VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 17787

Last change on this file since 17787 was 17667, checked in by vboxsync, 16 years ago

pgmPoolAlloc no longer fails with non-fatal errors.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 76.3 KB
Line 
1/* $Id: PGMAll.cpp 17667 2009-03-11 09:35:22Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The todo flags. */
62 RTUINT fTodo;
63 /** The CR4 register value. */
64 uint32_t cr4;
65} PGMHVUSTATE, *PPGMHVUSTATE;
66
67
68/*******************************************************************************
69* Internal Functions *
70*******************************************************************************/
71DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
72DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
73DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
74
75/*
76 * Shadow - 32-bit mode
77 */
78#define PGM_SHW_TYPE PGM_TYPE_32BIT
79#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
80#include "PGMAllShw.h"
81
82/* Guest - real mode */
83#define PGM_GST_TYPE PGM_TYPE_REAL
84#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
85#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
86#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
87#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
88#include "PGMGstDefs.h"
89#include "PGMAllGst.h"
90#include "PGMAllBth.h"
91#undef BTH_PGMPOOLKIND_PT_FOR_PT
92#undef BTH_PGMPOOLKIND_ROOT
93#undef PGM_BTH_NAME
94#undef PGM_GST_TYPE
95#undef PGM_GST_NAME
96
97/* Guest - protected mode */
98#define PGM_GST_TYPE PGM_TYPE_PROT
99#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
100#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
101#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
102#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
103#include "PGMGstDefs.h"
104#include "PGMAllGst.h"
105#include "PGMAllBth.h"
106#undef BTH_PGMPOOLKIND_PT_FOR_PT
107#undef BTH_PGMPOOLKIND_ROOT
108#undef PGM_BTH_NAME
109#undef PGM_GST_TYPE
110#undef PGM_GST_NAME
111
112/* Guest - 32-bit mode */
113#define PGM_GST_TYPE PGM_TYPE_32BIT
114#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
115#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
116#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
117#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
118#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
119#include "PGMGstDefs.h"
120#include "PGMAllGst.h"
121#include "PGMAllBth.h"
122#undef BTH_PGMPOOLKIND_PT_FOR_BIG
123#undef BTH_PGMPOOLKIND_PT_FOR_PT
124#undef BTH_PGMPOOLKIND_ROOT
125#undef PGM_BTH_NAME
126#undef PGM_GST_TYPE
127#undef PGM_GST_NAME
128
129#undef PGM_SHW_TYPE
130#undef PGM_SHW_NAME
131
132
133/*
134 * Shadow - PAE mode
135 */
136#define PGM_SHW_TYPE PGM_TYPE_PAE
137#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
138#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
139#include "PGMAllShw.h"
140
141/* Guest - real mode */
142#define PGM_GST_TYPE PGM_TYPE_REAL
143#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
144#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
145#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
146#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
147#include "PGMGstDefs.h"
148#include "PGMAllBth.h"
149#undef BTH_PGMPOOLKIND_PT_FOR_PT
150#undef BTH_PGMPOOLKIND_ROOT
151#undef PGM_BTH_NAME
152#undef PGM_GST_TYPE
153#undef PGM_GST_NAME
154
155/* Guest - protected mode */
156#define PGM_GST_TYPE PGM_TYPE_PROT
157#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
158#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
159#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
160#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
161#include "PGMGstDefs.h"
162#include "PGMAllBth.h"
163#undef BTH_PGMPOOLKIND_PT_FOR_PT
164#undef BTH_PGMPOOLKIND_ROOT
165#undef PGM_BTH_NAME
166#undef PGM_GST_TYPE
167#undef PGM_GST_NAME
168
169/* Guest - 32-bit mode */
170#define PGM_GST_TYPE PGM_TYPE_32BIT
171#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
172#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
173#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
174#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
175#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
176#include "PGMGstDefs.h"
177#include "PGMAllBth.h"
178#undef BTH_PGMPOOLKIND_PT_FOR_BIG
179#undef BTH_PGMPOOLKIND_PT_FOR_PT
180#undef BTH_PGMPOOLKIND_ROOT
181#undef PGM_BTH_NAME
182#undef PGM_GST_TYPE
183#undef PGM_GST_NAME
184
185
186/* Guest - PAE mode */
187#define PGM_GST_TYPE PGM_TYPE_PAE
188#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
189#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
190#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
191#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
192#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
193#include "PGMGstDefs.h"
194#include "PGMAllGst.h"
195#include "PGMAllBth.h"
196#undef BTH_PGMPOOLKIND_PT_FOR_BIG
197#undef BTH_PGMPOOLKIND_PT_FOR_PT
198#undef BTH_PGMPOOLKIND_ROOT
199#undef PGM_BTH_NAME
200#undef PGM_GST_TYPE
201#undef PGM_GST_NAME
202
203#undef PGM_SHW_TYPE
204#undef PGM_SHW_NAME
205
206
207#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
208/*
209 * Shadow - AMD64 mode
210 */
211# define PGM_SHW_TYPE PGM_TYPE_AMD64
212# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
213# include "PGMAllShw.h"
214
215/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
216# define PGM_GST_TYPE PGM_TYPE_PROT
217# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
218# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
219# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
220# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
221# include "PGMGstDefs.h"
222# include "PGMAllBth.h"
223# undef BTH_PGMPOOLKIND_PT_FOR_PT
224# undef BTH_PGMPOOLKIND_ROOT
225# undef PGM_BTH_NAME
226# undef PGM_GST_TYPE
227# undef PGM_GST_NAME
228
229# ifdef VBOX_WITH_64_BITS_GUESTS
230/* Guest - AMD64 mode */
231# define PGM_GST_TYPE PGM_TYPE_AMD64
232# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
233# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
234# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
235# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
236# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
237# include "PGMGstDefs.h"
238# include "PGMAllGst.h"
239# include "PGMAllBth.h"
240# undef BTH_PGMPOOLKIND_PT_FOR_BIG
241# undef BTH_PGMPOOLKIND_PT_FOR_PT
242# undef BTH_PGMPOOLKIND_ROOT
243# undef PGM_BTH_NAME
244# undef PGM_GST_TYPE
245# undef PGM_GST_NAME
246# endif /* VBOX_WITH_64_BITS_GUESTS */
247
248# undef PGM_SHW_TYPE
249# undef PGM_SHW_NAME
250
251
252/*
253 * Shadow - Nested paging mode
254 */
255# define PGM_SHW_TYPE PGM_TYPE_NESTED
256# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
257# include "PGMAllShw.h"
258
259/* Guest - real mode */
260# define PGM_GST_TYPE PGM_TYPE_REAL
261# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
262# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
263# include "PGMGstDefs.h"
264# include "PGMAllBth.h"
265# undef PGM_BTH_NAME
266# undef PGM_GST_TYPE
267# undef PGM_GST_NAME
268
269/* Guest - protected mode */
270# define PGM_GST_TYPE PGM_TYPE_PROT
271# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
272# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
273# include "PGMGstDefs.h"
274# include "PGMAllBth.h"
275# undef PGM_BTH_NAME
276# undef PGM_GST_TYPE
277# undef PGM_GST_NAME
278
279/* Guest - 32-bit mode */
280# define PGM_GST_TYPE PGM_TYPE_32BIT
281# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
282# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
283# include "PGMGstDefs.h"
284# include "PGMAllBth.h"
285# undef PGM_BTH_NAME
286# undef PGM_GST_TYPE
287# undef PGM_GST_NAME
288
289/* Guest - PAE mode */
290# define PGM_GST_TYPE PGM_TYPE_PAE
291# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
292# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
293# include "PGMGstDefs.h"
294# include "PGMAllBth.h"
295# undef PGM_BTH_NAME
296# undef PGM_GST_TYPE
297# undef PGM_GST_NAME
298
299# ifdef VBOX_WITH_64_BITS_GUESTS
300/* Guest - AMD64 mode */
301# define PGM_GST_TYPE PGM_TYPE_AMD64
302# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
303# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
304# include "PGMGstDefs.h"
305# include "PGMAllBth.h"
306# undef PGM_BTH_NAME
307# undef PGM_GST_TYPE
308# undef PGM_GST_NAME
309# endif /* VBOX_WITH_64_BITS_GUESTS */
310
311# undef PGM_SHW_TYPE
312# undef PGM_SHW_NAME
313
314
315/*
316 * Shadow - EPT
317 */
318# define PGM_SHW_TYPE PGM_TYPE_EPT
319# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
320# include "PGMAllShw.h"
321
322/* Guest - real mode */
323# define PGM_GST_TYPE PGM_TYPE_REAL
324# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
325# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
326# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
327# include "PGMGstDefs.h"
328# include "PGMAllBth.h"
329# undef BTH_PGMPOOLKIND_PT_FOR_PT
330# undef PGM_BTH_NAME
331# undef PGM_GST_TYPE
332# undef PGM_GST_NAME
333
334/* Guest - protected mode */
335# define PGM_GST_TYPE PGM_TYPE_PROT
336# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
337# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
338# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
339# include "PGMGstDefs.h"
340# include "PGMAllBth.h"
341# undef BTH_PGMPOOLKIND_PT_FOR_PT
342# undef PGM_BTH_NAME
343# undef PGM_GST_TYPE
344# undef PGM_GST_NAME
345
346/* Guest - 32-bit mode */
347# define PGM_GST_TYPE PGM_TYPE_32BIT
348# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
349# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
350# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
351# include "PGMGstDefs.h"
352# include "PGMAllBth.h"
353# undef BTH_PGMPOOLKIND_PT_FOR_PT
354# undef PGM_BTH_NAME
355# undef PGM_GST_TYPE
356# undef PGM_GST_NAME
357
358/* Guest - PAE mode */
359# define PGM_GST_TYPE PGM_TYPE_PAE
360# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
361# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
362# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
363# include "PGMGstDefs.h"
364# include "PGMAllBth.h"
365# undef BTH_PGMPOOLKIND_PT_FOR_PT
366# undef PGM_BTH_NAME
367# undef PGM_GST_TYPE
368# undef PGM_GST_NAME
369
370# ifdef VBOX_WITH_64_BITS_GUESTS
371/* Guest - AMD64 mode */
372# define PGM_GST_TYPE PGM_TYPE_AMD64
373# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
374# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
375# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
376# include "PGMGstDefs.h"
377# include "PGMAllBth.h"
378# undef BTH_PGMPOOLKIND_PT_FOR_PT
379# undef PGM_BTH_NAME
380# undef PGM_GST_TYPE
381# undef PGM_GST_NAME
382# endif /* VBOX_WITH_64_BITS_GUESTS */
383
384# undef PGM_SHW_TYPE
385# undef PGM_SHW_NAME
386
387#endif /* !IN_RC */
388
389
390#ifndef IN_RING3
391/**
392 * #PF Handler.
393 *
394 * @returns VBox status code (appropriate for trap handling and GC return).
395 * @param pVM VM Handle.
396 * @param uErr The trap error code.
397 * @param pRegFrame Trap register frame.
398 * @param pvFault The fault address.
399 */
400VMMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
401{
402 LogFlow(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%RGv\n", uErr, pvFault, (RTGCPTR)pRegFrame->rip));
403 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0e, a);
404 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
405
406
407#ifdef VBOX_WITH_STATISTICS
408 /*
409 * Error code stats.
410 */
411 if (uErr & X86_TRAP_PF_US)
412 {
413 if (!(uErr & X86_TRAP_PF_P))
414 {
415 if (uErr & X86_TRAP_PF_RW)
416 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentWrite);
417 else
418 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentRead);
419 }
420 else if (uErr & X86_TRAP_PF_RW)
421 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSWrite);
422 else if (uErr & X86_TRAP_PF_RSVD)
423 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSReserved);
424 else if (uErr & X86_TRAP_PF_ID)
425 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNXE);
426 else
427 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSRead);
428 }
429 else
430 { /* Supervisor */
431 if (!(uErr & X86_TRAP_PF_P))
432 {
433 if (uErr & X86_TRAP_PF_RW)
434 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentWrite);
435 else
436 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentRead);
437 }
438 else if (uErr & X86_TRAP_PF_RW)
439 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVWrite);
440 else if (uErr & X86_TRAP_PF_ID)
441 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSNXE);
442 else if (uErr & X86_TRAP_PF_RSVD)
443 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVReserved);
444 }
445#endif /* VBOX_WITH_STATISTICS */
446
447 /*
448 * Call the worker.
449 */
450 int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
451 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
452 rc = VINF_SUCCESS;
453 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPF); });
454 STAM_STATS({ if (!pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
455 pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2Misc; });
456 STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatRZTrap0e, pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
457 return rc;
458}
459#endif /* !IN_RING3 */
460
461
462/**
463 * Prefetch a page
464 *
465 * Typically used to sync commonly used pages before entering raw mode
466 * after a CR3 reload.
467 *
468 * @returns VBox status code suitable for scheduling.
469 * @retval VINF_SUCCESS on success.
470 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
471 * @param pVM VM handle.
472 * @param GCPtrPage Page to invalidate.
473 */
474VMMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
475{
476 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
477 int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, GCPtrPage);
478 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
479 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
480 return rc;
481}
482
483
484/**
485 * Gets the mapping corresponding to the specified address (if any).
486 *
487 * @returns Pointer to the mapping.
488 * @returns NULL if not
489 *
490 * @param pVM The virtual machine.
491 * @param GCPtr The guest context pointer.
492 */
493PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
494{
495 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
496 while (pMapping)
497 {
498 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
499 break;
500 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
501 return pMapping;
502 pMapping = pMapping->CTX_SUFF(pNext);
503 }
504 return NULL;
505}
506
507
508/**
509 * Verifies a range of pages for read or write access
510 *
511 * Only checks the guest's page tables
512 *
513 * @returns VBox status code.
514 * @param pVM VM handle.
515 * @param Addr Guest virtual address to check
516 * @param cbSize Access size
517 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
518 * @remarks Current not in use.
519 */
520VMMDECL(int) PGMIsValidAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
521{
522 /*
523 * Validate input.
524 */
525 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
526 {
527 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
528 return VERR_INVALID_PARAMETER;
529 }
530
531 uint64_t fPage;
532 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
533 if (RT_FAILURE(rc))
534 {
535 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
536 return VINF_EM_RAW_GUEST_TRAP;
537 }
538
539 /*
540 * Check if the access would cause a page fault
541 *
542 * Note that hypervisor page directories are not present in the guest's tables, so this check
543 * is sufficient.
544 */
545 bool fWrite = !!(fAccess & X86_PTE_RW);
546 bool fUser = !!(fAccess & X86_PTE_US);
547 if ( !(fPage & X86_PTE_P)
548 || (fWrite && !(fPage & X86_PTE_RW))
549 || (fUser && !(fPage & X86_PTE_US)) )
550 {
551 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
552 return VINF_EM_RAW_GUEST_TRAP;
553 }
554 if ( RT_SUCCESS(rc)
555 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
556 return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
557 return rc;
558}
559
560
561/**
562 * Verifies a range of pages for read or write access
563 *
564 * Supports handling of pages marked for dirty bit tracking and CSAM
565 *
566 * @returns VBox status code.
567 * @param pVM VM handle.
568 * @param Addr Guest virtual address to check
569 * @param cbSize Access size
570 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
571 */
572VMMDECL(int) PGMVerifyAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
573{
574 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
575
576 /*
577 * Get going.
578 */
579 uint64_t fPageGst;
580 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
581 if (RT_FAILURE(rc))
582 {
583 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
584 return VINF_EM_RAW_GUEST_TRAP;
585 }
586
587 /*
588 * Check if the access would cause a page fault
589 *
590 * Note that hypervisor page directories are not present in the guest's tables, so this check
591 * is sufficient.
592 */
593 const bool fWrite = !!(fAccess & X86_PTE_RW);
594 const bool fUser = !!(fAccess & X86_PTE_US);
595 if ( !(fPageGst & X86_PTE_P)
596 || (fWrite && !(fPageGst & X86_PTE_RW))
597 || (fUser && !(fPageGst & X86_PTE_US)) )
598 {
599 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
600 return VINF_EM_RAW_GUEST_TRAP;
601 }
602
603 if (!HWACCMIsNestedPagingActive(pVM))
604 {
605 /*
606 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
607 */
608 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
609 if ( rc == VERR_PAGE_NOT_PRESENT
610 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
611 {
612 /*
613 * Page is not present in our page tables.
614 * Try to sync it!
615 */
616 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
617 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
618 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
619 if (rc != VINF_SUCCESS)
620 return rc;
621 }
622 else
623 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
624 }
625
626#if 0 /* def VBOX_STRICT; triggers too often now */
627 /*
628 * This check is a bit paranoid, but useful.
629 */
630 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
631 uint64_t fPageShw;
632 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
633 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
634 || (fWrite && !(fPageShw & X86_PTE_RW))
635 || (fUser && !(fPageShw & X86_PTE_US)) )
636 {
637 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
638 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
639 return VINF_EM_RAW_GUEST_TRAP;
640 }
641#endif
642
643 if ( RT_SUCCESS(rc)
644 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
645 || Addr + cbSize < Addr))
646 {
647 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
648 for (;;)
649 {
650 Addr += PAGE_SIZE;
651 if (cbSize > PAGE_SIZE)
652 cbSize -= PAGE_SIZE;
653 else
654 cbSize = 1;
655 rc = PGMVerifyAccess(pVM, Addr, 1, fAccess);
656 if (rc != VINF_SUCCESS)
657 break;
658 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
659 break;
660 }
661 }
662 return rc;
663}
664
665
666/**
667 * Emulation of the invlpg instruction (HC only actually).
668 *
669 * @returns VBox status code, special care required.
670 * @retval VINF_PGM_SYNC_CR3 - handled.
671 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
672 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
673 *
674 * @param pVM VM handle.
675 * @param GCPtrPage Page to invalidate.
676 *
677 * @remark ASSUMES the page table entry or page directory is valid. Fairly
678 * safe, but there could be edge cases!
679 *
680 * @todo Flush page or page directory only if necessary!
681 */
682VMMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
683{
684 int rc;
685 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
686
687#ifndef IN_RING3
688 /*
689 * Notify the recompiler so it can record this instruction.
690 * Failure happens when it's out of space. We'll return to HC in that case.
691 */
692 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
693 if (rc != VINF_SUCCESS)
694 return rc;
695#endif /* !IN_RING3 */
696
697
698#ifdef IN_RC
699 /*
700 * Check for conflicts and pending CR3 monitoring updates.
701 */
702 if (!pVM->pgm.s.fMappingsFixed)
703 {
704 if ( pgmGetMapping(pVM, GCPtrPage)
705 && PGMGstGetPage(pVM, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
706 {
707 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
708 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
709 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
710 return VINF_PGM_SYNC_CR3;
711 }
712
713 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
714 {
715 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
716 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
717 return VINF_EM_RAW_EMULATE_INSTR;
718 }
719 }
720#endif /* IN_RC */
721
722 /*
723 * Call paging mode specific worker.
724 */
725 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
726 rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
727 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
728
729#ifdef IN_RING3
730 /*
731 * Check if we have a pending update of the CR3 monitoring.
732 */
733 if ( RT_SUCCESS(rc)
734 && (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
735 {
736 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
737 Assert(!pVM->pgm.s.fMappingsFixed);
738 }
739
740 /*
741 * Inform CSAM about the flush
742 *
743 * Note: This is to check if monitored pages have been changed; when we implement
744 * callbacks for virtual handlers, this is no longer required.
745 */
746 CSAMR3FlushPage(pVM, GCPtrPage);
747#endif /* IN_RING3 */
748 return rc;
749}
750
751
752/**
753 * Executes an instruction using the interpreter.
754 *
755 * @returns VBox status code (appropriate for trap handling and GC return).
756 * @param pVM VM handle.
757 * @param pRegFrame Register frame.
758 * @param pvFault Fault address.
759 */
760VMMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
761{
762 uint32_t cb;
763 int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
764 if (rc == VERR_EM_INTERPRETER)
765 rc = VINF_EM_RAW_EMULATE_INSTR;
766 if (rc != VINF_SUCCESS)
767 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
768 return rc;
769}
770
771
772/**
773 * Gets effective page information (from the VMM page directory).
774 *
775 * @returns VBox status.
776 * @param pVM VM Handle.
777 * @param GCPtr Guest Context virtual address of the page.
778 * @param pfFlags Where to store the flags. These are X86_PTE_*.
779 * @param pHCPhys Where to store the HC physical address of the page.
780 * This is page aligned.
781 * @remark You should use PGMMapGetPage() for pages in a mapping.
782 */
783VMMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
784{
785 return PGM_SHW_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pHCPhys);
786}
787
788
789/**
790 * Sets (replaces) the page flags for a range of pages in the shadow context.
791 *
792 * @returns VBox status.
793 * @param pVM VM handle.
794 * @param GCPtr The address of the first page.
795 * @param cb The size of the range in bytes.
796 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
797 * @remark You must use PGMMapSetPage() for pages in a mapping.
798 */
799VMMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
800{
801 return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
802}
803
804
805/**
806 * Modify page flags for a range of pages in the shadow context.
807 *
808 * The existing flags are ANDed with the fMask and ORed with the fFlags.
809 *
810 * @returns VBox status code.
811 * @param pVM VM handle.
812 * @param GCPtr Virtual address of the first page in the range.
813 * @param cb Size (in bytes) of the range to apply the modification to.
814 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
815 * @param fMask The AND mask - page flags X86_PTE_*.
816 * Be very CAREFUL when ~'ing constants which could be 32-bit!
817 * @remark You must use PGMMapModifyPage() for pages in a mapping.
818 */
819VMMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
820{
821 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
822 Assert(cb);
823
824 /*
825 * Align the input.
826 */
827 cb += GCPtr & PAGE_OFFSET_MASK;
828 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
829 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
830
831 /*
832 * Call worker.
833 */
834 return PGM_SHW_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
835}
836
837
838/**
839 * Gets the SHADOW page directory pointer for the specified address.
840 *
841 * @returns VBox status.
842 * @param pVM VM handle.
843 * @param GCPtr The address.
844 * @param ppPdpt Receives address of pdpt
845 * @param ppPD Receives address of page directory
846 * @remarks Unused.
847 */
848DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
849{
850 PPGM pPGM = &pVM->pgm.s;
851 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
852 PPGMPOOLPAGE pShwPage;
853
854 Assert(!HWACCMIsNestedPagingActive(pVM));
855
856 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
857 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
858 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
859
860 *ppPdpt = pPdpt;
861 if (!pPdpe->n.u1Present)
862 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
863
864 Assert(pPdpe->u & X86_PDPE_PG_MASK);
865 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
866 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
867
868 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
869 return VINF_SUCCESS;
870}
871
872/**
873 * Gets the shadow page directory for the specified address, PAE.
874 *
875 * @returns Pointer to the shadow PD.
876 * @param pVM VM handle.
877 * @param GCPtr The address.
878 * @param pGstPdpe Guest PDPT entry
879 * @param ppPD Receives address of page directory
880 */
881int pgmShwSyncPaePDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
882{
883 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
884 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
885 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
886 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
887 PPGMPOOLPAGE pShwPage;
888 int rc;
889
890 /* Allocate page directory if not present. */
891 if ( !pPdpe->n.u1Present
892 && !(pPdpe->u & X86_PDPE_PG_MASK))
893 {
894 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
895 bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
896 RTGCPTR64 GCPdPt;
897 PGMPOOLKIND enmKind;
898
899# if defined(IN_RC)
900 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
901 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
902# endif
903
904 if (fNestedPaging || !fPaging)
905 {
906 /* AMD-V nested paging or real/protected mode without paging */
907 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
908 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
909 }
910 else
911 {
912 Assert(pGstPdpe);
913
914 if (CPUMGetGuestCR4(pVM) & X86_CR4_PAE)
915 {
916 if (!pGstPdpe->n.u1Present)
917 {
918 /* PD not present; guest must reload CR3 to change it.
919 * No need to monitor anything in this case.
920 */
921 Assert(!HWACCMIsEnabled(pVM));
922
923 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
924 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
925 pGstPdpe->n.u1Present = 1;
926 }
927 else
928 {
929 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
930 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
931 }
932 }
933 else
934 {
935 GCPdPt = CPUMGetGuestCR3(pVM);
936 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
937 }
938 }
939
940 /* Create a reference back to the PDPT by using the index in its shadow page. */
941 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
942 AssertRCReturn(rc, rc);
943
944 /* The PD was cached or created; hook it up now. */
945 pPdpe->u |= pShwPage->Core.Key
946 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
947
948# if defined(IN_RC)
949 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
950 * non-present PDPT will continue to cause page faults.
951 */
952 ASMReloadCR3();
953 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
954# endif
955 }
956 else
957 {
958 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
959 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
960
961 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
962 }
963 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
964 return VINF_SUCCESS;
965}
966
967
968/**
969 * Gets the pointer to the shadow page directory entry for an address, PAE.
970 *
971 * @returns Pointer to the PDE.
972 * @param pPGM Pointer to the PGM instance data.
973 * @param GCPtr The address.
974 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
975 */
976DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
977{
978 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
979 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
980 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
981 if (!pPdpt->a[iPdPt].n.u1Present)
982 {
983 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
984 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
985 }
986 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
987
988 /* Fetch the pgm pool shadow descriptor. */
989 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
990 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
991
992 *ppShwPde = pShwPde;
993 return VINF_SUCCESS;
994}
995
996#ifndef IN_RC
997
998/**
999 * Syncs the SHADOW page directory pointer for the specified address.
1000 *
1001 * Allocates backing pages in case the PDPT or PML4 entry is missing.
1002 *
1003 * The caller is responsible for making sure the guest has a valid PD before
1004 * calling this function.
1005 *
1006 * @returns VBox status.
1007 * @param pVM VM handle.
1008 * @param GCPtr The address.
1009 * @param pGstPml4e Guest PML4 entry
1010 * @param pGstPdpe Guest PDPT entry
1011 * @param ppPD Receives address of page directory
1012 */
1013int pgmShwSyncLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
1014{
1015 PPGM pPGM = &pVM->pgm.s;
1016 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1017 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1018 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1019 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
1020 bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
1021 PPGMPOOLPAGE pShwPage;
1022 int rc;
1023
1024 /* Allocate page directory pointer table if not present. */
1025 if ( !pPml4e->n.u1Present
1026 && !(pPml4e->u & X86_PML4E_PG_MASK))
1027 {
1028 RTGCPTR64 GCPml4;
1029 PGMPOOLKIND enmKind;
1030
1031 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1032
1033 if (fNestedPaging || !fPaging)
1034 {
1035 /* AMD-V nested paging or real/protected mode without paging */
1036 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1037 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1038 }
1039 else
1040 {
1041 Assert(pGstPml4e && pGstPdpe);
1042
1043 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1044 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1045 }
1046
1047 /* Create a reference back to the PDPT by using the index in its shadow page. */
1048 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1049 AssertRCReturn(rc, rc);
1050 }
1051 else
1052 {
1053 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1054 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1055 }
1056 /* The PDPT was cached or created; hook it up now. */
1057 pPml4e->u |= pShwPage->Core.Key
1058 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1059
1060 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1061 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1062 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1063
1064 /* Allocate page directory if not present. */
1065 if ( !pPdpe->n.u1Present
1066 && !(pPdpe->u & X86_PDPE_PG_MASK))
1067 {
1068 RTGCPTR64 GCPdPt;
1069 PGMPOOLKIND enmKind;
1070
1071 if (fNestedPaging || !fPaging)
1072 {
1073 /* AMD-V nested paging or real/protected mode without paging */
1074 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1075 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1076 }
1077 else
1078 {
1079 Assert(pGstPdpe);
1080
1081 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1082 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1083 }
1084
1085 /* Create a reference back to the PDPT by using the index in its shadow page. */
1086 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1087 AssertRCReturn(rc, rc);
1088 }
1089 else
1090 {
1091 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1092 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1093 }
1094 /* The PD was cached or created; hook it up now. */
1095 pPdpe->u |= pShwPage->Core.Key
1096 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1097
1098 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1099 return VINF_SUCCESS;
1100}
1101
1102
1103/**
1104 * Gets the SHADOW page directory pointer for the specified address (long mode).
1105 *
1106 * @returns VBox status.
1107 * @param pVM VM handle.
1108 * @param GCPtr The address.
1109 * @param ppPdpt Receives address of pdpt
1110 * @param ppPD Receives address of page directory
1111 */
1112DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1113{
1114 PPGM pPGM = &pVM->pgm.s;
1115 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1116 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1117 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1118 if (ppPml4e)
1119 *ppPml4e = (PX86PML4E)pPml4e;
1120 if (!pPml4e->n.u1Present)
1121 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1122
1123 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1124 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1125 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1126
1127 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1128 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1129 if (!pPdpt->a[iPdPt].n.u1Present)
1130 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1131
1132 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1133 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1134
1135 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1136 return VINF_SUCCESS;
1137}
1138
1139
1140/**
1141 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1142 * backing pages in case the PDPT or PML4 entry is missing.
1143 *
1144 * @returns VBox status.
1145 * @param pVM VM handle.
1146 * @param GCPtr The address.
1147 * @param ppPdpt Receives address of pdpt
1148 * @param ppPD Receives address of page directory
1149 */
1150int pgmShwGetEPTPDPtr(PVM pVM, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1151{
1152 PPGM pPGM = &pVM->pgm.s;
1153 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1154 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1155 PEPTPML4 pPml4;
1156 PEPTPML4E pPml4e;
1157 PPGMPOOLPAGE pShwPage;
1158 int rc;
1159
1160 Assert(HWACCMIsNestedPagingActive(pVM));
1161
1162 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1163 Assert(pPml4);
1164
1165 /* Allocate page directory pointer table if not present. */
1166 pPml4e = &pPml4->a[iPml4];
1167 if ( !pPml4e->n.u1Present
1168 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1169 {
1170 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1171 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1172
1173 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1174 AssertRCReturn(rc, rc);
1175 }
1176 else
1177 {
1178 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1179 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1180 }
1181 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1182 pPml4e->u = pShwPage->Core.Key;
1183 pPml4e->n.u1Present = 1;
1184 pPml4e->n.u1Write = 1;
1185 pPml4e->n.u1Execute = 1;
1186
1187 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1188 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1189 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1190
1191 if (ppPdpt)
1192 *ppPdpt = pPdpt;
1193
1194 /* Allocate page directory if not present. */
1195 if ( !pPdpe->n.u1Present
1196 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1197 {
1198 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1199
1200 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1201 AssertRCReturn(rc, rc);
1202 }
1203 else
1204 {
1205 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1206 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1207 }
1208 /* The PD was cached or created; hook it up now and fill with the default value. */
1209 pPdpe->u = pShwPage->Core.Key;
1210 pPdpe->n.u1Present = 1;
1211 pPdpe->n.u1Write = 1;
1212 pPdpe->n.u1Execute = 1;
1213
1214 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1215 return VINF_SUCCESS;
1216}
1217
1218#endif /* IN_RC */
1219
1220/**
1221 * Gets effective Guest OS page information.
1222 *
1223 * When GCPtr is in a big page, the function will return as if it was a normal
1224 * 4KB page. If the need for distinguishing between big and normal page becomes
1225 * necessary at a later point, a PGMGstGetPage() will be created for that
1226 * purpose.
1227 *
1228 * @returns VBox status.
1229 * @param pVM VM Handle.
1230 * @param GCPtr Guest Context virtual address of the page.
1231 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1232 * @param pGCPhys Where to store the GC physical address of the page.
1233 * This is page aligned. The fact that the
1234 */
1235VMMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1236{
1237 return PGM_GST_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pGCPhys);
1238}
1239
1240
1241/**
1242 * Checks if the page is present.
1243 *
1244 * @returns true if the page is present.
1245 * @returns false if the page is not present.
1246 * @param pVM The VM handle.
1247 * @param GCPtr Address within the page.
1248 */
1249VMMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
1250{
1251 int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
1252 return RT_SUCCESS(rc);
1253}
1254
1255
1256/**
1257 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1258 *
1259 * @returns VBox status.
1260 * @param pVM VM handle.
1261 * @param GCPtr The address of the first page.
1262 * @param cb The size of the range in bytes.
1263 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1264 */
1265VMMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1266{
1267 return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
1268}
1269
1270
1271/**
1272 * Modify page flags for a range of pages in the guest's tables
1273 *
1274 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1275 *
1276 * @returns VBox status code.
1277 * @param pVM VM handle.
1278 * @param GCPtr Virtual address of the first page in the range.
1279 * @param cb Size (in bytes) of the range to apply the modification to.
1280 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1281 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1282 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1283 */
1284VMMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1285{
1286 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1287
1288 /*
1289 * Validate input.
1290 */
1291 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1292 Assert(cb);
1293
1294 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1295
1296 /*
1297 * Adjust input.
1298 */
1299 cb += GCPtr & PAGE_OFFSET_MASK;
1300 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1301 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1302
1303 /*
1304 * Call worker.
1305 */
1306 int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
1307
1308 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1309 return rc;
1310}
1311
1312
1313/**
1314 * Gets the specified page directory pointer table entry.
1315 *
1316 * @returns PDP entry
1317 * @param pPGM Pointer to the PGM instance data.
1318 * @param iPdpt PDPT index
1319 */
1320VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVM pVM, unsigned iPdpt)
1321{
1322 Assert(iPdpt <= 3);
1323 return pgmGstGetPaePDPTPtr(&pVM->pgm.s)->a[iPdpt & 3];
1324}
1325
1326
1327/**
1328 * Gets the current CR3 register value for the shadow memory context.
1329 * @returns CR3 value.
1330 * @param pVM The VM handle.
1331 */
1332VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVM pVM)
1333{
1334 PPGMPOOLPAGE pPoolPage = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
1335 AssertPtrReturn(pPoolPage, 0);
1336 return pPoolPage->Core.Key;
1337}
1338
1339
1340/**
1341 * Gets the current CR3 register value for the nested memory context.
1342 * @returns CR3 value.
1343 * @param pVM The VM handle.
1344 */
1345VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVM pVM, PGMMODE enmShadowMode)
1346{
1347 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1348 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1349}
1350
1351
1352/**
1353 * Gets the CR3 register value for the 32-Bit shadow memory context.
1354 * @returns CR3 value.
1355 * @param pVM The VM handle.
1356 */
1357VMMDECL(RTHCPHYS) PGMGetHyper32BitCR3(PVM pVM)
1358{
1359 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1360 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1361}
1362
1363
1364/**
1365 * Gets the CR3 register value for the PAE shadow memory context.
1366 * @returns CR3 value.
1367 * @param pVM The VM handle.
1368 */
1369VMMDECL(RTHCPHYS) PGMGetHyperPaeCR3(PVM pVM)
1370{
1371 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1372 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1373}
1374
1375
1376/**
1377 * Gets the CR3 register value for the AMD64 shadow memory context.
1378 * @returns CR3 value.
1379 * @param pVM The VM handle.
1380 */
1381VMMDECL(RTHCPHYS) PGMGetHyperAmd64CR3(PVM pVM)
1382{
1383 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1384 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1385}
1386
1387
1388/**
1389 * Gets the current CR3 register value for the HC intermediate memory context.
1390 * @returns CR3 value.
1391 * @param pVM The VM handle.
1392 */
1393VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1394{
1395 switch (pVM->pgm.s.enmHostMode)
1396 {
1397 case SUPPAGINGMODE_32_BIT:
1398 case SUPPAGINGMODE_32_BIT_GLOBAL:
1399 return pVM->pgm.s.HCPhysInterPD;
1400
1401 case SUPPAGINGMODE_PAE:
1402 case SUPPAGINGMODE_PAE_GLOBAL:
1403 case SUPPAGINGMODE_PAE_NX:
1404 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1405 return pVM->pgm.s.HCPhysInterPaePDPT;
1406
1407 case SUPPAGINGMODE_AMD64:
1408 case SUPPAGINGMODE_AMD64_GLOBAL:
1409 case SUPPAGINGMODE_AMD64_NX:
1410 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1411 return pVM->pgm.s.HCPhysInterPaePDPT;
1412
1413 default:
1414 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1415 return ~0;
1416 }
1417}
1418
1419
1420/**
1421 * Gets the current CR3 register value for the RC intermediate memory context.
1422 * @returns CR3 value.
1423 * @param pVM The VM handle.
1424 */
1425VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM)
1426{
1427 switch (pVM->pgm.s.enmShadowMode)
1428 {
1429 case PGMMODE_32_BIT:
1430 return pVM->pgm.s.HCPhysInterPD;
1431
1432 case PGMMODE_PAE:
1433 case PGMMODE_PAE_NX:
1434 return pVM->pgm.s.HCPhysInterPaePDPT;
1435
1436 case PGMMODE_AMD64:
1437 case PGMMODE_AMD64_NX:
1438 return pVM->pgm.s.HCPhysInterPaePML4;
1439
1440 case PGMMODE_EPT:
1441 case PGMMODE_NESTED:
1442 return 0; /* not relevant */
1443
1444 default:
1445 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
1446 return ~0;
1447 }
1448}
1449
1450
1451/**
1452 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1453 * @returns CR3 value.
1454 * @param pVM The VM handle.
1455 */
1456VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1457{
1458 return pVM->pgm.s.HCPhysInterPD;
1459}
1460
1461
1462/**
1463 * Gets the CR3 register value for the PAE intermediate memory context.
1464 * @returns CR3 value.
1465 * @param pVM The VM handle.
1466 */
1467VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1468{
1469 return pVM->pgm.s.HCPhysInterPaePDPT;
1470}
1471
1472
1473/**
1474 * Gets the CR3 register value for the AMD64 intermediate memory context.
1475 * @returns CR3 value.
1476 * @param pVM The VM handle.
1477 */
1478VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1479{
1480 return pVM->pgm.s.HCPhysInterPaePML4;
1481}
1482
1483
1484/**
1485 * Performs and schedules necessary updates following a CR3 load or reload.
1486 *
1487 * This will normally involve mapping the guest PD or nPDPT
1488 *
1489 * @returns VBox status code.
1490 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1491 * safely be ignored and overridden since the FF will be set too then.
1492 * @param pVM VM handle.
1493 * @param cr3 The new cr3.
1494 * @param fGlobal Indicates whether this is a global flush or not.
1495 */
1496VMMDECL(int) PGMFlushTLB(PVM pVM, uint64_t cr3, bool fGlobal)
1497{
1498 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1499
1500 /*
1501 * Always flag the necessary updates; necessary for hardware acceleration
1502 */
1503 /** @todo optimize this, it shouldn't always be necessary. */
1504 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1505 if (fGlobal)
1506 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1507 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
1508
1509 /*
1510 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1511 */
1512 int rc = VINF_SUCCESS;
1513 RTGCPHYS GCPhysCR3;
1514 switch (pVM->pgm.s.enmGuestMode)
1515 {
1516 case PGMMODE_PAE:
1517 case PGMMODE_PAE_NX:
1518 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1519 break;
1520 case PGMMODE_AMD64:
1521 case PGMMODE_AMD64_NX:
1522 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1523 break;
1524 default:
1525 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1526 break;
1527 }
1528
1529 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1530 {
1531 RTGCPHYS GCPhysOldCR3 = pVM->pgm.s.GCPhysCR3;
1532 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1533 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1534 if (RT_LIKELY(rc == VINF_SUCCESS))
1535 {
1536 if (!pVM->pgm.s.fMappingsFixed)
1537 {
1538 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1539 }
1540 }
1541 else
1542 {
1543 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1544 Assert(VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL | VM_FF_PGM_SYNC_CR3));
1545 pVM->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1546 pVM->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1547 if (!pVM->pgm.s.fMappingsFixed)
1548 pVM->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1549 }
1550
1551 if (fGlobal)
1552 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1553 else
1554 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1555 }
1556 else
1557 {
1558 /*
1559 * Check if we have a pending update of the CR3 monitoring.
1560 */
1561 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1562 {
1563 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1564 Assert(!pVM->pgm.s.fMappingsFixed);
1565 }
1566 if (fGlobal)
1567 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1568 else
1569 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1570 }
1571
1572 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1573 return rc;
1574}
1575
1576
1577/**
1578 * Performs and schedules necessary updates following a CR3 load or reload when
1579 * using nested or extended paging.
1580 *
1581 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1582 * TLB and triggering a SyncCR3.
1583 *
1584 * This will normally involve mapping the guest PD or nPDPT
1585 *
1586 * @returns VBox status code.
1587 * @retval VINF_SUCCESS.
1588 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1589 * requires a CR3 sync. This can safely be ignored and overridden since
1590 * the FF will be set too then.)
1591 * @param pVM VM handle.
1592 * @param cr3 The new cr3.
1593 */
1594VMMDECL(int) PGMUpdateCR3(PVM pVM, uint64_t cr3)
1595{
1596 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVM->pgm.s.GCPhysCR3));
1597
1598 /* We assume we're only called in nested paging mode. */
1599 Assert(pVM->pgm.s.fMappingsFixed);
1600 Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1601 Assert(pVM->pgm.s.enmShadowMode == PGMMODE_NESTED || pVM->pgm.s.enmShadowMode == PGMMODE_EPT);
1602
1603 /*
1604 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1605 */
1606 int rc = VINF_SUCCESS;
1607 RTGCPHYS GCPhysCR3;
1608 switch (pVM->pgm.s.enmGuestMode)
1609 {
1610 case PGMMODE_PAE:
1611 case PGMMODE_PAE_NX:
1612 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1613 break;
1614 case PGMMODE_AMD64:
1615 case PGMMODE_AMD64_NX:
1616 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1617 break;
1618 default:
1619 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1620 break;
1621 }
1622 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1623 {
1624 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1625 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1626 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1627 }
1628 return rc;
1629}
1630
1631
1632/**
1633 * Synchronize the paging structures.
1634 *
1635 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1636 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1637 * in several places, most importantly whenever the CR3 is loaded.
1638 *
1639 * @returns VBox status code.
1640 * @param pVM The virtual machine.
1641 * @param cr0 Guest context CR0 register
1642 * @param cr3 Guest context CR3 register
1643 * @param cr4 Guest context CR4 register
1644 * @param fGlobal Including global page directories or not
1645 */
1646VMMDECL(int) PGMSyncCR3(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1647{
1648 int rc;
1649
1650 /*
1651 * We might be called when we shouldn't.
1652 *
1653 * The mode switching will ensure that the PD is resynced
1654 * after every mode switch. So, if we find ourselves here
1655 * when in protected or real mode we can safely disable the
1656 * FF and return immediately.
1657 */
1658 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1659 {
1660 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1661 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1662 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1663 return VINF_SUCCESS;
1664 }
1665
1666 /* If global pages are not supported, then all flushes are global. */
1667 if (!(cr4 & X86_CR4_PGE))
1668 fGlobal = true;
1669 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1670 VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1671
1672#ifdef PGMPOOL_WITH_MONITORING
1673 /*
1674 * The pool may have pending stuff and even require a return to ring-3 to
1675 * clear the whole thing.
1676 */
1677 rc = pgmPoolSyncCR3(pVM);
1678 if (rc != VINF_SUCCESS)
1679 return rc;
1680#endif
1681
1682 /*
1683 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1684 * This should be done before SyncCR3.
1685 */
1686 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1687 {
1688 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1689
1690 RTGCPHYS GCPhysCR3Old = pVM->pgm.s.GCPhysCR3;
1691 RTGCPHYS GCPhysCR3;
1692 switch (pVM->pgm.s.enmGuestMode)
1693 {
1694 case PGMMODE_PAE:
1695 case PGMMODE_PAE_NX:
1696 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1697 break;
1698 case PGMMODE_AMD64:
1699 case PGMMODE_AMD64_NX:
1700 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1701 break;
1702 default:
1703 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1704 break;
1705 }
1706
1707 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1708 {
1709 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1710 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1711 }
1712#ifdef IN_RING3
1713 if (rc == VINF_PGM_SYNC_CR3)
1714 rc = pgmPoolSyncCR3(pVM);
1715#else
1716 if (rc == VINF_PGM_SYNC_CR3)
1717 {
1718 pVM->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1719 return rc;
1720 }
1721#endif
1722 AssertRCReturn(rc, rc);
1723 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1724 }
1725
1726 /*
1727 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1728 */
1729 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1730 rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
1731 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1732 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1733 if (rc == VINF_SUCCESS)
1734 {
1735 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1736 {
1737 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1738 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1739 }
1740
1741 /*
1742 * Check if we have a pending update of the CR3 monitoring.
1743 */
1744 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1745 {
1746 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1747 Assert(!pVM->pgm.s.fMappingsFixed);
1748 }
1749 }
1750
1751 /*
1752 * Now flush the CR3 (guest context).
1753 */
1754 if (rc == VINF_SUCCESS)
1755 PGM_INVL_GUEST_TLBS();
1756 return rc;
1757}
1758
1759
1760/**
1761 * Called whenever CR0 or CR4 in a way which may change
1762 * the paging mode.
1763 *
1764 * @returns VBox status code fit for scheduling in GC and R0.
1765 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1766 * @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
1767 * @param pVM VM handle.
1768 * @param cr0 The new cr0.
1769 * @param cr4 The new cr4.
1770 * @param efer The new extended feature enable register.
1771 */
1772VMMDECL(int) PGMChangeMode(PVM pVM, uint64_t cr0, uint64_t cr4, uint64_t efer)
1773{
1774 PGMMODE enmGuestMode;
1775
1776 /*
1777 * Calc the new guest mode.
1778 */
1779 if (!(cr0 & X86_CR0_PE))
1780 enmGuestMode = PGMMODE_REAL;
1781 else if (!(cr0 & X86_CR0_PG))
1782 enmGuestMode = PGMMODE_PROTECTED;
1783 else if (!(cr4 & X86_CR4_PAE))
1784 enmGuestMode = PGMMODE_32_BIT;
1785 else if (!(efer & MSR_K6_EFER_LME))
1786 {
1787 if (!(efer & MSR_K6_EFER_NXE))
1788 enmGuestMode = PGMMODE_PAE;
1789 else
1790 enmGuestMode = PGMMODE_PAE_NX;
1791 }
1792 else
1793 {
1794 if (!(efer & MSR_K6_EFER_NXE))
1795 enmGuestMode = PGMMODE_AMD64;
1796 else
1797 enmGuestMode = PGMMODE_AMD64_NX;
1798 }
1799
1800 /*
1801 * Did it change?
1802 */
1803 if (pVM->pgm.s.enmGuestMode == enmGuestMode)
1804 return VINF_SUCCESS;
1805
1806 /* Flush the TLB */
1807 PGM_INVL_GUEST_TLBS();
1808
1809#ifdef IN_RING3
1810 return PGMR3ChangeMode(pVM, enmGuestMode);
1811#else
1812 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1813 return VINF_PGM_CHANGE_MODE;
1814#endif
1815}
1816
1817
1818/**
1819 * Gets the current guest paging mode.
1820 *
1821 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1822 *
1823 * @returns The current paging mode.
1824 * @param pVM The VM handle.
1825 */
1826VMMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
1827{
1828 return pVM->pgm.s.enmGuestMode;
1829}
1830
1831
1832/**
1833 * Gets the current shadow paging mode.
1834 *
1835 * @returns The current paging mode.
1836 * @param pVM The VM handle.
1837 */
1838VMMDECL(PGMMODE) PGMGetShadowMode(PVM pVM)
1839{
1840 return pVM->pgm.s.enmShadowMode;
1841}
1842
1843/**
1844 * Gets the current host paging mode.
1845 *
1846 * @returns The current paging mode.
1847 * @param pVM The VM handle.
1848 */
1849VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
1850{
1851 switch (pVM->pgm.s.enmHostMode)
1852 {
1853 case SUPPAGINGMODE_32_BIT:
1854 case SUPPAGINGMODE_32_BIT_GLOBAL:
1855 return PGMMODE_32_BIT;
1856
1857 case SUPPAGINGMODE_PAE:
1858 case SUPPAGINGMODE_PAE_GLOBAL:
1859 return PGMMODE_PAE;
1860
1861 case SUPPAGINGMODE_PAE_NX:
1862 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1863 return PGMMODE_PAE_NX;
1864
1865 case SUPPAGINGMODE_AMD64:
1866 case SUPPAGINGMODE_AMD64_GLOBAL:
1867 return PGMMODE_AMD64;
1868
1869 case SUPPAGINGMODE_AMD64_NX:
1870 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1871 return PGMMODE_AMD64_NX;
1872
1873 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
1874 }
1875
1876 return PGMMODE_INVALID;
1877}
1878
1879
1880/**
1881 * Get mode name.
1882 *
1883 * @returns read-only name string.
1884 * @param enmMode The mode which name is desired.
1885 */
1886VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
1887{
1888 switch (enmMode)
1889 {
1890 case PGMMODE_REAL: return "Real";
1891 case PGMMODE_PROTECTED: return "Protected";
1892 case PGMMODE_32_BIT: return "32-bit";
1893 case PGMMODE_PAE: return "PAE";
1894 case PGMMODE_PAE_NX: return "PAE+NX";
1895 case PGMMODE_AMD64: return "AMD64";
1896 case PGMMODE_AMD64_NX: return "AMD64+NX";
1897 case PGMMODE_NESTED: return "Nested";
1898 case PGMMODE_EPT: return "EPT";
1899 default: return "unknown mode value";
1900 }
1901}
1902
1903
1904/**
1905 * Acquire the PGM lock.
1906 *
1907 * @returns VBox status code
1908 * @param pVM The VM to operate on.
1909 */
1910int pgmLock(PVM pVM)
1911{
1912 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
1913#ifdef IN_RC
1914 if (rc == VERR_SEM_BUSY)
1915 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1916#elif defined(IN_RING0)
1917 if (rc == VERR_SEM_BUSY)
1918 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1919#endif
1920 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
1921 return rc;
1922}
1923
1924
1925/**
1926 * Release the PGM lock.
1927 *
1928 * @returns VBox status code
1929 * @param pVM The VM to operate on.
1930 */
1931void pgmUnlock(PVM pVM)
1932{
1933 PDMCritSectLeave(&pVM->pgm.s.CritSect);
1934}
1935
1936#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1937
1938/**
1939 * Temporarily maps one guest page specified by GC physical address.
1940 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
1941 *
1942 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
1943 * reused after 8 mappings (or perhaps a few more if you score with the cache).
1944 *
1945 * @returns VBox status.
1946 * @param pVM VM handle.
1947 * @param GCPhys GC Physical address of the page.
1948 * @param ppv Where to store the address of the mapping.
1949 */
1950VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
1951{
1952 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
1953
1954 /*
1955 * Get the ram range.
1956 */
1957 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1958 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
1959 pRam = pRam->CTX_SUFF(pNext);
1960 if (!pRam)
1961 {
1962 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
1963 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
1964 }
1965
1966 /*
1967 * Pass it on to PGMDynMapHCPage.
1968 */
1969 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
1970 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
1971#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1972 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
1973#else
1974 PGMDynMapHCPage(pVM, HCPhys, ppv);
1975#endif
1976 return VINF_SUCCESS;
1977}
1978
1979
1980/**
1981 * Temporarily maps one guest page specified by unaligned GC physical address.
1982 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
1983 *
1984 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
1985 * reused after 8 mappings (or perhaps a few more if you score with the cache).
1986 *
1987 * The caller is aware that only the speicifed page is mapped and that really bad things
1988 * will happen if writing beyond the page!
1989 *
1990 * @returns VBox status.
1991 * @param pVM VM handle.
1992 * @param GCPhys GC Physical address within the page to be mapped.
1993 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
1994 */
1995VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
1996{
1997 /*
1998 * Get the ram range.
1999 */
2000 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2001 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2002 pRam = pRam->CTX_SUFF(pNext);
2003 if (!pRam)
2004 {
2005 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2006 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2007 }
2008
2009 /*
2010 * Pass it on to PGMDynMapHCPage.
2011 */
2012 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2013#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2014 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2015#else
2016 PGMDynMapHCPage(pVM, HCPhys, ppv);
2017#endif
2018 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2019 return VINF_SUCCESS;
2020}
2021
2022# ifdef IN_RC
2023
2024/**
2025 * Temporarily maps one host page specified by HC physical address.
2026 *
2027 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2028 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2029 *
2030 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2031 * @param pVM VM handle.
2032 * @param HCPhys HC Physical address of the page.
2033 * @param ppv Where to store the address of the mapping. This is the
2034 * address of the PAGE not the exact address corresponding
2035 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2036 * page offset.
2037 */
2038VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2039{
2040 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2041
2042 /*
2043 * Check the cache.
2044 */
2045 register unsigned iCache;
2046 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2047 {
2048 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2049 {
2050 { 0, 9, 10, 11, 12, 13, 14, 15},
2051 { 0, 1, 10, 11, 12, 13, 14, 15},
2052 { 0, 1, 2, 11, 12, 13, 14, 15},
2053 { 0, 1, 2, 3, 12, 13, 14, 15},
2054 { 0, 1, 2, 3, 4, 13, 14, 15},
2055 { 0, 1, 2, 3, 4, 5, 14, 15},
2056 { 0, 1, 2, 3, 4, 5, 6, 15},
2057 { 0, 1, 2, 3, 4, 5, 6, 7},
2058 { 8, 1, 2, 3, 4, 5, 6, 7},
2059 { 8, 9, 2, 3, 4, 5, 6, 7},
2060 { 8, 9, 10, 3, 4, 5, 6, 7},
2061 { 8, 9, 10, 11, 4, 5, 6, 7},
2062 { 8, 9, 10, 11, 12, 5, 6, 7},
2063 { 8, 9, 10, 11, 12, 13, 6, 7},
2064 { 8, 9, 10, 11, 12, 13, 14, 7},
2065 { 8, 9, 10, 11, 12, 13, 14, 15},
2066 };
2067 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2068 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2069
2070 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2071 {
2072 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2073
2074 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2075 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2076 {
2077 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2078 *ppv = pv;
2079 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2080 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2081 return VINF_SUCCESS;
2082 }
2083 else
2084 LogFlow(("Out of sync entry %d\n", iPage));
2085 }
2086 }
2087 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2088 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2089 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2090
2091 /*
2092 * Update the page tables.
2093 */
2094 register unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2095 unsigned i;
2096 for (i=0;i<(MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT);i++)
2097 {
2098 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2099 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2100 break;
2101 iPage++;
2102 }
2103 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2104
2105 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2106 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2107 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2108 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2109
2110 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2111 *ppv = pv;
2112 ASMInvalidatePage(pv);
2113 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2114 return VINF_SUCCESS;
2115}
2116
2117
2118/**
2119 * Temporarily lock a dynamic page to prevent it from being reused.
2120 *
2121 * @param pVM VM handle.
2122 * @param GCPage GC address of page
2123 */
2124VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2125{
2126 unsigned iPage;
2127
2128 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2129 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2130 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2131 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2132}
2133
2134
2135/**
2136 * Unlock a dynamic page
2137 *
2138 * @param pVM VM handle.
2139 * @param GCPage GC address of page
2140 */
2141VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2142{
2143 unsigned iPage;
2144
2145 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache));
2146
2147 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2148 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2149 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2150 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2151 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2152}
2153
2154
2155# ifdef VBOX_STRICT
2156/**
2157 * Check for lock leaks.
2158 *
2159 * @param pVM VM handle.
2160 */
2161VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2162{
2163 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2164 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2165}
2166# endif /* VBOX_STRICT */
2167
2168# endif /* IN_RC */
2169#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2170
2171#if !defined(IN_R0) || defined(LOG_ENABLED)
2172
2173/** Format handler for PGMPAGE.
2174 * @copydoc FNRTSTRFORMATTYPE */
2175static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2176 const char *pszType, void const *pvValue,
2177 int cchWidth, int cchPrecision, unsigned fFlags,
2178 void *pvUser)
2179{
2180 size_t cch;
2181 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2182 if (VALID_PTR(pPage))
2183 {
2184 char szTmp[64+80];
2185
2186 cch = 0;
2187
2188 /* The single char state stuff. */
2189 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2190 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2191
2192#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2193 if (IS_PART_INCLUDED(5))
2194 {
2195 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2196 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2197 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2198 }
2199
2200 /* The type. */
2201 if (IS_PART_INCLUDED(4))
2202 {
2203 szTmp[cch++] = ':';
2204 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2205 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2206 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2207 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2208 }
2209
2210 /* The numbers. */
2211 if (IS_PART_INCLUDED(3))
2212 {
2213 szTmp[cch++] = ':';
2214 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2215 }
2216
2217 if (IS_PART_INCLUDED(2))
2218 {
2219 szTmp[cch++] = ':';
2220 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2221 }
2222
2223 if (IS_PART_INCLUDED(6))
2224 {
2225 szTmp[cch++] = ':';
2226 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2227 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2228 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2229 }
2230#undef IS_PART_INCLUDED
2231
2232 cch = pfnOutput(pvArgOutput, szTmp, cch);
2233 }
2234 else
2235 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2236 return cch;
2237}
2238
2239
2240/** Format handler for PGMRAMRANGE.
2241 * @copydoc FNRTSTRFORMATTYPE */
2242static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2243 const char *pszType, void const *pvValue,
2244 int cchWidth, int cchPrecision, unsigned fFlags,
2245 void *pvUser)
2246{
2247 size_t cch;
2248 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2249 if (VALID_PTR(pRam))
2250 {
2251 char szTmp[80];
2252 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2253 cch = pfnOutput(pvArgOutput, szTmp, cch);
2254 }
2255 else
2256 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2257 return cch;
2258}
2259
2260/** Format type andlers to be registered/deregistered. */
2261static const struct
2262{
2263 char szType[24];
2264 PFNRTSTRFORMATTYPE pfnHandler;
2265} g_aPgmFormatTypes[] =
2266{
2267 { "pgmpage", pgmFormatTypeHandlerPage },
2268 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2269};
2270
2271#endif /* !IN_R0 || LOG_ENABLED */
2272
2273
2274/**
2275 * Registers the global string format types.
2276 *
2277 * This should be called at module load time or in some other manner that ensure
2278 * that it's called exactly one time.
2279 *
2280 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2281 */
2282VMMDECL(int) PGMRegisterStringFormatTypes(void)
2283{
2284#if !defined(IN_R0) || defined(LOG_ENABLED)
2285 int rc = VINF_SUCCESS;
2286 unsigned i;
2287 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2288 {
2289 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2290# ifdef IN_RING0
2291 if (rc == VERR_ALREADY_EXISTS)
2292 {
2293 /* in case of cleanup failure in ring-0 */
2294 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2295 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2296 }
2297# endif
2298 }
2299 if (RT_FAILURE(rc))
2300 while (i-- > 0)
2301 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2302
2303 return rc;
2304#else
2305 return VINF_SUCCESS;
2306#endif
2307}
2308
2309
2310/**
2311 * Deregisters the global string format types.
2312 *
2313 * This should be called at module unload time or in some other manner that
2314 * ensure that it's called exactly one time.
2315 */
2316VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2317{
2318#if !defined(IN_R0) || defined(LOG_ENABLED)
2319 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2320 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2321#endif
2322}
2323
2324#ifdef VBOX_STRICT
2325
2326/**
2327 * Asserts that there are no mapping conflicts.
2328 *
2329 * @returns Number of conflicts.
2330 * @param pVM The VM Handle.
2331 */
2332VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2333{
2334 unsigned cErrors = 0;
2335
2336 /*
2337 * Check for mapping conflicts.
2338 */
2339 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2340 pMapping;
2341 pMapping = pMapping->CTX_SUFF(pNext))
2342 {
2343 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2344 for (RTGCPTR GCPtr = pMapping->GCPtr;
2345 GCPtr <= pMapping->GCPtrLast;
2346 GCPtr += PAGE_SIZE)
2347 {
2348 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
2349 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2350 {
2351 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2352 cErrors++;
2353 break;
2354 }
2355 }
2356 }
2357
2358 return cErrors;
2359}
2360
2361
2362/**
2363 * Asserts that everything related to the guest CR3 is correctly shadowed.
2364 *
2365 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2366 * and assert the correctness of the guest CR3 mapping before asserting that the
2367 * shadow page tables is in sync with the guest page tables.
2368 *
2369 * @returns Number of conflicts.
2370 * @param pVM The VM Handle.
2371 * @param cr3 The current guest CR3 register value.
2372 * @param cr4 The current guest CR4 register value.
2373 */
2374VMMDECL(unsigned) PGMAssertCR3(PVM pVM, uint64_t cr3, uint64_t cr4)
2375{
2376 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2377 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCPTR)0);
2378 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2379 return cErrors;
2380}
2381
2382#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette