VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 14141

Last change on this file since 14141 was 14138, checked in by vboxsync, 16 years ago

build fix

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 188.1 KB
Line 
1/* $Id: PGMAllBth.h 14138 2008-11-12 18:30:35Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
46#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
47# error "Invalid combination; PAE guest implies PAE shadow"
48#endif
49
50#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
51 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
52# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
53#endif
54
55#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
56 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
57# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
58#endif
59
60#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
61 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
62# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
63#endif
64
65#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
66# define PGM_WITHOUT_MAPPINGS
67#endif
68
69
70#ifndef IN_RING3
71/**
72 * #PF Handler for raw-mode guest execution.
73 *
74 * @returns VBox status code (appropriate for trap handling and GC return).
75 * @param pVM VM Handle.
76 * @param uErr The trap error code.
77 * @param pRegFrame Trap register frame.
78 * @param pvFault The fault address.
79 */
80PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
81{
82# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
83 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
84 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
85
86# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
87 /*
88 * Hide the instruction fetch trap indicator for now.
89 */
90 /** @todo NXE will change this and we must fix NXE in the switcher too! */
91 if (uErr & X86_TRAP_PF_ID)
92 {
93 uErr &= ~X86_TRAP_PF_ID;
94 TRPMSetErrorCode(pVM, uErr);
95 }
96# endif
97
98 /*
99 * Get PDs.
100 */
101 int rc;
102# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
103# if PGM_GST_TYPE == PGM_TYPE_32BIT
104 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
105 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
106
107# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
108
109# if PGM_GST_TYPE == PGM_TYPE_PAE
110 unsigned iPDSrc;
111 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, NULL);
112
113# elif PGM_GST_TYPE == PGM_TYPE_AMD64
114 unsigned iPDSrc;
115 PX86PML4E pPml4eSrc;
116 X86PDPE PdpeSrc;
117 PGSTPD pPDSrc;
118
119 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
120 Assert(pPml4eSrc);
121# endif
122 /* Quick check for a valid guest trap. */
123 if (!pPDSrc)
124 {
125# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
126 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
127# else
128 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
129# endif
130 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
131 TRPMSetErrorCode(pVM, uErr);
132 return VINF_EM_RAW_GUEST_TRAP;
133 }
134# endif
135
136# else /* !PGM_WITH_PAGING */
137 PGSTPD pPDSrc = NULL;
138 const unsigned iPDSrc = 0;
139# endif /* !PGM_WITH_PAGING */
140
141
142# if PGM_SHW_TYPE == PGM_TYPE_32BIT
143 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
144 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
145
146# elif PGM_SHW_TYPE == PGM_TYPE_PAE
147 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
148 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, pvFault);
149
150# if PGM_GST_TYPE == PGM_TYPE_PAE
151 /* Did we mark the PDPT as not present in SyncCR3? */
152 unsigned iPdpt = (pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
153 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
154 if (!pPdptDst->a[iPdpt].n.u1Present)
155 pPdptDst->a[iPdpt].n.u1Present = 1;
156# endif /* GST PAE */
157
158# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
159 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
160 PX86PDPAE pPDDst;
161# if PGM_GST_TYPE == PGM_TYPE_PROT
162 /* AMD-V nested paging */
163 X86PML4E Pml4eSrc;
164 X86PDPE PdpeSrc;
165 PX86PML4E pPml4eSrc = &Pml4eSrc;
166
167 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
168 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
169 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
170# endif
171
172 rc = pgmShwSyncLongModePDPtr(pVM, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
173 if (rc != VINF_SUCCESS)
174 {
175 AssertRC(rc);
176 return rc;
177 }
178 Assert(pPDDst);
179
180# elif PGM_SHW_TYPE == PGM_TYPE_EPT
181 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
182 PEPTPD pPDDst;
183
184 rc = pgmShwGetEPTPDPtr(pVM, pvFault, NULL, &pPDDst);
185 if (rc != VINF_SUCCESS)
186 {
187 AssertRC(rc);
188 return rc;
189 }
190 Assert(pPDDst);
191# endif
192
193# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
194 /*
195 * If we successfully correct the write protection fault due to dirty bit
196 * tracking, or this page fault is a genuine one, then return immediately.
197 */
198 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
199 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
200 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
201 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
202 || rc == VINF_EM_RAW_GUEST_TRAP)
203 {
204 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
205 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
206 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
207 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
208 }
209
210 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0ePD[iPDSrc]);
211# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
212
213 /*
214 * A common case is the not-present error caused by lazy page table syncing.
215 *
216 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
217 * so we can safely assume that the shadow PT is present when calling SyncPage later.
218 *
219 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
220 * of mapping conflict and defer to SyncCR3 in R3.
221 * (Again, we do NOT support access handlers for non-present guest pages.)
222 *
223 */
224# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
225 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
226# else
227 GSTPDE PdeSrc;
228 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
229 PdeSrc.n.u1Present = 1;
230 PdeSrc.n.u1Write = 1;
231 PdeSrc.n.u1Accessed = 1;
232 PdeSrc.n.u1User = 1;
233# endif
234 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
235 && !pPDDst->a[iPDDst].n.u1Present
236 && PdeSrc.n.u1Present
237 )
238
239 {
240 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2SyncPT; });
241 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
242 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
243 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, pvFault);
244 if (RT_SUCCESS(rc))
245 {
246 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
247 return rc;
248 }
249 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
250 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
251 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
252 return VINF_PGM_SYNC_CR3;
253 }
254
255# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
256 /*
257 * Check if this address is within any of our mappings.
258 *
259 * This is *very* fast and it's gonna save us a bit of effort below and prevent
260 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
261 * (BTW, it's impossible to have physical access handlers in a mapping.)
262 */
263 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
264 {
265 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
266 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
267 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
268 {
269 if (pvFault < pMapping->GCPtr)
270 break;
271 if (pvFault - pMapping->GCPtr < pMapping->cb)
272 {
273 /*
274 * The first thing we check is if we've got an undetected conflict.
275 */
276 if (!pVM->pgm.s.fMappingsFixed)
277 {
278 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
279 while (iPT-- > 0)
280 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
281 {
282 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eConflicts);
283 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
284 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
285 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
286 return VINF_PGM_SYNC_CR3;
287 }
288 }
289
290 /*
291 * Check if the fault address is in a virtual page access handler range.
292 */
293 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
294 if ( pCur
295 && pvFault - pCur->Core.Key < pCur->cb
296 && uErr & X86_TRAP_PF_RW)
297 {
298# ifdef IN_RC
299 STAM_PROFILE_START(&pCur->Stat, h);
300 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
301 STAM_PROFILE_STOP(&pCur->Stat, h);
302# else
303 AssertFailed();
304 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
305# endif
306 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersMapping);
307 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
308 return rc;
309 }
310
311 /*
312 * Pretend we're not here and let the guest handle the trap.
313 */
314 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
315 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFMapping);
316 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
317 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
318 return VINF_EM_RAW_GUEST_TRAP;
319 }
320 }
321 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
322 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
323# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
324
325 /*
326 * Check if this fault address is flagged for special treatment,
327 * which means we'll have to figure out the physical address and
328 * check flags associated with it.
329 *
330 * ASSUME that we can limit any special access handling to pages
331 * in page tables which the guest believes to be present.
332 */
333 if (PdeSrc.n.u1Present)
334 {
335 RTGCPHYS GCPhys = NIL_RTGCPHYS;
336
337# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
338# if PGM_GST_TYPE == PGM_TYPE_AMD64
339 bool fBigPagesSupported = true;
340# else
341 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
342# endif
343 if ( PdeSrc.b.u1Size
344 && fBigPagesSupported)
345 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
346 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
347 else
348 {
349 PGSTPT pPTSrc;
350 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
351 if (RT_SUCCESS(rc))
352 {
353 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
354 if (pPTSrc->a[iPTESrc].n.u1Present)
355 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
356 }
357 }
358# else
359 /* No paging so the fault address is the physical address */
360 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
361# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
362
363 /*
364 * If we have a GC address we'll check if it has any flags set.
365 */
366 if (GCPhys != NIL_RTGCPHYS)
367 {
368 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
369
370 PPGMPAGE pPage;
371 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
372 if (RT_SUCCESS(rc))
373 {
374 if ( PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage)
375 || PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
376 {
377 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
378 {
379 /*
380 * Physical page access handler.
381 */
382 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
383 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
384 if (pCur)
385 {
386# ifdef PGM_SYNC_N_PAGES
387 /*
388 * If the region is write protected and we got a page not present fault, then sync
389 * the pages. If the fault was caused by a read, then restart the instruction.
390 * In case of write access continue to the GC write handler.
391 *
392 * ASSUMES that there is only one handler per page or that they have similar write properties.
393 */
394 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
395 && !(uErr & X86_TRAP_PF_P))
396 {
397 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
398 if ( RT_FAILURE(rc)
399 || !(uErr & X86_TRAP_PF_RW)
400 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
401 {
402 AssertRC(rc);
403 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
404 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
405 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
406 return rc;
407 }
408 }
409# endif
410
411 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
412 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
413 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
414
415# if defined(IN_RC) || defined(IN_RING0)
416 if (pCur->CTX_SUFF(pfnHandler))
417 {
418 STAM_PROFILE_START(&pCur->Stat, h);
419 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pCur->CTX_SUFF(pvUser));
420 STAM_PROFILE_STOP(&pCur->Stat, h);
421 }
422 else
423# endif
424 rc = VINF_EM_RAW_EMULATE_INSTR;
425 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersPhysical);
426 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
427 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndPhys; });
428 return rc;
429 }
430 }
431# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
432 else
433 {
434# ifdef PGM_SYNC_N_PAGES
435 /*
436 * If the region is write protected and we got a page not present fault, then sync
437 * the pages. If the fault was caused by a read, then restart the instruction.
438 * In case of write access continue to the GC write handler.
439 */
440 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
441 && !(uErr & X86_TRAP_PF_P))
442 {
443 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
444 if ( RT_FAILURE(rc)
445 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
446 || !(uErr & X86_TRAP_PF_RW))
447 {
448 AssertRC(rc);
449 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
450 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
451 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
452 return rc;
453 }
454 }
455# endif
456 /*
457 * Ok, it's an virtual page access handler.
458 *
459 * Since it's faster to search by address, we'll do that first
460 * and then retry by GCPhys if that fails.
461 */
462 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
463 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
464 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
465 */
466 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
467 if (pCur)
468 {
469 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
470 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
471 || !(uErr & X86_TRAP_PF_P)
472 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
473 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
474
475 if ( pvFault - pCur->Core.Key < pCur->cb
476 && ( uErr & X86_TRAP_PF_RW
477 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
478 {
479# ifdef IN_RC
480 STAM_PROFILE_START(&pCur->Stat, h);
481 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
482 STAM_PROFILE_STOP(&pCur->Stat, h);
483# else
484 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
485# endif
486 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtual);
487 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
488 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
489 return rc;
490 }
491 /* Unhandled part of a monitored page */
492 }
493 else
494 {
495 /* Check by physical address. */
496 PPGMVIRTHANDLER pCur;
497 unsigned iPage;
498 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
499 &pCur, &iPage);
500 Assert(RT_SUCCESS(rc) || !pCur);
501 if ( pCur
502 && ( uErr & X86_TRAP_PF_RW
503 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
504 {
505 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
506# ifdef IN_RC
507 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
508 Assert(off < pCur->cb);
509 STAM_PROFILE_START(&pCur->Stat, h);
510 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
511 STAM_PROFILE_STOP(&pCur->Stat, h);
512# else
513 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
514# endif
515 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
516 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
517 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
518 return rc;
519 }
520 }
521 }
522# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
523
524 /*
525 * There is a handled area of the page, but this fault doesn't belong to it.
526 * We must emulate the instruction.
527 *
528 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
529 * we first check if this was a page-not-present fault for a page with only
530 * write access handlers. Restart the instruction if it wasn't a write access.
531 */
532 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersUnhandled);
533
534 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
535 && !(uErr & X86_TRAP_PF_P))
536 {
537 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
538 if ( RT_FAILURE(rc)
539 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
540 || !(uErr & X86_TRAP_PF_RW))
541 {
542 AssertRC(rc);
543 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
544 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
545 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
546 return rc;
547 }
548 }
549
550 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
551 * It's writing to an unhandled part of the LDT page several million times.
552 */
553 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
554 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
555 rc, pPage->HCPhys,
556 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
557 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
558 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
559 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndUnhandled; });
560 return rc;
561 } /* if any kind of handler */
562
563# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
564 if (uErr & X86_TRAP_PF_P)
565 {
566 /*
567 * The page isn't marked, but it might still be monitored by a virtual page access handler.
568 * (ASSUMES no temporary disabling of virtual handlers.)
569 */
570 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
571 * we should correct both the shadow page table and physical memory flags, and not only check for
572 * accesses within the handler region but for access to pages with virtual handlers. */
573 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
574 if (pCur)
575 {
576 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
577 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
578 || !(uErr & X86_TRAP_PF_P)
579 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
580 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
581
582 if ( pvFault - pCur->Core.Key < pCur->cb
583 && ( uErr & X86_TRAP_PF_RW
584 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
585 {
586# ifdef IN_RC
587 STAM_PROFILE_START(&pCur->Stat, h);
588 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
589 STAM_PROFILE_STOP(&pCur->Stat, h);
590# else
591 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
592# endif
593 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
594 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
595 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
596 return rc;
597 }
598 }
599 }
600# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
601 }
602 else
603 {
604 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
605 * back to the recompiler to emulate the instruction.
606 */
607 LogFlow(("pgmPhysGetPageEx %RGp failed with %Rrc\n", GCPhys, rc));
608 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersInvalid);
609 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
610 return VINF_EM_RAW_EMULATE_INSTR;
611 }
612
613 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
614
615# ifdef PGM_OUT_OF_SYNC_IN_GC
616 /*
617 * We are here only if page is present in Guest page tables and trap is not handled
618 * by our handlers.
619 * Check it for page out-of-sync situation.
620 */
621 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
622
623 if (!(uErr & X86_TRAP_PF_P))
624 {
625 /*
626 * Page is not present in our page tables.
627 * Try to sync it!
628 * BTW, fPageShw is invalid in this branch!
629 */
630 if (uErr & X86_TRAP_PF_US)
631 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
632 else /* supervisor */
633 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
634
635# if defined(LOG_ENABLED) && !defined(IN_RING0)
636 RTGCPHYS GCPhys;
637 uint64_t fPageGst;
638 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
639 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%RGp scan=%d\n",
640 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
641# endif /* LOG_ENABLED */
642
643# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
644 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
645 {
646 uint64_t fPageGst;
647 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
648 if ( RT_SUCCESS(rc)
649 && !(fPageGst & X86_PTE_US))
650 {
651 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
652 if ( pvFault == (RTGCPTR)pRegFrame->eip
653 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
654# ifdef CSAM_DETECT_NEW_CODE_PAGES
655 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
656 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
657# endif /* CSAM_DETECT_NEW_CODE_PAGES */
658 )
659 {
660 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
661 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
662 if (rc != VINF_SUCCESS)
663 {
664 /*
665 * CSAM needs to perform a job in ring 3.
666 *
667 * Sync the page before going to the host context; otherwise we'll end up in a loop if
668 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
669 */
670 LogFlow(("CSAM ring 3 job\n"));
671 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
672 AssertRC(rc2);
673
674 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
675 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2CSAM; });
676 return rc;
677 }
678 }
679# ifdef CSAM_DETECT_NEW_CODE_PAGES
680 else if ( uErr == X86_TRAP_PF_RW
681 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
682 && pRegFrame->ecx < 0x10000)
683 {
684 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
685 * to detect loading of new code pages.
686 */
687
688 /*
689 * Decode the instruction.
690 */
691 RTGCPTR PC;
692 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
693 if (rc == VINF_SUCCESS)
694 {
695 DISCPUSTATE Cpu;
696 uint32_t cbOp;
697 rc = EMInterpretDisasOneEx(pVM, PC, pRegFrame, &Cpu, &cbOp);
698
699 /* For now we'll restrict this to rep movsw/d instructions */
700 if ( rc == VINF_SUCCESS
701 && Cpu.pCurInstr->opcode == OP_MOVSWD
702 && (Cpu.prefix & PREFIX_REP))
703 {
704 CSAMMarkPossibleCodePage(pVM, pvFault);
705 }
706 }
707 }
708# endif /* CSAM_DETECT_NEW_CODE_PAGES */
709
710 /*
711 * Mark this page as safe.
712 */
713 /** @todo not correct for pages that contain both code and data!! */
714 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
715 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
716 }
717 }
718# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
719 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
720 if (RT_SUCCESS(rc))
721 {
722 /* The page was successfully synced, return to the guest. */
723 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
724 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSync; });
725 return VINF_SUCCESS;
726 }
727 }
728 else
729 {
730 /*
731 * A side effect of not flushing global PDEs are out of sync pages due
732 * to physical monitored regions, that are no longer valid.
733 * Assume for now it only applies to the read/write flag
734 */
735 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
736 {
737 if (uErr & X86_TRAP_PF_US)
738 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
739 else /* supervisor */
740 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
741
742
743 /*
744 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
745 */
746 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
747 if (RT_SUCCESS(rc))
748 {
749 /*
750 * Page was successfully synced, return to guest.
751 */
752# ifdef VBOX_STRICT
753 RTGCPHYS GCPhys;
754 uint64_t fPageGst;
755 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
756 Assert(RT_SUCCESS(rc) && fPageGst & X86_PTE_RW);
757 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
758
759 uint64_t fPageShw;
760 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
761 AssertMsg(RT_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
762# endif /* VBOX_STRICT */
763 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
764 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
765 return VINF_SUCCESS;
766 }
767
768 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
769 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
770 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)
771 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
772 {
773 uint64_t fPageGst;
774 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
775 if ( RT_SUCCESS(rc)
776 && !(fPageGst & X86_PTE_RW))
777 {
778 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
779 if (RT_SUCCESS(rc))
780 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulInRZ);
781 else
782 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulToR3);
783 return rc;
784 }
785 AssertMsgFailed(("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
786 }
787 }
788
789# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
790# ifdef VBOX_STRICT
791 /*
792 * Check for VMM page flags vs. Guest page flags consistency.
793 * Currently only for debug purposes.
794 */
795 if (RT_SUCCESS(rc))
796 {
797 /* Get guest page flags. */
798 uint64_t fPageGst;
799 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
800 if (RT_SUCCESS(rc))
801 {
802 uint64_t fPageShw;
803 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
804
805 /*
806 * Compare page flags.
807 * Note: we have AVL, A, D bits desynched.
808 */
809 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
810 ("Page flags mismatch! pvFault=%RGv GCPhys=%RGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
811 }
812 else
813 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
814 }
815 else
816 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
817# endif /* VBOX_STRICT */
818# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
819 }
820 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
821# endif /* PGM_OUT_OF_SYNC_IN_GC */
822 }
823 else
824 {
825 /*
826 * Page not present in Guest OS or invalid page table address.
827 * This is potential virtual page access handler food.
828 *
829 * For the present we'll say that our access handlers don't
830 * work for this case - we've already discarded the page table
831 * not present case which is identical to this.
832 *
833 * When we perchance find we need this, we will probably have AVL
834 * trees (offset based) to operate on and we can measure their speed
835 * agains mapping a page table and probably rearrange this handling
836 * a bit. (Like, searching virtual ranges before checking the
837 * physical address.)
838 */
839 }
840 }
841
842
843# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
844 /*
845 * Conclusion, this is a guest trap.
846 */
847 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
848 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFUnh);
849 return VINF_EM_RAW_GUEST_TRAP;
850# else
851 /* present, but not a monitored page; perhaps the guest is probing physical memory */
852 return VINF_EM_RAW_EMULATE_INSTR;
853# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
854
855
856# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
857
858 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
859 return VERR_INTERNAL_ERROR;
860# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
861}
862#endif /* !IN_RING3 */
863
864
865/**
866 * Emulation of the invlpg instruction.
867 *
868 *
869 * @returns VBox status code.
870 *
871 * @param pVM VM handle.
872 * @param GCPtrPage Page to invalidate.
873 *
874 * @remark ASSUMES that the guest is updating before invalidating. This order
875 * isn't required by the CPU, so this is speculative and could cause
876 * trouble.
877 *
878 * @todo Flush page or page directory only if necessary!
879 * @todo Add a #define for simply invalidating the page.
880 */
881PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage)
882{
883#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
884 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
885 && PGM_SHW_TYPE != PGM_TYPE_EPT
886 int rc;
887
888 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
889 /*
890 * Get the shadow PD entry and skip out if this PD isn't present.
891 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
892 */
893# if PGM_SHW_TYPE == PGM_TYPE_32BIT
894 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
895 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
896# elif PGM_SHW_TYPE == PGM_TYPE_PAE
897 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
898 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
899
900 /* If the shadow PDPE isn't present, then skip the invalidate. */
901 if (!pPdptDst->a[iPdpt].n.u1Present)
902 {
903 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
904 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
905 return VINF_SUCCESS;
906 }
907
908 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - pool index only atm! */;
909 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
910
911# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
912 /* PML4 */
913 AssertReturn(pVM->pgm.s.pShwPaePml4R3, VERR_INTERNAL_ERROR);
914
915 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
916 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
917 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
918 PX86PDPAE pPDDst;
919 PX86PDPT pPdptDst;
920 PX86PML4E pPml4eDst;
921 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
922 if (rc != VINF_SUCCESS)
923 {
924 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
925 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
926 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
927 PGM_INVL_GUEST_TLBS();
928 return VINF_SUCCESS;
929 }
930 Assert(pPDDst);
931
932 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
933 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
934
935 if (!pPdpeDst->n.u1Present)
936 {
937 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
938 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
939 PGM_INVL_GUEST_TLBS();
940 return VINF_SUCCESS;
941 }
942
943# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
944
945 const SHWPDE PdeDst = *pPdeDst;
946 if (!PdeDst.n.u1Present)
947 {
948 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
949 return VINF_SUCCESS;
950 }
951
952 /*
953 * Get the guest PD entry and calc big page.
954 */
955# if PGM_GST_TYPE == PGM_TYPE_32BIT
956 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
957 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
958 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
959# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
960 unsigned iPDSrc;
961# if PGM_GST_TYPE == PGM_TYPE_PAE
962 X86PDPE PdpeSrc;
963 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
964# else /* AMD64 */
965 PX86PML4E pPml4eSrc;
966 X86PDPE PdpeSrc;
967 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
968# endif
969 GSTPDE PdeSrc;
970
971 if (pPDSrc)
972 PdeSrc = pPDSrc->a[iPDSrc];
973 else
974 PdeSrc.u = 0;
975# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
976
977# if PGM_GST_TYPE == PGM_TYPE_AMD64
978 const bool fIsBigPage = PdeSrc.b.u1Size;
979# else
980 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
981# endif
982
983# ifdef IN_RING3
984 /*
985 * If a CR3 Sync is pending we may ignore the invalidate page operation
986 * depending on the kind of sync and if it's a global page or not.
987 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
988 */
989# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
990 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
991 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
992 && fIsBigPage
993 && PdeSrc.b.u1Global
994 )
995 )
996# else
997 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
998# endif
999 {
1000 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1001 return VINF_SUCCESS;
1002 }
1003# endif /* IN_RING3 */
1004
1005# if PGM_GST_TYPE == PGM_TYPE_AMD64
1006 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1007
1008 /* Fetch the pgm pool shadow descriptor. */
1009 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
1010 Assert(pShwPdpt);
1011
1012 /* Fetch the pgm pool shadow descriptor. */
1013 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1014 Assert(pShwPde);
1015
1016 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1017 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1018
1019 if ( !pPml4eSrc->n.u1Present
1020 || pShwPdpt->GCPhys != GCPhysPdpt)
1021 {
1022 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1023 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1024 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwAmd64CR3)->idx, iPml4);
1025 pPml4eDst->u = 0;
1026 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1027 PGM_INVL_GUEST_TLBS();
1028 return VINF_SUCCESS;
1029 }
1030 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1031 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1032 {
1033 /*
1034 * Mark not present so we can resync the PML4E when it's used.
1035 */
1036 LogFlow(("InvalidatePage: Out-of-sync PML4E at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1037 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1038 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwAmd64CR3)->idx, iPml4);
1039 pPml4eDst->u = 0;
1040 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1041 PGM_INVL_GUEST_TLBS();
1042 }
1043 else if (!pPml4eSrc->n.u1Accessed)
1044 {
1045 /*
1046 * Mark not present so we can set the accessed bit.
1047 */
1048 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1049 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1050 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwAmd64CR3)->idx, iPml4);
1051 pPml4eDst->u = 0;
1052 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1053 PGM_INVL_GUEST_TLBS();
1054 }
1055
1056 /* Check if the PDPT entry has changed. */
1057 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1058 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1059 if ( !PdpeSrc.n.u1Present
1060 || pShwPde->GCPhys != GCPhysPd)
1061 {
1062 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1063 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1064 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1065 pPdpeDst->u = 0;
1066 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1067 PGM_INVL_GUEST_TLBS();
1068 return VINF_SUCCESS;
1069 }
1070 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1071 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1072 {
1073 /*
1074 * Mark not present so we can resync the PDPTE when it's used.
1075 */
1076 LogFlow(("InvalidatePage: Out-of-sync PDPE at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1077 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1078 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1079 pPdpeDst->u = 0;
1080 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1081 PGM_INVL_GUEST_TLBS();
1082 }
1083 else if (!PdpeSrc.lm.u1Accessed)
1084 {
1085 /*
1086 * Mark not present so we can set the accessed bit.
1087 */
1088 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1089 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1090 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1091 pPdpeDst->u = 0;
1092 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1093 PGM_INVL_GUEST_TLBS();
1094 }
1095# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1096
1097# if PGM_GST_TYPE == PGM_TYPE_PAE
1098 /*
1099 * Update the shadow PDPE and free all the shadow PD entries if the PDPE is marked not present.
1100 * Note: This shouldn't actually be necessary as we monitor the PDPT page for changes.
1101 */
1102 if (!pPDSrc)
1103 {
1104 /* Guest PDPE not present */
1105 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, GCPtrPage);
1106 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1107
1108 Assert(!PdpeSrc.n.u1Present);
1109 LogFlow(("InvalidatePage: guest PDPE %d not present; clear shw pdpe\n", iPdpt));
1110
1111 /* for each page directory entry */
1112 for (unsigned iPD = 0; iPD < X86_PG_PAE_ENTRIES; iPD++)
1113 {
1114 if ( pPDDst->a[iPD].n.u1Present
1115 && !(pPDDst->a[iPD].u & PGM_PDFLAGS_MAPPING))
1116 {
1117 pgmPoolFree(pVM, pPDDst->a[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
1118 pPDDst->a[iPD].u = 0;
1119 }
1120 }
1121 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
1122 pPdptDst->a[iPdpt].n.u1Present = 0;
1123 PGM_INVL_GUEST_TLBS();
1124 }
1125 AssertMsg(pVM->pgm.s.fMappingsFixed || (PdpeSrc.u & X86_PDPE_PG_MASK) == pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt], ("%RGp vs %RGp (mon)\n", (PdpeSrc.u & X86_PDPE_PG_MASK), pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt]));
1126# endif
1127
1128
1129 /*
1130 * Deal with the Guest PDE.
1131 */
1132 rc = VINF_SUCCESS;
1133 if (PdeSrc.n.u1Present)
1134 {
1135 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1136 {
1137 /*
1138 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1139 */
1140 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1141 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1142 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1143 }
1144 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1145 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1146 {
1147 /*
1148 * Mark not present so we can resync the PDE when it's used.
1149 */
1150 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1151 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1152# if PGM_GST_TYPE == PGM_TYPE_AMD64
1153 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1154# else
1155 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1156# endif
1157 pPdeDst->u = 0;
1158 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1159 PGM_INVL_GUEST_TLBS();
1160 }
1161 else if (!PdeSrc.n.u1Accessed)
1162 {
1163 /*
1164 * Mark not present so we can set the accessed bit.
1165 */
1166 LogFlow(("InvalidatePage: Out-of-sync (A) at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1167 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1168# if PGM_GST_TYPE == PGM_TYPE_AMD64
1169 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1170# else
1171 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1172# endif
1173 pPdeDst->u = 0;
1174 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1175 PGM_INVL_GUEST_TLBS();
1176 }
1177 else if (!fIsBigPage)
1178 {
1179 /*
1180 * 4KB - page.
1181 */
1182 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1183 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1184# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1185 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1186 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1187# endif
1188 if (pShwPage->GCPhys == GCPhys)
1189 {
1190# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1191 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1192 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1193 if (pPT->a[iPTEDst].n.u1Present)
1194 {
1195# ifdef PGMPOOL_WITH_USER_TRACKING
1196 /* This is very unlikely with caching/monitoring enabled. */
1197 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1198# endif
1199 pPT->a[iPTEDst].u = 0;
1200 }
1201# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1202 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1203 if (RT_SUCCESS(rc))
1204 rc = VINF_SUCCESS;
1205# endif
1206 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1207 PGM_INVL_PG(GCPtrPage);
1208 }
1209 else
1210 {
1211 /*
1212 * The page table address changed.
1213 */
1214 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1215 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1216# if PGM_GST_TYPE == PGM_TYPE_AMD64
1217 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1218# else
1219 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1220# endif
1221 pPdeDst->u = 0;
1222 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1223 PGM_INVL_GUEST_TLBS();
1224 }
1225 }
1226 else
1227 {
1228 /*
1229 * 2/4MB - page.
1230 */
1231 /* Before freeing the page, check if anything really changed. */
1232 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1233 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1234# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1235 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1236 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1237# endif
1238 if ( pShwPage->GCPhys == GCPhys
1239 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1240 {
1241 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1242 /** @todo PAT */
1243 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1244 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1245 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1246 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1247 {
1248 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1249 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1250 return VINF_SUCCESS;
1251 }
1252 }
1253
1254 /*
1255 * Ok, the page table is present and it's been changed in the guest.
1256 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1257 * We could do this for some flushes in GC too, but we need an algorithm for
1258 * deciding which 4MB pages containing code likely to be executed very soon.
1259 */
1260 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1261 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1262# if PGM_GST_TYPE == PGM_TYPE_AMD64
1263 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1264# else
1265 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1266# endif
1267 pPdeDst->u = 0;
1268 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1269 PGM_INVL_BIG_PG(GCPtrPage);
1270 }
1271 }
1272 else
1273 {
1274 /*
1275 * Page directory is not present, mark shadow PDE not present.
1276 */
1277 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1278 {
1279# if PGM_GST_TYPE == PGM_TYPE_AMD64
1280 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1281# else
1282 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1283# endif
1284 pPdeDst->u = 0;
1285 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1286 PGM_INVL_PG(GCPtrPage);
1287 }
1288 else
1289 {
1290 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1291 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1292 }
1293 }
1294
1295 return rc;
1296
1297#else /* guest real and protected mode */
1298 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1299 return VINF_SUCCESS;
1300#endif
1301}
1302
1303
1304#ifdef PGMPOOL_WITH_USER_TRACKING
1305/**
1306 * Update the tracking of shadowed pages.
1307 *
1308 * @param pVM The VM handle.
1309 * @param pShwPage The shadow page.
1310 * @param HCPhys The physical page we is being dereferenced.
1311 */
1312DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1313{
1314# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1315 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1316 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1317
1318 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1319 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1320 * 2. write protect all shadowed pages. I.e. implement caching.
1321 */
1322 /*
1323 * Find the guest address.
1324 */
1325 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1326 pRam;
1327 pRam = pRam->CTX_SUFF(pNext))
1328 {
1329 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1330 while (iPage-- > 0)
1331 {
1332 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1333 {
1334 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1335 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1336 pShwPage->cPresent--;
1337 pPool->cPresent--;
1338 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1339 return;
1340 }
1341 }
1342 }
1343
1344 for (;;)
1345 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1346# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1347 pShwPage->cPresent--;
1348 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1349# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1350}
1351
1352
1353/**
1354 * Update the tracking of shadowed pages.
1355 *
1356 * @param pVM The VM handle.
1357 * @param pShwPage The shadow page.
1358 * @param u16 The top 16-bit of the pPage->HCPhys.
1359 * @param pPage Pointer to the guest page. this will be modified.
1360 * @param iPTDst The index into the shadow table.
1361 */
1362DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1363{
1364# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1365 /*
1366 * We're making certain assumptions about the placement of cRef and idx.
1367 */
1368 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1369 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1370
1371 /*
1372 * Just deal with the simple first time here.
1373 */
1374 if (!u16)
1375 {
1376 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1377 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1378 }
1379 else
1380 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1381
1382 /* write back, trying to be clever... */
1383 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%RHp->%RHp iPTDst=%#x\n",
1384 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1385 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1386# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1387
1388 /* update statistics. */
1389 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1390 pShwPage->cPresent++;
1391 if (pShwPage->iFirstPresent > iPTDst)
1392 pShwPage->iFirstPresent = iPTDst;
1393}
1394#endif /* PGMPOOL_WITH_USER_TRACKING */
1395
1396
1397/**
1398 * Creates a 4K shadow page for a guest page.
1399 *
1400 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1401 * physical address. The PdeSrc argument only the flags are used. No page structured
1402 * will be mapped in this function.
1403 *
1404 * @param pVM VM handle.
1405 * @param pPteDst Destination page table entry.
1406 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1407 * Can safely assume that only the flags are being used.
1408 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1409 * @param pShwPage Pointer to the shadow page.
1410 * @param iPTDst The index into the shadow table.
1411 *
1412 * @remark Not used for 2/4MB pages!
1413 */
1414DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1415{
1416 if (PteSrc.n.u1Present)
1417 {
1418 /*
1419 * Find the ram range.
1420 */
1421 PPGMPAGE pPage;
1422 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1423 if (RT_SUCCESS(rc))
1424 {
1425 /** @todo investiage PWT, PCD and PAT. */
1426 /*
1427 * Make page table entry.
1428 */
1429 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1430 SHWPTE PteDst;
1431 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1432 {
1433 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1434 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1435 {
1436#if PGM_SHW_TYPE == PGM_TYPE_EPT
1437 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1438 PteDst.n.u1Present = 1;
1439 PteDst.n.u1Execute = 1;
1440 PteDst.n.u1IgnorePAT = 1;
1441 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1442 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1443#else
1444 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1445 | (HCPhys & X86_PTE_PAE_PG_MASK);
1446#endif
1447 }
1448 else
1449 {
1450 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", HCPhys));
1451 PteDst.u = 0;
1452 }
1453 /** @todo count these two kinds. */
1454 }
1455 else
1456 {
1457#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1458 /*
1459 * If the page or page directory entry is not marked accessed,
1460 * we mark the page not present.
1461 */
1462 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1463 {
1464 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1465 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1466 PteDst.u = 0;
1467 }
1468 else
1469 /*
1470 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1471 * when the page is modified.
1472 */
1473 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1474 {
1475 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1476 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1477 | (HCPhys & X86_PTE_PAE_PG_MASK)
1478 | PGM_PTFLAGS_TRACK_DIRTY;
1479 }
1480 else
1481#endif
1482 {
1483 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1484#if PGM_SHW_TYPE == PGM_TYPE_EPT
1485 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1486 PteDst.n.u1Present = 1;
1487 PteDst.n.u1Write = 1;
1488 PteDst.n.u1Execute = 1;
1489 PteDst.n.u1IgnorePAT = 1;
1490 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1491 /* PteDst.n.u1Size = 0 */
1492#else
1493 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1494 | (HCPhys & X86_PTE_PAE_PG_MASK);
1495#endif
1496 }
1497 }
1498
1499#ifdef PGMPOOL_WITH_USER_TRACKING
1500 /*
1501 * Keep user track up to date.
1502 */
1503 if (PteDst.n.u1Present)
1504 {
1505 if (!pPteDst->n.u1Present)
1506 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1507 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1508 {
1509 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1510 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1511 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1512 }
1513 }
1514 else if (pPteDst->n.u1Present)
1515 {
1516 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1517 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1518 }
1519#endif /* PGMPOOL_WITH_USER_TRACKING */
1520
1521 /*
1522 * Update statistics and commit the entry.
1523 */
1524 if (!PteSrc.n.u1Global)
1525 pShwPage->fSeenNonGlobal = true;
1526 *pPteDst = PteDst;
1527 }
1528 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1529 /** @todo count these. */
1530 }
1531 else
1532 {
1533 /*
1534 * Page not-present.
1535 */
1536 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1537#ifdef PGMPOOL_WITH_USER_TRACKING
1538 /* Keep user track up to date. */
1539 if (pPteDst->n.u1Present)
1540 {
1541 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1542 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1543 }
1544#endif /* PGMPOOL_WITH_USER_TRACKING */
1545 pPteDst->u = 0;
1546 /** @todo count these. */
1547 }
1548}
1549
1550
1551/**
1552 * Syncs a guest OS page.
1553 *
1554 * There are no conflicts at this point, neither is there any need for
1555 * page table allocations.
1556 *
1557 * @returns VBox status code.
1558 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1559 * @param pVM VM handle.
1560 * @param PdeSrc Page directory entry of the guest.
1561 * @param GCPtrPage Guest context page address.
1562 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1563 * @param uErr Fault error (X86_TRAP_PF_*).
1564 */
1565PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1566{
1567 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1568
1569#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1570 || PGM_GST_TYPE == PGM_TYPE_PAE \
1571 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1572 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1573 && PGM_SHW_TYPE != PGM_TYPE_EPT
1574
1575# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1576 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1577# endif
1578
1579 /*
1580 * Assert preconditions.
1581 */
1582 Assert(PdeSrc.n.u1Present);
1583 Assert(cPages);
1584 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1585
1586 /*
1587 * Get the shadow PDE, find the shadow page table in the pool.
1588 */
1589# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1590 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1591 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1592
1593# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1594 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
1595 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1596 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
1597 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
1598 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR);
1599 X86PDEPAE PdeDst = *pPdeDst;
1600
1601# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1602 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1603 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1604 PX86PDPAE pPDDst;
1605 X86PDEPAE PdeDst;
1606 PX86PDPT pPdptDst;
1607
1608 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1609 AssertRCSuccessReturn(rc, rc);
1610 Assert(pPDDst && pPdptDst);
1611 PdeDst = pPDDst->a[iPDDst];
1612# endif
1613 Assert(PdeDst.n.u1Present);
1614 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1615
1616# if PGM_GST_TYPE == PGM_TYPE_AMD64
1617 /* Fetch the pgm pool shadow descriptor. */
1618 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1619 Assert(pShwPde);
1620# endif
1621
1622 /*
1623 * Check that the page is present and that the shadow PDE isn't out of sync.
1624 */
1625# if PGM_GST_TYPE == PGM_TYPE_AMD64
1626 const bool fBigPage = PdeSrc.b.u1Size;
1627# else
1628 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1629# endif
1630 RTGCPHYS GCPhys;
1631 if (!fBigPage)
1632 {
1633 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1634# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1635 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1636 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1637# endif
1638 }
1639 else
1640 {
1641 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1642# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1643 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1644 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1645# endif
1646 }
1647 if ( pShwPage->GCPhys == GCPhys
1648 && PdeSrc.n.u1Present
1649 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1650 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1651# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1652 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1653# endif
1654 )
1655 {
1656 /*
1657 * Check that the PDE is marked accessed already.
1658 * Since we set the accessed bit *before* getting here on a #PF, this
1659 * check is only meant for dealing with non-#PF'ing paths.
1660 */
1661 if (PdeSrc.n.u1Accessed)
1662 {
1663 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1664 if (!fBigPage)
1665 {
1666 /*
1667 * 4KB Page - Map the guest page table.
1668 */
1669 PGSTPT pPTSrc;
1670 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1671 if (RT_SUCCESS(rc))
1672 {
1673# ifdef PGM_SYNC_N_PAGES
1674 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1675 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1676 {
1677 /*
1678 * This code path is currently only taken when the caller is PGMTrap0eHandler
1679 * for non-present pages!
1680 *
1681 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1682 * deal with locality.
1683 */
1684 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1685# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1686 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1687 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1688# else
1689 const unsigned offPTSrc = 0;
1690# endif
1691 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1692 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1693 iPTDst = 0;
1694 else
1695 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1696 for (; iPTDst < iPTDstEnd; iPTDst++)
1697 {
1698 if (!pPTDst->a[iPTDst].n.u1Present)
1699 {
1700 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1701 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1702 NOREF(GCPtrCurPage);
1703#ifndef IN_RING0
1704 /*
1705 * Assuming kernel code will be marked as supervisor - and not as user level
1706 * and executed using a conforming code selector - And marked as readonly.
1707 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1708 */
1709 PPGMPAGE pPage;
1710 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1711 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1712 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1713 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1714 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1715 )
1716#endif /* else: CSAM not active */
1717 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1718 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1719 GCPtrCurPage, PteSrc.n.u1Present,
1720 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1721 PteSrc.n.u1User & PdeSrc.n.u1User,
1722 (uint64_t)PteSrc.u,
1723 (uint64_t)pPTDst->a[iPTDst].u,
1724 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1725 }
1726 }
1727 }
1728 else
1729# endif /* PGM_SYNC_N_PAGES */
1730 {
1731 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1732 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1733 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1734 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1735 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1736 GCPtrPage, PteSrc.n.u1Present,
1737 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1738 PteSrc.n.u1User & PdeSrc.n.u1User,
1739 (uint64_t)PteSrc.u,
1740 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1741 }
1742 }
1743 else /* MMIO or invalid page: emulated in #PF handler. */
1744 {
1745 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1746 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1747 }
1748 }
1749 else
1750 {
1751 /*
1752 * 4/2MB page - lazy syncing shadow 4K pages.
1753 * (There are many causes of getting here, it's no longer only CSAM.)
1754 */
1755 /* Calculate the GC physical address of this 4KB shadow page. */
1756 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1757 /* Find ram range. */
1758 PPGMPAGE pPage;
1759 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1760 if (RT_SUCCESS(rc))
1761 {
1762 /*
1763 * Make shadow PTE entry.
1764 */
1765 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1766 SHWPTE PteDst;
1767 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1768 | (HCPhys & X86_PTE_PAE_PG_MASK);
1769 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1770 {
1771 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1772 PteDst.n.u1Write = 0;
1773 else
1774 PteDst.u = 0;
1775 }
1776 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1777# ifdef PGMPOOL_WITH_USER_TRACKING
1778 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1779 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1780# endif
1781 pPTDst->a[iPTDst] = PteDst;
1782
1783
1784 /*
1785 * If the page is not flagged as dirty and is writable, then make it read-only
1786 * at PD level, so we can set the dirty bit when the page is modified.
1787 *
1788 * ASSUMES that page access handlers are implemented on page table entry level.
1789 * Thus we will first catch the dirty access and set PDE.D and restart. If
1790 * there is an access handler, we'll trap again and let it work on the problem.
1791 */
1792 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1793 * As for invlpg, it simply frees the whole shadow PT.
1794 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1795 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1796 {
1797 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1798 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1799 PdeDst.n.u1Write = 0;
1800 }
1801 else
1802 {
1803 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1804 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1805 }
1806# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1807 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1808# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1809 *pPdeDst = PdeDst;
1810# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1811 pPDDst->a[iPDDst] = PdeDst;
1812# endif
1813 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1814 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1815 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1816 }
1817 else
1818 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1819 }
1820 return VINF_SUCCESS;
1821 }
1822 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1823 }
1824 else
1825 {
1826 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1827 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1828 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1829 }
1830
1831 /*
1832 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1833 * Yea, I'm lazy.
1834 */
1835 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1836# if PGM_GST_TYPE == PGM_TYPE_AMD64
1837 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1838# else
1839 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1840# endif
1841
1842# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1843 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1844# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1845 pPdeDst->u = 0;
1846# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1847 pPDDst->a[iPDDst].u = 0;
1848# endif
1849 PGM_INVL_GUEST_TLBS();
1850 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1851
1852#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1853 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1854 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
1855
1856# ifdef PGM_SYNC_N_PAGES
1857 /*
1858 * Get the shadow PDE, find the shadow page table in the pool.
1859 */
1860# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1861 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1862 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1863# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1864 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
1865
1866# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1867 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1868 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1869 PX86PDPAE pPDDst;
1870 X86PDEPAE PdeDst;
1871 PX86PDPT pPdptDst;
1872
1873 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1874 AssertRCSuccessReturn(rc, rc);
1875 Assert(pPDDst && pPdptDst);
1876 PdeDst = pPDDst->a[iPDDst];
1877# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1878 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1879 PEPTPD pPDDst;
1880 EPTPDE PdeDst;
1881
1882 int rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, NULL, &pPDDst);
1883 if (rc != VINF_SUCCESS)
1884 {
1885 AssertRC(rc);
1886 return rc;
1887 }
1888 Assert(pPDDst);
1889 PdeDst = pPDDst->a[iPDDst];
1890# endif
1891 Assert(PdeDst.n.u1Present);
1892 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1893 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1894
1895 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1896 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1897 {
1898 /*
1899 * This code path is currently only taken when the caller is PGMTrap0eHandler
1900 * for non-present pages!
1901 *
1902 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1903 * deal with locality.
1904 */
1905 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1906 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1907 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1908 iPTDst = 0;
1909 else
1910 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1911 for (; iPTDst < iPTDstEnd; iPTDst++)
1912 {
1913 if (!pPTDst->a[iPTDst].n.u1Present)
1914 {
1915 GSTPTE PteSrc;
1916
1917 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1918
1919 /* Fake the page table entry */
1920 PteSrc.u = GCPtrCurPage;
1921 PteSrc.n.u1Present = 1;
1922 PteSrc.n.u1Dirty = 1;
1923 PteSrc.n.u1Accessed = 1;
1924 PteSrc.n.u1Write = 1;
1925 PteSrc.n.u1User = 1;
1926
1927 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1928
1929 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1930 GCPtrCurPage, PteSrc.n.u1Present,
1931 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1932 PteSrc.n.u1User & PdeSrc.n.u1User,
1933 (uint64_t)PteSrc.u,
1934 (uint64_t)pPTDst->a[iPTDst].u,
1935 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1936 }
1937 else
1938 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1939 }
1940 }
1941 else
1942# endif /* PGM_SYNC_N_PAGES */
1943 {
1944 GSTPTE PteSrc;
1945 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1946 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1947
1948 /* Fake the page table entry */
1949 PteSrc.u = GCPtrCurPage;
1950 PteSrc.n.u1Present = 1;
1951 PteSrc.n.u1Dirty = 1;
1952 PteSrc.n.u1Accessed = 1;
1953 PteSrc.n.u1Write = 1;
1954 PteSrc.n.u1User = 1;
1955 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1956
1957 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1958 GCPtrPage, PteSrc.n.u1Present,
1959 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1960 PteSrc.n.u1User & PdeSrc.n.u1User,
1961 (uint64_t)PteSrc.u,
1962 (uint64_t)pPTDst->a[iPTDst].u,
1963 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1964 }
1965 return VINF_SUCCESS;
1966
1967#else
1968 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1969 return VERR_INTERNAL_ERROR;
1970#endif
1971}
1972
1973
1974#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1975/**
1976 * Investigate page fault and handle write protection page faults caused by
1977 * dirty bit tracking.
1978 *
1979 * @returns VBox status code.
1980 * @param pVM VM handle.
1981 * @param uErr Page fault error code.
1982 * @param pPdeDst Shadow page directory entry.
1983 * @param pPdeSrc Guest page directory entry.
1984 * @param GCPtrPage Guest context page address.
1985 */
1986PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
1987{
1988 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1989 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1990 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1991# if PGM_GST_TYPE == PGM_TYPE_AMD64
1992 bool fBigPagesSupported = true;
1993# else
1994 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1995# endif
1996# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1997 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1998# endif
1999 unsigned uPageFaultLevel;
2000 int rc;
2001
2002 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2003 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2004
2005# if PGM_GST_TYPE == PGM_TYPE_PAE \
2006 || PGM_GST_TYPE == PGM_TYPE_AMD64
2007
2008# if PGM_GST_TYPE == PGM_TYPE_AMD64
2009 PX86PML4E pPml4eSrc;
2010 PX86PDPE pPdpeSrc;
2011
2012 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
2013 Assert(pPml4eSrc);
2014
2015 /*
2016 * Real page fault? (PML4E level)
2017 */
2018 if ( (uErr & X86_TRAP_PF_RSVD)
2019 || !pPml4eSrc->n.u1Present
2020 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2021 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2022 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2023 )
2024 {
2025 uPageFaultLevel = 0;
2026 goto l_UpperLevelPageFault;
2027 }
2028 Assert(pPdpeSrc);
2029
2030# else /* PAE */
2031 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVM->pgm.s, GCPtrPage);
2032# endif /* PAE */
2033
2034 /*
2035 * Real page fault? (PDPE level)
2036 */
2037 if ( (uErr & X86_TRAP_PF_RSVD)
2038 || !pPdpeSrc->n.u1Present
2039# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2040 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2041 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2042 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2043# endif
2044 )
2045 {
2046 uPageFaultLevel = 1;
2047 goto l_UpperLevelPageFault;
2048 }
2049# endif
2050
2051 /*
2052 * Real page fault? (PDE level)
2053 */
2054 if ( (uErr & X86_TRAP_PF_RSVD)
2055 || !pPdeSrc->n.u1Present
2056# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2057 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2058# endif
2059 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2060 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2061 {
2062 uPageFaultLevel = 2;
2063 goto l_UpperLevelPageFault;
2064 }
2065
2066 /*
2067 * First check the easy case where the page directory has been marked read-only to track
2068 * the dirty bit of an emulated BIG page
2069 */
2070 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2071 {
2072 /* Mark guest page directory as accessed */
2073# if PGM_GST_TYPE == PGM_TYPE_AMD64
2074 pPml4eSrc->n.u1Accessed = 1;
2075 pPdpeSrc->lm.u1Accessed = 1;
2076# endif
2077 pPdeSrc->b.u1Accessed = 1;
2078
2079 /*
2080 * Only write protection page faults are relevant here.
2081 */
2082 if (fWriteFault)
2083 {
2084 /* Mark guest page directory as dirty (BIG page only). */
2085 pPdeSrc->b.u1Dirty = 1;
2086
2087 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2088 {
2089 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2090
2091 Assert(pPdeSrc->b.u1Write);
2092
2093 pPdeDst->n.u1Write = 1;
2094 pPdeDst->n.u1Accessed = 1;
2095 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2096 PGM_INVL_BIG_PG(GCPtrPage);
2097 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2098 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2099 }
2100 }
2101 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2102 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2103 }
2104 /* else: 4KB page table */
2105
2106 /*
2107 * Map the guest page table.
2108 */
2109 PGSTPT pPTSrc;
2110 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2111 if (RT_SUCCESS(rc))
2112 {
2113 /*
2114 * Real page fault?
2115 */
2116 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2117 const GSTPTE PteSrc = *pPteSrc;
2118 if ( !PteSrc.n.u1Present
2119# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2120 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2121# endif
2122 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2123 || (fUserLevelFault && !PteSrc.n.u1User)
2124 )
2125 {
2126 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2127 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2128 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2129
2130 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2131 * See the 2nd case above as well.
2132 */
2133 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2134 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2135
2136 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2137 return VINF_EM_RAW_GUEST_TRAP;
2138 }
2139 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2140
2141 /*
2142 * Set the accessed bits in the page directory and the page table.
2143 */
2144# if PGM_GST_TYPE == PGM_TYPE_AMD64
2145 pPml4eSrc->n.u1Accessed = 1;
2146 pPdpeSrc->lm.u1Accessed = 1;
2147# endif
2148 pPdeSrc->n.u1Accessed = 1;
2149 pPteSrc->n.u1Accessed = 1;
2150
2151 /*
2152 * Only write protection page faults are relevant here.
2153 */
2154 if (fWriteFault)
2155 {
2156 /* Write access, so mark guest entry as dirty. */
2157# ifdef VBOX_WITH_STATISTICS
2158 if (!pPteSrc->n.u1Dirty)
2159 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2160 else
2161 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2162# endif
2163
2164 pPteSrc->n.u1Dirty = 1;
2165
2166 if (pPdeDst->n.u1Present)
2167 {
2168#ifndef IN_RING0
2169 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2170 * Our individual shadow handlers will provide more information and force a fatal exit.
2171 */
2172 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2173 {
2174 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2175 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2176 return VINF_SUCCESS;
2177 }
2178#endif
2179 /*
2180 * Map shadow page table.
2181 */
2182 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2183 if (pShwPage)
2184 {
2185 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2186 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2187 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2188 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2189 {
2190 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2191# ifdef VBOX_STRICT
2192 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2193 if (pPage)
2194 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2195 ("Unexpected dirty bit tracking on monitored page %RGv (phys %RGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2196# endif
2197 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2198
2199 Assert(pPteSrc->n.u1Write);
2200
2201 pPteDst->n.u1Write = 1;
2202 pPteDst->n.u1Dirty = 1;
2203 pPteDst->n.u1Accessed = 1;
2204 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2205 PGM_INVL_PG(GCPtrPage);
2206
2207 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2208 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2209 }
2210 }
2211 else
2212 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2213 }
2214 }
2215/** @todo Optimize accessed bit emulation? */
2216# ifdef VBOX_STRICT
2217 /*
2218 * Sanity check.
2219 */
2220 else if ( !pPteSrc->n.u1Dirty
2221 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2222 && pPdeDst->n.u1Present)
2223 {
2224 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2225 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2226 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2227 if ( pPteDst->n.u1Present
2228 && pPteDst->n.u1Write)
2229 LogFlow(("Writable present page %RGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2230 }
2231# endif /* VBOX_STRICT */
2232 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2233 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2234 }
2235 AssertRC(rc);
2236 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2237 return rc;
2238
2239
2240l_UpperLevelPageFault:
2241 /*
2242 * Pagefault detected while checking the PML4E, PDPE or PDE.
2243 * Single exit handler to get rid of duplicate code paths.
2244 */
2245 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2246 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2247 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2248
2249 if (
2250# if PGM_GST_TYPE == PGM_TYPE_AMD64
2251 pPml4eSrc->n.u1Present &&
2252# endif
2253# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2254 pPdpeSrc->n.u1Present &&
2255# endif
2256 pPdeSrc->n.u1Present)
2257 {
2258 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2259 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2260 {
2261 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2262 }
2263 else
2264 {
2265 /*
2266 * Map the guest page table.
2267 */
2268 PGSTPT pPTSrc;
2269 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2270 if (RT_SUCCESS(rc))
2271 {
2272 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2273 const GSTPTE PteSrc = *pPteSrc;
2274 if (pPteSrc->n.u1Present)
2275 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2276 }
2277 AssertRC(rc);
2278 }
2279 }
2280 return VINF_EM_RAW_GUEST_TRAP;
2281}
2282#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2283
2284
2285/**
2286 * Sync a shadow page table.
2287 *
2288 * The shadow page table is not present. This includes the case where
2289 * there is a conflict with a mapping.
2290 *
2291 * @returns VBox status code.
2292 * @param pVM VM handle.
2293 * @param iPD Page directory index.
2294 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2295 * Assume this is a temporary mapping.
2296 * @param GCPtrPage GC Pointer of the page that caused the fault
2297 */
2298PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2299{
2300 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2301 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPtPD[iPDSrc]);
2302 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2303
2304#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2305 || PGM_GST_TYPE == PGM_TYPE_PAE \
2306 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2307 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2308 && PGM_SHW_TYPE != PGM_TYPE_EPT
2309
2310 int rc = VINF_SUCCESS;
2311
2312 /*
2313 * Validate input a little bit.
2314 */
2315 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2316# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2317 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2318 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2319 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2320
2321# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2322 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
2323 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpt);
2324 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
2325 PSHWPDE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2326
2327# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2328 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2329 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2330 PX86PDPAE pPDDst;
2331 PX86PDPT pPdptDst;
2332 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2333 AssertRCSuccessReturn(rc, rc);
2334 Assert(pPDDst);
2335 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2336# endif
2337 SHWPDE PdeDst = *pPdeDst;
2338
2339# if PGM_GST_TYPE == PGM_TYPE_AMD64
2340 /* Fetch the pgm pool shadow descriptor. */
2341 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2342 Assert(pShwPde);
2343# endif
2344
2345# ifndef PGM_WITHOUT_MAPPINGS
2346 /*
2347 * Check for conflicts.
2348 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2349 * HC: Simply resolve the conflict.
2350 */
2351 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2352 {
2353 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2354# ifndef IN_RING3
2355 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2356 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2357 return VERR_ADDRESS_CONFLICT;
2358# else
2359 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2360 Assert(pMapping);
2361# if PGM_GST_TYPE == PGM_TYPE_32BIT
2362 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2363# elif PGM_GST_TYPE == PGM_TYPE_PAE
2364 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2365# else
2366 AssertFailed(); /* can't happen for amd64 */
2367# endif
2368 if (RT_FAILURE(rc))
2369 {
2370 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2371 return rc;
2372 }
2373 PdeDst = *pPdeDst;
2374# endif
2375 }
2376# else /* PGM_WITHOUT_MAPPINGS */
2377 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2378# endif /* PGM_WITHOUT_MAPPINGS */
2379 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2380
2381 /*
2382 * Sync page directory entry.
2383 */
2384 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2385 if (PdeSrc.n.u1Present)
2386 {
2387 /*
2388 * Allocate & map the page table.
2389 */
2390 PSHWPT pPTDst;
2391# if PGM_GST_TYPE == PGM_TYPE_AMD64
2392 const bool fPageTable = !PdeSrc.b.u1Size;
2393# else
2394 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2395# endif
2396 PPGMPOOLPAGE pShwPage;
2397 RTGCPHYS GCPhys;
2398 if (fPageTable)
2399 {
2400 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2401# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2402 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2403 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2404# endif
2405# if PGM_GST_TYPE == PGM_TYPE_AMD64
2406 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2407# else
2408 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2409# endif
2410 }
2411 else
2412 {
2413 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2414# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2415 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2416 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2417# endif
2418# if PGM_GST_TYPE == PGM_TYPE_AMD64
2419 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2420# else
2421 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2422# endif
2423 }
2424 if (rc == VINF_SUCCESS)
2425 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2426 else if (rc == VINF_PGM_CACHED_PAGE)
2427 {
2428 /*
2429 * The PT was cached, just hook it up.
2430 */
2431 if (fPageTable)
2432 PdeDst.u = pShwPage->Core.Key
2433 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2434 else
2435 {
2436 PdeDst.u = pShwPage->Core.Key
2437 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2438 /* (see explanation and assumptions further down.) */
2439 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2440 {
2441 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2442 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2443 PdeDst.b.u1Write = 0;
2444 }
2445 }
2446 *pPdeDst = PdeDst;
2447 return VINF_SUCCESS;
2448 }
2449 else if (rc == VERR_PGM_POOL_FLUSHED)
2450 {
2451 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2452 return VINF_PGM_SYNC_CR3;
2453 }
2454 else
2455 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2456 PdeDst.u &= X86_PDE_AVL_MASK;
2457 PdeDst.u |= pShwPage->Core.Key;
2458
2459 /*
2460 * Page directory has been accessed (this is a fault situation, remember).
2461 */
2462 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2463 if (fPageTable)
2464 {
2465 /*
2466 * Page table - 4KB.
2467 *
2468 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2469 */
2470 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2471 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2472 PGSTPT pPTSrc;
2473 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2474 if (RT_SUCCESS(rc))
2475 {
2476 /*
2477 * Start by syncing the page directory entry so CSAM's TLB trick works.
2478 */
2479 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2480 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2481 *pPdeDst = PdeDst;
2482
2483 /*
2484 * Directory/page user or supervisor privilege: (same goes for read/write)
2485 *
2486 * Directory Page Combined
2487 * U/S U/S U/S
2488 * 0 0 0
2489 * 0 1 0
2490 * 1 0 0
2491 * 1 1 1
2492 *
2493 * Simple AND operation. Table listed for completeness.
2494 *
2495 */
2496 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2497# ifdef PGM_SYNC_N_PAGES
2498 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2499 unsigned iPTDst = iPTBase;
2500 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2501 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2502 iPTDst = 0;
2503 else
2504 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2505# else /* !PGM_SYNC_N_PAGES */
2506 unsigned iPTDst = 0;
2507 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2508# endif /* !PGM_SYNC_N_PAGES */
2509# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2510 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2511 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2512# else
2513 const unsigned offPTSrc = 0;
2514# endif
2515 for (; iPTDst < iPTDstEnd; iPTDst++)
2516 {
2517 const unsigned iPTSrc = iPTDst + offPTSrc;
2518 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2519
2520 if (PteSrc.n.u1Present) /* we've already cleared it above */
2521 {
2522# ifndef IN_RING0
2523 /*
2524 * Assuming kernel code will be marked as supervisor - and not as user level
2525 * and executed using a conforming code selector - And marked as readonly.
2526 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2527 */
2528 PPGMPAGE pPage;
2529 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2530 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2531 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2532 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2533 )
2534# endif
2535 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2536 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2537 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2538 PteSrc.n.u1Present,
2539 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2540 PteSrc.n.u1User & PdeSrc.n.u1User,
2541 (uint64_t)PteSrc.u,
2542 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2543 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2544 }
2545 } /* for PTEs */
2546 }
2547 }
2548 else
2549 {
2550 /*
2551 * Big page - 2/4MB.
2552 *
2553 * We'll walk the ram range list in parallel and optimize lookups.
2554 * We will only sync on shadow page table at a time.
2555 */
2556 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2557
2558 /**
2559 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2560 */
2561
2562 /*
2563 * Start by syncing the page directory entry.
2564 */
2565 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2566 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2567
2568 /*
2569 * If the page is not flagged as dirty and is writable, then make it read-only
2570 * at PD level, so we can set the dirty bit when the page is modified.
2571 *
2572 * ASSUMES that page access handlers are implemented on page table entry level.
2573 * Thus we will first catch the dirty access and set PDE.D and restart. If
2574 * there is an access handler, we'll trap again and let it work on the problem.
2575 */
2576 /** @todo move the above stuff to a section in the PGM documentation. */
2577 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2578 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2579 {
2580 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2581 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2582 PdeDst.b.u1Write = 0;
2583 }
2584 *pPdeDst = PdeDst;
2585
2586 /*
2587 * Fill the shadow page table.
2588 */
2589 /* Get address and flags from the source PDE. */
2590 SHWPTE PteDstBase;
2591 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2592
2593 /* Loop thru the entries in the shadow PT. */
2594 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2595 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2596 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2597 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2598 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2599 unsigned iPTDst = 0;
2600 while (iPTDst < RT_ELEMENTS(pPTDst->a))
2601 {
2602 /* Advance ram range list. */
2603 while (pRam && GCPhys > pRam->GCPhysLast)
2604 pRam = pRam->CTX_SUFF(pNext);
2605 if (pRam && GCPhys >= pRam->GCPhys)
2606 {
2607 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2608 do
2609 {
2610 /* Make shadow PTE. */
2611 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2612 SHWPTE PteDst;
2613
2614 /* Make sure the RAM has already been allocated. */
2615 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2616 {
2617 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2618 {
2619# ifdef IN_RING3
2620 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2621# else
2622 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2623# endif
2624 if (rc != VINF_SUCCESS)
2625 return rc;
2626 }
2627 }
2628
2629 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2630 {
2631 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2632 {
2633 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2634 PteDst.n.u1Write = 0;
2635 }
2636 else
2637 PteDst.u = 0;
2638 }
2639# ifndef IN_RING0
2640 /*
2641 * Assuming kernel code will be marked as supervisor and not as user level and executed
2642 * using a conforming code selector. Don't check for readonly, as that implies the whole
2643 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2644 */
2645 else if ( !PdeSrc.n.u1User
2646 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2647 PteDst.u = 0;
2648# endif
2649 else
2650 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2651# ifdef PGMPOOL_WITH_USER_TRACKING
2652 if (PteDst.n.u1Present)
2653 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2654# endif
2655 /* commit it */
2656 pPTDst->a[iPTDst] = PteDst;
2657 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2658 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2659 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2660
2661 /* advance */
2662 GCPhys += PAGE_SIZE;
2663 iHCPage++;
2664 iPTDst++;
2665 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2666 && GCPhys <= pRam->GCPhysLast);
2667 }
2668 else if (pRam)
2669 {
2670 Log(("Invalid pages at %RGp\n", GCPhys));
2671 do
2672 {
2673 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2674 GCPhys += PAGE_SIZE;
2675 iPTDst++;
2676 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2677 && GCPhys < pRam->GCPhys);
2678 }
2679 else
2680 {
2681 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2682 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2683 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2684 }
2685 } /* while more PTEs */
2686 } /* 4KB / 4MB */
2687 }
2688 else
2689 AssertRelease(!PdeDst.n.u1Present);
2690
2691 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2692 if (RT_FAILURE(rc))
2693 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2694 return rc;
2695
2696#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2697 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2698 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2699
2700
2701 /*
2702 * Validate input a little bit.
2703 */
2704 int rc = VINF_SUCCESS;
2705# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2706 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2707 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2708 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2709
2710# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2711 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm!*/;
2712 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2713
2714# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2715 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2716 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2717 PX86PDPAE pPDDst;
2718 PX86PDPT pPdptDst;
2719 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2720 AssertRCSuccessReturn(rc, rc);
2721 Assert(pPDDst);
2722 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2723
2724 /* Fetch the pgm pool shadow descriptor. */
2725 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2726 Assert(pShwPde);
2727
2728# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2729 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2730 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2731 PEPTPD pPDDst;
2732 PEPTPDPT pPdptDst;
2733
2734 rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2735 if (rc != VINF_SUCCESS)
2736 {
2737 AssertRC(rc);
2738 return rc;
2739 }
2740 Assert(pPDDst);
2741 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2742
2743 /* Fetch the pgm pool shadow descriptor. */
2744 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2745 Assert(pShwPde);
2746# endif
2747 SHWPDE PdeDst = *pPdeDst;
2748
2749 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2750 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2751
2752 GSTPDE PdeSrc;
2753 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2754 PdeSrc.n.u1Present = 1;
2755 PdeSrc.n.u1Write = 1;
2756 PdeSrc.n.u1Accessed = 1;
2757 PdeSrc.n.u1User = 1;
2758
2759 /*
2760 * Allocate & map the page table.
2761 */
2762 PSHWPT pPTDst;
2763 PPGMPOOLPAGE pShwPage;
2764 RTGCPHYS GCPhys;
2765
2766 /* Virtual address = physical address */
2767 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2768# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_EPT
2769 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2770# else
2771 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2772# endif
2773
2774 if ( rc == VINF_SUCCESS
2775 || rc == VINF_PGM_CACHED_PAGE)
2776 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2777 else
2778 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2779
2780 PdeDst.u &= X86_PDE_AVL_MASK;
2781 PdeDst.u |= pShwPage->Core.Key;
2782 PdeDst.n.u1Present = 1;
2783 PdeDst.n.u1Write = 1;
2784# if PGM_SHW_TYPE == PGM_TYPE_EPT
2785 PdeDst.n.u1Execute = 1;
2786# else
2787 PdeDst.n.u1User = 1;
2788 PdeDst.n.u1Accessed = 1;
2789# endif
2790 *pPdeDst = PdeDst;
2791
2792 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2793 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2794 return rc;
2795
2796#else
2797 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2798 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2799 return VERR_INTERNAL_ERROR;
2800#endif
2801}
2802
2803
2804
2805/**
2806 * Prefetch a page/set of pages.
2807 *
2808 * Typically used to sync commonly used pages before entering raw mode
2809 * after a CR3 reload.
2810 *
2811 * @returns VBox status code.
2812 * @param pVM VM handle.
2813 * @param GCPtrPage Page to invalidate.
2814 */
2815PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage)
2816{
2817#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2818 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2819 /*
2820 * Check that all Guest levels thru the PDE are present, getting the
2821 * PD and PDE in the processes.
2822 */
2823 int rc = VINF_SUCCESS;
2824# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2825# if PGM_GST_TYPE == PGM_TYPE_32BIT
2826 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
2827 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
2828# elif PGM_GST_TYPE == PGM_TYPE_PAE
2829 unsigned iPDSrc;
2830 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
2831 if (!pPDSrc)
2832 return VINF_SUCCESS; /* not present */
2833# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2834 unsigned iPDSrc;
2835 PX86PML4E pPml4eSrc;
2836 X86PDPE PdpeSrc;
2837 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2838 if (!pPDSrc)
2839 return VINF_SUCCESS; /* not present */
2840# endif
2841 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2842# else
2843 PGSTPD pPDSrc = NULL;
2844 const unsigned iPDSrc = 0;
2845 GSTPDE PdeSrc;
2846
2847 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2848 PdeSrc.n.u1Present = 1;
2849 PdeSrc.n.u1Write = 1;
2850 PdeSrc.n.u1Accessed = 1;
2851 PdeSrc.n.u1User = 1;
2852# endif
2853
2854 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2855 {
2856# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2857 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2858# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2859 const X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
2860# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2861 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2862 PX86PDPAE pPDDst;
2863 X86PDEPAE PdeDst;
2864
2865# if PGM_GST_TYPE == PGM_TYPE_PROT
2866 /* AMD-V nested paging */
2867 X86PML4E Pml4eSrc;
2868 X86PDPE PdpeSrc;
2869 PX86PML4E pPml4eSrc = &Pml4eSrc;
2870
2871 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2872 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2873 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2874# endif
2875
2876 int rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2877 if (rc != VINF_SUCCESS)
2878 {
2879 AssertRC(rc);
2880 return rc;
2881 }
2882 Assert(pPDDst);
2883 PdeDst = pPDDst->a[iPDDst];
2884# endif
2885 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2886 {
2887 if (!PdeDst.n.u1Present)
2888 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2889 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2890 else
2891 {
2892 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2893 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2894 * makes no sense to prefetch more than one page.
2895 */
2896 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2897 if (RT_SUCCESS(rc))
2898 rc = VINF_SUCCESS;
2899 }
2900 }
2901 }
2902 return rc;
2903
2904#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
2905 return VINF_SUCCESS; /* ignore */
2906#endif
2907}
2908
2909
2910
2911
2912/**
2913 * Syncs a page during a PGMVerifyAccess() call.
2914 *
2915 * @returns VBox status code (informational included).
2916 * @param GCPtrPage The address of the page to sync.
2917 * @param fPage The effective guest page flags.
2918 * @param uErr The trap error code.
2919 */
2920PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
2921{
2922 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2923
2924 Assert(!HWACCMIsNestedPagingActive(pVM));
2925#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
2926 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2927
2928# ifndef IN_RING0
2929 if (!(fPage & X86_PTE_US))
2930 {
2931 /*
2932 * Mark this page as safe.
2933 */
2934 /** @todo not correct for pages that contain both code and data!! */
2935 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
2936 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
2937 }
2938# endif
2939
2940 /*
2941 * Get guest PD and index.
2942 */
2943# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2944# if PGM_GST_TYPE == PGM_TYPE_32BIT
2945 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
2946 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
2947# elif PGM_GST_TYPE == PGM_TYPE_PAE
2948 unsigned iPDSrc;
2949 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
2950
2951 if (pPDSrc)
2952 {
2953 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
2954 return VINF_EM_RAW_GUEST_TRAP;
2955 }
2956# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2957 unsigned iPDSrc;
2958 PX86PML4E pPml4eSrc;
2959 X86PDPE PdpeSrc;
2960 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2961 if (!pPDSrc)
2962 {
2963 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
2964 return VINF_EM_RAW_GUEST_TRAP;
2965 }
2966# endif
2967# else
2968 PGSTPD pPDSrc = NULL;
2969 const unsigned iPDSrc = 0;
2970# endif
2971 int rc = VINF_SUCCESS;
2972
2973 /*
2974 * First check if the shadow pd is present.
2975 */
2976# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2977 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2978# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2979 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2980# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2981 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2982 PX86PDPAE pPDDst;
2983 PX86PDEPAE pPdeDst;
2984
2985# if PGM_GST_TYPE == PGM_TYPE_PROT
2986 /* AMD-V nested paging */
2987 X86PML4E Pml4eSrc;
2988 X86PDPE PdpeSrc;
2989 PX86PML4E pPml4eSrc = &Pml4eSrc;
2990
2991 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2992 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2993 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2994# endif
2995
2996 rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2997 if (rc != VINF_SUCCESS)
2998 {
2999 AssertRC(rc);
3000 return rc;
3001 }
3002 Assert(pPDDst);
3003 pPdeDst = &pPDDst->a[iPDDst];
3004# endif
3005 if (!pPdeDst->n.u1Present)
3006 {
3007 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3008 AssertRC(rc);
3009 if (rc != VINF_SUCCESS)
3010 return rc;
3011 }
3012
3013# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3014 /* Check for dirty bit fault */
3015 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3016 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3017 Log(("PGMVerifyAccess: success (dirty)\n"));
3018 else
3019 {
3020 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3021#else
3022 {
3023 GSTPDE PdeSrc;
3024 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3025 PdeSrc.n.u1Present = 1;
3026 PdeSrc.n.u1Write = 1;
3027 PdeSrc.n.u1Accessed = 1;
3028 PdeSrc.n.u1User = 1;
3029
3030#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3031 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3032 if (uErr & X86_TRAP_PF_US)
3033 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3034 else /* supervisor */
3035 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3036
3037 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3038 if (RT_SUCCESS(rc))
3039 {
3040 /* Page was successfully synced */
3041 Log2(("PGMVerifyAccess: success (sync)\n"));
3042 rc = VINF_SUCCESS;
3043 }
3044 else
3045 {
3046 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3047 return VINF_EM_RAW_GUEST_TRAP;
3048 }
3049 }
3050 return rc;
3051
3052#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3053
3054 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3055 return VERR_INTERNAL_ERROR;
3056#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3057}
3058
3059
3060#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3061# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3062/**
3063 * Figures out which kind of shadow page this guest PDE warrants.
3064 *
3065 * @returns Shadow page kind.
3066 * @param pPdeSrc The guest PDE in question.
3067 * @param cr4 The current guest cr4 value.
3068 */
3069DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
3070{
3071# if PMG_GST_TYPE == PGM_TYPE_AMD64
3072 if (!pPdeSrc->n.u1Size)
3073# else
3074 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
3075# endif
3076 return BTH_PGMPOOLKIND_PT_FOR_PT;
3077 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
3078 //{
3079 // case 0:
3080 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
3081 // case X86_PDE4M_RW:
3082 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
3083 // case X86_PDE4M_US:
3084 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
3085 // case X86_PDE4M_RW | X86_PDE4M_US:
3086 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
3087# if 0
3088 // case X86_PDE4M_PAE_NX:
3089 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
3090 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
3091 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
3092 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
3093 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
3094 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
3095 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
3096# endif
3097 return BTH_PGMPOOLKIND_PT_FOR_BIG;
3098 //}
3099}
3100# endif
3101#endif
3102
3103#undef MY_STAM_COUNTER_INC
3104#define MY_STAM_COUNTER_INC(a) do { } while (0)
3105
3106
3107/**
3108 * Syncs the paging hierarchy starting at CR3.
3109 *
3110 * @returns VBox status code, no specials.
3111 * @param pVM The virtual machine.
3112 * @param cr0 Guest context CR0 register
3113 * @param cr3 Guest context CR3 register
3114 * @param cr4 Guest context CR4 register
3115 * @param fGlobal Including global page directories or not
3116 */
3117PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3118{
3119 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3120 fGlobal = true; /* Change this CR3 reload to be a global one. */
3121
3122#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3123 /*
3124 * Update page access handlers.
3125 * The virtual are always flushed, while the physical are only on demand.
3126 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3127 * have to look into that later because it will have a bad influence on the performance.
3128 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3129 * bird: Yes, but that won't work for aliases.
3130 */
3131 /** @todo this MUST go away. See #1557. */
3132 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3133 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3134 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3135#endif
3136
3137#ifdef PGMPOOL_WITH_MONITORING
3138 int rc = pgmPoolSyncCR3(pVM);
3139 if (rc != VINF_SUCCESS)
3140 return rc;
3141#endif
3142
3143#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3144 /*
3145 * Nested / EPT - almost no work.
3146 */
3147 /** @todo check if this is really necessary */
3148 HWACCMFlushTLB(pVM);
3149 return VINF_SUCCESS;
3150
3151#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3152 /*
3153 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3154 * out the shadow parts when the guest modifies its tables.
3155 */
3156 return VINF_SUCCESS;
3157
3158#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3159 /*
3160 * PAE and 32-bit legacy mode (shadow).
3161 * (Guest PAE, 32-bit legacy, protected and real modes.)
3162 */
3163 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3164 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Global) : &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3NotGlobal));
3165
3166# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
3167 bool const fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3168
3169 /*
3170 * Get page directory addresses.
3171 */
3172# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3173 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
3174# else /* PGM_SHW_TYPE == PGM_TYPE_PAE */
3175# if PGM_GST_TYPE == PGM_TYPE_32BIT
3176 PX86PDEPAE pPDEDst = NULL;
3177# endif
3178# endif
3179
3180# if PGM_GST_TYPE == PGM_TYPE_32BIT
3181 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3182 Assert(pPDSrc);
3183# ifndef IN_RC
3184 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3185# endif
3186# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3187
3188 /*
3189 * Iterate the the CR3 page.
3190 */
3191 PPGMMAPPING pMapping;
3192 unsigned iPdNoMapping;
3193 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3194 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3195
3196 /* Only check mappings if they are supposed to be put into the shadow page table. */
3197 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3198 {
3199 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3200 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3201 }
3202 else
3203 {
3204 pMapping = 0;
3205 iPdNoMapping = ~0U;
3206 }
3207
3208# if PGM_GST_TYPE == PGM_TYPE_PAE
3209 for (uint64_t iPdpt = 0; iPdpt < GST_PDPE_ENTRIES; iPdpt++)
3210 {
3211 unsigned iPDSrc;
3212 X86PDPE PdpeSrc;
3213 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT, &iPDSrc, &PdpeSrc);
3214 PX86PDEPAE pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT);
3215 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3216
3217 if (pPDSrc == NULL)
3218 {
3219 /* PDPE not present */
3220 if (pPdptDst->a[iPdpt].n.u1Present)
3221 {
3222 LogFlow(("SyncCR3: guest PDPE %lld not present; clear shw pdpe\n", iPdpt));
3223 /* for each page directory entry */
3224 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3225 {
3226 if ( pPDEDst[iPD].n.u1Present
3227 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3228 {
3229 pgmPoolFree(pVM, pPDEDst[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
3230 pPDEDst[iPD].u = 0;
3231 }
3232 }
3233 }
3234 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
3235 pPdptDst->a[iPdpt].n.u1Present = 0;
3236 continue;
3237 }
3238# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3239 {
3240# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3241 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3242 {
3243# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3244 if (!(iPD & (X86_PG_PAE_ENTRIES - 1))) /* Start of new PD. */
3245 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)iPD << GST_PD_SHIFT);
3246# endif
3247# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3248 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
3249# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3250# ifdef VBOX_STRICT
3251 RTGCPTR GCPtrStrict = (uint32_t)iPD << GST_PD_SHIFT;
3252# if PGM_GST_TYPE == PGM_TYPE_PAE
3253 GCPtrStrict |= iPdpt << X86_PDPT_SHIFT;
3254# endif
3255 AssertMsg(pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict) == pPDEDst, ("%p vs %p (%RGv)\n", pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict), pPDEDst, GCPtrStrict));
3256# endif /* VBOX_STRICT */
3257# endif
3258 GSTPDE PdeSrc = pPDSrc->a[iPD];
3259 if ( PdeSrc.n.u1Present
3260 && (PdeSrc.n.u1User || fRawR0Enabled))
3261 {
3262# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3263 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3264 && !defined(PGM_WITHOUT_MAPPINGS)
3265
3266 /*
3267 * Check for conflicts with GC mappings.
3268 */
3269# if PGM_GST_TYPE == PGM_TYPE_PAE
3270 if (iPD + iPdpt * X86_PG_PAE_ENTRIES == iPdNoMapping)
3271# else
3272 if (iPD == iPdNoMapping)
3273# endif
3274 {
3275 if (pVM->pgm.s.fMappingsFixed)
3276 {
3277 /* It's fixed, just skip the mapping. */
3278 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3279 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3280 iPD += cPTs - 1;
3281# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3282 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3283# else
3284 pPDEDst += cPTs;
3285# endif
3286 pMapping = pMapping->CTX_SUFF(pNext);
3287 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3288 continue;
3289 }
3290# ifdef IN_RING3
3291# if PGM_GST_TYPE == PGM_TYPE_32BIT
3292 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3293# elif PGM_GST_TYPE == PGM_TYPE_PAE
3294 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3295# endif
3296 if (RT_FAILURE(rc))
3297 return rc;
3298
3299 /*
3300 * Update iPdNoMapping and pMapping.
3301 */
3302 pMapping = pVM->pgm.s.pMappingsR3;
3303 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3304 pMapping = pMapping->pNextR3;
3305 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3306# else /* !IN_RING3 */
3307 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3308 return VINF_PGM_SYNC_CR3;
3309# endif /* !IN_RING3 */
3310 }
3311# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3312 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3313# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3314
3315 /*
3316 * Sync page directory entry.
3317 *
3318 * The current approach is to allocated the page table but to set
3319 * the entry to not-present and postpone the page table synching till
3320 * it's actually used.
3321 */
3322# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3323 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3324# elif PGM_GST_TYPE == PGM_TYPE_PAE
3325 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3326# else
3327 const unsigned iPdShw = iPD; NOREF(iPdShw);
3328# endif
3329 {
3330 SHWPDE PdeDst = *pPDEDst;
3331 if (PdeDst.n.u1Present)
3332 {
3333 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3334 RTGCPHYS GCPhys;
3335 if ( !PdeSrc.b.u1Size
3336 || !fBigPagesSupported)
3337 {
3338 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3339# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3340 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3341 GCPhys |= i * (PAGE_SIZE / 2);
3342# endif
3343 }
3344 else
3345 {
3346 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3347# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3348 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3349 GCPhys |= i * X86_PAGE_2M_SIZE;
3350# endif
3351 }
3352
3353 if ( pShwPage->GCPhys == GCPhys
3354 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3355 && ( pShwPage->fCached
3356 || ( !fGlobal
3357 && ( false
3358# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3359 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3360 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3361 || ( !pShwPage->fSeenNonGlobal
3362 && (cr4 & X86_CR4_PGE))
3363# endif
3364 )
3365 )
3366 )
3367 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3368 || ( fBigPagesSupported
3369 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3370 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3371 )
3372 )
3373 {
3374# ifdef VBOX_WITH_STATISTICS
3375 if ( !fGlobal
3376 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3377 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3378 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPD));
3379 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3380 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPT));
3381 else
3382 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstCacheHit));
3383# endif /* VBOX_WITH_STATISTICS */
3384 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3385 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3386 //# ifdef PGMPOOL_WITH_CACHE
3387 // pgmPoolCacheUsed(pPool, pShwPage);
3388 //# endif
3389 }
3390 else
3391 {
3392 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3393 pPDEDst->u = 0;
3394 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreed));
3395 }
3396 }
3397 else
3398 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstNotPresent));
3399
3400 /* advance */
3401 pPDEDst++;
3402 } /* foreach 2MB PAE PDE in 4MB guest PDE */
3403 }
3404# if PGM_GST_TYPE == PGM_TYPE_PAE
3405 else if (iPD + iPdpt * X86_PG_PAE_ENTRIES != iPdNoMapping)
3406# else
3407 else if (iPD != iPdNoMapping)
3408# endif
3409 {
3410 /*
3411 * Check if there is any page directory to mark not present here.
3412 */
3413# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3414 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3415# elif PGM_GST_TYPE == PGM_TYPE_PAE
3416 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES;
3417# else
3418 const unsigned iPdShw = iPD;
3419# endif
3420 {
3421 if (pPDEDst->n.u1Present)
3422 {
3423 pgmPoolFree(pVM, pPDEDst->u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdShw);
3424 pPDEDst->u = 0;
3425 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreedSrcNP));
3426 }
3427 pPDEDst++;
3428 }
3429 }
3430 else
3431 {
3432# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3433 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3434 && !defined(PGM_WITHOUT_MAPPINGS)
3435
3436 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3437
3438 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3439 if (pVM->pgm.s.fMappingsFixed)
3440 {
3441 /* It's fixed, just skip the mapping. */
3442 pMapping = pMapping->CTX_SUFF(pNext);
3443 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3444 }
3445 else
3446 {
3447 /*
3448 * Check for conflicts for subsequent pagetables
3449 * and advance to the next mapping.
3450 */
3451 iPdNoMapping = ~0U;
3452 unsigned iPT = cPTs;
3453 while (iPT-- > 1)
3454 {
3455 if ( pPDSrc->a[iPD + iPT].n.u1Present
3456 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3457 {
3458# ifdef IN_RING3
3459# if PGM_GST_TYPE == PGM_TYPE_32BIT
3460 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3461# elif PGM_GST_TYPE == PGM_TYPE_PAE
3462 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3463# endif
3464 if (RT_FAILURE(rc))
3465 return rc;
3466
3467 /*
3468 * Update iPdNoMapping and pMapping.
3469 */
3470 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3471 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3472 pMapping = pMapping->CTX_SUFF(pNext);
3473 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3474 break;
3475# else
3476 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3477 return VINF_PGM_SYNC_CR3;
3478# endif
3479 }
3480 }
3481 if (iPdNoMapping == ~0U && pMapping)
3482 {
3483 pMapping = pMapping->CTX_SUFF(pNext);
3484 if (pMapping)
3485 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3486 }
3487 }
3488
3489 /* advance. */
3490 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3491 iPD += cPTs - 1;
3492# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3493 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3494# else
3495 pPDEDst += cPTs;
3496# endif
3497# if PGM_GST_TYPE != PGM_SHW_TYPE
3498 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3499# endif
3500# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3501 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3502# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3503 }
3504
3505 } /* for iPD */
3506 } /* for each PDPTE (PAE) */
3507 return VINF_SUCCESS;
3508
3509# else /* guest real and protected mode */
3510 return VINF_SUCCESS;
3511# endif
3512#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3513}
3514
3515
3516
3517
3518#ifdef VBOX_STRICT
3519#ifdef IN_RC
3520# undef AssertMsgFailed
3521# define AssertMsgFailed Log
3522#endif
3523#ifdef IN_RING3
3524# include <VBox/dbgf.h>
3525
3526/**
3527 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3528 *
3529 * @returns VBox status code (VINF_SUCCESS).
3530 * @param pVM The VM handle.
3531 * @param cr3 The root of the hierarchy.
3532 * @param crr The cr4, only PAE and PSE is currently used.
3533 * @param fLongMode Set if long mode, false if not long mode.
3534 * @param cMaxDepth Number of levels to dump.
3535 * @param pHlp Pointer to the output functions.
3536 */
3537__BEGIN_DECLS
3538VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3539__END_DECLS
3540
3541#endif
3542
3543/**
3544 * Checks that the shadow page table is in sync with the guest one.
3545 *
3546 * @returns The number of errors.
3547 * @param pVM The virtual machine.
3548 * @param cr3 Guest context CR3 register
3549 * @param cr4 Guest context CR4 register
3550 * @param GCPtr Where to start. Defaults to 0.
3551 * @param cb How much to check. Defaults to everything.
3552 */
3553PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3554{
3555#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3556 return 0;
3557#else
3558 unsigned cErrors = 0;
3559
3560#if PGM_GST_TYPE == PGM_TYPE_PAE
3561 /** @todo currently broken; crashes below somewhere */
3562 AssertFailed();
3563#endif
3564
3565#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3566 || PGM_GST_TYPE == PGM_TYPE_PAE \
3567 || PGM_GST_TYPE == PGM_TYPE_AMD64
3568
3569# if PGM_GST_TYPE == PGM_TYPE_AMD64
3570 bool fBigPagesSupported = true;
3571# else
3572 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3573# endif
3574 PPGM pPGM = &pVM->pgm.s;
3575 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3576 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3577# ifndef IN_RING0
3578 RTHCPHYS HCPhys; /* general usage. */
3579# endif
3580 int rc;
3581
3582 /*
3583 * Check that the Guest CR3 and all its mappings are correct.
3584 */
3585 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3586 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3587 false);
3588# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3589# if PGM_GST_TYPE == PGM_TYPE_32BIT
3590 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGuestPDRC, NULL, &HCPhysShw);
3591# else
3592 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePDPTRC, NULL, &HCPhysShw);
3593# endif
3594 AssertRCReturn(rc, 1);
3595 HCPhys = NIL_RTHCPHYS;
3596 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3597 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3598# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3599 RTGCPHYS GCPhys;
3600 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGuestPDR3, &GCPhys);
3601 AssertRCReturn(rc, 1);
3602 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3603# endif
3604# endif /* !IN_RING0 */
3605
3606 /*
3607 * Get and check the Shadow CR3.
3608 */
3609# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3610 unsigned cPDEs = X86_PG_ENTRIES;
3611 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3612# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3613# if PGM_GST_TYPE == PGM_TYPE_32BIT
3614 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3615# else
3616 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3617# endif
3618 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3619# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3620 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3621 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3622# endif
3623 if (cb != ~(RTGCPTR)0)
3624 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3625
3626/** @todo call the other two PGMAssert*() functions. */
3627
3628# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3629 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3630# endif
3631
3632# if PGM_GST_TYPE == PGM_TYPE_AMD64
3633 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3634
3635 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3636 {
3637 PPGMPOOLPAGE pShwPdpt = NULL;
3638 PX86PML4E pPml4eSrc;
3639 PX86PML4E pPml4eDst;
3640 RTGCPHYS GCPhysPdptSrc;
3641
3642 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3643 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3644
3645 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3646 if (!pPml4eDst->n.u1Present)
3647 {
3648 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3649 continue;
3650 }
3651
3652 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3653 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3654
3655 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3656 {
3657 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3658 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3659 cErrors++;
3660 continue;
3661 }
3662
3663 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3664 {
3665 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3666 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3667 cErrors++;
3668 continue;
3669 }
3670
3671 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3672 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3673 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3674 {
3675 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3676 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3677 cErrors++;
3678 continue;
3679 }
3680# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3681 {
3682# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3683
3684# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3685 /*
3686 * Check the PDPTEs too.
3687 */
3688 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3689
3690 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3691 {
3692 unsigned iPDSrc;
3693 PPGMPOOLPAGE pShwPde = NULL;
3694 PX86PDPE pPdpeDst;
3695 RTGCPHYS GCPhysPdeSrc;
3696# if PGM_GST_TYPE == PGM_TYPE_PAE
3697 X86PDPE PdpeSrc;
3698 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3699 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3700# else
3701 PX86PML4E pPml4eSrc;
3702 X86PDPE PdpeSrc;
3703 PX86PDPT pPdptDst;
3704 PX86PDPAE pPDDst;
3705 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3706
3707 rc = pgmShwGetLongModePDPtr(pVM, GCPtr, NULL, &pPdptDst, &pPDDst);
3708 if (rc != VINF_SUCCESS)
3709 {
3710 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3711 GCPtr += 512 * _2M;
3712 continue; /* next PDPTE */
3713 }
3714 Assert(pPDDst);
3715# endif
3716 Assert(iPDSrc == 0);
3717
3718 pPdpeDst = &pPdptDst->a[iPdpt];
3719
3720 if (!pPdpeDst->n.u1Present)
3721 {
3722 GCPtr += 512 * _2M;
3723 continue; /* next PDPTE */
3724 }
3725
3726 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3727 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3728
3729 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3730 {
3731 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3732 GCPtr += 512 * _2M;
3733 cErrors++;
3734 continue;
3735 }
3736
3737 if (GCPhysPdeSrc != pShwPde->GCPhys)
3738 {
3739# if PGM_GST_TYPE == PGM_TYPE_AMD64
3740 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3741# else
3742 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3743# endif
3744 GCPtr += 512 * _2M;
3745 cErrors++;
3746 continue;
3747 }
3748
3749# if PGM_GST_TYPE == PGM_TYPE_AMD64
3750 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3751 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3752 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3753 {
3754 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3755 GCPtr += 512 * _2M;
3756 cErrors++;
3757 continue;
3758 }
3759# endif
3760
3761# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3762 {
3763# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3764# if PGM_GST_TYPE == PGM_TYPE_32BIT
3765 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3766# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3767 PCX86PD pPDDst = pPGM->CTXMID(p,32BitPD);
3768# endif
3769# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3770 /*
3771 * Iterate the shadow page directory.
3772 */
3773 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3774 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3775
3776 for (;
3777 iPDDst < cPDEs;
3778 iPDDst++, GCPtr += cIncrement)
3779 {
3780# if PGM_SHW_TYPE == PGM_TYPE_PAE
3781 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3782# else
3783 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3784# endif
3785 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3786 {
3787 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3788 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3789 {
3790 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3791 cErrors++;
3792 continue;
3793 }
3794 }
3795 else if ( (PdeDst.u & X86_PDE_P)
3796 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3797 )
3798 {
3799 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3800 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3801 if (!pPoolPage)
3802 {
3803 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3804 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3805 cErrors++;
3806 continue;
3807 }
3808 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3809
3810 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3811 {
3812 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3813 GCPtr, (uint64_t)PdeDst.u));
3814 cErrors++;
3815 }
3816
3817 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3818 {
3819 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3820 GCPtr, (uint64_t)PdeDst.u));
3821 cErrors++;
3822 }
3823
3824 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3825 if (!PdeSrc.n.u1Present)
3826 {
3827 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3828 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3829 cErrors++;
3830 continue;
3831 }
3832
3833 if ( !PdeSrc.b.u1Size
3834 || !fBigPagesSupported)
3835 {
3836 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3837# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3838 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3839# endif
3840 }
3841 else
3842 {
3843# if PGM_GST_TYPE == PGM_TYPE_32BIT
3844 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3845 {
3846 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3847 GCPtr, (uint64_t)PdeSrc.u));
3848 cErrors++;
3849 continue;
3850 }
3851# endif
3852 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3853# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3854 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3855# endif
3856 }
3857
3858 if ( pPoolPage->enmKind
3859 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3860 {
3861 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3862 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3863 cErrors++;
3864 }
3865
3866 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3867 if (!pPhysPage)
3868 {
3869 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3870 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3871 cErrors++;
3872 continue;
3873 }
3874
3875 if (GCPhysGst != pPoolPage->GCPhys)
3876 {
3877 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3878 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3879 cErrors++;
3880 continue;
3881 }
3882
3883 if ( !PdeSrc.b.u1Size
3884 || !fBigPagesSupported)
3885 {
3886 /*
3887 * Page Table.
3888 */
3889 const GSTPT *pPTSrc;
3890 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3891 if (RT_FAILURE(rc))
3892 {
3893 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3894 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3895 cErrors++;
3896 continue;
3897 }
3898 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3899 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3900 {
3901 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3902 // (This problem will go away when/if we shadow multiple CR3s.)
3903 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3904 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3905 cErrors++;
3906 continue;
3907 }
3908 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3909 {
3910 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3911 GCPtr, (uint64_t)PdeDst.u));
3912 cErrors++;
3913 continue;
3914 }
3915
3916 /* iterate the page table. */
3917# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3918 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3919 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3920# else
3921 const unsigned offPTSrc = 0;
3922# endif
3923 for (unsigned iPT = 0, off = 0;
3924 iPT < RT_ELEMENTS(pPTDst->a);
3925 iPT++, off += PAGE_SIZE)
3926 {
3927 const SHWPTE PteDst = pPTDst->a[iPT];
3928
3929 /* skip not-present entries. */
3930 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3931 continue;
3932 Assert(PteDst.n.u1Present);
3933
3934 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3935 if (!PteSrc.n.u1Present)
3936 {
3937# ifdef IN_RING3
3938 PGMAssertHandlerAndFlagsInSync(pVM);
3939 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3940# endif
3941 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3942 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3943 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3944 cErrors++;
3945 continue;
3946 }
3947
3948 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3949# if 1 /** @todo sync accessed bit properly... */
3950 fIgnoreFlags |= X86_PTE_A;
3951# endif
3952
3953 /* match the physical addresses */
3954 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3955 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3956
3957# ifdef IN_RING3
3958 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3959 if (RT_FAILURE(rc))
3960 {
3961 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3962 {
3963 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3964 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3965 cErrors++;
3966 continue;
3967 }
3968 }
3969 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3970 {
3971 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3972 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3973 cErrors++;
3974 continue;
3975 }
3976# endif
3977
3978 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3979 if (!pPhysPage)
3980 {
3981# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3982 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3983 {
3984 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3985 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3986 cErrors++;
3987 continue;
3988 }
3989# endif
3990 if (PteDst.n.u1Write)
3991 {
3992 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3993 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3994 cErrors++;
3995 }
3996 fIgnoreFlags |= X86_PTE_RW;
3997 }
3998 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3999 {
4000 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4001 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4002 cErrors++;
4003 continue;
4004 }
4005
4006 /* flags */
4007 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4008 {
4009 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4010 {
4011 if (PteDst.n.u1Write)
4012 {
4013 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! HCPhys=%RHp PteSrc=%#RX64 PteDst=%#RX64\n",
4014 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4015 cErrors++;
4016 continue;
4017 }
4018 fIgnoreFlags |= X86_PTE_RW;
4019 }
4020 else
4021 {
4022 if (PteDst.n.u1Present)
4023 {
4024 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! HCPhys=%RHp PteSrc=%#RX64 PteDst=%#RX64\n",
4025 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4026 cErrors++;
4027 continue;
4028 }
4029 fIgnoreFlags |= X86_PTE_P;
4030 }
4031 }
4032 else
4033 {
4034 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4035 {
4036 if (PteDst.n.u1Write)
4037 {
4038 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4039 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4040 cErrors++;
4041 continue;
4042 }
4043 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4044 {
4045 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4046 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4047 cErrors++;
4048 continue;
4049 }
4050 if (PteDst.n.u1Dirty)
4051 {
4052 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4053 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4054 cErrors++;
4055 }
4056# if 0 /** @todo sync access bit properly... */
4057 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4058 {
4059 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4060 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4061 cErrors++;
4062 }
4063 fIgnoreFlags |= X86_PTE_RW;
4064# else
4065 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4066# endif
4067 }
4068 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4069 {
4070 /* access bit emulation (not implemented). */
4071 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4072 {
4073 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4074 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4075 cErrors++;
4076 continue;
4077 }
4078 if (!PteDst.n.u1Accessed)
4079 {
4080 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4081 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4082 cErrors++;
4083 }
4084 fIgnoreFlags |= X86_PTE_P;
4085 }
4086# ifdef DEBUG_sandervl
4087 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4088# endif
4089 }
4090
4091 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4092 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4093 )
4094 {
4095 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4096 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4097 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4098 cErrors++;
4099 continue;
4100 }
4101 } /* foreach PTE */
4102 }
4103 else
4104 {
4105 /*
4106 * Big Page.
4107 */
4108 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4109 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4110 {
4111 if (PdeDst.n.u1Write)
4112 {
4113 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4114 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4115 cErrors++;
4116 continue;
4117 }
4118 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4119 {
4120 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4121 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4122 cErrors++;
4123 continue;
4124 }
4125# if 0 /** @todo sync access bit properly... */
4126 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4127 {
4128 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4129 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4130 cErrors++;
4131 }
4132 fIgnoreFlags |= X86_PTE_RW;
4133# else
4134 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4135# endif
4136 }
4137 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4138 {
4139 /* access bit emulation (not implemented). */
4140 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4141 {
4142 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4143 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4144 cErrors++;
4145 continue;
4146 }
4147 if (!PdeDst.n.u1Accessed)
4148 {
4149 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4150 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4151 cErrors++;
4152 }
4153 fIgnoreFlags |= X86_PTE_P;
4154 }
4155
4156 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4157 {
4158 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4159 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4160 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4161 cErrors++;
4162 }
4163
4164 /* iterate the page table. */
4165 for (unsigned iPT = 0, off = 0;
4166 iPT < RT_ELEMENTS(pPTDst->a);
4167 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4168 {
4169 const SHWPTE PteDst = pPTDst->a[iPT];
4170
4171 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4172 {
4173 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4174 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4175 cErrors++;
4176 }
4177
4178 /* skip not-present entries. */
4179 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4180 continue;
4181
4182 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4183
4184 /* match the physical addresses */
4185 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4186
4187# ifdef IN_RING3
4188 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4189 if (RT_FAILURE(rc))
4190 {
4191 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4192 {
4193 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4194 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4195 cErrors++;
4196 }
4197 }
4198 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4199 {
4200 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4201 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4202 cErrors++;
4203 continue;
4204 }
4205# endif
4206 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4207 if (!pPhysPage)
4208 {
4209# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4210 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4211 {
4212 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4213 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4214 cErrors++;
4215 continue;
4216 }
4217# endif
4218 if (PteDst.n.u1Write)
4219 {
4220 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4221 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4222 cErrors++;
4223 }
4224 fIgnoreFlags |= X86_PTE_RW;
4225 }
4226 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
4227 {
4228 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4229 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4230 cErrors++;
4231 continue;
4232 }
4233
4234 /* flags */
4235 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4236 {
4237 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4238 {
4239 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4240 {
4241 if (PteDst.n.u1Write)
4242 {
4243 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! HCPhys=%RHp PdeSrc=%#RX64 PteDst=%#RX64\n",
4244 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4245 cErrors++;
4246 continue;
4247 }
4248 fIgnoreFlags |= X86_PTE_RW;
4249 }
4250 }
4251 else
4252 {
4253 if (PteDst.n.u1Present)
4254 {
4255 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! HCPhys=%RHp PdeSrc=%#RX64 PteDst=%#RX64\n",
4256 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4257 cErrors++;
4258 continue;
4259 }
4260 fIgnoreFlags |= X86_PTE_P;
4261 }
4262 }
4263
4264 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4265 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4266 )
4267 {
4268 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4269 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4270 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4271 cErrors++;
4272 continue;
4273 }
4274 } /* for each PTE */
4275 }
4276 }
4277 /* not present */
4278
4279 } /* for each PDE */
4280
4281 } /* for each PDPTE */
4282
4283 } /* for each PML4E */
4284
4285# ifdef DEBUG
4286 if (cErrors)
4287 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4288# endif
4289
4290#endif /* GST == 32BIT, PAE or AMD64 */
4291 return cErrors;
4292
4293#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4294}
4295#endif /* VBOX_STRICT */
4296
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette