPUMCTX_EXTRN_GDTR)
839 {
840 Assert(aenmNames[iReg] == WHvX64RegisterGdtr);
841 pVCpu->cpum.GstCtx.gdtr.cbGdt = aValues[iReg].Table.Limit;
842 pVCpu->cpum.GstCtx.gdtr.pGdt = aValues[iReg].Table.Base;
843 iReg++;
844 }
845 }
846
847 /* Control registers. */
848 bool fMaybeChangedMode = false;
849 bool fUpdateCr3 = false;
850 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
851 {
852 if (fWhat & CPUMCTX_EXTRN_CR0)
853 {
854 Assert(aenmNames[iReg] == WHvX64RegisterCr0);
855 if (pVCpu->cpum.GstCtx.cr0 != aValues[iReg].Reg64)
856 {
857 CPUMSetGuestCR0(pVCpu, aValues[iReg].Reg64);
858 fMaybeChangedMode = true;
859 }
860 iReg++;
861 }
862 if (fWhat & CPUMCTX_EXTRN_CR2)
863 GET_REG64(pVCpu->cpum.GstCtx.cr2, WHvX64RegisterCr2);
864 if (fWhat & CPUMCTX_EXTRN_CR3)
865 {
866 if (pVCpu->cpum.GstCtx.cr3 != aValues[iReg].Reg64)
867 {
868 CPUMSetGuestCR3(pVCpu, aValues[iReg].Reg64);
869 fUpdateCr3 = true;
870 }
871 iReg++;
872 }
873 if (fWhat & CPUMCTX_EXTRN_CR4)
874 {
875 if (pVCpu->cpum.GstCtx.cr4 != aValues[iReg].Reg64)
876 {
877 CPUMSetGuestCR4(pVCpu, aValues[iReg].Reg64);
878 fMaybeChangedMode = true;
879 }
880 iReg++;
881 }
882 }
883 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
884 {
885 Assert(aenmNames[iReg] == WHvX64RegisterCr8);
886 APICSetTpr(pVCpu, (uint8_t)aValues[iReg].Reg64 << 4);
887 iReg++;
888 }
889
890 /* Debug registers. */
891 if (fWhat & CPUMCTX_EXTRN_DR7)
892 {
893 Assert(aenmNames[iReg] == WHvX64RegisterDr7);
894 if (pVCpu->cpum.GstCtx.dr[7] != aValues[iReg].Reg64)
895 CPUMSetGuestDR7(pVCpu, aValues[iReg].Reg64);
896 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
897 iReg++;
898 }
899 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
900 {
901 Assert(aenmNames[iReg] == WHvX64RegisterDr0);
902 Assert(aenmNames[iReg+3] == WHvX64RegisterDr3);
903 if (pVCpu->cpum.GstCtx.dr[0] != aValues[iReg].Reg64)
904 CPUMSetGuestDR0(pVCpu, aValues[iReg].Reg64);
905 iReg++;
906 if (pVCpu->cpum.GstCtx.dr[1] != aValues[iReg].Reg64)
907 CPUMSetGuestDR1(pVCpu, aValues[iReg].Reg64);
908 iReg++;
909 if (pVCpu->cpum.GstCtx.dr[2] != aValues[iReg].Reg64)
910 CPUMSetGuestDR2(pVCpu, aValues[iReg].Reg64);
911 iReg++;
912 if (pVCpu->cpum.GstCtx.dr[3] != aValues[iReg].Reg64)
913 CPUMSetGuestDR3(pVCpu, aValues[iReg].Reg64);
914 iReg++;
915 }
916 if (fWhat & CPUMCTX_EXTRN_DR6)
917 {
918 Assert(aenmNames[iReg] == WHvX64RegisterDr6);
919 if (pVCpu->cpum.GstCtx.dr[6] != aValues[iReg].Reg64)
920 CPUMSetGuestDR6(pVCpu, aValues[iReg].Reg64);
921 iReg++;
922 }
923
924 /* Floating point state. */
925 if (fWhat & CPUMCTX_EXTRN_X87)
926 {
927 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[0].au64[1], WHvX64RegisterFpMmx0);
928 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[1].au64[1], WHvX64RegisterFpMmx1);
929 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[2].au64[1], WHvX64RegisterFpMmx2);
930 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[3].au64[1], WHvX64RegisterFpMmx3);
931 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[4].au64[1], WHvX64RegisterFpMmx4);
932 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[5].au64[1], WHvX64RegisterFpMmx5);
933 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[6].au64[1], WHvX64RegisterFpMmx6);
934 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[0], pVCpu->cpum.GstCtx.pXStateR3->x87.aRegs[7].au64[1], WHvX64RegisterFpMmx7);
935
936 Assert(aenmNames[iReg] == WHvX64RegisterFpControlStatus);
937 pVCpu->cpum.GstCtx.pXStateR3->x87.FCW = aValues[iReg].FpControlStatus.FpControl;
938 pVCpu->cpum.GstCtx.pXStateR3->x87.FSW = aValues[iReg].FpControlStatus.FpStatus;
939 pVCpu->cpum.GstCtx.pXStateR3->x87.FTW = aValues[iReg].FpControlStatus.FpTag
940 /*| (aValues[iReg].FpControlStatus.Reserved << 8)*/;
941 pVCpu->cpum.GstCtx.pXStateR3->x87.FOP = aValues[iReg].FpControlStatus.LastFpOp;
942 pVCpu->cpum.GstCtx.pXStateR3->x87.FPUIP = (uint32_t)aValues[iReg].FpControlStatus.LastFpRip;
943 pVCpu->cpum.GstCtx.pXStateR3->x87.CS = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 32);
944 pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[iReg].FpControlStatus.LastFpRip >> 48);
945 iReg++;
946 }
947
948 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
949 {
950 Assert(aenmNames[iReg] == WHvX64RegisterXmmControlStatus);
951 if (fWhat & CPUMCTX_EXTRN_X87)
952 {
953 pVCpu->cpum.GstCtx.pXStateR3->x87.FPUDP = (uint32_t)aValues[iReg].XmmControlStatus.LastFpRdp;
954 pVCpu->cpum.GstCtx.pXStateR3->x87.DS = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 32);
955 pVCpu->cpum.GstCtx.pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[iReg].XmmControlStatus.LastFpRdp >> 48);
956 }
957 pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR = aValues[iReg].XmmControlStatus.XmmStatusControl;
958 pVCpu->cpum.GstCtx.pXStateR3->x87.MXCSR_MASK = aValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
959 iReg++;
960 }
961
962 /* Vector state. */
963 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
964 {
965 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 0].uXmm.s.Hi, WHvX64RegisterXmm0);
966 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 1].uXmm.s.Hi, WHvX64RegisterXmm1);
967 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 2].uXmm.s.Hi, WHvX64RegisterXmm2);
968 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 3].uXmm.s.Hi, WHvX64RegisterXmm3);
969 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 4].uXmm.s.Hi, WHvX64RegisterXmm4);
970 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 5].uXmm.s.Hi, WHvX64RegisterXmm5);
971 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 6].uXmm.s.Hi, WHvX64RegisterXmm6);
972 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 7].uXmm.s.Hi, WHvX64RegisterXmm7);
973 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 8].uXmm.s.Hi, WHvX64RegisterXmm8);
974 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[ 9].uXmm.s.Hi, WHvX64RegisterXmm9);
975 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[10].uXmm.s.Hi, WHvX64RegisterXmm10);
976 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[11].uXmm.s.Hi, WHvX64RegisterXmm11);
977 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[12].uXmm.s.Hi, WHvX64RegisterXmm12);
978 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[13].uXmm.s.Hi, WHvX64RegisterXmm13);
979 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[14].uXmm.s.Hi, WHvX64RegisterXmm14);
980 GET_REG128(pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Lo, pVCpu->cpum.GstCtx.pXStateR3->x87.aXMM[15].uXmm.s.Hi, WHvX64RegisterXmm15);
981 }
982
983 /* MSRs */
984 // WHvX64RegisterTsc - don't touch
985 if (fWhat & CPUMCTX_EXTRN_EFER)
986 {
987 Assert(aenmNames[iReg] == WHvX64RegisterEfer);
988 if (aValues[iReg].Reg64 != pVCpu->cpum.GstCtx.msrEFER)
989 {
990 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, aValues[iReg].Reg64));
991 if ((aValues[iReg].Reg64 ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
992 PGMNotifyNxeChanged(pVCpu, RT_BOOL(aValues[iReg].Reg64 & MSR_K6_EFER_NXE));
993 pVCpu->cpum.GstCtx.msrEFER = aValues[iReg].Reg64;
994 fMaybeChangedMode = true;
995 }
996 iReg++;
997 }
998 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
999 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrKERNELGSBASE, WHvX64RegisterKernelGsBase, "MSR KERNEL_GS_BASE");
1000 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1001 {
1002 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.cs, WHvX64RegisterSysenterCs, "MSR SYSENTER.CS");
1003 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.eip, WHvX64RegisterSysenterEip, "MSR SYSENTER.EIP");
1004 GET_REG64_LOG7(pVCpu->cpum.GstCtx.SysEnter.esp, WHvX64RegisterSysenterEsp, "MSR SYSENTER.ESP");
1005 }
1006 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1007 {
1008 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSTAR, WHvX64RegisterStar, "MSR STAR");
1009 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrLSTAR, WHvX64RegisterLstar, "MSR LSTAR");
1010 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrCSTAR, WHvX64RegisterCstar, "MSR CSTAR");
1011 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrSFMASK, WHvX64RegisterSfmask, "MSR SFMASK");
1012 }
1013 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1014 {
1015 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
1016 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
1017 if (aValues[iReg].Reg64 != uOldBase)
1018 {
1019 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
1020 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
1021 int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
1022 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
1023 }
1024 iReg++;
1025
1026 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1027#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1028 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1029#endif
1030 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1031 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1032 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1033 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1034 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1035 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1036 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1037 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1038 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1039 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1040 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1041 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1042 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1043 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
1044 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1045 }
1046
1047 /* Interruptibility. */
1048 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
1049 {
1050 Assert(aenmNames[iReg] == WHvRegisterInterruptState);
1051 Assert(aenmNames[iReg + 1] == WHvX64RegisterRip);
1052
1053 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1054 {
1055 pVCpu->nem.s.fLastInterruptShadow = aValues[iReg].InterruptState.InterruptShadow;
1056 if (aValues[iReg].InterruptState.InterruptShadow)
1057 EMSetInhibitInterruptsPC(pVCpu, aValues[iReg + 1].Reg64);
1058 else
1059 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1060 }
1061
1062 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
1063 {
1064 if (aValues[iReg].InterruptState.NmiMasked)
1065 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1066 else
1067 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1068 }
1069
1070 fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
1071 iReg += 2;
1072 }
1073
1074 /* Event injection. */
1075 /// @todo WHvRegisterPendingInterruption
1076 Assert(aenmNames[iReg] == WHvRegisterPendingInterruption);
1077 if (aValues[iReg].PendingInterruption.InterruptionPending)
1078 {
1079 Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
1080 aValues[iReg].PendingInterruption.InterruptionType, aValues[iReg].PendingInterruption.InterruptionVector,
1081 aValues[iReg].PendingInterruption.DeliverErrorCode, aValues[iReg].PendingInterruption.ErrorCode,
1082 aValues[iReg].PendingInterruption.InstructionLength, aValues[iReg].PendingInterruption.NestedEvent));
1083 AssertMsg((aValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
1084 ("%#RX64\n", aValues[iReg].PendingInterruption.AsUINT64));
1085 }
1086
1087 /// @todo WHvRegisterPendingEvent0 (renamed to WHvRegisterPendingEvent).
1088
1089 /* Almost done, just update extrn flags and maybe change PGM mode. */
1090 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1091 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
1092 pVCpu->cpum.GstCtx.fExtrn = 0;
1093
1094 /* Typical. */
1095 if (!fMaybeChangedMode && !fUpdateCr3)
1096 return VINF_SUCCESS;
1097
1098 /*
1099 * Slow.
1100 */
1101 if (fMaybeChangedMode)
1102 {
1103 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1104 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1105 }
1106
1107 if (fUpdateCr3)
1108 {
1109 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1110 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1111 }
1112
1113 return VINF_SUCCESS;
1114# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1115}
1116
1117#endif /* !IN_RING0 */
1118
1119
1120/**
1121 * Interface for importing state on demand (used by IEM).
1122 *
1123 * @returns VBox status code.
1124 * @param pVCpu The cross context CPU structure.
1125 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1126 */
1127VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
1128{
1129 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1130
1131#ifdef IN_RING0
1132# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1133 /** @todo improve and secure this translation */
1134 PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
1135 AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
1136 VMCPUID idCpu = pVCpu->idCpu;
1137 ASMCompilerBarrier();
1138 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
1139
1140 return nemR0WinImportState(pGVM, &pGVM->aCpus[idCpu], &pVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
1141# else
1142 RT_NOREF(pVCpu, fWhat);
1143 return VERR_NOT_IMPLEMENTED;
1144# endif
1145#else
1146 return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1147#endif
1148}
1149
1150
1151/**
1152 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1153 *
1154 * @returns VBox status code.
1155 * @param pVCpu The cross context CPU structure.
1156 * @param pcTicks Where to return the CPU tick count.
1157 * @param puAux Where to return the TSC_AUX register value.
1158 */
1159VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPU pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1160{
1161 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1162
1163#ifdef IN_RING3
1164 PVM pVM = pVCpu->CTX_SUFF(pVM);
1165 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1166 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1167
1168# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1169# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
1170 if (pVM->nem.s.fUseRing0Runloop)
1171# endif
1172 {
1173 /* Call ring-0 and get the values. */
1174 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_QUERY_CPU_TICK, 0, NULL);
1175 AssertLogRelRCReturn(rc, rc);
1176 *pcTicks = pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks;
1177 if (puAux)
1178 *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX
1179 ? pVCpu->nem.s.Hypercall.QueryCpuTick.uAux : CPUMGetGuestTscAux(pVCpu);
1180 return VINF_SUCCESS;
1181 }
1182# endif
1183# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
1184 /* Call the offical API. */
1185 WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux };
1186 WHV_REGISTER_VALUE aValues[2] = { {0, 0}, {0, 0} };
1187 Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues));
1188 HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues);
1189 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1190 ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n",
1191 pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1192 , VERR_NEM_GET_REGISTERS_FAILED);
1193 *pcTicks = aValues[0].Reg64;
1194 if (puAux)
1195 *pcTicks = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[0].Reg64 : CPUMGetGuestTscAux(pVCpu);
1196 return VINF_SUCCESS;
1197# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1198#else /* IN_RING0 */
1199# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1200 /** @todo improve and secure this translation */
1201 PGVM pGVM = GVMMR0ByHandle(pVCpu->pVMR0->hSelf);
1202 AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
1203 VMCPUID idCpu = pVCpu->idCpu;
1204 ASMCompilerBarrier();
1205 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
1206
1207 int rc = nemR0WinQueryCpuTick(pGVM, &pGVM->aCpus[idCpu], pcTicks, puAux);
1208 if (RT_SUCCESS(rc) && puAux && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX))
1209 *puAux = CPUMGetGuestTscAux(pVCpu);
1210 return rc;
1211# else
1212 RT_NOREF(pVCpu, pcTicks, puAux);
1213 return VERR_NOT_IMPLEMENTED;
1214# endif
1215#endif /* IN_RING0 */
1216}
1217
1218
1219/**
1220 * Resumes CPU clock (TSC) on all virtual CPUs.
1221 *
1222 * This is called by TM when the VM is started, restored, resumed or similar.
1223 *
1224 * @returns VBox status code.
1225 * @param pVM The cross context VM structure.
1226 * @param pVCpu The cross context CPU structure of the calling EMT.
1227 * @param uPausedTscValue The TSC value at the time of pausing.
1228 */
1229VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVM pVM, PVMCPU pVCpu, uint64_t uPausedTscValue)
1230{
1231#ifdef IN_RING0
1232# ifdef NEM_WIN_WITH_RING0_RUNLOOP
1233 /** @todo improve and secure this translation */
1234 PGVM pGVM = GVMMR0ByHandle(pVM->hSelf);
1235 AssertReturn(pGVM, VERR_INVALID_VMCPU_HANDLE);
1236 VMCPUID idCpu = pVCpu->idCpu;
1237 ASMCompilerBarrier();
1238 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_VMCPU_HANDLE);
1239
1240 return nemR0WinResumeCpuTickOnAll(pGVM, &pGVM->aCpus[idCpu], uPausedTscValue);
1241# else
1242 RT_NOREF(pVM, pVCpu, uPausedTscValue);
1243 return VERR_NOT_IMPLEMENTED;
1244# endif
1245#else /* IN_RING3 */
1246 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
1247 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
1248
1249# if defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1250# if !defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) && defined(NEM_WIN_WITH_RING0_RUNLOOP)
1251 if (pVM->nem.s.fUseRing0Runloop)
1252# endif
1253 {
1254 /* Call ring-0 and do it all there. */
1255 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL, uPausedTscValue, NULL);
1256 }
1257# endif
1258# ifndef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
1259 /*
1260 * Call the offical API to do the job.
1261 */
1262 if (pVM->cCpus > 1)
1263 RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */
1264
1265 /* Start with the first CPU. */
1266 WHV_REGISTER_NAME enmName = WHvX64RegisterTsc;
1267 WHV_REGISTER_VALUE Value = {0, 0};
1268 Value.Reg64 = uPausedTscValue;
1269 uint64_t const uFirstTsc = ASMReadTSC();
1270 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value);
1271 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1272 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n",
1273 pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1274 , VERR_NEM_SET_TSC);
1275
1276 /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed
1277 that we don't introduce too much drift here. */
1278 for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++)
1279 {
1280 Assert(enmName == WHvX64RegisterTsc);
1281 const uint64_t offDelta = (ASMReadTSC() - uFirstTsc);
1282 Value.Reg64 = uPausedTscValue + offDelta;
1283 HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value);
1284 AssertLogRelMsgReturn(SUCCEEDED(hrc),
1285 ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n",
1286 pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())
1287 , VERR_NEM_SET_TSC);
1288 }
1289
1290 return VINF_SUCCESS;
1291# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1292#endif /* IN_RING3 */
1293}
1294
1295#ifdef NEMWIN_NEED_GET_REGISTER
1296# if defined(IN_RING0) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
1297/** Worker for assertion macro. */
1298NEM_TMPL_STATIC int nemHCWinGetRegister(PVMCPU pVCpu, PGVMCPU pGVCpu, uint32_t enmReg, HV_REGISTER_VALUE *pRetValue)
1299{
1300 RT_ZERO(*pRetValue);
1301# ifdef IN_RING3
1302 RT_NOREF(pVCpu, pGVCpu, enmReg);
1303 return VERR_NOT_IMPLEMENTED;
1304# else
1305 NOREF(pVCpu);
1306
1307 /*
1308 * Hypercall parameters.
1309 */
1310 HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage;
1311 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
1312 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API);
1313
1314 pInput->PartitionId = pGVCpu->pGVM->nem.s.idHvPartition;
1315 pInput->VpIndex = pGVCpu->idCpu;
1316 pInput->fFlags = 0;
1317 pInput->Names[0] = (HV_REGISTER_NAME)enmReg;
1318
1319 size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32);
1320 HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
1321 RT_BZERO(paValues, sizeof(paValues[0]) * 1);
1322
1323 /*
1324 * Make the hypercall and copy out the value.
1325 */
1326 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1),
1327 pGVCpu->nem.s.HypercallData.HCPhysPage,
1328 pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput);
1329 AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 cRegs=%#x\n", uResult, 1),
1330 VERR_NEM_GET_REGISTERS_FAILED);
1331
1332 *pRetValue = paValues[0];
1333 return VINF_SUCCESS;
1334# endif
1335}
1336# else
1337/** Worker for assertion macro. */
1338NEM_TMPL_STATIC int nemR3WinGetRegister(PVMCPU a_pVCpu, uint32_t a_enmReg, WHV_REGISTER_VALUE pValue)
1339{
1340 RT_ZERO(*pRetValue);
1341 RT_NOREF(pVCpu, pGVCpu, enmReg);
1342 return VERR_NOT_IMPLEMENTED;
1343}
1344# endif
1345#endif
1346
1347
1348#ifdef LOG_ENABLED
1349/**
1350 * Get the virtual processor running status.
1351 */
1352DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
1353{
1354# ifdef IN_RING0
1355 NOREF(pVCpu);
1356 return VidProcessorStatusUndefined;
1357# else
1358 RTERRVARS Saved;
1359 RTErrVarsSave(&Saved);
1360
1361 /*
1362 * This API is disabled in release builds, it seems. On build 17101 it requires
1363 * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
1364 */
1365 VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
1366 NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
1367 AssertRC(rcNt);
1368
1369 RTErrVarsRestore(&Saved);
1370 return enmCpuStatus;
1371# endif
1372}
1373#endif /* LOG_ENABLED */
1374
1375
1376#if defined(NEM_WIN_USE_OUR_OWN_RUN_API) || defined(NEM_WIN_WITH_RING0_RUNLOOP)
1377# ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
1378/**
1379 * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
1380 *
1381 * This is an experiment only.
1382 *
1383 * @returns VBox status code.
1384 * @param pVM The cross context VM structure.
1385 * @param pVCpu The cross context virtual CPU structure of the
1386 * calling EMT.
1387 */
1388NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
1389{
1390 /*
1391 * Work the state.
1392 *
1393 * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
1394 * So, we just need to modify the state and kick the EMT if it's waiting on
1395 * messages. For the latter we use QueueUserAPC / KeAlterThread.
1396 */
1397 for (;;)
1398 {
1399 VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
1400 switch (enmState)
1401 {
1402 case VMCPUSTATE_STARTED_EXEC_NEM:
1403 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
1404 {
1405 DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM -> CANCELED");
1406 Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
1407 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelChangedState);
1408 return VINF_SUCCESS;
1409 }
1410 break;
1411
1412 case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
1413 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
1414 {
1415 DBGFTRACE_CUSTOM(pVM, "VMCPUSTATE_STARTED_EXEC_NEM_WAIT -> CANCELED");
1416# ifdef IN_RING0
1417 NTSTATUS rcNt = KeAlertThread(??);
1418 DBGFTRACE_CUSTOM(pVM, "KeAlertThread -> %#x", rcNt);
1419# else
1420 NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
1421 DBGFTRACE_CUSTOM(pVM, "NtAlertThread -> %#x", rcNt);
1422# endif
1423 Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
1424 Assert(rcNt == STATUS_SUCCESS);
1425 if (NT_SUCCESS(rcNt))
1426 {
1427 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatCancelAlertedThread);
1428 return VINF_SUCCESS;
1429 }
1430 AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
1431 }
1432 break;
1433
1434 default:
1435 return VINF_SUCCESS;
1436 }
1437
1438 ASMNopPause();
1439 RT_NOREF(pVM);
1440 }
1441}
1442# endif /* IN_RING3 */
1443#endif /* NEM_WIN_USE_OUR_OWN_RUN_API || NEM_WIN_WITH_RING0_RUNLOOP */
1444
1445
1446#ifdef LOG_ENABLED
1447/**
1448 * Logs the current CPU state.
1449 */
1450NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
1451{
1452 if (LogIs3Enabled())
1453 {
1454# if 0 // def IN_RING3 - causes lazy state import assertions all over CPUM.
1455 char szRegs[4096];
1456 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
1457 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
1458 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
1459 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
1460 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
1461 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
1462 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
1463 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
1464 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
1465 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
1466 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
1467 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
1468 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
1469 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
1470 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
1471 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
1472 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
1473 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
1474 " efer=%016VR{efer}\n"
1475 " pat=%016VR{pat}\n"
1476 " sf_mask=%016VR{sf_mask}\n"
1477 "krnl_gs_base=%016VR{krnl_gs_base}\n"
1478 " lstar=%016VR{lstar}\n"
1479 " star=%016VR{star} cstar=%016VR{cstar}\n"
1480 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
1481 );
1482
1483 char szInstr[256];
1484 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
1485 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1486 szInstr, sizeof(szInstr), NULL);
1487 Log3(("%s%s\n", szRegs, szInstr));
1488# else
1489 /** @todo stat logging in ring-0 */
1490 RT_NOREF(pVM, pVCpu);
1491# endif
1492 }
1493}
1494#endif /* LOG_ENABLED */
1495
1496
1497/** Macro used by nemHCWinExecStateToLogStr and nemR3WinExecStateToLogStr. */
1498#define SWITCH_IT(a_szPrefix) \
1499 do \
1500 switch (u)\
1501 { \
1502 case 0x00: return a_szPrefix ""; \
1503 case 0x01: return a_szPrefix ",Pnd"; \
1504 case 0x02: return a_szPrefix ",Dbg"; \
1505 case 0x03: return a_szPrefix ",Pnd,Dbg"; \
1506 case 0x04: return a_szPrefix ",Shw"; \
1507 case 0x05: return a_szPrefix ",Pnd,Shw"; \
1508 case 0x06: return a_szPrefix ",Shw,Dbg"; \
1509 case 0x07: return a_szPrefix ",Pnd,Shw,Dbg"; \
1510 default: AssertFailedReturn("WTF?"); \
1511 } \
1512 while (0)
1513
1514#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1515/**
1516 * Translates the execution stat bitfield into a short log string, VID version.
1517 *
1518 * @returns Read-only log string.
1519 * @param pMsgHdr The header which state to summarize.
1520 */
1521static const char *nemHCWinExecStateToLogStr(HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr)
1522{
1523 unsigned u = (unsigned)pMsgHdr->ExecutionState.InterruptionPending
1524 | ((unsigned)pMsgHdr->ExecutionState.DebugActive << 1)
1525 | ((unsigned)pMsgHdr->ExecutionState.InterruptShadow << 2);
1526 if (pMsgHdr->ExecutionState.EferLma)
1527 SWITCH_IT("LM");
1528 else if (pMsgHdr->ExecutionState.Cr0Pe)
1529 SWITCH_IT("PM");
1530 else
1531 SWITCH_IT("RM");
1532}
1533#elif defined(IN_RING3)
1534/**
1535 * Translates the execution stat bitfield into a short log string, WinHv version.
1536 *
1537 * @returns Read-only log string.
1538 * @param pExitCtx The exit context which state to summarize.
1539 */
1540static const char *nemR3WinExecStateToLogStr(WHV_VP_EXIT_CONTEXT const *pExitCtx)
1541{
1542 unsigned u = (unsigned)pExitCtx->ExecutionState.InterruptionPending
1543 | ((unsigned)pExitCtx->ExecutionState.DebugActive << 1)
1544 | ((unsigned)pExitCtx->ExecutionState.InterruptShadow << 2);
1545 if (pExitCtx->ExecutionState.EferLma)
1546 SWITCH_IT("LM");
1547 else if (pExitCtx->ExecutionState.Cr0Pe)
1548 SWITCH_IT("PM");
1549 else
1550 SWITCH_IT("RM");
1551}
1552#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1553#undef SWITCH_IT
1554
1555
1556#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1557/**
1558 * Advances the guest RIP and clear EFLAGS.RF, VID version.
1559 *
1560 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1561 *
1562 * @param pVCpu The cross context virtual CPU structure.
1563 * @param pExitCtx The exit context.
1564 * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
1565 */
1566DECLINLINE(void)
1567nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, uint8_t cbMinInstr)
1568{
1569 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
1570
1571 /* Advance the RIP. */
1572 Assert(pMsgHdr->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
1573 pVCpu->cpum.GstCtx.rip += pMsgHdr->InstructionLength;
1574 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
1575
1576 /* Update interrupt inhibition. */
1577 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1578 { /* likely */ }
1579 else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
1580 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1581}
1582#elif defined(IN_RING3)
1583/**
1584 * Advances the guest RIP and clear EFLAGS.RF, WinHv version.
1585 *
1586 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1587 *
1588 * @param pVCpu The cross context virtual CPU structure.
1589 * @param pExitCtx The exit context.
1590 * @param cbMinInstr The minimum instruction length, or 1 if not unknown.
1591 */
1592DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx, uint8_t cbMinInstr)
1593{
1594 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));
1595
1596 /* Advance the RIP. */
1597 Assert(pExitCtx->InstructionLength >= cbMinInstr); RT_NOREF_PV(cbMinInstr);
1598 pVCpu->cpum.GstCtx.rip += pExitCtx->InstructionLength;
1599 pVCpu->cpum.GstCtx.rflags.Bits.u1RF = 0;
1600
1601 /* Update interrupt inhibition. */
1602 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1603 { /* likely */ }
1604 else if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
1605 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1606}
1607#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1608
1609
1610
1611NEM_TMPL_STATIC DECLCALLBACK(int)
1612nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
1613{
1614 RT_NOREF_PV(pvUser);
1615#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1616 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
1617 AssertRC(rc);
1618 if (RT_SUCCESS(rc))
1619#else
1620 RT_NOREF_PV(pVCpu);
1621 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1622 if (SUCCEEDED(hrc))
1623#endif
1624 {
1625 Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
1626 *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1627 }
1628 else
1629 {
1630#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1631 LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
1632#else
1633 LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1634 GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
1635 RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
1636#endif
1637 *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
1638 }
1639 if (pVM->nem.s.cMappedPages > 0)
1640 ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
1641 return VINF_SUCCESS;
1642}
1643
1644
1645/**
1646 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1647 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1648 */
1649typedef struct NEMHCWINHMACPCCSTATE
1650{
1651 /** Input: Write access. */
1652 bool fWriteAccess;
1653 /** Output: Set if we did something. */
1654 bool fDidSomething;
1655 /** Output: Set it we should resume. */
1656 bool fCanResume;
1657} NEMHCWINHMACPCCSTATE;
1658
1659/**
1660 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1661 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1662 * NEMHCWINHMACPCCSTATE structure. }
1663 */
1664NEM_TMPL_STATIC DECLCALLBACK(int)
1665nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1666{
1667 NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
1668 pState->fDidSomething = false;
1669 pState->fCanResume = false;
1670
1671 /* If A20 is disabled, we may need to make another query on the masked
1672 page to get the correct protection information. */
1673 uint8_t u2State = pInfo->u2NemState;
1674 RTGCPHYS GCPhysSrc;
1675 if ( pVM->nem.s.fA20Enabled
1676 || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
1677 GCPhysSrc = GCPhys;
1678 else
1679 {
1680 GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
1681 PGMPHYSNEMPAGEINFO Info2;
1682 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
1683 AssertRCReturn(rc, rc);
1684
1685 *pInfo = Info2;
1686 pInfo->u2NemState = u2State;
1687 }
1688
1689 /*
1690 * Consolidate current page state with actual page protection and access type.
1691 * We don't really consider downgrades here, as they shouldn't happen.
1692 */
1693#ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1694 /** @todo Someone at microsoft please explain:
1695 * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
1696 * readonly page as writable (unmap, then map again). Specifically, this was an
1697 * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
1698 * a hope to work around that we no longer pre-map anything, just unmap stuff
1699 * and do it lazily here. And here we will first unmap, restart, and then remap
1700 * with new protection or backing.
1701 */
1702#endif
1703 int rc;
1704 switch (u2State)
1705 {
1706 case NEM_WIN_PAGE_STATE_UNMAPPED:
1707 case NEM_WIN_PAGE_STATE_NOT_SET:
1708 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1709 {
1710 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1711 return VINF_SUCCESS;
1712 }
1713
1714 /* Don't bother remapping it if it's a write request to a non-writable page. */
1715 if ( pState->fWriteAccess
1716 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1717 {
1718 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1719 return VINF_SUCCESS;
1720 }
1721
1722 /* Map the page. */
1723 rc = nemHCNativeSetPhysPage(pVM,
1724 pVCpu,
1725 GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1726 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1727 pInfo->fNemProt,
1728 &u2State,
1729 true /*fBackingState*/);
1730 pInfo->u2NemState = u2State;
1731 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1732 GCPhys, g_apszPageStates[u2State], rc));
1733 pState->fDidSomething = true;
1734 pState->fCanResume = true;
1735 return rc;
1736
1737 case NEM_WIN_PAGE_STATE_READABLE:
1738 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1739 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1740 {
1741 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1742 return VINF_SUCCESS;
1743 }
1744
1745#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1746 /* Upgrade page to writable. */
1747/** @todo test this*/
1748 if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1749 && pState->fWriteAccess)
1750 {
1751 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
1752 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
1753 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
1754 AssertRC(rc);
1755 if (RT_SUCCESS(rc))
1756 {
1757 pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
1758 pState->fDidSomething = true;
1759 pState->fCanResume = true;
1760 Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
1761 GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
1762 }
1763 }
1764 else
1765 {
1766 /* Need to emulate the acces. */
1767 AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
1768 rc = VINF_SUCCESS;
1769 }
1770 return rc;
1771#else
1772 break;
1773#endif
1774
1775 case NEM_WIN_PAGE_STATE_WRITABLE:
1776 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1777 {
1778 if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE)
1779 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1780 else
1781 {
1782 pState->fCanResume = true;
1783 Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1784 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1785 }
1786 return VINF_SUCCESS;
1787 }
1788#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1789 AssertFailed(); /* There should be no downgrades. */
1790#endif
1791 break;
1792
1793 default:
1794 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1795 }
1796
1797 /*
1798 * Unmap and restart the instruction.
1799 * If this fails, which it does every so often, just unmap everything for now.
1800 */
1801#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1802 rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
1803 AssertRC(rc);
1804 if (RT_SUCCESS(rc))
1805#else
1806 /** @todo figure out whether we mess up the state or if it's WHv. */
1807 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1808 if (SUCCEEDED(hrc))
1809#endif
1810 {
1811 pState->fDidSomething = true;
1812 pState->fCanResume = true;
1813 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1814 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
1815 Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
1816 return VINF_SUCCESS;
1817 }
1818#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1819 LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
1820 return rc;
1821#else
1822 LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1823 GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
1824 pVM->nem.s.cMappedPages));
1825
1826 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
1827 Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
1828
1829 pState->fDidSomething = true;
1830 pState->fCanResume = true;
1831 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1832 return VINF_SUCCESS;
1833#endif
1834}
1835
1836
1837
1838#if defined(IN_RING0) && defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API)
1839/**
1840 * Wrapper around nemR0WinImportState that converts VERR_NEM_FLUSH_TLB
1841 * into informational status codes and logs+asserts statuses.
1842 *
1843 * @returns VBox strict status code.
1844 * @param pGVM The global (ring-0) VM structure.
1845 * @param pGVCpu The global (ring-0) per CPU structure.
1846 * @param pVCpu The cross context per CPU structure.
1847 * @param fWhat What to import.
1848 * @param pszCaller Who is doing the importing.
1849 */
1850DECLINLINE(VBOXSTRICTRC) nemR0WinImportStateStrict(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu, uint64_t fWhat, const char *pszCaller)
1851{
1852 int rc = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fWhat, true /*fCanUpdateCr3*/);
1853 if (RT_SUCCESS(rc))
1854 {
1855 Assert(rc == VINF_SUCCESS);
1856 return VINF_SUCCESS;
1857 }
1858
1859 if (rc == VERR_NEM_FLUSH_TLB)
1860 {
1861 Log4(("%s/%u: nemR0WinImportState -> %Rrc\n", pszCaller, pGVCpu->idCpu, -rc));
1862 return -rc;
1863 }
1864 RT_NOREF(pszCaller);
1865 AssertMsgFailedReturn(("%s/%u: nemR0WinImportState failed: %Rrc\n", pszCaller, pGVCpu->idCpu, rc), rc);
1866}
1867#endif /* IN_RING0 && NEM_WIN_TEMPLATE_MODE_OWN_RUN_API*/
1868
1869#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
1870/**
1871 * Wrapper around nemR0WinImportStateStrict and nemHCWinCopyStateFromHyperV.
1872 *
1873 * Unlike the wrapped APIs, this checks whether it's necessary.
1874 *
1875 * @returns VBox strict status code.
1876 * @param pGVM The global (ring-0) VM structure.
1877 * @param pGVCpu The global (ring-0) per CPU structure.
1878 * @param fWhat What to import.
1879 * @param pszCaller Who is doing the importing.
1880 */
1881DECLINLINE(VBOXSTRICTRC) nemHCWinImportStateIfNeededStrict(PVMCPU pVCpu, PGVMCPU pGVCpu, uint64_t fWhat, const char *pszCaller)
1882{
1883 if (pVCpu->cpum.GstCtx.fExtrn & fWhat)
1884 {
1885# ifdef IN_RING0
1886 return nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, fWhat, pszCaller);
1887# else
1888 RT_NOREF(pGVCpu, pszCaller);
1889 int rc = nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat);
1890 AssertRCReturn(rc, rc);
1891# endif
1892 }
1893 return VINF_SUCCESS;
1894}
1895#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API || IN_RING3 */
1896
1897#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1898/**
1899 * Copies register state from the X64 intercept message header.
1900 *
1901 * ASSUMES no state copied yet.
1902 *
1903 * @param pVCpu The cross context per CPU structure.
1904 * @param pHdr The X64 intercept message header.
1905 * @sa nemR3WinCopyStateFromX64Header
1906 */
1907DECLINLINE(void) nemHCWinCopyStateFromX64Header(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr)
1908{
1909 Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1910 == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
1911 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pHdr->CsSegment);
1912 pVCpu->cpum.GstCtx.rip = pHdr->Rip;
1913 pVCpu->cpum.GstCtx.rflags.u = pHdr->Rflags;
1914
1915 pVCpu->nem.s.fLastInterruptShadow = pHdr->ExecutionState.InterruptShadow;
1916 if (!pHdr->ExecutionState.InterruptShadow)
1917 {
1918 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1919 { /* likely */ }
1920 else
1921 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1922 }
1923 else
1924 EMSetInhibitInterruptsPC(pVCpu, pHdr->Rip);
1925
1926 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
1927}
1928#elif defined(IN_RING3)
1929/**
1930 * Copies register state from the (common) exit context.
1931 *
1932 * ASSUMES no state copied yet.
1933 *
1934 * @param pVCpu The cross context per CPU structure.
1935 * @param pExitCtx The common exit context.
1936 * @sa nemHCWinCopyStateFromX64Header
1937 */
1938DECLINLINE(void) nemR3WinCopyStateFromX64Header(PVMCPU pVCpu, WHV_VP_EXIT_CONTEXT const *pExitCtx)
1939{
1940 Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
1941 == (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT));
1942 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.cs, pExitCtx->Cs);
1943 pVCpu->cpum.GstCtx.rip = pExitCtx->Rip;
1944 pVCpu->cpum.GstCtx.rflags.u = pExitCtx->Rflags;
1945
1946 pVCpu->nem.s.fLastInterruptShadow = pExitCtx->ExecutionState.InterruptShadow;
1947 if (!pExitCtx->ExecutionState.InterruptShadow)
1948 {
1949 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1950 { /* likely */ }
1951 else
1952 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1953 }
1954 else
1955 EMSetInhibitInterruptsPC(pVCpu, pExitCtx->Rip);
1956
1957 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT);
1958}
1959#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
1960
1961
1962#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
1963/**
1964 * Deals with memory intercept message.
1965 *
1966 * @returns Strict VBox status code.
1967 * @param pVM The cross context VM structure.
1968 * @param pVCpu The cross context per CPU structure.
1969 * @param pMsg The message.
1970 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
1971 * @sa nemR3WinHandleExitMemory
1972 */
1973NEM_TMPL_STATIC VBOXSTRICTRC
1974nemHCWinHandleMessageMemory(PVM pVM, PVMCPU pVCpu, HV_X64_MEMORY_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
1975{
1976 uint64_t const uHostTsc = ASMReadTSC();
1977 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
1978 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
1979 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
1980
1981 /*
1982 * Whatever we do, we must clear pending event injection upon resume.
1983 */
1984 if (pMsg->Header.ExecutionState.InterruptionPending)
1985 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
1986
1987# if 0 /* Experiment: 20K -> 34K exit/s. */
1988 if ( pMsg->Header.ExecutionState.EferLma
1989 && pMsg->Header.CsSegment.Long
1990 && pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
1991 {
1992 if ( pMsg->Header.Rip - (uint64_t)0xf65a < (uint64_t)(0xf662 - 0xf65a)
1993 && pMsg->InstructionBytes[0] == 0x89
1994 && pMsg->InstructionBytes[1] == 0x03)
1995 {
1996 pVCpu->cpum.GstCtx.rip = pMsg->Header.Rip + 2;
1997 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
1998 AssertMsg(pMsg->Header.InstructionLength == 2, ("%#x\n", pMsg->Header.InstructionLength));
1999 //Log(("%RX64 msg:\n%.80Rhxd\n", pVCpu->cpum.GstCtx.rip, pMsg));
2000 return VINF_SUCCESS;
2001 }
2002 }
2003# endif
2004
2005 /*
2006 * Ask PGM for information about the given GCPhys. We need to check if we're
2007 * out of sync first.
2008 */
2009 NEMHCWINHMACPCCSTATE State = { pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE, false, false };
2010 PGMPHYSNEMPAGEINFO Info;
2011 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMsg->GuestPhysicalAddress, State.fWriteAccess, &Info,
2012 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
2013 if (RT_SUCCESS(rc))
2014 {
2015 if (Info.fNemProt & ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2016 ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
2017 {
2018 if (State.fCanResume)
2019 {
2020 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
2021 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2022 pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2023 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2024 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
2025 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
2026 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
2027 return VINF_SUCCESS;
2028 }
2029 }
2030 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
2031 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2032 pMsg->GuestPhysicalAddress, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2033 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2034 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
2035 }
2036 else
2037 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
2038 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2039 pMsg->GuestPhysicalAddress, rc, State.fDidSomething ? " modified-backing" : "",
2040 g_apszHvInterceptAccessTypes[pMsg->Header.InterceptAccessType]));
2041
2042 /*
2043 * Emulate the memory access, either access handler or special memory.
2044 */
2045 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2046 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2047 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2048 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2049 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, uHostTsc);
2050 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2051 VBOXSTRICTRC rcStrict;
2052# ifdef IN_RING0
2053 rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu,
2054 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES, "MemExit");
2055 if (rcStrict != VINF_SUCCESS)
2056 return rcStrict;
2057# else
2058 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2059 AssertRCReturn(rc, rc);
2060 NOREF(pGVCpu);
2061# endif
2062
2063 if (pMsg->Reserved1)
2064 Log(("MemExit/Reserved1=%#x\n", pMsg->Reserved1));
2065 if (pMsg->Header.ExecutionState.Reserved0 || pMsg->Header.ExecutionState.Reserved1)
2066 Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pMsg->Header.ExecutionState.Reserved0, pMsg->Header.ExecutionState.Reserved1));
2067
2068 if (!pExitRec)
2069 {
2070 //if (pMsg->InstructionByteCount > 0)
2071 // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
2072 if (pMsg->InstructionByteCount > 0)
2073 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
2074 pMsg->InstructionBytes, pMsg->InstructionByteCount);
2075 else
2076 rcStrict = IEMExecOne(pVCpu);
2077 /** @todo do we need to do anything wrt debugging here? */
2078 }
2079 else
2080 {
2081 /* Frequent access or probing. */
2082 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2083 Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2084 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2085 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2086 }
2087 return rcStrict;
2088}
2089#elif defined(IN_RING3)
2090/**
2091 * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess).
2092 *
2093 * @returns Strict VBox status code.
2094 * @param pVM The cross context VM structure.
2095 * @param pVCpu The cross context per CPU structure.
2096 * @param pExit The VM exit information to handle.
2097 * @sa nemHCWinHandleMessageMemory
2098 */
2099NEM_TMPL_STATIC VBOXSTRICTRC
2100nemR3WinHandleExitMemory(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2101{
2102 uint64_t const uHostTsc = ASMReadTSC();
2103 Assert(pExit->MemoryAccess.AccessInfo.AccessType != 3);
2104
2105 /*
2106 * Whatever we do, we must clear pending event injection upon resume.
2107 */
2108 if (pExit->VpContext.ExecutionState.InterruptionPending)
2109 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2110
2111 /*
2112 * Ask PGM for information about the given GCPhys. We need to check if we're
2113 * out of sync first.
2114 */
2115 NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
2116 PGMPHYSNEMPAGEINFO Info;
2117 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info,
2118 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
2119 if (RT_SUCCESS(rc))
2120 {
2121 if (Info.fNemProt & ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2122 ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
2123 {
2124 if (State.fCanResume)
2125 {
2126 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
2127 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2128 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2129 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2130 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2131 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
2132 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
2133 return VINF_SUCCESS;
2134 }
2135 }
2136 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
2137 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2138 pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
2139 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
2140 State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2141 }
2142 else
2143 Log4(("MemExit/%u: %04x:%08RX64/%s: %RGp rc=%Rrc%s; emulating (%s)\n",
2144 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2145 pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "",
2146 g_apszHvInterceptAccessTypes[pExit->MemoryAccess.AccessInfo.AccessType]));
2147
2148 /*
2149 * Emulate the memory access, either access handler or special memory.
2150 */
2151 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2152 pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2153 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2154 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2155 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, uHostTsc);
2156 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2157 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2158 AssertRCReturn(rc, rc);
2159 if (pExit->VpContext.ExecutionState.Reserved0 || pExit->VpContext.ExecutionState.Reserved1)
2160 Log(("MemExit/Hdr/State: Reserved0=%#x Reserved1=%#x\n", pExit->VpContext.ExecutionState.Reserved0, pExit->VpContext.ExecutionState.Reserved1));
2161
2162 VBOXSTRICTRC rcStrict;
2163 if (!pExitRec)
2164 {
2165 //if (pMsg->InstructionByteCount > 0)
2166 // Log4(("InstructionByteCount=%#x %.16Rhxs\n", pMsg->InstructionByteCount, pMsg->InstructionBytes));
2167 if (pExit->MemoryAccess.InstructionByteCount > 0)
2168 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
2169 pExit->MemoryAccess.InstructionBytes, pExit->MemoryAccess.InstructionByteCount);
2170 else
2171 rcStrict = IEMExecOne(pVCpu);
2172 /** @todo do we need to do anything wrt debugging here? */
2173 }
2174 else
2175 {
2176 /* Frequent access or probing. */
2177 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2178 Log4(("MemExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2179 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2180 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2181 }
2182 return rcStrict;
2183}
2184#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2185
2186
2187#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2188/**
2189 * Deals with I/O port intercept message.
2190 *
2191 * @returns Strict VBox status code.
2192 * @param pVM The cross context VM structure.
2193 * @param pVCpu The cross context per CPU structure.
2194 * @param pMsg The message.
2195 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
2196 */
2197NEM_TMPL_STATIC VBOXSTRICTRC
2198nemHCWinHandleMessageIoPort(PVM pVM, PVMCPU pVCpu, HV_X64_IO_PORT_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
2199{
2200 /*
2201 * Assert message sanity.
2202 */
2203 Assert( pMsg->AccessInfo.AccessSize == 1
2204 || pMsg->AccessInfo.AccessSize == 2
2205 || pMsg->AccessInfo.AccessSize == 4);
2206 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
2207 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2208 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2209 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2210 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2211 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2212 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
2213 if (pMsg->AccessInfo.StringOp)
2214 {
2215 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
2216 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterEs, pMsg->EsSegment);
2217 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
2218 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
2219 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
2220 }
2221
2222 /*
2223 * Whatever we do, we must clear pending event injection upon resume.
2224 */
2225 if (pMsg->Header.ExecutionState.InterruptionPending)
2226 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2227
2228 /*
2229 * Add history first to avoid two paths doing EMHistoryExec calls.
2230 */
2231 VBOXSTRICTRC rcStrict;
2232 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2233 !pMsg->AccessInfo.StringOp
2234 ? ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2235 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
2236 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
2237 : ( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2238 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
2239 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
2240 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2241 if (!pExitRec)
2242 {
2243 if (!pMsg->AccessInfo.StringOp)
2244 {
2245 /*
2246 * Simple port I/O.
2247 */
2248 static uint32_t const s_fAndMask[8] =
2249 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
2250 uint32_t const fAndMask = s_fAndMask[pMsg->AccessInfo.AccessSize];
2251
2252 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2253 if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2254 {
2255 rcStrict = IOMIOPortWrite(pVM, pVCpu, pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize);
2256 Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2257 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2258 pMsg->PortNumber, (uint32_t)pMsg->Rax & fAndMask, pMsg->AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
2259 if (IOM_SUCCESS(rcStrict))
2260 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
2261# ifdef IN_RING0
2262 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
2263 && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
2264 /** @todo check for debug breakpoints */ )
2265 return EMRZSetPendingIoPortWrite(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
2266 pMsg->AccessInfo.AccessSize, (uint32_t)pMsg->Rax & fAndMask);
2267# endif
2268 else
2269 {
2270 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2271 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2272 }
2273 }
2274 else
2275 {
2276 uint32_t uValue = 0;
2277 rcStrict = IOMIOPortRead(pVM, pVCpu, pMsg->PortNumber, &uValue, pMsg->AccessInfo.AccessSize);
2278 Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2279 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2280 pMsg->PortNumber, pMsg->AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2281 if (IOM_SUCCESS(rcStrict))
2282 {
2283 if (pMsg->AccessInfo.AccessSize != 4)
2284 pVCpu->cpum.GstCtx.rax = (pMsg->Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
2285 else
2286 pVCpu->cpum.GstCtx.rax = uValue;
2287 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2288 Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pMsg->Rax, pVCpu->cpum.GstCtx.rax));
2289 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 1);
2290 }
2291 else
2292 {
2293 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2294 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2295# ifdef IN_RING0
2296 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
2297 && !pVCpu->cpum.GstCtx.rflags.Bits.u1TF
2298 /** @todo check for debug breakpoints */ )
2299 return EMRZSetPendingIoPortRead(pVCpu, pMsg->PortNumber, pMsg->Header.InstructionLength,
2300 pMsg->AccessInfo.AccessSize);
2301# endif
2302 }
2303 }
2304 }
2305 else
2306 {
2307 /*
2308 * String port I/O.
2309 */
2310 /** @todo Someone at Microsoft please explain how we can get the address mode
2311 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
2312 * getting the default mode, it can always be overridden by a prefix. This
2313 * forces us to interpret the instruction from opcodes, which is suboptimal.
2314 * Both AMD-V and VT-x includes the address size in the exit info, at least on
2315 * CPUs that are reasonably new.
2316 *
2317 * Of course, it's possible this is an undocumented and we just need to do some
2318 * experiments to figure out how it's communicated. Alternatively, we can scan
2319 * the opcode bytes for possible evil prefixes.
2320 */
2321 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2322 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2323 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2324 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
2325 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
2326 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2327 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2328 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
2329 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
2330# ifdef IN_RING0
2331 rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
2332 if (rcStrict != VINF_SUCCESS)
2333 return rcStrict;
2334# else
2335 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2336 AssertRCReturn(rc, rc);
2337 RT_NOREF(pGVCpu);
2338# endif
2339
2340 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
2341 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2342 pMsg->AccessInfo.RepPrefix ? "REP " : "",
2343 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUTS" : "INS",
2344 pMsg->PortNumber, pMsg->AccessInfo.AccessSize ));
2345 rcStrict = IEMExecOne(pVCpu);
2346 }
2347 if (IOM_SUCCESS(rcStrict))
2348 {
2349 /*
2350 * Do debug checks.
2351 */
2352 if ( pMsg->Header.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
2353 || (pMsg->Header.Rflags & X86_EFL_TF)
2354 || DBGFBpIsHwIoArmed(pVM) )
2355 {
2356 /** @todo Debugging. */
2357 }
2358 }
2359 return rcStrict;
2360 }
2361
2362 /*
2363 * Frequent exit or something needing probing.
2364 * Get state and call EMHistoryExec.
2365 */
2366 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2367 if (!pMsg->AccessInfo.StringOp)
2368 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2369 else
2370 {
2371 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2372 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2373 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
2374 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pMsg->EsSegment);
2375 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2376 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
2377 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
2378 }
2379 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2380
2381# ifdef IN_RING0
2382 rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "IOExit");
2383 if (rcStrict != VINF_SUCCESS)
2384 return rcStrict;
2385# else
2386 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2387 AssertRCReturn(rc, rc);
2388 RT_NOREF(pGVCpu);
2389# endif
2390
2391 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
2392 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2393 pMsg->AccessInfo.RepPrefix ? "REP " : "",
2394 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "OUT" : "IN",
2395 pMsg->AccessInfo.StringOp ? "S" : "",
2396 pMsg->PortNumber, pMsg->AccessInfo.AccessSize));
2397 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2398 Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2399 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2400 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2401 return rcStrict;
2402}
2403#elif defined(IN_RING3)
2404/**
2405 * Deals with I/O port access exits (WHvRunVpExitReasonX64IoPortAccess).
2406 *
2407 * @returns Strict VBox status code.
2408 * @param pVM The cross context VM structure.
2409 * @param pVCpu The cross context per CPU structure.
2410 * @param pExit The VM exit information to handle.
2411 * @sa nemHCWinHandleMessageIoPort
2412 */
2413NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitIoPort(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2414{
2415 Assert( pExit->IoPortAccess.AccessInfo.AccessSize == 1
2416 || pExit->IoPortAccess.AccessInfo.AccessSize == 2
2417 || pExit->IoPortAccess.AccessInfo.AccessSize == 4);
2418
2419 /*
2420 * Whatever we do, we must clear pending event injection upon resume.
2421 */
2422 if (pExit->VpContext.ExecutionState.InterruptionPending)
2423 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
2424
2425 /*
2426 * Add history first to avoid two paths doing EMHistoryExec calls.
2427 */
2428 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2429 !pExit->IoPortAccess.AccessInfo.StringOp
2430 ? ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2431 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)
2432 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ))
2433 : ( pExit->MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessWrite
2434 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)
2435 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)),
2436 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2437 if (!pExitRec)
2438 {
2439 VBOXSTRICTRC rcStrict;
2440 if (!pExit->IoPortAccess.AccessInfo.StringOp)
2441 {
2442 /*
2443 * Simple port I/O.
2444 */
2445 static uint32_t const s_fAndMask[8] =
2446 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
2447 uint32_t const fAndMask = s_fAndMask[pExit->IoPortAccess.AccessInfo.AccessSize];
2448 if (pExit->IoPortAccess.AccessInfo.IsWrite)
2449 {
2450 rcStrict = IOMIOPortWrite(pVM, pVCpu, pExit->IoPortAccess.PortNumber,
2451 (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
2452 pExit->IoPortAccess.AccessInfo.AccessSize);
2453 Log4(("IOExit/%u: %04x:%08RX64/%s: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2454 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2455 pExit->IoPortAccess.PortNumber, (uint32_t)pExit->IoPortAccess.Rax & fAndMask,
2456 pExit->IoPortAccess.AccessInfo.AccessSize, VBOXSTRICTRC_VAL(rcStrict) ));
2457 if (IOM_SUCCESS(rcStrict))
2458 {
2459 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2460 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
2461 }
2462 }
2463 else
2464 {
2465 uint32_t uValue = 0;
2466 rcStrict = IOMIOPortRead(pVM, pVCpu, pExit->IoPortAccess.PortNumber, &uValue,
2467 pExit->IoPortAccess.AccessInfo.AccessSize);
2468 Log4(("IOExit/%u: %04x:%08RX64/%s: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2469 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2470 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2471 if (IOM_SUCCESS(rcStrict))
2472 {
2473 if (pExit->IoPortAccess.AccessInfo.AccessSize != 4)
2474 pVCpu->cpum.GstCtx.rax = (pExit->IoPortAccess.Rax & ~(uint64_t)fAndMask) | (uValue & fAndMask);
2475 else
2476 pVCpu->cpum.GstCtx.rax = uValue;
2477 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2478 Log4(("IOExit/%u: RAX %#RX64 -> %#RX64\n", pVCpu->idCpu, pExit->IoPortAccess.Rax, pVCpu->cpum.GstCtx.rax));
2479 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2480 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 1);
2481 }
2482 }
2483 }
2484 else
2485 {
2486 /*
2487 * String port I/O.
2488 */
2489 /** @todo Someone at Microsoft please explain how we can get the address mode
2490 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
2491 * getting the default mode, it can always be overridden by a prefix. This
2492 * forces us to interpret the instruction from opcodes, which is suboptimal.
2493 * Both AMD-V and VT-x includes the address size in the exit info, at least on
2494 * CPUs that are reasonably new.
2495 *
2496 * Of course, it's possible this is an undocumented and we just need to do some
2497 * experiments to figure out how it's communicated. Alternatively, we can scan
2498 * the opcode bytes for possible evil prefixes.
2499 */
2500 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2501 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2502 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2503 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
2504 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
2505 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
2506 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
2507 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
2508 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
2509 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2510 AssertRCReturn(rc, rc);
2511
2512 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s %#x LB %u (emulating)\n",
2513 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2514 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
2515 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUTS" : "INS",
2516 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize ));
2517 rcStrict = IEMExecOne(pVCpu);
2518 }
2519 if (IOM_SUCCESS(rcStrict))
2520 {
2521 /*
2522 * Do debug checks.
2523 */
2524 if ( pExit->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflect DR7? */
2525 || (pExit->VpContext.Rflags & X86_EFL_TF)
2526 || DBGFBpIsHwIoArmed(pVM) )
2527 {
2528 /** @todo Debugging. */
2529 }
2530 }
2531 return rcStrict;
2532 }
2533
2534 /*
2535 * Frequent exit or something needing probing.
2536 * Get state and call EMHistoryExec.
2537 */
2538 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2539 if (!pExit->IoPortAccess.AccessInfo.StringOp)
2540 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RAX;
2541 else
2542 {
2543 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDI | CPUMCTX_EXTRN_RSI
2544 | CPUMCTX_EXTRN_DS | CPUMCTX_EXTRN_ES);
2545 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pExit->IoPortAccess.Ds);
2546 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.es, pExit->IoPortAccess.Es);
2547 pVCpu->cpum.GstCtx.rcx = pExit->IoPortAccess.Rcx;
2548 pVCpu->cpum.GstCtx.rdi = pExit->IoPortAccess.Rdi;
2549 pVCpu->cpum.GstCtx.rsi = pExit->IoPortAccess.Rsi;
2550 }
2551 pVCpu->cpum.GstCtx.rax = pExit->IoPortAccess.Rax;
2552 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2553 AssertRCReturn(rc, rc);
2554 Log4(("IOExit/%u: %04x:%08RX64/%s: %s%s%s %#x LB %u -> EMHistoryExec\n",
2555 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2556 pExit->IoPortAccess.AccessInfo.RepPrefix ? "REP " : "",
2557 pExit->IoPortAccess.AccessInfo.IsWrite ? "OUT" : "IN",
2558 pExit->IoPortAccess.AccessInfo.StringOp ? "S" : "",
2559 pExit->IoPortAccess.PortNumber, pExit->IoPortAccess.AccessInfo.AccessSize));
2560 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2561 Log4(("IOExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2562 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2563 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2564 return rcStrict;
2565}
2566#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2567
2568
2569#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2570/**
2571 * Deals with interrupt window message.
2572 *
2573 * @returns Strict VBox status code.
2574 * @param pVM The cross context VM structure.
2575 * @param pVCpu The cross context per CPU structure.
2576 * @param pMsg The message.
2577 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
2578 * @sa nemR3WinHandleExitInterruptWindow
2579 */
2580NEM_TMPL_STATIC VBOXSTRICTRC
2581nemHCWinHandleMessageInterruptWindow(PVM pVM, PVMCPU pVCpu, HV_X64_INTERRUPT_WINDOW_MESSAGE const *pMsg, PGVMCPU pGVCpu)
2582{
2583 /*
2584 * Assert message sanity.
2585 */
2586 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE
2587 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ // READ & WRITE are probably not used here
2588 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2589 AssertMsg(pMsg->Type == HvX64PendingInterrupt || pMsg->Type == HvX64PendingNmi, ("%#x\n", pMsg->Type));
2590
2591 /*
2592 * Just copy the state we've got and handle it in the loop for now.
2593 */
2594 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2595 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2596
2597 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2598 Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
2599 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2600 pMsg->Type, RT_BOOL(pMsg->Header.Rflags & X86_EFL_IF), pMsg->Header.ExecutionState.InterruptShadow));
2601
2602 /** @todo call nemHCWinHandleInterruptFF */
2603 RT_NOREF(pVM, pGVCpu);
2604 return VINF_SUCCESS;
2605}
2606#elif defined(IN_RING3)
2607/**
2608 * Deals with interrupt window exits (WHvRunVpExitReasonX64InterruptWindow).
2609 *
2610 * @returns Strict VBox status code.
2611 * @param pVM The cross context VM structure.
2612 * @param pVCpu The cross context per CPU structure.
2613 * @param pExit The VM exit information to handle.
2614 * @sa nemHCWinHandleMessageInterruptWindow
2615 */
2616NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitInterruptWindow(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2617{
2618 /*
2619 * Assert message sanity.
2620 */
2621 AssertMsg( pExit->InterruptWindow.DeliverableType == WHvX64PendingInterrupt
2622 || pExit->InterruptWindow.DeliverableType == WHvX64PendingNmi,
2623 ("%#x\n", pExit->InterruptWindow.DeliverableType));
2624
2625 /*
2626 * Just copy the state we've got and handle it in the loop for now.
2627 */
2628 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2629 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2630
2631 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2632 Log4(("IntWinExit/%u: %04x:%08RX64/%s: %u IF=%d InterruptShadow=%d\n",
2633 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2634 pExit->InterruptWindow.DeliverableType, RT_BOOL(pExit->VpContext.Rflags & X86_EFL_IF),
2635 pExit->VpContext.ExecutionState.InterruptShadow));
2636
2637 /** @todo call nemHCWinHandleInterruptFF */
2638 RT_NOREF(pVM);
2639 return VINF_SUCCESS;
2640}
2641#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2642
2643
2644#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2645/**
2646 * Deals with CPUID intercept message.
2647 *
2648 * @returns Strict VBox status code.
2649 * @param pVM The cross context VM structure.
2650 * @param pVCpu The cross context per CPU structure.
2651 * @param pMsg The message.
2652 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
2653 * @sa nemR3WinHandleExitCpuId
2654 */
2655NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageCpuId(PVM pVM, PVMCPU pVCpu, HV_X64_CPUID_INTERCEPT_MESSAGE const *pMsg,
2656 PGVMCPU pGVCpu)
2657{
2658 /* Check message register value sanity. */
2659 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2660 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2661 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2662 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2663 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
2664 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
2665 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
2666 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
2667
2668 /* Do exit history. */
2669 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
2670 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2671 if (!pExitRec)
2672 {
2673 /*
2674 * Soak up state and execute the instruction.
2675 *
2676 * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
2677 * function and make everyone use it.
2678 */
2679 /** @todo Combine implementations into IEMExecDecodedCpuId as this will
2680 * only get weirder with nested VT-x and AMD-V support. */
2681 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2682
2683 /* Copy in the low register values (top is always cleared). */
2684 pVCpu->cpum.GstCtx.rax = (uint32_t)pMsg->Rax;
2685 pVCpu->cpum.GstCtx.rcx = (uint32_t)pMsg->Rcx;
2686 pVCpu->cpum.GstCtx.rdx = (uint32_t)pMsg->Rdx;
2687 pVCpu->cpum.GstCtx.rbx = (uint32_t)pMsg->Rbx;
2688 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2689
2690 /* Get the correct values. */
2691 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
2692 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
2693
2694 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
2695 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2696 pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
2697 pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
2698 pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
2699
2700 /* Move RIP and we're done. */
2701 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2702
2703 return VINF_SUCCESS;
2704 }
2705
2706 /*
2707 * Frequent exit or something needing probing.
2708 * Get state and call EMHistoryExec.
2709 */
2710 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2711 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
2712 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
2713 pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
2714 pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
2715 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2716 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
2717 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2718 pMsg->Rax, pMsg->Rcx, pMsg->Rdx, pMsg->Rbx,
2719 pMsg->DefaultResultRax, pMsg->DefaultResultRcx, pMsg->DefaultResultRdx, pMsg->DefaultResultRbx));
2720# ifdef IN_RING0
2721 VBOXSTRICTRC rcStrict = nemR0WinImportStateStrict(pGVCpu->pGVM, pGVCpu, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM, "CpuIdExit");
2722 if (rcStrict != VINF_SUCCESS)
2723 return rcStrict;
2724 RT_NOREF(pVM);
2725# else
2726 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2727 AssertRCReturn(rc, rc);
2728 RT_NOREF(pGVCpu);
2729# endif
2730 VBOXSTRICTRC rcStrictExec = EMHistoryExec(pVCpu, pExitRec, 0);
2731 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2732 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2733 VBOXSTRICTRC_VAL(rcStrictExec), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2734 return rcStrictExec;
2735}
2736#elif defined(IN_RING3)
2737/**
2738 * Deals with CPUID exits (WHvRunVpExitReasonX64Cpuid).
2739 *
2740 * @returns Strict VBox status code.
2741 * @param pVM The cross context VM structure.
2742 * @param pVCpu The cross context per CPU structure.
2743 * @param pExit The VM exit information to handle.
2744 * @sa nemHCWinHandleMessageCpuId
2745 */
2746NEM_TMPL_STATIC VBOXSTRICTRC
2747nemR3WinHandleExitCpuId(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2748{
2749 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_CPUID),
2750 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2751 if (!pExitRec)
2752 {
2753 /*
2754 * Soak up state and execute the instruction.
2755 *
2756 * Note! If this grows slightly more complicated, combine into an IEMExecDecodedCpuId
2757 * function and make everyone use it.
2758 */
2759 /** @todo Combine implementations into IEMExecDecodedCpuId as this will
2760 * only get weirder with nested VT-x and AMD-V support. */
2761 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2762
2763 /* Copy in the low register values (top is always cleared). */
2764 pVCpu->cpum.GstCtx.rax = (uint32_t)pExit->CpuidAccess.Rax;
2765 pVCpu->cpum.GstCtx.rcx = (uint32_t)pExit->CpuidAccess.Rcx;
2766 pVCpu->cpum.GstCtx.rdx = (uint32_t)pExit->CpuidAccess.Rdx;
2767 pVCpu->cpum.GstCtx.rbx = (uint32_t)pExit->CpuidAccess.Rbx;
2768 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2769
2770 /* Get the correct values. */
2771 CPUMGetGuestCpuId(pVCpu, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx,
2772 &pVCpu->cpum.GstCtx.eax, &pVCpu->cpum.GstCtx.ebx, &pVCpu->cpum.GstCtx.ecx, &pVCpu->cpum.GstCtx.edx);
2773
2774 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 -> %08RX32 / %08RX32 / %08RX32 / %08RX32 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64)\n",
2775 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2776 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
2777 pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.ebx,
2778 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
2779
2780 /* Move RIP and we're done. */
2781 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
2782
2783 RT_NOREF_PV(pVM);
2784 return VINF_SUCCESS;
2785 }
2786
2787 /*
2788 * Frequent exit or something needing probing.
2789 * Get state and call EMHistoryExec.
2790 */
2791 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2792 pVCpu->cpum.GstCtx.rax = pExit->CpuidAccess.Rax;
2793 pVCpu->cpum.GstCtx.rcx = pExit->CpuidAccess.Rcx;
2794 pVCpu->cpum.GstCtx.rdx = pExit->CpuidAccess.Rdx;
2795 pVCpu->cpum.GstCtx.rbx = pExit->CpuidAccess.Rbx;
2796 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RBX);
2797 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: rax=%08RX64 / rcx=%08RX64 / rdx=%08RX64 / rbx=%08RX64 (hv: %08RX64 / %08RX64 / %08RX64 / %08RX64) ==> EMHistoryExec\n",
2798 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2799 pExit->CpuidAccess.Rax, pExit->CpuidAccess.Rcx, pExit->CpuidAccess.Rdx, pExit->CpuidAccess.Rbx,
2800 pExit->CpuidAccess.DefaultResultRax, pExit->CpuidAccess.DefaultResultRcx, pExit->CpuidAccess.DefaultResultRdx, pExit->CpuidAccess.DefaultResultRbx));
2801 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
2802 AssertRCReturn(rc, rc);
2803 VBOXSTRICTRC rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2804 Log4(("CpuIdExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2805 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
2806 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2807 return rcStrict;
2808}
2809#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
2810
2811
2812#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
2813/**
2814 * Deals with MSR intercept message.
2815 *
2816 * @returns Strict VBox status code.
2817 * @param pVCpu The cross context per CPU structure.
2818 * @param pMsg The message.
2819 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
2820 * @sa nemR3WinHandleExitMsr
2821 */
2822NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleMessageMsr(PVMCPU pVCpu, HV_X64_MSR_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
2823{
2824 /*
2825 * A wee bit of sanity first.
2826 */
2827 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
2828 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE);
2829 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
2830 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
2831 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
2832 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
2833 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
2834 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
2835
2836 /*
2837 * Check CPL as that's common to both RDMSR and WRMSR.
2838 */
2839 VBOXSTRICTRC rcStrict;
2840 if (pMsg->Header.ExecutionState.Cpl == 0)
2841 {
2842 /*
2843 * Get all the MSR state. Since we're getting EFER, we also need to
2844 * get CR0, CR4 and CR3.
2845 */
2846 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2847 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
2848 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
2849 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2850 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
2851
2852 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
2853 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
2854 (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
2855 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
2856 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
2857 "MSRs");
2858 if (rcStrict == VINF_SUCCESS)
2859 {
2860 if (!pExitRec)
2861 {
2862 /*
2863 * Handle writes.
2864 */
2865 if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2866 {
2867 rcStrict = CPUMSetGuestMsr(pVCpu, pMsg->MsrNumber, RT_MAKE_U64((uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx));
2868 Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n",
2869 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2870 pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
2871 if (rcStrict == VINF_SUCCESS)
2872 {
2873 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2874 return VINF_SUCCESS;
2875 }
2876# ifndef IN_RING3
2877 /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
2878 if (rcStrict == VERR_CPUM_RAISE_GP_0)
2879 rcStrict = VINF_CPUM_R3_MSR_WRITE;
2880 return rcStrict;
2881# else
2882 LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n",
2883 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2884 pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
2885# endif
2886 }
2887 /*
2888 * Handle reads.
2889 */
2890 else
2891 {
2892 uint64_t uValue = 0;
2893 rcStrict = CPUMQueryGuestMsr(pVCpu, pMsg->MsrNumber, &uValue);
2894 Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
2895 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2896 pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2897 if (rcStrict == VINF_SUCCESS)
2898 {
2899 pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
2900 pVCpu->cpum.GstCtx.rdx = uValue >> 32;
2901 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
2902 nemHCWinAdvanceGuestRipAndClearRF(pVCpu, &pMsg->Header, 2);
2903 return VINF_SUCCESS;
2904 }
2905# ifndef IN_RING3
2906 /* move to ring-3 and handle the trap/whatever there, as we want to LogRel this. */
2907 if (rcStrict == VERR_CPUM_RAISE_GP_0)
2908 rcStrict = VINF_CPUM_R3_MSR_READ;
2909 return rcStrict;
2910# else
2911 LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n",
2912 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2913 pMsg->MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2914# endif
2915 }
2916 }
2917 else
2918 {
2919 /*
2920 * Handle frequent exit or something needing probing.
2921 */
2922 Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
2923 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2924 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD", pMsg->MsrNumber));
2925 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
2926 Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
2927 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2928 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
2929 return rcStrict;
2930 }
2931 }
2932 else
2933 {
2934 LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
2935 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2936 pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE ? "WR" : "RD",
2937 pMsg->MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
2938 return rcStrict;
2939 }
2940 }
2941 else if (pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE)
2942 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n",
2943 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2944 pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber, (uint32_t)pMsg->Rax, (uint32_t)pMsg->Rdx ));
2945 else
2946 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n",
2947 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
2948 pMsg->Header.ExecutionState.Cpl, pMsg->MsrNumber));
2949
2950 /*
2951 * If we get down here, we're supposed to #GP(0).
2952 */
2953 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
2954 if (rcStrict == VINF_SUCCESS)
2955 {
2956 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
2957 if (rcStrict == VINF_IEM_RAISED_XCPT)
2958 rcStrict = VINF_SUCCESS;
2959 else if (rcStrict != VINF_SUCCESS)
2960 Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2961 }
2962 return rcStrict;
2963}
2964#elif defined(IN_RING3)
2965/**
2966 * Deals with MSR access exits (WHvRunVpExitReasonX64MsrAccess).
2967 *
2968 * @returns Strict VBox status code.
2969 * @param pVM The cross context VM structure.
2970 * @param pVCpu The cross context per CPU structure.
2971 * @param pExit The VM exit information to handle.
2972 * @sa nemHCWinHandleMessageMsr
2973 */
2974NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMsr(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
2975{
2976 /*
2977 * Check CPL as that's common to both RDMSR and WRMSR.
2978 */
2979 VBOXSTRICTRC rcStrict;
2980 if (pExit->VpContext.ExecutionState.Cpl == 0)
2981 {
2982 /*
2983 * Get all the MSR state. Since we're getting EFER, we also need to
2984 * get CR0, CR4 and CR3.
2985 */
2986 PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
2987 pExit->MsrAccess.AccessInfo.IsWrite
2988 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE)
2989 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2990 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
2991 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
2992 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
2993 (!pExitRec ? 0 : IEM_CPUMCTX_EXTRN_MUST_MASK)
2994 | CPUMCTX_EXTRN_ALL_MSRS | CPUMCTX_EXTRN_CR0
2995 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4,
2996 "MSRs");
2997 if (rcStrict == VINF_SUCCESS)
2998 {
2999 if (!pExitRec)
3000 {
3001 /*
3002 * Handle writes.
3003 */
3004 if (pExit->MsrAccess.AccessInfo.IsWrite)
3005 {
3006 rcStrict = CPUMSetGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber,
3007 RT_MAKE_U64((uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx));
3008 Log4(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3009 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
3010 (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx, VBOXSTRICTRC_VAL(rcStrict) ));
3011 if (rcStrict == VINF_SUCCESS)
3012 {
3013 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
3014 return VINF_SUCCESS;
3015 }
3016 LogRel(("MsrExit/%u: %04x:%08RX64/%s: WRMSR %08x, %08x:%08x -> %Rrc!\n", pVCpu->idCpu,
3017 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3018 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx,
3019 VBOXSTRICTRC_VAL(rcStrict) ));
3020 }
3021 /*
3022 * Handle reads.
3023 */
3024 else
3025 {
3026 uint64_t uValue = 0;
3027 rcStrict = CPUMQueryGuestMsr(pVCpu, pExit->MsrAccess.MsrNumber, &uValue);
3028 Log4(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu,
3029 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3030 pExit->MsrAccess.MsrNumber, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
3031 if (rcStrict == VINF_SUCCESS)
3032 {
3033 pVCpu->cpum.GstCtx.rax = (uint32_t)uValue;
3034 pVCpu->cpum.GstCtx.rdx = uValue >> 32;
3035 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX);
3036 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, &pExit->VpContext, 2);
3037 return VINF_SUCCESS;
3038 }
3039 LogRel(("MsrExit/%u: %04x:%08RX64/%s: RDMSR %08x -> %08RX64 / %Rrc\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3040 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->MsrAccess.MsrNumber,
3041 uValue, VBOXSTRICTRC_VAL(rcStrict) ));
3042 }
3043 }
3044 else
3045 {
3046 /*
3047 * Handle frequent exit or something needing probing.
3048 */
3049 Log4(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %#08x\n",
3050 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3051 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber));
3052 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
3053 Log4(("MsrExit/%u: %04x:%08RX64/%s: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
3054 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3055 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
3056 return rcStrict;
3057 }
3058 }
3059 else
3060 {
3061 LogRel(("MsrExit/%u: %04x:%08RX64/%s: %sMSR %08x -> %Rrc - msr state import\n",
3062 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3063 pExit->MsrAccess.AccessInfo.IsWrite ? "WR" : "RD", pExit->MsrAccess.MsrNumber, VBOXSTRICTRC_VAL(rcStrict) ));
3064 return rcStrict;
3065 }
3066 }
3067 else if (pExit->MsrAccess.AccessInfo.IsWrite)
3068 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); WRMSR %08x, %08x:%08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3069 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
3070 pExit->MsrAccess.MsrNumber, (uint32_t)pExit->MsrAccess.Rax, (uint32_t)pExit->MsrAccess.Rdx ));
3071 else
3072 Log4(("MsrExit/%u: %04x:%08RX64/%s: CPL %u -> #GP(0); RDMSR %08x\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3073 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.ExecutionState.Cpl,
3074 pExit->MsrAccess.MsrNumber));
3075
3076 /*
3077 * If we get down here, we're supposed to #GP(0).
3078 */
3079 rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
3080 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL_MSRS, "MSR");
3081 if (rcStrict == VINF_SUCCESS)
3082 {
3083 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_GP, TRPM_TRAP, 0, 0, 0);
3084 if (rcStrict == VINF_IEM_RAISED_XCPT)
3085 rcStrict = VINF_SUCCESS;
3086 else if (rcStrict != VINF_SUCCESS)
3087 Log4(("MsrExit/%u: Injecting #GP(0) failed: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
3088 }
3089
3090 RT_NOREF_PV(pVM);
3091 return rcStrict;
3092}
3093#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3094
3095
3096/**
3097 * Worker for nemHCWinHandleMessageException & nemR3WinHandleExitException that
3098 * checks if the given opcodes are of interest at all.
3099 *
3100 * @returns true if interesting, false if not.
3101 * @param cbOpcodes Number of opcode bytes available.
3102 * @param pbOpcodes The opcode bytes.
3103 * @param f64BitMode Whether we're in 64-bit mode.
3104 */
3105DECLINLINE(bool) nemHcWinIsInterestingUndefinedOpcode(uint8_t cbOpcodes, uint8_t const *pbOpcodes, bool f64BitMode)
3106{
3107 /*
3108 * Currently only interested in VMCALL and VMMCALL.
3109 */
3110 while (cbOpcodes >= 3)
3111 {
3112 switch (pbOpcodes[0])
3113 {
3114 case 0x0f:
3115 switch (pbOpcodes[1])
3116 {
3117 case 0x01:
3118 switch (pbOpcodes[2])
3119 {
3120 case 0xc1: /* 0f 01 c1 VMCALL */
3121 return true;
3122 case 0xd9: /* 0f 01 d9 VMMCALL */
3123 return true;
3124 default:
3125 break;
3126 }
3127 break;
3128 }
3129 break;
3130
3131 default:
3132 return false;
3133
3134 /* prefixes */
3135 case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
3136 case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
3137 if (!f64BitMode)
3138 return false;
3139 RT_FALL_THRU();
3140 case X86_OP_PRF_CS:
3141 case X86_OP_PRF_SS:
3142 case X86_OP_PRF_DS:
3143 case X86_OP_PRF_ES:
3144 case X86_OP_PRF_FS:
3145 case X86_OP_PRF_GS:
3146 case X86_OP_PRF_SIZE_OP:
3147 case X86_OP_PRF_SIZE_ADDR:
3148 case X86_OP_PRF_LOCK:
3149 case X86_OP_PRF_REPZ:
3150 case X86_OP_PRF_REPNZ:
3151 cbOpcodes--;
3152 pbOpcodes++;
3153 continue;
3154 }
3155 break;
3156 }
3157 return false;
3158}
3159
3160
3161#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3162/**
3163 * Copies state included in a exception intercept message.
3164 *
3165 * @param pVCpu The cross context per CPU structure.
3166 * @param pMsg The message.
3167 * @param fClearXcpt Clear pending exception.
3168 */
3169DECLINLINE(void)
3170nemHCWinCopyStateFromExceptionMessage(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, bool fClearXcpt)
3171{
3172 nemHCWinCopyStateFromX64Header(pVCpu, &pMsg->Header);
3173 pVCpu->cpum.GstCtx.fExtrn &= ~( CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_DS
3174 | (fClearXcpt ? CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT : 0) );
3175 pVCpu->cpum.GstCtx.rax = pMsg->Rax;
3176 pVCpu->cpum.GstCtx.rcx = pMsg->Rcx;
3177 pVCpu->cpum.GstCtx.rdx = pMsg->Rdx;
3178 pVCpu->cpum.GstCtx.rbx = pMsg->Rbx;
3179 pVCpu->cpum.GstCtx.rsp = pMsg->Rsp;
3180 pVCpu->cpum.GstCtx.rbp = pMsg->Rbp;
3181 pVCpu->cpum.GstCtx.rsi = pMsg->Rsi;
3182 pVCpu->cpum.GstCtx.rdi = pMsg->Rdi;
3183 pVCpu->cpum.GstCtx.r8 = pMsg->R8;
3184 pVCpu->cpum.GstCtx.r9 = pMsg->R9;
3185 pVCpu->cpum.GstCtx.r10 = pMsg->R10;
3186 pVCpu->cpum.GstCtx.r11 = pMsg->R11;
3187 pVCpu->cpum.GstCtx.r12 = pMsg->R12;
3188 pVCpu->cpum.GstCtx.r13 = pMsg->R13;
3189 pVCpu->cpum.GstCtx.r14 = pMsg->R14;
3190 pVCpu->cpum.GstCtx.r15 = pMsg->R15;
3191 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ds, pMsg->DsSegment);
3192 NEM_WIN_COPY_BACK_SEG(pVCpu->cpum.GstCtx.ss, pMsg->SsSegment);
3193}
3194#elif defined(IN_RING3)
3195/**
3196 * Copies state included in a exception intercept exit.
3197 *
3198 * @param pVCpu The cross context per CPU structure.
3199 * @param pExit The VM exit information.
3200 * @param fClearXcpt Clear pending exception.
3201 */
3202DECLINLINE(void) nemR3WinCopyStateFromExceptionMessage(PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit, bool fClearXcpt)
3203{
3204 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3205 if (fClearXcpt)
3206 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
3207}
3208#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3209
3210
3211#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3212/**
3213 * Deals with exception intercept message (HvMessageTypeX64ExceptionIntercept).
3214 *
3215 * @returns Strict VBox status code.
3216 * @param pVCpu The cross context per CPU structure.
3217 * @param pMsg The message.
3218 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
3219 * @sa nemR3WinHandleExitMsr
3220 */
3221NEM_TMPL_STATIC VBOXSTRICTRC
3222nemHCWinHandleMessageException(PVMCPU pVCpu, HV_X64_EXCEPTION_INTERCEPT_MESSAGE const *pMsg, PGVMCPU pGVCpu)
3223{
3224 /*
3225 * Assert sanity.
3226 */
3227 Assert( pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_READ
3228 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE
3229 || pMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_EXECUTE);
3230 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsg->Header.CsSegment);
3231 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsg->Header.Rip);
3232 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsg->Header.Rflags);
3233 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsg->Header.Cr8);
3234 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterDs, pMsg->DsSegment);
3235 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterSs, pMsg->SsSegment);
3236 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRax, pMsg->Rax);
3237 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRcx, pMsg->Rcx);
3238 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdx, pMsg->Rdx);
3239 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbx, pMsg->Rbx);
3240 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsp, pMsg->Rsp);
3241 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRbp, pMsg->Rbp);
3242 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRsi, pMsg->Rsi);
3243 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRdi, pMsg->Rdi);
3244 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR8, pMsg->R8);
3245 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR9, pMsg->R9);
3246 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR10, pMsg->R10);
3247 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR11, pMsg->R11);
3248 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR12, pMsg->R12);
3249 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR13, pMsg->R13);
3250 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR14, pMsg->R14);
3251 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterR15, pMsg->R15);
3252
3253 /*
3254 * Get most of the register state since we'll end up making IEM inject the
3255 * event. The exception isn't normally flaged as a pending event, so duh.
3256 *
3257 * Note! We can optimize this later with event injection.
3258 */
3259 Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n",
3260 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header),
3261 pMsg->ExceptionVector, pMsg->ErrorCode, pMsg->ExceptionParameter));
3262 nemHCWinCopyStateFromExceptionMessage(pVCpu, pMsg, true /*fClearXcpt*/);
3263 uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
3264 if (pMsg->ExceptionVector == X86_XCPT_DB)
3265 fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
3266 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu, fWhat, "Xcpt");
3267 if (rcStrict != VINF_SUCCESS)
3268 return rcStrict;
3269
3270 /*
3271 * Handle the intercept.
3272 */
3273 TRPMEVENT enmEvtType = TRPM_TRAP;
3274 switch (pMsg->ExceptionVector)
3275 {
3276 /*
3277 * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
3278 * and need to turn them over to GIM.
3279 *
3280 * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
3281 * #UD for handling non-native hypercall instructions. (IEM will
3282 * decode both and let the GIM provider decide whether to accept it.)
3283 */
3284 case X86_XCPT_UD:
3285 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
3286 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
3287 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3288
3289 if (nemHcWinIsInterestingUndefinedOpcode(pMsg->InstructionByteCount, pMsg->InstructionBytes,
3290 pMsg->Header.ExecutionState.EferLma && pMsg->Header.CsSegment.Long ))
3291 {
3292 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pMsg->Header.Rip,
3293 pMsg->InstructionBytes, pMsg->InstructionByteCount);
3294 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
3295 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
3296 nemHCWinExecStateToLogStr(&pMsg->Header), VBOXSTRICTRC_VAL(rcStrict) ));
3297 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
3298 return rcStrict;
3299 }
3300 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
3301 pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->InstructionByteCount, pMsg->InstructionBytes ));
3302 break;
3303
3304 /*
3305 * Filter debug exceptions.
3306 */
3307 case X86_XCPT_DB:
3308 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
3309 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
3310 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3311 Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
3312 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header) ));
3313 break;
3314
3315 case X86_XCPT_BP:
3316 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
3317 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
3318 pMsg->Header.Rip + pMsg->Header.CsSegment.Base, ASMReadTSC());
3319 Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pMsg->Header.CsSegment.Selector,
3320 pMsg->Header.Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->Header.InstructionLength));
3321 enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
3322 break;
3323
3324 /* This shouldn't happen. */
3325 default:
3326 AssertLogRelMsgFailedReturn(("ExceptionVector=%#x\n", pMsg->ExceptionVector), VERR_IEM_IPE_6);
3327 }
3328
3329 /*
3330 * Inject it.
3331 */
3332 rcStrict = IEMInjectTrap(pVCpu, pMsg->ExceptionVector, enmEvtType, pMsg->ErrorCode,
3333 pMsg->ExceptionParameter /*??*/, pMsg->Header.InstructionLength);
3334 Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
3335 pVCpu->idCpu, pMsg->Header.CsSegment.Selector, pMsg->Header.Rip,
3336 nemHCWinExecStateToLogStr(&pMsg->Header), pMsg->ExceptionVector, VBOXSTRICTRC_VAL(rcStrict) ));
3337 return rcStrict;
3338}
3339#elif defined(IN_RING3)
3340/**
3341 * Deals with MSR access exits (WHvRunVpExitReasonException).
3342 *
3343 * @returns Strict VBox status code.
3344 * @param pVM The cross context VM structure.
3345 * @param pVCpu The cross context per CPU structure.
3346 * @param pExit The VM exit information to handle.
3347 * @sa nemR3WinHandleExitException
3348 */
3349NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3350{
3351 /*
3352 * Get most of the register state since we'll end up making IEM inject the
3353 * event. The exception isn't normally flaged as a pending event, so duh.
3354 *
3355 * Note! We can optimize this later with event injection.
3356 */
3357 Log4(("XcptExit/%u: %04x:%08RX64/%s: %x errcd=%#x parm=%RX64\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3358 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType,
3359 pExit->VpException.ErrorCode, pExit->VpException.ExceptionParameter ));
3360 nemR3WinCopyStateFromExceptionMessage(pVCpu, pExit, true /*fClearXcpt*/);
3361 uint64_t fWhat = NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
3362 if (pExit->VpException.ExceptionType == X86_XCPT_DB)
3363 fWhat |= CPUMCTX_EXTRN_DR0_DR3 | CPUMCTX_EXTRN_DR7 | CPUMCTX_EXTRN_DR6;
3364 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL, fWhat, "Xcpt");
3365 if (rcStrict != VINF_SUCCESS)
3366 return rcStrict;
3367
3368 /*
3369 * Handle the intercept.
3370 */
3371 TRPMEVENT enmEvtType = TRPM_TRAP;
3372 switch (pExit->VpException.ExceptionType)
3373 {
3374 /*
3375 * We get undefined opcodes on VMMCALL(AMD) & VMCALL(Intel) instructions
3376 * and need to turn them over to GIM.
3377 *
3378 * Note! We do not check fGIMTrapXcptUD here ASSUMING that GIM only wants
3379 * #UD for handling non-native hypercall instructions. (IEM will
3380 * decode both and let the GIM provider decide whether to accept it.)
3381 */
3382 case X86_XCPT_UD:
3383 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUd);
3384 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_UD),
3385 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3386 if (nemHcWinIsInterestingUndefinedOpcode(pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes,
3387 pExit->VpContext.ExecutionState.EferLma && pExit->VpContext.Cs.Long ))
3388 {
3389 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), pExit->VpContext.Rip,
3390 pExit->VpException.InstructionBytes,
3391 pExit->VpException.InstructionByteCount);
3392 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD -> emulated -> %Rrc\n",
3393 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
3394 nemR3WinExecStateToLogStr(&pExit->VpContext), VBOXSTRICTRC_VAL(rcStrict) ));
3395 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionUdHandled);
3396 return rcStrict;
3397 }
3398
3399 Log4(("XcptExit/%u: %04x:%08RX64/%s: #UD [%.*Rhxs] -> re-injected\n", pVCpu->idCpu,
3400 pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext),
3401 pExit->VpException.InstructionByteCount, pExit->VpException.InstructionBytes ));
3402 break;
3403
3404 /*
3405 * Filter debug exceptions.
3406 */
3407 case X86_XCPT_DB:
3408 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionDb);
3409 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_DB),
3410 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3411 Log4(("XcptExit/%u: %04x:%08RX64/%s: #DB - TODO\n",
3412 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext) ));
3413 break;
3414
3415 case X86_XCPT_BP:
3416 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitExceptionBp);
3417 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_XCPT_BP),
3418 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3419 Log4(("XcptExit/%u: %04x:%08RX64/%s: #BP - TODO - %u\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3420 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.InstructionLength));
3421 enmEvtType = TRPM_SOFTWARE_INT; /* We're at the INT3 instruction, not after it. */
3422 break;
3423
3424 /* This shouldn't happen. */
3425 default:
3426 AssertLogRelMsgFailedReturn(("ExceptionType=%#x\n", pExit->VpException.ExceptionType), VERR_IEM_IPE_6);
3427 }
3428
3429 /*
3430 * Inject it.
3431 */
3432 rcStrict = IEMInjectTrap(pVCpu, pExit->VpException.ExceptionType, enmEvtType, pExit->VpException.ErrorCode,
3433 pExit->VpException.ExceptionParameter /*??*/, pExit->VpContext.InstructionLength);
3434 Log4(("XcptExit/%u: %04x:%08RX64/%s: %#u -> injected -> %Rrc\n",
3435 pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip,
3436 nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpException.ExceptionType, VBOXSTRICTRC_VAL(rcStrict) ));
3437
3438 RT_NOREF_PV(pVM);
3439 return rcStrict;
3440}
3441#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3442
3443
3444#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3445/**
3446 * Deals with unrecoverable exception (triple fault).
3447 *
3448 * Seen WRMSR 0x201 (IA32_MTRR_PHYSMASK0) writes from grub / debian9 ending up
3449 * here too. So we'll leave it to IEM to decide.
3450 *
3451 * @returns Strict VBox status code.
3452 * @param pVCpu The cross context per CPU structure.
3453 * @param pMsgHdr The message header.
3454 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
3455 * @sa nemR3WinHandleExitUnrecoverableException
3456 */
3457NEM_TMPL_STATIC VBOXSTRICTRC
3458nemHCWinHandleMessageUnrecoverableException(PVMCPU pVCpu, HV_X64_INTERCEPT_MESSAGE_HEADER const *pMsgHdr, PGVMCPU pGVCpu)
3459{
3460 /* Check message register value sanity. */
3461 NEMWIN_ASSERT_MSG_REG_SEG( pVCpu, pGVCpu, HvX64RegisterCs, pMsgHdr->CsSegment);
3462 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRip, pMsgHdr->Rip);
3463 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterRflags, pMsgHdr->Rflags);
3464 NEMWIN_ASSERT_MSG_REG_VAL64(pVCpu, pGVCpu, HvX64RegisterCr8, (uint64_t)pMsgHdr->Cr8);
3465
3466# if 0
3467 /*
3468 * Just copy the state we've got and handle it in the loop for now.
3469 */
3470 nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
3471 Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n",
3472 pVCpu->idCpu, pMsgHdr->CsSegment.Selector, pMsgHdr->Rip, nemHCWinExecStateToLogStr(&pMsg->Header), pMsgHdr->Rflags));
3473 return VINF_EM_TRIPLE_FAULT;
3474# else
3475 /*
3476 * Let IEM decide whether this is really it.
3477 */
3478 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
3479 pMsgHdr->Rip + pMsgHdr->CsSegment.Base, ASMReadTSC());
3480 nemHCWinCopyStateFromX64Header(pVCpu, pMsgHdr);
3481 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
3482 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
3483 if (rcStrict == VINF_SUCCESS)
3484 {
3485 rcStrict = IEMExecOne(pVCpu);
3486 if (rcStrict == VINF_SUCCESS)
3487 {
3488 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3489 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags ));
3490 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
3491 return VINF_SUCCESS;
3492 }
3493 if (rcStrict == VINF_EM_TRIPLE_FAULT)
3494 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3495 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3496 else
3497 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3498 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3499 }
3500 else
3501 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pMsgHdr->CsSegment.Selector,
3502 pMsgHdr->Rip, nemHCWinExecStateToLogStr(pMsgHdr), pMsgHdr->Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3503 return rcStrict;
3504# endif
3505}
3506#elif defined(IN_RING3)
3507/**
3508 * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException).
3509 *
3510 * @returns Strict VBox status code.
3511 * @param pVM The cross context VM structure.
3512 * @param pVCpu The cross context per CPU structure.
3513 * @param pExit The VM exit information to handle.
3514 * @sa nemHCWinHandleMessageUnrecoverableException
3515 */
3516NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3517{
3518# if 0
3519 /*
3520 * Just copy the state we've got and handle it in the loop for now.
3521 */
3522 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3523 Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3524 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
3525 RT_NOREF_PV(pVM);
3526 return VINF_EM_TRIPLE_FAULT;
3527# else
3528 /*
3529 * Let IEM decide whether this is really it.
3530 */
3531 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION),
3532 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3533 nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext);
3534 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, NULL,
3535 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM | CPUMCTX_EXTRN_ALL, "TripleExit");
3536 if (rcStrict == VINF_SUCCESS)
3537 {
3538 rcStrict = IEMExecOne(pVCpu);
3539 if (rcStrict == VINF_SUCCESS)
3540 {
3541 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_SUCCESS\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3542 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags));
3543 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT; /* Make sure to reset pending #DB(0). */
3544 return VINF_SUCCESS;
3545 }
3546 if (rcStrict == VINF_EM_TRIPLE_FAULT)
3547 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT!\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3548 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3549 else
3550 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (IEMExecOne)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3551 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3552 }
3553 else
3554 Log(("UnrecovExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> %Rrc (state import)\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector,
3555 pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3556 RT_NOREF_PV(pVM);
3557 return rcStrict;
3558# endif
3559
3560}
3561#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3562
3563
3564#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3565/**
3566 * Handles messages (VM exits).
3567 *
3568 * @returns Strict VBox status code.
3569 * @param pVM The cross context VM structure.
3570 * @param pVCpu The cross context per CPU structure.
3571 * @param pMappingHeader The message slot mapping.
3572 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
3573 * @sa nemR3WinHandleExit
3574 */
3575NEM_TMPL_STATIC VBOXSTRICTRC
3576nemHCWinHandleMessage(PVM pVM, PVMCPU pVCpu, VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader, PGVMCPU pGVCpu)
3577{
3578 if (pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage)
3579 {
3580 AssertMsg(pMappingHeader->cbMessage == HV_MESSAGE_SIZE, ("%#x\n", pMappingHeader->cbMessage));
3581 HV_MESSAGE const *pMsg = (HV_MESSAGE const *)(pMappingHeader + 1);
3582 switch (pMsg->Header.MessageType)
3583 {
3584 case HvMessageTypeUnmappedGpa:
3585 Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
3586 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
3587 return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
3588
3589 case HvMessageTypeGpaIntercept:
3590 Assert(pMsg->Header.PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
3591 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemIntercept);
3592 return nemHCWinHandleMessageMemory(pVM, pVCpu, &pMsg->X64MemoryIntercept, pGVCpu);
3593
3594 case HvMessageTypeX64IoPortIntercept:
3595 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64IoPortIntercept));
3596 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
3597 return nemHCWinHandleMessageIoPort(pVM, pVCpu, &pMsg->X64IoPortIntercept, pGVCpu);
3598
3599 case HvMessageTypeX64Halt:
3600 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
3601 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
3602 pMsg->X64InterceptHeader.Rip + pMsg->X64InterceptHeader.CsSegment.Base, ASMReadTSC());
3603 Log4(("HaltExit\n"));
3604 return VINF_EM_HALT;
3605
3606 case HvMessageTypeX64InterruptWindow:
3607 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterruptWindow));
3608 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
3609 return nemHCWinHandleMessageInterruptWindow(pVM, pVCpu, &pMsg->X64InterruptWindow, pGVCpu);
3610
3611 case HvMessageTypeX64CpuidIntercept:
3612 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64CpuIdIntercept));
3613 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
3614 return nemHCWinHandleMessageCpuId(pVM, pVCpu, &pMsg->X64CpuIdIntercept, pGVCpu);
3615
3616 case HvMessageTypeX64MsrIntercept:
3617 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64MsrIntercept));
3618 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
3619 return nemHCWinHandleMessageMsr(pVCpu, &pMsg->X64MsrIntercept, pGVCpu);
3620
3621 case HvMessageTypeX64ExceptionIntercept:
3622 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64ExceptionIntercept));
3623 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
3624 return nemHCWinHandleMessageException(pVCpu, &pMsg->X64ExceptionIntercept, pGVCpu);
3625
3626 case HvMessageTypeUnrecoverableException:
3627 Assert(pMsg->Header.PayloadSize == sizeof(pMsg->X64InterceptHeader));
3628 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
3629 return nemHCWinHandleMessageUnrecoverableException(pVCpu, &pMsg->X64InterceptHeader, pGVCpu);
3630
3631 case HvMessageTypeInvalidVpRegisterValue:
3632 case HvMessageTypeUnsupportedFeature:
3633 case HvMessageTypeTlbPageSizeMismatch:
3634 LogRel(("Unimplemented msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3635 AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n%.32Rhxd\n", pMsg->Header.MessageType, pMsg),
3636 VERR_NEM_IPE_3);
3637
3638 case HvMessageTypeX64ApicEoi:
3639 case HvMessageTypeX64LegacyFpError:
3640 case HvMessageTypeX64RegisterIntercept:
3641 case HvMessageTypeApicEoi:
3642 case HvMessageTypeFerrAsserted:
3643 case HvMessageTypeEventLogBufferComplete:
3644 case HvMessageTimerExpired:
3645 LogRel(("Unexpected msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3646 AssertLogRelMsgFailedReturn(("Unexpected message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
3647 VERR_NEM_IPE_3);
3648
3649 default:
3650 LogRel(("Unknown msg:\n%.*Rhxd\n", (int)sizeof(*pMsg), pMsg));
3651 AssertLogRelMsgFailedReturn(("Unknown message on CPU #%u: %#x\n", pVCpu->idCpu, pMsg->Header.MessageType),
3652 VERR_NEM_IPE_3);
3653 }
3654 }
3655 else
3656 AssertLogRelMsgFailedReturn(("Unexpected VID message type on CPU #%u: %#x LB %u\n",
3657 pVCpu->idCpu, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage),
3658 VERR_NEM_IPE_4);
3659}
3660#elif defined(IN_RING3)
3661/**
3662 * Handles VM exits.
3663 *
3664 * @returns Strict VBox status code.
3665 * @param pVM The cross context VM structure.
3666 * @param pVCpu The cross context per CPU structure.
3667 * @param pExit The VM exit information to handle.
3668 * @sa nemHCWinHandleMessage
3669 */
3670NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit)
3671{
3672 switch (pExit->ExitReason)
3673 {
3674 case WHvRunVpExitReasonMemoryAccess:
3675 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped);
3676 return nemR3WinHandleExitMemory(pVM, pVCpu, pExit);
3677
3678 case WHvRunVpExitReasonX64IoPortAccess:
3679 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitPortIo);
3680 return nemR3WinHandleExitIoPort(pVM, pVCpu, pExit);
3681
3682 case WHvRunVpExitReasonX64Halt:
3683 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
3684 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
3685 pExit->VpContext.Rip + pExit->VpContext.Cs.Base, ASMReadTSC());
3686 Log4(("HaltExit\n"));
3687 return VINF_EM_HALT;
3688
3689 case WHvRunVpExitReasonCanceled:
3690 return VINF_SUCCESS;
3691
3692 case WHvRunVpExitReasonX64InterruptWindow:
3693 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInterruptWindow);
3694 return nemR3WinHandleExitInterruptWindow(pVM, pVCpu, pExit);
3695
3696 case WHvRunVpExitReasonX64Cpuid:
3697 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitCpuId);
3698 return nemR3WinHandleExitCpuId(pVM, pVCpu, pExit);
3699
3700 case WHvRunVpExitReasonX64MsrAccess:
3701 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMsr);
3702 return nemR3WinHandleExitMsr(pVM, pVCpu, pExit);
3703
3704 case WHvRunVpExitReasonException:
3705 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitException);
3706 return nemR3WinHandleExitException(pVM, pVCpu, pExit);
3707
3708 case WHvRunVpExitReasonUnrecoverableException:
3709 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable);
3710 return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit);
3711
3712 case WHvRunVpExitReasonUnsupportedFeature:
3713 case WHvRunVpExitReasonInvalidVpRegisterValue:
3714 LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
3715 AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n",
3716 pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3);
3717
3718 /* Undesired exits: */
3719 case WHvRunVpExitReasonNone:
3720 default:
3721 LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit));
3722 AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3);
3723 }
3724}
3725#endif /* IN_RING3 && !NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3726
3727
3728#ifdef IN_RING0
3729/**
3730 * Perform an I/O control operation on the partition handle (VID.SYS),
3731 * restarting on alert-like behaviour.
3732 *
3733 * @returns NT status code.
3734 * @param pGVM The ring-0 VM structure.
3735 * @param pGVCpu The ring-0 CPU structure.
3736 * @param pVCpu The calling cross context CPU structure.
3737 * @param fFlags The wait flags.
3738 * @param cMillies The timeout in milliseconds
3739 */
3740static NTSTATUS nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(PGVM pGVM, PGVMCPU pGVCpu, PVMCPU pVCpu,
3741 uint32_t fFlags, uint32_t cMillies)
3742{
3743 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
3744 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags;
3745 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
3746 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
3747 &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
3748 pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
3749 NULL, 0);
3750 if (rcNt == STATUS_SUCCESS)
3751 { /* likely */ }
3752 /*
3753 * Generally, if we get down here, we have been interrupted between ACK'ing
3754 * a message and waiting for the next due to a NtAlertThread call. So, we
3755 * should stop ACK'ing the previous message and get on waiting on the next.
3756 * See similar stuff in nemHCWinRunGC().
3757 */
3758 else if ( rcNt == STATUS_TIMEOUT
3759 || rcNt == STATUS_ALERTED /* just in case */
3760 || rcNt == STATUS_KERNEL_APC /* just in case */
3761 || rcNt == STATUS_USER_APC /* just in case */)
3762 {
3763 DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/1 %#x (f=%#x)", rcNt, fFlags);
3764 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingAlerts);
3765 Assert(fFlags & VID_MSHAGN_F_GET_NEXT_MESSAGE);
3766
3767 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pVCpu->idCpu;
3768 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = fFlags & ~VID_MSHAGN_F_HANDLE_MESSAGE;
3769 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMillies;
3770 rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
3771 &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
3772 pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
3773 NULL, 0);
3774 DBGFTRACE_CUSTOM(pVCpu->CTX_SUFF(pVM), "IoCtlMessageSlotHandleAndGetNextRestart/2 %#x", rcNt);
3775 }
3776 return rcNt;
3777}
3778
3779#endif /* IN_RING0 */
3780
3781
3782#ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
3783/**
3784 * Worker for nemHCWinRunGC that stops the execution on the way out.
3785 *
3786 * The CPU was running the last time we checked, no there are no messages that
3787 * needs being marked handled/whatever. Caller checks this.
3788 *
3789 * @returns rcStrict on success, error status on failure.
3790 * @param pVM The cross context VM structure.
3791 * @param pVCpu The cross context per CPU structure.
3792 * @param rcStrict The nemHCWinRunGC return status. This is a little
3793 * bit unnecessary, except in internal error cases,
3794 * since we won't need to stop the CPU if we took an
3795 * exit.
3796 * @param pMappingHeader The message slot mapping.
3797 * @param pGVM The global (ring-0) VM structure (NULL in r3).
3798 * @param pGVCpu The global (ring-0) per CPU structure (NULL in r3).
3799 */
3800NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinStopCpu(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict,
3801 VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader,
3802 PGVM pGVM, PGVMCPU pGVCpu)
3803{
3804# ifdef DBGFTRACE_ENABLED
3805 HV_MESSAGE const volatile *pMsgForTrace = (HV_MESSAGE const volatile *)(pMappingHeader + 1);
3806# endif
3807
3808 /*
3809 * Try stopping the processor. If we're lucky we manage to do this before it
3810 * does another VM exit.
3811 */
3812 DBGFTRACE_CUSTOM(pVM, "nemStop#0");
3813# ifdef IN_RING0
3814 pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
3815 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction,
3816 &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
3817 NULL, 0);
3818 if (NT_SUCCESS(rcNt))
3819 {
3820 DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay (%#x)", rcNt);
3821 Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
3822 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
3823 return rcStrict;
3824 }
3825# else
3826 BOOL fRet = VidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
3827 if (fRet)
3828 {
3829 DBGFTRACE_CUSTOM(pVM, "nemStop#0: okay");
3830 Log8(("nemHCWinStopCpu: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
3831 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuSuccess);
3832 return rcStrict;
3833 }
3834 RT_NOREF(pGVM, pGVCpu);
3835# endif
3836
3837 /*
3838 * Dang. The CPU stopped by itself and we got a couple of message to deal with.
3839 */
3840# ifdef IN_RING0
3841 DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", rcNt);
3842 AssertLogRelMsgReturn(rcNt == ERROR_VID_STOP_PENDING, ("rcNt=%#x\n", rcNt),
3843 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3844# else
3845 DWORD dwErr = RTNtLastErrorValue();
3846 DBGFTRACE_CUSTOM(pVM, "nemStop#0: pending (%#x)", dwErr);
3847 AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u (%#x)\n", dwErr, dwErr),
3848 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3849# endif
3850 Log8(("nemHCWinStopCpu: Stopping CPU #%u pending...\n", pVCpu->idCpu));
3851 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPending);
3852
3853 /*
3854 * First message: Exit or similar, sometimes VidMessageStopRequestComplete.
3855 * Note! We can safely ASSUME that rcStrict isn't an important information one.
3856 */
3857# ifdef IN_RING0
3858 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3859 DBGFTRACE_CUSTOM(pVM, "nemStop#1: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
3860 pMsgForTrace->Header.MessageType);
3861 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3862 ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3863 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3864# else
3865 BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
3866 VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3867 DBGFTRACE_CUSTOM(pVM, "nemStop#1: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3868 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3869 AssertLogRelMsgReturn(fWait, ("1st VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3870 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3871# endif
3872
3873 VID_MESSAGE_TYPE enmVidMsgType = pMappingHeader->enmVidMsgType;
3874 if (enmVidMsgType != VidMessageStopRequestComplete)
3875 {
3876 VBOXSTRICTRC rcStrict2 = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
3877 if (rcStrict2 != VINF_SUCCESS && RT_SUCCESS(rcStrict))
3878 rcStrict = rcStrict2;
3879 DBGFTRACE_CUSTOM(pVM, "nemStop#1: handled %#x -> %d", pMsgForTrace->Header.MessageType, VBOXSTRICTRC_VAL(rcStrict));
3880
3881 /*
3882 * Mark it as handled and get the stop request completed message, then mark
3883 * that as handled too. CPU is back into fully stopped stated then.
3884 */
3885# ifdef IN_RING0
3886 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu,
3887 VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE,
3888 30000 /*ms*/);
3889 DBGFTRACE_CUSTOM(pVM, "nemStop#2: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType, pMappingHeader->cbMessage,
3890 pMsgForTrace->Header.MessageType);
3891 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3892 ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3893 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3894# else
3895 fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
3896 VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 30000 /*ms*/);
3897 DBGFTRACE_CUSTOM(pVM, "nemStop#2: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3898 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3899 AssertLogRelMsgReturn(fWait, ("2nd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3900 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3901# endif
3902
3903 /* It should be a stop request completed message. */
3904 enmVidMsgType = pMappingHeader->enmVidMsgType;
3905 AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete,
3906 ("Unexpected 2nd message following ERROR_VID_STOP_PENDING: %#x LB %#x\n",
3907 enmVidMsgType, pMappingHeader->cbMessage),
3908 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3909
3910 /*
3911 * Mark the VidMessageStopRequestComplete message as handled.
3912 */
3913# ifdef IN_RING0
3914 rcNt = nemR0NtPerformIoCtlMessageSlotHandleAndGetNext(pGVM, pGVCpu, pVCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
3915 DBGFTRACE_CUSTOM(pVM, "nemStop#3: %#x / %#x %#x %#x", rcNt, pMappingHeader->enmVidMsgType,
3916 pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3917 AssertLogRelMsgReturn(rcNt == STATUS_SUCCESS,
3918 ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %#x\n", rcNt),
3919 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3920# else
3921 fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu, VID_MSHAGN_F_HANDLE_MESSAGE, 30000 /*ms*/);
3922 DBGFTRACE_CUSTOM(pVM, "nemStop#3: %d+%#x / %#x %#x %#x", fWait, RTNtLastErrorValue(), pMappingHeader->enmVidMsgType,
3923 pMsgForTrace->Header.MessageType, pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3924 AssertLogRelMsgReturn(fWait, ("3rd VidMessageSlotHandleAndGetNext after ERROR_VID_STOP_PENDING failed: %u\n", RTNtLastErrorValue()),
3925 RT_SUCCESS(rcStrict) ? VERR_NEM_IPE_5 : rcStrict);
3926# endif
3927 Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict) ));
3928 }
3929 else
3930 {
3931 /** @todo I'm not so sure about this now... */
3932 DBGFTRACE_CUSTOM(pVM, "nemStop#9: %#x %#x %#x", pMappingHeader->enmVidMsgType,
3933 pMappingHeader->cbMessage, pMsgForTrace->Header.MessageType);
3934 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatStopCpuPendingOdd);
3935 Log8(("nemHCWinStopCpu: Stopped the CPU (rcStrict=%Rrc) - 1st VidMessageSlotHandleAndGetNext got VidMessageStopRequestComplete.\n",
3936 VBOXSTRICTRC_VAL(rcStrict) ));
3937 }
3938 return rcStrict;
3939}
3940#endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
3941
3942#if defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3)
3943
3944/**
3945 * Deals with pending interrupt related force flags, may inject interrupt.
3946 *
3947 * @returns VBox strict status code.
3948 * @param pVM The cross context VM structure.
3949 * @param pVCpu The cross context per CPU structure.
3950 * @param pGVCpu The global (ring-0) per CPU structure.
3951 * @param pfInterruptWindows Where to return interrupt window flags.
3952 */
3953NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinHandleInterruptFF(PVM pVM, PVMCPU pVCpu, PGVMCPU pGVCpu, uint8_t *pfInterruptWindows)
3954{
3955 Assert(!TRPMHasTrap(pVCpu));
3956 RT_NOREF_PV(pVM);
3957
3958 /*
3959 * First update APIC. We ASSUME this won't need TPR/CR8.
3960 */
3961 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3962 {
3963 APICUpdatePendingInterrupts(pVCpu);
3964 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
3965 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
3966 return VINF_SUCCESS;
3967 }
3968
3969 /*
3970 * We don't currently implement SMIs.
3971 */
3972 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
3973
3974 /*
3975 * Check if we've got the minimum of state required for deciding whether we
3976 * can inject interrupts and NMIs. If we don't have it, get all we might require
3977 * for injection via IEM.
3978 */
3979 bool const fPendingNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3980 uint64_t fNeedExtrn = CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
3981 | (fPendingNmi ? CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI : 0);
3982 if (pVCpu->cpum.GstCtx.fExtrn & fNeedExtrn)
3983 {
3984 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
3985 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "IntFF");
3986 if (rcStrict != VINF_SUCCESS)
3987 return rcStrict;
3988 }
3989 bool const fInhibitInterrupts = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
3990 && EMGetInhibitInterruptsPC(pVCpu) == pVCpu->cpum.GstCtx.rip;
3991
3992 /*
3993 * NMI? Try deliver it first.
3994 */
3995 if (fPendingNmi)
3996 {
3997 if ( !fInhibitInterrupts
3998 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3999 {
4000 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
4001 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
4002 if (rcStrict == VINF_SUCCESS)
4003 {
4004 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
4005 rcStrict = IEMInjectTrap(pVCpu, X86_XCPT_NMI, TRPM_HARDWARE_INT, 0, 0, 0);
4006 Log8(("Injected NMI on %u (%d)\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4007 }
4008 return rcStrict;
4009 }
4010 *pfInterruptWindows |= NEM_WIN_INTW_F_NMI;
4011 Log8(("NMI window pending on %u\n", pVCpu->idCpu));
4012 }
4013
4014 /*
4015 * APIC or PIC interrupt?
4016 */
4017 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4018 {
4019 if ( !fInhibitInterrupts
4020 && pVCpu->cpum.GstCtx.rflags.Bits.u1IF)
4021 {
4022 AssertCompile(NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT & CPUMCTX_EXTRN_APIC_TPR);
4023 VBOXSTRICTRC rcStrict = nemHCWinImportStateIfNeededStrict(pVCpu, pGVCpu,
4024 NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM_XCPT, "NMI");
4025 if (rcStrict == VINF_SUCCESS)
4026 {
4027 uint8_t bInterrupt;
4028 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
4029 if (RT_SUCCESS(rc))
4030 {
4031 rcStrict = IEMInjectTrap(pVCpu, bInterrupt, TRPM_HARDWARE_INT, 0, 0, 0);
4032 Log8(("Injected interrupt %#x on %u (%d)\n", bInterrupt, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4033 }
4034 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
4035 {
4036 *pfInterruptWindows |= (bInterrupt >> 4 /*??*/) << NEM_WIN_INTW_F_PRIO_SHIFT;
4037 Log8(("VERR_APIC_INTR_MASKED_BY_TPR: *pfInterruptWindows=%#x\n", *pfInterruptWindows));
4038 }
4039 else
4040 Log8(("PDMGetInterrupt failed -> %d\n", rc));
4041 }
4042 return rcStrict;
4043 }
4044 *pfInterruptWindows |= NEM_WIN_INTW_F_REGULAR;
4045 Log8(("Interrupt window pending on %u\n", pVCpu->idCpu));
4046 }
4047
4048 return VINF_SUCCESS;
4049}
4050
4051
4052/**
4053 * Inner NEM runloop for windows.
4054 *
4055 * @returns Strict VBox status code.
4056 * @param pVM The cross context VM structure.
4057 * @param pVCpu The cross context per CPU structure.
4058 * @param pGVM The ring-0 VM structure (NULL in ring-3).
4059 * @param pGVCpu The ring-0 per CPU structure (NULL in ring-3).
4060 */
4061NEM_TMPL_STATIC VBOXSTRICTRC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu, PGVM pGVM, PGVMCPU pGVCpu)
4062{
4063 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
4064# ifdef LOG_ENABLED
4065 if (LogIs3Enabled())
4066 nemHCWinLogState(pVM, pVCpu);
4067# endif
4068# ifdef IN_RING0
4069 Assert(pVCpu->idCpu == pGVCpu->idCpu);
4070# endif
4071
4072 /*
4073 * Try switch to NEM runloop state.
4074 */
4075 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
4076 { /* likely */ }
4077 else
4078 {
4079 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4080 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
4081 return VINF_SUCCESS;
4082 }
4083
4084 /*
4085 * The run loop.
4086 *
4087 * Current approach to state updating to use the sledgehammer and sync
4088 * everything every time. This will be optimized later.
4089 */
4090# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4091 VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
4092# endif
4093 const bool fSingleStepping = DBGFIsStepping(pVCpu);
4094// const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK
4095// : VM_FF_HP_R0_PRE_HM_STEP_MASK;
4096// const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK;
4097 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
4098 for (unsigned iLoop = 0;; iLoop++)
4099 {
4100# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4101 /*
4102 * Hack alert!
4103 */
4104 uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
4105 if (cMappedPages >= 4000)
4106 {
4107 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
4108 Log(("nemHCWinRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
4109 }
4110# endif
4111
4112 /*
4113 * Pending interrupts or such? Need to check and deal with this prior
4114 * to the state syncing.
4115 */
4116 pVCpu->nem.s.fDesiredInterruptWindows = 0;
4117 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
4118 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4119 {
4120# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4121 /* Make sure the CPU isn't executing. */
4122 if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
4123 {
4124 pVCpu->nem.s.fHandleAndGetFlags = 0;
4125 rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
4126 if (rcStrict == VINF_SUCCESS)
4127 { /* likely */ }
4128 else
4129 {
4130 LogFlow(("NEM/%u: breaking: nemHCWinStopCpu -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4131 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4132 break;
4133 }
4134 }
4135# endif
4136
4137 /* Try inject interrupt. */
4138 rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, pGVCpu, &pVCpu->nem.s.fDesiredInterruptWindows);
4139 if (rcStrict == VINF_SUCCESS)
4140 { /* likely */ }
4141 else
4142 {
4143 LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4144 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4145 break;
4146 }
4147 }
4148
4149 /*
4150 * Ensure that hyper-V has the whole state.
4151 * (We always update the interrupt windows settings when active as hyper-V seems
4152 * to forget about it after an exit.)
4153 */
4154 if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK))
4155 != (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK)
4156 || ( ( pVCpu->nem.s.fDesiredInterruptWindows
4157 || pVCpu->nem.s.fCurrentInterruptWindows != pVCpu->nem.s.fDesiredInterruptWindows)
4158# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4159 && pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */
4160# endif
4161 )
4162 )
4163 {
4164# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4165 AssertMsg(pVCpu->nem.s.fHandleAndGetFlags != VID_MSHAGN_F_GET_NEXT_MESSAGE /* not running */,
4166 ("%#x fExtrn=%#RX64 (%#RX64) fDesiredInterruptWindows=%d fCurrentInterruptWindows=%#x vs %#x\n",
4167 pVCpu->nem.s.fHandleAndGetFlags, pVCpu->cpum.GstCtx.fExtrn, ~pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK),
4168 pVCpu->nem.s.fDesiredInterruptWindows, pVCpu->nem.s.fCurrentInterruptWindows, pVCpu->nem.s.fDesiredInterruptWindows));
4169# endif
4170# ifdef IN_RING0
4171 int rc2 = nemR0WinExportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx);
4172# else
4173 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu);
4174 RT_NOREF(pGVM, pGVCpu);
4175# endif
4176 AssertRCReturn(rc2, rc2);
4177 }
4178
4179 /*
4180 * Poll timers and run for a bit.
4181 *
4182 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
4183 * so we take the time of the next timer event and uses that as a deadline.
4184 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
4185 */
4186 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
4187 * the whole polling job when timers have changed... */
4188 uint64_t offDeltaIgnored;
4189 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
4190 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4191 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4192 {
4193# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4194 if (pVCpu->nem.s.fHandleAndGetFlags)
4195 { /* Very likely that the CPU does NOT need starting (pending msg, running). */ }
4196 else
4197 {
4198# ifdef IN_RING0
4199 pVCpu->nem.s.uIoCtlBuf.idCpu = pGVCpu->idCpu;
4200 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction,
4201 &pVCpu->nem.s.uIoCtlBuf.idCpu, sizeof(pVCpu->nem.s.uIoCtlBuf.idCpu),
4202 NULL, 0);
4203 LogFlow(("NEM/%u: IoCtlStartVirtualProcessor -> %#x\n", pVCpu->idCpu, rcNt));
4204 AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("VidStartVirtualProcessor failed for CPU #%u: %#x\n", pGVCpu->idCpu, rcNt),
4205 VERR_NEM_IPE_5);
4206# else
4207 AssertLogRelMsgReturn(g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
4208 ("VidStartVirtualProcessor failed for CPU #%u: %u (%#x, rcNt=%#x)\n",
4209 pVCpu->idCpu, RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()),
4210 VERR_NEM_IPE_5);
4211# endif
4212 pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
4213 }
4214# endif /* NEM_WIN_TEMPLATE_MODE_OWN_RUN_API */
4215
4216 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
4217 {
4218# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4219 uint64_t const nsNow = RTTimeNanoTS();
4220 int64_t const cNsNextTimerEvt = nsNow - nsNextTimerEvt;
4221 uint32_t cMsWait;
4222 if (cNsNextTimerEvt < 100000 /* ns */)
4223 cMsWait = 0;
4224 else if ((uint64_t)cNsNextTimerEvt < RT_NS_1SEC)
4225 {
4226 if ((uint32_t)cNsNextTimerEvt < 2*RT_NS_1MS)
4227 cMsWait = 1;
4228 else
4229 cMsWait = ((uint32_t)cNsNextTimerEvt - 100000 /*ns*/) / RT_NS_1MS;
4230 }
4231 else
4232 cMsWait = RT_MS_1SEC;
4233# ifdef IN_RING0
4234 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.iCpu = pGVCpu->idCpu;
4235 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.fFlags = pVCpu->nem.s.fHandleAndGetFlags;
4236 pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext.cMillies = cMsWait;
4237 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.uFunction,
4238 &pVCpu->nem.s.uIoCtlBuf.MsgSlotHandleAndGetNext,
4239 pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext.cbInput,
4240 NULL, 0);
4241 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4242 if (rcNt == STATUS_SUCCESS)
4243# else
4244 BOOL fRet = VidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
4245 pVCpu->nem.s.fHandleAndGetFlags, cMsWait);
4246 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4247 if (fRet)
4248# endif
4249# else
4250 WHV_RUN_VP_EXIT_CONTEXT ExitReason;
4251 RT_ZERO(ExitReason);
4252 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
4253 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
4254 if (SUCCEEDED(hrc))
4255# endif
4256 {
4257 /*
4258 * Deal with the message.
4259 */
4260# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4261 rcStrict = nemHCWinHandleMessage(pVM, pVCpu, pMappingHeader, pGVCpu);
4262 pVCpu->nem.s.fHandleAndGetFlags |= VID_MSHAGN_F_HANDLE_MESSAGE;
4263# else
4264 rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason);
4265# endif
4266 if (rcStrict == VINF_SUCCESS)
4267 { /* hopefully likely */ }
4268 else
4269 {
4270 LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4271 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4272 break;
4273 }
4274 }
4275 else
4276 {
4277# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4278
4279 /* VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT,
4280 so after NtAlertThread we end up here with a STATUS_TIMEOUT. And yeah,
4281 the error code conversion is into WAIT_XXX, i.e. NT status codes. */
4282# ifndef IN_RING0
4283 DWORD rcNt = GetLastError();
4284# endif
4285 LogFlow(("NEM/%u: VidMessageSlotHandleAndGetNext -> %#x\n", pVCpu->idCpu, rcNt));
4286 AssertLogRelMsgReturn( rcNt == STATUS_TIMEOUT
4287 || rcNt == STATUS_ALERTED /* just in case */
4288 || rcNt == STATUS_USER_APC /* ditto */
4289 || rcNt == STATUS_KERNEL_APC /* ditto */
4290 , ("VidMessageSlotHandleAndGetNext failed for CPU #%u: %#x (%u)\n",
4291 pVCpu->idCpu, rcNt, rcNt),
4292 VERR_NEM_IPE_0);
4293 pVCpu->nem.s.fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
4294 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatGetMsgTimeout);
4295# else
4296 AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n",
4297 pVCpu->idCpu, hrc, GetLastError()),
4298 VERR_NEM_IPE_0);
4299# endif
4300 }
4301
4302 /*
4303 * If no relevant FFs are pending, loop.
4304 */
4305 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4306 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4307 continue;
4308
4309 /** @todo Try handle pending flags, not just return to EM loops. Take care
4310 * not to set important RCs here unless we've handled a message. */
4311 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
4312 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
4313 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
4314 }
4315 else
4316 {
4317 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
4318 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
4319 }
4320 }
4321 else
4322 {
4323 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
4324 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
4325 }
4326 break;
4327 } /* the run loop */
4328
4329
4330 /*
4331 * If the CPU is running, make sure to stop it before we try sync back the
4332 * state and return to EM. We don't sync back the whole state if we can help it.
4333 */
4334# ifdef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
4335 if (pVCpu->nem.s.fHandleAndGetFlags == VID_MSHAGN_F_GET_NEXT_MESSAGE)
4336 {
4337 pVCpu->nem.s.fHandleAndGetFlags = 0;
4338 rcStrict = nemHCWinStopCpu(pVM, pVCpu, rcStrict, pMappingHeader, pGVM, pGVCpu);
4339 }
4340# endif
4341
4342 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
4343 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4344
4345 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
4346 {
4347 /* Try anticipate what we might need. */
4348 uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
4349 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
4350 || RT_FAILURE(rcStrict))
4351 fImport = CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
4352# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
4353 else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
4354 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
4355 fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
4356 else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
4357 fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT;
4358# endif
4359 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
4360 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4361 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
4362
4363 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
4364 {
4365# ifdef IN_RING0
4366 int rc2 = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT,
4367 true /*fCanUpdateCr3*/);
4368 if (RT_SUCCESS(rc2))
4369 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4370 else if (rc2 == VERR_NEM_FLUSH_TLB)
4371 {
4372 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4373 if (rcStrict == VINF_SUCCESS || rcStrict == -rc2)
4374 rcStrict = -rc2;
4375 else
4376 {
4377 pVCpu->nem.s.rcPending = -rc2;
4378 LogFlow(("NEM/%u: rcPending=%Rrc (rcStrict=%Rrc)\n", pVCpu->idCpu, rc2, VBOXSTRICTRC_VAL(rcStrict) ));
4379 }
4380 }
4381# else
4382 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport | CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT);
4383 if (RT_SUCCESS(rc2))
4384 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4385# endif
4386 else if (RT_SUCCESS(rcStrict))
4387 rcStrict = rc2;
4388 if (!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
4389 pVCpu->cpum.GstCtx.fExtrn = 0;
4390 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
4391 }
4392 else
4393 {
4394 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4395 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT;
4396 }
4397 }
4398 else
4399 {
4400 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4401 pVCpu->cpum.GstCtx.fExtrn = 0;
4402 }
4403
4404 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
4405 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
4406 return rcStrict;
4407}
4408
4409#endif /* defined(NEM_WIN_TEMPLATE_MODE_OWN_RUN_API) || defined(IN_RING3) */
4410
4411/**
4412 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
4413 */
4414NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
4415 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
4416{
4417 /* We'll just unmap the memory. */
4418 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
4419 {
4420#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4421 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
4422 AssertRC(rc);
4423 if (RT_SUCCESS(rc))
4424#else
4425 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
4426 if (SUCCEEDED(hrc))
4427#endif
4428 {
4429 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4430 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
4431 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
4432 }
4433 else
4434 {
4435#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4436 LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
4437 return rc;
4438#else
4439 LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4440 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4441 return VERR_NEM_IPE_2;
4442#endif
4443 }
4444 }
4445 RT_NOREF(pVCpu, pvUser);
4446 return VINF_SUCCESS;
4447}
4448
4449
4450/**
4451 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
4452 *
4453 * @returns The PGMPhysNemQueryPageInfo result.
4454 * @param pVM The cross context VM structure.
4455 * @param pVCpu The cross context virtual CPU structure.
4456 * @param GCPhys The page to unmap.
4457 */
4458NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
4459{
4460 PGMPHYSNEMPAGEINFO Info;
4461 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
4462 nemHCWinUnsetForA20CheckerCallback, NULL);
4463}
4464
4465
4466void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4467{
4468 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4469 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4470}
4471
4472
4473void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4474 int fRestoreAsRAM, bool fRestoreAsRAM2)
4475{
4476 Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
4477 GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
4478 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
4479}
4480
4481
4482void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4483 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4484{
4485 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4486 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4487 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4488}
4489
4490
4491/**
4492 * Worker that maps pages into Hyper-V.
4493 *
4494 * This is used by the PGM physical page notifications as well as the memory
4495 * access VMEXIT handlers.
4496 *
4497 * @returns VBox status code.
4498 * @param pVM The cross context VM structure.
4499 * @param pVCpu The cross context virtual CPU structure of the
4500 * calling EMT.
4501 * @param GCPhysSrc The source page address.
4502 * @param GCPhysDst The hyper-V destination page. This may differ from
4503 * GCPhysSrc when A20 is disabled.
4504 * @param fPageProt NEM_PAGE_PROT_XXX.
4505 * @param pu2State Our page state (input/output).
4506 * @param fBackingChanged Set if the page backing is being changed.
4507 * @thread EMT(pVCpu)
4508 */
4509NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
4510 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
4511{
4512#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4513 /*
4514 * When using the hypercalls instead of the ring-3 APIs, we don't need to
4515 * unmap memory before modifying it. We still want to track the state though,
4516 * since unmap will fail when called an unmapped page and we don't want to redo
4517 * upgrades/downgrades.
4518 */
4519 uint8_t const u2OldState = *pu2State;
4520 int rc;
4521 if (fPageProt == NEM_PAGE_PROT_NONE)
4522 {
4523 if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
4524 {
4525 rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4526 if (RT_SUCCESS(rc))
4527 {
4528 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4529 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4530 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4531 }
4532 else
4533 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4534 }
4535 else
4536 rc = VINF_SUCCESS;
4537 }
4538 else if (fPageProt & NEM_PAGE_PROT_WRITE)
4539 {
4540 if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
4541 {
4542 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4543 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
4544 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4545 if (RT_SUCCESS(rc))
4546 {
4547 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4548 uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
4549 ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
4550 Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4551 NOREF(cMappedPages);
4552 }
4553 else
4554 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4555 }
4556 else
4557 rc = VINF_SUCCESS;
4558 }
4559 else
4560 {
4561 if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
4562 {
4563 rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4564 HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4565 if (RT_SUCCESS(rc))
4566 {
4567 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4568 uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
4569 ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
4570 Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4571 NOREF(cMappedPages);
4572 }
4573 else
4574 AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4575 }
4576 else
4577 rc = VINF_SUCCESS;
4578 }
4579
4580 return VINF_SUCCESS;
4581
4582#else
4583 /*
4584 * Looks like we need to unmap a page before we can change the backing
4585 * or even modify the protection. This is going to be *REALLY* efficient.
4586 * PGM lends us two bits to keep track of the state here.
4587 */
4588 uint8_t const u2OldState = *pu2State;
4589 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
4590 : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
4591 if ( fBackingChanged
4592 || u2NewState != u2OldState)
4593 {
4594 if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
4595 {
4596# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4597 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4598 AssertRC(rc);
4599 if (RT_SUCCESS(rc))
4600 {
4601 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4602 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4603 if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
4604 {
4605 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
4606 GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4607 return VINF_SUCCESS;
4608 }
4609 }
4610 else
4611 {
4612 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4613 return rc;
4614 }
4615# else
4616 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
4617 if (SUCCEEDED(hrc))
4618 {
4619 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4620 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4621 if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
4622 {
4623 Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
4624 GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
4625 return VINF_SUCCESS;
4626 }
4627 }
4628 else
4629 {
4630 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4631 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4632 return VERR_NEM_INIT_FAILED;
4633 }
4634# endif
4635 }
4636 }
4637
4638 /*
4639 * Writeable mapping?
4640 */
4641 if (fPageProt & NEM_PAGE_PROT_WRITE)
4642 {
4643# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4644 int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4645 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
4646 | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4647 AssertRC(rc);
4648 if (RT_SUCCESS(rc))
4649 {
4650 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4651 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4652 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4653 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4654 return VINF_SUCCESS;
4655 }
4656 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4657 return rc;
4658# else
4659 void *pvPage;
4660 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
4661 if (RT_SUCCESS(rc))
4662 {
4663 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
4664 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
4665 if (SUCCEEDED(hrc))
4666 {
4667 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
4668 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4669 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4670 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4671 return VINF_SUCCESS;
4672 }
4673 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4674 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4675 return VERR_NEM_INIT_FAILED;
4676 }
4677 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
4678 return rc;
4679# endif
4680 }
4681
4682 if (fPageProt & NEM_PAGE_PROT_READ)
4683 {
4684# ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
4685 int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
4686 HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
4687 AssertRC(rc);
4688 if (RT_SUCCESS(rc))
4689 {
4690 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4691 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4692 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4693 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4694 return VINF_SUCCESS;
4695 }
4696 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4697 return rc;
4698# else
4699 const void *pvPage;
4700 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
4701 if (RT_SUCCESS(rc))
4702 {
4703 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
4704 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
4705 if (SUCCEEDED(hrc))
4706 {
4707 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
4708 uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4709 Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
4710 GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
4711 return VINF_SUCCESS;
4712 }
4713 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
4714 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4715 return VERR_NEM_INIT_FAILED;
4716 }
4717 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
4718 return rc;
4719# endif
4720 }
4721
4722 /* We already unmapped it above. */
4723 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4724 return VINF_SUCCESS;
4725#endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
4726}
4727
4728
4729NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
4730{
4731 if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
4732 {
4733 Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
4734 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4735 return VINF_SUCCESS;
4736 }
4737
4738#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4739 PVMCPU pVCpu = VMMGetCpu(pVM);
4740 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
4741 AssertRC(rc);
4742 if (RT_SUCCESS(rc))
4743 {
4744 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4745 Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
4746 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4747 return VINF_SUCCESS;
4748 }
4749 LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
4750 return rc;
4751#else
4752 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
4753 if (SUCCEEDED(hrc))
4754 {
4755 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
4756 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
4757 Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
4758 return VINF_SUCCESS;
4759 }
4760 LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
4761 GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
4762 return VERR_NEM_IPE_6;
4763#endif
4764}
4765
4766
4767int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4768 PGMPAGETYPE enmType, uint8_t *pu2State)
4769{
4770 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4771 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4772 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
4773
4774 int rc;
4775#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4776 PVMCPU pVCpu = VMMGetCpu(pVM);
4777 if ( pVM->nem.s.fA20Enabled
4778 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4779 rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4780 else
4781 {
4782 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4783 rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4784 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
4785 rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4786
4787 }
4788#else
4789 RT_NOREF_PV(fPageProt);
4790 if ( pVM->nem.s.fA20Enabled
4791 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4792 rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4793 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4794 rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4795 else
4796 rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
4797#endif
4798 return rc;
4799}
4800
4801
4802void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4803 PGMPAGETYPE enmType, uint8_t *pu2State)
4804{
4805 Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4806 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4807 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
4808
4809#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4810 PVMCPU pVCpu = VMMGetCpu(pVM);
4811 if ( pVM->nem.s.fA20Enabled
4812 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4813 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
4814 else
4815 {
4816 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4817 nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4818 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4819 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
4820 }
4821#else
4822 RT_NOREF_PV(fPageProt);
4823 if ( pVM->nem.s.fA20Enabled
4824 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4825 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4826 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4827 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4828 /* else: ignore since we've got the alias page at this address. */
4829#endif
4830}
4831
4832
4833void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4834 uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4835{
4836 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4837 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4838 RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
4839
4840#if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
4841 PVMCPU pVCpu = VMMGetCpu(pVM);
4842 if ( pVM->nem.s.fA20Enabled
4843 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4844 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4845 else
4846 {
4847 /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
4848 nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
4849 if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4850 nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
4851 }
4852#else
4853 RT_NOREF_PV(fPageProt);
4854 if ( pVM->nem.s.fA20Enabled
4855 || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
4856 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4857 else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
4858 nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
4859 /* else: ignore since we've got the alias page at this address. */
4860#endif
4861}
4862
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette