VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 1999

Last change on this file since 1999 was 1930, checked in by vboxsync, 18 years ago

backed out unneccessary changes from previous changeset

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 55.5 KB
Line 
1/* $Id: PGMAll.cpp 1930 2007-04-04 13:18:48Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include "PGMInternal.h"
39#include <VBox/vm.h>
40#include <iprt/assert.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43#include <VBox/log.h>
44#include <VBox/param.h>
45#include <VBox/err.h>
46
47
48/*******************************************************************************
49* Structures and Typedefs *
50*******************************************************************************/
51/**
52 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
53 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
54 */
55typedef struct PGMHVUSTATE
56{
57 /** The VM handle. */
58 PVM pVM;
59 /** The todo flags. */
60 RTUINT fTodo;
61 /** The CR4 register value. */
62 uint32_t cr4;
63} PGMHVUSTATE, *PPGMHVUSTATE;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69/** @def DUMP_PDE_BIG
70 * Debug routine for dumping a big PDE.
71 */
72#ifdef DEBUG_Sander
73/** Debug routine for dumping a big PDE. */
74static void pgmDumpPDEBig(const char *pszPrefix, int iPD, VBOXPDE Pde)
75{
76 Log(("%s: BIG %d u10PageNo=%08X P=%d W=%d U=%d CACHE=%d ACC=%d DIR=%d GBL=%d\n", pszPrefix, iPD, Pde.b.u10PageNo, Pde.b.u1Present, Pde.b.u1Write, Pde.b.u1User, Pde.b.u1CacheDisable, Pde.b.u1Accessed, Pde.b.u1Dirty, Pde.b.u1Global));
77 Log(("%s: BIG %d WRT=%d AVAIL=%X RSV=%X PAT=%d\n", pszPrefix, iPD, Pde.b.u1WriteThru, Pde.b.u3Available, Pde.b.u8PageNoHigh, Pde.b.u1PAT));
78}
79#define DUMP_PDE_BIG(a, b, c) pgmDumpPDEBig(a, b, c)
80#else
81#define DUMP_PDE_BIG(a, b, c) do { } while (0)
82#endif
83
84
85
86#if 1///@todo ndef __AMD64__
87/*
88 * Shadow - 32-bit mode
89 */
90#define PGM_SHW_TYPE PGM_TYPE_32BIT
91#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
92#include "PGMAllShw.h"
93
94/* Guest - real mode */
95#define PGM_GST_TYPE PGM_TYPE_REAL
96#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
97#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
98#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
99#include "PGMAllGst.h"
100#include "PGMAllBth.h"
101#undef BTH_PGMPOOLKIND_PT_FOR_PT
102#undef PGM_BTH_NAME
103#undef PGM_GST_TYPE
104#undef PGM_GST_NAME
105
106/* Guest - protected mode */
107#define PGM_GST_TYPE PGM_TYPE_PROT
108#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
109#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
110#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
111#include "PGMAllGst.h"
112#include "PGMAllBth.h"
113#undef BTH_PGMPOOLKIND_PT_FOR_PT
114#undef PGM_BTH_NAME
115#undef PGM_GST_TYPE
116#undef PGM_GST_NAME
117
118/* Guest - 32-bit mode */
119#define PGM_GST_TYPE PGM_TYPE_32BIT
120#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
121#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
122#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
123#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
124#include "PGMAllGst.h"
125#include "PGMAllBth.h"
126#undef BTH_PGMPOOLKIND_PT_FOR_BIG
127#undef BTH_PGMPOOLKIND_PT_FOR_PT
128#undef PGM_BTH_NAME
129#undef PGM_GST_TYPE
130#undef PGM_GST_NAME
131
132#undef PGM_SHW_TYPE
133#undef PGM_SHW_NAME
134#endif /* !__AMD64__ */
135
136
137/*
138 * Shadow - PAE mode
139 */
140#define PGM_SHW_TYPE PGM_TYPE_PAE
141#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
142#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
143#include "PGMAllShw.h"
144
145/* Guest - real mode */
146#define PGM_GST_TYPE PGM_TYPE_REAL
147#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
148#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
149#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
150#include "PGMAllBth.h"
151#undef BTH_PGMPOOLKIND_PT_FOR_PT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#include "PGMAllBth.h"
162#undef BTH_PGMPOOLKIND_PT_FOR_PT
163#undef PGM_BTH_NAME
164#undef PGM_GST_TYPE
165#undef PGM_GST_NAME
166
167/* Guest - 32-bit mode */
168#define PGM_GST_TYPE PGM_TYPE_32BIT
169#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
170#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
171#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
172#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
173#include "PGMAllBth.h"
174#undef BTH_PGMPOOLKIND_PT_FOR_BIG
175#undef BTH_PGMPOOLKIND_PT_FOR_PT
176#undef PGM_BTH_NAME
177#undef PGM_GST_TYPE
178#undef PGM_GST_NAME
179
180
181/* Guest - PAE mode */
182#define PGM_GST_TYPE PGM_TYPE_PAE
183#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
184#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
185#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
186#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
187#include "PGMAllGst.h"
188#include "PGMAllBth.h"
189#undef BTH_PGMPOOLKIND_PT_FOR_BIG
190#undef BTH_PGMPOOLKIND_PT_FOR_PT
191#undef PGM_BTH_NAME
192#undef PGM_GST_TYPE
193#undef PGM_GST_NAME
194
195#undef PGM_SHW_TYPE
196#undef PGM_SHW_NAME
197
198
199/*
200 * Shadow - AMD64 mode
201 */
202#define PGM_SHW_TYPE PGM_TYPE_AMD64
203#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
204#include "PGMAllShw.h"
205
206/* Guest - real mode */
207#define PGM_GST_TYPE PGM_TYPE_REAL
208#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
209#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_REAL(name)
210#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
211#include "PGMAllBth.h"
212#undef BTH_PGMPOOLKIND_PT_FOR_PT
213#undef PGM_BTH_NAME
214#undef PGM_GST_NAME
215#undef PGM_GST_TYPE
216
217/* Guest - protected mode */
218#define PGM_GST_TYPE PGM_TYPE_PROT
219#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
220#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
221#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
222#include "PGMAllBth.h"
223#undef BTH_PGMPOOLKIND_PT_FOR_PT
224#undef PGM_BTH_NAME
225#undef PGM_GST_TYPE
226#undef PGM_GST_NAME
227
228/* Guest - AMD64 mode */
229#define PGM_GST_TYPE PGM_TYPE_AMD64
230#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
231#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
232#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
233#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
234#include "PGMAllGst.h"
235#include "PGMAllBth.h"
236#undef BTH_PGMPOOLKIND_PT_FOR_BIG
237#undef BTH_PGMPOOLKIND_PT_FOR_PT
238#undef PGM_BTH_NAME
239#undef PGM_GST_TYPE
240#undef PGM_GST_NAME
241
242#undef PGM_SHW_TYPE
243#undef PGM_SHW_NAME
244
245
246
247/**
248 * #PF Handler.
249 *
250 * @returns VBox status code (appropriate for trap handling and GC return).
251 * @param pVM VM Handle.
252 * @param uErr The trap error code.
253 * @param pRegFrame Trap register frame.
254 * @param pvFault The fault address.
255 */
256PGMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
257{
258 LogFlow(("PGMTrap0eHandler: uErr=%#x pvFault=%VGv eip=%VGv\n", uErr, pvFault, pRegFrame->eip));
259 STAM_PROFILE_START(&pVM->pgm.s.StatGCTrap0e, a);
260 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = NULL; } );
261
262
263#ifdef VBOX_WITH_STATISTICS
264 /*
265 * Error code stats.
266 */
267 if (uErr & X86_TRAP_PF_US)
268 {
269 if (!(uErr & X86_TRAP_PF_P))
270 {
271 if (uErr & X86_TRAP_PF_RW)
272 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentWrite);
273 else
274 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentRead);
275 }
276 else if (uErr & X86_TRAP_PF_RW)
277 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSWrite);
278 else if (uErr & X86_TRAP_PF_RSVD)
279 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSReserved);
280 else
281 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSRead);
282 }
283 else
284 { //supervisor
285 if (!(uErr & X86_TRAP_PF_P))
286 {
287 if (uErr & X86_TRAP_PF_RW)
288 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentWrite);
289 else
290 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentRead);
291 }
292 else if (uErr & X86_TRAP_PF_RW)
293 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVWrite);
294 else if (uErr & X86_TRAP_PF_RSVD)
295 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVReserved);
296 }
297#endif
298
299 /*
300 * Call the worker.
301 */
302 int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
303 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
304 rc = VINF_SUCCESS;
305 STAM_STATS({ if (!pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution))
306 pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eMisc; });
307 STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatGCTrap0e, pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution), a);
308 return rc;
309}
310
311
312/**
313 * Prefetch a page
314 *
315 * Typically used to sync commonly used pages before entering raw mode
316 * after a CR3 reload.
317 *
318 * @returns VBox status code suitable for scheduling.
319 * @retval VINF_SUCCESS on success.
320 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
321 * @param pVM VM handle.
322 * @param GCPtrPage Page to invalidate.
323 */
324PGMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
325{
326 STAM_PROFILE_START(&pVM->pgm.s.StatHCPrefetch, a);
327 int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, (RTGCUINTPTR)GCPtrPage);
328 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCPrefetch, a);
329 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%Vrc\n", rc));
330 return rc;
331}
332
333
334/**
335 * Gets the mapping corresponding to the specified address (if any).
336 *
337 * @returns Pointer to the mapping.
338 * @returns NULL if not
339 *
340 * @param pVM The virtual machine.
341 * @param GCPtr The guest context pointer.
342 */
343PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
344{
345 PPGMMAPPING pMapping = CTXSUFF(pVM->pgm.s.pMappings);
346 while (pMapping)
347 {
348 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
349 break;
350 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
351 {
352 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPTConflict);
353 return pMapping;
354 }
355 pMapping = CTXSUFF(pMapping->pNext);
356 }
357 return NULL;
358}
359
360
361/**
362 * Verifies a range of pages for read or write access
363 *
364 * Only checks the guest's page tables
365 *
366 * @returns VBox status code.
367 * @param pVM VM handle.
368 * @param Addr Guest virtual address to check
369 * @param cbSize Access size
370 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
371 */
372PGMDECL(int) PGMIsValidAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
373{
374 /*
375 * Validate input.
376 */
377 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
378 {
379 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
380 return VERR_INVALID_PARAMETER;
381 }
382
383 uint64_t fPage;
384 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
385 if (VBOX_FAILURE(rc))
386 {
387 Log(("PGMIsValidAccess: access violation for %VGv rc=%d\n", Addr, rc));
388 return VINF_EM_RAW_GUEST_TRAP;
389 }
390
391 /*
392 * Check if the access would cause a page fault
393 *
394 * Note that hypervisor page directories are not present in the guest's tables, so this check
395 * is sufficient.
396 */
397 bool fWrite = !!(fAccess & X86_PTE_RW);
398 bool fUser = !!(fAccess & X86_PTE_US);
399 if ( !(fPage & X86_PTE_P)
400 || (fWrite && !(fPage & X86_PTE_RW))
401 || (fUser && !(fPage & X86_PTE_US)) )
402 {
403 Log(("PGMIsValidAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
404 return VINF_EM_RAW_GUEST_TRAP;
405 }
406 if ( VBOX_SUCCESS(rc)
407 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
408 return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
409 return rc;
410}
411
412
413/**
414 * Verifies a range of pages for read or write access
415 *
416 * Supports handling of pages marked for dirty bit tracking and CSAM
417 *
418 * @returns VBox status code.
419 * @param pVM VM handle.
420 * @param Addr Guest virtual address to check
421 * @param cbSize Access size
422 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
423 */
424PGMDECL(int) PGMVerifyAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
425{
426 /*
427 * Validate input.
428 */
429 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
430 {
431 AssertMsgFailed(("PGMVerifyAccess: invalid access type %08x\n", fAccess));
432 return VERR_INVALID_PARAMETER;
433 }
434
435 uint64_t fPageGst;
436 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
437 if (VBOX_FAILURE(rc))
438 {
439 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", Addr, rc));
440 return VINF_EM_RAW_GUEST_TRAP;
441 }
442
443 /*
444 * Check if the access would cause a page fault
445 *
446 * Note that hypervisor page directories are not present in the guest's tables, so this check
447 * is sufficient.
448 */
449 const bool fWrite = !!(fAccess & X86_PTE_RW);
450 const bool fUser = !!(fAccess & X86_PTE_US);
451 if ( !(fPageGst & X86_PTE_P)
452 || (fWrite && !(fPageGst & X86_PTE_RW))
453 || (fUser && !(fPageGst & X86_PTE_US)) )
454 {
455 Log(("PGMVerifyAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
456 return VINF_EM_RAW_GUEST_TRAP;
457 }
458
459 /*
460 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
461 */
462 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
463 if (rc == VERR_PAGE_NOT_PRESENT)
464 {
465 /*
466 * Page is not present in our page tables.
467 * Try to sync it!
468 */
469 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
470 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
471 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
472 if (rc != VINF_SUCCESS)
473 return rc;
474 }
475 else if (rc == VERR_PAGE_TABLE_NOT_PRESENT)
476 {
477 /*
478 * Page table is not present; can't do much here (?)
479 * We could of course try sync the page table.... (?)
480 */
481 return VINF_EM_RAW_EMULATE_INSTR;
482 }
483 else
484 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %VGv failed with %Vrc\n", Addr, rc));
485
486#if 0 /* def VBOX_STRICT; triggers too often now */
487 /*
488 * This check is a bit paranoid, but useful.
489 */
490 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
491 uint64_t fPageShw;
492 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
493 if ( (rc == VERR_PAGE_NOT_PRESENT || VBOX_FAILURE(rc))
494 || (fWrite && !(fPageShw & X86_PTE_RW))
495 || (fUser && !(fPageShw & X86_PTE_US)) )
496 {
497 AssertMsgFailed(("Unexpected access violation for %VGv! rc=%Vrc write=%d user=%d\n",
498 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
499 return VINF_EM_RAW_GUEST_TRAP;
500 }
501#endif
502
503 if ( VBOX_SUCCESS(rc)
504 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
505 || Addr + cbSize < Addr))
506 return PGMVerifyAccess(pVM, Addr + PAGE_SIZE, cbSize > PAGE_SIZE ? cbSize - PAGE_SIZE : 1, fAccess);
507 return rc;
508}
509
510#ifndef IN_GC
511/**
512 * Emulation of the invlpg instruction (HC only actually).
513 *
514 * @returns VBox status code.
515 * @param pVM VM handle.
516 * @param GCPtrPage Page to invalidate.
517 * @remark ASSUMES the page table entry or page directory is
518 * valid. Fairly safe, but there could be edge cases!
519 * @todo Flush page or page directory only if necessary!
520 */
521PGMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
522{
523 LogFlow(("PGMInvalidatePage: GCPtrPage=%VGv\n", GCPtrPage));
524
525 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
526 int rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
527 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
528
529#ifndef IN_RING0
530 /*
531 * Check if we have a pending update of the CR3 monitoring.
532 */
533 if ( VBOX_SUCCESS(rc)
534 && (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
535 {
536 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
537 Assert(!pVM->pgm.s.fMappingsFixed);
538 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
539 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
540 }
541#endif
542
543#ifdef IN_RING3
544 /*
545 * Inform CSAM about the flush
546 */
547 /** @note this is to check if monitored pages have been changed; when we implement callbacks for virtual handlers, this is no longer required. */
548 CSAMR3FlushPage(pVM, GCPtrPage);
549#endif
550 return rc;
551}
552#endif
553
554
555/**
556 * Executes an instruction using the interpreter.
557 *
558 * @returns VBox status code (appropriate for trap handling and GC return).
559 * @param pVM VM handle.
560 * @param pRegFrame Register frame.
561 * @param pvFault Fault address.
562 */
563PGMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
564{
565#ifdef IN_RING0
566 /** @todo */
567 int rc = VINF_EM_RAW_EMULATE_INSTR;
568#else
569 uint32_t cb;
570 int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
571 if (rc == VERR_EM_INTERPRETER)
572 rc = VINF_EM_RAW_EMULATE_INSTR;
573 if (rc != VINF_SUCCESS)
574 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%VGv)\n", rc, pvFault));
575#endif
576 return rc;
577}
578
579
580/**
581 * Gets effective page information (from the VMM page directory).
582 *
583 * @returns VBox status.
584 * @param pVM VM Handle.
585 * @param GCPtr Guest Context virtual address of the page.
586 * @param pfFlags Where to store the flags. These are X86_PTE_*.
587 * @param pHCPhys Where to store the HC physical address of the page.
588 * This is page aligned.
589 * @remark You should use PGMMapGetPage() for pages in a mapping.
590 */
591PGMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
592{
593 return PGM_SHW_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pHCPhys);
594}
595
596
597/**
598 * Sets (replaces) the page flags for a range of pages in the shadow context.
599 *
600 * @returns VBox status.
601 * @param pVM VM handle.
602 * @param GCPtr The address of the first page.
603 * @param cb The size of the range in bytes.
604 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
605 * @remark You must use PGMMapSetPage() for pages in a mapping.
606 */
607PGMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
608{
609 return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
610}
611
612
613/**
614 * Modify page flags for a range of pages in the shadow context.
615 *
616 * The existing flags are ANDed with the fMask and ORed with the fFlags.
617 *
618 * @returns VBox status code.
619 * @param pVM VM handle.
620 * @param GCPtr Virtual address of the first page in the range.
621 * @param cb Size (in bytes) of the range to apply the modification to.
622 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
623 * @param fMask The AND mask - page flags X86_PTE_*.
624 * Be very CAREFUL when ~'ing constants which could be 32-bit!
625 * @remark You must use PGMMapModifyPage() for pages in a mapping.
626 */
627PGMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
628{
629 /*
630 * Validate input.
631 */
632 if (fFlags & X86_PTE_PAE_PG_MASK)
633 {
634 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
635 return VERR_INVALID_PARAMETER;
636 }
637 if (!cb)
638 {
639 AssertFailed();
640 return VERR_INVALID_PARAMETER;
641 }
642
643 /*
644 * Align the input.
645 */
646 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
647 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
648 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
649
650 /*
651 * Call worker.
652 */
653 return PGM_SHW_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
654}
655
656
657/**
658 * Gets effective Guest OS page information.
659 *
660 * When GCPtr is in a big page, the function will return as if it was a normal
661 * 4KB page. If the need for distinguishing between big and normal page becomes
662 * necessary at a later point, a PGMGstGetPage() will be created for that
663 * purpose.
664 *
665 * @returns VBox status.
666 * @param pVM VM Handle.
667 * @param GCPtr Guest Context virtual address of the page.
668 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
669 * @param pGCPhys Where to store the GC physical address of the page.
670 * This is page aligned. The fact that the
671 */
672PGMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
673{
674 return PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pGCPhys);
675}
676
677
678/**
679 * Checks if the page is present.
680 *
681 * @returns true if the page is present.
682 * @returns false if the page is not present.
683 * @param pVM The VM handle.
684 * @param GCPtr Address within the page.
685 */
686PGMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
687{
688 int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
689 return VBOX_SUCCESS(rc);
690}
691
692
693/**
694 * Sets (replaces) the page flags for a range of pages in the guest's tables.
695 *
696 * @returns VBox status.
697 * @param pVM VM handle.
698 * @param GCPtr The address of the first page.
699 * @param cb The size of the range in bytes.
700 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
701 */
702PGMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
703{
704 return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
705}
706
707
708/**
709 * Modify page flags for a range of pages in the guest's tables
710 *
711 * The existing flags are ANDed with the fMask and ORed with the fFlags.
712 *
713 * @returns VBox status code.
714 * @param pVM VM handle.
715 * @param GCPtr Virtual address of the first page in the range.
716 * @param cb Size (in bytes) of the range to apply the modification to.
717 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
718 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
719 * Be very CAREFUL when ~'ing constants which could be 32-bit!
720 */
721PGMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
722{
723 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
724
725 /*
726 * Validate input.
727 */
728 if (fFlags & X86_PTE_PAE_PG_MASK)
729 {
730 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
731 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
732 return VERR_INVALID_PARAMETER;
733 }
734
735 if (!cb)
736 {
737 AssertFailed();
738 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
739 return VERR_INVALID_PARAMETER;
740 }
741
742 LogFlow(("PGMGstModifyPage %VGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
743
744 /*
745 * Adjust input.
746 */
747 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
748 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
749 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK);
750
751 /*
752 * Call worker.
753 */
754 int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
755
756 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
757 return rc;
758}
759
760
761/**
762 * Temporarily turns off the access monitoring of a page within a monitored
763 * physical write/all page access handler region.
764 *
765 * Use this when no further \#PFs are required for that page. Be aware that
766 * a page directory sync might reset the flags, and turn on access monitoring
767 * for the page.
768 *
769 * The caller must do required page table modifications.
770 *
771 * @returns VBox status code.
772 * @param pVM VM Handle
773 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
774 * @param GCPhysPage Physical address of the page to turn off access monitoring for.
775 */
776PGMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
777{
778 /*
779 * Validate the range.
780 */
781 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
782 if (pCur)
783 {
784 if ( GCPhysPage >= pCur->Core.Key
785 && GCPhysPage <= pCur->Core.KeyLast)
786 {
787 /*
788 * Ok, check that the type is right and then clear the flag.
789 */
790 unsigned fFlag;
791 switch (pCur->enmType)
792 {
793 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
794 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
795 break;
796
797 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
798 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
799 break;
800
801 case PGMPHYSHANDLERTYPE_MMIO:
802 case PGMPHYSHANDLERTYPE_PHYSICAL:
803 AssertMsgFailed(("Cannot disable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
804 return VERR_ACCESS_DENIED;
805
806 default:
807 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
808 return VERR_INTERNAL_ERROR;
809 }
810
811 /** @todo add a function which does both clear and set! */
812 /* clear and set */
813 PPGMRAMRANGE pHint = NULL;
814 int rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
815 if (VBOX_SUCCESS(rc))
816 rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
817 return rc;
818 }
819 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
820 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
821 return VERR_INVALID_PARAMETER;
822 }
823
824 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
825 return VERR_PGM_HANDLER_NOT_FOUND;
826}
827
828
829/**
830 * Turns access monitoring of a page within a monitored
831 * physical write/all page access handler regio back on.
832 *
833 * The caller must do required page table modifications.
834 *
835 * @returns VBox status code.
836 * @param pVM VM Handle
837 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
838 * @param GCPhysPage Physical address of the page to turn on access monitoring for.
839 */
840PGMDECL(int) PGMHandlerPhysicalPageReset(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
841{
842 /*
843 * Validate the range.
844 */
845 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
846 if (pCur)
847 {
848 if ( GCPhysPage >= pCur->Core.Key
849 && GCPhysPage <= pCur->Core.KeyLast)
850 {
851 /*
852 * Ok, check that the type is right and then clear the flag.
853 */
854 unsigned fFlag;
855 switch (pCur->enmType)
856 {
857 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
858 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
859 break;
860
861 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
862 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
863 break;
864
865 case PGMPHYSHANDLERTYPE_MMIO:
866 case PGMPHYSHANDLERTYPE_PHYSICAL:
867 AssertMsgFailed(("Cannot enable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
868 return VERR_ACCESS_DENIED;
869
870 default:
871 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
872 return VERR_INTERNAL_ERROR;
873 }
874
875 /** @todo add a function which does both clear and set! */
876 /* set and clear */
877 PPGMRAMRANGE pHint = NULL;
878 int rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
879 if (VBOX_SUCCESS(rc))
880 rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
881 return rc;
882
883 }
884 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
885 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
886 return VERR_INVALID_PARAMETER;
887 }
888
889 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
890 return VERR_PGM_HANDLER_NOT_FOUND;
891}
892
893
894/**
895 * Checks if a physical range is handled
896 *
897 * @returns boolean
898 * @param pVM VM Handle
899 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
900 */
901PGMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
902{
903 /*
904 * Find the handler.
905 */
906 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
907 if (pCur)
908 {
909 if ( GCPhys >= pCur->Core.Key
910 && GCPhys <= pCur->Core.KeyLast)
911 {
912 /*
913 * Validate type.
914 */
915 switch (pCur->enmType)
916 {
917 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
918 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
919 case PGMPHYSHANDLERTYPE_PHYSICAL:
920 case PGMPHYSHANDLERTYPE_MMIO:
921 return true;
922
923 default:
924 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
925 return false;
926 }
927 }
928 }
929
930 return false;
931}
932
933
934#ifdef VBOX_STRICT
935DECLCALLBACK(int) pgmVirtHandlerDumpPhysRange(PAVLROGCPHYSNODECORE pNode, void *pvUser)
936{
937 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
938 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
939 Log(("PHYS2VIRT: Range %VGp-%VGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
940 return 0;
941}
942
943
944void pgmHandlerVirtualDumpPhysPages(PVM pVM)
945{
946 RTAvlroGCPhysDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->PhysToVirtHandlers, true, pgmVirtHandlerDumpPhysRange, 0);
947}
948#endif /* VBOX_STRICT */
949
950
951/**
952 * Gets the current CR3 register value for the shadow memory context.
953 * @returns CR3 value.
954 * @param pVM The VM handle.
955 */
956PGMDECL(uint32_t) PGMGetHyperCR3(PVM pVM)
957{
958 switch (pVM->pgm.s.enmShadowMode)
959 {
960 case PGMMODE_32_BIT:
961 return pVM->pgm.s.HCPhys32BitPD;
962
963 case PGMMODE_PAE:
964 case PGMMODE_PAE_NX:
965 return pVM->pgm.s.HCPhysPaePDPTR;
966
967 case PGMMODE_AMD64:
968 case PGMMODE_AMD64_NX:
969 return pVM->pgm.s.HCPhysPaePML4;
970
971 default:
972 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
973 return ~0;
974 }
975}
976
977
978/**
979 * Gets the CR3 register value for the 32-Bit shadow memory context.
980 * @returns CR3 value.
981 * @param pVM The VM handle.
982 */
983PGMDECL(uint32_t) PGMGetHyper32BitCR3(PVM pVM)
984{
985 return pVM->pgm.s.HCPhys32BitPD;
986}
987
988
989/**
990 * Gets the CR3 register value for the PAE shadow memory context.
991 * @returns CR3 value.
992 * @param pVM The VM handle.
993 */
994PGMDECL(uint32_t) PGMGetHyperPaeCR3(PVM pVM)
995{
996 return pVM->pgm.s.HCPhysPaePDPTR;
997}
998
999
1000/**
1001 * Gets the CR3 register value for the AMD64 shadow memory context.
1002 * @returns CR3 value.
1003 * @param pVM The VM handle.
1004 */
1005PGMDECL(uint32_t) PGMGetHyperAmd64CR3(PVM pVM)
1006{
1007 return pVM->pgm.s.HCPhysPaePML4;
1008}
1009
1010
1011/**
1012 * Gets the current CR3 register value for the HC intermediate memory context.
1013 * @returns CR3 value.
1014 * @param pVM The VM handle.
1015 */
1016PGMDECL(uint32_t) PGMGetInterHCCR3(PVM pVM)
1017{
1018 switch (pVM->pgm.s.enmHostMode)
1019 {
1020 case SUPPAGINGMODE_32_BIT:
1021 case SUPPAGINGMODE_32_BIT_GLOBAL:
1022 return pVM->pgm.s.HCPhysInterPD;
1023
1024 case SUPPAGINGMODE_PAE:
1025 case SUPPAGINGMODE_PAE_GLOBAL:
1026 case SUPPAGINGMODE_PAE_NX:
1027 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1028 return pVM->pgm.s.HCPhysInterPaePDPTR;
1029
1030 case SUPPAGINGMODE_AMD64:
1031 case SUPPAGINGMODE_AMD64_GLOBAL:
1032 case SUPPAGINGMODE_AMD64_NX:
1033 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1034 return pVM->pgm.s.HCPhysInterPaePDPTR;
1035
1036 default:
1037 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1038 return ~0;
1039 }
1040}
1041
1042
1043/**
1044 * Gets the current CR3 register value for the GC intermediate memory context.
1045 * @returns CR3 value.
1046 * @param pVM The VM handle.
1047 */
1048PGMDECL(uint32_t) PGMGetInterGCCR3(PVM pVM)
1049{
1050 switch (pVM->pgm.s.enmShadowMode)
1051 {
1052 case PGMMODE_32_BIT:
1053 return pVM->pgm.s.HCPhysInterPD;
1054
1055 case PGMMODE_PAE:
1056 case PGMMODE_PAE_NX:
1057 return pVM->pgm.s.HCPhysInterPaePDPTR;
1058
1059 case PGMMODE_AMD64:
1060 case PGMMODE_AMD64_NX:
1061 return pVM->pgm.s.HCPhysInterPaePML4;
1062
1063 default:
1064 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
1065 return ~0;
1066 }
1067}
1068
1069
1070/**
1071 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1072 * @returns CR3 value.
1073 * @param pVM The VM handle.
1074 */
1075PGMDECL(uint32_t) PGMGetInter32BitCR3(PVM pVM)
1076{
1077 return pVM->pgm.s.HCPhysInterPD;
1078}
1079
1080
1081/**
1082 * Gets the CR3 register value for the PAE intermediate memory context.
1083 * @returns CR3 value.
1084 * @param pVM The VM handle.
1085 */
1086PGMDECL(uint32_t) PGMGetInterPaeCR3(PVM pVM)
1087{
1088 return pVM->pgm.s.HCPhysInterPaePDPTR;
1089}
1090
1091
1092/**
1093 * Gets the CR3 register value for the AMD64 intermediate memory context.
1094 * @returns CR3 value.
1095 * @param pVM The VM handle.
1096 */
1097PGMDECL(uint32_t) PGMGetInterAmd64CR3(PVM pVM)
1098{
1099 return pVM->pgm.s.HCPhysInterPaePML4;
1100}
1101
1102
1103/**
1104 * Performs and schedules necessary updates following a CR3 load or reload.
1105 *
1106 * This will normally involve mapping the guest PD or nPDPTR
1107 *
1108 * @returns VBox status code.
1109 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1110 * safely be ignored and overridden since the FF will be set too then.
1111 * @param pVM VM handle.
1112 * @param cr3 The new cr3.
1113 * @param fGlobal Indicates whether this is a global flush or not.
1114 */
1115PGMDECL(int) PGMFlushTLB(PVM pVM, uint32_t cr3, bool fGlobal)
1116{
1117 /*
1118 * When in real or protected mode there is no TLB flushing, but
1119 * we may still be called because of REM not caring/knowing this.
1120 * REM is simple and we wish to keep it that way.
1121 */
1122 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1123 return VINF_SUCCESS;
1124 LogFlow(("PGMFlushTLB: cr3=%#x OldCr3=%#x fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
1125 STAM_PROFILE_START(&pVM->pgm.s.StatFlushTLB, a);
1126
1127 /*
1128 * Flag the necessary updates.
1129 */
1130 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1131 if (fGlobal)
1132 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1133
1134 /*
1135 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1136 */
1137 int rc = VINF_SUCCESS;
1138 RTGCPHYS GCPhysCR3;
1139 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
1140 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
1141 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
1142 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
1143 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1144 else
1145 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1146 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1147 {
1148 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1149 rc = PGM_GST_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1150 if (VBOX_SUCCESS(rc) && !pVM->pgm.s.fMappingsFixed)
1151 {
1152 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1153 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1154 }
1155 if (fGlobal)
1156 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3Global);
1157 else
1158 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3);
1159 }
1160 else
1161 {
1162 /*
1163 * Check if we have a pending update of the CR3 monitoring.
1164 */
1165 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1166 {
1167 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1168 Assert(!pVM->pgm.s.fMappingsFixed);
1169 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1170 }
1171 if (fGlobal)
1172 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3Global);
1173 else
1174 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3);
1175 }
1176
1177 STAM_PROFILE_STOP(&pVM->pgm.s.StatFlushTLB, a);
1178 return rc;
1179}
1180
1181
1182/**
1183 * Synchronize the paging structures.
1184 *
1185 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1186 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1187 * in several places, most importantly whenever the CR3 is loaded.
1188 *
1189 * @returns VBox status code.
1190 * @param pVM The virtual machine.
1191 * @param cr0 Guest context CR0 register
1192 * @param cr3 Guest context CR3 register
1193 * @param cr4 Guest context CR4 register
1194 * @param fGlobal Including global page directories or not
1195 */
1196PGMDECL(int) PGMSyncCR3(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
1197{
1198 /*
1199 * We might be called when we shouldn't.
1200 *
1201 * The mode switching will ensure that the PD is resynced
1202 * after every mode switch. So, if we find ourselves here
1203 * when in protected or real mode we can safely disable the
1204 * FF and return immediately.
1205 */
1206 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1207 {
1208 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1209 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1210 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1211 return VINF_SUCCESS;
1212 }
1213
1214 /* If global pages are not supported, then all flushes are global */
1215 if (!(cr4 & X86_CR4_PGE))
1216 fGlobal = true;
1217 LogFlow(("PGMSyncCR3: cr0=%08x cr3=%08x cr4=%08x fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1218 VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1219
1220 /*
1221 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1222 */
1223 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1224 int rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
1225 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1226 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%VRc\n", rc));
1227 if (rc == VINF_SUCCESS)
1228 {
1229 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1230 {
1231 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1232 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1233 }
1234
1235 /*
1236 * Check if we have a pending update of the CR3 monitoring.
1237 */
1238 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1239 {
1240 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1241 Assert(!pVM->pgm.s.fMappingsFixed);
1242 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
1243 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
1244 }
1245 }
1246
1247 /*
1248 * Now flush the CR3 (guest context).
1249 */
1250 if (rc == VINF_SUCCESS)
1251 PGM_INVL_GUEST_TLBS();
1252 return rc;
1253}
1254
1255
1256/**
1257 * Called whenever CR0 or CR4 in a way which may change
1258 * the paging mode.
1259 *
1260 * @returns VBox status code fit for scheduling in GC and R0.
1261 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1262 * @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
1263 * @param pVM VM handle.
1264 * @param cr0 The new cr0.
1265 * @param cr4 The new cr4.
1266 * @param efer The new extended feature enable register.
1267 */
1268PGMDECL(int) PGMChangeMode(PVM pVM, uint32_t cr0, uint32_t cr4, uint64_t efer)
1269{
1270 PGMMODE enmGuestMode;
1271
1272 /*
1273 * Calc the new guest mode.
1274 */
1275 if (!(cr0 & X86_CR0_PE))
1276 enmGuestMode = PGMMODE_REAL;
1277 else if (!(cr0 & X86_CR0_PG))
1278 enmGuestMode = PGMMODE_PROTECTED;
1279 else if (!(cr4 & X86_CR4_PAE))
1280 enmGuestMode = PGMMODE_32_BIT;
1281 else if (!(efer & MSR_K6_EFER_LME))
1282 {
1283 if (!(efer & MSR_K6_EFER_NXE))
1284 enmGuestMode = PGMMODE_PAE;
1285 else
1286 enmGuestMode = PGMMODE_PAE_NX;
1287 }
1288 else
1289 {
1290 if (!(efer & MSR_K6_EFER_NXE))
1291 enmGuestMode = PGMMODE_AMD64;
1292 else
1293 enmGuestMode = PGMMODE_AMD64_NX;
1294 }
1295
1296 /*
1297 * Did it change?
1298 */
1299 if (pVM->pgm.s.enmGuestMode == enmGuestMode)
1300 return VINF_SUCCESS;
1301#ifdef IN_RING3
1302 return pgmR3ChangeMode(pVM, enmGuestMode);
1303#else
1304 Log(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1305 return VINF_PGM_CHANGE_MODE;
1306#endif
1307}
1308
1309
1310/**
1311 * Gets the current guest paging mode.
1312 *
1313 * @returns The current paging mode.
1314 * @param pVM The VM handle.
1315 */
1316PGMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
1317{
1318 return pVM->pgm.s.enmGuestMode;
1319}
1320
1321
1322/**
1323 * Gets the current shadow paging mode.
1324 *
1325 * @returns The current paging mode.
1326 * @param pVM The VM handle.
1327 */
1328PGMDECL(PGMMODE) PGMGetShadowMode(PVM pVM)
1329{
1330 return pVM->pgm.s.enmShadowMode;
1331}
1332
1333
1334/**
1335 * Get mode name.
1336 *
1337 * @returns read-only name string.
1338 * @param enmMode The mode which name is desired.
1339 */
1340PGMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
1341{
1342 switch (enmMode)
1343 {
1344 case PGMMODE_REAL: return "real";
1345 case PGMMODE_PROTECTED: return "protected";
1346 case PGMMODE_32_BIT: return "32-bit";
1347 case PGMMODE_PAE: return "PAE";
1348 case PGMMODE_PAE_NX: return "PAE+NX";
1349 case PGMMODE_AMD64: return "AMD64";
1350 case PGMMODE_AMD64_NX: return "AMD64+NX";
1351 default: return "unknown mode value";
1352 }
1353}
1354
1355
1356/**
1357 * Acquire the PGM lock.
1358 *
1359 * @returns VBox status code
1360 * @param pVM The VM to operate on.
1361 */
1362int pgmLock(PVM pVM)
1363{
1364 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
1365#ifdef IN_GC
1366 if (rc == VERR_SEM_BUSY)
1367 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1368#elif defined(IN_RING0)
1369 if (rc == VERR_SEM_BUSY)
1370 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1371#endif
1372 AssertRC(rc);
1373 return rc;
1374}
1375
1376
1377/**
1378 * Release the PGM lock.
1379 *
1380 * @returns VBox status code
1381 * @param pVM The VM to operate on.
1382 */
1383void pgmUnlock(PVM pVM)
1384{
1385 PDMCritSectLeave(&pVM->pgm.s.CritSect);
1386}
1387
1388
1389#ifdef VBOX_STRICT
1390
1391/**
1392 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1393 * and its AVL enumerators.
1394 */
1395typedef struct PGMAHAFIS
1396{
1397 /** The VM handle. */
1398 PVM pVM;
1399 /** Number of errors. */
1400 unsigned cErrors;
1401 /** The flags we've found. */
1402 unsigned fFlagsFound;
1403 /** The flags we're matching up to.
1404 * This is also on the stack as a const, thus only valid during enumeration. */
1405 unsigned fFlags;
1406 /** The current physical address. */
1407 RTGCPHYS GCPhys;
1408} PGMAHAFIS, *PPGMAHAFIS;
1409
1410/**
1411 * Verify virtual handler by matching physical address.
1412 *
1413 * @returns 0
1414 * @param pNode Pointer to a PGMVIRTHANDLER.
1415 * @param pvUser Pointer to user parameter.
1416 */
1417static DECLCALLBACK(int) pgmVirtHandlerVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1418{
1419 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1420 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1421
1422 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1423 {
1424 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1425 {
1426 switch (pCur->enmType)
1427 {
1428 case PGMVIRTHANDLERTYPE_EIP:
1429 case PGMVIRTHANDLERTYPE_NORMAL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1430 case PGMVIRTHANDLERTYPE_WRITE: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1431 case PGMVIRTHANDLERTYPE_ALL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1432 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1433 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1434 return 0;
1435 }
1436 if ( (pState->fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1437 == pState->fFlagsFound)
1438 break;
1439 }
1440 }
1441 return 0;
1442}
1443
1444
1445/**
1446 * Verify a virtual handler.
1447 *
1448 * @returns 0
1449 * @param pNode Pointer to a PGMVIRTHANDLER.
1450 * @param pvUser Pointer to user parameter.
1451 */
1452static DECLCALLBACK(int) pgmVirtHandlerVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1453{
1454 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1455 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1456 PVM pVM = pState->pVM;
1457
1458 if ( pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS
1459 && (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->GCPtr & PAGE_OFFSET_MASK))
1460 {
1461 AssertMsgFailed(("virt handler phys out has incorrect key! %VGp %VGv %s\n",
1462 pVirt->aPhysToVirt[0].Core.Key, pVirt->GCPtr, HCSTRING(pVirt->pszDesc)));
1463 pState->cErrors++;
1464 }
1465
1466 /*
1467 * Calc flags.
1468 */
1469 unsigned fFlags;
1470 switch (pVirt->enmType)
1471 {
1472 case PGMVIRTHANDLERTYPE_EIP:
1473 case PGMVIRTHANDLERTYPE_NORMAL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1474 case PGMVIRTHANDLERTYPE_WRITE: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1475 case PGMVIRTHANDLERTYPE_ALL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1476 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1477 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1478 return 0;
1479 default:
1480 AssertMsgFailed(("unknown enmType=%d\n", pVirt->enmType));
1481 return 0;
1482 }
1483
1484 /*
1485 * Check pages against flags.
1486 */
1487 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->GCPtr;
1488 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1489 {
1490 RTGCPHYS GCPhysGst;
1491 uint64_t fGst;
1492 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1493 if (rc == VERR_PAGE_NOT_PRESENT)
1494 {
1495 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1496 {
1497 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysNew=~0 iPage=%#x %VGv %s\n",
1498 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1499 pState->cErrors++;
1500 }
1501 continue;
1502 }
1503
1504 AssertRCReturn(rc, 0);
1505 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1506 {
1507 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1508 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1509 pState->cErrors++;
1510 continue;
1511 }
1512
1513 RTHCPHYS HCPhys;
1514 rc = PGMRamGCPhys2HCPhysWithFlags(&pVM->pgm.s, GCPhysGst, &HCPhys);
1515 if (VBOX_FAILURE(rc))
1516 {
1517 AssertMsgFailed(("virt handler getting ram flags rc=%Vrc. GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1518 rc, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1519 pState->cErrors++;
1520 continue;
1521 }
1522
1523 if ((HCPhys & fFlags) != fFlags)
1524 {
1525 AssertMsgFailed(("virt handler flags mismatch. HCPhys=%VHp fFlags=%#x GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1526 HCPhys, fFlags, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1527 pState->cErrors++;
1528 continue;
1529 }
1530 } /* for pages in virtual mapping. */
1531
1532 return 0;
1533}
1534
1535
1536/**
1537 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1538 * that the physical addresses associated with virtual handlers are correct.
1539 *
1540 * @returns Number of mismatches.
1541 * @param pVM The VM handle.
1542 */
1543PGMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1544{
1545 PPGM pPGM = &pVM->pgm.s;
1546 PGMAHAFIS State;
1547 State.cErrors = 0;
1548 State.pVM = pVM;
1549
1550 /*
1551 * Check the RAM flags against the handlers.
1552 */
1553 for (PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); pRam; pRam = CTXSUFF(pRam->pNext))
1554 {
1555 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1556 for (unsigned iPage = 0; iPage < cPages; iPage++)
1557 {
1558 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1559 const unsigned fFlags = pRam->aHCPhys[iPage]
1560 & ( MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL
1561 | MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_TEMP_OFF);
1562 if (fFlags)
1563 {
1564 State.fFlagsFound = 0; /* build flags and compare. */
1565
1566 /* physical first. (simple because of page alignment) */
1567 if ( !(fFlags & MM_RAM_FLAGS_PHYSICAL_TEMP_OFF)
1568 && (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL)))
1569 {
1570 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys);
1571 if (!pPhys)
1572 {
1573 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1574 if ( pPhys
1575 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1576 pPhys = NULL;
1577 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1578 }
1579 if (pPhys)
1580 {
1581 switch (pPhys->enmType)
1582 {
1583 case PGMPHYSHANDLERTYPE_PHYSICAL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER; break;
1584 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE; break;
1585 case PGMPHYSHANDLERTYPE_MMIO:
1586 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_ALL; break;
1587 default: AssertMsgFailed(("Invalid type phys type %d\n", pPhys->enmType)); State.cErrors++; break;
1588 }
1589 if ( (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL))
1590 != State.fFlagsFound)
1591 {
1592 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x %s\n",
1593 State.GCPhys, fFlags, State.fFlagsFound, pPhys->pszDesc));
1594 State.cErrors++;
1595 }
1596
1597#ifdef IN_RING3
1598 /* validate that REM is handling it. */
1599 if (!REMR3IsPageAccessHandled(pVM, State.GCPhys))
1600 {
1601 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%#x fFlags=%#x %s\n",
1602 State.GCPhys, fFlags, pPhys->pszDesc));
1603 State.cErrors++;
1604 }
1605#endif
1606 }
1607 else
1608 {
1609 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%#x\n", State.GCPhys));
1610 State.cErrors++;
1611 }
1612 }
1613
1614 /* virtual flags. */
1615 if (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1616 {
1617 State.fFlags = fFlags;
1618 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOneByPhysAddr, &State);
1619 if ( (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1620 != State.fFlagsFound)
1621 {
1622 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x\n",
1623 State.GCPhys, fFlags, State.fFlagsFound));
1624 State.cErrors++;
1625 }
1626
1627 }
1628 }
1629 } /* foreach page in ram range. */
1630 } /* foreach ram range. */
1631
1632 /*
1633 * Check that the physical addresses of the virtual handlers matches up.
1634 */
1635 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOne, &State);
1636
1637 return State.cErrors;
1638}
1639
1640
1641/**
1642 * Asserts that there are no mapping conflicts.
1643 *
1644 * @returns Number of conflicts.
1645 * @param pVM The VM Handle.
1646 */
1647PGMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
1648{
1649 unsigned cErrors = 0;
1650
1651 /*
1652 * Check for mapping conflicts.
1653 */
1654 for (PPGMMAPPING pMapping = CTXSUFF(pVM->pgm.s.pMappings);
1655 pMapping;
1656 pMapping = CTXSUFF(pMapping->pNext))
1657 {
1658 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
1659 for (RTGCUINTPTR GCPtr = (RTGCUINTPTR)pMapping->GCPtr;
1660 GCPtr <= (RTGCUINTPTR)pMapping->GCPtrLast;
1661 GCPtr += PAGE_SIZE)
1662 {
1663 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
1664 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
1665 {
1666 AssertMsgFailed(("Conflict at %VGv with %s\n", GCPtr, HCSTRING(pMapping->pszDesc)));
1667 cErrors++;
1668 break;
1669 }
1670 }
1671 }
1672
1673 return cErrors;
1674}
1675
1676
1677/**
1678 * Asserts that everything related to the guest CR3 is correctly shadowed.
1679 *
1680 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
1681 * and assert the correctness of the guest CR3 mapping before asserting that the
1682 * shadow page tables is in sync with the guest page tables.
1683 *
1684 * @returns Number of conflicts.
1685 * @param pVM The VM Handle.
1686 * @param cr3 The current guest CR3 register value.
1687 * @param cr4 The current guest CR4 register value.
1688 */
1689PGMDECL(unsigned) PGMAssertCR3(PVM pVM, uint32_t cr3, uint32_t cr4)
1690{
1691 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1692 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCUINTPTR)0);
1693 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1694 return cErrors;
1695}
1696
1697#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette