VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 2623

Last change on this file since 2623 was 2552, checked in by vboxsync, 18 years ago

Call VerifyAccessSyncPage in the shadow pd not present case too.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 55.7 KB
Line 
1/* $Id: PGMAll.cpp 2552 2007-05-09 12:28:36Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include "PGMInternal.h"
39#include <VBox/vm.h>
40#include <iprt/assert.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43#include <VBox/log.h>
44#include <VBox/param.h>
45#include <VBox/err.h>
46
47
48/*******************************************************************************
49* Structures and Typedefs *
50*******************************************************************************/
51/**
52 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
53 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
54 */
55typedef struct PGMHVUSTATE
56{
57 /** The VM handle. */
58 PVM pVM;
59 /** The todo flags. */
60 RTUINT fTodo;
61 /** The CR4 register value. */
62 uint32_t cr4;
63} PGMHVUSTATE, *PPGMHVUSTATE;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69/** @def DUMP_PDE_BIG
70 * Debug routine for dumping a big PDE.
71 */
72#ifdef DEBUG_Sander
73/** Debug routine for dumping a big PDE. */
74static void pgmDumpPDEBig(const char *pszPrefix, int iPD, VBOXPDE Pde)
75{
76 Log(("%s: BIG %d u10PageNo=%08X P=%d W=%d U=%d CACHE=%d ACC=%d DIR=%d GBL=%d\n", pszPrefix, iPD, Pde.b.u10PageNo, Pde.b.u1Present, Pde.b.u1Write, Pde.b.u1User, Pde.b.u1CacheDisable, Pde.b.u1Accessed, Pde.b.u1Dirty, Pde.b.u1Global));
77 Log(("%s: BIG %d WRT=%d AVAIL=%X RSV=%X PAT=%d\n", pszPrefix, iPD, Pde.b.u1WriteThru, Pde.b.u3Available, Pde.b.u8PageNoHigh, Pde.b.u1PAT));
78}
79#define DUMP_PDE_BIG(a, b, c) pgmDumpPDEBig(a, b, c)
80#else
81#define DUMP_PDE_BIG(a, b, c) do { } while (0)
82#endif
83
84
85
86#if 1///@todo ndef __AMD64__
87/*
88 * Shadow - 32-bit mode
89 */
90#define PGM_SHW_TYPE PGM_TYPE_32BIT
91#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
92#include "PGMAllShw.h"
93
94/* Guest - real mode */
95#define PGM_GST_TYPE PGM_TYPE_REAL
96#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
97#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
98#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
99#include "PGMAllGst.h"
100#include "PGMAllBth.h"
101#undef BTH_PGMPOOLKIND_PT_FOR_PT
102#undef PGM_BTH_NAME
103#undef PGM_GST_TYPE
104#undef PGM_GST_NAME
105
106/* Guest - protected mode */
107#define PGM_GST_TYPE PGM_TYPE_PROT
108#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
109#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
110#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
111#include "PGMAllGst.h"
112#include "PGMAllBth.h"
113#undef BTH_PGMPOOLKIND_PT_FOR_PT
114#undef PGM_BTH_NAME
115#undef PGM_GST_TYPE
116#undef PGM_GST_NAME
117
118/* Guest - 32-bit mode */
119#define PGM_GST_TYPE PGM_TYPE_32BIT
120#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
121#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
122#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
123#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
124#include "PGMAllGst.h"
125#include "PGMAllBth.h"
126#undef BTH_PGMPOOLKIND_PT_FOR_BIG
127#undef BTH_PGMPOOLKIND_PT_FOR_PT
128#undef PGM_BTH_NAME
129#undef PGM_GST_TYPE
130#undef PGM_GST_NAME
131
132#undef PGM_SHW_TYPE
133#undef PGM_SHW_NAME
134#endif /* !__AMD64__ */
135
136
137/*
138 * Shadow - PAE mode
139 */
140#define PGM_SHW_TYPE PGM_TYPE_PAE
141#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
142#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
143#include "PGMAllShw.h"
144
145/* Guest - real mode */
146#define PGM_GST_TYPE PGM_TYPE_REAL
147#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
148#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
149#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
150#include "PGMAllBth.h"
151#undef BTH_PGMPOOLKIND_PT_FOR_PT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#include "PGMAllBth.h"
162#undef BTH_PGMPOOLKIND_PT_FOR_PT
163#undef PGM_BTH_NAME
164#undef PGM_GST_TYPE
165#undef PGM_GST_NAME
166
167/* Guest - 32-bit mode */
168#define PGM_GST_TYPE PGM_TYPE_32BIT
169#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
170#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
171#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
172#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
173#include "PGMAllBth.h"
174#undef BTH_PGMPOOLKIND_PT_FOR_BIG
175#undef BTH_PGMPOOLKIND_PT_FOR_PT
176#undef PGM_BTH_NAME
177#undef PGM_GST_TYPE
178#undef PGM_GST_NAME
179
180
181/* Guest - PAE mode */
182#define PGM_GST_TYPE PGM_TYPE_PAE
183#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
184#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
185#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
186#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
187#include "PGMAllGst.h"
188#include "PGMAllBth.h"
189#undef BTH_PGMPOOLKIND_PT_FOR_BIG
190#undef BTH_PGMPOOLKIND_PT_FOR_PT
191#undef PGM_BTH_NAME
192#undef PGM_GST_TYPE
193#undef PGM_GST_NAME
194
195#undef PGM_SHW_TYPE
196#undef PGM_SHW_NAME
197
198
199/*
200 * Shadow - AMD64 mode
201 */
202#define PGM_SHW_TYPE PGM_TYPE_AMD64
203#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
204#include "PGMAllShw.h"
205
206/* Guest - real mode */
207#define PGM_GST_TYPE PGM_TYPE_REAL
208#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
209#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_REAL(name)
210#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
211#include "PGMAllBth.h"
212#undef BTH_PGMPOOLKIND_PT_FOR_PT
213#undef PGM_BTH_NAME
214#undef PGM_GST_NAME
215#undef PGM_GST_TYPE
216
217/* Guest - protected mode */
218#define PGM_GST_TYPE PGM_TYPE_PROT
219#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
220#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
221#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
222#include "PGMAllBth.h"
223#undef BTH_PGMPOOLKIND_PT_FOR_PT
224#undef PGM_BTH_NAME
225#undef PGM_GST_TYPE
226#undef PGM_GST_NAME
227
228/* Guest - AMD64 mode */
229#define PGM_GST_TYPE PGM_TYPE_AMD64
230#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
231#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
232#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
233#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
234#include "PGMAllGst.h"
235#include "PGMAllBth.h"
236#undef BTH_PGMPOOLKIND_PT_FOR_BIG
237#undef BTH_PGMPOOLKIND_PT_FOR_PT
238#undef PGM_BTH_NAME
239#undef PGM_GST_TYPE
240#undef PGM_GST_NAME
241
242#undef PGM_SHW_TYPE
243#undef PGM_SHW_NAME
244
245
246
247/**
248 * #PF Handler.
249 *
250 * @returns VBox status code (appropriate for trap handling and GC return).
251 * @param pVM VM Handle.
252 * @param uErr The trap error code.
253 * @param pRegFrame Trap register frame.
254 * @param pvFault The fault address.
255 */
256PGMDECL(int) PGMTrap0eHandler(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
257{
258 LogFlow(("PGMTrap0eHandler: uErr=%#x pvFault=%VGv eip=%VGv\n", uErr, pvFault, pRegFrame->eip));
259 STAM_PROFILE_START(&pVM->pgm.s.StatGCTrap0e, a);
260 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = NULL; } );
261
262
263#ifdef VBOX_WITH_STATISTICS
264 /*
265 * Error code stats.
266 */
267 if (uErr & X86_TRAP_PF_US)
268 {
269 if (!(uErr & X86_TRAP_PF_P))
270 {
271 if (uErr & X86_TRAP_PF_RW)
272 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentWrite);
273 else
274 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSNotPresentRead);
275 }
276 else if (uErr & X86_TRAP_PF_RW)
277 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSWrite);
278 else if (uErr & X86_TRAP_PF_RSVD)
279 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSReserved);
280 else
281 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUSRead);
282 }
283 else
284 { //supervisor
285 if (!(uErr & X86_TRAP_PF_P))
286 {
287 if (uErr & X86_TRAP_PF_RW)
288 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentWrite);
289 else
290 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVNotPresentRead);
291 }
292 else if (uErr & X86_TRAP_PF_RW)
293 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVWrite);
294 else if (uErr & X86_TRAP_PF_RSVD)
295 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eSVReserved);
296 }
297#endif
298
299 /*
300 * Call the worker.
301 */
302 int rc = PGM_BTH_PFN(Trap0eHandler, pVM)(pVM, uErr, pRegFrame, pvFault);
303 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
304 rc = VINF_SUCCESS;
305 STAM_STATS({ if (!pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution))
306 pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eMisc; });
307 STAM_PROFILE_STOP_EX(&pVM->pgm.s.StatGCTrap0e, pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution), a);
308 return rc;
309}
310
311
312/**
313 * Prefetch a page
314 *
315 * Typically used to sync commonly used pages before entering raw mode
316 * after a CR3 reload.
317 *
318 * @returns VBox status code suitable for scheduling.
319 * @retval VINF_SUCCESS on success.
320 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
321 * @param pVM VM handle.
322 * @param GCPtrPage Page to invalidate.
323 */
324PGMDECL(int) PGMPrefetchPage(PVM pVM, RTGCPTR GCPtrPage)
325{
326 STAM_PROFILE_START(&pVM->pgm.s.StatHCPrefetch, a);
327 int rc = PGM_BTH_PFN(PrefetchPage, pVM)(pVM, (RTGCUINTPTR)GCPtrPage);
328 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCPrefetch, a);
329 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%Vrc\n", rc));
330 return rc;
331}
332
333
334/**
335 * Gets the mapping corresponding to the specified address (if any).
336 *
337 * @returns Pointer to the mapping.
338 * @returns NULL if not
339 *
340 * @param pVM The virtual machine.
341 * @param GCPtr The guest context pointer.
342 */
343PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
344{
345 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
346 while (pMapping)
347 {
348 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
349 break;
350 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
351 {
352 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPTConflict);
353 return pMapping;
354 }
355 pMapping = CTXALLSUFF(pMapping->pNext);
356 }
357 return NULL;
358}
359
360
361/**
362 * Verifies a range of pages for read or write access
363 *
364 * Only checks the guest's page tables
365 *
366 * @returns VBox status code.
367 * @param pVM VM handle.
368 * @param Addr Guest virtual address to check
369 * @param cbSize Access size
370 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
371 */
372PGMDECL(int) PGMIsValidAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
373{
374 /*
375 * Validate input.
376 */
377 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
378 {
379 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
380 return VERR_INVALID_PARAMETER;
381 }
382
383 uint64_t fPage;
384 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPage, NULL);
385 if (VBOX_FAILURE(rc))
386 {
387 Log(("PGMIsValidAccess: access violation for %VGv rc=%d\n", Addr, rc));
388 return VINF_EM_RAW_GUEST_TRAP;
389 }
390
391 /*
392 * Check if the access would cause a page fault
393 *
394 * Note that hypervisor page directories are not present in the guest's tables, so this check
395 * is sufficient.
396 */
397 bool fWrite = !!(fAccess & X86_PTE_RW);
398 bool fUser = !!(fAccess & X86_PTE_US);
399 if ( !(fPage & X86_PTE_P)
400 || (fWrite && !(fPage & X86_PTE_RW))
401 || (fUser && !(fPage & X86_PTE_US)) )
402 {
403 Log(("PGMIsValidAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
404 return VINF_EM_RAW_GUEST_TRAP;
405 }
406 if ( VBOX_SUCCESS(rc)
407 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
408 return PGMIsValidAccess(pVM, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
409 return rc;
410}
411
412
413/**
414 * Verifies a range of pages for read or write access
415 *
416 * Supports handling of pages marked for dirty bit tracking and CSAM
417 *
418 * @returns VBox status code.
419 * @param pVM VM handle.
420 * @param Addr Guest virtual address to check
421 * @param cbSize Access size
422 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
423 */
424PGMDECL(int) PGMVerifyAccess(PVM pVM, RTGCUINTPTR Addr, uint32_t cbSize, uint32_t fAccess)
425{
426 /*
427 * Validate input.
428 */
429 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
430 {
431 AssertMsgFailed(("PGMVerifyAccess: invalid access type %08x\n", fAccess));
432 return VERR_INVALID_PARAMETER;
433 }
434
435 uint64_t fPageGst;
436 int rc = PGMGstGetPage(pVM, (RTGCPTR)Addr, &fPageGst, NULL);
437 if (VBOX_FAILURE(rc))
438 {
439 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", Addr, rc));
440 return VINF_EM_RAW_GUEST_TRAP;
441 }
442
443 /*
444 * Check if the access would cause a page fault
445 *
446 * Note that hypervisor page directories are not present in the guest's tables, so this check
447 * is sufficient.
448 */
449 const bool fWrite = !!(fAccess & X86_PTE_RW);
450 const bool fUser = !!(fAccess & X86_PTE_US);
451 if ( !(fPageGst & X86_PTE_P)
452 || (fWrite && !(fPageGst & X86_PTE_RW))
453 || (fUser && !(fPageGst & X86_PTE_US)) )
454 {
455 Log(("PGMVerifyAccess: access violation for %VGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
456 return VINF_EM_RAW_GUEST_TRAP;
457 }
458
459 /*
460 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
461 */
462 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, NULL, NULL);
463 if ( rc == VERR_PAGE_NOT_PRESENT
464 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
465 {
466 /*
467 * Page is not present in our page tables.
468 * Try to sync it!
469 */
470 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
471 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
472 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVM)(pVM, Addr, fPageGst, uErr);
473 if (rc != VINF_SUCCESS)
474 return rc;
475 }
476 else
477 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %VGv failed with %Vrc\n", Addr, rc));
478
479#if 0 /* def VBOX_STRICT; triggers too often now */
480 /*
481 * This check is a bit paranoid, but useful.
482 */
483 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
484 uint64_t fPageShw;
485 rc = PGMShwGetPage(pVM, (RTGCPTR)Addr, &fPageShw, NULL);
486 if ( (rc == VERR_PAGE_NOT_PRESENT || VBOX_FAILURE(rc))
487 || (fWrite && !(fPageShw & X86_PTE_RW))
488 || (fUser && !(fPageShw & X86_PTE_US)) )
489 {
490 AssertMsgFailed(("Unexpected access violation for %VGv! rc=%Vrc write=%d user=%d\n",
491 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
492 return VINF_EM_RAW_GUEST_TRAP;
493 }
494#endif
495
496 if ( VBOX_SUCCESS(rc)
497 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
498 || Addr + cbSize < Addr))
499 {
500 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
501 for (;;)
502 {
503 Addr += PAGE_SIZE;
504 if (cbSize > PAGE_SIZE)
505 cbSize -= PAGE_SIZE;
506 else
507 cbSize = 1;
508 rc = PGMVerifyAccess(pVM, Addr, 1, fAccess);
509 if (rc != VINF_SUCCESS)
510 break;
511 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
512 break;
513 }
514 }
515 return rc;
516}
517
518
519#ifndef IN_GC
520/**
521 * Emulation of the invlpg instruction (HC only actually).
522 *
523 * @returns VBox status code.
524 * @param pVM VM handle.
525 * @param GCPtrPage Page to invalidate.
526 * @remark ASSUMES the page table entry or page directory is
527 * valid. Fairly safe, but there could be edge cases!
528 * @todo Flush page or page directory only if necessary!
529 */
530PGMDECL(int) PGMInvalidatePage(PVM pVM, RTGCPTR GCPtrPage)
531{
532 LogFlow(("PGMInvalidatePage: GCPtrPage=%VGv\n", GCPtrPage));
533
534 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
535 int rc = PGM_BTH_PFN(InvalidatePage, pVM)(pVM, GCPtrPage);
536 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,InvalidatePage), a);
537
538#ifndef IN_RING0
539 /*
540 * Check if we have a pending update of the CR3 monitoring.
541 */
542 if ( VBOX_SUCCESS(rc)
543 && (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
544 {
545 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
546 Assert(!pVM->pgm.s.fMappingsFixed);
547 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
548 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
549 }
550#endif
551
552#ifdef IN_RING3
553 /*
554 * Inform CSAM about the flush
555 */
556 /** @note this is to check if monitored pages have been changed; when we implement callbacks for virtual handlers, this is no longer required. */
557 CSAMR3FlushPage(pVM, GCPtrPage);
558#endif
559 return rc;
560}
561#endif
562
563
564/**
565 * Executes an instruction using the interpreter.
566 *
567 * @returns VBox status code (appropriate for trap handling and GC return).
568 * @param pVM VM handle.
569 * @param pRegFrame Register frame.
570 * @param pvFault Fault address.
571 */
572PGMDECL(int) PGMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
573{
574#ifdef IN_RING0
575 /** @todo */
576 int rc = VINF_EM_RAW_EMULATE_INSTR;
577#else
578 uint32_t cb;
579 int rc = EMInterpretInstruction(pVM, pRegFrame, pvFault, &cb);
580 if (rc == VERR_EM_INTERPRETER)
581 rc = VINF_EM_RAW_EMULATE_INSTR;
582 if (rc != VINF_SUCCESS)
583 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%VGv)\n", rc, pvFault));
584#endif
585 return rc;
586}
587
588
589/**
590 * Gets effective page information (from the VMM page directory).
591 *
592 * @returns VBox status.
593 * @param pVM VM Handle.
594 * @param GCPtr Guest Context virtual address of the page.
595 * @param pfFlags Where to store the flags. These are X86_PTE_*.
596 * @param pHCPhys Where to store the HC physical address of the page.
597 * This is page aligned.
598 * @remark You should use PGMMapGetPage() for pages in a mapping.
599 */
600PGMDECL(int) PGMShwGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
601{
602 return PGM_SHW_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pHCPhys);
603}
604
605
606/**
607 * Sets (replaces) the page flags for a range of pages in the shadow context.
608 *
609 * @returns VBox status.
610 * @param pVM VM handle.
611 * @param GCPtr The address of the first page.
612 * @param cb The size of the range in bytes.
613 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
614 * @remark You must use PGMMapSetPage() for pages in a mapping.
615 */
616PGMDECL(int) PGMShwSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
617{
618 return PGMShwModifyPage(pVM, GCPtr, cb, fFlags, 0);
619}
620
621
622/**
623 * Modify page flags for a range of pages in the shadow context.
624 *
625 * The existing flags are ANDed with the fMask and ORed with the fFlags.
626 *
627 * @returns VBox status code.
628 * @param pVM VM handle.
629 * @param GCPtr Virtual address of the first page in the range.
630 * @param cb Size (in bytes) of the range to apply the modification to.
631 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
632 * @param fMask The AND mask - page flags X86_PTE_*.
633 * Be very CAREFUL when ~'ing constants which could be 32-bit!
634 * @remark You must use PGMMapModifyPage() for pages in a mapping.
635 */
636PGMDECL(int) PGMShwModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
637{
638 /*
639 * Validate input.
640 */
641 if (fFlags & X86_PTE_PAE_PG_MASK)
642 {
643 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
644 return VERR_INVALID_PARAMETER;
645 }
646 if (!cb)
647 {
648 AssertFailed();
649 return VERR_INVALID_PARAMETER;
650 }
651
652 /*
653 * Align the input.
654 */
655 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
656 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
657 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
658
659 /*
660 * Call worker.
661 */
662 return PGM_SHW_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
663}
664
665
666/**
667 * Gets effective Guest OS page information.
668 *
669 * When GCPtr is in a big page, the function will return as if it was a normal
670 * 4KB page. If the need for distinguishing between big and normal page becomes
671 * necessary at a later point, a PGMGstGetPage() will be created for that
672 * purpose.
673 *
674 * @returns VBox status.
675 * @param pVM VM Handle.
676 * @param GCPtr Guest Context virtual address of the page.
677 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
678 * @param pGCPhys Where to store the GC physical address of the page.
679 * This is page aligned. The fact that the
680 */
681PGMDECL(int) PGMGstGetPage(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
682{
683 return PGM_GST_PFN(GetPage,pVM)(pVM, (RTGCUINTPTR)GCPtr, pfFlags, pGCPhys);
684}
685
686
687/**
688 * Checks if the page is present.
689 *
690 * @returns true if the page is present.
691 * @returns false if the page is not present.
692 * @param pVM The VM handle.
693 * @param GCPtr Address within the page.
694 */
695PGMDECL(bool) PGMGstIsPagePresent(PVM pVM, RTGCPTR GCPtr)
696{
697 int rc = PGMGstGetPage(pVM, GCPtr, NULL, NULL);
698 return VBOX_SUCCESS(rc);
699}
700
701
702/**
703 * Sets (replaces) the page flags for a range of pages in the guest's tables.
704 *
705 * @returns VBox status.
706 * @param pVM VM handle.
707 * @param GCPtr The address of the first page.
708 * @param cb The size of the range in bytes.
709 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
710 */
711PGMDECL(int) PGMGstSetPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
712{
713 return PGMGstModifyPage(pVM, GCPtr, cb, fFlags, 0);
714}
715
716
717/**
718 * Modify page flags for a range of pages in the guest's tables
719 *
720 * The existing flags are ANDed with the fMask and ORed with the fFlags.
721 *
722 * @returns VBox status code.
723 * @param pVM VM handle.
724 * @param GCPtr Virtual address of the first page in the range.
725 * @param cb Size (in bytes) of the range to apply the modification to.
726 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
727 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
728 * Be very CAREFUL when ~'ing constants which could be 32-bit!
729 */
730PGMDECL(int) PGMGstModifyPage(PVM pVM, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
731{
732 STAM_PROFILE_START(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
733
734 /*
735 * Validate input.
736 */
737 if (fFlags & X86_PTE_PAE_PG_MASK)
738 {
739 AssertMsgFailed(("fFlags=%#llx\n", fFlags));
740 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
741 return VERR_INVALID_PARAMETER;
742 }
743
744 if (!cb)
745 {
746 AssertFailed();
747 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
748 return VERR_INVALID_PARAMETER;
749 }
750
751 LogFlow(("PGMGstModifyPage %VGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
752
753 /*
754 * Adjust input.
755 */
756 cb += (RTGCUINTPTR)GCPtr & PAGE_OFFSET_MASK;
757 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
758 GCPtr = (RTGCPTR)((RTGCUINTPTR)GCPtr & PAGE_BASE_GC_MASK);
759
760 /*
761 * Call worker.
762 */
763 int rc = PGM_GST_PFN(ModifyPage, pVM)(pVM, (RTGCUINTPTR)GCPtr, cb, fFlags, fMask);
764
765 STAM_PROFILE_STOP(&CTXMID(pVM->pgm.s.Stat,GstModifyPage), a);
766 return rc;
767}
768
769
770/**
771 * Temporarily turns off the access monitoring of a page within a monitored
772 * physical write/all page access handler region.
773 *
774 * Use this when no further \#PFs are required for that page. Be aware that
775 * a page directory sync might reset the flags, and turn on access monitoring
776 * for the page.
777 *
778 * The caller must do required page table modifications.
779 *
780 * @returns VBox status code.
781 * @param pVM VM Handle
782 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
783 * @param GCPhysPage Physical address of the page to turn off access monitoring for.
784 */
785PGMDECL(int) PGMHandlerPhysicalPageTempOff(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
786{
787 /*
788 * Validate the range.
789 */
790 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
791 if (pCur)
792 {
793 if ( GCPhysPage >= pCur->Core.Key
794 && GCPhysPage <= pCur->Core.KeyLast)
795 {
796 /*
797 * Ok, check that the type is right and then clear the flag.
798 */
799 unsigned fFlag;
800 switch (pCur->enmType)
801 {
802 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
803 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
804 break;
805
806 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
807 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
808 break;
809
810 case PGMPHYSHANDLERTYPE_MMIO:
811 case PGMPHYSHANDLERTYPE_PHYSICAL:
812 AssertMsgFailed(("Cannot disable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
813 return VERR_ACCESS_DENIED;
814
815 default:
816 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
817 return VERR_INTERNAL_ERROR;
818 }
819
820 /** @todo add a function which does both clear and set! */
821 /* clear and set */
822 PPGMRAMRANGE pHint = NULL;
823 int rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
824 if (VBOX_SUCCESS(rc))
825 rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
826 return rc;
827 }
828 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
829 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
830 return VERR_INVALID_PARAMETER;
831 }
832
833 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
834 return VERR_PGM_HANDLER_NOT_FOUND;
835}
836
837
838/**
839 * Turns access monitoring of a page within a monitored
840 * physical write/all page access handler regio back on.
841 *
842 * The caller must do required page table modifications.
843 *
844 * @returns VBox status code.
845 * @param pVM VM Handle
846 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
847 * @param GCPhysPage Physical address of the page to turn on access monitoring for.
848 */
849PGMDECL(int) PGMHandlerPhysicalPageReset(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysPage)
850{
851 /*
852 * Validate the range.
853 */
854 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
855 if (pCur)
856 {
857 if ( GCPhysPage >= pCur->Core.Key
858 && GCPhysPage <= pCur->Core.KeyLast)
859 {
860 /*
861 * Ok, check that the type is right and then clear the flag.
862 */
863 unsigned fFlag;
864 switch (pCur->enmType)
865 {
866 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
867 fFlag = MM_RAM_FLAGS_PHYSICAL_WRITE;
868 break;
869
870 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
871 fFlag = MM_RAM_FLAGS_PHYSICAL_ALL;
872 break;
873
874 case PGMPHYSHANDLERTYPE_MMIO:
875 case PGMPHYSHANDLERTYPE_PHYSICAL:
876 AssertMsgFailed(("Cannot enable an MMIO or natural PHYSICAL access handler! enmType=%d\n", pCur->enmType));
877 return VERR_ACCESS_DENIED;
878
879 default:
880 AssertMsgFailed(("Invalid mapping type %d\n", pCur->enmType));
881 return VERR_INTERNAL_ERROR;
882 }
883
884 /** @todo add a function which does both clear and set! */
885 /* set and clear */
886 PPGMRAMRANGE pHint = NULL;
887 int rc = PGMRamFlagsSetByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, fFlag, &pHint);
888 if (VBOX_SUCCESS(rc))
889 rc = PGMRamFlagsClearByGCPhysWithHint(&pVM->pgm.s, GCPhysPage, MM_RAM_FLAGS_PHYSICAL_TEMP_OFF, &pHint);
890 return rc;
891
892 }
893 AssertMsgFailed(("The page %#x is outside the range %#x-%#x\n",
894 GCPhysPage, pCur->Core.Key, pCur->Core.KeyLast));
895 return VERR_INVALID_PARAMETER;
896 }
897
898 AssertMsgFailed(("Specified physical handler start address %#x is invalid.\n", GCPhys));
899 return VERR_PGM_HANDLER_NOT_FOUND;
900}
901
902
903/**
904 * Checks if a physical range is handled
905 *
906 * @returns boolean
907 * @param pVM VM Handle
908 * @param GCPhys Start physical address earlier passed to PGMR3HandlerPhysicalRegister().
909 */
910PGMDECL(bool) PGMHandlerPhysicalIsRegistered(PVM pVM, RTGCPHYS GCPhys)
911{
912 /*
913 * Find the handler.
914 */
915 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysGet(&pVM->pgm.s.CTXSUFF(pTrees)->PhysHandlers, GCPhys);
916 if (pCur)
917 {
918 if ( GCPhys >= pCur->Core.Key
919 && GCPhys <= pCur->Core.KeyLast)
920 {
921 /*
922 * Validate type.
923 */
924 switch (pCur->enmType)
925 {
926 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
927 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
928 case PGMPHYSHANDLERTYPE_PHYSICAL:
929 case PGMPHYSHANDLERTYPE_MMIO:
930 return true;
931
932 default:
933 AssertMsgFailed(("Invalid type %d! Corruption!\n", pCur->enmType));
934 return false;
935 }
936 }
937 }
938
939 return false;
940}
941
942
943#ifdef VBOX_STRICT
944DECLCALLBACK(int) pgmVirtHandlerDumpPhysRange(PAVLROGCPHYSNODECORE pNode, void *pvUser)
945{
946 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
947 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)((uintptr_t)pCur + pCur->offVirtHandler);
948 Log(("PHYS2VIRT: Range %VGp-%VGp for virtual handler: %s\n", pCur->Core.Key, pCur->Core.KeyLast, pVirt->pszDesc));
949 return 0;
950}
951
952
953void pgmHandlerVirtualDumpPhysPages(PVM pVM)
954{
955 RTAvlroGCPhysDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->PhysToVirtHandlers, true, pgmVirtHandlerDumpPhysRange, 0);
956}
957#endif /* VBOX_STRICT */
958
959
960/**
961 * Gets the current CR3 register value for the shadow memory context.
962 * @returns CR3 value.
963 * @param pVM The VM handle.
964 */
965PGMDECL(uint32_t) PGMGetHyperCR3(PVM pVM)
966{
967 switch (pVM->pgm.s.enmShadowMode)
968 {
969 case PGMMODE_32_BIT:
970 return pVM->pgm.s.HCPhys32BitPD;
971
972 case PGMMODE_PAE:
973 case PGMMODE_PAE_NX:
974 return pVM->pgm.s.HCPhysPaePDPTR;
975
976 case PGMMODE_AMD64:
977 case PGMMODE_AMD64_NX:
978 return pVM->pgm.s.HCPhysPaePML4;
979
980 default:
981 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
982 return ~0;
983 }
984}
985
986
987/**
988 * Gets the CR3 register value for the 32-Bit shadow memory context.
989 * @returns CR3 value.
990 * @param pVM The VM handle.
991 */
992PGMDECL(uint32_t) PGMGetHyper32BitCR3(PVM pVM)
993{
994 return pVM->pgm.s.HCPhys32BitPD;
995}
996
997
998/**
999 * Gets the CR3 register value for the PAE shadow memory context.
1000 * @returns CR3 value.
1001 * @param pVM The VM handle.
1002 */
1003PGMDECL(uint32_t) PGMGetHyperPaeCR3(PVM pVM)
1004{
1005 return pVM->pgm.s.HCPhysPaePDPTR;
1006}
1007
1008
1009/**
1010 * Gets the CR3 register value for the AMD64 shadow memory context.
1011 * @returns CR3 value.
1012 * @param pVM The VM handle.
1013 */
1014PGMDECL(uint32_t) PGMGetHyperAmd64CR3(PVM pVM)
1015{
1016 return pVM->pgm.s.HCPhysPaePML4;
1017}
1018
1019
1020/**
1021 * Gets the current CR3 register value for the HC intermediate memory context.
1022 * @returns CR3 value.
1023 * @param pVM The VM handle.
1024 */
1025PGMDECL(uint32_t) PGMGetInterHCCR3(PVM pVM)
1026{
1027 switch (pVM->pgm.s.enmHostMode)
1028 {
1029 case SUPPAGINGMODE_32_BIT:
1030 case SUPPAGINGMODE_32_BIT_GLOBAL:
1031 return pVM->pgm.s.HCPhysInterPD;
1032
1033 case SUPPAGINGMODE_PAE:
1034 case SUPPAGINGMODE_PAE_GLOBAL:
1035 case SUPPAGINGMODE_PAE_NX:
1036 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1037 return pVM->pgm.s.HCPhysInterPaePDPTR;
1038
1039 case SUPPAGINGMODE_AMD64:
1040 case SUPPAGINGMODE_AMD64_GLOBAL:
1041 case SUPPAGINGMODE_AMD64_NX:
1042 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1043 return pVM->pgm.s.HCPhysInterPaePDPTR;
1044
1045 default:
1046 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1047 return ~0;
1048 }
1049}
1050
1051
1052/**
1053 * Gets the current CR3 register value for the GC intermediate memory context.
1054 * @returns CR3 value.
1055 * @param pVM The VM handle.
1056 */
1057PGMDECL(uint32_t) PGMGetInterGCCR3(PVM pVM)
1058{
1059 switch (pVM->pgm.s.enmShadowMode)
1060 {
1061 case PGMMODE_32_BIT:
1062 return pVM->pgm.s.HCPhysInterPD;
1063
1064 case PGMMODE_PAE:
1065 case PGMMODE_PAE_NX:
1066 return pVM->pgm.s.HCPhysInterPaePDPTR;
1067
1068 case PGMMODE_AMD64:
1069 case PGMMODE_AMD64_NX:
1070 return pVM->pgm.s.HCPhysInterPaePML4;
1071
1072 default:
1073 AssertMsgFailed(("enmShadowMode=%d\n", pVM->pgm.s.enmShadowMode));
1074 return ~0;
1075 }
1076}
1077
1078
1079/**
1080 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1081 * @returns CR3 value.
1082 * @param pVM The VM handle.
1083 */
1084PGMDECL(uint32_t) PGMGetInter32BitCR3(PVM pVM)
1085{
1086 return pVM->pgm.s.HCPhysInterPD;
1087}
1088
1089
1090/**
1091 * Gets the CR3 register value for the PAE intermediate memory context.
1092 * @returns CR3 value.
1093 * @param pVM The VM handle.
1094 */
1095PGMDECL(uint32_t) PGMGetInterPaeCR3(PVM pVM)
1096{
1097 return pVM->pgm.s.HCPhysInterPaePDPTR;
1098}
1099
1100
1101/**
1102 * Gets the CR3 register value for the AMD64 intermediate memory context.
1103 * @returns CR3 value.
1104 * @param pVM The VM handle.
1105 */
1106PGMDECL(uint32_t) PGMGetInterAmd64CR3(PVM pVM)
1107{
1108 return pVM->pgm.s.HCPhysInterPaePML4;
1109}
1110
1111
1112/**
1113 * Performs and schedules necessary updates following a CR3 load or reload.
1114 *
1115 * This will normally involve mapping the guest PD or nPDPTR
1116 *
1117 * @returns VBox status code.
1118 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1119 * safely be ignored and overridden since the FF will be set too then.
1120 * @param pVM VM handle.
1121 * @param cr3 The new cr3.
1122 * @param fGlobal Indicates whether this is a global flush or not.
1123 */
1124PGMDECL(int) PGMFlushTLB(PVM pVM, uint32_t cr3, bool fGlobal)
1125{
1126 /*
1127 * When in real or protected mode there is no TLB flushing, but
1128 * we may still be called because of REM not caring/knowing this.
1129 * REM is simple and we wish to keep it that way.
1130 */
1131 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1132 return VINF_SUCCESS;
1133 LogFlow(("PGMFlushTLB: cr3=%#x OldCr3=%#x fGlobal=%d\n", cr3, pVM->pgm.s.GCPhysCR3, fGlobal));
1134 STAM_PROFILE_START(&pVM->pgm.s.StatFlushTLB, a);
1135
1136 /*
1137 * Flag the necessary updates.
1138 */
1139 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1140 if (fGlobal)
1141 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1142
1143 /*
1144 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1145 */
1146 int rc = VINF_SUCCESS;
1147 RTGCPHYS GCPhysCR3;
1148 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
1149 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
1150 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
1151 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
1152 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1153 else
1154 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1155 if (pVM->pgm.s.GCPhysCR3 != GCPhysCR3)
1156 {
1157 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
1158 rc = PGM_GST_PFN(MapCR3, pVM)(pVM, GCPhysCR3);
1159 if (VBOX_SUCCESS(rc) && !pVM->pgm.s.fMappingsFixed)
1160 {
1161 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1162 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1163 }
1164 if (fGlobal)
1165 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3Global);
1166 else
1167 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBNewCR3);
1168 }
1169 else
1170 {
1171 /*
1172 * Check if we have a pending update of the CR3 monitoring.
1173 */
1174 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1175 {
1176 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1177 Assert(!pVM->pgm.s.fMappingsFixed);
1178 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, GCPhysCR3);
1179 }
1180 if (fGlobal)
1181 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3Global);
1182 else
1183 STAM_COUNTER_INC(&pVM->pgm.s.StatFlushTLBSameCR3);
1184 }
1185
1186 STAM_PROFILE_STOP(&pVM->pgm.s.StatFlushTLB, a);
1187 return rc;
1188}
1189
1190
1191/**
1192 * Synchronize the paging structures.
1193 *
1194 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1195 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1196 * in several places, most importantly whenever the CR3 is loaded.
1197 *
1198 * @returns VBox status code.
1199 * @param pVM The virtual machine.
1200 * @param cr0 Guest context CR0 register
1201 * @param cr3 Guest context CR3 register
1202 * @param cr4 Guest context CR4 register
1203 * @param fGlobal Including global page directories or not
1204 */
1205PGMDECL(int) PGMSyncCR3(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
1206{
1207 /*
1208 * We might be called when we shouldn't.
1209 *
1210 * The mode switching will ensure that the PD is resynced
1211 * after every mode switch. So, if we find ourselves here
1212 * when in protected or real mode we can safely disable the
1213 * FF and return immediately.
1214 */
1215 if (pVM->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1216 {
1217 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1218 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1219 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1220 return VINF_SUCCESS;
1221 }
1222
1223 /* If global pages are not supported, then all flushes are global */
1224 if (!(cr4 & X86_CR4_PGE))
1225 fGlobal = true;
1226 LogFlow(("PGMSyncCR3: cr0=%08x cr3=%08x cr4=%08x fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1227 VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1228
1229 /*
1230 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1231 */
1232 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1233 int rc = PGM_BTH_PFN(SyncCR3, pVM)(pVM, cr0, cr3, cr4, fGlobal);
1234 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1235 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || VBOX_FAILURE(rc), ("rc=%VRc\n", rc));
1236 if (rc == VINF_SUCCESS)
1237 {
1238 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1239 {
1240 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1241 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1242 }
1243
1244 /*
1245 * Check if we have a pending update of the CR3 monitoring.
1246 */
1247 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1248 {
1249 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1250 Assert(!pVM->pgm.s.fMappingsFixed);
1251 Assert(pVM->pgm.s.GCPhysCR3 == pVM->pgm.s.GCPhysGstCR3Monitored);
1252 rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
1253 }
1254 }
1255
1256 /*
1257 * Now flush the CR3 (guest context).
1258 */
1259 if (rc == VINF_SUCCESS)
1260 PGM_INVL_GUEST_TLBS();
1261 return rc;
1262}
1263
1264
1265/**
1266 * Called whenever CR0 or CR4 in a way which may change
1267 * the paging mode.
1268 *
1269 * @returns VBox status code fit for scheduling in GC and R0.
1270 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1271 * @retval VINF_PGM_CHANGE_MODE if we're in GC or R0 and the mode changes.
1272 * @param pVM VM handle.
1273 * @param cr0 The new cr0.
1274 * @param cr4 The new cr4.
1275 * @param efer The new extended feature enable register.
1276 */
1277PGMDECL(int) PGMChangeMode(PVM pVM, uint32_t cr0, uint32_t cr4, uint64_t efer)
1278{
1279 PGMMODE enmGuestMode;
1280
1281 /*
1282 * Calc the new guest mode.
1283 */
1284 if (!(cr0 & X86_CR0_PE))
1285 enmGuestMode = PGMMODE_REAL;
1286 else if (!(cr0 & X86_CR0_PG))
1287 enmGuestMode = PGMMODE_PROTECTED;
1288 else if (!(cr4 & X86_CR4_PAE))
1289 enmGuestMode = PGMMODE_32_BIT;
1290 else if (!(efer & MSR_K6_EFER_LME))
1291 {
1292 if (!(efer & MSR_K6_EFER_NXE))
1293 enmGuestMode = PGMMODE_PAE;
1294 else
1295 enmGuestMode = PGMMODE_PAE_NX;
1296 }
1297 else
1298 {
1299 if (!(efer & MSR_K6_EFER_NXE))
1300 enmGuestMode = PGMMODE_AMD64;
1301 else
1302 enmGuestMode = PGMMODE_AMD64_NX;
1303 }
1304
1305 /*
1306 * Did it change?
1307 */
1308 if (pVM->pgm.s.enmGuestMode == enmGuestMode)
1309 return VINF_SUCCESS;
1310#ifdef IN_RING3
1311 return pgmR3ChangeMode(pVM, enmGuestMode);
1312#else
1313 Log(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1314 return VINF_PGM_CHANGE_MODE;
1315#endif
1316}
1317
1318
1319/**
1320 * Gets the current guest paging mode.
1321 *
1322 * @returns The current paging mode.
1323 * @param pVM The VM handle.
1324 */
1325PGMDECL(PGMMODE) PGMGetGuestMode(PVM pVM)
1326{
1327 return pVM->pgm.s.enmGuestMode;
1328}
1329
1330
1331/**
1332 * Gets the current shadow paging mode.
1333 *
1334 * @returns The current paging mode.
1335 * @param pVM The VM handle.
1336 */
1337PGMDECL(PGMMODE) PGMGetShadowMode(PVM pVM)
1338{
1339 return pVM->pgm.s.enmShadowMode;
1340}
1341
1342
1343/**
1344 * Get mode name.
1345 *
1346 * @returns read-only name string.
1347 * @param enmMode The mode which name is desired.
1348 */
1349PGMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
1350{
1351 switch (enmMode)
1352 {
1353 case PGMMODE_REAL: return "real";
1354 case PGMMODE_PROTECTED: return "protected";
1355 case PGMMODE_32_BIT: return "32-bit";
1356 case PGMMODE_PAE: return "PAE";
1357 case PGMMODE_PAE_NX: return "PAE+NX";
1358 case PGMMODE_AMD64: return "AMD64";
1359 case PGMMODE_AMD64_NX: return "AMD64+NX";
1360 default: return "unknown mode value";
1361 }
1362}
1363
1364
1365/**
1366 * Acquire the PGM lock.
1367 *
1368 * @returns VBox status code
1369 * @param pVM The VM to operate on.
1370 */
1371int pgmLock(PVM pVM)
1372{
1373 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
1374#ifdef IN_GC
1375 if (rc == VERR_SEM_BUSY)
1376 rc = VMMGCCallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1377#elif defined(IN_RING0)
1378 if (rc == VERR_SEM_BUSY)
1379 rc = VMMR0CallHost(pVM, VMMCALLHOST_PGM_LOCK, 0);
1380#endif
1381 AssertRC(rc);
1382 return rc;
1383}
1384
1385
1386/**
1387 * Release the PGM lock.
1388 *
1389 * @returns VBox status code
1390 * @param pVM The VM to operate on.
1391 */
1392void pgmUnlock(PVM pVM)
1393{
1394 PDMCritSectLeave(&pVM->pgm.s.CritSect);
1395}
1396
1397
1398#ifdef VBOX_STRICT
1399
1400/**
1401 * State structure used by the PGMAssertHandlerAndFlagsInSync() function
1402 * and its AVL enumerators.
1403 */
1404typedef struct PGMAHAFIS
1405{
1406 /** The VM handle. */
1407 PVM pVM;
1408 /** Number of errors. */
1409 unsigned cErrors;
1410 /** The flags we've found. */
1411 unsigned fFlagsFound;
1412 /** The flags we're matching up to.
1413 * This is also on the stack as a const, thus only valid during enumeration. */
1414 unsigned fFlags;
1415 /** The current physical address. */
1416 RTGCPHYS GCPhys;
1417} PGMAHAFIS, *PPGMAHAFIS;
1418
1419/**
1420 * Verify virtual handler by matching physical address.
1421 *
1422 * @returns 0
1423 * @param pNode Pointer to a PGMVIRTHANDLER.
1424 * @param pvUser Pointer to user parameter.
1425 */
1426static DECLCALLBACK(int) pgmVirtHandlerVerifyOneByPhysAddr(PAVLROGCPTRNODECORE pNode, void *pvUser)
1427{
1428 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
1429 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1430
1431 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
1432 {
1433 if ((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == pState->GCPhys)
1434 {
1435 switch (pCur->enmType)
1436 {
1437 case PGMVIRTHANDLERTYPE_EIP:
1438 case PGMVIRTHANDLERTYPE_NORMAL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1439 case PGMVIRTHANDLERTYPE_WRITE: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1440 case PGMVIRTHANDLERTYPE_ALL: pState->fFlagsFound |= MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1441 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1442 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1443 return 0;
1444 }
1445 if ( (pState->fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1446 == pState->fFlagsFound)
1447 break;
1448 }
1449 }
1450 return 0;
1451}
1452
1453
1454/**
1455 * Verify a virtual handler.
1456 *
1457 * @returns 0
1458 * @param pNode Pointer to a PGMVIRTHANDLER.
1459 * @param pvUser Pointer to user parameter.
1460 */
1461static DECLCALLBACK(int) pgmVirtHandlerVerifyOne(PAVLROGCPTRNODECORE pNode, void *pvUser)
1462{
1463 PPGMVIRTHANDLER pVirt = (PPGMVIRTHANDLER)pNode;
1464 PPGMAHAFIS pState = (PPGMAHAFIS)pvUser;
1465 PVM pVM = pState->pVM;
1466
1467 if ( pVirt->aPhysToVirt[0].Core.Key != NIL_RTGCPHYS
1468 && (pVirt->aPhysToVirt[0].Core.Key & PAGE_OFFSET_MASK) != ((RTGCUINTPTR)pVirt->GCPtr & PAGE_OFFSET_MASK))
1469 {
1470 AssertMsgFailed(("virt handler phys out has incorrect key! %VGp %VGv %s\n",
1471 pVirt->aPhysToVirt[0].Core.Key, pVirt->GCPtr, HCSTRING(pVirt->pszDesc)));
1472 pState->cErrors++;
1473 }
1474
1475 /*
1476 * Calc flags.
1477 */
1478 unsigned fFlags;
1479 switch (pVirt->enmType)
1480 {
1481 case PGMVIRTHANDLERTYPE_EIP:
1482 case PGMVIRTHANDLERTYPE_NORMAL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER; break;
1483 case PGMVIRTHANDLERTYPE_WRITE: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE; break;
1484 case PGMVIRTHANDLERTYPE_ALL: fFlags = MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL; break;
1485 /* hypervisor handlers need no flags and wouldn't have nowhere to put them in any case. */
1486 case PGMVIRTHANDLERTYPE_HYPERVISOR:
1487 return 0;
1488 default:
1489 AssertMsgFailed(("unknown enmType=%d\n", pVirt->enmType));
1490 return 0;
1491 }
1492
1493 /*
1494 * Check pages against flags.
1495 */
1496 RTGCUINTPTR GCPtr = (RTGCUINTPTR)pVirt->GCPtr;
1497 for (unsigned iPage = 0; iPage < pVirt->cPages; iPage++, GCPtr += PAGE_SIZE)
1498 {
1499 RTGCPHYS GCPhysGst;
1500 uint64_t fGst;
1501 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, &fGst, &GCPhysGst);
1502 if (rc == VERR_PAGE_NOT_PRESENT)
1503 {
1504 if (pVirt->aPhysToVirt[iPage].Core.Key != NIL_RTGCPHYS)
1505 {
1506 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysNew=~0 iPage=%#x %VGv %s\n",
1507 pVirt->aPhysToVirt[iPage].Core.Key, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1508 pState->cErrors++;
1509 }
1510 continue;
1511 }
1512
1513 AssertRCReturn(rc, 0);
1514 if ((pVirt->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) != GCPhysGst)
1515 {
1516 AssertMsgFailed(("virt handler phys out of sync. %VGp GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1517 pVirt->aPhysToVirt[iPage].Core.Key, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1518 pState->cErrors++;
1519 continue;
1520 }
1521
1522 RTHCPHYS HCPhys;
1523 rc = PGMRamGCPhys2HCPhysWithFlags(&pVM->pgm.s, GCPhysGst, &HCPhys);
1524 if (VBOX_FAILURE(rc))
1525 {
1526 AssertMsgFailed(("virt handler getting ram flags rc=%Vrc. GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1527 rc, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1528 pState->cErrors++;
1529 continue;
1530 }
1531
1532 if ((HCPhys & fFlags) != fFlags)
1533 {
1534 AssertMsgFailed(("virt handler flags mismatch. HCPhys=%VHp fFlags=%#x GCPhysGst=%VGp iPage=%#x %VGv %s\n",
1535 HCPhys, fFlags, GCPhysGst, iPage, GCPtr, HCSTRING(pVirt->pszDesc)));
1536 pState->cErrors++;
1537 continue;
1538 }
1539 } /* for pages in virtual mapping. */
1540
1541 return 0;
1542}
1543
1544
1545/**
1546 * Asserts that the handlers+guest-page-tables == ramrange-flags and
1547 * that the physical addresses associated with virtual handlers are correct.
1548 *
1549 * @returns Number of mismatches.
1550 * @param pVM The VM handle.
1551 */
1552PGMDECL(unsigned) PGMAssertHandlerAndFlagsInSync(PVM pVM)
1553{
1554 PPGM pPGM = &pVM->pgm.s;
1555 PGMAHAFIS State;
1556 State.cErrors = 0;
1557 State.pVM = pVM;
1558
1559 /*
1560 * Check the RAM flags against the handlers.
1561 */
1562 for (PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); pRam; pRam = CTXSUFF(pRam->pNext))
1563 {
1564 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1565 for (unsigned iPage = 0; iPage < cPages; iPage++)
1566 {
1567 State.GCPhys = pRam->GCPhys + (iPage << PAGE_SHIFT);
1568 const unsigned fFlags = pRam->aHCPhys[iPage]
1569 & ( MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL
1570 | MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_PHYSICAL_TEMP_OFF);
1571 if (fFlags)
1572 {
1573 State.fFlagsFound = 0; /* build flags and compare. */
1574
1575 /* physical first. (simple because of page alignment) */
1576 if ( !(fFlags & MM_RAM_FLAGS_PHYSICAL_TEMP_OFF)
1577 && (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL)))
1578 {
1579 PPGMPHYSHANDLER pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys);
1580 if (!pPhys)
1581 {
1582 pPhys = (PPGMPHYSHANDLER)RTAvlroGCPhysGetBestFit(&pPGM->CTXSUFF(pTrees)->PhysHandlers, State.GCPhys, true);
1583 if ( pPhys
1584 && pPhys->Core.Key > (State.GCPhys + PAGE_SIZE - 1))
1585 pPhys = NULL;
1586 Assert(!pPhys || pPhys->Core.Key >= State.GCPhys);
1587 }
1588 if (pPhys)
1589 {
1590 switch (pPhys->enmType)
1591 {
1592 case PGMPHYSHANDLERTYPE_PHYSICAL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER; break;
1593 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE; break;
1594 case PGMPHYSHANDLERTYPE_MMIO:
1595 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: State.fFlagsFound |= MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_ALL; break;
1596 default: AssertMsgFailed(("Invalid type phys type %d\n", pPhys->enmType)); State.cErrors++; break;
1597 }
1598 if ( (fFlags & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_PHYSICAL_ALL))
1599 != State.fFlagsFound)
1600 {
1601 AssertMsgFailed(("ram range vs phys handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x %s\n",
1602 State.GCPhys, fFlags, State.fFlagsFound, pPhys->pszDesc));
1603 State.cErrors++;
1604 }
1605
1606#ifdef IN_RING3
1607 /* validate that REM is handling it. */
1608 if (!REMR3IsPageAccessHandled(pVM, State.GCPhys))
1609 {
1610 AssertMsgFailed(("ram range vs phys handler REM mismatch. GCPhys=%#x fFlags=%#x %s\n",
1611 State.GCPhys, fFlags, pPhys->pszDesc));
1612 State.cErrors++;
1613 }
1614#endif
1615 }
1616 else
1617 {
1618 AssertMsgFailed(("ram range vs phys handler mismatch. no handler for GCPhys=%#x\n", State.GCPhys));
1619 State.cErrors++;
1620 }
1621 }
1622
1623 /* virtual flags. */
1624 if (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1625 {
1626 State.fFlags = fFlags;
1627 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOneByPhysAddr, &State);
1628 if ( (fFlags & (MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL))
1629 != State.fFlagsFound)
1630 {
1631 AssertMsgFailed(("ram range vs virt handler flags mismatch. GCPhys=%#x fFlags=%#x fFlagsFound=%#x\n",
1632 State.GCPhys, fFlags, State.fFlagsFound));
1633 State.cErrors++;
1634 }
1635
1636 }
1637 }
1638 } /* foreach page in ram range. */
1639 } /* foreach ram range. */
1640
1641 /*
1642 * Check that the physical addresses of the virtual handlers matches up.
1643 */
1644 RTAvlroGCPtrDoWithAll(CTXSUFF(&pVM->pgm.s.pTrees)->VirtHandlers, true, pgmVirtHandlerVerifyOne, &State);
1645
1646 return State.cErrors;
1647}
1648
1649
1650/**
1651 * Asserts that there are no mapping conflicts.
1652 *
1653 * @returns Number of conflicts.
1654 * @param pVM The VM Handle.
1655 */
1656PGMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
1657{
1658 unsigned cErrors = 0;
1659
1660 /*
1661 * Check for mapping conflicts.
1662 */
1663 for (PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
1664 pMapping;
1665 pMapping = CTXALLSUFF(pMapping->pNext))
1666 {
1667 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
1668 for (RTGCUINTPTR GCPtr = (RTGCUINTPTR)pMapping->GCPtr;
1669 GCPtr <= (RTGCUINTPTR)pMapping->GCPtrLast;
1670 GCPtr += PAGE_SIZE)
1671 {
1672 int rc = PGMGstGetPage(pVM, (RTGCPTR)GCPtr, NULL, NULL);
1673 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
1674 {
1675 AssertMsgFailed(("Conflict at %VGv with %s\n", GCPtr, HCSTRING(pMapping->pszDesc)));
1676 cErrors++;
1677 break;
1678 }
1679 }
1680 }
1681
1682 return cErrors;
1683}
1684
1685
1686/**
1687 * Asserts that everything related to the guest CR3 is correctly shadowed.
1688 *
1689 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
1690 * and assert the correctness of the guest CR3 mapping before asserting that the
1691 * shadow page tables is in sync with the guest page tables.
1692 *
1693 * @returns Number of conflicts.
1694 * @param pVM The VM Handle.
1695 * @param cr3 The current guest CR3 register value.
1696 * @param cr4 The current guest CR4 register value.
1697 */
1698PGMDECL(unsigned) PGMAssertCR3(PVM pVM, uint32_t cr3, uint32_t cr4)
1699{
1700 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1701 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVM)(pVM, cr3, cr4, 0, ~(RTGCUINTPTR)0);
1702 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3), a);
1703 return cErrors;
1704}
1705
1706#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette