VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 19790

Last change on this file since 19790 was 19790, checked in by vboxsync, 16 years ago

Protect InvalidatePage with the pgm lock.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 81.3 KB
Line 
1/* $Id: PGMAll.cpp 19790 2009-05-18 14:10:49Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The VMCPU handle. */
62 PVMCPU pVCpu;
63 /** The todo flags. */
64 RTUINT fTodo;
65 /** The CR4 register value. */
66 uint32_t cr4;
67} PGMHVUSTATE, *PPGMHVUSTATE;
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
74DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
75
76/*
77 * Shadow - 32-bit mode
78 */
79#define PGM_SHW_TYPE PGM_TYPE_32BIT
80#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
81#include "PGMAllShw.h"
82
83/* Guest - real mode */
84#define PGM_GST_TYPE PGM_TYPE_REAL
85#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
86#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
87#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
88#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
89#include "PGMGstDefs.h"
90#include "PGMAllGst.h"
91#include "PGMAllBth.h"
92#undef BTH_PGMPOOLKIND_PT_FOR_PT
93#undef BTH_PGMPOOLKIND_ROOT
94#undef PGM_BTH_NAME
95#undef PGM_GST_TYPE
96#undef PGM_GST_NAME
97
98/* Guest - protected mode */
99#define PGM_GST_TYPE PGM_TYPE_PROT
100#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
101#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
102#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
103#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
104#include "PGMGstDefs.h"
105#include "PGMAllGst.h"
106#include "PGMAllBth.h"
107#undef BTH_PGMPOOLKIND_PT_FOR_PT
108#undef BTH_PGMPOOLKIND_ROOT
109#undef PGM_BTH_NAME
110#undef PGM_GST_TYPE
111#undef PGM_GST_NAME
112
113/* Guest - 32-bit mode */
114#define PGM_GST_TYPE PGM_TYPE_32BIT
115#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
116#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
117#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
118#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
119#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
120#include "PGMGstDefs.h"
121#include "PGMAllGst.h"
122#include "PGMAllBth.h"
123#undef BTH_PGMPOOLKIND_PT_FOR_BIG
124#undef BTH_PGMPOOLKIND_PT_FOR_PT
125#undef BTH_PGMPOOLKIND_ROOT
126#undef PGM_BTH_NAME
127#undef PGM_GST_TYPE
128#undef PGM_GST_NAME
129
130#undef PGM_SHW_TYPE
131#undef PGM_SHW_NAME
132
133
134/*
135 * Shadow - PAE mode
136 */
137#define PGM_SHW_TYPE PGM_TYPE_PAE
138#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
139#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
140#include "PGMAllShw.h"
141
142/* Guest - real mode */
143#define PGM_GST_TYPE PGM_TYPE_REAL
144#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
145#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
146#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
147#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
148#include "PGMGstDefs.h"
149#include "PGMAllBth.h"
150#undef BTH_PGMPOOLKIND_PT_FOR_PT
151#undef BTH_PGMPOOLKIND_ROOT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
162#include "PGMGstDefs.h"
163#include "PGMAllBth.h"
164#undef BTH_PGMPOOLKIND_PT_FOR_PT
165#undef BTH_PGMPOOLKIND_ROOT
166#undef PGM_BTH_NAME
167#undef PGM_GST_TYPE
168#undef PGM_GST_NAME
169
170/* Guest - 32-bit mode */
171#define PGM_GST_TYPE PGM_TYPE_32BIT
172#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
173#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
174#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
175#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
176#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
177#include "PGMGstDefs.h"
178#include "PGMAllBth.h"
179#undef BTH_PGMPOOLKIND_PT_FOR_BIG
180#undef BTH_PGMPOOLKIND_PT_FOR_PT
181#undef BTH_PGMPOOLKIND_ROOT
182#undef PGM_BTH_NAME
183#undef PGM_GST_TYPE
184#undef PGM_GST_NAME
185
186
187/* Guest - PAE mode */
188#define PGM_GST_TYPE PGM_TYPE_PAE
189#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
190#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
191#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
192#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
193#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
194#include "PGMGstDefs.h"
195#include "PGMAllGst.h"
196#include "PGMAllBth.h"
197#undef BTH_PGMPOOLKIND_PT_FOR_BIG
198#undef BTH_PGMPOOLKIND_PT_FOR_PT
199#undef BTH_PGMPOOLKIND_ROOT
200#undef PGM_BTH_NAME
201#undef PGM_GST_TYPE
202#undef PGM_GST_NAME
203
204#undef PGM_SHW_TYPE
205#undef PGM_SHW_NAME
206
207
208#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
209/*
210 * Shadow - AMD64 mode
211 */
212# define PGM_SHW_TYPE PGM_TYPE_AMD64
213# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
214# include "PGMAllShw.h"
215
216/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
217# define PGM_GST_TYPE PGM_TYPE_PROT
218# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
219# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
220# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
221# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
222# include "PGMGstDefs.h"
223# include "PGMAllBth.h"
224# undef BTH_PGMPOOLKIND_PT_FOR_PT
225# undef BTH_PGMPOOLKIND_ROOT
226# undef PGM_BTH_NAME
227# undef PGM_GST_TYPE
228# undef PGM_GST_NAME
229
230# ifdef VBOX_WITH_64_BITS_GUESTS
231/* Guest - AMD64 mode */
232# define PGM_GST_TYPE PGM_TYPE_AMD64
233# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
234# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
235# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
236# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
237# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
238# include "PGMGstDefs.h"
239# include "PGMAllGst.h"
240# include "PGMAllBth.h"
241# undef BTH_PGMPOOLKIND_PT_FOR_BIG
242# undef BTH_PGMPOOLKIND_PT_FOR_PT
243# undef BTH_PGMPOOLKIND_ROOT
244# undef PGM_BTH_NAME
245# undef PGM_GST_TYPE
246# undef PGM_GST_NAME
247# endif /* VBOX_WITH_64_BITS_GUESTS */
248
249# undef PGM_SHW_TYPE
250# undef PGM_SHW_NAME
251
252
253/*
254 * Shadow - Nested paging mode
255 */
256# define PGM_SHW_TYPE PGM_TYPE_NESTED
257# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
258# include "PGMAllShw.h"
259
260/* Guest - real mode */
261# define PGM_GST_TYPE PGM_TYPE_REAL
262# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
263# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
264# include "PGMGstDefs.h"
265# include "PGMAllBth.h"
266# undef PGM_BTH_NAME
267# undef PGM_GST_TYPE
268# undef PGM_GST_NAME
269
270/* Guest - protected mode */
271# define PGM_GST_TYPE PGM_TYPE_PROT
272# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
273# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
274# include "PGMGstDefs.h"
275# include "PGMAllBth.h"
276# undef PGM_BTH_NAME
277# undef PGM_GST_TYPE
278# undef PGM_GST_NAME
279
280/* Guest - 32-bit mode */
281# define PGM_GST_TYPE PGM_TYPE_32BIT
282# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
283# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
284# include "PGMGstDefs.h"
285# include "PGMAllBth.h"
286# undef PGM_BTH_NAME
287# undef PGM_GST_TYPE
288# undef PGM_GST_NAME
289
290/* Guest - PAE mode */
291# define PGM_GST_TYPE PGM_TYPE_PAE
292# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
293# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
294# include "PGMGstDefs.h"
295# include "PGMAllBth.h"
296# undef PGM_BTH_NAME
297# undef PGM_GST_TYPE
298# undef PGM_GST_NAME
299
300# ifdef VBOX_WITH_64_BITS_GUESTS
301/* Guest - AMD64 mode */
302# define PGM_GST_TYPE PGM_TYPE_AMD64
303# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
304# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
305# include "PGMGstDefs.h"
306# include "PGMAllBth.h"
307# undef PGM_BTH_NAME
308# undef PGM_GST_TYPE
309# undef PGM_GST_NAME
310# endif /* VBOX_WITH_64_BITS_GUESTS */
311
312# undef PGM_SHW_TYPE
313# undef PGM_SHW_NAME
314
315
316/*
317 * Shadow - EPT
318 */
319# define PGM_SHW_TYPE PGM_TYPE_EPT
320# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
321# include "PGMAllShw.h"
322
323/* Guest - real mode */
324# define PGM_GST_TYPE PGM_TYPE_REAL
325# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
326# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
327# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
328# include "PGMGstDefs.h"
329# include "PGMAllBth.h"
330# undef BTH_PGMPOOLKIND_PT_FOR_PT
331# undef PGM_BTH_NAME
332# undef PGM_GST_TYPE
333# undef PGM_GST_NAME
334
335/* Guest - protected mode */
336# define PGM_GST_TYPE PGM_TYPE_PROT
337# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
338# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
339# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
340# include "PGMGstDefs.h"
341# include "PGMAllBth.h"
342# undef BTH_PGMPOOLKIND_PT_FOR_PT
343# undef PGM_BTH_NAME
344# undef PGM_GST_TYPE
345# undef PGM_GST_NAME
346
347/* Guest - 32-bit mode */
348# define PGM_GST_TYPE PGM_TYPE_32BIT
349# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
350# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
351# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
352# include "PGMGstDefs.h"
353# include "PGMAllBth.h"
354# undef BTH_PGMPOOLKIND_PT_FOR_PT
355# undef PGM_BTH_NAME
356# undef PGM_GST_TYPE
357# undef PGM_GST_NAME
358
359/* Guest - PAE mode */
360# define PGM_GST_TYPE PGM_TYPE_PAE
361# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
362# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
363# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
364# include "PGMGstDefs.h"
365# include "PGMAllBth.h"
366# undef BTH_PGMPOOLKIND_PT_FOR_PT
367# undef PGM_BTH_NAME
368# undef PGM_GST_TYPE
369# undef PGM_GST_NAME
370
371# ifdef VBOX_WITH_64_BITS_GUESTS
372/* Guest - AMD64 mode */
373# define PGM_GST_TYPE PGM_TYPE_AMD64
374# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
375# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
376# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
377# include "PGMGstDefs.h"
378# include "PGMAllBth.h"
379# undef BTH_PGMPOOLKIND_PT_FOR_PT
380# undef PGM_BTH_NAME
381# undef PGM_GST_TYPE
382# undef PGM_GST_NAME
383# endif /* VBOX_WITH_64_BITS_GUESTS */
384
385# undef PGM_SHW_TYPE
386# undef PGM_SHW_NAME
387
388#endif /* !IN_RC */
389
390
391#ifndef IN_RING3
392/**
393 * #PF Handler.
394 *
395 * @returns VBox status code (appropriate for trap handling and GC return).
396 * @param pVCpu VMCPU handle.
397 * @param uErr The trap error code.
398 * @param pRegFrame Trap register frame.
399 * @param pvFault The fault address.
400 */
401VMMDECL(int) PGMTrap0eHandler(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
402{
403 LogFlow(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%04x:%RGv\n", uErr, pvFault, pRegFrame->cs, (RTGCPTR)pRegFrame->rip));
404 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0e, a);
405 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
406
407
408#ifdef VBOX_WITH_STATISTICS
409 /*
410 * Error code stats.
411 */
412 if (uErr & X86_TRAP_PF_US)
413 {
414 if (!(uErr & X86_TRAP_PF_P))
415 {
416 if (uErr & X86_TRAP_PF_RW)
417 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentWrite);
418 else
419 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentRead);
420 }
421 else if (uErr & X86_TRAP_PF_RW)
422 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSWrite);
423 else if (uErr & X86_TRAP_PF_RSVD)
424 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSReserved);
425 else if (uErr & X86_TRAP_PF_ID)
426 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNXE);
427 else
428 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSRead);
429 }
430 else
431 { /* Supervisor */
432 if (!(uErr & X86_TRAP_PF_P))
433 {
434 if (uErr & X86_TRAP_PF_RW)
435 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentWrite);
436 else
437 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentRead);
438 }
439 else if (uErr & X86_TRAP_PF_RW)
440 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVWrite);
441 else if (uErr & X86_TRAP_PF_ID)
442 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSNXE);
443 else if (uErr & X86_TRAP_PF_RSVD)
444 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVReserved);
445 }
446#endif /* VBOX_WITH_STATISTICS */
447
448 /*
449 * Call the worker.
450 */
451 int rc = PGM_BTH_PFN(Trap0eHandler, pVCpu)(pVCpu, uErr, pRegFrame, pvFault);
452 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
453 rc = VINF_SUCCESS;
454 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPF); });
455 STAM_STATS({ if (!pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
456 pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2Misc; });
457 STAM_PROFILE_STOP_EX(&pVCpu->pgm.s.StatRZTrap0e, pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
458 return rc;
459}
460#endif /* !IN_RING3 */
461
462
463/**
464 * Prefetch a page
465 *
466 * Typically used to sync commonly used pages before entering raw mode
467 * after a CR3 reload.
468 *
469 * @returns VBox status code suitable for scheduling.
470 * @retval VINF_SUCCESS on success.
471 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
472 * @param pVCpu VMCPU handle.
473 * @param GCPtrPage Page to invalidate.
474 */
475VMMDECL(int) PGMPrefetchPage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
476{
477 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
478 int rc = PGM_BTH_PFN(PrefetchPage, pVCpu)(pVCpu, GCPtrPage);
479 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
480 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
481 return rc;
482}
483
484
485/**
486 * Gets the mapping corresponding to the specified address (if any).
487 *
488 * @returns Pointer to the mapping.
489 * @returns NULL if not
490 *
491 * @param pVM The virtual machine.
492 * @param GCPtr The guest context pointer.
493 */
494PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
495{
496 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
497 while (pMapping)
498 {
499 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
500 break;
501 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
502 return pMapping;
503 pMapping = pMapping->CTX_SUFF(pNext);
504 }
505 return NULL;
506}
507
508
509/**
510 * Verifies a range of pages for read or write access
511 *
512 * Only checks the guest's page tables
513 *
514 * @returns VBox status code.
515 * @param pVCpu VMCPU handle.
516 * @param Addr Guest virtual address to check
517 * @param cbSize Access size
518 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
519 * @remarks Current not in use.
520 */
521VMMDECL(int) PGMIsValidAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
522{
523 /*
524 * Validate input.
525 */
526 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
527 {
528 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
529 return VERR_INVALID_PARAMETER;
530 }
531
532 uint64_t fPage;
533 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPage, NULL);
534 if (RT_FAILURE(rc))
535 {
536 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
537 return VINF_EM_RAW_GUEST_TRAP;
538 }
539
540 /*
541 * Check if the access would cause a page fault
542 *
543 * Note that hypervisor page directories are not present in the guest's tables, so this check
544 * is sufficient.
545 */
546 bool fWrite = !!(fAccess & X86_PTE_RW);
547 bool fUser = !!(fAccess & X86_PTE_US);
548 if ( !(fPage & X86_PTE_P)
549 || (fWrite && !(fPage & X86_PTE_RW))
550 || (fUser && !(fPage & X86_PTE_US)) )
551 {
552 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
553 return VINF_EM_RAW_GUEST_TRAP;
554 }
555 if ( RT_SUCCESS(rc)
556 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
557 return PGMIsValidAccess(pVCpu, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
558 return rc;
559}
560
561
562/**
563 * Verifies a range of pages for read or write access
564 *
565 * Supports handling of pages marked for dirty bit tracking and CSAM
566 *
567 * @returns VBox status code.
568 * @param pVCpu VMCPU handle.
569 * @param Addr Guest virtual address to check
570 * @param cbSize Access size
571 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
572 */
573VMMDECL(int) PGMVerifyAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
574{
575 PVM pVM = pVCpu->CTX_SUFF(pVM);
576
577 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
578
579 /*
580 * Get going.
581 */
582 uint64_t fPageGst;
583 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPageGst, NULL);
584 if (RT_FAILURE(rc))
585 {
586 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
587 return VINF_EM_RAW_GUEST_TRAP;
588 }
589
590 /*
591 * Check if the access would cause a page fault
592 *
593 * Note that hypervisor page directories are not present in the guest's tables, so this check
594 * is sufficient.
595 */
596 const bool fWrite = !!(fAccess & X86_PTE_RW);
597 const bool fUser = !!(fAccess & X86_PTE_US);
598 if ( !(fPageGst & X86_PTE_P)
599 || (fWrite && !(fPageGst & X86_PTE_RW))
600 || (fUser && !(fPageGst & X86_PTE_US)) )
601 {
602 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
603 return VINF_EM_RAW_GUEST_TRAP;
604 }
605
606 if (!HWACCMIsNestedPagingActive(pVM))
607 {
608 /*
609 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
610 */
611 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, NULL, NULL);
612 if ( rc == VERR_PAGE_NOT_PRESENT
613 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
614 {
615 /*
616 * Page is not present in our page tables.
617 * Try to sync it!
618 */
619 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
620 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
621 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVCpu)(pVCpu, Addr, fPageGst, uErr);
622 if (rc != VINF_SUCCESS)
623 return rc;
624 }
625 else
626 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
627 }
628
629#if 0 /* def VBOX_STRICT; triggers too often now */
630 /*
631 * This check is a bit paranoid, but useful.
632 */
633 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
634 uint64_t fPageShw;
635 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, &fPageShw, NULL);
636 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
637 || (fWrite && !(fPageShw & X86_PTE_RW))
638 || (fUser && !(fPageShw & X86_PTE_US)) )
639 {
640 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
641 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
642 return VINF_EM_RAW_GUEST_TRAP;
643 }
644#endif
645
646 if ( RT_SUCCESS(rc)
647 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
648 || Addr + cbSize < Addr))
649 {
650 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
651 for (;;)
652 {
653 Addr += PAGE_SIZE;
654 if (cbSize > PAGE_SIZE)
655 cbSize -= PAGE_SIZE;
656 else
657 cbSize = 1;
658 rc = PGMVerifyAccess(pVCpu, Addr, 1, fAccess);
659 if (rc != VINF_SUCCESS)
660 break;
661 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
662 break;
663 }
664 }
665 return rc;
666}
667
668
669/**
670 * Emulation of the invlpg instruction (HC only actually).
671 *
672 * @returns VBox status code, special care required.
673 * @retval VINF_PGM_SYNC_CR3 - handled.
674 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
675 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
676 *
677 * @param pVCpu VMCPU handle.
678 * @param GCPtrPage Page to invalidate.
679 *
680 * @remark ASSUMES the page table entry or page directory is valid. Fairly
681 * safe, but there could be edge cases!
682 *
683 * @todo Flush page or page directory only if necessary!
684 */
685VMMDECL(int) PGMInvalidatePage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
686{
687 PVM pVM = pVCpu->CTX_SUFF(pVM);
688 int rc;
689 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
690
691#ifndef IN_RING3
692 /*
693 * Notify the recompiler so it can record this instruction.
694 * Failure happens when it's out of space. We'll return to HC in that case.
695 */
696 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
697 if (rc != VINF_SUCCESS)
698 return rc;
699#endif /* !IN_RING3 */
700
701
702#ifdef IN_RC
703 /*
704 * Check for conflicts and pending CR3 monitoring updates.
705 */
706 if (!pVM->pgm.s.fMappingsFixed)
707 {
708 if ( pgmGetMapping(pVM, GCPtrPage)
709 && PGMGstGetPage(pVCpu, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
710 {
711 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
712 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
713 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
714 return VINF_PGM_SYNC_CR3;
715 }
716
717 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
718 {
719 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
720 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
721 return VINF_EM_RAW_EMULATE_INSTR;
722 }
723 }
724#endif /* IN_RC */
725
726 /*
727 * Call paging mode specific worker.
728 */
729 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
730 pgmLock(pVM);
731 rc = PGM_BTH_PFN(InvalidatePage, pVCpu)(pVCpu, GCPtrPage);
732 pgmUnlock(pVM);
733 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
734
735#ifdef IN_RING3
736 /*
737 * Check if we have a pending update of the CR3 monitoring.
738 */
739 if ( RT_SUCCESS(rc)
740 && (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
741 {
742 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
743 Assert(!pVM->pgm.s.fMappingsFixed);
744 }
745
746 /*
747 * Inform CSAM about the flush
748 *
749 * Note: This is to check if monitored pages have been changed; when we implement
750 * callbacks for virtual handlers, this is no longer required.
751 */
752 CSAMR3FlushPage(pVM, GCPtrPage);
753#endif /* IN_RING3 */
754 return rc;
755}
756
757
758/**
759 * Executes an instruction using the interpreter.
760 *
761 * @returns VBox status code (appropriate for trap handling and GC return).
762 * @param pVM VM handle.
763 * @param pVCpu VMCPU handle.
764 * @param pRegFrame Register frame.
765 * @param pvFault Fault address.
766 */
767VMMDECL(int) PGMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
768{
769 uint32_t cb;
770 int rc = EMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault, &cb);
771 if (rc == VERR_EM_INTERPRETER)
772 rc = VINF_EM_RAW_EMULATE_INSTR;
773 if (rc != VINF_SUCCESS)
774 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
775 return rc;
776}
777
778
779/**
780 * Gets effective page information (from the VMM page directory).
781 *
782 * @returns VBox status.
783 * @param pVCpu VMCPU handle.
784 * @param GCPtr Guest Context virtual address of the page.
785 * @param pfFlags Where to store the flags. These are X86_PTE_*.
786 * @param pHCPhys Where to store the HC physical address of the page.
787 * This is page aligned.
788 * @remark You should use PGMMapGetPage() for pages in a mapping.
789 */
790VMMDECL(int) PGMShwGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
791{
792 return PGM_SHW_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pHCPhys);
793}
794
795
796/**
797 * Sets (replaces) the page flags for a range of pages in the shadow context.
798 *
799 * @returns VBox status.
800 * @param pVCpu VMCPU handle.
801 * @param GCPtr The address of the first page.
802 * @param cb The size of the range in bytes.
803 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
804 * @remark You must use PGMMapSetPage() for pages in a mapping.
805 */
806VMMDECL(int) PGMShwSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
807{
808 return PGMShwModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
809}
810
811
812/**
813 * Modify page flags for a range of pages in the shadow context.
814 *
815 * The existing flags are ANDed with the fMask and ORed with the fFlags.
816 *
817 * @returns VBox status code.
818 * @param pVCpu VMCPU handle.
819 * @param GCPtr Virtual address of the first page in the range.
820 * @param cb Size (in bytes) of the range to apply the modification to.
821 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
822 * @param fMask The AND mask - page flags X86_PTE_*.
823 * Be very CAREFUL when ~'ing constants which could be 32-bit!
824 * @remark You must use PGMMapModifyPage() for pages in a mapping.
825 */
826VMMDECL(int) PGMShwModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
827{
828 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
829 Assert(cb);
830
831 /*
832 * Align the input.
833 */
834 cb += GCPtr & PAGE_OFFSET_MASK;
835 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
836 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
837
838 /*
839 * Call worker.
840 */
841 return PGM_SHW_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
842}
843
844/**
845 * Gets the shadow page directory for the specified address, PAE.
846 *
847 * @returns Pointer to the shadow PD.
848 * @param pVCpu The VMCPU handle.
849 * @param GCPtr The address.
850 * @param pGstPdpe Guest PDPT entry
851 * @param ppPD Receives address of page directory
852 */
853int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
854{
855 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
856 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
857 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
858 PVM pVM = pVCpu->CTX_SUFF(pVM);
859 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
860 PPGMPOOLPAGE pShwPage;
861 int rc;
862
863 /* Allocate page directory if not present. */
864 if ( !pPdpe->n.u1Present
865 && !(pPdpe->u & X86_PDPE_PG_MASK))
866 {
867 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
868 bool fPaging = !!(CPUMGetGuestCR0(pVCpu) & X86_CR0_PG);
869 RTGCPTR64 GCPdPt;
870 PGMPOOLKIND enmKind;
871
872# if defined(IN_RC)
873 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
874 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
875# endif
876
877 if (fNestedPaging || !fPaging)
878 {
879 /* AMD-V nested paging or real/protected mode without paging */
880 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
881 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
882 }
883 else
884 {
885 Assert(pGstPdpe);
886
887 if (CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE)
888 {
889 if (!pGstPdpe->n.u1Present)
890 {
891 /* PD not present; guest must reload CR3 to change it.
892 * No need to monitor anything in this case.
893 */
894 Assert(!HWACCMIsEnabled(pVM));
895
896 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
897 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
898 pGstPdpe->n.u1Present = 1;
899 }
900 else
901 {
902 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
903 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
904 }
905 }
906 else
907 {
908 GCPdPt = CPUMGetGuestCR3(pVCpu);
909 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
910 }
911 }
912
913 /* Create a reference back to the PDPT by using the index in its shadow page. */
914 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
915 AssertRCReturn(rc, rc);
916
917 /* The PD was cached or created; hook it up now. */
918 pPdpe->u |= pShwPage->Core.Key
919 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
920
921# if defined(IN_RC)
922 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
923 * non-present PDPT will continue to cause page faults.
924 */
925 ASMReloadCR3();
926 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
927# endif
928 }
929 else
930 {
931 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
932 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
933 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
934
935 pgmPoolCacheUsed(pPool, pShwPage);
936 }
937 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
938 return VINF_SUCCESS;
939}
940
941
942/**
943 * Gets the pointer to the shadow page directory entry for an address, PAE.
944 *
945 * @returns Pointer to the PDE.
946 * @param pPGM Pointer to the PGMCPU instance data.
947 * @param GCPtr The address.
948 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
949 */
950DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
951{
952 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
953 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
954 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
955 if (!pPdpt->a[iPdPt].n.u1Present)
956 {
957 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
958 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
959 }
960 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
961
962 /* Fetch the pgm pool shadow descriptor. */
963 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
964 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
965
966 *ppShwPde = pShwPde;
967 return VINF_SUCCESS;
968}
969
970#ifndef IN_RC
971
972/**
973 * Syncs the SHADOW page directory pointer for the specified address.
974 *
975 * Allocates backing pages in case the PDPT or PML4 entry is missing.
976 *
977 * The caller is responsible for making sure the guest has a valid PD before
978 * calling this function.
979 *
980 * @returns VBox status.
981 * @param pVCpu VMCPU handle.
982 * @param GCPtr The address.
983 * @param pGstPml4e Guest PML4 entry
984 * @param pGstPdpe Guest PDPT entry
985 * @param ppPD Receives address of page directory
986 */
987int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
988{
989 PPGMCPU pPGM = &pVCpu->pgm.s;
990 PVM pVM = pVCpu->CTX_SUFF(pVM);
991 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
992 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
993 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
994 bool fNestedPaging = HWACCMIsNestedPagingActive(pVM);
995 bool fPaging = !!(CPUMGetGuestCR0(pVCpu) & X86_CR0_PG);
996 PPGMPOOLPAGE pShwPage;
997 int rc;
998
999 /* Allocate page directory pointer table if not present. */
1000 if ( !pPml4e->n.u1Present
1001 && !(pPml4e->u & X86_PML4E_PG_MASK))
1002 {
1003 RTGCPTR64 GCPml4;
1004 PGMPOOLKIND enmKind;
1005
1006 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1007
1008 if (fNestedPaging || !fPaging)
1009 {
1010 /* AMD-V nested paging or real/protected mode without paging */
1011 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1012 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1013 }
1014 else
1015 {
1016 Assert(pGstPml4e && pGstPdpe);
1017
1018 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1019 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1020 }
1021
1022 /* Create a reference back to the PDPT by using the index in its shadow page. */
1023 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1024 AssertRCReturn(rc, rc);
1025 }
1026 else
1027 {
1028 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1029 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1030
1031 pgmPoolCacheUsed(pPool, pShwPage);
1032 }
1033 /* The PDPT was cached or created; hook it up now. */
1034 pPml4e->u |= pShwPage->Core.Key
1035 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1036
1037 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1038 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1039 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1040
1041 /* Allocate page directory if not present. */
1042 if ( !pPdpe->n.u1Present
1043 && !(pPdpe->u & X86_PDPE_PG_MASK))
1044 {
1045 RTGCPTR64 GCPdPt;
1046 PGMPOOLKIND enmKind;
1047
1048 if (fNestedPaging || !fPaging)
1049 {
1050 /* AMD-V nested paging or real/protected mode without paging */
1051 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1052 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1053 }
1054 else
1055 {
1056 Assert(pGstPdpe);
1057
1058 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1059 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1060 }
1061
1062 /* Create a reference back to the PDPT by using the index in its shadow page. */
1063 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1064 AssertRCReturn(rc, rc);
1065 }
1066 else
1067 {
1068 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1069 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1070
1071 pgmPoolCacheUsed(pPool, pShwPage);
1072 }
1073 /* The PD was cached or created; hook it up now. */
1074 pPdpe->u |= pShwPage->Core.Key
1075 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1076
1077 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1078 return VINF_SUCCESS;
1079}
1080
1081
1082/**
1083 * Gets the SHADOW page directory pointer for the specified address (long mode).
1084 *
1085 * @returns VBox status.
1086 * @param pVCpu VMCPU handle.
1087 * @param GCPtr The address.
1088 * @param ppPdpt Receives address of pdpt
1089 * @param ppPD Receives address of page directory
1090 */
1091DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1092{
1093 PPGMCPU pPGM = &pVCpu->pgm.s;
1094 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1095 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1096 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1097 if (ppPml4e)
1098 *ppPml4e = (PX86PML4E)pPml4e;
1099
1100 Log4(("pgmShwGetLongModePDPtr %VGv (%VHv) %RX64\n", GCPtr, pPml4e, pPml4e->u));
1101
1102 if (!pPml4e->n.u1Present)
1103 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1104
1105 PVM pVM = pVCpu->CTX_SUFF(pVM);
1106 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1107 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1108 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1109
1110 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1111 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1112 if (!pPdpt->a[iPdPt].n.u1Present)
1113 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1114
1115 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1116 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1117
1118 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1119 return VINF_SUCCESS;
1120}
1121
1122
1123/**
1124 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1125 * backing pages in case the PDPT or PML4 entry is missing.
1126 *
1127 * @returns VBox status.
1128 * @param pVCpu VMCPU handle.
1129 * @param GCPtr The address.
1130 * @param ppPdpt Receives address of pdpt
1131 * @param ppPD Receives address of page directory
1132 */
1133int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1134{
1135 PPGMCPU pPGM = &pVCpu->pgm.s;
1136 PVM pVM = pVCpu->CTX_SUFF(pVM);
1137 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1138 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1139 PEPTPML4 pPml4;
1140 PEPTPML4E pPml4e;
1141 PPGMPOOLPAGE pShwPage;
1142 int rc;
1143
1144 Assert(HWACCMIsNestedPagingActive(pVM));
1145
1146 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1147 Assert(pPml4);
1148
1149 /* Allocate page directory pointer table if not present. */
1150 pPml4e = &pPml4->a[iPml4];
1151 if ( !pPml4e->n.u1Present
1152 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1153 {
1154 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1155 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1156
1157 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1158 AssertRCReturn(rc, rc);
1159 }
1160 else
1161 {
1162 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1163 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1164
1165 pgmPoolCacheUsed(pPool, pShwPage);
1166 }
1167 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1168 pPml4e->u = pShwPage->Core.Key;
1169 pPml4e->n.u1Present = 1;
1170 pPml4e->n.u1Write = 1;
1171 pPml4e->n.u1Execute = 1;
1172
1173 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1174 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1175 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1176
1177 if (ppPdpt)
1178 *ppPdpt = pPdpt;
1179
1180 /* Allocate page directory if not present. */
1181 if ( !pPdpe->n.u1Present
1182 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1183 {
1184 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1185
1186 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1187 AssertRCReturn(rc, rc);
1188 }
1189 else
1190 {
1191 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1192 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1193
1194 pgmPoolCacheUsed(pPool, pShwPage);
1195 }
1196 /* The PD was cached or created; hook it up now and fill with the default value. */
1197 pPdpe->u = pShwPage->Core.Key;
1198 pPdpe->n.u1Present = 1;
1199 pPdpe->n.u1Write = 1;
1200 pPdpe->n.u1Execute = 1;
1201
1202 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1203 return VINF_SUCCESS;
1204}
1205
1206#endif /* IN_RC */
1207
1208/**
1209 * Gets effective Guest OS page information.
1210 *
1211 * When GCPtr is in a big page, the function will return as if it was a normal
1212 * 4KB page. If the need for distinguishing between big and normal page becomes
1213 * necessary at a later point, a PGMGstGetPage() will be created for that
1214 * purpose.
1215 *
1216 * @returns VBox status.
1217 * @param pVCpu VMCPU handle.
1218 * @param GCPtr Guest Context virtual address of the page.
1219 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1220 * @param pGCPhys Where to store the GC physical address of the page.
1221 * This is page aligned. The fact that the
1222 */
1223VMMDECL(int) PGMGstGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1224{
1225 return PGM_GST_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pGCPhys);
1226}
1227
1228
1229/**
1230 * Checks if the page is present.
1231 *
1232 * @returns true if the page is present.
1233 * @returns false if the page is not present.
1234 * @param pVCpu VMCPU handle.
1235 * @param GCPtr Address within the page.
1236 */
1237VMMDECL(bool) PGMGstIsPagePresent(PVMCPU pVCpu, RTGCPTR GCPtr)
1238{
1239 int rc = PGMGstGetPage(pVCpu, GCPtr, NULL, NULL);
1240 return RT_SUCCESS(rc);
1241}
1242
1243
1244/**
1245 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1246 *
1247 * @returns VBox status.
1248 * @param pVCpu VMCPU handle.
1249 * @param GCPtr The address of the first page.
1250 * @param cb The size of the range in bytes.
1251 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1252 */
1253VMMDECL(int) PGMGstSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1254{
1255 return PGMGstModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
1256}
1257
1258
1259/**
1260 * Modify page flags for a range of pages in the guest's tables
1261 *
1262 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1263 *
1264 * @returns VBox status code.
1265 * @param pVCpu VMCPU handle.
1266 * @param GCPtr Virtual address of the first page in the range.
1267 * @param cb Size (in bytes) of the range to apply the modification to.
1268 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1269 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1270 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1271 */
1272VMMDECL(int) PGMGstModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1273{
1274 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1275
1276 /*
1277 * Validate input.
1278 */
1279 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1280 Assert(cb);
1281
1282 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1283
1284 /*
1285 * Adjust input.
1286 */
1287 cb += GCPtr & PAGE_OFFSET_MASK;
1288 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1289 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1290
1291 /*
1292 * Call worker.
1293 */
1294 int rc = PGM_GST_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
1295
1296 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1297 return rc;
1298}
1299
1300#ifdef IN_RING3
1301
1302/**
1303 * Performs the lazy mapping of the 32-bit guest PD.
1304 *
1305 * @returns Pointer to the mapping.
1306 * @param pPGM The PGM instance data.
1307 */
1308PX86PD pgmGstLazyMap32BitPD(PPGMCPU pPGM)
1309{
1310 Assert(!pPGM->CTX_SUFF(pGst32BitPd));
1311 PVM pVM = PGMCPU2VM(pPGM);
1312 pgmLock(pVM);
1313
1314 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1315 AssertReturn(pPage, NULL);
1316
1317 RTHCPTR HCPtrGuestCR3;
1318 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
1319 AssertRCReturn(rc, NULL);
1320
1321 pPGM->pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
1322# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1323 pPGM->pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
1324# endif
1325
1326 pgmUnlock(pVM);
1327 return pPGM->CTX_SUFF(pGst32BitPd);
1328}
1329
1330
1331/**
1332 * Performs the lazy mapping of the PAE guest PDPT.
1333 *
1334 * @returns Pointer to the mapping.
1335 * @param pPGM The PGM instance data.
1336 */
1337PX86PDPT pgmGstLazyMapPaePDPT(PPGMCPU pPGM)
1338{
1339 Assert(!pPGM->CTX_SUFF(pGstPaePdpt));
1340 PVM pVM = PGMCPU2VM(pPGM);
1341 pgmLock(pVM);
1342
1343 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1344 AssertReturn(pPage, NULL);
1345
1346 RTHCPTR HCPtrGuestCR3;
1347 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAE_PAGE_MASK, (void **)&HCPtrGuestCR3);
1348 AssertRCReturn(rc, NULL);
1349
1350 pPGM->pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1351# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1352 pPGM->pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1353# endif
1354
1355 pgmUnlock(pVM);
1356 return pPGM->CTX_SUFF(pGstPaePdpt);
1357}
1358
1359#endif /* IN_RING3 */
1360
1361#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1362/**
1363 * Performs the lazy mapping / updating of a PAE guest PD.
1364 *
1365 * @returns Pointer to the mapping.
1366 * @param pPGM The PGM instance data.
1367 * @param iPdpt Which PD entry to map (0..3).
1368 */
1369PX86PDPAE pgmGstLazyMapPaePD(PPGMCPU pPGM, uint32_t iPdpt)
1370{
1371 PVM pVM = PGMCPU2VM(pPGM);
1372 pgmLock(pVM);
1373
1374 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
1375 Assert(pGuestPDPT);
1376 Assert(pGuestPDPT->a[iPdpt].n.u1Present);
1377 RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK;
1378 bool const fChanged = pPGM->aGCPhysGstPaePDs[iPdpt] != GCPhys;
1379
1380 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
1381 if (RT_LIKELY(pPage))
1382 {
1383 int rc = VINF_SUCCESS;
1384 RTRCPTR RCPtr = NIL_RTRCPTR;
1385 RTHCPTR HCPtr = NIL_RTHCPTR;
1386#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1387 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr);
1388 AssertRC(rc);
1389#endif
1390 if (RT_SUCCESS(rc) && fChanged)
1391 {
1392 RCPtr = (RTRCPTR)(RTRCUINTPTR)(pVM->pgm.s.GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE);
1393 rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0);
1394 }
1395 if (RT_SUCCESS(rc))
1396 {
1397 pPGM->apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr;
1398# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1399 pPGM->apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr;
1400# endif
1401 if (fChanged)
1402 {
1403 pPGM->aGCPhysGstPaePDs[iPdpt] = GCPhys;
1404 pPGM->apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr;
1405 }
1406
1407 pgmUnlock(pVM);
1408 return pPGM->CTX_SUFF(apGstPaePDs)[iPdpt];
1409 }
1410 }
1411
1412 /* Invalid page or some failure, invalidate the entry. */
1413 pPGM->aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS;
1414 pPGM->apGstPaePDsR3[iPdpt] = 0;
1415# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1416 pPGM->apGstPaePDsR0[iPdpt] = 0;
1417# endif
1418 pPGM->apGstPaePDsRC[iPdpt] = 0;
1419
1420 pgmUnlock(pVM);
1421 return NULL;
1422}
1423#endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1424
1425
1426#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3
1427/**
1428 * Performs the lazy mapping of the 32-bit guest PD.
1429 *
1430 * @returns Pointer to the mapping.
1431 * @param pPGM The PGM instance data.
1432 */
1433PX86PML4 pgmGstLazyMapPml4(PPGMCPU pPGM)
1434{
1435 Assert(!pPGM->CTX_SUFF(pGstAmd64Pml4));
1436 PVM pVM = PGMCPU2VM(pPGM);
1437 pgmLock(pVM);
1438
1439 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1440 AssertReturn(pPage, NULL);
1441
1442 RTHCPTR HCPtrGuestCR3;
1443 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK, (void **)&HCPtrGuestCR3);
1444 AssertRCReturn(rc, NULL);
1445
1446 pPGM->pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
1447# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1448 pPGM->pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
1449# endif
1450
1451 pgmUnlock(pVM);
1452 return pPGM->CTX_SUFF(pGstAmd64Pml4);
1453}
1454#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 */
1455
1456
1457/**
1458 * Gets the specified page directory pointer table entry.
1459 *
1460 * @returns PDP entry
1461 * @param pVCpu VMCPU handle.
1462 * @param iPdpt PDPT index
1463 */
1464VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVMCPU pVCpu, unsigned iPdpt)
1465{
1466 Assert(iPdpt <= 3);
1467 return pgmGstGetPaePDPTPtr(&pVCpu->pgm.s)->a[iPdpt & 3];
1468}
1469
1470
1471/**
1472 * Gets the current CR3 register value for the shadow memory context.
1473 * @returns CR3 value.
1474 * @param pVCpu VMCPU handle.
1475 */
1476VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVMCPU pVCpu)
1477{
1478 PPGMPOOLPAGE pPoolPage = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1479 AssertPtrReturn(pPoolPage, 0);
1480 return pPoolPage->Core.Key;
1481}
1482
1483
1484/**
1485 * Gets the current CR3 register value for the nested memory context.
1486 * @returns CR3 value.
1487 * @param pVCpu VMCPU handle.
1488 */
1489VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVMCPU pVCpu, PGMMODE enmShadowMode)
1490{
1491 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1492 return pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1493}
1494
1495
1496/**
1497 * Gets the current CR3 register value for the HC intermediate memory context.
1498 * @returns CR3 value.
1499 * @param pVM The VM handle.
1500 */
1501VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1502{
1503 switch (pVM->pgm.s.enmHostMode)
1504 {
1505 case SUPPAGINGMODE_32_BIT:
1506 case SUPPAGINGMODE_32_BIT_GLOBAL:
1507 return pVM->pgm.s.HCPhysInterPD;
1508
1509 case SUPPAGINGMODE_PAE:
1510 case SUPPAGINGMODE_PAE_GLOBAL:
1511 case SUPPAGINGMODE_PAE_NX:
1512 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1513 return pVM->pgm.s.HCPhysInterPaePDPT;
1514
1515 case SUPPAGINGMODE_AMD64:
1516 case SUPPAGINGMODE_AMD64_GLOBAL:
1517 case SUPPAGINGMODE_AMD64_NX:
1518 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1519 return pVM->pgm.s.HCPhysInterPaePDPT;
1520
1521 default:
1522 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1523 return ~0;
1524 }
1525}
1526
1527
1528/**
1529 * Gets the current CR3 register value for the RC intermediate memory context.
1530 * @returns CR3 value.
1531 * @param pVM The VM handle.
1532 * @param pVCpu VMCPU handle.
1533 */
1534VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM, PVMCPU pVCpu)
1535{
1536 switch (pVCpu->pgm.s.enmShadowMode)
1537 {
1538 case PGMMODE_32_BIT:
1539 return pVM->pgm.s.HCPhysInterPD;
1540
1541 case PGMMODE_PAE:
1542 case PGMMODE_PAE_NX:
1543 return pVM->pgm.s.HCPhysInterPaePDPT;
1544
1545 case PGMMODE_AMD64:
1546 case PGMMODE_AMD64_NX:
1547 return pVM->pgm.s.HCPhysInterPaePML4;
1548
1549 case PGMMODE_EPT:
1550 case PGMMODE_NESTED:
1551 return 0; /* not relevant */
1552
1553 default:
1554 AssertMsgFailed(("enmShadowMode=%d\n", pVCpu->pgm.s.enmShadowMode));
1555 return ~0;
1556 }
1557}
1558
1559
1560/**
1561 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1562 * @returns CR3 value.
1563 * @param pVM The VM handle.
1564 */
1565VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1566{
1567 return pVM->pgm.s.HCPhysInterPD;
1568}
1569
1570
1571/**
1572 * Gets the CR3 register value for the PAE intermediate memory context.
1573 * @returns CR3 value.
1574 * @param pVM The VM handle.
1575 */
1576VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1577{
1578 return pVM->pgm.s.HCPhysInterPaePDPT;
1579}
1580
1581
1582/**
1583 * Gets the CR3 register value for the AMD64 intermediate memory context.
1584 * @returns CR3 value.
1585 * @param pVM The VM handle.
1586 */
1587VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1588{
1589 return pVM->pgm.s.HCPhysInterPaePML4;
1590}
1591
1592
1593/**
1594 * Performs and schedules necessary updates following a CR3 load or reload.
1595 *
1596 * This will normally involve mapping the guest PD or nPDPT
1597 *
1598 * @returns VBox status code.
1599 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1600 * safely be ignored and overridden since the FF will be set too then.
1601 * @param pVCpu VMCPU handle.
1602 * @param cr3 The new cr3.
1603 * @param fGlobal Indicates whether this is a global flush or not.
1604 */
1605VMMDECL(int) PGMFlushTLB(PVMCPU pVCpu, uint64_t cr3, bool fGlobal)
1606{
1607 PVM pVM = pVCpu->CTX_SUFF(pVM);
1608
1609 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1610
1611 /*
1612 * Always flag the necessary updates; necessary for hardware acceleration
1613 */
1614 /** @todo optimize this, it shouldn't always be necessary. */
1615 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1616 if (fGlobal)
1617 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1618 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVCpu->pgm.s.GCPhysCR3, fGlobal));
1619
1620 /*
1621 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1622 */
1623 int rc = VINF_SUCCESS;
1624 RTGCPHYS GCPhysCR3;
1625 switch (pVCpu->pgm.s.enmGuestMode)
1626 {
1627 case PGMMODE_PAE:
1628 case PGMMODE_PAE_NX:
1629 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1630 break;
1631 case PGMMODE_AMD64:
1632 case PGMMODE_AMD64_NX:
1633 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1634 break;
1635 default:
1636 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1637 break;
1638 }
1639
1640 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1641 {
1642 RTGCPHYS GCPhysOldCR3 = pVCpu->pgm.s.GCPhysCR3;
1643 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1644 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1645 if (RT_LIKELY(rc == VINF_SUCCESS))
1646 {
1647 if (!pVM->pgm.s.fMappingsFixed)
1648 {
1649 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1650 }
1651 }
1652 else
1653 {
1654 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1655 Assert(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_PGM_SYNC_CR3));
1656 pVCpu->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1657 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1658 if (!pVM->pgm.s.fMappingsFixed)
1659 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1660 }
1661
1662 if (fGlobal)
1663 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1664 else
1665 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1666 }
1667 else
1668 {
1669 /*
1670 * Check if we have a pending update of the CR3 monitoring.
1671 */
1672 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1673 {
1674 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1675 Assert(!pVM->pgm.s.fMappingsFixed);
1676 }
1677 if (fGlobal)
1678 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1679 else
1680 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1681 }
1682
1683 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1684 return rc;
1685}
1686
1687
1688/**
1689 * Performs and schedules necessary updates following a CR3 load or reload when
1690 * using nested or extended paging.
1691 *
1692 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1693 * TLB and triggering a SyncCR3.
1694 *
1695 * This will normally involve mapping the guest PD or nPDPT
1696 *
1697 * @returns VBox status code.
1698 * @retval VINF_SUCCESS.
1699 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1700 * requires a CR3 sync. This can safely be ignored and overridden since
1701 * the FF will be set too then.)
1702 * @param pVCpu VMCPU handle.
1703 * @param cr3 The new cr3.
1704 */
1705VMMDECL(int) PGMUpdateCR3(PVMCPU pVCpu, uint64_t cr3)
1706{
1707 PVM pVM = pVCpu->CTX_SUFF(pVM);
1708
1709 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVCpu->pgm.s.GCPhysCR3));
1710
1711 /* We assume we're only called in nested paging mode. */
1712 Assert(pVM->pgm.s.fMappingsFixed);
1713 Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1714 Assert(HWACCMIsNestedPagingActive(pVM) || pVCpu->pgm.s.enmShadowMode == PGMMODE_EPT);
1715
1716 /*
1717 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1718 */
1719 int rc = VINF_SUCCESS;
1720 RTGCPHYS GCPhysCR3;
1721 switch (pVCpu->pgm.s.enmGuestMode)
1722 {
1723 case PGMMODE_PAE:
1724 case PGMMODE_PAE_NX:
1725 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1726 break;
1727 case PGMMODE_AMD64:
1728 case PGMMODE_AMD64_NX:
1729 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1730 break;
1731 default:
1732 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1733 break;
1734 }
1735 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1736 {
1737 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1738 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1739 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1740 }
1741 return rc;
1742}
1743
1744
1745/**
1746 * Synchronize the paging structures.
1747 *
1748 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1749 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1750 * in several places, most importantly whenever the CR3 is loaded.
1751 *
1752 * @returns VBox status code.
1753 * @param pVCpu VMCPU handle.
1754 * @param cr0 Guest context CR0 register
1755 * @param cr3 Guest context CR3 register
1756 * @param cr4 Guest context CR4 register
1757 * @param fGlobal Including global page directories or not
1758 */
1759VMMDECL(int) PGMSyncCR3(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1760{
1761 PVM pVM = pVCpu->CTX_SUFF(pVM);
1762 int rc;
1763
1764#ifdef PGMPOOL_WITH_MONITORING
1765 /*
1766 * The pool may have pending stuff and even require a return to ring-3 to
1767 * clear the whole thing.
1768 */
1769 rc = pgmPoolSyncCR3(pVM);
1770 if (rc != VINF_SUCCESS)
1771 return rc;
1772#endif
1773
1774 /*
1775 * We might be called when we shouldn't.
1776 *
1777 * The mode switching will ensure that the PD is resynced
1778 * after every mode switch. So, if we find ourselves here
1779 * when in protected or real mode we can safely disable the
1780 * FF and return immediately.
1781 */
1782 if (pVCpu->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1783 {
1784 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1785 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1786 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1787 return VINF_SUCCESS;
1788 }
1789
1790 /* If global pages are not supported, then all flushes are global. */
1791 if (!(cr4 & X86_CR4_PGE))
1792 fGlobal = true;
1793 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1794 VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1795
1796 /*
1797 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1798 * This should be done before SyncCR3.
1799 */
1800 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1801 {
1802 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1803
1804 RTGCPHYS GCPhysCR3Old = pVCpu->pgm.s.GCPhysCR3;
1805 RTGCPHYS GCPhysCR3;
1806 switch (pVCpu->pgm.s.enmGuestMode)
1807 {
1808 case PGMMODE_PAE:
1809 case PGMMODE_PAE_NX:
1810 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1811 break;
1812 case PGMMODE_AMD64:
1813 case PGMMODE_AMD64_NX:
1814 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1815 break;
1816 default:
1817 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1818 break;
1819 }
1820
1821 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1822 {
1823 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1824 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1825 }
1826#ifdef IN_RING3
1827 if (rc == VINF_PGM_SYNC_CR3)
1828 rc = pgmPoolSyncCR3(pVM);
1829#else
1830 if (rc == VINF_PGM_SYNC_CR3)
1831 {
1832 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1833 return rc;
1834 }
1835#endif
1836 AssertRCReturn(rc, rc);
1837 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1838 }
1839
1840 /*
1841 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1842 */
1843 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1844 rc = PGM_BTH_PFN(SyncCR3, pVCpu)(pVCpu, cr0, cr3, cr4, fGlobal);
1845 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1846 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1847 if (rc == VINF_SUCCESS)
1848 {
1849 if (!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1850 {
1851 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1852 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1853 }
1854
1855 /*
1856 * Check if we have a pending update of the CR3 monitoring.
1857 */
1858 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1859 {
1860 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1861 Assert(!pVM->pgm.s.fMappingsFixed);
1862 }
1863 }
1864
1865 /*
1866 * Now flush the CR3 (guest context).
1867 */
1868 if (rc == VINF_SUCCESS)
1869 PGM_INVL_GUEST_TLBS();
1870 return rc;
1871}
1872
1873
1874/**
1875 * Called whenever CR0 or CR4 in a way which may change
1876 * the paging mode.
1877 *
1878 * @returns VBox status code, with the following informational code for
1879 * VM scheduling.
1880 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1881 * @retval VINF_PGM_CHANGE_MODE if we're in RC or R0 and the mode changes.
1882 * (I.e. not in R3.)
1883 * @retval VINF_EM_SUSPEND or VINF_EM_OFF on a fatal runtime error. (R3 only)
1884 *
1885 * @param pVCpu VMCPU handle.
1886 * @param cr0 The new cr0.
1887 * @param cr4 The new cr4.
1888 * @param efer The new extended feature enable register.
1889 */
1890VMMDECL(int) PGMChangeMode(PVMCPU pVCpu, uint64_t cr0, uint64_t cr4, uint64_t efer)
1891{
1892 PVM pVM = pVCpu->CTX_SUFF(pVM);
1893 PGMMODE enmGuestMode;
1894
1895 /*
1896 * Calc the new guest mode.
1897 */
1898 if (!(cr0 & X86_CR0_PE))
1899 enmGuestMode = PGMMODE_REAL;
1900 else if (!(cr0 & X86_CR0_PG))
1901 enmGuestMode = PGMMODE_PROTECTED;
1902 else if (!(cr4 & X86_CR4_PAE))
1903 enmGuestMode = PGMMODE_32_BIT;
1904 else if (!(efer & MSR_K6_EFER_LME))
1905 {
1906 if (!(efer & MSR_K6_EFER_NXE))
1907 enmGuestMode = PGMMODE_PAE;
1908 else
1909 enmGuestMode = PGMMODE_PAE_NX;
1910 }
1911 else
1912 {
1913 if (!(efer & MSR_K6_EFER_NXE))
1914 enmGuestMode = PGMMODE_AMD64;
1915 else
1916 enmGuestMode = PGMMODE_AMD64_NX;
1917 }
1918
1919 /*
1920 * Did it change?
1921 */
1922 if (pVCpu->pgm.s.enmGuestMode == enmGuestMode)
1923 return VINF_SUCCESS;
1924
1925 /* Flush the TLB */
1926 PGM_INVL_GUEST_TLBS();
1927
1928#ifdef IN_RING3
1929 return PGMR3ChangeMode(pVM, pVCpu, enmGuestMode);
1930#else
1931 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1932 return VINF_PGM_CHANGE_MODE;
1933#endif
1934}
1935
1936
1937/**
1938 * Gets the current guest paging mode.
1939 *
1940 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1941 *
1942 * @returns The current paging mode.
1943 * @param pVCpu VMCPU handle.
1944 */
1945VMMDECL(PGMMODE) PGMGetGuestMode(PVMCPU pVCpu)
1946{
1947 return pVCpu->pgm.s.enmGuestMode;
1948}
1949
1950
1951/**
1952 * Gets the current shadow paging mode.
1953 *
1954 * @returns The current paging mode.
1955 * @param pVCpu VMCPU handle.
1956 */
1957VMMDECL(PGMMODE) PGMGetShadowMode(PVMCPU pVCpu)
1958{
1959 return pVCpu->pgm.s.enmShadowMode;
1960}
1961
1962/**
1963 * Gets the current host paging mode.
1964 *
1965 * @returns The current paging mode.
1966 * @param pVM The VM handle.
1967 */
1968VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
1969{
1970 switch (pVM->pgm.s.enmHostMode)
1971 {
1972 case SUPPAGINGMODE_32_BIT:
1973 case SUPPAGINGMODE_32_BIT_GLOBAL:
1974 return PGMMODE_32_BIT;
1975
1976 case SUPPAGINGMODE_PAE:
1977 case SUPPAGINGMODE_PAE_GLOBAL:
1978 return PGMMODE_PAE;
1979
1980 case SUPPAGINGMODE_PAE_NX:
1981 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1982 return PGMMODE_PAE_NX;
1983
1984 case SUPPAGINGMODE_AMD64:
1985 case SUPPAGINGMODE_AMD64_GLOBAL:
1986 return PGMMODE_AMD64;
1987
1988 case SUPPAGINGMODE_AMD64_NX:
1989 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1990 return PGMMODE_AMD64_NX;
1991
1992 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
1993 }
1994
1995 return PGMMODE_INVALID;
1996}
1997
1998
1999/**
2000 * Get mode name.
2001 *
2002 * @returns read-only name string.
2003 * @param enmMode The mode which name is desired.
2004 */
2005VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
2006{
2007 switch (enmMode)
2008 {
2009 case PGMMODE_REAL: return "Real";
2010 case PGMMODE_PROTECTED: return "Protected";
2011 case PGMMODE_32_BIT: return "32-bit";
2012 case PGMMODE_PAE: return "PAE";
2013 case PGMMODE_PAE_NX: return "PAE+NX";
2014 case PGMMODE_AMD64: return "AMD64";
2015 case PGMMODE_AMD64_NX: return "AMD64+NX";
2016 case PGMMODE_NESTED: return "Nested";
2017 case PGMMODE_EPT: return "EPT";
2018 default: return "unknown mode value";
2019 }
2020}
2021
2022
2023/**
2024 * Check if the PGM lock is currently taken.
2025 *
2026 * @returns bool locked/not locked
2027 * @param pVM The VM to operate on.
2028 */
2029VMMDECL(bool) PGMIsLocked(PVM pVM)
2030{
2031 return PDMCritSectIsLocked(&pVM->pgm.s.CritSect);
2032}
2033
2034/**
2035 * Check if this VCPU currently owns the PGM lock.
2036 *
2037 * @returns bool owner/not owner
2038 * @param pVM The VM to operate on.
2039 */
2040VMMDECL(bool) PGMIsLockOwner(PVM pVM)
2041{
2042 return PDMCritSectIsOwner(&pVM->pgm.s.CritSect);
2043}
2044
2045
2046/**
2047 * Acquire the PGM lock.
2048 *
2049 * @returns VBox status code
2050 * @param pVM The VM to operate on.
2051 */
2052int pgmLock(PVM pVM)
2053{
2054 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
2055#ifdef IN_RC
2056 if (rc == VERR_SEM_BUSY)
2057 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
2058#elif defined(IN_RING0)
2059 if (rc == VERR_SEM_BUSY)
2060 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
2061#endif
2062 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2063 return rc;
2064}
2065
2066
2067/**
2068 * Release the PGM lock.
2069 *
2070 * @returns VBox status code
2071 * @param pVM The VM to operate on.
2072 */
2073void pgmUnlock(PVM pVM)
2074{
2075 PDMCritSectLeave(&pVM->pgm.s.CritSect);
2076}
2077
2078#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2079
2080/**
2081 * Temporarily maps one guest page specified by GC physical address.
2082 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2083 *
2084 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2085 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2086 *
2087 * @returns VBox status.
2088 * @param pVM VM handle.
2089 * @param GCPhys GC Physical address of the page.
2090 * @param ppv Where to store the address of the mapping.
2091 */
2092VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2093{
2094 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
2095
2096 /*
2097 * Get the ram range.
2098 */
2099 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2100 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2101 pRam = pRam->CTX_SUFF(pNext);
2102 if (!pRam)
2103 {
2104 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2105 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2106 }
2107
2108 /*
2109 * Pass it on to PGMDynMapHCPage.
2110 */
2111 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2112 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
2113#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2114 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2115#else
2116 PGMDynMapHCPage(pVM, HCPhys, ppv);
2117#endif
2118 return VINF_SUCCESS;
2119}
2120
2121
2122/**
2123 * Temporarily maps one guest page specified by unaligned GC physical address.
2124 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2125 *
2126 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2127 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2128 *
2129 * The caller is aware that only the speicifed page is mapped and that really bad things
2130 * will happen if writing beyond the page!
2131 *
2132 * @returns VBox status.
2133 * @param pVM VM handle.
2134 * @param GCPhys GC Physical address within the page to be mapped.
2135 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
2136 */
2137VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2138{
2139 /*
2140 * Get the ram range.
2141 */
2142 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2143 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2144 pRam = pRam->CTX_SUFF(pNext);
2145 if (!pRam)
2146 {
2147 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2148 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2149 }
2150
2151 /*
2152 * Pass it on to PGMDynMapHCPage.
2153 */
2154 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2155#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2156 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2157#else
2158 PGMDynMapHCPage(pVM, HCPhys, ppv);
2159#endif
2160 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2161 return VINF_SUCCESS;
2162}
2163
2164# ifdef IN_RC
2165
2166/**
2167 * Temporarily maps one host page specified by HC physical address.
2168 *
2169 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2170 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2171 *
2172 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2173 * @param pVM VM handle.
2174 * @param HCPhys HC Physical address of the page.
2175 * @param ppv Where to store the address of the mapping. This is the
2176 * address of the PAGE not the exact address corresponding
2177 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2178 * page offset.
2179 */
2180VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2181{
2182 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2183
2184 /*
2185 * Check the cache.
2186 */
2187 register unsigned iCache;
2188 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2189 {
2190 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2191 {
2192 { 0, 9, 10, 11, 12, 13, 14, 15},
2193 { 0, 1, 10, 11, 12, 13, 14, 15},
2194 { 0, 1, 2, 11, 12, 13, 14, 15},
2195 { 0, 1, 2, 3, 12, 13, 14, 15},
2196 { 0, 1, 2, 3, 4, 13, 14, 15},
2197 { 0, 1, 2, 3, 4, 5, 14, 15},
2198 { 0, 1, 2, 3, 4, 5, 6, 15},
2199 { 0, 1, 2, 3, 4, 5, 6, 7},
2200 { 8, 1, 2, 3, 4, 5, 6, 7},
2201 { 8, 9, 2, 3, 4, 5, 6, 7},
2202 { 8, 9, 10, 3, 4, 5, 6, 7},
2203 { 8, 9, 10, 11, 4, 5, 6, 7},
2204 { 8, 9, 10, 11, 12, 5, 6, 7},
2205 { 8, 9, 10, 11, 12, 13, 6, 7},
2206 { 8, 9, 10, 11, 12, 13, 14, 7},
2207 { 8, 9, 10, 11, 12, 13, 14, 15},
2208 };
2209 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2210 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2211
2212 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2213 {
2214 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2215
2216 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2217 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2218 {
2219 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2220 *ppv = pv;
2221 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2222 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2223 return VINF_SUCCESS;
2224 }
2225 else
2226 LogFlow(("Out of sync entry %d\n", iPage));
2227 }
2228 }
2229 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2230 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2231 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2232
2233 /*
2234 * Update the page tables.
2235 */
2236 register unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2237 unsigned i;
2238 for (i=0;i<(MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT);i++)
2239 {
2240 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2241 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2242 break;
2243 iPage++;
2244 }
2245 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2246
2247 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2248 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2249 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2250 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2251
2252 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2253 *ppv = pv;
2254 ASMInvalidatePage(pv);
2255 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2256 return VINF_SUCCESS;
2257}
2258
2259
2260/**
2261 * Temporarily lock a dynamic page to prevent it from being reused.
2262 *
2263 * @param pVM VM handle.
2264 * @param GCPage GC address of page
2265 */
2266VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2267{
2268 unsigned iPage;
2269
2270 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2271 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2272 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2273 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2274}
2275
2276
2277/**
2278 * Unlock a dynamic page
2279 *
2280 * @param pVM VM handle.
2281 * @param GCPage GC address of page
2282 */
2283VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2284{
2285 unsigned iPage;
2286
2287 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache) == 2* RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache));
2288 AssertCompileMemberSize(VM, pgm.s.aLockedDynPageMapCache, sizeof(uint32_t) * (MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT)));
2289
2290 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2291 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2292 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2293 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2294 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2295}
2296
2297
2298# ifdef VBOX_STRICT
2299/**
2300 * Check for lock leaks.
2301 *
2302 * @param pVM VM handle.
2303 */
2304VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2305{
2306 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2307 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2308}
2309# endif /* VBOX_STRICT */
2310
2311# endif /* IN_RC */
2312#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2313
2314#if !defined(IN_R0) || defined(LOG_ENABLED)
2315
2316/** Format handler for PGMPAGE.
2317 * @copydoc FNRTSTRFORMATTYPE */
2318static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2319 const char *pszType, void const *pvValue,
2320 int cchWidth, int cchPrecision, unsigned fFlags,
2321 void *pvUser)
2322{
2323 size_t cch;
2324 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2325 if (VALID_PTR(pPage))
2326 {
2327 char szTmp[64+80];
2328
2329 cch = 0;
2330
2331 /* The single char state stuff. */
2332 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2333 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2334
2335#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2336 if (IS_PART_INCLUDED(5))
2337 {
2338 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2339 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2340 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2341 }
2342
2343 /* The type. */
2344 if (IS_PART_INCLUDED(4))
2345 {
2346 szTmp[cch++] = ':';
2347 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2348 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2349 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2350 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2351 }
2352
2353 /* The numbers. */
2354 if (IS_PART_INCLUDED(3))
2355 {
2356 szTmp[cch++] = ':';
2357 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2358 }
2359
2360 if (IS_PART_INCLUDED(2))
2361 {
2362 szTmp[cch++] = ':';
2363 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2364 }
2365
2366 if (IS_PART_INCLUDED(6))
2367 {
2368 szTmp[cch++] = ':';
2369 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2370 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2371 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2372 }
2373#undef IS_PART_INCLUDED
2374
2375 cch = pfnOutput(pvArgOutput, szTmp, cch);
2376 }
2377 else
2378 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2379 return cch;
2380}
2381
2382
2383/** Format handler for PGMRAMRANGE.
2384 * @copydoc FNRTSTRFORMATTYPE */
2385static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2386 const char *pszType, void const *pvValue,
2387 int cchWidth, int cchPrecision, unsigned fFlags,
2388 void *pvUser)
2389{
2390 size_t cch;
2391 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2392 if (VALID_PTR(pRam))
2393 {
2394 char szTmp[80];
2395 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2396 cch = pfnOutput(pvArgOutput, szTmp, cch);
2397 }
2398 else
2399 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2400 return cch;
2401}
2402
2403/** Format type andlers to be registered/deregistered. */
2404static const struct
2405{
2406 char szType[24];
2407 PFNRTSTRFORMATTYPE pfnHandler;
2408} g_aPgmFormatTypes[] =
2409{
2410 { "pgmpage", pgmFormatTypeHandlerPage },
2411 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2412};
2413
2414#endif /* !IN_R0 || LOG_ENABLED */
2415
2416
2417/**
2418 * Registers the global string format types.
2419 *
2420 * This should be called at module load time or in some other manner that ensure
2421 * that it's called exactly one time.
2422 *
2423 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2424 */
2425VMMDECL(int) PGMRegisterStringFormatTypes(void)
2426{
2427#if !defined(IN_R0) || defined(LOG_ENABLED)
2428 int rc = VINF_SUCCESS;
2429 unsigned i;
2430 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2431 {
2432 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2433# ifdef IN_RING0
2434 if (rc == VERR_ALREADY_EXISTS)
2435 {
2436 /* in case of cleanup failure in ring-0 */
2437 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2438 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2439 }
2440# endif
2441 }
2442 if (RT_FAILURE(rc))
2443 while (i-- > 0)
2444 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2445
2446 return rc;
2447#else
2448 return VINF_SUCCESS;
2449#endif
2450}
2451
2452
2453/**
2454 * Deregisters the global string format types.
2455 *
2456 * This should be called at module unload time or in some other manner that
2457 * ensure that it's called exactly one time.
2458 */
2459VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2460{
2461#if !defined(IN_R0) || defined(LOG_ENABLED)
2462 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2463 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2464#endif
2465}
2466
2467#ifdef VBOX_STRICT
2468
2469/**
2470 * Asserts that there are no mapping conflicts.
2471 *
2472 * @returns Number of conflicts.
2473 * @param pVM The VM Handle.
2474 */
2475VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2476{
2477 unsigned cErrors = 0;
2478
2479 /* Only applies to raw mode -> 1 VPCU */
2480 Assert(pVM->cCPUs == 1);
2481 PVMCPU pVCpu = &pVM->aCpus[0];
2482
2483 /*
2484 * Check for mapping conflicts.
2485 */
2486 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2487 pMapping;
2488 pMapping = pMapping->CTX_SUFF(pNext))
2489 {
2490 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2491 for (RTGCPTR GCPtr = pMapping->GCPtr;
2492 GCPtr <= pMapping->GCPtrLast;
2493 GCPtr += PAGE_SIZE)
2494 {
2495 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, NULL, NULL);
2496 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2497 {
2498 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2499 cErrors++;
2500 break;
2501 }
2502 }
2503 }
2504
2505 return cErrors;
2506}
2507
2508
2509/**
2510 * Asserts that everything related to the guest CR3 is correctly shadowed.
2511 *
2512 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2513 * and assert the correctness of the guest CR3 mapping before asserting that the
2514 * shadow page tables is in sync with the guest page tables.
2515 *
2516 * @returns Number of conflicts.
2517 * @param pVM The VM Handle.
2518 * @param pVCpu VMCPU handle.
2519 * @param cr3 The current guest CR3 register value.
2520 * @param cr4 The current guest CR4 register value.
2521 */
2522VMMDECL(unsigned) PGMAssertCR3(PVM pVM, PVMCPU pVCpu, uint64_t cr3, uint64_t cr4)
2523{
2524 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2525 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVCpu)(pVCpu, cr3, cr4, 0, ~(RTGCPTR)0);
2526 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2527 return cErrors;
2528}
2529
2530#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette