VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 1224

Last change on this file since 1224 was 323, checked in by vboxsync, 18 years ago

drop the default, there's just one other call.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 55.3 KB
Line 
1/* $Id: PGMAll.cpp 323 2007-01-25 17:25:01Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/trpm.h>
35#include <VBox/rem.h>
36#include <VBox/em.h>
37#include "PGMInternal.h"
38#include <VBox/vm.h>
39#include <iprt/assert.h>
40#include <iprt/asm.h>
41#include <iprt/string.h>
42#include <VBox/log.h>
43#include <VBox/param.h>
44#include <VBox/err.h>
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
52 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
53 */
54typedef struct PGMHVUSTATE
55{
56 /** The VM handle. */
57 PVM pVM;
58 /** The todo flags. */
59 RTUINT fTodo;
60 /** The CR4 register value. */
61 uint32_t cr4;
62} PGMHVUSTATE, *PPGMHVUSTATE;
63
64
65/*******************************************************************************
66* Internal Functions *
67*******************************************************************************/
68/** @def DUMP_PDE_BIG
69 * Debug routine for dumping a big PDE.
70 */
71#ifdef DEBUG_Sander
72/** Debug routine for dumping a big PDE. */
73static void pgmDumpPDEBig(const char *pszPrefix, int iPD, VBOXPDE Pde)
74{
75 Log(("%s: BIG %d u10PageNo=%08X P=%d W=%d U=%d CACHE=%d ACC=%d DIR=%d GBL=%d\n", pszPrefix, iPD, Pde.b.u10PageNo, Pde.b.u1Present, Pde.b.u1Write, Pde.b.u1User, Pde.b.u1CacheDisable, Pde.b.u1Accessed, Pde.b.u1Dirty, Pde.b.u1Global));
76 Log(("%s: BIG %d WRT=%d AVAIL=%X RSV=%X PAT=%d\n", pszPrefix, iPD, Pde.b.u1WriteThru, Pde.b.u3Available, Pde.b.u8PageNoHigh, Pde.b.u1PAT));
77}
78#define DUMP_PDE_BIG(a, b, c) pgmDumpPDEBig(a, b, c)
79#else
80#define DUMP_PDE_BIG(a, b, c) do { } while (0)
81#endif
82
83
84
85#if 1///@todo ndef __AMD64__
86/*
87 * Shadow - 32-bit mode
88 */
89#define PGM_SHW_TYPE PGM_TYPE_32BIT
90#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
91#include "PGMAllShw.h"
92
93/* Guest - real mode */
94#define PGM_GST_TYPE PGM_TYPE_REAL
95#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
96#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
97#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
98#include "PGMAllGst.h"
99#include "PGMAllBth.h"
100#undef BTH_PGMPOOLKIND_PT_FOR_PT
101#undef PGM_BTH_NAME
102#undef PGM_GST_TYPE
103#undef PGM_GST_NAME
104
105/* Guest - protected mode */
106#define PGM_GST_TYPE PGM_TYPE_PROT
107#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
108#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
109#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
110#include "PGMAllGst.h"
111#include "PGMAllBth.h"
112#undef BTH_PGMPOOLKIND_PT_FOR_PT
113#undef PGM_BTH_NAME
114#undef PGM_GST_TYPE
115#undef PGM_GST_NAME
116
117/* Guest - 32-bit mode */
118#define PGM_GST_TYPE PGM_TYPE_32BIT
119#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
120#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
122#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
123#include "PGMAllGst.h"
124#include "PGMAllBth.h"
125#undef BTH_PGMPOOLKIND_PT_FOR_BIG
126#undef BTH_PGMPOOLKIND_PT_FOR_PT
127#undef PGM_BTH_NAME
128#undef PGM_GST_TYPE
129#undef PGM_GST_NAME
130
131#undef PGM_SHW_TYPE
132#undef PGM_SHW_NAME
133#endif /* !__AMD64__ */
134
135
136/*
137 * Shadow - PAE mode
138 */
139#define PGM_SHW_TYPE PGM_TYPE_PAE
140#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
141#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
142#include "PGMAllShw.h"
143
144/* Guest - real mode */
145#define PGM_GST_TYPE PGM_TYPE_REAL
146#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
147#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
148#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
149#include "PGMAllBth.h"
150#undef BTH_PGMPOOLKIND_PT_FOR_PT
151#undef PGM_BTH_NAME
152#undef PGM_GST_TYPE
153#undef PGM_GST_NAME
154
155/* Guest - protected mode */
156#define PGM_GST_TYPE PGM_TYPE_PROT
157#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
158#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
159#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
160#include "PGMAllBth.h"
161#undef BTH_PGMPOOLKIND_PT_FOR_PT
162#undef PGM_BTH_NAME
163#undef PGM_GST_TYPE
164#undef PGM_GST_NAME
165
166/* Guest - 32-bit mode */
167#define PGM_GST_TYPE PGM_TYPE_32BIT
168#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
169#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
170#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
171#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
172#include "PGMAllBth.h"
173#undef BTH_PGMPOOLKIND_PT_FOR_BIG
174#undef BTH_PGMPOOLKIND_PT_FOR_PT
175#undef PGM_BTH_NAME
176#undef PGM_GST_TYPE
177#undef PGM_GST_NAME
178
179
180/* Guest - PAE mode */
181#define PGM_GST_TYPE PGM_TYPE_PAE
182#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
183#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
184#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
185#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
186#include "PGMAllGst.h"
187#include "PGMAllBth.h"
188#undef BTH_PGMPOOLKIND_PT_FOR_BIG
189#undef BTH_PGMPOOLKIND_PT_FOR_PT
190#undef PGM_BTH_NAME
191#undef PGM_GST_TYPE
192#undef PGM_GST_NAME
193
194#undef PGM_SHW_TYPE
195#undef PGM_SHW_NAME
196
197
198/*
199 * Shadow - AMD64 mode
200 */
201#define PGM_SHW_TYPE PGM_TYPE_AMD64
202#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
203#include "PGMAllShw.h"
204
205/* Guest - real mode */
206#define PGM_GST_TYPE PGM_TYPE_REAL
207#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
208#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_REAL(name)
209#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
210#include "PGMAllBth.h"
211#undef BTH_PGMPOOLKIND_PT_FOR_PT
212#undef PGM_BTH_NAME
213#undef PGM_GST_NAME
214#undef PGM_GST_TYPE
215
216/* Guest - protected mode */
217#define PGM_GST_TYPE PGM_TYPE_PROT
218#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
219#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
220#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
221#include "PGMAllBth.h"
222#undef BTH_PGMPOOLKIND_PT_FOR_PT
223#undef PGM_BTH_NAME
224#undef PGM_GST_TYPE
225#undef PGM_GST_NAME
226
227/* Guest - AMD64 mode */
228#define PGM_GST_TYPE PGM_TYPE_AMD64
229#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
230#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
231#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
232#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
233#include "PGMAllGst.h"
234#include "PGMAllBth.h"
235#undef BTH_PGMPOOLKIND_PT_FOR_BIG
236#undef BTH_PGMPOOLKIND_PT_FOR_PT
237#undef PGM_BTH_NAME
238#undef PGM_GST_TYPE
239#undef PGM_GST_NAME
240
241#undef PGM_SHW_TYPE
242#undef PGM_SHW_NAME
243
244
245
246/**
247 * #PF Handler.
248 *
249 * @returns VBox status code (appropriate for trap handling and GC return).
250 * @param pVM VM Handle.
251 * @param uErr The trap error code.
252 * @param pRegFrame Trap register frame.
253 * @param pvFault The fault address.
254 */
255PGMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
256{
257 LogFlow(("PGMTrap0eHandler: uErr=%#x pvFault=%VGv eip=%VGv\n", uErr, pvFault, pRegFrame->eip));
258 STAM_PROFILE_START(&pVM->pgm.s.StatGCTrap0e, a);
259 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = NULL; } );
260
261
262#ifdef VBOX_WITH_STATISTICS
263 /*
264 * Error code stats.
265 */
266 if (uErr & X86_TRAP_PF_US)
267 {
268 if (!(uErr & X86_TRAP_PF_P))
269 {
270 if (uErr & X86_TRAP_PF_RW)
271 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentWrite);
272 else
273 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentRead);
274 }
275 else if (uErr & X86_TRAP_PF_RW)
276 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSWrite);
277 else if (uErr & X86_TRAP_PF_RSVD)
278 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSReserved);
279 else
280 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSRead);
281 }
282 else
283 { //supervisor
284 if (!(uErr & X86_TRAP_PF_P))
285 {
286 if (uErr & X86_TRAP_PF_RW)
287 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentWrite);
288 else
289 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentRead);
290 }
291 else if (uErr & X86_TRAP_PF_RW)
292 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVWrite);
293 else if (uErr & X86_TRAP_PF_RSVD)
294 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVReserved);
295 }
296#endif
297
298 /*
299 * Call the worker.
300 */
301 int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
302 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
303 rc = VINF_SUCCESS;
304 STAM_STATS({ if (!pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution))
305 pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eMisc; });
306 STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatGCTrap0e, pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution), a);
307 return rc;
308}
309
310
311/**
312 * Prefetch a page
313 *
314 * Typically used to sync commonly used pages before entering raw mode
315 * after a CR3 reload.
316 *
317 * @returns VBox status code suitable for scheduling.
318 * @retval VINF_SUCCESS on success.
319 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
320 * @param pVM VM handle.
321 * @param GCPtrPage Page to invalidate.
322 */
323PGMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
324{
325 STAM_PROFILE_START(&pVM->pgm.s.StatHCPrefetch, a);
326 int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, (RTGCUINTPTR)GCPtrPage);
327 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCPrefetch, a);
328 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%Vrc\n", rc));
329 return rc;
330}
331
332
333/**
334 * Gets the mapping corresponding to the specified address (if any).
335 *
336 * @returns Pointer to the mapping.
337 * @returns NULL if not
338 *
339 * @param pVM The virtual machine.
340 * @param GCPtr The guest context pointer.
341 */
342PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
343{
344 PPGMMAPPING pMapping = CTXSUFF(pVM->pgm.s.pMappings);
345 while (pMapping)
346 {
347 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
348 break;
349 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
350 {
351 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPTConflict);
352 return pMapping;
353 }
354 pMapping = CTXSUFF(pMapping->pNext);
355 }
356 return NULL;
357}
358
359
360/**
361 * Verifies a range of pages for read or write access
362 *
363 * Only checks the guest's page tables
364 *
365 * @returns VBox status code.
366 * @param pVM VM handle.
367 * @param Addr Guest virtual address to check
368 * @param cbSize Access size
369 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
370 */
371PGMDECL(int) PGMIsValidAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
372{
373 /*
374 * Validate input.
375 */
376 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
377 {
378 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
379 return VERR_INVALID_PARAMETER;
380 }
381
382 uint64_t fPage;
383 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
384 if (VBOX_FAILURE(rc))
385 {
386 Log(("PGMIsValidAccess: access violation for %VGv rc=%d\n", Addr, rc));
387 return VINF_EM_RAW_GUEST_TRAP;
388 }
389
390 /*
391 * Check if the access would cause a page fault
392 *
393 * Note that hypervisor page directories are not present in the guest's tables, so this check
394 * is sufficient.
395 */
396 bool fWrite = !!(fAccess & X86_PTE_RW);
397 bool fUser = !!(fAccess & X86_PTE_US);
398 if ( !(fPage & X86_PTE_P)
399 || (fWrite && !(fPage & X86_PTE_RW))
400 || (fUser && !(fPage & X86_PTE_US)) )
401 {
402 Log(("PGMIsValidAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
403 return VINF_EM_RAW_GUEST_TRAP;
404 }
405 if ( VBOX_SUCCESS(rc)
406 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
407 return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
408 return rc;
409}
410
411
412/**
413 * Verifies a range of pages for read or write access
414 *
415 * Supports handling of pages marked for dirty bit tracking and CSAM
416 *
417 * @returns VBox status code.
418 * @param pVM VM handle.
419 * @param Addr Guest virtual address to check
420 * @param cbSize Access size
421 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
422 */
423PGMDECL(int) PGMVerifyAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
424{
425 /*
426 * Validate input.
427 */
428 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
429 {
430 AssertMsgFailed(("PGMVerifyAccess: invalid access type %08x\n", fAccess));
431 return VERR_INVALID_PARAMETER;
432 }
433
434 uint64_t fPageGst;
435 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
436 if (VBOX_FAILURE(rc))
437 {
438 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", Addr, rc));
439 return VINF_EM_RAW_GUEST_TRAP;
440 }
441
442 /*
443 * Check if the access would cause a page fault
444 *
445 * Note that hypervisor page directories are not present in the guest's tables, so this check
446 * is sufficient.
447 */
448 const bool fWrite = !!(fAccess & X86_PTE_RW);
449 const bool fUser = !!(fAccess & X86_PTE_US);
450 if ( !(fPageGst & X86_PTE_P)
451 || (fWrite && !(fPageGst & X86_PTE_RW))
452 || (fUser && !(fPageGst & X86_PTE_US)) )
453 {
454 Log(("PGMVerifyAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
455 return VINF_EM_RAW_GUEST_TRAP;
456 }
457
458 /*
459 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
460 */
461 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
462 if (rc == VERR_PAGE_NOT_PRESENT)
463 {
464 /*
465 * Page is not present in our page tables.
466 * Try to sync it!
467 */
468 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
469 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
470 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
471 if (rc != VINF_SUCCESS)
472 return rc;
473 }
474 else if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
475 {
476 /*
477 * Page table is not present; can't do much here (?)
478 * We could of course try sync the page table.... (?)
479 */
480 return VINF_EM_RAW_EMULATE_INSTR;
481 }
482 else
483 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %VGv failed with %Vrc\n", Addr, rc));
484
485#if 0 /* def VBOX_STRICT; triggers too often now */
486 /*
487 * This check is a bit paranoid, but useful.
488 */
489 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
490 uint64_t fPageShw;
491 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
492 if ( (rc == VERR_PAGE_NOT_PRESENT || VBOX_FAILURE(rc))
493 || (fWrite && !(fPageShw & X86_PTE_RW))
494 || (fUser && !(fPageShw & X86_PTE_US)) )
495 {
496 AssertMsgFailed(("Unexpected access violation for %VGv! rc=%Vrc write=%d user=%d\n",
497 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
498 return VINF_EM_RAW_GUEST_TRAP;
499 }
500#endif
501
502 if ( VBOX_SUCCESS(rc)
503 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
504 || Addr + cbSize < Addr))
505 return PGMVerifyAccess(pVM, Addr + PAGE_SIZE, cbSize > PAGE_SIZE ? cbSize - PAGE_SIZE : 1, fAccess);
506 return rc;
507}
508
509#ifndef IN_GC
510/**
511 * Emulation of the invlpg instruction (HC only actually).
512 *
513 * @returns VBox status code.
514 * @param pVM VM handle.
515 * @param GCPtrPage Page to invalidate.
516 * @remark ASSUMES the page table entry or page directory is
517 * valid. Fairly safe, but there could be edge cases!
518 * @todo Flush page or page directory only if necessary!
519 */
520PGMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
521{
522 LogFlow(("PGMInvalidatePage: GCPtrPage=%VGv\n", GCPtrPage));
523
524 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
525 int rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
526 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
527
528#ifndef IN_RING0
529 /*
530 * Check if we have a pending update of the CR3 monitoring.
531 */
532 if ( VBOX_SUCCESS(rc)
533 && (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
534 {
535 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
536 Assert(!pVM->pgm.s.fMappingsFixed);
537 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
538 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
539 }
540#endif
541
542#ifdef IN_RING3
543 /*
544 * Inform CSAM about the flush
545 */
546 /** @note this is to check if monitored pages have been changed; when we implement callbacks for virtual handlers, this is no longer required. */
547 CSAMR3FlushPage(pVM, GCPtrPage);
548#endif
549 return rc;
550}
551#endif
552
553
554/**
555 * Executes an instruction using the interpreter.
556 *
557 * @returns VBox status code (appropriate for trap handling and GC return).
558 * @param pVM VM handle.
559 * @param pRegFrame Register frame.
560 * @param pvFault Fault address.
561 */
562PGMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
563{
564#ifdef IN_RING0
565 /** @todo */
566 int rc = VINF_EM_RAW_EMULATE_INSTR;
567#else
568 uint32_t cb;
569 int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
570 if (rc == VERR_EM_INTERPRETER)
571 rc = VINF_EM_RAW_EMULATE_INSTR;
572 if (rc != VINF_SUCCESS)
573 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%VGv)\n", rc, pvFault));
574#endif
575 return rc;
576}
577
578
579/**
580 * Gets effective page information (from the VMM page directory).
581 *
582 * @returns VBox status.
583 * @param pVM VM Handle.
584 * @param GCPtr Guest Context virtual address of the page.
585 * @param pfFlags Where to store the flags. These are X86_PTE_*.
586 * @param pHCPhys Where to store the HC physical address of the page.
587 * This is page aligned.
588 * @remark You should use PGMMapGetPage() for pages in a mapping.
589 */
590PGMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
591{
592 return PGM_SHW_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pHCPhys);
593}
594
595
596/**
597 * Sets (replaces) the page flags for a range of pages in the shadow context.
598 *
599 * @returns VBox status.
600 * @param pVM VM handle.
601 * @param GCPtr The address of the first page.
602 * @param cb The size of the range in bytes.
603 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
604 * @remark You must use PGMMapSetPage() for pages in a mapping.
605 */
606PGMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
607{
608 return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
609}
610
611
612/**
613 * Modify page flags for a range of pages in the shadow context.
614 *
615 * The existing flags are ANDed with the fMask and ORed with the fFlags.
616 *
617 * @returns VBox status code.
618 * @param pVM VM handle.
619 * @param GCPtr Virtual address of the first page in the range.
620 * @param cb Size (in bytes) of the range to apply the modification to.
621 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
622 * @param fMask The AND mask - page flags X86_PTE_*.
623 * Be very CAREFUL when ~'ing constants which could be 32-bit!
624 * @remark You must use PGMMapModifyPage() for pages in a mapping.
625 */
626PGMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
627{
628 /*
629 * Validate input.
630 */
631 if (fFlags & X86_PTE_PAE_PG_MASK)
632 {
633 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
634 return VERR_INVALID_PARAMETER;
635 }
636 if (!cb)
637 {
638 AssertFailed();
639 return VERR_INVALID_PARAMETER;
640 }
641
642 /*
643 * Align the input.
644 */
645 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
646 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
647 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
648
649 /*
650 * Call worker.
651 */
652 return PGM_SHW_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
653}
654
655
656/**
657 * Gets effective Guest OS page information.
658 *
659 * When GCPtr is in a big page, the function will return as if it was a normal
660 * 4KB page. If the need for distinguishing between big and normal page becomes
661 * necessary at a later point, a PGMGstGetPage() will be created for that
662 * purpose.
663 *
664 * @returns VBox status.
665 * @param pVM VM Handle.
666 * @param GCPtr Guest Context virtual address of the page.
667 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
668 * @param pGCPhys Where to store the GC physical address of the page.
669 * This is page aligned. The fact that the
670 */
671PGMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
672{
673 return PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pGCPhys);
674}
675
676
677/**
678 * Checks if the page is present.
679 *
680 * @returns true if the page is present.
681 * @returns false if the page is not present.
682 * @param pVM The VM handle.
683 * @param GCPtr Address within the page.
684 */
685PGMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
686{
687 int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
688 return VBOX_SUCCESS(rc);
689}
690
691
692/**
693 * Sets (replaces) the page flags for a range of pages in the guest's tables.
694 *
695 * @returns VBox status.
696 * @param pVM VM handle.
697 * @param GCPtr The address of the first page.
698 * @param cb The size of the range in bytes.
699 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
700 */
701PGMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
702{
703 return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
704}
705
706
707/**
708 * Modify page flags for a range of pages in the guest's tables
709 *
710 * The existing flags are ANDed with the fMask and ORed with the fFlags.
711 *
712 * @returns VBox status code.
713 * @param pVM VM handle.
714 * @param GCPtr Virtual address of the first page in the range.
715 * @param cb Size (in bytes) of the range to apply the modification to.
716 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
717 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
718 * Be very CAREFUL when ~'ing constants which could be 32-bit!
719 */
720PGMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
721{
722 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
723
724 /*
725 * Validate input.
726 */
727 if (fFlags & X86_PTE_PAE_PG_MASK)
728 {
729 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
730 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
731 return VERR_INVALID_PARAMETER;
732 }
733
734 if (!cb)
735 {
736 AssertFailed();
737 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
738 return VERR_INVALID_PARAMETER;
739 }
740
741 LogFlow(("PGMGstModifyPage %VGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
742
743 /*
744 * Adjust input.
745 */
746 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
747 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
748 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK);
749
750 /*
751 * Call worker.
752 */
753 int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
754
755 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
756 return rc;
757}
758
759
760/**
761 * Temporarily turns off the access monitoring of a page within a monitored
762 * physical write/all page access handler region.
763 *
764 * Use this when no further \#PFs are required for that page. Be aware that
765 * a page directory sync might reset the flags, and turn on access monitoring
766 * for the page.
767 *
768 * The caller must do required page table modifications.
769 *
770 * @returns VBox status code.
771 * @param pVM VM Handle
772 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
773 * @param GCPhysPage Physical address of the page to turn off access monitoring for.
774 */
775PGMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
776{
777 /*
778 * Validate the range.
779 */
780 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
781 if (pCur)
782 {
783 if ( GCPhysPage >= pCur->Core.Key
784 && GCPhysPage <= pCur->Core.KeyLast)
785 {
786 /*
787 * Ok, check that the type is right and then clear the flag.
788 */
789 unsigned fFlag;
790 switch (pCur->enmType)
791 {
792 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
793 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
794 break;
795
796 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
797 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
798 break;
799
800 case PGMPHYSHANDLERTYPE_MMIO:
801 case PGMPHYSHANDLERTYPE_PHYSICAL:
802 AssertMsgFailed(("Cannot disable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
803 return VERR_ACCESS_DENIED;
804
805 default:
806 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
807 return VERR_INTERNAL_ERROR;
808 }
809
810 /** @todo add a function which does both clear and set! */
811 /* clear and set */
812 PPGMRAMRANGE pHint = NULL;
813 int rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
814 if (VBOX_SUCCESS(rc))
815 rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
816 return rc;
817 }
818 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
819 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
820 return VERR_INVALID_PARAMETER;
821 }
822
823 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
824 return VERR_PGM_HANDLER_NOT_FOUND;
825}
826
827
828/**
829 * Turns access monitoring of a page within a monitored
830 * physical write/all page access handler regio back on.
831 *
832 * The caller must do required page table modifications.
833 *
834 * @returns VBox status code.
835 * @param pVM VM Handle
836 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
837 * @param GCPhysPage Physical address of the page to turn on access monitoring for.
838 */
839PGMDECL(int) PGMHandlerPhysicalPageReset(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
840{
841 /*
842 * Validate the range.
843 */
844 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
845 if (pCur)
846 {
847 if ( GCPhysPage >= pCur->Core.Key
848 && GCPhysPage <= pCur->Core.KeyLast)
849 {
850 /*
851 * Ok, check that the type is right and then clear the flag.
852 */
853 unsigned fFlag;
854 switch (pCur->enmType)
855 {
856 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
857 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
858 break;
859
860 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
861 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
862 break;
863
864 case PGMPHYSHANDLERTYPE_MMIO:
865 case PGMPHYSHANDLERTYPE_PHYSICAL:
866 AssertMsgFailed(("Cannot enable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
867 return VERR_ACCESS_DENIED;
868
869 default:
870 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
871 return VERR_INTERNAL_ERROR;
872 }
873
874 /** @todo add a function which does both clear and set! */
875 /* set and clear */
876 PPGMRAMRANGE pHint = NULL;
877 int rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
878 if (VBOX_SUCCESS(rc))
879 rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
880 return rc;
881
882 }
883 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
884 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
885 return VERR_INVALID_PARAMETER;
886 }
887
888 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
889 return VERR_PGM_HANDLER_NOT_FOUND;
890}
891
892
893/**
894 * Checks if a physical range is handled
895 *
896 * @returns boolean
897 * @param pVM VM Handle
898 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
899 */
900PGMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
901{
902 /*
903 * Find the handler.
904 */
905 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
906 if (pCur)
907 {
908 if ( GCPhys >= pCur->Core.Key
909 && GCPhys <= pCur->Core.KeyLast)
910 {
911 /*
912 * Validate type.
913 */
914 switch (pCur->enmType)
915 {
916 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
917 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
918 case PGMPHYSHANDLERTYPE_PHYSICAL:
919 case PGMPHYSHANDLERTYPE_MMIO:
920 return true;
921
922 default:
923 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
924 return false;
925 }
926 }
927 }
928
929 return false;
930}
931
932
933#ifdef VBOX_STRICT
934DECLCALLBACK(int) pgmVirtHandlerDumpPhysRange(PAVLROGCPHYSNODECORE pNode, void *pvUser)
935{
936 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
937 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
938 Log(("PHYS2VIRT: Range %VGp-%VGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
939 return 0;
940}
941
942
943void pgmHandlerVirtualDumpPhysPages(PVM pVM)
944{
945 RTAvlroGCPhysDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->PhysToVirtHandlers, true, pgmVirtHandlerDumpPhysRange, 0);
946}
947#endif /* VBOX_STRICT */
948
949
950/**
951 * Gets the current CR3 register value for the shadow memory context.
952 * @returns CR3 value.
953 * @param pVM The VM handle.
954 */
955PGMDECL(uint32_t) PGMGetHyperCR3(PVM pVM)
956{
957 switch (pVM->pgm.s.enmShadowMode)
958 {
959 case PGMMODE_32_BIT:
960 return pVM->pgm.s.HCPhys32BitPD;
961
962 case PGMMODE_PAE:
963 case PGMMODE_PAE_NX:
964 return pVM->pgm.s.HCPhysPaePDPTR;
965
966 case PGMMODE_AMD64:
967 case PGMMODE_AMD64_NX:
968 return pVM->pgm.s.HCPhysPaePML4;
969
970 default:
971 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
972 return ~0;
973 }
974}
975
976
977/**
978 * Gets the CR3 register value for the 32-Bit shadow memory context.
979 * @returns CR3 value.
980 * @param pVM The VM handle.
981 */
982PGMDECL(uint32_t) PGMGetHyper32BitCR3(PVM pVM)
983{
984 return pVM->pgm.s.HCPhys32BitPD;
985}
986
987
988/**
989 * Gets the CR3 register value for the PAE shadow memory context.
990 * @returns CR3 value.
991 * @param pVM The VM handle.
992 */
993PGMDECL(uint32_t) PGMGetHyperPaeCR3(PVM pVM)
994{
995 return pVM->pgm.s.HCPhysPaePDPTR;
996}
997
998
999/**
1000 * Gets the CR3 register value for the AMD64 shadow memory context.
1001 * @returns CR3 value.
1002 * @param pVM The VM handle.
1003 */
1004PGMDECL(uint32_t) PGMGetHyperAmd64CR3(PVM pVM)
1005{
1006 return pVM->pgm.s.HCPhysPaePML4;
1007}
1008
1009
1010/**
1011 * Gets the current CR3 register value for the HC intermediate memory context.
1012 * @returns CR3 value.
1013 * @param pVM The VM handle.
1014 */
1015PGMDECL(uint32_t) PGMGetInterHCCR3(PVM pVM)
1016{
1017 switch (pVM->pgm.s.enmHostMode)
1018 {
1019 case SUPPAGINGMODE_32_BIT:
1020 case SUPPAGINGMODE_32_BIT_GLOBAL:
1021 return pVM->pgm.s.HCPhysInterPD;
1022
1023 case SUPPAGINGMODE_PAE:
1024 case SUPPAGINGMODE_PAE_GLOBAL:
1025 case SUPPAGINGMODE_PAE_NX:
1026 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1027 return pVM->pgm.s.HCPhysInterPaePDPTR;
1028
1029 case SUPPAGINGMODE_AMD64:
1030 case SUPPAGINGMODE_AMD64_GLOBAL:
1031 case SUPPAGINGMODE_AMD64_NX:
1032 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1033 return pVM->pgm.s.HCPhysInterPaePDPTR;
1034
1035 default:
1036 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1037 return ~0;
1038 }
1039}
1040
1041
1042/**
1043 * Gets the current CR3 register value for the GC intermediate memory context.
1044 * @returns CR3 value.
1045 * @param pVM The VM handle.
1046 */
1047PGMDECL(uint32_t) PGMGetInterGCCR3(PVM pVM)
1048{
1049 switch (pVM->pgm.s.enmShadowMode)
1050 {
1051 case PGMMODE_32_BIT:
1052 return pVM->pgm.s.HCPhysInterPD;
1053
1054 case PGMMODE_PAE:
1055 case PGMMODE_PAE_NX:
1056 return pVM->pgm.s.HCPhysInterPaePDPTR;
1057
1058 case PGMMODE_AMD64:
1059 case PGMMODE_AMD64_NX:
1060 return pVM->pgm.s.HCPhysInterPaePML4;
1061
1062 default:
1063 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
1064 return ~0;
1065 }
1066}
1067
1068
1069/**
1070 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1071 * @returns CR3 value.
1072 * @param pVM The VM handle.
1073 */
1074PGMDECL(uint32_t) PGMGetInter32BitCR3(PVM pVM)
1075{
1076 return pVM->pgm.s.HCPhysInterPD;
1077}
1078
1079
1080/**
1081 * Gets the CR3 register value for the PAE intermediate memory context.
1082 * @returns CR3 value.
1083 * @param pVM The VM handle.
1084 */
1085PGMDECL(uint32_t) PGMGetInterPaeCR3(PVM pVM)
1086{
1087 return pVM->pgm.s.HCPhysInterPaePDPTR;
1088}
1089
1090
1091/**
1092 * Gets the CR3 register value for the AMD64 intermediate memory context.
1093 * @returns CR3 value.
1094 * @param pVM The VM handle.
1095 */
1096PGMDECL(uint32_t) PGMGetInterAmd64CR3(PVM pVM)
1097{
1098 return pVM->pgm.s.HCPhysInterPaePML4;
1099}
1100
1101
1102/**
1103 * Performs and schedules necessary updates following a CR3 load or reload.
1104 *
1105 * This will normally involve mapping the guest PD or nPDPTR
1106 *
1107 * @returns VBox status code.
1108 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1109 * safely be ignored and overridden since the FF will be set too then.
1110 * @param pVM VM handle.
1111 * @param cr3 The new cr3.
1112 * @param fGlobal Indicates whether this is a global flush or not.
1113 */
1114PGMDECL(int) PGMFlushTLB(PVM pVM, uint32_t cr3, bool fGlobal)
1115{
1116 /*
1117 * When in real or protected mode there is no TLB flushing, but
1118 * we may still be called because of REM not caring/knowing this.
1119 * REM is simple and we wish to keep it that way.
1120 */
1121 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1122 return VINF_SUCCESS;
1123 LogFlow(("PGMFlushTLB: cr3=%#x OldCr3=%#x fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
1124 STAM_PROFILE_START(&pVM->pgm.s.StatFlushTLB, a);
1125
1126 /*
1127 * Flag the necessary updates.
1128 */
1129 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1130 if (fGlobal)
1131 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1132
1133 /*
1134 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1135 */
1136 int rc = VINF_SUCCESS;
1137 RTGCPHYS GCPhysCR3;
1138 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
1139 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
1140 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
1141 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
1142 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1143 else
1144 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1145 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1146 {
1147 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1148 rc = PGM_GST_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1149 if (VBOX_SUCCESS(rc) && !pVM->pgm.s.fMappingsFixed)
1150 {
1151 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1152 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1153 }
1154 if (fGlobal)
1155 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3Global);
1156 else
1157 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3);
1158 }
1159 else
1160 {
1161 /*
1162 * Check if we have a pending update of the CR3 monitoring.
1163 */
1164 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1165 {
1166 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1167 Assert(!pVM->pgm.s.fMappingsFixed);
1168 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1169 }
1170 if (fGlobal)
1171 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3Global);
1172 else
1173 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3);
1174 }
1175
1176 STAM_PROFILE_STOP(&pVM->pgm.s.StatFlushTLB, a);
1177 return rc;
1178}
1179
1180
1181/**
1182 * Synchronize the paging structures.
1183 *
1184 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1185 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1186 * in several places, most importantly whenever the CR3 is loaded.
1187 *
1188 * @returns VBox status code.
1189 * @param pVM The virtual machine.
1190 * @param cr0 Guest context CR0 register
1191 * @param cr3 Guest context CR3 register
1192 * @param cr4 Guest context CR4 register
1193 * @param fGlobal Including global page directories or not
1194 */
1195PGMDECL(int) PGMSyncCR3(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
1196{
1197 /*
1198 * We might be called when we shouldn't.
1199 *
1200 * The mode switching will ensure that the PD is resynced
1201 * after every mode switch. So, if we find ourselves here
1202 * when in protected or real mode we can safely disable the
1203 * FF and return immediately.
1204 */
1205 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1206 {
1207 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1208 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1209 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1210 return VINF_SUCCESS;
1211 }
1212
1213 /* If global pages are not supported, then all flushes are global */
1214 if (!(cr4 & X86_CR4_PGE))
1215 fGlobal = true;
1216 LogFlow(("PGMSyncCR3: cr0=%08x cr3=%08x cr4=%08x fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1217 VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1218
1219 /*
1220 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1221 */
1222 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1223 int rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
1224 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1225 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%VRc\n", rc));
1226 if (rc == VINF_SUCCESS)
1227 {
1228 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1229 {
1230 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1231 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1232 }
1233
1234 /*
1235 * Check if we have a pending update of the CR3 monitoring.
1236 */
1237 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1238 {
1239 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1240 Assert(!pVM->pgm.s.fMappingsFixed);
1241 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
1242 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
1243 }
1244 }
1245
1246 /*
1247 * Now flush the CR3 (guest context).
1248 */
1249 if (rc == VINF_SUCCESS)
1250 PGM_INVL_GUEST_TLBS();
1251 return rc;
1252}
1253
1254
1255/**
1256 * Called whenever CR0 or CR4 in a way which may change
1257 * the paging mode.
1258 *
1259 * @returns VBox status code fit for scheduling in GC and R0.
1260 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1261 * @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
1262 * @param pVM VM handle.
1263 * @param cr0 The new cr0.
1264 * @param cr4 The new cr4.
1265 * @param efer The new extended feature enable register.
1266 */
1267PGMDECL(int) PGMChangeMode(PVM pVM, uint32_t cr0, uint32_t cr4, uint64_t efer)
1268{
1269 PGMMODE enmGuestMode;
1270
1271 /*
1272 * Calc the new guest mode.
1273 */
1274 if (!(cr0 & X86_CR0_PE))
1275 enmGuestMode = PGMMODE_REAL;
1276 else if (!(cr0 & X86_CR0_PG))
1277 enmGuestMode = PGMMODE_PROTECTED;
1278 else if (!(cr4 & X86_CR4_PAE))
1279 enmGuestMode = PGMMODE_32_BIT;
1280 else if (!(efer & MSR_K6_EFER_LME))
1281 {
1282 if (!(efer & MSR_K6_EFER_NXE))
1283 enmGuestMode = PGMMODE_PAE;
1284 else
1285 enmGuestMode = PGMMODE_PAE_NX;
1286 }
1287 else
1288 {
1289 if (!(efer & MSR_K6_EFER_NXE))
1290 enmGuestMode = PGMMODE_AMD64;
1291 else
1292 enmGuestMode = PGMMODE_AMD64_NX;
1293 }
1294
1295 /*
1296 * Did it change?
1297 */
1298 if (pVM->pgm.s.enmGuestMode == enmGuestMode)
1299 return VINF_SUCCESS;
1300#ifdef IN_RING3
1301 return pgmR3ChangeMode(pVM, enmGuestMode);
1302#else
1303 Log(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1304 return VINF_PGM_CHANGE_MODE;
1305#endif
1306}
1307
1308
1309/**
1310 * Gets the current guest paging mode.
1311 *
1312 * @returns The current paging mode.
1313 * @param pVM The VM handle.
1314 */
1315PGMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
1316{
1317 return pVM->pgm.s.enmGuestMode;
1318}
1319
1320
1321/**
1322 * Get mode name.
1323 *
1324 * @returns read-only name string.
1325 * @param enmMode The mode which name is desired.
1326 */
1327PGMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
1328{
1329 switch (enmMode)
1330 {
1331 case PGMMODE_REAL: return "real";
1332 case PGMMODE_PROTECTED: return "protected";
1333 case PGMMODE_32_BIT: return "32-bit";
1334 case PGMMODE_PAE: return "PAE";
1335 case PGMMODE_PAE_NX: return "PAE+NX";
1336 case PGMMODE_AMD64: return "AMD64";
1337 case PGMMODE_AMD64_NX: return "AMD64+NX";
1338 default: return "unknown mode value";
1339 }
1340}
1341
1342
1343/**
1344 * Acquire the PGM lock.
1345 *
1346 * @returns VBox status code
1347 * @param pVM The VM to operate on.
1348 */
1349int pgmLock(PVM pVM)
1350{
1351 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
1352#ifdef IN_GC
1353 if (rc == VERR_SEM_BUSY)
1354 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1355#elif defined(IN_RING0)
1356 if (rc == VERR_SEM_BUSY)
1357 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1358#endif
1359 AssertRC(rc);
1360 return rc;
1361}
1362
1363
1364/**
1365 * Release the PGM lock.
1366 *
1367 * @returns VBox status code
1368 * @param pVM The VM to operate on.
1369 */
1370void pgmUnlock(PVM pVM)
1371{
1372 PDMCritSectLeave(&pVM->pgm.s.CritSect);
1373}
1374
1375
1376#ifdef VBOX_STRICT
1377
1378/**
1379 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1380 * and its AVL enumerators.
1381 */
1382typedef struct PGMAHAFIS
1383{
1384 /** The VM handle. */
1385 PVM pVM;
1386 /** Number of errors. */
1387 unsigned cErrors;
1388 /** The flags we've found. */
1389 unsigned fFlagsFound;
1390 /** The flags we're matching up to.
1391 * This is also on the stack as a const, thus only valid during enumeration. */
1392 unsigned fFlags;
1393 /** The current physical address. */
1394 RTGCPHYS GCPhys;
1395} PGMAHAFIS, *PPGMAHAFIS;
1396
1397/**
1398 * Verify virtual handler by matching physical address.
1399 *
1400 * @returns 0
1401 * @param pNode Pointer to a PGMVIRTHANDLER.
1402 * @param pvUser Pointer to user parameter.
1403 */
1404static DECLCALLBACK(int) pgmVirtHandlerVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1405{
1406 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1407 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1408
1409 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1410 {
1411 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1412 {
1413 switch (pCur->enmType)
1414 {
1415 case PGMVIRTHANDLERTYPE_EIP:
1416 case PGMVIRTHANDLERTYPE_NORMAL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1417 case PGMVIRTHANDLERTYPE_WRITE: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1418 case PGMVIRTHANDLERTYPE_ALL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1419 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1420 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1421 return 0;
1422 }
1423 if ( (pState->fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1424 == pState->fFlagsFound)
1425 break;
1426 }
1427 }
1428 return 0;
1429}
1430
1431
1432/**
1433 * Verify a virtual handler.
1434 *
1435 * @returns 0
1436 * @param pNode Pointer to a PGMVIRTHANDLER.
1437 * @param pvUser Pointer to user parameter.
1438 */
1439static DECLCALLBACK(int) pgmVirtHandlerVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1440{
1441 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1442 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1443 PVM pVM = pState->pVM;
1444
1445 if ( pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS
1446 && (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->GCPtr & PAGE_OFFSET_MASK))
1447 {
1448 AssertMsgFailed(("virt handler phys out has incorrect key! %VGp %VGv %s\n",
1449 pVirt->aPhysToVirt[0].Core.Key, pVirt->GCPtr, HCSTRING(pVirt->pszDesc)));
1450 pState->cErrors++;
1451 }
1452
1453 /*
1454 * Calc flags.
1455 */
1456 unsigned fFlags;
1457 switch (pVirt->enmType)
1458 {
1459 case PGMVIRTHANDLERTYPE_EIP:
1460 case PGMVIRTHANDLERTYPE_NORMAL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1461 case PGMVIRTHANDLERTYPE_WRITE: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1462 case PGMVIRTHANDLERTYPE_ALL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1463 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1464 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1465 return 0;
1466 default:
1467 AssertMsgFailed(("unknown enmType=%d\n", pVirt->enmType));
1468 return 0;
1469 }
1470
1471 /*
1472 * Check pages against flags.
1473 */
1474 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->GCPtr;
1475 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1476 {
1477 RTGCPHYS GCPhysGst;
1478 uint64_t fGst;
1479 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1480 if (rc == VERR_PAGE_NOT_PRESENT)
1481 {
1482 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1483 {
1484 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysNew=~0 iPage=%#x %VGv %s\n",
1485 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1486 pState->cErrors++;
1487 }
1488 continue;
1489 }
1490
1491 AssertRCReturn(rc, 0);
1492 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1493 {
1494 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1495 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1496 pState->cErrors++;
1497 continue;
1498 }
1499
1500 RTHCPHYS HCPhys;
1501 rc = PGMRamGCPhys2HCPhysWithFlags(&pVM->pgm.s, GCPhysGst, &HCPhys);
1502 if (VBOX_FAILURE(rc))
1503 {
1504 AssertMsgFailed(("virt handler getting ram flags rc=%Vrc. GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1505 rc, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1506 pState->cErrors++;
1507 continue;
1508 }
1509
1510 if ((HCPhys & fFlags) != fFlags)
1511 {
1512 AssertMsgFailed(("virt handler flags mismatch. HCPhys=%VHp fFlags=%#x GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1513 HCPhys, fFlags, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1514 pState->cErrors++;
1515 continue;
1516 }
1517 } /* for pages in virtual mapping. */
1518
1519 return 0;
1520}
1521
1522
1523/**
1524 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1525 * that the physical addresses associated with virtual handlers are correct.
1526 *
1527 * @returns Number of mismatches.
1528 * @param pVM The VM handle.
1529 */
1530PGMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1531{
1532 PPGM pPGM = &pVM->pgm.s;
1533 PGMAHAFIS State;
1534 State.cErrors = 0;
1535 State.pVM = pVM;
1536
1537 /*
1538 * Check the RAM flags against the handlers.
1539 */
1540 for (PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); pRam; pRam = CTXSUFF(pRam->pNext))
1541 {
1542 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1543 for (unsigned iPage = 0; iPage < cPages; iPage++)
1544 {
1545 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1546 const unsigned fFlags = pRam->aHCPhys[iPage]
1547 & ( MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL
1548 | MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_TEMP_OFF);
1549 if (fFlags)
1550 {
1551 State.fFlagsFound = 0; /* build flags and compare. */
1552
1553 /* physical first. (simple because of page alignment) */
1554 if ( !(fFlags & MM_RAM_FLAGS_PHYSICAL_TEMP_OFF)
1555 && (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL)))
1556 {
1557 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys);
1558 if (!pPhys)
1559 {
1560 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1561 if ( pPhys
1562 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1563 pPhys = NULL;
1564 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1565 }
1566 if (pPhys)
1567 {
1568 switch (pPhys->enmType)
1569 {
1570 case PGMPHYSHANDLERTYPE_PHYSICAL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER; break;
1571 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE; break;
1572 case PGMPHYSHANDLERTYPE_MMIO:
1573 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_ALL; break;
1574 default: AssertMsgFailed(("Invalid type phys type %d\n", pPhys->enmType)); State.cErrors++; break;
1575 }
1576 if ( (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL))
1577 != State.fFlagsFound)
1578 {
1579 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x %s\n",
1580 State.GCPhys, fFlags, State.fFlagsFound, pPhys->pszDesc));
1581 State.cErrors++;
1582 }
1583
1584#ifdef IN_RING3
1585 /* validate that REM is handling it. */
1586 if (!REMR3IsPageAccessHandled(pVM, State.GCPhys))
1587 {
1588 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%#x fFlags=%#x %s\n",
1589 State.GCPhys, fFlags, pPhys->pszDesc));
1590 State.cErrors++;
1591 }
1592#endif
1593 }
1594 else
1595 {
1596 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%#x\n", State.GCPhys));
1597 State.cErrors++;
1598 }
1599 }
1600
1601 /* virtual flags. */
1602 if (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1603 {
1604 State.fFlags = fFlags;
1605 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOneByPhysAddr, &State);
1606 if ( (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1607 != State.fFlagsFound)
1608 {
1609 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x\n",
1610 State.GCPhys, fFlags, State.fFlagsFound));
1611 State.cErrors++;
1612 }
1613
1614 }
1615 }
1616 } /* foreach page in ram range. */
1617 } /* foreach ram range. */
1618
1619 /*
1620 * Check that the physical addresses of the virtual handlers matches up.
1621 */
1622 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOne, &State);
1623
1624 return State.cErrors;
1625}
1626
1627
1628/**
1629 * Asserts that there are no mapping conflicts.
1630 *
1631 * @returns Number of conflicts.
1632 * @param pVM The VM Handle.
1633 */
1634PGMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
1635{
1636 unsigned cErrors = 0;
1637
1638 /*
1639 * Check for mapping conflicts.
1640 */
1641 for (PPGMMAPPING pMapping = CTXSUFF(pVM->pgm.s.pMappings);
1642 pMapping;
1643 pMapping = CTXSUFF(pMapping->pNext))
1644 {
1645 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
1646 for (RTGCUINTPTR GCPtr = (RTGCUINTPTR)pMapping->GCPtr;
1647 GCPtr <= (RTGCUINTPTR)pMapping->GCPtrLast;
1648 GCPtr += PAGE_SIZE)
1649 {
1650 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
1651 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
1652 {
1653 AssertMsgFailed(("Conflict at %VGv with %s\n", GCPtr, HCSTRING(pMapping->pszDesc)));
1654 cErrors++;
1655 break;
1656 }
1657 }
1658 }
1659
1660 return cErrors;
1661}
1662
1663
1664/**
1665 * Asserts that everything related to the guest CR3 is correctly shadowed.
1666 *
1667 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
1668 * and assert the correctness of the guest CR3 mapping before asserting that the
1669 * shadow page tables is in sync with the guest page tables.
1670 *
1671 * @returns Number of conflicts.
1672 * @param pVM The VM Handle.
1673 * @param cr3 The current guest CR3 register value.
1674 * @param cr4 The current guest CR4 register value.
1675 */
1676PGMDECL(unsigned) PGMAssertCR3(PVM pVM, uint32_t cr3, uint32_t cr4)
1677{
1678 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1679 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCUINTPTR)0);
1680 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1681 return cErrors;
1682}
1683
1684#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette