VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 18279

Last change on this file since 18279 was 18131, checked in by vboxsync, 16 years ago

darwin build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 81.0 KB
Line 
1/* $Id: PGMAll.cpp 18131 2009-03-23 10:32:05Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The todo flags. */
62 RTUINT fTodo;
63 /** The CR4 register value. */
64 uint32_t cr4;
65} PGMHVUSTATE, *PPGMHVUSTATE;
66
67
68/*******************************************************************************
69* Internal Functions *
70*******************************************************************************/
71DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
72DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
73DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
74
75/*
76 * Shadow - 32-bit mode
77 */
78#define PGM_SHW_TYPE PGM_TYPE_32BIT
79#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
80#include "PGMAllShw.h"
81
82/* Guest - real mode */
83#define PGM_GST_TYPE PGM_TYPE_REAL
84#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
85#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
86#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
87#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
88#include "PGMGstDefs.h"
89#include "PGMAllGst.h"
90#include "PGMAllBth.h"
91#undef BTH_PGMPOOLKIND_PT_FOR_PT
92#undef BTH_PGMPOOLKIND_ROOT
93#undef PGM_BTH_NAME
94#undef PGM_GST_TYPE
95#undef PGM_GST_NAME
96
97/* Guest - protected mode */
98#define PGM_GST_TYPE PGM_TYPE_PROT
99#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
100#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
101#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
102#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
103#include "PGMGstDefs.h"
104#include "PGMAllGst.h"
105#include "PGMAllBth.h"
106#undef BTH_PGMPOOLKIND_PT_FOR_PT
107#undef BTH_PGMPOOLKIND_ROOT
108#undef PGM_BTH_NAME
109#undef PGM_GST_TYPE
110#undef PGM_GST_NAME
111
112/* Guest - 32-bit mode */
113#define PGM_GST_TYPE PGM_TYPE_32BIT
114#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
115#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
116#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
117#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
118#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
119#include "PGMGstDefs.h"
120#include "PGMAllGst.h"
121#include "PGMAllBth.h"
122#undef BTH_PGMPOOLKIND_PT_FOR_BIG
123#undef BTH_PGMPOOLKIND_PT_FOR_PT
124#undef BTH_PGMPOOLKIND_ROOT
125#undef PGM_BTH_NAME
126#undef PGM_GST_TYPE
127#undef PGM_GST_NAME
128
129#undef PGM_SHW_TYPE
130#undef PGM_SHW_NAME
131
132
133/*
134 * Shadow - PAE mode
135 */
136#define PGM_SHW_TYPE PGM_TYPE_PAE
137#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
138#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
139#include "PGMAllShw.h"
140
141/* Guest - real mode */
142#define PGM_GST_TYPE PGM_TYPE_REAL
143#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
144#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
145#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
146#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
147#include "PGMGstDefs.h"
148#include "PGMAllBth.h"
149#undef BTH_PGMPOOLKIND_PT_FOR_PT
150#undef BTH_PGMPOOLKIND_ROOT
151#undef PGM_BTH_NAME
152#undef PGM_GST_TYPE
153#undef PGM_GST_NAME
154
155/* Guest - protected mode */
156#define PGM_GST_TYPE PGM_TYPE_PROT
157#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
158#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
159#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
160#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
161#include "PGMGstDefs.h"
162#include "PGMAllBth.h"
163#undef BTH_PGMPOOLKIND_PT_FOR_PT
164#undef BTH_PGMPOOLKIND_ROOT
165#undef PGM_BTH_NAME
166#undef PGM_GST_TYPE
167#undef PGM_GST_NAME
168
169/* Guest - 32-bit mode */
170#define PGM_GST_TYPE PGM_TYPE_32BIT
171#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
172#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
173#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
174#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
175#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
176#include "PGMGstDefs.h"
177#include "PGMAllBth.h"
178#undef BTH_PGMPOOLKIND_PT_FOR_BIG
179#undef BTH_PGMPOOLKIND_PT_FOR_PT
180#undef BTH_PGMPOOLKIND_ROOT
181#undef PGM_BTH_NAME
182#undef PGM_GST_TYPE
183#undef PGM_GST_NAME
184
185
186/* Guest - PAE mode */
187#define PGM_GST_TYPE PGM_TYPE_PAE
188#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
189#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
190#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
191#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
192#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
193#include "PGMGstDefs.h"
194#include "PGMAllGst.h"
195#include "PGMAllBth.h"
196#undef BTH_PGMPOOLKIND_PT_FOR_BIG
197#undef BTH_PGMPOOLKIND_PT_FOR_PT
198#undef BTH_PGMPOOLKIND_ROOT
199#undef PGM_BTH_NAME
200#undef PGM_GST_TYPE
201#undef PGM_GST_NAME
202
203#undef PGM_SHW_TYPE
204#undef PGM_SHW_NAME
205
206
207#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
208/*
209 * Shadow - AMD64 mode
210 */
211# define PGM_SHW_TYPE PGM_TYPE_AMD64
212# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
213# include "PGMAllShw.h"
214
215/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
216# define PGM_GST_TYPE PGM_TYPE_PROT
217# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
218# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
219# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
220# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
221# include "PGMGstDefs.h"
222# include "PGMAllBth.h"
223# undef BTH_PGMPOOLKIND_PT_FOR_PT
224# undef BTH_PGMPOOLKIND_ROOT
225# undef PGM_BTH_NAME
226# undef PGM_GST_TYPE
227# undef PGM_GST_NAME
228
229# ifdef VBOX_WITH_64_BITS_GUESTS
230/* Guest - AMD64 mode */
231# define PGM_GST_TYPE PGM_TYPE_AMD64
232# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
233# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
234# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
235# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
236# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
237# include "PGMGstDefs.h"
238# include "PGMAllGst.h"
239# include "PGMAllBth.h"
240# undef BTH_PGMPOOLKIND_PT_FOR_BIG
241# undef BTH_PGMPOOLKIND_PT_FOR_PT
242# undef BTH_PGMPOOLKIND_ROOT
243# undef PGM_BTH_NAME
244# undef PGM_GST_TYPE
245# undef PGM_GST_NAME
246# endif /* VBOX_WITH_64_BITS_GUESTS */
247
248# undef PGM_SHW_TYPE
249# undef PGM_SHW_NAME
250
251
252/*
253 * Shadow - Nested paging mode
254 */
255# define PGM_SHW_TYPE PGM_TYPE_NESTED
256# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
257# include "PGMAllShw.h"
258
259/* Guest - real mode */
260# define PGM_GST_TYPE PGM_TYPE_REAL
261# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
262# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
263# include "PGMGstDefs.h"
264# include "PGMAllBth.h"
265# undef PGM_BTH_NAME
266# undef PGM_GST_TYPE
267# undef PGM_GST_NAME
268
269/* Guest - protected mode */
270# define PGM_GST_TYPE PGM_TYPE_PROT
271# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
272# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
273# include "PGMGstDefs.h"
274# include "PGMAllBth.h"
275# undef PGM_BTH_NAME
276# undef PGM_GST_TYPE
277# undef PGM_GST_NAME
278
279/* Guest - 32-bit mode */
280# define PGM_GST_TYPE PGM_TYPE_32BIT
281# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
282# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
283# include "PGMGstDefs.h"
284# include "PGMAllBth.h"
285# undef PGM_BTH_NAME
286# undef PGM_GST_TYPE
287# undef PGM_GST_NAME
288
289/* Guest - PAE mode */
290# define PGM_GST_TYPE PGM_TYPE_PAE
291# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
292# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
293# include "PGMGstDefs.h"
294# include "PGMAllBth.h"
295# undef PGM_BTH_NAME
296# undef PGM_GST_TYPE
297# undef PGM_GST_NAME
298
299# ifdef VBOX_WITH_64_BITS_GUESTS
300/* Guest - AMD64 mode */
301# define PGM_GST_TYPE PGM_TYPE_AMD64
302# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
303# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
304# include "PGMGstDefs.h"
305# include "PGMAllBth.h"
306# undef PGM_BTH_NAME
307# undef PGM_GST_TYPE
308# undef PGM_GST_NAME
309# endif /* VBOX_WITH_64_BITS_GUESTS */
310
311# undef PGM_SHW_TYPE
312# undef PGM_SHW_NAME
313
314
315/*
316 * Shadow - EPT
317 */
318# define PGM_SHW_TYPE PGM_TYPE_EPT
319# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
320# include "PGMAllShw.h"
321
322/* Guest - real mode */
323# define PGM_GST_TYPE PGM_TYPE_REAL
324# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
325# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
326# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
327# include "PGMGstDefs.h"
328# include "PGMAllBth.h"
329# undef BTH_PGMPOOLKIND_PT_FOR_PT
330# undef PGM_BTH_NAME
331# undef PGM_GST_TYPE
332# undef PGM_GST_NAME
333
334/* Guest - protected mode */
335# define PGM_GST_TYPE PGM_TYPE_PROT
336# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
337# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
338# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
339# include "PGMGstDefs.h"
340# include "PGMAllBth.h"
341# undef BTH_PGMPOOLKIND_PT_FOR_PT
342# undef PGM_BTH_NAME
343# undef PGM_GST_TYPE
344# undef PGM_GST_NAME
345
346/* Guest - 32-bit mode */
347# define PGM_GST_TYPE PGM_TYPE_32BIT
348# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
349# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
350# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
351# include "PGMGstDefs.h"
352# include "PGMAllBth.h"
353# undef BTH_PGMPOOLKIND_PT_FOR_PT
354# undef PGM_BTH_NAME
355# undef PGM_GST_TYPE
356# undef PGM_GST_NAME
357
358/* Guest - PAE mode */
359# define PGM_GST_TYPE PGM_TYPE_PAE
360# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
361# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
362# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
363# include "PGMGstDefs.h"
364# include "PGMAllBth.h"
365# undef BTH_PGMPOOLKIND_PT_FOR_PT
366# undef PGM_BTH_NAME
367# undef PGM_GST_TYPE
368# undef PGM_GST_NAME
369
370# ifdef VBOX_WITH_64_BITS_GUESTS
371/* Guest - AMD64 mode */
372# define PGM_GST_TYPE PGM_TYPE_AMD64
373# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
374# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
375# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
376# include "PGMGstDefs.h"
377# include "PGMAllBth.h"
378# undef BTH_PGMPOOLKIND_PT_FOR_PT
379# undef PGM_BTH_NAME
380# undef PGM_GST_TYPE
381# undef PGM_GST_NAME
382# endif /* VBOX_WITH_64_BITS_GUESTS */
383
384# undef PGM_SHW_TYPE
385# undef PGM_SHW_NAME
386
387#endif /* !IN_RC */
388
389
390#ifndef IN_RING3
391/**
392 * #PF Handler.
393 *
394 * @returns VBox status code (appropriate for trap handling and GC return).
395 * @param pVM VM Handle.
396 * @param uErr The trap error code.
397 * @param pRegFrame Trap register frame.
398 * @param pvFault The fault address.
399 */
400VMMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
401{
402 LogFlow(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%RGv\n", uErr, pvFault, (RTGCPTR)pRegFrame->rip));
403 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0e, a);
404 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
405
406
407#ifdef VBOX_WITH_STATISTICS
408 /*
409 * Error code stats.
410 */
411 if (uErr & X86_TRAP_PF_US)
412 {
413 if (!(uErr & X86_TRAP_PF_P))
414 {
415 if (uErr & X86_TRAP_PF_RW)
416 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentWrite);
417 else
418 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNotPresentRead);
419 }
420 else if (uErr & X86_TRAP_PF_RW)
421 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSWrite);
422 else if (uErr & X86_TRAP_PF_RSVD)
423 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSReserved);
424 else if (uErr & X86_TRAP_PF_ID)
425 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSNXE);
426 else
427 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eUSRead);
428 }
429 else
430 { /* Supervisor */
431 if (!(uErr & X86_TRAP_PF_P))
432 {
433 if (uErr & X86_TRAP_PF_RW)
434 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentWrite);
435 else
436 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVNotPresentRead);
437 }
438 else if (uErr & X86_TRAP_PF_RW)
439 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVWrite);
440 else if (uErr & X86_TRAP_PF_ID)
441 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSNXE);
442 else if (uErr & X86_TRAP_PF_RSVD)
443 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eSVReserved);
444 }
445#endif /* VBOX_WITH_STATISTICS */
446
447 /*
448 * Call the worker.
449 */
450 int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
451 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
452 rc = VINF_SUCCESS;
453 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPF); });
454 STAM_STATS({ if (!pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
455 pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2Misc; });
456 STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatRZTrap0e, pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
457 return rc;
458}
459#endif /* !IN_RING3 */
460
461
462/**
463 * Prefetch a page
464 *
465 * Typically used to sync commonly used pages before entering raw mode
466 * after a CR3 reload.
467 *
468 * @returns VBox status code suitable for scheduling.
469 * @retval VINF_SUCCESS on success.
470 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
471 * @param pVM VM handle.
472 * @param GCPtrPage Page to invalidate.
473 */
474VMMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
475{
476 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
477 int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, GCPtrPage);
478 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
479 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
480 return rc;
481}
482
483
484/**
485 * Gets the mapping corresponding to the specified address (if any).
486 *
487 * @returns Pointer to the mapping.
488 * @returns NULL if not
489 *
490 * @param pVM The virtual machine.
491 * @param GCPtr The guest context pointer.
492 */
493PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
494{
495 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
496 while (pMapping)
497 {
498 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
499 break;
500 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
501 return pMapping;
502 pMapping = pMapping->CTX_SUFF(pNext);
503 }
504 return NULL;
505}
506
507
508/**
509 * Verifies a range of pages for read or write access
510 *
511 * Only checks the guest's page tables
512 *
513 * @returns VBox status code.
514 * @param pVM VM handle.
515 * @param Addr Guest virtual address to check
516 * @param cbSize Access size
517 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
518 * @remarks Current not in use.
519 */
520VMMDECL(int) PGMIsValidAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
521{
522 /*
523 * Validate input.
524 */
525 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
526 {
527 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
528 return VERR_INVALID_PARAMETER;
529 }
530
531 uint64_t fPage;
532 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
533 if (RT_FAILURE(rc))
534 {
535 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
536 return VINF_EM_RAW_GUEST_TRAP;
537 }
538
539 /*
540 * Check if the access would cause a page fault
541 *
542 * Note that hypervisor page directories are not present in the guest's tables, so this check
543 * is sufficient.
544 */
545 bool fWrite = !!(fAccess & X86_PTE_RW);
546 bool fUser = !!(fAccess & X86_PTE_US);
547 if ( !(fPage & X86_PTE_P)
548 || (fWrite && !(fPage & X86_PTE_RW))
549 || (fUser && !(fPage & X86_PTE_US)) )
550 {
551 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
552 return VINF_EM_RAW_GUEST_TRAP;
553 }
554 if ( RT_SUCCESS(rc)
555 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
556 return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
557 return rc;
558}
559
560
561/**
562 * Verifies a range of pages for read or write access
563 *
564 * Supports handling of pages marked for dirty bit tracking and CSAM
565 *
566 * @returns VBox status code.
567 * @param pVM VM handle.
568 * @param Addr Guest virtual address to check
569 * @param cbSize Access size
570 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
571 */
572VMMDECL(int) PGMVerifyAccess(PVM pVM, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
573{
574 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
575
576 /*
577 * Get going.
578 */
579 uint64_t fPageGst;
580 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
581 if (RT_FAILURE(rc))
582 {
583 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
584 return VINF_EM_RAW_GUEST_TRAP;
585 }
586
587 /*
588 * Check if the access would cause a page fault
589 *
590 * Note that hypervisor page directories are not present in the guest's tables, so this check
591 * is sufficient.
592 */
593 const bool fWrite = !!(fAccess & X86_PTE_RW);
594 const bool fUser = !!(fAccess & X86_PTE_US);
595 if ( !(fPageGst & X86_PTE_P)
596 || (fWrite && !(fPageGst & X86_PTE_RW))
597 || (fUser && !(fPageGst & X86_PTE_US)) )
598 {
599 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
600 return VINF_EM_RAW_GUEST_TRAP;
601 }
602
603 if (!HWACCMIsNestedPagingActive(pVM))
604 {
605 /*
606 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
607 */
608 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
609 if ( rc == VERR_PAGE_NOT_PRESENT
610 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
611 {
612 /*
613 * Page is not present in our page tables.
614 * Try to sync it!
615 */
616 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
617 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
618 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
619 if (rc != VINF_SUCCESS)
620 return rc;
621 }
622 else
623 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
624 }
625
626#if 0 /* def VBOX_STRICT; triggers too often now */
627 /*
628 * This check is a bit paranoid, but useful.
629 */
630 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
631 uint64_t fPageShw;
632 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
633 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
634 || (fWrite && !(fPageShw & X86_PTE_RW))
635 || (fUser && !(fPageShw & X86_PTE_US)) )
636 {
637 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
638 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
639 return VINF_EM_RAW_GUEST_TRAP;
640 }
641#endif
642
643 if ( RT_SUCCESS(rc)
644 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
645 || Addr + cbSize < Addr))
646 {
647 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
648 for (;;)
649 {
650 Addr += PAGE_SIZE;
651 if (cbSize > PAGE_SIZE)
652 cbSize -= PAGE_SIZE;
653 else
654 cbSize = 1;
655 rc = PGMVerifyAccess(pVM, Addr, 1, fAccess);
656 if (rc != VINF_SUCCESS)
657 break;
658 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
659 break;
660 }
661 }
662 return rc;
663}
664
665
666/**
667 * Emulation of the invlpg instruction (HC only actually).
668 *
669 * @returns VBox status code, special care required.
670 * @retval VINF_PGM_SYNC_CR3 - handled.
671 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
672 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
673 *
674 * @param pVM VM handle.
675 * @param GCPtrPage Page to invalidate.
676 *
677 * @remark ASSUMES the page table entry or page directory is valid. Fairly
678 * safe, but there could be edge cases!
679 *
680 * @todo Flush page or page directory only if necessary!
681 */
682VMMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
683{
684 int rc;
685 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
686
687#ifndef IN_RING3
688 /*
689 * Notify the recompiler so it can record this instruction.
690 * Failure happens when it's out of space. We'll return to HC in that case.
691 */
692 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
693 if (rc != VINF_SUCCESS)
694 return rc;
695#endif /* !IN_RING3 */
696
697
698#ifdef IN_RC
699 /*
700 * Check for conflicts and pending CR3 monitoring updates.
701 */
702 if (!pVM->pgm.s.fMappingsFixed)
703 {
704 if ( pgmGetMapping(pVM, GCPtrPage)
705 && PGMGstGetPage(pVM, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
706 {
707 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
708 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
709 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
710 return VINF_PGM_SYNC_CR3;
711 }
712
713 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
714 {
715 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
716 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
717 return VINF_EM_RAW_EMULATE_INSTR;
718 }
719 }
720#endif /* IN_RC */
721
722 /*
723 * Call paging mode specific worker.
724 */
725 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
726 rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
727 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
728
729#ifdef IN_RING3
730 /*
731 * Check if we have a pending update of the CR3 monitoring.
732 */
733 if ( RT_SUCCESS(rc)
734 && (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
735 {
736 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
737 Assert(!pVM->pgm.s.fMappingsFixed);
738 }
739
740 /*
741 * Inform CSAM about the flush
742 *
743 * Note: This is to check if monitored pages have been changed; when we implement
744 * callbacks for virtual handlers, this is no longer required.
745 */
746 CSAMR3FlushPage(pVM, GCPtrPage);
747#endif /* IN_RING3 */
748 return rc;
749}
750
751
752/**
753 * Executes an instruction using the interpreter.
754 *
755 * @returns VBox status code (appropriate for trap handling and GC return).
756 * @param pVM VM handle.
757 * @param pRegFrame Register frame.
758 * @param pvFault Fault address.
759 */
760VMMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
761{
762 uint32_t cb;
763 int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
764 if (rc == VERR_EM_INTERPRETER)
765 rc = VINF_EM_RAW_EMULATE_INSTR;
766 if (rc != VINF_SUCCESS)
767 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
768 return rc;
769}
770
771
772/**
773 * Gets effective page information (from the VMM page directory).
774 *
775 * @returns VBox status.
776 * @param pVM VM Handle.
777 * @param GCPtr Guest Context virtual address of the page.
778 * @param pfFlags Where to store the flags. These are X86_PTE_*.
779 * @param pHCPhys Where to store the HC physical address of the page.
780 * This is page aligned.
781 * @remark You should use PGMMapGetPage() for pages in a mapping.
782 */
783VMMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
784{
785 return PGM_SHW_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pHCPhys);
786}
787
788
789/**
790 * Sets (replaces) the page flags for a range of pages in the shadow context.
791 *
792 * @returns VBox status.
793 * @param pVM VM handle.
794 * @param GCPtr The address of the first page.
795 * @param cb The size of the range in bytes.
796 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
797 * @remark You must use PGMMapSetPage() for pages in a mapping.
798 */
799VMMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
800{
801 return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
802}
803
804
805/**
806 * Modify page flags for a range of pages in the shadow context.
807 *
808 * The existing flags are ANDed with the fMask and ORed with the fFlags.
809 *
810 * @returns VBox status code.
811 * @param pVM VM handle.
812 * @param GCPtr Virtual address of the first page in the range.
813 * @param cb Size (in bytes) of the range to apply the modification to.
814 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
815 * @param fMask The AND mask - page flags X86_PTE_*.
816 * Be very CAREFUL when ~'ing constants which could be 32-bit!
817 * @remark You must use PGMMapModifyPage() for pages in a mapping.
818 */
819VMMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
820{
821 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
822 Assert(cb);
823
824 /*
825 * Align the input.
826 */
827 cb += GCPtr & PAGE_OFFSET_MASK;
828 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
829 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
830
831 /*
832 * Call worker.
833 */
834 return PGM_SHW_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
835}
836
837
838/**
839 * Gets the SHADOW page directory pointer for the specified address.
840 *
841 * @returns VBox status.
842 * @param pVM VM handle.
843 * @param GCPtr The address.
844 * @param ppPdpt Receives address of pdpt
845 * @param ppPD Receives address of page directory
846 * @remarks Unused.
847 */
848DECLINLINE(int) pgmShwGetPAEPDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
849{
850 PPGM pPGM = &pVM->pgm.s;
851 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
852 PPGMPOOLPAGE pShwPage;
853
854 Assert(!HWACCMIsNestedPagingActive(pVM));
855
856 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
857 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
858 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
859
860 *ppPdpt = pPdpt;
861 if (!pPdpe->n.u1Present)
862 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
863
864 Assert(pPdpe->u & X86_PDPE_PG_MASK);
865 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
866 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
867
868 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
869 return VINF_SUCCESS;
870}
871
872/**
873 * Gets the shadow page directory for the specified address, PAE.
874 *
875 * @returns Pointer to the shadow PD.
876 * @param pVM VM handle.
877 * @param GCPtr The address.
878 * @param pGstPdpe Guest PDPT entry
879 * @param ppPD Receives address of page directory
880 */
881int pgmShwSyncPaePDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
882{
883 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
884 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
885 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
886 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
887 PPGMPOOLPAGE pShwPage;
888 int rc;
889
890 /* Allocate page directory if not present. */
891 if ( !pPdpe->n.u1Present
892 && !(pPdpe->u & X86_PDPE_PG_MASK))
893 {
894 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
895 bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
896 RTGCPTR64 GCPdPt;
897 PGMPOOLKIND enmKind;
898
899# if defined(IN_RC)
900 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
901 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
902# endif
903
904 if (fNestedPaging || !fPaging)
905 {
906 /* AMD-V nested paging or real/protected mode without paging */
907 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
908 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
909 }
910 else
911 {
912 Assert(pGstPdpe);
913
914 if (CPUMGetGuestCR4(pVM) & X86_CR4_PAE)
915 {
916 if (!pGstPdpe->n.u1Present)
917 {
918 /* PD not present; guest must reload CR3 to change it.
919 * No need to monitor anything in this case.
920 */
921 Assert(!HWACCMIsEnabled(pVM));
922
923 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
924 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
925 pGstPdpe->n.u1Present = 1;
926 }
927 else
928 {
929 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
930 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
931 }
932 }
933 else
934 {
935 GCPdPt = CPUMGetGuestCR3(pVM);
936 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
937 }
938 }
939
940 /* Create a reference back to the PDPT by using the index in its shadow page. */
941 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
942 AssertRCReturn(rc, rc);
943
944 /* The PD was cached or created; hook it up now. */
945 pPdpe->u |= pShwPage->Core.Key
946 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
947
948# if defined(IN_RC)
949 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
950 * non-present PDPT will continue to cause page faults.
951 */
952 ASMReloadCR3();
953 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
954# endif
955 }
956 else
957 {
958 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
959 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
960
961 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
962 }
963 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
964 return VINF_SUCCESS;
965}
966
967
968/**
969 * Gets the pointer to the shadow page directory entry for an address, PAE.
970 *
971 * @returns Pointer to the PDE.
972 * @param pPGM Pointer to the PGM instance data.
973 * @param GCPtr The address.
974 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
975 */
976DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGM pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
977{
978 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
979 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
980 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
981 if (!pPdpt->a[iPdPt].n.u1Present)
982 {
983 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
984 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
985 }
986 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
987
988 /* Fetch the pgm pool shadow descriptor. */
989 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
990 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
991
992 *ppShwPde = pShwPde;
993 return VINF_SUCCESS;
994}
995
996#ifndef IN_RC
997
998/**
999 * Syncs the SHADOW page directory pointer for the specified address.
1000 *
1001 * Allocates backing pages in case the PDPT or PML4 entry is missing.
1002 *
1003 * The caller is responsible for making sure the guest has a valid PD before
1004 * calling this function.
1005 *
1006 * @returns VBox status.
1007 * @param pVM VM handle.
1008 * @param GCPtr The address.
1009 * @param pGstPml4e Guest PML4 entry
1010 * @param pGstPdpe Guest PDPT entry
1011 * @param ppPD Receives address of page directory
1012 */
1013int pgmShwSyncLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
1014{
1015 PPGM pPGM = &pVM->pgm.s;
1016 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1017 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1018 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1019 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
1020 bool fPaging = !!(CPUMGetGuestCR0(pVM) & X86_CR0_PG);
1021 PPGMPOOLPAGE pShwPage;
1022 int rc;
1023
1024 /* Allocate page directory pointer table if not present. */
1025 if ( !pPml4e->n.u1Present
1026 && !(pPml4e->u & X86_PML4E_PG_MASK))
1027 {
1028 RTGCPTR64 GCPml4;
1029 PGMPOOLKIND enmKind;
1030
1031 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1032
1033 if (fNestedPaging || !fPaging)
1034 {
1035 /* AMD-V nested paging or real/protected mode without paging */
1036 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1037 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1038 }
1039 else
1040 {
1041 Assert(pGstPml4e && pGstPdpe);
1042
1043 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1044 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1045 }
1046
1047 /* Create a reference back to the PDPT by using the index in its shadow page. */
1048 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1049 AssertRCReturn(rc, rc);
1050 }
1051 else
1052 {
1053 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1054 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1055 }
1056 /* The PDPT was cached or created; hook it up now. */
1057 pPml4e->u |= pShwPage->Core.Key
1058 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1059
1060 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1061 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1062 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1063
1064 /* Allocate page directory if not present. */
1065 if ( !pPdpe->n.u1Present
1066 && !(pPdpe->u & X86_PDPE_PG_MASK))
1067 {
1068 RTGCPTR64 GCPdPt;
1069 PGMPOOLKIND enmKind;
1070
1071 if (fNestedPaging || !fPaging)
1072 {
1073 /* AMD-V nested paging or real/protected mode without paging */
1074 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1075 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1076 }
1077 else
1078 {
1079 Assert(pGstPdpe);
1080
1081 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1082 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1083 }
1084
1085 /* Create a reference back to the PDPT by using the index in its shadow page. */
1086 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1087 AssertRCReturn(rc, rc);
1088 }
1089 else
1090 {
1091 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1092 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1093 }
1094 /* The PD was cached or created; hook it up now. */
1095 pPdpe->u |= pShwPage->Core.Key
1096 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1097
1098 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1099 return VINF_SUCCESS;
1100}
1101
1102
1103/**
1104 * Gets the SHADOW page directory pointer for the specified address (long mode).
1105 *
1106 * @returns VBox status.
1107 * @param pVM VM handle.
1108 * @param GCPtr The address.
1109 * @param ppPdpt Receives address of pdpt
1110 * @param ppPD Receives address of page directory
1111 */
1112DECLINLINE(int) pgmShwGetLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1113{
1114 PPGM pPGM = &pVM->pgm.s;
1115 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1116 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1117 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1118 if (ppPml4e)
1119 *ppPml4e = (PX86PML4E)pPml4e;
1120 if (!pPml4e->n.u1Present)
1121 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1122
1123 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1124 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1125 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1126
1127 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1128 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1129 if (!pPdpt->a[iPdPt].n.u1Present)
1130 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1131
1132 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1133 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1134
1135 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1136 return VINF_SUCCESS;
1137}
1138
1139
1140/**
1141 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1142 * backing pages in case the PDPT or PML4 entry is missing.
1143 *
1144 * @returns VBox status.
1145 * @param pVM VM handle.
1146 * @param GCPtr The address.
1147 * @param ppPdpt Receives address of pdpt
1148 * @param ppPD Receives address of page directory
1149 */
1150int pgmShwGetEPTPDPtr(PVM pVM, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1151{
1152 PPGM pPGM = &pVM->pgm.s;
1153 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1154 PPGMPOOL pPool = pPGM->CTX_SUFF(pPool);
1155 PEPTPML4 pPml4;
1156 PEPTPML4E pPml4e;
1157 PPGMPOOLPAGE pShwPage;
1158 int rc;
1159
1160 Assert(HWACCMIsNestedPagingActive(pVM));
1161
1162 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1163 Assert(pPml4);
1164
1165 /* Allocate page directory pointer table if not present. */
1166 pPml4e = &pPml4->a[iPml4];
1167 if ( !pPml4e->n.u1Present
1168 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1169 {
1170 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1171 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1172
1173 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1174 AssertRCReturn(rc, rc);
1175 }
1176 else
1177 {
1178 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1179 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1180 }
1181 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1182 pPml4e->u = pShwPage->Core.Key;
1183 pPml4e->n.u1Present = 1;
1184 pPml4e->n.u1Write = 1;
1185 pPml4e->n.u1Execute = 1;
1186
1187 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1188 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1189 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1190
1191 if (ppPdpt)
1192 *ppPdpt = pPdpt;
1193
1194 /* Allocate page directory if not present. */
1195 if ( !pPdpe->n.u1Present
1196 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1197 {
1198 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1199
1200 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1201 AssertRCReturn(rc, rc);
1202 }
1203 else
1204 {
1205 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1206 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1207 }
1208 /* The PD was cached or created; hook it up now and fill with the default value. */
1209 pPdpe->u = pShwPage->Core.Key;
1210 pPdpe->n.u1Present = 1;
1211 pPdpe->n.u1Write = 1;
1212 pPdpe->n.u1Execute = 1;
1213
1214 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1215 return VINF_SUCCESS;
1216}
1217
1218#endif /* IN_RC */
1219
1220/**
1221 * Gets effective Guest OS page information.
1222 *
1223 * When GCPtr is in a big page, the function will return as if it was a normal
1224 * 4KB page. If the need for distinguishing between big and normal page becomes
1225 * necessary at a later point, a PGMGstGetPage() will be created for that
1226 * purpose.
1227 *
1228 * @returns VBox status.
1229 * @param pVM VM Handle.
1230 * @param GCPtr Guest Context virtual address of the page.
1231 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1232 * @param pGCPhys Where to store the GC physical address of the page.
1233 * This is page aligned. The fact that the
1234 */
1235VMMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1236{
1237 return PGM_GST_PFN(GetPage,pVM)(pVM, GCPtr, pfFlags, pGCPhys);
1238}
1239
1240
1241/**
1242 * Checks if the page is present.
1243 *
1244 * @returns true if the page is present.
1245 * @returns false if the page is not present.
1246 * @param pVM The VM handle.
1247 * @param GCPtr Address within the page.
1248 */
1249VMMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
1250{
1251 int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
1252 return RT_SUCCESS(rc);
1253}
1254
1255
1256/**
1257 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1258 *
1259 * @returns VBox status.
1260 * @param pVM VM handle.
1261 * @param GCPtr The address of the first page.
1262 * @param cb The size of the range in bytes.
1263 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1264 */
1265VMMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1266{
1267 return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
1268}
1269
1270
1271/**
1272 * Modify page flags for a range of pages in the guest's tables
1273 *
1274 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1275 *
1276 * @returns VBox status code.
1277 * @param pVM VM handle.
1278 * @param GCPtr Virtual address of the first page in the range.
1279 * @param cb Size (in bytes) of the range to apply the modification to.
1280 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1281 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1282 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1283 */
1284VMMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1285{
1286 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1287
1288 /*
1289 * Validate input.
1290 */
1291 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1292 Assert(cb);
1293
1294 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1295
1296 /*
1297 * Adjust input.
1298 */
1299 cb += GCPtr & PAGE_OFFSET_MASK;
1300 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1301 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1302
1303 /*
1304 * Call worker.
1305 */
1306 int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, GCPtr, cb, fFlags, fMask);
1307
1308 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1309 return rc;
1310}
1311
1312#ifdef VBOX_WITH_NEW_PHYS_CODE
1313#ifdef IN_RING3
1314
1315/**
1316 * Performs the lazy mapping of the 32-bit guest PD.
1317 *
1318 * @returns Pointer to the mapping.
1319 * @param pPGM The PGM instance data.
1320 */
1321PX86PD pgmGstLazyMap32BitPD(PPGM pPGM)
1322{
1323 Assert(!pPGM->CTX_SUFF(pGst32BitPd));
1324 PVM pVM = PGM2VM(pPGM);
1325 pgmLock(pVM);
1326
1327 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPGM->GCPhysCR3);
1328 AssertReturn(pPage, NULL);
1329
1330 RTHCPTR HCPtrGuestCR3;
1331 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
1332 AssertRCReturn(rc, NULL);
1333
1334 pPGM->pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
1335# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1336 pPGM->pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
1337# endif
1338
1339 pgmUnlock(pVM);
1340 return pPGM->CTX_SUFF(pGst32BitPd);
1341}
1342
1343
1344/**
1345 * Performs the lazy mapping of the PAE guest PDPT.
1346 *
1347 * @returns Pointer to the mapping.
1348 * @param pPGM The PGM instance data.
1349 */
1350PX86PDPT pgmGstLazyMapPaePDPT(PPGM pPGM)
1351{
1352 Assert(!pPGM->CTX_SUFF(pGstPaePdpt));
1353 PVM pVM = PGM2VM(pPGM);
1354 pgmLock(pVM);
1355
1356 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPGM->GCPhysCR3);
1357 AssertReturn(pPage, NULL);
1358
1359 RTHCPTR HCPtrGuestCR3;
1360 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAE_PAGE_MASK, (void **)&HCPtrGuestCR3);
1361 AssertRCReturn(rc, NULL);
1362
1363 pPGM->pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1364# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1365 pPGM->pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1366# endif
1367
1368 pgmUnlock(pVM);
1369 return pPGM->CTX_SUFF(pGstPaePdpt);
1370}
1371
1372#endif /* IN_RING3 */
1373
1374#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1375/**
1376 * Performs the lazy mapping / updating of a PAE guest PD.
1377 *
1378 * @returns Pointer to the mapping.
1379 * @param pPGM The PGM instance data.
1380 * @param iPdpt Which PD entry to map (0..3).
1381 */
1382PX86PDPAE pgmGstLazyMapPaePD(PPGM pPGM, uint32_t iPdpt)
1383{
1384 PVM pVM = PGM2VM(pPGM);
1385 pgmLock(pVM);
1386
1387 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
1388 Assert(pGuestPDPT);
1389 Assert(pGuestPDPT->a[iPdpt].n.u1Present);
1390 RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK;
1391 bool const fChanged = pPGM->aGCPhysGstPaePDs[iPdpt] != GCPhys;
1392
1393 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
1394 if (RT_LIKELY(pPage))
1395 {
1396 int rc = VINF_SUCCESS;
1397 RTRCPTR RCPtr = NIL_RTRCPTR;
1398 RTHCPTR HCPtr = NIL_RTHCPTR;
1399#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1400 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr);
1401 AssertRC(rc);
1402#endif
1403 if (RT_SUCCESS(rc) && fChanged)
1404 {
1405 RCPtr = (RTRCPTR)(RTRCUINTPTR)(pPGM->GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE);
1406 rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0);
1407 }
1408 if (RT_SUCCESS(rc))
1409 {
1410 pPGM->apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr;
1411# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1412 pPGM->apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr;
1413# endif
1414 if (fChanged)
1415 {
1416 pPGM->aGCPhysGstPaePDs[iPdpt] = GCPhys;
1417 pPGM->apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr;
1418 }
1419
1420 pgmUnlock(pVM);
1421 return pPGM->CTX_SUFF(apGstPaePDs)[iPdpt];
1422 }
1423 }
1424
1425 /* Invalid page or some failure, invalidate the entry. */
1426 pPGM->aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS;
1427 pPGM->apGstPaePDsR3[iPdpt] = 0;
1428# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1429 pPGM->apGstPaePDsR0[iPdpt] = 0;
1430# endif
1431 pPGM->apGstPaePDsRC[iPdpt] = 0;
1432
1433 pgmUnlock(pVM);
1434 return NULL;
1435}
1436#endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1437
1438
1439#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3
1440/**
1441 * Performs the lazy mapping of the 32-bit guest PD.
1442 *
1443 * @returns Pointer to the mapping.
1444 * @param pPGM The PGM instance data.
1445 */
1446PX86PML4 pgmGstLazyMapPml4(PPGM pPGM)
1447{
1448 Assert(!pPGM->CTX_SUFF(pGstAmd64Pml4));
1449 PVM pVM = PGM2VM(pPGM);
1450 pgmLock(pVM);
1451
1452 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPGM->GCPhysCR3);
1453 AssertReturn(pPage, NULL);
1454
1455 RTHCPTR HCPtrGuestCR3;
1456 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK, (void **)&HCPtrGuestCR3);
1457 AssertRCReturn(rc, NULL);
1458
1459 pPGM->pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
1460# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1461 pPGM->pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
1462# endif
1463
1464 pgmUnlock(pVM);
1465 return pPGM->CTX_SUFF(pGstAmd64Pml4);
1466}
1467#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 */
1468
1469#endif /* VBOX_WITH_NEW_PHYS_CODE */
1470
1471/**
1472 * Gets the specified page directory pointer table entry.
1473 *
1474 * @returns PDP entry
1475 * @param pPGM Pointer to the PGM instance data.
1476 * @param iPdpt PDPT index
1477 */
1478VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVM pVM, unsigned iPdpt)
1479{
1480 Assert(iPdpt <= 3);
1481 return pgmGstGetPaePDPTPtr(&pVM->pgm.s)->a[iPdpt & 3];
1482}
1483
1484
1485/**
1486 * Gets the current CR3 register value for the shadow memory context.
1487 * @returns CR3 value.
1488 * @param pVM The VM handle.
1489 */
1490VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVM pVM)
1491{
1492 PPGMPOOLPAGE pPoolPage = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
1493 AssertPtrReturn(pPoolPage, 0);
1494 return pPoolPage->Core.Key;
1495}
1496
1497
1498/**
1499 * Gets the current CR3 register value for the nested memory context.
1500 * @returns CR3 value.
1501 * @param pVM The VM handle.
1502 */
1503VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVM pVM, PGMMODE enmShadowMode)
1504{
1505 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1506 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1507}
1508
1509
1510/**
1511 * Gets the CR3 register value for the 32-Bit shadow memory context.
1512 * @returns CR3 value.
1513 * @param pVM The VM handle.
1514 */
1515VMMDECL(RTHCPHYS) PGMGetHyper32BitCR3(PVM pVM)
1516{
1517 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1518 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1519}
1520
1521
1522/**
1523 * Gets the CR3 register value for the PAE shadow memory context.
1524 * @returns CR3 value.
1525 * @param pVM The VM handle.
1526 */
1527VMMDECL(RTHCPHYS) PGMGetHyperPaeCR3(PVM pVM)
1528{
1529 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1530 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1531}
1532
1533
1534/**
1535 * Gets the CR3 register value for the AMD64 shadow memory context.
1536 * @returns CR3 value.
1537 * @param pVM The VM handle.
1538 */
1539VMMDECL(RTHCPHYS) PGMGetHyperAmd64CR3(PVM pVM)
1540{
1541 Assert(pVM->pgm.s.CTX_SUFF(pShwPageCR3));
1542 return pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1543}
1544
1545
1546/**
1547 * Gets the current CR3 register value for the HC intermediate memory context.
1548 * @returns CR3 value.
1549 * @param pVM The VM handle.
1550 */
1551VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1552{
1553 switch (pVM->pgm.s.enmHostMode)
1554 {
1555 case SUPPAGINGMODE_32_BIT:
1556 case SUPPAGINGMODE_32_BIT_GLOBAL:
1557 return pVM->pgm.s.HCPhysInterPD;
1558
1559 case SUPPAGINGMODE_PAE:
1560 case SUPPAGINGMODE_PAE_GLOBAL:
1561 case SUPPAGINGMODE_PAE_NX:
1562 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1563 return pVM->pgm.s.HCPhysInterPaePDPT;
1564
1565 case SUPPAGINGMODE_AMD64:
1566 case SUPPAGINGMODE_AMD64_GLOBAL:
1567 case SUPPAGINGMODE_AMD64_NX:
1568 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1569 return pVM->pgm.s.HCPhysInterPaePDPT;
1570
1571 default:
1572 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1573 return ~0;
1574 }
1575}
1576
1577
1578/**
1579 * Gets the current CR3 register value for the RC intermediate memory context.
1580 * @returns CR3 value.
1581 * @param pVM The VM handle.
1582 */
1583VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM)
1584{
1585 switch (pVM->pgm.s.enmShadowMode)
1586 {
1587 case PGMMODE_32_BIT:
1588 return pVM->pgm.s.HCPhysInterPD;
1589
1590 case PGMMODE_PAE:
1591 case PGMMODE_PAE_NX:
1592 return pVM->pgm.s.HCPhysInterPaePDPT;
1593
1594 case PGMMODE_AMD64:
1595 case PGMMODE_AMD64_NX:
1596 return pVM->pgm.s.HCPhysInterPaePML4;
1597
1598 case PGMMODE_EPT:
1599 case PGMMODE_NESTED:
1600 return 0; /* not relevant */
1601
1602 default:
1603 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
1604 return ~0;
1605 }
1606}
1607
1608
1609/**
1610 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1611 * @returns CR3 value.
1612 * @param pVM The VM handle.
1613 */
1614VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1615{
1616 return pVM->pgm.s.HCPhysInterPD;
1617}
1618
1619
1620/**
1621 * Gets the CR3 register value for the PAE intermediate memory context.
1622 * @returns CR3 value.
1623 * @param pVM The VM handle.
1624 */
1625VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1626{
1627 return pVM->pgm.s.HCPhysInterPaePDPT;
1628}
1629
1630
1631/**
1632 * Gets the CR3 register value for the AMD64 intermediate memory context.
1633 * @returns CR3 value.
1634 * @param pVM The VM handle.
1635 */
1636VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1637{
1638 return pVM->pgm.s.HCPhysInterPaePML4;
1639}
1640
1641
1642/**
1643 * Performs and schedules necessary updates following a CR3 load or reload.
1644 *
1645 * This will normally involve mapping the guest PD or nPDPT
1646 *
1647 * @returns VBox status code.
1648 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1649 * safely be ignored and overridden since the FF will be set too then.
1650 * @param pVM VM handle.
1651 * @param cr3 The new cr3.
1652 * @param fGlobal Indicates whether this is a global flush or not.
1653 */
1654VMMDECL(int) PGMFlushTLB(PVM pVM, uint64_t cr3, bool fGlobal)
1655{
1656 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1657
1658 /*
1659 * Always flag the necessary updates; necessary for hardware acceleration
1660 */
1661 /** @todo optimize this, it shouldn't always be necessary. */
1662 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1663 if (fGlobal)
1664 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1665 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
1666
1667 /*
1668 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1669 */
1670 int rc = VINF_SUCCESS;
1671 RTGCPHYS GCPhysCR3;
1672 switch (pVM->pgm.s.enmGuestMode)
1673 {
1674 case PGMMODE_PAE:
1675 case PGMMODE_PAE_NX:
1676 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1677 break;
1678 case PGMMODE_AMD64:
1679 case PGMMODE_AMD64_NX:
1680 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1681 break;
1682 default:
1683 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1684 break;
1685 }
1686
1687 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1688 {
1689 RTGCPHYS GCPhysOldCR3 = pVM->pgm.s.GCPhysCR3;
1690 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1691 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1692 if (RT_LIKELY(rc == VINF_SUCCESS))
1693 {
1694 if (!pVM->pgm.s.fMappingsFixed)
1695 {
1696 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1697 }
1698 }
1699 else
1700 {
1701 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1702 Assert(VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL | VM_FF_PGM_SYNC_CR3));
1703 pVM->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1704 pVM->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1705 if (!pVM->pgm.s.fMappingsFixed)
1706 pVM->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1707 }
1708
1709 if (fGlobal)
1710 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1711 else
1712 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1713 }
1714 else
1715 {
1716 /*
1717 * Check if we have a pending update of the CR3 monitoring.
1718 */
1719 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1720 {
1721 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1722 Assert(!pVM->pgm.s.fMappingsFixed);
1723 }
1724 if (fGlobal)
1725 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1726 else
1727 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1728 }
1729
1730 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1731 return rc;
1732}
1733
1734
1735/**
1736 * Performs and schedules necessary updates following a CR3 load or reload when
1737 * using nested or extended paging.
1738 *
1739 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1740 * TLB and triggering a SyncCR3.
1741 *
1742 * This will normally involve mapping the guest PD or nPDPT
1743 *
1744 * @returns VBox status code.
1745 * @retval VINF_SUCCESS.
1746 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1747 * requires a CR3 sync. This can safely be ignored and overridden since
1748 * the FF will be set too then.)
1749 * @param pVM VM handle.
1750 * @param cr3 The new cr3.
1751 */
1752VMMDECL(int) PGMUpdateCR3(PVM pVM, uint64_t cr3)
1753{
1754 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVM->pgm.s.GCPhysCR3));
1755
1756 /* We assume we're only called in nested paging mode. */
1757 Assert(pVM->pgm.s.fMappingsFixed);
1758 Assert(!(pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1759 Assert(pVM->pgm.s.enmShadowMode == PGMMODE_NESTED || pVM->pgm.s.enmShadowMode == PGMMODE_EPT);
1760
1761 /*
1762 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1763 */
1764 int rc = VINF_SUCCESS;
1765 RTGCPHYS GCPhysCR3;
1766 switch (pVM->pgm.s.enmGuestMode)
1767 {
1768 case PGMMODE_PAE:
1769 case PGMMODE_PAE_NX:
1770 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1771 break;
1772 case PGMMODE_AMD64:
1773 case PGMMODE_AMD64_NX:
1774 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1775 break;
1776 default:
1777 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1778 break;
1779 }
1780 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1781 {
1782 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1783 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1784 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1785 }
1786 return rc;
1787}
1788
1789
1790/**
1791 * Synchronize the paging structures.
1792 *
1793 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1794 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1795 * in several places, most importantly whenever the CR3 is loaded.
1796 *
1797 * @returns VBox status code.
1798 * @param pVM The virtual machine.
1799 * @param cr0 Guest context CR0 register
1800 * @param cr3 Guest context CR3 register
1801 * @param cr4 Guest context CR4 register
1802 * @param fGlobal Including global page directories or not
1803 */
1804VMMDECL(int) PGMSyncCR3(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1805{
1806 int rc;
1807
1808 /*
1809 * We might be called when we shouldn't.
1810 *
1811 * The mode switching will ensure that the PD is resynced
1812 * after every mode switch. So, if we find ourselves here
1813 * when in protected or real mode we can safely disable the
1814 * FF and return immediately.
1815 */
1816 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1817 {
1818 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1819 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1820 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1821 return VINF_SUCCESS;
1822 }
1823
1824 /* If global pages are not supported, then all flushes are global. */
1825 if (!(cr4 & X86_CR4_PGE))
1826 fGlobal = true;
1827 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1828 VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1829
1830#ifdef PGMPOOL_WITH_MONITORING
1831 /*
1832 * The pool may have pending stuff and even require a return to ring-3 to
1833 * clear the whole thing.
1834 */
1835 rc = pgmPoolSyncCR3(pVM);
1836 if (rc != VINF_SUCCESS)
1837 return rc;
1838#endif
1839
1840 /*
1841 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1842 * This should be done before SyncCR3.
1843 */
1844 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1845 {
1846 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1847
1848 RTGCPHYS GCPhysCR3Old = pVM->pgm.s.GCPhysCR3;
1849 RTGCPHYS GCPhysCR3;
1850 switch (pVM->pgm.s.enmGuestMode)
1851 {
1852 case PGMMODE_PAE:
1853 case PGMMODE_PAE_NX:
1854 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1855 break;
1856 case PGMMODE_AMD64:
1857 case PGMMODE_AMD64_NX:
1858 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1859 break;
1860 default:
1861 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1862 break;
1863 }
1864
1865 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1866 {
1867 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1868 rc = PGM_BTH_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1869 }
1870#ifdef IN_RING3
1871 if (rc == VINF_PGM_SYNC_CR3)
1872 rc = pgmPoolSyncCR3(pVM);
1873#else
1874 if (rc == VINF_PGM_SYNC_CR3)
1875 {
1876 pVM->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1877 return rc;
1878 }
1879#endif
1880 AssertRCReturn(rc, rc);
1881 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1882 }
1883
1884 /*
1885 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1886 */
1887 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1888 rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
1889 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1890 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1891 if (rc == VINF_SUCCESS)
1892 {
1893 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1894 {
1895 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1896 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1897 }
1898
1899 /*
1900 * Check if we have a pending update of the CR3 monitoring.
1901 */
1902 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1903 {
1904 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1905 Assert(!pVM->pgm.s.fMappingsFixed);
1906 }
1907 }
1908
1909 /*
1910 * Now flush the CR3 (guest context).
1911 */
1912 if (rc == VINF_SUCCESS)
1913 PGM_INVL_GUEST_TLBS();
1914 return rc;
1915}
1916
1917
1918/**
1919 * Called whenever CR0 or CR4 in a way which may change
1920 * the paging mode.
1921 *
1922 * @returns VBox status code fit for scheduling in GC and R0.
1923 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1924 * @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
1925 * @param pVM VM handle.
1926 * @param cr0 The new cr0.
1927 * @param cr4 The new cr4.
1928 * @param efer The new extended feature enable register.
1929 */
1930VMMDECL(int) PGMChangeMode(PVM pVM, uint64_t cr0, uint64_t cr4, uint64_t efer)
1931{
1932 PGMMODE enmGuestMode;
1933
1934 /*
1935 * Calc the new guest mode.
1936 */
1937 if (!(cr0 & X86_CR0_PE))
1938 enmGuestMode = PGMMODE_REAL;
1939 else if (!(cr0 & X86_CR0_PG))
1940 enmGuestMode = PGMMODE_PROTECTED;
1941 else if (!(cr4 & X86_CR4_PAE))
1942 enmGuestMode = PGMMODE_32_BIT;
1943 else if (!(efer & MSR_K6_EFER_LME))
1944 {
1945 if (!(efer & MSR_K6_EFER_NXE))
1946 enmGuestMode = PGMMODE_PAE;
1947 else
1948 enmGuestMode = PGMMODE_PAE_NX;
1949 }
1950 else
1951 {
1952 if (!(efer & MSR_K6_EFER_NXE))
1953 enmGuestMode = PGMMODE_AMD64;
1954 else
1955 enmGuestMode = PGMMODE_AMD64_NX;
1956 }
1957
1958 /*
1959 * Did it change?
1960 */
1961 if (pVM->pgm.s.enmGuestMode == enmGuestMode)
1962 return VINF_SUCCESS;
1963
1964 /* Flush the TLB */
1965 PGM_INVL_GUEST_TLBS();
1966
1967#ifdef IN_RING3
1968 return PGMR3ChangeMode(pVM, enmGuestMode);
1969#else
1970 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1971 return VINF_PGM_CHANGE_MODE;
1972#endif
1973}
1974
1975
1976/**
1977 * Gets the current guest paging mode.
1978 *
1979 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1980 *
1981 * @returns The current paging mode.
1982 * @param pVM The VM handle.
1983 */
1984VMMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
1985{
1986 return pVM->pgm.s.enmGuestMode;
1987}
1988
1989
1990/**
1991 * Gets the current shadow paging mode.
1992 *
1993 * @returns The current paging mode.
1994 * @param pVM The VM handle.
1995 */
1996VMMDECL(PGMMODE) PGMGetShadowMode(PVM pVM)
1997{
1998 return pVM->pgm.s.enmShadowMode;
1999}
2000
2001/**
2002 * Gets the current host paging mode.
2003 *
2004 * @returns The current paging mode.
2005 * @param pVM The VM handle.
2006 */
2007VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
2008{
2009 switch (pVM->pgm.s.enmHostMode)
2010 {
2011 case SUPPAGINGMODE_32_BIT:
2012 case SUPPAGINGMODE_32_BIT_GLOBAL:
2013 return PGMMODE_32_BIT;
2014
2015 case SUPPAGINGMODE_PAE:
2016 case SUPPAGINGMODE_PAE_GLOBAL:
2017 return PGMMODE_PAE;
2018
2019 case SUPPAGINGMODE_PAE_NX:
2020 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2021 return PGMMODE_PAE_NX;
2022
2023 case SUPPAGINGMODE_AMD64:
2024 case SUPPAGINGMODE_AMD64_GLOBAL:
2025 return PGMMODE_AMD64;
2026
2027 case SUPPAGINGMODE_AMD64_NX:
2028 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2029 return PGMMODE_AMD64_NX;
2030
2031 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
2032 }
2033
2034 return PGMMODE_INVALID;
2035}
2036
2037
2038/**
2039 * Get mode name.
2040 *
2041 * @returns read-only name string.
2042 * @param enmMode The mode which name is desired.
2043 */
2044VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
2045{
2046 switch (enmMode)
2047 {
2048 case PGMMODE_REAL: return "Real";
2049 case PGMMODE_PROTECTED: return "Protected";
2050 case PGMMODE_32_BIT: return "32-bit";
2051 case PGMMODE_PAE: return "PAE";
2052 case PGMMODE_PAE_NX: return "PAE+NX";
2053 case PGMMODE_AMD64: return "AMD64";
2054 case PGMMODE_AMD64_NX: return "AMD64+NX";
2055 case PGMMODE_NESTED: return "Nested";
2056 case PGMMODE_EPT: return "EPT";
2057 default: return "unknown mode value";
2058 }
2059}
2060
2061
2062/**
2063 * Acquire the PGM lock.
2064 *
2065 * @returns VBox status code
2066 * @param pVM The VM to operate on.
2067 */
2068int pgmLock(PVM pVM)
2069{
2070 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
2071#ifdef IN_RC
2072 if (rc == VERR_SEM_BUSY)
2073 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
2074#elif defined(IN_RING0)
2075 if (rc == VERR_SEM_BUSY)
2076 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
2077#endif
2078 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2079 return rc;
2080}
2081
2082
2083/**
2084 * Release the PGM lock.
2085 *
2086 * @returns VBox status code
2087 * @param pVM The VM to operate on.
2088 */
2089void pgmUnlock(PVM pVM)
2090{
2091 PDMCritSectLeave(&pVM->pgm.s.CritSect);
2092}
2093
2094#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2095
2096/**
2097 * Temporarily maps one guest page specified by GC physical address.
2098 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2099 *
2100 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2101 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2102 *
2103 * @returns VBox status.
2104 * @param pVM VM handle.
2105 * @param GCPhys GC Physical address of the page.
2106 * @param ppv Where to store the address of the mapping.
2107 */
2108VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2109{
2110 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
2111
2112 /*
2113 * Get the ram range.
2114 */
2115 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2116 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2117 pRam = pRam->CTX_SUFF(pNext);
2118 if (!pRam)
2119 {
2120 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2121 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2122 }
2123
2124 /*
2125 * Pass it on to PGMDynMapHCPage.
2126 */
2127 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2128 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
2129#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2130 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2131#else
2132 PGMDynMapHCPage(pVM, HCPhys, ppv);
2133#endif
2134 return VINF_SUCCESS;
2135}
2136
2137
2138/**
2139 * Temporarily maps one guest page specified by unaligned GC physical address.
2140 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2141 *
2142 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2143 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2144 *
2145 * The caller is aware that only the speicifed page is mapped and that really bad things
2146 * will happen if writing beyond the page!
2147 *
2148 * @returns VBox status.
2149 * @param pVM VM handle.
2150 * @param GCPhys GC Physical address within the page to be mapped.
2151 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
2152 */
2153VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2154{
2155 /*
2156 * Get the ram range.
2157 */
2158 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2159 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2160 pRam = pRam->CTX_SUFF(pNext);
2161 if (!pRam)
2162 {
2163 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2164 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2165 }
2166
2167 /*
2168 * Pass it on to PGMDynMapHCPage.
2169 */
2170 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2171#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2172 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2173#else
2174 PGMDynMapHCPage(pVM, HCPhys, ppv);
2175#endif
2176 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2177 return VINF_SUCCESS;
2178}
2179
2180# ifdef IN_RC
2181
2182/**
2183 * Temporarily maps one host page specified by HC physical address.
2184 *
2185 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2186 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2187 *
2188 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2189 * @param pVM VM handle.
2190 * @param HCPhys HC Physical address of the page.
2191 * @param ppv Where to store the address of the mapping. This is the
2192 * address of the PAGE not the exact address corresponding
2193 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2194 * page offset.
2195 */
2196VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2197{
2198 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2199
2200 /*
2201 * Check the cache.
2202 */
2203 register unsigned iCache;
2204 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2205 {
2206 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2207 {
2208 { 0, 9, 10, 11, 12, 13, 14, 15},
2209 { 0, 1, 10, 11, 12, 13, 14, 15},
2210 { 0, 1, 2, 11, 12, 13, 14, 15},
2211 { 0, 1, 2, 3, 12, 13, 14, 15},
2212 { 0, 1, 2, 3, 4, 13, 14, 15},
2213 { 0, 1, 2, 3, 4, 5, 14, 15},
2214 { 0, 1, 2, 3, 4, 5, 6, 15},
2215 { 0, 1, 2, 3, 4, 5, 6, 7},
2216 { 8, 1, 2, 3, 4, 5, 6, 7},
2217 { 8, 9, 2, 3, 4, 5, 6, 7},
2218 { 8, 9, 10, 3, 4, 5, 6, 7},
2219 { 8, 9, 10, 11, 4, 5, 6, 7},
2220 { 8, 9, 10, 11, 12, 5, 6, 7},
2221 { 8, 9, 10, 11, 12, 13, 6, 7},
2222 { 8, 9, 10, 11, 12, 13, 14, 7},
2223 { 8, 9, 10, 11, 12, 13, 14, 15},
2224 };
2225 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2226 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2227
2228 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2229 {
2230 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2231
2232 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2233 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2234 {
2235 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2236 *ppv = pv;
2237 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2238 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2239 return VINF_SUCCESS;
2240 }
2241 else
2242 LogFlow(("Out of sync entry %d\n", iPage));
2243 }
2244 }
2245 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2246 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2247 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2248
2249 /*
2250 * Update the page tables.
2251 */
2252 register unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2253 unsigned i;
2254 for (i=0;i<(MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT);i++)
2255 {
2256 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2257 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2258 break;
2259 iPage++;
2260 }
2261 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2262
2263 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2264 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2265 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2266 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2267
2268 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2269 *ppv = pv;
2270 ASMInvalidatePage(pv);
2271 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2272 return VINF_SUCCESS;
2273}
2274
2275
2276/**
2277 * Temporarily lock a dynamic page to prevent it from being reused.
2278 *
2279 * @param pVM VM handle.
2280 * @param GCPage GC address of page
2281 */
2282VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2283{
2284 unsigned iPage;
2285
2286 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2287 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2288 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2289 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2290}
2291
2292
2293/**
2294 * Unlock a dynamic page
2295 *
2296 * @param pVM VM handle.
2297 * @param GCPage GC address of page
2298 */
2299VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2300{
2301 unsigned iPage;
2302
2303 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache));
2304
2305 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2306 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2307 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2308 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2309 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2310}
2311
2312
2313# ifdef VBOX_STRICT
2314/**
2315 * Check for lock leaks.
2316 *
2317 * @param pVM VM handle.
2318 */
2319VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2320{
2321 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2322 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2323}
2324# endif /* VBOX_STRICT */
2325
2326# endif /* IN_RC */
2327#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2328
2329#if !defined(IN_R0) || defined(LOG_ENABLED)
2330
2331/** Format handler for PGMPAGE.
2332 * @copydoc FNRTSTRFORMATTYPE */
2333static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2334 const char *pszType, void const *pvValue,
2335 int cchWidth, int cchPrecision, unsigned fFlags,
2336 void *pvUser)
2337{
2338 size_t cch;
2339 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2340 if (VALID_PTR(pPage))
2341 {
2342 char szTmp[64+80];
2343
2344 cch = 0;
2345
2346 /* The single char state stuff. */
2347 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2348 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2349
2350#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2351 if (IS_PART_INCLUDED(5))
2352 {
2353 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2354 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2355 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2356 }
2357
2358 /* The type. */
2359 if (IS_PART_INCLUDED(4))
2360 {
2361 szTmp[cch++] = ':';
2362 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2363 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2364 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2365 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2366 }
2367
2368 /* The numbers. */
2369 if (IS_PART_INCLUDED(3))
2370 {
2371 szTmp[cch++] = ':';
2372 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2373 }
2374
2375 if (IS_PART_INCLUDED(2))
2376 {
2377 szTmp[cch++] = ':';
2378 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2379 }
2380
2381 if (IS_PART_INCLUDED(6))
2382 {
2383 szTmp[cch++] = ':';
2384 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2385 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2386 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2387 }
2388#undef IS_PART_INCLUDED
2389
2390 cch = pfnOutput(pvArgOutput, szTmp, cch);
2391 }
2392 else
2393 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2394 return cch;
2395}
2396
2397
2398/** Format handler for PGMRAMRANGE.
2399 * @copydoc FNRTSTRFORMATTYPE */
2400static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2401 const char *pszType, void const *pvValue,
2402 int cchWidth, int cchPrecision, unsigned fFlags,
2403 void *pvUser)
2404{
2405 size_t cch;
2406 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2407 if (VALID_PTR(pRam))
2408 {
2409 char szTmp[80];
2410 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2411 cch = pfnOutput(pvArgOutput, szTmp, cch);
2412 }
2413 else
2414 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2415 return cch;
2416}
2417
2418/** Format type andlers to be registered/deregistered. */
2419static const struct
2420{
2421 char szType[24];
2422 PFNRTSTRFORMATTYPE pfnHandler;
2423} g_aPgmFormatTypes[] =
2424{
2425 { "pgmpage", pgmFormatTypeHandlerPage },
2426 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2427};
2428
2429#endif /* !IN_R0 || LOG_ENABLED */
2430
2431
2432/**
2433 * Registers the global string format types.
2434 *
2435 * This should be called at module load time or in some other manner that ensure
2436 * that it's called exactly one time.
2437 *
2438 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2439 */
2440VMMDECL(int) PGMRegisterStringFormatTypes(void)
2441{
2442#if !defined(IN_R0) || defined(LOG_ENABLED)
2443 int rc = VINF_SUCCESS;
2444 unsigned i;
2445 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2446 {
2447 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2448# ifdef IN_RING0
2449 if (rc == VERR_ALREADY_EXISTS)
2450 {
2451 /* in case of cleanup failure in ring-0 */
2452 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2453 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2454 }
2455# endif
2456 }
2457 if (RT_FAILURE(rc))
2458 while (i-- > 0)
2459 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2460
2461 return rc;
2462#else
2463 return VINF_SUCCESS;
2464#endif
2465}
2466
2467
2468/**
2469 * Deregisters the global string format types.
2470 *
2471 * This should be called at module unload time or in some other manner that
2472 * ensure that it's called exactly one time.
2473 */
2474VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2475{
2476#if !defined(IN_R0) || defined(LOG_ENABLED)
2477 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2478 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2479#endif
2480}
2481
2482#ifdef VBOX_STRICT
2483
2484/**
2485 * Asserts that there are no mapping conflicts.
2486 *
2487 * @returns Number of conflicts.
2488 * @param pVM The VM Handle.
2489 */
2490VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2491{
2492 unsigned cErrors = 0;
2493
2494 /*
2495 * Check for mapping conflicts.
2496 */
2497 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2498 pMapping;
2499 pMapping = pMapping->CTX_SUFF(pNext))
2500 {
2501 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2502 for (RTGCPTR GCPtr = pMapping->GCPtr;
2503 GCPtr <= pMapping->GCPtrLast;
2504 GCPtr += PAGE_SIZE)
2505 {
2506 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
2507 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2508 {
2509 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2510 cErrors++;
2511 break;
2512 }
2513 }
2514 }
2515
2516 return cErrors;
2517}
2518
2519
2520/**
2521 * Asserts that everything related to the guest CR3 is correctly shadowed.
2522 *
2523 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2524 * and assert the correctness of the guest CR3 mapping before asserting that the
2525 * shadow page tables is in sync with the guest page tables.
2526 *
2527 * @returns Number of conflicts.
2528 * @param pVM The VM Handle.
2529 * @param cr3 The current guest CR3 register value.
2530 * @param cr4 The current guest CR4 register value.
2531 */
2532VMMDECL(unsigned) PGMAssertCR3(PVM pVM, uint64_t cr3, uint64_t cr4)
2533{
2534 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2535 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCPTR)0);
2536 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2537 return cErrors;
2538}
2539
2540#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette