VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 24436

Last change on this file since 24436 was 24216, checked in by vboxsync, 15 years ago

VMM: Backed out r54155 & r54154 due to XP breakage.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 197.9 KB
Line 
1/* $Id: PGMAllBth.h 24216 2009-10-30 18:35:43Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27RT_C_DECLS_BEGIN
28PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
43PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
44RT_C_DECLS_END
45
46
47/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
48#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
49# error "Invalid combination; PAE guest implies PAE shadow"
50#endif
51
52#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
53 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
54# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
55#endif
56
57#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
58 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
59# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
60#endif
61
62#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
63 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
64# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
65#endif
66
67#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
68# define PGM_WITHOUT_MAPPINGS
69#endif
70
71
72#ifndef IN_RING3
73/**
74 * #PF Handler for raw-mode guest execution.
75 *
76 * @returns VBox status code (appropriate for trap handling and GC return).
77 *
78 * @param pVCpu VMCPU Handle.
79 * @param uErr The trap error code.
80 * @param pRegFrame Trap register frame.
81 * @param pvFault The fault address.
82 */
83PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
84{
85 PVM pVM = pVCpu->CTX_SUFF(pVM);
86
87# if defined(IN_RC) && defined(VBOX_STRICT)
88 PGMDynCheckLocks(pVM);
89# endif
90
91# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
92 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
93 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
94
95# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
96 /*
97 * Hide the instruction fetch trap indicator for now.
98 */
99 /** @todo NXE will change this and we must fix NXE in the switcher too! */
100 if (uErr & X86_TRAP_PF_ID)
101 {
102 uErr &= ~X86_TRAP_PF_ID;
103 TRPMSetErrorCode(pVCpu, uErr);
104 }
105# endif
106
107 /*
108 * Get PDs.
109 */
110 int rc;
111# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
112# if PGM_GST_TYPE == PGM_TYPE_32BIT
113 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
114 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
115
116# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
117
118# if PGM_GST_TYPE == PGM_TYPE_PAE
119 unsigned iPDSrc = 0; /* initialized to shut up gcc */
120 X86PDPE PdpeSrc;
121 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
122
123# elif PGM_GST_TYPE == PGM_TYPE_AMD64
124 unsigned iPDSrc = 0; /* initialized to shut up gcc */
125 PX86PML4E pPml4eSrc;
126 X86PDPE PdpeSrc;
127 PGSTPD pPDSrc;
128
129 pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
130 Assert(pPml4eSrc);
131# endif
132
133 /* Quick check for a valid guest trap. (PAE & AMD64) */
134 if (!pPDSrc)
135 {
136# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
137 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
138# else
139 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
140# endif
141 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
142 TRPMSetErrorCode(pVCpu, uErr);
143 return VINF_EM_RAW_GUEST_TRAP;
144 }
145# endif
146
147# else /* !PGM_WITH_PAGING */
148 PGSTPD pPDSrc = NULL;
149 const unsigned iPDSrc = 0;
150# endif /* !PGM_WITH_PAGING */
151
152 /* Fetch the guest PDE */
153# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
154 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
155# else
156 GSTPDE PdeSrc;
157 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
158 PdeSrc.n.u1Present = 1;
159 PdeSrc.n.u1Write = 1;
160 PdeSrc.n.u1Accessed = 1;
161 PdeSrc.n.u1User = 1;
162# endif
163
164# if PGM_SHW_TYPE == PGM_TYPE_32BIT
165 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
166 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
167
168# elif PGM_SHW_TYPE == PGM_TYPE_PAE
169 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
170
171 PX86PDPAE pPDDst;
172# if PGM_GST_TYPE != PGM_TYPE_PAE
173 X86PDPE PdpeSrc;
174
175 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
176 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
177# endif
178 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst);
179 if (rc != VINF_SUCCESS)
180 {
181 AssertRC(rc);
182 return rc;
183 }
184 Assert(pPDDst);
185
186# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
187 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
188 PX86PDPAE pPDDst;
189# if PGM_GST_TYPE == PGM_TYPE_PROT
190 /* AMD-V nested paging */
191 X86PML4E Pml4eSrc;
192 X86PDPE PdpeSrc;
193 PX86PML4E pPml4eSrc = &Pml4eSrc;
194
195 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
196 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
197 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
198# endif
199
200 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
201 if (rc != VINF_SUCCESS)
202 {
203 AssertRC(rc);
204 return rc;
205 }
206 Assert(pPDDst);
207
208# elif PGM_SHW_TYPE == PGM_TYPE_EPT
209 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
210 PEPTPD pPDDst;
211
212 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
213 if (rc != VINF_SUCCESS)
214 {
215 AssertRC(rc);
216 return rc;
217 }
218 Assert(pPDDst);
219# endif
220
221# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
222 /*
223 * If we successfully correct the write protection fault due to dirty bit
224 * tracking, or this page fault is a genuine one, then return immediately.
225 */
226 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
227 rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
228 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
229 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
230 || rc == VINF_EM_RAW_GUEST_TRAP)
231 {
232 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
233 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
234 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
235 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
236 }
237
238# if 0 /* rarely useful; leave for debugging. */
239 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
240# endif
241# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
242
243 /*
244 * A common case is the not-present error caused by lazy page table syncing.
245 *
246 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
247 * so we can safely assume that the shadow PT is present when calling SyncPage later.
248 *
249 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
250 * of mapping conflict and defer to SyncCR3 in R3.
251 * (Again, we do NOT support access handlers for non-present guest pages.)
252 *
253 */
254 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
255 && !pPDDst->a[iPDDst].n.u1Present
256 && PdeSrc.n.u1Present
257 )
258 {
259 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; });
260 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
261 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, pvFault);
263 if (RT_SUCCESS(rc))
264 {
265 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
266 return rc;
267 }
268 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
269 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
270 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
271 return VINF_PGM_SYNC_CR3;
272 }
273
274# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
275 /*
276 * Check if this address is within any of our mappings.
277 *
278 * This is *very* fast and it's gonna save us a bit of effort below and prevent
279 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
280 * (BTW, it's impossible to have physical access handlers in a mapping.)
281 */
282 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
283 {
284 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
285 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
286 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
287 {
288 if (pvFault < pMapping->GCPtr)
289 break;
290 if (pvFault - pMapping->GCPtr < pMapping->cb)
291 {
292 /*
293 * The first thing we check is if we've got an undetected conflict.
294 */
295 if (!pVM->pgm.s.fMappingsFixed)
296 {
297 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
298 while (iPT-- > 0)
299 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
300 {
301 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts);
302 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
303 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
304 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
305 return VINF_PGM_SYNC_CR3;
306 }
307 }
308
309 /*
310 * Check if the fault address is in a virtual page access handler range.
311 */
312 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
313 if ( pCur
314 && pvFault - pCur->Core.Key < pCur->cb
315 && uErr & X86_TRAP_PF_RW)
316 {
317# ifdef IN_RC
318 STAM_PROFILE_START(&pCur->Stat, h);
319 pgmUnlock(pVM);
320 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
321 pgmLock(pVM);
322 STAM_PROFILE_STOP(&pCur->Stat, h);
323# else
324 AssertFailed();
325 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
326# endif
327 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping);
328 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
329 return rc;
330 }
331
332 /*
333 * Pretend we're not here and let the guest handle the trap.
334 */
335 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
336 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping);
337 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
338 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
339 return VINF_EM_RAW_GUEST_TRAP;
340 }
341 }
342 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
343 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
344# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
345
346 /*
347 * Check if this fault address is flagged for special treatment,
348 * which means we'll have to figure out the physical address and
349 * check flags associated with it.
350 *
351 * ASSUME that we can limit any special access handling to pages
352 * in page tables which the guest believes to be present.
353 */
354 if (PdeSrc.n.u1Present)
355 {
356 RTGCPHYS GCPhys = NIL_RTGCPHYS;
357
358# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
359# if PGM_GST_TYPE == PGM_TYPE_AMD64
360 bool fBigPagesSupported = true;
361# else
362 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
363# endif
364 if ( PdeSrc.b.u1Size
365 && fBigPagesSupported)
366 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
367 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
368 else
369 {
370 PGSTPT pPTSrc;
371 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
372 if (RT_SUCCESS(rc))
373 {
374 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
375 if (pPTSrc->a[iPTESrc].n.u1Present)
376 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
377 }
378 }
379# else
380 /* No paging so the fault address is the physical address */
381 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
382# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
383
384 /*
385 * If we have a GC address we'll check if it has any flags set.
386 */
387 if (GCPhys != NIL_RTGCPHYS)
388 {
389 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
390
391 PPGMPAGE pPage;
392 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
393 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
394 {
395 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
396 {
397 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
398 {
399 /*
400 * Physical page access handler.
401 */
402 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
403 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
404 if (pCur)
405 {
406# ifdef PGM_SYNC_N_PAGES
407 /*
408 * If the region is write protected and we got a page not present fault, then sync
409 * the pages. If the fault was caused by a read, then restart the instruction.
410 * In case of write access continue to the GC write handler.
411 *
412 * ASSUMES that there is only one handler per page or that they have similar write properties.
413 */
414 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
415 && !(uErr & X86_TRAP_PF_P))
416 {
417 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
418 if ( RT_FAILURE(rc)
419 || !(uErr & X86_TRAP_PF_RW)
420 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
421 {
422 AssertRC(rc);
423 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
424 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
425 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
426 return rc;
427 }
428 }
429# endif
430
431 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
432 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
433 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
434
435# if defined(IN_RC) || defined(IN_RING0)
436 if (pCur->CTX_SUFF(pfnHandler))
437 {
438 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
439# ifdef IN_RING0
440 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
441# else
442 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
443# endif
444 bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
445 void *pvUser = pCur->CTX_SUFF(pvUser);
446
447 STAM_PROFILE_START(&pCur->Stat, h);
448 if (fLeaveLock)
449 pgmUnlock(pVM); /* @todo: Not entirely safe. */
450
451 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
452 if (fLeaveLock)
453 pgmLock(pVM);
454# ifdef VBOX_WITH_STATISTICS
455 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
456 if (pCur)
457 STAM_PROFILE_STOP(&pCur->Stat, h);
458# else
459 pCur = NULL; /* might be invalid by now. */
460# endif
461
462 }
463 else
464# endif
465 rc = VINF_EM_RAW_EMULATE_INSTR;
466
467 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical);
468 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
469 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; });
470 return rc;
471 }
472 }
473# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
474 else
475 {
476# ifdef PGM_SYNC_N_PAGES
477 /*
478 * If the region is write protected and we got a page not present fault, then sync
479 * the pages. If the fault was caused by a read, then restart the instruction.
480 * In case of write access continue to the GC write handler.
481 */
482 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
483 && !(uErr & X86_TRAP_PF_P))
484 {
485 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
486 if ( RT_FAILURE(rc)
487 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
488 || !(uErr & X86_TRAP_PF_RW))
489 {
490 AssertRC(rc);
491 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
492 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
493 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
494 return rc;
495 }
496 }
497# endif
498 /*
499 * Ok, it's an virtual page access handler.
500 *
501 * Since it's faster to search by address, we'll do that first
502 * and then retry by GCPhys if that fails.
503 */
504 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
505 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
506 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
507 */
508 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
509 if (pCur)
510 {
511 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
512 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
513 || !(uErr & X86_TRAP_PF_P)
514 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
515 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
516
517 if ( pvFault - pCur->Core.Key < pCur->cb
518 && ( uErr & X86_TRAP_PF_RW
519 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
520 {
521# ifdef IN_RC
522 STAM_PROFILE_START(&pCur->Stat, h);
523 pgmUnlock(pVM);
524 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
525 pgmLock(pVM);
526 STAM_PROFILE_STOP(&pCur->Stat, h);
527# else
528 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
529# endif
530 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual);
531 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
532 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
533 return rc;
534 }
535 /* Unhandled part of a monitored page */
536 }
537 else
538 {
539 /* Check by physical address. */
540 PPGMVIRTHANDLER pCur;
541 unsigned iPage;
542 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
543 &pCur, &iPage);
544 Assert(RT_SUCCESS(rc) || !pCur);
545 if ( pCur
546 && ( uErr & X86_TRAP_PF_RW
547 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
548 {
549 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
550# ifdef IN_RC
551 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
552 Assert(off < pCur->cb);
553 STAM_PROFILE_START(&pCur->Stat, h);
554 pgmUnlock(pVM);
555 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
556 pgmLock(pVM);
557 STAM_PROFILE_STOP(&pCur->Stat, h);
558# else
559 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
560# endif
561 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
562 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
563 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
564 return rc;
565 }
566 }
567 }
568# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
569
570 /*
571 * There is a handled area of the page, but this fault doesn't belong to it.
572 * We must emulate the instruction.
573 *
574 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
575 * we first check if this was a page-not-present fault for a page with only
576 * write access handlers. Restart the instruction if it wasn't a write access.
577 */
578 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled);
579
580 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
581 && !(uErr & X86_TRAP_PF_P))
582 {
583 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
584 if ( RT_FAILURE(rc)
585 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
586 || !(uErr & X86_TRAP_PF_RW))
587 {
588 AssertRC(rc);
589 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
590 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
591 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
592 return rc;
593 }
594 }
595
596 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
597 * It's writing to an unhandled part of the LDT page several million times.
598 */
599 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
600 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
601 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
602 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
603 return rc;
604 } /* if any kind of handler */
605
606# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
607 if (uErr & X86_TRAP_PF_P)
608 {
609 /*
610 * The page isn't marked, but it might still be monitored by a virtual page access handler.
611 * (ASSUMES no temporary disabling of virtual handlers.)
612 */
613 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
614 * we should correct both the shadow page table and physical memory flags, and not only check for
615 * accesses within the handler region but for access to pages with virtual handlers. */
616 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
617 if (pCur)
618 {
619 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
620 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
621 || !(uErr & X86_TRAP_PF_P)
622 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
623 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
624
625 if ( pvFault - pCur->Core.Key < pCur->cb
626 && ( uErr & X86_TRAP_PF_RW
627 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
628 {
629# ifdef IN_RC
630 STAM_PROFILE_START(&pCur->Stat, h);
631 pgmUnlock(pVM);
632 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
633 pgmLock(pVM);
634 STAM_PROFILE_STOP(&pCur->Stat, h);
635# else
636 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
637# endif
638 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
639 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
640 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
641 return rc;
642 }
643 }
644 }
645# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
646 }
647 else
648 {
649 /*
650 * When the guest accesses invalid physical memory (e.g. probing
651 * of RAM or accessing a remapped MMIO range), then we'll fall
652 * back to the recompiler to emulate the instruction.
653 */
654 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
655 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid);
656 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
657 return VINF_EM_RAW_EMULATE_INSTR;
658 }
659
660 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
661
662# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
663 /*
664 * We are here only if page is present in Guest page tables and
665 * trap is not handled by our handlers.
666 *
667 * Check it for page out-of-sync situation.
668 */
669 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
670
671 if (!(uErr & X86_TRAP_PF_P))
672 {
673 /*
674 * Page is not present in our page tables.
675 * Try to sync it!
676 * BTW, fPageShw is invalid in this branch!
677 */
678 if (uErr & X86_TRAP_PF_US)
679 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
680 else /* supervisor */
681 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
682
683# if defined(LOG_ENABLED) && !defined(IN_RING0)
684 RTGCPHYS GCPhys;
685 uint64_t fPageGst;
686 PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys);
687 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%RGp scan=%d\n",
688 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
689# endif /* LOG_ENABLED */
690
691# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
692 if (CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
693 {
694 uint64_t fPageGst;
695 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
696 if ( RT_SUCCESS(rc)
697 && !(fPageGst & X86_PTE_US))
698 {
699 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
700 if ( pvFault == (RTGCPTR)pRegFrame->eip
701 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
702# ifdef CSAM_DETECT_NEW_CODE_PAGES
703 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
704 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
705# endif /* CSAM_DETECT_NEW_CODE_PAGES */
706 )
707 {
708 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
709 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
710 if (rc != VINF_SUCCESS)
711 {
712 /*
713 * CSAM needs to perform a job in ring 3.
714 *
715 * Sync the page before going to the host context; otherwise we'll end up in a loop if
716 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
717 */
718 LogFlow(("CSAM ring 3 job\n"));
719 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
720 AssertRC(rc2);
721
722 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
723 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; });
724 return rc;
725 }
726 }
727# ifdef CSAM_DETECT_NEW_CODE_PAGES
728 else if ( uErr == X86_TRAP_PF_RW
729 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
730 && pRegFrame->ecx < 0x10000)
731 {
732 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
733 * to detect loading of new code pages.
734 */
735
736 /*
737 * Decode the instruction.
738 */
739 RTGCPTR PC;
740 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
741 if (rc == VINF_SUCCESS)
742 {
743 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
744 uint32_t cbOp;
745 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
746
747 /* For now we'll restrict this to rep movsw/d instructions */
748 if ( rc == VINF_SUCCESS
749 && pDis->pCurInstr->opcode == OP_MOVSWD
750 && (pDis->prefix & PREFIX_REP))
751 {
752 CSAMMarkPossibleCodePage(pVM, pvFault);
753 }
754 }
755 }
756# endif /* CSAM_DETECT_NEW_CODE_PAGES */
757
758 /*
759 * Mark this page as safe.
760 */
761 /** @todo not correct for pages that contain both code and data!! */
762 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
763 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
764 }
765 }
766# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
767 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
768 if (RT_SUCCESS(rc))
769 {
770 /* The page was successfully synced, return to the guest. */
771 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
772 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; });
773 return VINF_SUCCESS;
774 }
775 }
776 else /* uErr & X86_TRAP_PF_P: */
777 {
778 /*
779 * Write protected pages are make writable when the guest makes the first
780 * write to it. This happens for pages that are shared, write monitored
781 * and not yet allocated.
782 *
783 * Also, a side effect of not flushing global PDEs are out of sync pages due
784 * to physical monitored regions, that are no longer valid.
785 * Assume for now it only applies to the read/write flag.
786 */
787 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
788 {
789 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
790 {
791 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n",
792 GCPhys, pPage, pvFault, uErr));
793 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
794 if (rc != VINF_SUCCESS)
795 {
796 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
797 return rc;
798 }
799 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
800 return VINF_EM_NO_MEMORY;
801 }
802
803# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
804 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
805 if ( CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
806 && ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG))
807 {
808 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
809 uint64_t fPageGst;
810 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
811 if ( RT_SUCCESS(rc)
812 && !(fPageGst & X86_PTE_RW))
813 {
814 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
815 if (RT_SUCCESS(rc))
816 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ);
817 else
818 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3);
819 return rc;
820 }
821 AssertMsg(RT_SUCCESS(rc), ("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
822 }
823# endif
824 /// @todo count the above case; else
825 if (uErr & X86_TRAP_PF_US)
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
827 else /* supervisor */
828 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
829
830 /*
831 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
832 * page is not present, which is not true in this case.
833 */
834 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
835 if (RT_SUCCESS(rc))
836 {
837 /*
838 * Page was successfully synced, return to guest.
839 * First invalidate the page as it might be in the TLB.
840 */
841# if PGM_SHW_TYPE == PGM_TYPE_EPT
842 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
843# else
844 PGM_INVL_PG_ALL_VCPU(pVM, pvFault);
845# endif
846# ifdef VBOX_STRICT
847 RTGCPHYS GCPhys;
848 uint64_t fPageGst;
849 if (!HWACCMIsNestedPagingActive(pVM))
850 {
851 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys);
852 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%d fPageGst=%RX64\n"));
853 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
854 }
855 uint64_t fPageShw;
856 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
857 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
858# endif /* VBOX_STRICT */
859 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
860 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
861 return VINF_SUCCESS;
862 }
863 }
864
865# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
866# ifdef VBOX_STRICT
867 /*
868 * Check for VMM page flags vs. Guest page flags consistency.
869 * Currently only for debug purposes.
870 */
871 if (RT_SUCCESS(rc))
872 {
873 /* Get guest page flags. */
874 uint64_t fPageGst;
875 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
876 if (RT_SUCCESS(rc))
877 {
878 uint64_t fPageShw;
879 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
880
881 /*
882 * Compare page flags.
883 * Note: we have AVL, A, D bits desynched.
884 */
885 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
886 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
887 }
888 else
889 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
890 }
891 else
892 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
893# endif /* VBOX_STRICT */
894# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
895 }
896 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
897# endif /* PGM_OUT_OF_SYNC_IN_GC */
898 }
899 else /* GCPhys == NIL_RTGCPHYS */
900 {
901 /*
902 * Page not present in Guest OS or invalid page table address.
903 * This is potential virtual page access handler food.
904 *
905 * For the present we'll say that our access handlers don't
906 * work for this case - we've already discarded the page table
907 * not present case which is identical to this.
908 *
909 * When we perchance find we need this, we will probably have AVL
910 * trees (offset based) to operate on and we can measure their speed
911 * agains mapping a page table and probably rearrange this handling
912 * a bit. (Like, searching virtual ranges before checking the
913 * physical address.)
914 */
915 }
916 }
917 /* else: !present (guest) */
918
919
920# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
921 /*
922 * Conclusion, this is a guest trap.
923 */
924 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
925 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh);
926 return VINF_EM_RAW_GUEST_TRAP;
927# else
928 /* present, but not a monitored page; perhaps the guest is probing physical memory */
929 return VINF_EM_RAW_EMULATE_INSTR;
930# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
931
932
933# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
934
935 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
936 return VERR_INTERNAL_ERROR;
937# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
938}
939#endif /* !IN_RING3 */
940
941
942/**
943 * Emulation of the invlpg instruction.
944 *
945 *
946 * @returns VBox status code.
947 *
948 * @param pVCpu The VMCPU handle.
949 * @param GCPtrPage Page to invalidate.
950 *
951 * @remark ASSUMES that the guest is updating before invalidating. This order
952 * isn't required by the CPU, so this is speculative and could cause
953 * trouble.
954 * @remark No TLB shootdown is done on any other VCPU as we assume that
955 * invlpg emulation is the *only* reason for calling this function.
956 * (The guest has to shoot down TLB entries on other CPUs itself)
957 * Currently true, but keep in mind!
958 *
959 * @todo Flush page or page directory only if necessary!
960 * @todo Add a #define for simply invalidating the page.
961 */
962PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
963{
964#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
965 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
966 && PGM_SHW_TYPE != PGM_TYPE_EPT
967 int rc;
968 PVM pVM = pVCpu->CTX_SUFF(pVM);
969 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
970
971 Assert(PGMIsLockOwner(pVM));
972
973 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
974
975# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
976 if (pPool->cDirtyPages)
977 pgmPoolResetDirtyPages(pVM);
978# endif
979
980 /*
981 * Get the shadow PD entry and skip out if this PD isn't present.
982 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
983 */
984# if PGM_SHW_TYPE == PGM_TYPE_32BIT
985 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
986 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
987
988 /* Fetch the pgm pool shadow descriptor. */
989 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
990 Assert(pShwPde);
991
992# elif PGM_SHW_TYPE == PGM_TYPE_PAE
993 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
994 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
995
996 /* If the shadow PDPE isn't present, then skip the invalidate. */
997 if (!pPdptDst->a[iPdpt].n.u1Present)
998 {
999 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1000 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1001 return VINF_SUCCESS;
1002 }
1003
1004 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1005 PPGMPOOLPAGE pShwPde = NULL;
1006 PX86PDPAE pPDDst;
1007
1008 /* Fetch the pgm pool shadow descriptor. */
1009 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1010 AssertRCSuccessReturn(rc, rc);
1011 Assert(pShwPde);
1012
1013 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1014 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1015
1016# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1017 /* PML4 */
1018 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1019 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1020 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1021 PX86PDPAE pPDDst;
1022 PX86PDPT pPdptDst;
1023 PX86PML4E pPml4eDst;
1024 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1025 if (rc != VINF_SUCCESS)
1026 {
1027 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1028 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1029 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
1030 PGM_INVL_VCPU_TLBS(pVCpu);
1031 return VINF_SUCCESS;
1032 }
1033 Assert(pPDDst);
1034
1035 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1036 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1037
1038 if (!pPdpeDst->n.u1Present)
1039 {
1040 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1041 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
1042 PGM_INVL_VCPU_TLBS(pVCpu);
1043 return VINF_SUCCESS;
1044 }
1045
1046# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1047
1048 const SHWPDE PdeDst = *pPdeDst;
1049 if (!PdeDst.n.u1Present)
1050 {
1051 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1052 return VINF_SUCCESS;
1053 }
1054
1055# if defined(IN_RC)
1056 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1057 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1058# endif
1059
1060 /*
1061 * Get the guest PD entry and calc big page.
1062 */
1063# if PGM_GST_TYPE == PGM_TYPE_32BIT
1064 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
1065 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1066 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1067# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1068 unsigned iPDSrc = 0;
1069# if PGM_GST_TYPE == PGM_TYPE_PAE
1070 X86PDPE PdpeSrc;
1071 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1072# else /* AMD64 */
1073 PX86PML4E pPml4eSrc;
1074 X86PDPE PdpeSrc;
1075 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1076# endif
1077 GSTPDE PdeSrc;
1078
1079 if (pPDSrc)
1080 PdeSrc = pPDSrc->a[iPDSrc];
1081 else
1082 PdeSrc.u = 0;
1083# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1084
1085# if PGM_GST_TYPE == PGM_TYPE_AMD64
1086 const bool fIsBigPage = PdeSrc.b.u1Size;
1087# else
1088 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
1089# endif
1090
1091# ifdef IN_RING3
1092 /*
1093 * If a CR3 Sync is pending we may ignore the invalidate page operation
1094 * depending on the kind of sync and if it's a global page or not.
1095 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1096 */
1097# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1098 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1099 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1100 && fIsBigPage
1101 && PdeSrc.b.u1Global
1102 )
1103 )
1104# else
1105 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1106# endif
1107 {
1108 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1109 return VINF_SUCCESS;
1110 }
1111# endif /* IN_RING3 */
1112
1113# if PGM_GST_TYPE == PGM_TYPE_AMD64
1114 /* Fetch the pgm pool shadow descriptor. */
1115 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
1116 Assert(pShwPdpt);
1117
1118 /* Fetch the pgm pool shadow descriptor. */
1119 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1120 Assert(pShwPde);
1121
1122 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1123 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1124
1125 if ( !pPml4eSrc->n.u1Present
1126 || pShwPdpt->GCPhys != GCPhysPdpt)
1127 {
1128 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1129 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1130 pgmPoolFreeByPage(pPool, pShwPdpt, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1131 ASMAtomicWriteSize(pPml4eDst, 0);
1132 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1133 PGM_INVL_VCPU_TLBS(pVCpu);
1134 return VINF_SUCCESS;
1135 }
1136 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1137 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1138 {
1139 /*
1140 * Mark not present so we can resync the PML4E when it's used.
1141 */
1142 LogFlow(("InvalidatePage: Out-of-sync PML4E at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1143 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1144 pgmPoolFreeByPage(pPool, pShwPdpt, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1145 ASMAtomicWriteSize(pPml4eDst, 0);
1146 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1147 PGM_INVL_VCPU_TLBS(pVCpu);
1148 }
1149 else if (!pPml4eSrc->n.u1Accessed)
1150 {
1151 /*
1152 * Mark not present so we can set the accessed bit.
1153 */
1154 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1155 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1156 pgmPoolFreeByPage(pPool, pShwPdpt, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1157 ASMAtomicWriteSize(pPml4eDst, 0);
1158 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1159 PGM_INVL_VCPU_TLBS(pVCpu);
1160 }
1161
1162 /* Check if the PDPT entry has changed. */
1163 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1164 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1165 if ( !PdpeSrc.n.u1Present
1166 || pShwPde->GCPhys != GCPhysPd)
1167 {
1168 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1169 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1170 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1171 ASMAtomicWriteSize(pPdpeDst, 0);
1172 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1173 PGM_INVL_VCPU_TLBS(pVCpu);
1174 return VINF_SUCCESS;
1175 }
1176 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1177 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1178 {
1179 /*
1180 * Mark not present so we can resync the PDPTE when it's used.
1181 */
1182 LogFlow(("InvalidatePage: Out-of-sync PDPE at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1183 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1184 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1185 ASMAtomicWriteSize(pPdpeDst, 0);
1186 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1187 PGM_INVL_VCPU_TLBS(pVCpu);
1188 }
1189 else if (!PdpeSrc.lm.u1Accessed)
1190 {
1191 /*
1192 * Mark not present so we can set the accessed bit.
1193 */
1194 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1195 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1196 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1197 ASMAtomicWriteSize(pPdpeDst, 0);
1198 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1199 PGM_INVL_VCPU_TLBS(pVCpu);
1200 }
1201# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1202
1203 /*
1204 * Deal with the Guest PDE.
1205 */
1206 rc = VINF_SUCCESS;
1207 if (PdeSrc.n.u1Present)
1208 {
1209# ifndef PGM_WITHOUT_MAPPING
1210 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1211 {
1212 /*
1213 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1214 */
1215 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1216 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1217 pgmLock(pVM);
1218 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1219 pgmUnlock(pVM);
1220 }
1221 else
1222# endif /* !PGM_WITHOUT_MAPPING */
1223 if ( PdeSrc.n.u1User != PdeDst.n.u1User
1224 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1225 {
1226 /*
1227 * Mark not present so we can resync the PDE when it's used.
1228 */
1229 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1230 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1231 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1232 ASMAtomicWriteSize(pPdeDst, 0);
1233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1234 PGM_INVL_VCPU_TLBS(pVCpu);
1235 }
1236 else if (!PdeSrc.n.u1Accessed)
1237 {
1238 /*
1239 * Mark not present so we can set the accessed bit.
1240 */
1241 LogFlow(("InvalidatePage: Out-of-sync (A) at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1242 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1243 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1244 ASMAtomicWriteSize(pPdeDst, 0);
1245 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1246 PGM_INVL_VCPU_TLBS(pVCpu);
1247 }
1248 else if (!fIsBigPage)
1249 {
1250 /*
1251 * 4KB - page.
1252 */
1253 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1254 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1255# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1256 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1257 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1258# endif
1259 if (pShwPage->GCPhys == GCPhys)
1260 {
1261# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1262 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1263 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1264 if (pPT->a[iPTEDst].n.u1Present)
1265 {
1266# ifdef PGMPOOL_WITH_USER_TRACKING
1267 /* This is very unlikely with caching/monitoring enabled. */
1268 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1269# endif
1270 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1271 }
1272# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1273 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1274 if (RT_SUCCESS(rc))
1275 rc = VINF_SUCCESS;
1276# endif
1277 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1278 PGM_INVL_PG(pVCpu, GCPtrPage);
1279 }
1280 else
1281 {
1282 /*
1283 * The page table address changed.
1284 */
1285 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1286 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1287 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1288 ASMAtomicWriteSize(pPdeDst, 0);
1289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1290 PGM_INVL_VCPU_TLBS(pVCpu);
1291 }
1292 }
1293 else
1294 {
1295 /*
1296 * 2/4MB - page.
1297 */
1298 /* Before freeing the page, check if anything really changed. */
1299 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1300 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1301# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1302 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1303 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1304# endif
1305 if ( pShwPage->GCPhys == GCPhys
1306 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1307 {
1308 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1309 /** @todo PAT */
1310 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1311 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1312 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1313 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1314 {
1315 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1316 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1317# if defined(IN_RC)
1318 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1319 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1320# endif
1321 return VINF_SUCCESS;
1322 }
1323 }
1324
1325 /*
1326 * Ok, the page table is present and it's been changed in the guest.
1327 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1328 * We could do this for some flushes in GC too, but we need an algorithm for
1329 * deciding which 4MB pages containing code likely to be executed very soon.
1330 */
1331 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1332 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1333 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1334 ASMAtomicWriteSize(pPdeDst, 0);
1335 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1336 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1337 }
1338 }
1339 else
1340 {
1341 /*
1342 * Page directory is not present, mark shadow PDE not present.
1343 */
1344 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1345 {
1346 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1347 ASMAtomicWriteSize(pPdeDst, 0);
1348 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1349 PGM_INVL_PG(pVCpu, GCPtrPage);
1350 }
1351 else
1352 {
1353 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1354 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1355 }
1356 }
1357# if defined(IN_RC)
1358 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1359 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1360# endif
1361 return rc;
1362
1363#else /* guest real and protected mode */
1364 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1365 return VINF_SUCCESS;
1366#endif
1367}
1368
1369
1370#ifdef PGMPOOL_WITH_USER_TRACKING
1371/**
1372 * Update the tracking of shadowed pages.
1373 *
1374 * @param pVCpu The VMCPU handle.
1375 * @param pShwPage The shadow page.
1376 * @param HCPhys The physical page we is being dereferenced.
1377 */
1378DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1379{
1380# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1381 PVM pVM = pVCpu->CTX_SUFF(pVM);
1382
1383 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1384 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1385
1386 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1387 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1388 * 2. write protect all shadowed pages. I.e. implement caching.
1389 */
1390 /*
1391 * Find the guest address.
1392 */
1393 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1394 pRam;
1395 pRam = pRam->CTX_SUFF(pNext))
1396 {
1397 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1398 while (iPage-- > 0)
1399 {
1400 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1401 {
1402 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1403 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1404 pShwPage->cPresent--;
1405 pPool->cPresent--;
1406 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1407 return;
1408 }
1409 }
1410 }
1411
1412 for (;;)
1413 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1414# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1415 pShwPage->cPresent--;
1416 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1417# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1418}
1419
1420
1421/**
1422 * Update the tracking of shadowed pages.
1423 *
1424 * @param pVCpu The VMCPU handle.
1425 * @param pShwPage The shadow page.
1426 * @param u16 The top 16-bit of the pPage->HCPhys.
1427 * @param pPage Pointer to the guest page. this will be modified.
1428 * @param iPTDst The index into the shadow table.
1429 */
1430DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1431{
1432 PVM pVM = pVCpu->CTX_SUFF(pVM);
1433# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1434 /*
1435 * Just deal with the simple first time here.
1436 */
1437 if (!u16)
1438 {
1439 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1440 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1441 }
1442 else
1443 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1444
1445 /* write back */
1446 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1447 PGM_PAGE_SET_TRACKING(pPage, u16);
1448
1449# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1450
1451 /* update statistics. */
1452 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1453 pShwPage->cPresent++;
1454 if (pShwPage->iFirstPresent > iPTDst)
1455 pShwPage->iFirstPresent = iPTDst;
1456}
1457#endif /* PGMPOOL_WITH_USER_TRACKING */
1458
1459
1460/**
1461 * Creates a 4K shadow page for a guest page.
1462 *
1463 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1464 * physical address. The PdeSrc argument only the flags are used. No page structured
1465 * will be mapped in this function.
1466 *
1467 * @param pVCpu The VMCPU handle.
1468 * @param pPteDst Destination page table entry.
1469 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1470 * Can safely assume that only the flags are being used.
1471 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1472 * @param pShwPage Pointer to the shadow page.
1473 * @param iPTDst The index into the shadow table.
1474 *
1475 * @remark Not used for 2/4MB pages!
1476 */
1477DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1478{
1479 if (PteSrc.n.u1Present)
1480 {
1481 PVM pVM = pVCpu->CTX_SUFF(pVM);
1482
1483# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1484 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1485 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1486 if (pShwPage->fDirty)
1487 {
1488 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1489 PX86PTPAE pGstPT;
1490
1491 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1492 pGstPT->a[iPTDst].u = PteSrc.u;
1493 }
1494# endif
1495 /*
1496 * Find the ram range.
1497 */
1498 PPGMPAGE pPage;
1499 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1500 if (RT_SUCCESS(rc))
1501 {
1502#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1503 /* Try make the page writable if necessary. */
1504 if ( PteSrc.n.u1Write
1505 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1506 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1507 {
1508 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1509 AssertRC(rc);
1510 }
1511#endif
1512
1513 /** @todo investiage PWT, PCD and PAT. */
1514 /*
1515 * Make page table entry.
1516 */
1517 SHWPTE PteDst;
1518 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1519 {
1520 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1521 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1522 {
1523#if PGM_SHW_TYPE == PGM_TYPE_EPT
1524 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1525 PteDst.n.u1Present = 1;
1526 PteDst.n.u1Execute = 1;
1527 PteDst.n.u1IgnorePAT = 1;
1528 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1529 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1530#else
1531 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1532 | PGM_PAGE_GET_HCPHYS(pPage);
1533#endif
1534 }
1535 else
1536 {
1537 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1538 PteDst.u = 0;
1539 }
1540 /** @todo count these two kinds. */
1541 }
1542 else
1543 {
1544#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1545 /*
1546 * If the page or page directory entry is not marked accessed,
1547 * we mark the page not present.
1548 */
1549 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1550 {
1551 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1552 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1553 PteDst.u = 0;
1554 }
1555 else
1556 /*
1557 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1558 * when the page is modified.
1559 */
1560 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1561 {
1562 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1563 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1564 | PGM_PAGE_GET_HCPHYS(pPage)
1565 | PGM_PTFLAGS_TRACK_DIRTY;
1566 }
1567 else
1568#endif
1569 {
1570 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1571#if PGM_SHW_TYPE == PGM_TYPE_EPT
1572 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1573 PteDst.n.u1Present = 1;
1574 PteDst.n.u1Write = 1;
1575 PteDst.n.u1Execute = 1;
1576 PteDst.n.u1IgnorePAT = 1;
1577 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1578 /* PteDst.n.u1Size = 0 */
1579#else
1580 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1581 | PGM_PAGE_GET_HCPHYS(pPage);
1582#endif
1583 }
1584 }
1585
1586 /*
1587 * Make sure only allocated pages are mapped writable.
1588 */
1589 if ( PteDst.n.u1Write
1590 && PteDst.n.u1Present
1591 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1592 {
1593 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1594 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1595 }
1596
1597#ifdef PGMPOOL_WITH_USER_TRACKING
1598 /*
1599 * Keep user track up to date.
1600 */
1601 if (PteDst.n.u1Present)
1602 {
1603 if (!pPteDst->n.u1Present)
1604 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1605 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1606 {
1607 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1608 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1609 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1610 }
1611 }
1612 else if (pPteDst->n.u1Present)
1613 {
1614 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1615 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1616 }
1617#endif /* PGMPOOL_WITH_USER_TRACKING */
1618
1619 /*
1620 * Update statistics and commit the entry.
1621 */
1622#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1623 if (!PteSrc.n.u1Global)
1624 pShwPage->fSeenNonGlobal = true;
1625#endif
1626 ASMAtomicWriteSize(pPteDst, PteDst.u);
1627 }
1628 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1629 /** @todo count these. */
1630 }
1631 else
1632 {
1633 /*
1634 * Page not-present.
1635 */
1636 Log2(("SyncPageWorker: page not present in Pte\n"));
1637#ifdef PGMPOOL_WITH_USER_TRACKING
1638 /* Keep user track up to date. */
1639 if (pPteDst->n.u1Present)
1640 {
1641 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1642 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1643 }
1644#endif /* PGMPOOL_WITH_USER_TRACKING */
1645 ASMAtomicWriteSize(pPteDst, 0);
1646 /** @todo count these. */
1647 }
1648}
1649
1650
1651/**
1652 * Syncs a guest OS page.
1653 *
1654 * There are no conflicts at this point, neither is there any need for
1655 * page table allocations.
1656 *
1657 * @returns VBox status code.
1658 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1659 * @param pVCpu The VMCPU handle.
1660 * @param PdeSrc Page directory entry of the guest.
1661 * @param GCPtrPage Guest context page address.
1662 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1663 * @param uErr Fault error (X86_TRAP_PF_*).
1664 */
1665PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1666{
1667 PVM pVM = pVCpu->CTX_SUFF(pVM);
1668 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1669 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1670
1671 Assert(PGMIsLockOwner(pVM));
1672
1673#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1674 || PGM_GST_TYPE == PGM_TYPE_PAE \
1675 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1676 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1677 && PGM_SHW_TYPE != PGM_TYPE_EPT
1678
1679# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1680 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVCpu) & MSR_K6_EFER_NXE);
1681# endif
1682
1683 /*
1684 * Assert preconditions.
1685 */
1686 Assert(PdeSrc.n.u1Present);
1687 Assert(cPages);
1688# if 0 /* rarely useful; leave for debugging. */
1689 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1690# endif
1691
1692 /*
1693 * Get the shadow PDE, find the shadow page table in the pool.
1694 */
1695# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1696 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1697 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1698
1699 /* Fetch the pgm pool shadow descriptor. */
1700 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1701 Assert(pShwPde);
1702
1703# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1704 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1705 PPGMPOOLPAGE pShwPde = NULL;
1706 PX86PDPAE pPDDst;
1707
1708 /* Fetch the pgm pool shadow descriptor. */
1709 int rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1710 AssertRCSuccessReturn(rc, rc);
1711 Assert(pShwPde);
1712
1713 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1714 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1715
1716# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1717 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1718 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1719 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1720 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1721
1722 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1723 AssertRCSuccessReturn(rc, rc);
1724 Assert(pPDDst && pPdptDst);
1725 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1726# endif
1727 SHWPDE PdeDst = *pPdeDst;
1728 if (!PdeDst.n.u1Present)
1729 {
1730 AssertMsg(pVM->cCpus > 1, ("%Unexpected missing PDE p=%llx\n", pPdeDst, (uint64_t)PdeDst.u));
1731 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", GCPtrPage));
1732 return VINF_SUCCESS; /* force the instruction to be executed again. */
1733 }
1734
1735 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1736 Assert(pShwPage);
1737
1738# if PGM_GST_TYPE == PGM_TYPE_AMD64
1739 /* Fetch the pgm pool shadow descriptor. */
1740 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1741 Assert(pShwPde);
1742# endif
1743
1744# if defined(IN_RC)
1745 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1746 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1747# endif
1748
1749 /*
1750 * Check that the page is present and that the shadow PDE isn't out of sync.
1751 */
1752# if PGM_GST_TYPE == PGM_TYPE_AMD64
1753 const bool fBigPage = PdeSrc.b.u1Size;
1754# else
1755 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
1756# endif
1757 RTGCPHYS GCPhys;
1758 if (!fBigPage)
1759 {
1760 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1761# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1762 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1763 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1764# endif
1765 }
1766 else
1767 {
1768 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1769# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1770 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1771 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1772# endif
1773 }
1774 if ( pShwPage->GCPhys == GCPhys
1775 && PdeSrc.n.u1Present
1776 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1777 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1778# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1779 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1780# endif
1781 )
1782 {
1783 /*
1784 * Check that the PDE is marked accessed already.
1785 * Since we set the accessed bit *before* getting here on a #PF, this
1786 * check is only meant for dealing with non-#PF'ing paths.
1787 */
1788 if (PdeSrc.n.u1Accessed)
1789 {
1790 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1791 if (!fBigPage)
1792 {
1793 /*
1794 * 4KB Page - Map the guest page table.
1795 */
1796 PGSTPT pPTSrc;
1797 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1798 if (RT_SUCCESS(rc))
1799 {
1800# ifdef PGM_SYNC_N_PAGES
1801 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1802 if ( cPages > 1
1803 && !(uErr & X86_TRAP_PF_P)
1804 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1805 {
1806 /*
1807 * This code path is currently only taken when the caller is PGMTrap0eHandler
1808 * for non-present pages!
1809 *
1810 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1811 * deal with locality.
1812 */
1813 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1814# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1815 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1816 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1817# else
1818 const unsigned offPTSrc = 0;
1819# endif
1820 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1821 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1822 iPTDst = 0;
1823 else
1824 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1825 for (; iPTDst < iPTDstEnd; iPTDst++)
1826 {
1827 if (!pPTDst->a[iPTDst].n.u1Present)
1828 {
1829 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1830 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1831 NOREF(GCPtrCurPage);
1832#ifndef IN_RING0
1833 /*
1834 * Assuming kernel code will be marked as supervisor - and not as user level
1835 * and executed using a conforming code selector - And marked as readonly.
1836 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1837 */
1838 PPGMPAGE pPage;
1839 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1840 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1841 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1842 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1843 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1844 )
1845#endif /* else: CSAM not active */
1846 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1847 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1848 GCPtrCurPage, PteSrc.n.u1Present,
1849 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1850 PteSrc.n.u1User & PdeSrc.n.u1User,
1851 (uint64_t)PteSrc.u,
1852 (uint64_t)pPTDst->a[iPTDst].u,
1853 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1854 }
1855 }
1856 }
1857 else
1858# endif /* PGM_SYNC_N_PAGES */
1859 {
1860 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1861 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1862 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1863 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1864 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1865 GCPtrPage, PteSrc.n.u1Present,
1866 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1867 PteSrc.n.u1User & PdeSrc.n.u1User,
1868 (uint64_t)PteSrc.u,
1869 (uint64_t)pPTDst->a[iPTDst].u,
1870 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1871 }
1872 }
1873 else /* MMIO or invalid page: emulated in #PF handler. */
1874 {
1875 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1876 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1877 }
1878 }
1879 else
1880 {
1881 /*
1882 * 4/2MB page - lazy syncing shadow 4K pages.
1883 * (There are many causes of getting here, it's no longer only CSAM.)
1884 */
1885 /* Calculate the GC physical address of this 4KB shadow page. */
1886 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1887 /* Find ram range. */
1888 PPGMPAGE pPage;
1889 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1890 if (RT_SUCCESS(rc))
1891 {
1892# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1893 /* Try make the page writable if necessary. */
1894 if ( PdeSrc.n.u1Write
1895 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1896 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1897 {
1898 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
1899 AssertRC(rc);
1900 }
1901# endif
1902
1903 /*
1904 * Make shadow PTE entry.
1905 */
1906 SHWPTE PteDst;
1907 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1908 | PGM_PAGE_GET_HCPHYS(pPage);
1909 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1910 {
1911 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1912 PteDst.n.u1Write = 0;
1913 else
1914 PteDst.u = 0;
1915 }
1916 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1917# ifdef PGMPOOL_WITH_USER_TRACKING
1918 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1919 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1920# endif
1921 /* Make sure only allocated pages are mapped writable. */
1922 if ( PteDst.n.u1Write
1923 && PteDst.n.u1Present
1924 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1925 {
1926 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1927 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1928 }
1929
1930 ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
1931
1932 /*
1933 * If the page is not flagged as dirty and is writable, then make it read-only
1934 * at PD level, so we can set the dirty bit when the page is modified.
1935 *
1936 * ASSUMES that page access handlers are implemented on page table entry level.
1937 * Thus we will first catch the dirty access and set PDE.D and restart. If
1938 * there is an access handler, we'll trap again and let it work on the problem.
1939 */
1940 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1941 * As for invlpg, it simply frees the whole shadow PT.
1942 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1943 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1944 {
1945 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1946 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1947 PdeDst.n.u1Write = 0;
1948 }
1949 else
1950 {
1951 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1952 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1953 }
1954 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
1955 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1956 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1957 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1958 }
1959 else
1960 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1961 }
1962# if defined(IN_RC)
1963 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1964 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1965# endif
1966 return VINF_SUCCESS;
1967 }
1968 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1969 }
1970 else
1971 {
1972 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1973 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1974 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1975 }
1976
1977 /*
1978 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1979 * Yea, I'm lazy.
1980 */
1981 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1982 ASMAtomicWriteSize(pPdeDst, 0);
1983
1984# if defined(IN_RC)
1985 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1986 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1987# endif
1988 PGM_INVL_VCPU_TLBS(pVCpu);
1989 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1990
1991#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1992 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1993 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
1994 && !defined(IN_RC)
1995
1996# ifdef PGM_SYNC_N_PAGES
1997 /*
1998 * Get the shadow PDE, find the shadow page table in the pool.
1999 */
2000# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2001 X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
2002
2003# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2004 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
2005
2006# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2007 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2008 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2009 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2010 X86PDEPAE PdeDst;
2011 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2012
2013 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2014 AssertRCSuccessReturn(rc, rc);
2015 Assert(pPDDst && pPdptDst);
2016 PdeDst = pPDDst->a[iPDDst];
2017# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2018 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2019 PEPTPD pPDDst;
2020 EPTPDE PdeDst;
2021
2022 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2023 if (rc != VINF_SUCCESS)
2024 {
2025 AssertRC(rc);
2026 return rc;
2027 }
2028 Assert(pPDDst);
2029 PdeDst = pPDDst->a[iPDDst];
2030# endif
2031 AssertMsg(PdeDst.n.u1Present, ("%#llx\n", (uint64_t)PdeDst.u));
2032 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2033 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2034
2035 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2036 if ( cPages > 1
2037 && !(uErr & X86_TRAP_PF_P)
2038 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2039 {
2040 /*
2041 * This code path is currently only taken when the caller is PGMTrap0eHandler
2042 * for non-present pages!
2043 *
2044 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2045 * deal with locality.
2046 */
2047 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2048 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2049 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2050 iPTDst = 0;
2051 else
2052 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2053 for (; iPTDst < iPTDstEnd; iPTDst++)
2054 {
2055 if (!pPTDst->a[iPTDst].n.u1Present)
2056 {
2057 GSTPTE PteSrc;
2058
2059 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2060
2061 /* Fake the page table entry */
2062 PteSrc.u = GCPtrCurPage;
2063 PteSrc.n.u1Present = 1;
2064 PteSrc.n.u1Dirty = 1;
2065 PteSrc.n.u1Accessed = 1;
2066 PteSrc.n.u1Write = 1;
2067 PteSrc.n.u1User = 1;
2068
2069 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2070
2071 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2072 GCPtrCurPage, PteSrc.n.u1Present,
2073 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2074 PteSrc.n.u1User & PdeSrc.n.u1User,
2075 (uint64_t)PteSrc.u,
2076 (uint64_t)pPTDst->a[iPTDst].u,
2077 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2078
2079 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2080 break;
2081 }
2082 else
2083 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
2084 }
2085 }
2086 else
2087# endif /* PGM_SYNC_N_PAGES */
2088 {
2089 GSTPTE PteSrc;
2090 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2091 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2092
2093 /* Fake the page table entry */
2094 PteSrc.u = GCPtrCurPage;
2095 PteSrc.n.u1Present = 1;
2096 PteSrc.n.u1Dirty = 1;
2097 PteSrc.n.u1Accessed = 1;
2098 PteSrc.n.u1Write = 1;
2099 PteSrc.n.u1User = 1;
2100 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2101
2102 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2103 GCPtrPage, PteSrc.n.u1Present,
2104 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2105 PteSrc.n.u1User & PdeSrc.n.u1User,
2106 (uint64_t)PteSrc.u,
2107 (uint64_t)pPTDst->a[iPTDst].u,
2108 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2109 }
2110 return VINF_SUCCESS;
2111
2112#else
2113 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2114 return VERR_INTERNAL_ERROR;
2115#endif
2116}
2117
2118
2119#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2120/**
2121 * Investigate page fault and handle write protection page faults caused by
2122 * dirty bit tracking.
2123 *
2124 * @returns VBox status code.
2125 * @param pVCpu The VMCPU handle.
2126 * @param uErr Page fault error code.
2127 * @param pPdeDst Shadow page directory entry.
2128 * @param pPdeSrc Guest page directory entry.
2129 * @param GCPtrPage Guest context page address.
2130 */
2131PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2132{
2133 bool fWriteProtect = !!(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP);
2134 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2135 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2136# if PGM_GST_TYPE == PGM_TYPE_AMD64
2137 bool fBigPagesSupported = true;
2138# else
2139 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2140# endif
2141# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2142 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVCpu) & MSR_K6_EFER_NXE);
2143# endif
2144 unsigned uPageFaultLevel;
2145 int rc;
2146 PVM pVM = pVCpu->CTX_SUFF(pVM);
2147 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2148
2149 Assert(PGMIsLockOwner(pVM));
2150
2151 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2152 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2153
2154# if PGM_GST_TYPE == PGM_TYPE_PAE \
2155 || PGM_GST_TYPE == PGM_TYPE_AMD64
2156
2157# if PGM_GST_TYPE == PGM_TYPE_AMD64
2158 PX86PML4E pPml4eSrc;
2159 PX86PDPE pPdpeSrc;
2160
2161 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc);
2162 Assert(pPml4eSrc);
2163
2164 /*
2165 * Real page fault? (PML4E level)
2166 */
2167 if ( (uErr & X86_TRAP_PF_RSVD)
2168 || !pPml4eSrc->n.u1Present
2169 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2170 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2171 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2172 )
2173 {
2174 uPageFaultLevel = 0;
2175 goto l_UpperLevelPageFault;
2176 }
2177 Assert(pPdpeSrc);
2178
2179# else /* PAE */
2180 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVCpu->pgm.s, GCPtrPage);
2181# endif /* PAE */
2182
2183 /*
2184 * Real page fault? (PDPE level)
2185 */
2186 if ( (uErr & X86_TRAP_PF_RSVD)
2187 || !pPdpeSrc->n.u1Present
2188# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2189 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2190 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2191 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2192# endif
2193 )
2194 {
2195 uPageFaultLevel = 1;
2196 goto l_UpperLevelPageFault;
2197 }
2198# endif
2199
2200 /*
2201 * Real page fault? (PDE level)
2202 */
2203 if ( (uErr & X86_TRAP_PF_RSVD)
2204 || !pPdeSrc->n.u1Present
2205# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2206 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2207# endif
2208 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2209 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2210 {
2211 uPageFaultLevel = 2;
2212 goto l_UpperLevelPageFault;
2213 }
2214
2215 /*
2216 * First check the easy case where the page directory has been marked read-only to track
2217 * the dirty bit of an emulated BIG page
2218 */
2219 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2220 {
2221 /* Mark guest page directory as accessed */
2222# if PGM_GST_TYPE == PGM_TYPE_AMD64
2223 pPml4eSrc->n.u1Accessed = 1;
2224 pPdpeSrc->lm.u1Accessed = 1;
2225# endif
2226 pPdeSrc->b.u1Accessed = 1;
2227
2228 /*
2229 * Only write protection page faults are relevant here.
2230 */
2231 if (fWriteFault)
2232 {
2233 /* Mark guest page directory as dirty (BIG page only). */
2234 pPdeSrc->b.u1Dirty = 1;
2235
2236 if (pPdeDst->n.u1Present)
2237 {
2238 if (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY)
2239 {
2240 SHWPDE PdeDst = *pPdeDst;
2241
2242 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2243 Assert(pPdeSrc->b.u1Write);
2244
2245 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2246 * fault again and take this path to only invalidate the entry.
2247 */
2248 PdeDst.n.u1Write = 1;
2249 PdeDst.n.u1Accessed = 1;
2250 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2251 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2252 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2253 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2254 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2255 }
2256# ifdef IN_RING0
2257 else
2258 /* Check for stale TLB entry; only applies to the SMP guest case. */
2259 if ( pVM->cCpus > 1
2260 && pPdeDst->n.u1Write
2261 && pPdeDst->n.u1Accessed)
2262 {
2263 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2264 if (pShwPage)
2265 {
2266 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2267 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2268 if ( pPteDst->n.u1Present
2269 && pPteDst->n.u1Write)
2270 {
2271 /* Stale TLB entry. */
2272 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2273 PGM_INVL_PG(pVCpu, GCPtrPage);
2274
2275 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2276 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2277 }
2278 }
2279 }
2280# endif /* IN_RING0 */
2281 }
2282 }
2283 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2284 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2285 }
2286 /* else: 4KB page table */
2287
2288 /*
2289 * Map the guest page table.
2290 */
2291 PGSTPT pPTSrc;
2292 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2293 if (RT_SUCCESS(rc))
2294 {
2295 /*
2296 * Real page fault?
2297 */
2298 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2299 const GSTPTE PteSrc = *pPteSrc;
2300 if ( !PteSrc.n.u1Present
2301# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2302 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2303# endif
2304 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2305 || (fUserLevelFault && !PteSrc.n.u1User)
2306 )
2307 {
2308 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2309 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2310 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2311
2312 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2313 * See the 2nd case above as well.
2314 */
2315 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2316 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2317
2318 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2319 return VINF_EM_RAW_GUEST_TRAP;
2320 }
2321 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2322
2323 /*
2324 * Set the accessed bits in the page directory and the page table.
2325 */
2326# if PGM_GST_TYPE == PGM_TYPE_AMD64
2327 pPml4eSrc->n.u1Accessed = 1;
2328 pPdpeSrc->lm.u1Accessed = 1;
2329# endif
2330 pPdeSrc->n.u1Accessed = 1;
2331 pPteSrc->n.u1Accessed = 1;
2332
2333 /*
2334 * Only write protection page faults are relevant here.
2335 */
2336 if (fWriteFault)
2337 {
2338 /* Write access, so mark guest entry as dirty. */
2339# ifdef VBOX_WITH_STATISTICS
2340 if (!pPteSrc->n.u1Dirty)
2341 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2342 else
2343 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2344# endif
2345
2346 pPteSrc->n.u1Dirty = 1;
2347
2348 if (pPdeDst->n.u1Present)
2349 {
2350#ifndef IN_RING0
2351 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2352 * Our individual shadow handlers will provide more information and force a fatal exit.
2353 */
2354 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2355 {
2356 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2357 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2358 return VINF_SUCCESS;
2359 }
2360#endif
2361 /*
2362 * Map shadow page table.
2363 */
2364 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2365 if (pShwPage)
2366 {
2367 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2368 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2369 if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
2370 {
2371 if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
2372 {
2373 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2374 SHWPTE PteDst = *pPteDst;
2375
2376 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2377 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2378
2379 Assert(pPteSrc->n.u1Write);
2380
2381 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2382 * fault again and take this path to only invalidate the entry.
2383 */
2384 if ( pPage
2385 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2386 {
2387 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2388 PteDst.n.u1Write = 0;
2389 }
2390 else
2391 PteDst.n.u1Write = 1;
2392
2393 PteDst.n.u1Dirty = 1;
2394 PteDst.n.u1Accessed = 1;
2395 PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2396 ASMAtomicWriteSize(pPteDst, PteDst.u);
2397 PGM_INVL_PG(pVCpu, GCPtrPage);
2398
2399 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2400 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2401 }
2402# ifdef IN_RING0
2403 else
2404 /* Check for stale TLB entry; only applies to the SMP guest case. */
2405 if ( pVM->cCpus > 1
2406 && pPteDst->n.u1Write == 1
2407 && pPteDst->n.u1Accessed == 1)
2408 {
2409 /* Stale TLB entry. */
2410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2411 PGM_INVL_PG(pVCpu, GCPtrPage);
2412
2413 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2414 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2415 }
2416# endif
2417 }
2418 }
2419 else
2420 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2421 }
2422 }
2423/** @todo Optimize accessed bit emulation? */
2424# ifdef VBOX_STRICT
2425 /*
2426 * Sanity check.
2427 */
2428 else if ( !pPteSrc->n.u1Dirty
2429 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2430 && pPdeDst->n.u1Present)
2431 {
2432 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2433 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2434 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2435 if ( pPteDst->n.u1Present
2436 && pPteDst->n.u1Write)
2437 LogFlow(("Writable present page %RGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2438 }
2439# endif /* VBOX_STRICT */
2440 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2441 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2442 }
2443 AssertRC(rc);
2444 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2445 return rc;
2446
2447
2448l_UpperLevelPageFault:
2449 /*
2450 * Pagefault detected while checking the PML4E, PDPE or PDE.
2451 * Single exit handler to get rid of duplicate code paths.
2452 */
2453 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2454 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2455 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2456
2457 if (
2458# if PGM_GST_TYPE == PGM_TYPE_AMD64
2459 pPml4eSrc->n.u1Present &&
2460# endif
2461# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2462 pPdpeSrc->n.u1Present &&
2463# endif
2464 pPdeSrc->n.u1Present)
2465 {
2466 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2467 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2468 {
2469 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2470 }
2471 else
2472 {
2473 /*
2474 * Map the guest page table.
2475 */
2476 PGSTPT pPTSrc;
2477 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2478 if (RT_SUCCESS(rc))
2479 {
2480 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2481 const GSTPTE PteSrc = *pPteSrc;
2482 if (pPteSrc->n.u1Present)
2483 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2484 }
2485 AssertRC(rc);
2486 }
2487 }
2488 return VINF_EM_RAW_GUEST_TRAP;
2489}
2490#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2491
2492
2493/**
2494 * Sync a shadow page table.
2495 *
2496 * The shadow page table is not present. This includes the case where
2497 * there is a conflict with a mapping.
2498 *
2499 * @returns VBox status code.
2500 * @param pVCpu The VMCPU handle.
2501 * @param iPD Page directory index.
2502 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2503 * Assume this is a temporary mapping.
2504 * @param GCPtrPage GC Pointer of the page that caused the fault
2505 */
2506PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2507{
2508 PVM pVM = pVCpu->CTX_SUFF(pVM);
2509 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2510
2511 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2512#if 0 /* rarely useful; leave for debugging. */
2513 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2514#endif
2515 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2516
2517 Assert(PGMIsLocked(pVM));
2518
2519#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2520 || PGM_GST_TYPE == PGM_TYPE_PAE \
2521 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2522 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2523 && PGM_SHW_TYPE != PGM_TYPE_EPT
2524
2525 int rc = VINF_SUCCESS;
2526
2527 /*
2528 * Validate input a little bit.
2529 */
2530 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2531# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2532 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2533 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2534
2535 /* Fetch the pgm pool shadow descriptor. */
2536 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2537 Assert(pShwPde);
2538
2539# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2540 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2541 PPGMPOOLPAGE pShwPde = NULL;
2542 PX86PDPAE pPDDst;
2543 PSHWPDE pPdeDst;
2544
2545 /* Fetch the pgm pool shadow descriptor. */
2546 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2547 AssertRCSuccessReturn(rc, rc);
2548 Assert(pShwPde);
2549
2550 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2551 pPdeDst = &pPDDst->a[iPDDst];
2552
2553# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2554 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2555 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2556 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2557 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2558 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2559 AssertRCSuccessReturn(rc, rc);
2560 Assert(pPDDst);
2561 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2562# endif
2563 SHWPDE PdeDst = *pPdeDst;
2564
2565# if PGM_GST_TYPE == PGM_TYPE_AMD64
2566 /* Fetch the pgm pool shadow descriptor. */
2567 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2568 Assert(pShwPde);
2569# endif
2570
2571# ifndef PGM_WITHOUT_MAPPINGS
2572 /*
2573 * Check for conflicts.
2574 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2575 * HC: Simply resolve the conflict.
2576 */
2577 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2578 {
2579 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2580# ifndef IN_RING3
2581 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2582 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2583 return VERR_ADDRESS_CONFLICT;
2584# else
2585 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2586 Assert(pMapping);
2587# if PGM_GST_TYPE == PGM_TYPE_32BIT
2588 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2589# elif PGM_GST_TYPE == PGM_TYPE_PAE
2590 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2591# else
2592 AssertFailed(); /* can't happen for amd64 */
2593# endif
2594 if (RT_FAILURE(rc))
2595 {
2596 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2597 return rc;
2598 }
2599 PdeDst = *pPdeDst;
2600# endif
2601 }
2602# else /* PGM_WITHOUT_MAPPINGS */
2603 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2604# endif /* PGM_WITHOUT_MAPPINGS */
2605 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2606
2607# if defined(IN_RC)
2608 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2609 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2610# endif
2611
2612 /*
2613 * Sync page directory entry.
2614 */
2615 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2616 if (PdeSrc.n.u1Present)
2617 {
2618 /*
2619 * Allocate & map the page table.
2620 */
2621 PSHWPT pPTDst;
2622# if PGM_GST_TYPE == PGM_TYPE_AMD64
2623 const bool fPageTable = !PdeSrc.b.u1Size;
2624# else
2625 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2626# endif
2627 PPGMPOOLPAGE pShwPage;
2628 RTGCPHYS GCPhys;
2629 if (fPageTable)
2630 {
2631 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2632# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2633 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2634 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2635# endif
2636 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2637 }
2638 else
2639 {
2640 PGMPOOLACCESS enmAccess;
2641
2642# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2643 const bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVCpu) & MSR_K6_EFER_NXE);
2644 const bool fNoExecute = fNoExecuteBitValid && PdeSrc.n.u1NoExecute;
2645# else
2646 const bool fNoExecute = false;
2647# endif
2648
2649 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2650# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2651 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2652 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2653# endif
2654 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2655 if (PdeSrc.n.u1User)
2656 {
2657 if (PdeSrc.n.u1Write)
2658 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2659 else
2660 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2661 }
2662 else
2663 {
2664 if (PdeSrc.n.u1Write)
2665 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2666 else
2667 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2668 }
2669 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2670 }
2671 if (rc == VINF_SUCCESS)
2672 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2673 else if (rc == VINF_PGM_CACHED_PAGE)
2674 {
2675 /*
2676 * The PT was cached, just hook it up.
2677 */
2678 if (fPageTable)
2679 PdeDst.u = pShwPage->Core.Key
2680 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2681 else
2682 {
2683 PdeDst.u = pShwPage->Core.Key
2684 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2685 /* (see explanation and assumptions further down.) */
2686 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2687 {
2688 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2689 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2690 PdeDst.b.u1Write = 0;
2691 }
2692 }
2693 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2694# if defined(IN_RC)
2695 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2696# endif
2697 return VINF_SUCCESS;
2698 }
2699 else if (rc == VERR_PGM_POOL_FLUSHED)
2700 {
2701 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2702# if defined(IN_RC)
2703 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2704# endif
2705 return VINF_PGM_SYNC_CR3;
2706 }
2707 else
2708 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2709 PdeDst.u &= X86_PDE_AVL_MASK;
2710 PdeDst.u |= pShwPage->Core.Key;
2711
2712 /*
2713 * Page directory has been accessed (this is a fault situation, remember).
2714 */
2715 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2716 if (fPageTable)
2717 {
2718 /*
2719 * Page table - 4KB.
2720 *
2721 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2722 */
2723 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2724 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2725 PGSTPT pPTSrc;
2726 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2727 if (RT_SUCCESS(rc))
2728 {
2729 /*
2730 * Start by syncing the page directory entry so CSAM's TLB trick works.
2731 */
2732 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2733 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2734 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2735# if defined(IN_RC)
2736 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2737# endif
2738
2739 /*
2740 * Directory/page user or supervisor privilege: (same goes for read/write)
2741 *
2742 * Directory Page Combined
2743 * U/S U/S U/S
2744 * 0 0 0
2745 * 0 1 0
2746 * 1 0 0
2747 * 1 1 1
2748 *
2749 * Simple AND operation. Table listed for completeness.
2750 *
2751 */
2752 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2753# ifdef PGM_SYNC_N_PAGES
2754 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2755 unsigned iPTDst = iPTBase;
2756 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2757 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2758 iPTDst = 0;
2759 else
2760 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2761# else /* !PGM_SYNC_N_PAGES */
2762 unsigned iPTDst = 0;
2763 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2764# endif /* !PGM_SYNC_N_PAGES */
2765# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2766 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2767 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2768# else
2769 const unsigned offPTSrc = 0;
2770# endif
2771 for (; iPTDst < iPTDstEnd; iPTDst++)
2772 {
2773 const unsigned iPTSrc = iPTDst + offPTSrc;
2774 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2775
2776 if (PteSrc.n.u1Present) /* we've already cleared it above */
2777 {
2778# ifndef IN_RING0
2779 /*
2780 * Assuming kernel code will be marked as supervisor - and not as user level
2781 * and executed using a conforming code selector - And marked as readonly.
2782 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2783 */
2784 PPGMPAGE pPage;
2785 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2786 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2787 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2788 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2789 )
2790# endif
2791 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2792 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2793 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2794 PteSrc.n.u1Present,
2795 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2796 PteSrc.n.u1User & PdeSrc.n.u1User,
2797 (uint64_t)PteSrc.u,
2798 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2799 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2800 }
2801 } /* for PTEs */
2802 }
2803 }
2804 else
2805 {
2806 /*
2807 * Big page - 2/4MB.
2808 *
2809 * We'll walk the ram range list in parallel and optimize lookups.
2810 * We will only sync on shadow page table at a time.
2811 */
2812 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2813
2814 /**
2815 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2816 */
2817
2818 /*
2819 * Start by syncing the page directory entry.
2820 */
2821 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2822 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2823
2824 /*
2825 * If the page is not flagged as dirty and is writable, then make it read-only
2826 * at PD level, so we can set the dirty bit when the page is modified.
2827 *
2828 * ASSUMES that page access handlers are implemented on page table entry level.
2829 * Thus we will first catch the dirty access and set PDE.D and restart. If
2830 * there is an access handler, we'll trap again and let it work on the problem.
2831 */
2832 /** @todo move the above stuff to a section in the PGM documentation. */
2833 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2834 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2835 {
2836 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2837 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2838 PdeDst.b.u1Write = 0;
2839 }
2840 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2841# if defined(IN_RC)
2842 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2843# endif
2844
2845 /*
2846 * Fill the shadow page table.
2847 */
2848 /* Get address and flags from the source PDE. */
2849 SHWPTE PteDstBase;
2850 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2851
2852 /* Loop thru the entries in the shadow PT. */
2853 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2854 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2855 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2856 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2857 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2858 unsigned iPTDst = 0;
2859 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2860 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2861 {
2862 /* Advance ram range list. */
2863 while (pRam && GCPhys > pRam->GCPhysLast)
2864 pRam = pRam->CTX_SUFF(pNext);
2865 if (pRam && GCPhys >= pRam->GCPhys)
2866 {
2867 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2868 do
2869 {
2870 /* Make shadow PTE. */
2871 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2872 SHWPTE PteDst;
2873
2874# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2875 /* Try make the page writable if necessary. */
2876 if ( PteDstBase.n.u1Write
2877 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2878 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2879 {
2880 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
2881 AssertRCReturn(rc, rc);
2882 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2883 break;
2884 }
2885# endif
2886
2887 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2888 {
2889 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2890 {
2891 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2892 PteDst.n.u1Write = 0;
2893 }
2894 else
2895 PteDst.u = 0;
2896 }
2897# ifndef IN_RING0
2898 /*
2899 * Assuming kernel code will be marked as supervisor and not as user level and executed
2900 * using a conforming code selector. Don't check for readonly, as that implies the whole
2901 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2902 */
2903 else if ( !PdeSrc.n.u1User
2904 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2905 PteDst.u = 0;
2906# endif
2907 else
2908 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2909
2910 /* Only map writable pages writable. */
2911 if ( PteDst.n.u1Write
2912 && PteDst.n.u1Present
2913 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2914 {
2915 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2916 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2917 }
2918
2919# ifdef PGMPOOL_WITH_USER_TRACKING
2920 if (PteDst.n.u1Present)
2921 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2922# endif
2923 /* commit it */
2924 pPTDst->a[iPTDst] = PteDst;
2925 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2926 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2927 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2928
2929 /* advance */
2930 GCPhys += PAGE_SIZE;
2931 iHCPage++;
2932 iPTDst++;
2933 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2934 && GCPhys <= pRam->GCPhysLast);
2935 }
2936 else if (pRam)
2937 {
2938 Log(("Invalid pages at %RGp\n", GCPhys));
2939 do
2940 {
2941 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2942 GCPhys += PAGE_SIZE;
2943 iPTDst++;
2944 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2945 && GCPhys < pRam->GCPhys);
2946 }
2947 else
2948 {
2949 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2950 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2951 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2952 }
2953 } /* while more PTEs */
2954 } /* 4KB / 4MB */
2955 }
2956 else
2957 AssertRelease(!PdeDst.n.u1Present);
2958
2959 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2960 if (RT_FAILURE(rc))
2961 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2962 return rc;
2963
2964#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2965 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2966 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2967 && !defined(IN_RC)
2968
2969 /*
2970 * Validate input a little bit.
2971 */
2972 int rc = VINF_SUCCESS;
2973# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2974 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2975 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2976
2977 /* Fetch the pgm pool shadow descriptor. */
2978 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2979 Assert(pShwPde);
2980
2981# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2982 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2983 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2984 PX86PDPAE pPDDst;
2985 PSHWPDE pPdeDst;
2986
2987 /* Fetch the pgm pool shadow descriptor. */
2988 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2989 AssertRCSuccessReturn(rc, rc);
2990 Assert(pShwPde);
2991
2992 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2993 pPdeDst = &pPDDst->a[iPDDst];
2994
2995# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2996 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2997 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2998 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2999 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3000 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3001 AssertRCSuccessReturn(rc, rc);
3002 Assert(pPDDst);
3003 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3004
3005 /* Fetch the pgm pool shadow descriptor. */
3006 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3007 Assert(pShwPde);
3008
3009# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3010 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3011 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3012 PEPTPD pPDDst;
3013 PEPTPDPT pPdptDst;
3014
3015 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3016 if (rc != VINF_SUCCESS)
3017 {
3018 AssertRC(rc);
3019 return rc;
3020 }
3021 Assert(pPDDst);
3022 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3023
3024 /* Fetch the pgm pool shadow descriptor. */
3025 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3026 Assert(pShwPde);
3027# endif
3028 SHWPDE PdeDst = *pPdeDst;
3029
3030 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3031 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3032
3033 GSTPDE PdeSrc;
3034 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3035 PdeSrc.n.u1Present = 1;
3036 PdeSrc.n.u1Write = 1;
3037 PdeSrc.n.u1Accessed = 1;
3038 PdeSrc.n.u1User = 1;
3039
3040 /*
3041 * Allocate & map the page table.
3042 */
3043 PSHWPT pPTDst;
3044 PPGMPOOLPAGE pShwPage;
3045 RTGCPHYS GCPhys;
3046
3047 /* Virtual address = physical address */
3048 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3049 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3050
3051 if ( rc == VINF_SUCCESS
3052 || rc == VINF_PGM_CACHED_PAGE)
3053 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
3054 else
3055 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3056
3057 PdeDst.u &= X86_PDE_AVL_MASK;
3058 PdeDst.u |= pShwPage->Core.Key;
3059 PdeDst.n.u1Present = 1;
3060 PdeDst.n.u1Write = 1;
3061# if PGM_SHW_TYPE == PGM_TYPE_EPT
3062 PdeDst.n.u1Execute = 1;
3063# else
3064 PdeDst.n.u1User = 1;
3065 PdeDst.n.u1Accessed = 1;
3066# endif
3067 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3068
3069 pgmLock(pVM);
3070 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3071 pgmUnlock(pVM);
3072 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3073 return rc;
3074
3075#else
3076 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3077 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3078 return VERR_INTERNAL_ERROR;
3079#endif
3080}
3081
3082
3083
3084/**
3085 * Prefetch a page/set of pages.
3086 *
3087 * Typically used to sync commonly used pages before entering raw mode
3088 * after a CR3 reload.
3089 *
3090 * @returns VBox status code.
3091 * @param pVCpu The VMCPU handle.
3092 * @param GCPtrPage Page to invalidate.
3093 */
3094PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3095{
3096#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3097 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3098 /*
3099 * Check that all Guest levels thru the PDE are present, getting the
3100 * PD and PDE in the processes.
3101 */
3102 int rc = VINF_SUCCESS;
3103# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3104# if PGM_GST_TYPE == PGM_TYPE_32BIT
3105 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3106 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3107# elif PGM_GST_TYPE == PGM_TYPE_PAE
3108 unsigned iPDSrc;
3109 X86PDPE PdpeSrc;
3110 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3111 if (!pPDSrc)
3112 return VINF_SUCCESS; /* not present */
3113# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3114 unsigned iPDSrc;
3115 PX86PML4E pPml4eSrc;
3116 X86PDPE PdpeSrc;
3117 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3118 if (!pPDSrc)
3119 return VINF_SUCCESS; /* not present */
3120# endif
3121 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3122# else
3123 PGSTPD pPDSrc = NULL;
3124 const unsigned iPDSrc = 0;
3125 GSTPDE PdeSrc;
3126
3127 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3128 PdeSrc.n.u1Present = 1;
3129 PdeSrc.n.u1Write = 1;
3130 PdeSrc.n.u1Accessed = 1;
3131 PdeSrc.n.u1User = 1;
3132# endif
3133
3134 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3135 {
3136 PVM pVM = pVCpu->CTX_SUFF(pVM);
3137 pgmLock(pVM);
3138
3139# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3140 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
3141# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3142 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3143 PX86PDPAE pPDDst;
3144 X86PDEPAE PdeDst;
3145# if PGM_GST_TYPE != PGM_TYPE_PAE
3146 X86PDPE PdpeSrc;
3147
3148 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3149 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3150# endif
3151 int rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3152 if (rc != VINF_SUCCESS)
3153 {
3154 pgmUnlock(pVM);
3155 AssertRC(rc);
3156 return rc;
3157 }
3158 Assert(pPDDst);
3159 PdeDst = pPDDst->a[iPDDst];
3160
3161# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3162 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3163 PX86PDPAE pPDDst;
3164 X86PDEPAE PdeDst;
3165
3166# if PGM_GST_TYPE == PGM_TYPE_PROT
3167 /* AMD-V nested paging */
3168 X86PML4E Pml4eSrc;
3169 X86PDPE PdpeSrc;
3170 PX86PML4E pPml4eSrc = &Pml4eSrc;
3171
3172 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3173 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3174 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3175# endif
3176
3177 int rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3178 if (rc != VINF_SUCCESS)
3179 {
3180 pgmUnlock(pVM);
3181 AssertRC(rc);
3182 return rc;
3183 }
3184 Assert(pPDDst);
3185 PdeDst = pPDDst->a[iPDDst];
3186# endif
3187 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3188 {
3189 if (!PdeDst.n.u1Present)
3190 {
3191 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3192 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3193 }
3194 else
3195 {
3196 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3197 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3198 * makes no sense to prefetch more than one page.
3199 */
3200 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3201 if (RT_SUCCESS(rc))
3202 rc = VINF_SUCCESS;
3203 }
3204 }
3205 pgmUnlock(pVM);
3206 }
3207 return rc;
3208
3209#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3210 return VINF_SUCCESS; /* ignore */
3211#endif
3212}
3213
3214
3215
3216
3217/**
3218 * Syncs a page during a PGMVerifyAccess() call.
3219 *
3220 * @returns VBox status code (informational included).
3221 * @param pVCpu The VMCPU handle.
3222 * @param GCPtrPage The address of the page to sync.
3223 * @param fPage The effective guest page flags.
3224 * @param uErr The trap error code.
3225 */
3226PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3227{
3228 PVM pVM = pVCpu->CTX_SUFF(pVM);
3229
3230 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3231
3232 Assert(!HWACCMIsNestedPagingActive(pVM));
3233#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3234 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3235
3236# ifndef IN_RING0
3237 if (!(fPage & X86_PTE_US))
3238 {
3239 /*
3240 * Mark this page as safe.
3241 */
3242 /** @todo not correct for pages that contain both code and data!! */
3243 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3244 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
3245 }
3246# endif
3247
3248 /*
3249 * Get guest PD and index.
3250 */
3251# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3252# if PGM_GST_TYPE == PGM_TYPE_32BIT
3253 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3254 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3255# elif PGM_GST_TYPE == PGM_TYPE_PAE
3256 unsigned iPDSrc = 0;
3257 X86PDPE PdpeSrc;
3258 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3259
3260 if (pPDSrc)
3261 {
3262 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3263 return VINF_EM_RAW_GUEST_TRAP;
3264 }
3265# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3266 unsigned iPDSrc;
3267 PX86PML4E pPml4eSrc;
3268 X86PDPE PdpeSrc;
3269 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3270 if (!pPDSrc)
3271 {
3272 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3273 return VINF_EM_RAW_GUEST_TRAP;
3274 }
3275# endif
3276# else
3277 PGSTPD pPDSrc = NULL;
3278 const unsigned iPDSrc = 0;
3279# endif
3280 int rc = VINF_SUCCESS;
3281
3282 pgmLock(pVM);
3283
3284 /*
3285 * First check if the shadow pd is present.
3286 */
3287# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3288 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3289# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3290 PX86PDEPAE pPdeDst;
3291 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3292 PX86PDPAE pPDDst;
3293# if PGM_GST_TYPE != PGM_TYPE_PAE
3294 X86PDPE PdpeSrc;
3295
3296 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3297 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3298# endif
3299 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3300 if (rc != VINF_SUCCESS)
3301 {
3302 pgmUnlock(pVM);
3303 AssertRC(rc);
3304 return rc;
3305 }
3306 Assert(pPDDst);
3307 pPdeDst = &pPDDst->a[iPDDst];
3308
3309# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3310 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3311 PX86PDPAE pPDDst;
3312 PX86PDEPAE pPdeDst;
3313
3314# if PGM_GST_TYPE == PGM_TYPE_PROT
3315 /* AMD-V nested paging */
3316 X86PML4E Pml4eSrc;
3317 X86PDPE PdpeSrc;
3318 PX86PML4E pPml4eSrc = &Pml4eSrc;
3319
3320 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3321 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3322 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3323# endif
3324
3325 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3326 if (rc != VINF_SUCCESS)
3327 {
3328 pgmUnlock(pVM);
3329 AssertRC(rc);
3330 return rc;
3331 }
3332 Assert(pPDDst);
3333 pPdeDst = &pPDDst->a[iPDDst];
3334# endif
3335
3336# if defined(IN_RC)
3337 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3338 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
3339# endif
3340
3341 if (!pPdeDst->n.u1Present)
3342 {
3343 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3344 if (rc != VINF_SUCCESS)
3345 {
3346# if defined(IN_RC)
3347 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3348 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3349# endif
3350 pgmUnlock(pVM);
3351 AssertRC(rc);
3352 return rc;
3353 }
3354 }
3355
3356# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3357 /* Check for dirty bit fault */
3358 rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3359 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3360 Log(("PGMVerifyAccess: success (dirty)\n"));
3361 else
3362 {
3363 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3364# else
3365 {
3366 GSTPDE PdeSrc;
3367 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3368 PdeSrc.n.u1Present = 1;
3369 PdeSrc.n.u1Write = 1;
3370 PdeSrc.n.u1Accessed = 1;
3371 PdeSrc.n.u1User = 1;
3372
3373# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3374 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3375 if (uErr & X86_TRAP_PF_US)
3376 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3377 else /* supervisor */
3378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3379
3380 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3381 if (RT_SUCCESS(rc))
3382 {
3383 /* Page was successfully synced */
3384 Log2(("PGMVerifyAccess: success (sync)\n"));
3385 rc = VINF_SUCCESS;
3386 }
3387 else
3388 {
3389 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3390 rc = VINF_EM_RAW_GUEST_TRAP;
3391 }
3392 }
3393# if defined(IN_RC)
3394 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3395 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3396# endif
3397 pgmUnlock(pVM);
3398 return rc;
3399
3400#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3401
3402 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3403 return VERR_INTERNAL_ERROR;
3404#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3405}
3406
3407#undef MY_STAM_COUNTER_INC
3408#define MY_STAM_COUNTER_INC(a) do { } while (0)
3409
3410
3411/**
3412 * Syncs the paging hierarchy starting at CR3.
3413 *
3414 * @returns VBox status code, no specials.
3415 * @param pVCpu The VMCPU handle.
3416 * @param cr0 Guest context CR0 register
3417 * @param cr3 Guest context CR3 register
3418 * @param cr4 Guest context CR4 register
3419 * @param fGlobal Including global page directories or not
3420 */
3421PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3422{
3423 PVM pVM = pVCpu->CTX_SUFF(pVM);
3424
3425 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
3426 fGlobal = true; /* Change this CR3 reload to be a global one. */
3427
3428 LogFlow(("SyncCR3 %d\n", fGlobal));
3429
3430#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3431
3432 pgmLock(pVM);
3433# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3434 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3435 if (pPool->cDirtyPages)
3436 pgmPoolResetDirtyPages(pVM);
3437# endif
3438
3439 /*
3440 * Update page access handlers.
3441 * The virtual are always flushed, while the physical are only on demand.
3442 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3443 * have to look into that later because it will have a bad influence on the performance.
3444 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3445 * bird: Yes, but that won't work for aliases.
3446 */
3447 /** @todo this MUST go away. See #1557. */
3448 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3449 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3450 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3451 pgmUnlock(pVM);
3452#endif
3453
3454#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3455 /*
3456 * Nested / EPT - almost no work.
3457 */
3458 /** @todo check if this is really necessary; the call does it as well... */
3459 HWACCMFlushTLB(pVCpu);
3460 return VINF_SUCCESS;
3461
3462#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3463 /*
3464 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3465 * out the shadow parts when the guest modifies its tables.
3466 */
3467 return VINF_SUCCESS;
3468
3469#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3470
3471# ifdef PGM_WITHOUT_MAPPINGS
3472 Assert(pVM->pgm.s.fMappingsFixed);
3473 return VINF_SUCCESS;
3474# else
3475 /* Nothing to do when mappings are fixed. */
3476 if (pVM->pgm.s.fMappingsFixed)
3477 return VINF_SUCCESS;
3478
3479 int rc = PGMMapResolveConflicts(pVM);
3480 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3481 if (rc == VINF_PGM_SYNC_CR3)
3482 {
3483 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3484 return VINF_PGM_SYNC_CR3;
3485 }
3486# endif
3487 return VINF_SUCCESS;
3488#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3489}
3490
3491
3492
3493
3494#ifdef VBOX_STRICT
3495#ifdef IN_RC
3496# undef AssertMsgFailed
3497# define AssertMsgFailed Log
3498#endif
3499#ifdef IN_RING3
3500# include <VBox/dbgf.h>
3501
3502/**
3503 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3504 *
3505 * @returns VBox status code (VINF_SUCCESS).
3506 * @param cr3 The root of the hierarchy.
3507 * @param crr The cr4, only PAE and PSE is currently used.
3508 * @param fLongMode Set if long mode, false if not long mode.
3509 * @param cMaxDepth Number of levels to dump.
3510 * @param pHlp Pointer to the output functions.
3511 */
3512RT_C_DECLS_BEGIN
3513VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3514RT_C_DECLS_END
3515
3516#endif
3517
3518/**
3519 * Checks that the shadow page table is in sync with the guest one.
3520 *
3521 * @returns The number of errors.
3522 * @param pVM The virtual machine.
3523 * @param pVCpu The VMCPU handle.
3524 * @param cr3 Guest context CR3 register
3525 * @param cr4 Guest context CR4 register
3526 * @param GCPtr Where to start. Defaults to 0.
3527 * @param cb How much to check. Defaults to everything.
3528 */
3529PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3530{
3531#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3532 return 0;
3533#else
3534 unsigned cErrors = 0;
3535 PVM pVM = pVCpu->CTX_SUFF(pVM);
3536 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3537
3538#if PGM_GST_TYPE == PGM_TYPE_PAE
3539 /** @todo currently broken; crashes below somewhere */
3540 AssertFailed();
3541#endif
3542
3543#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3544 || PGM_GST_TYPE == PGM_TYPE_PAE \
3545 || PGM_GST_TYPE == PGM_TYPE_AMD64
3546
3547# if PGM_GST_TYPE == PGM_TYPE_AMD64
3548 bool fBigPagesSupported = true;
3549# else
3550 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3551# endif
3552 PPGMCPU pPGM = &pVCpu->pgm.s;
3553 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3554 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3555# ifndef IN_RING0
3556 RTHCPHYS HCPhys; /* general usage. */
3557# endif
3558 int rc;
3559
3560 /*
3561 * Check that the Guest CR3 and all its mappings are correct.
3562 */
3563 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3564 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3565 false);
3566# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3567# if PGM_GST_TYPE == PGM_TYPE_32BIT
3568 rc = PGMShwGetPage(pVCpu, (RTGCPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3569# else
3570 rc = PGMShwGetPage(pVCpu, (RTGCPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3571# endif
3572 AssertRCReturn(rc, 1);
3573 HCPhys = NIL_RTHCPHYS;
3574 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3575 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3576# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3577 pgmGstGet32bitPDPtr(pPGM);
3578 RTGCPHYS GCPhys;
3579 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3580 AssertRCReturn(rc, 1);
3581 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3582# endif
3583# endif /* !IN_RING0 */
3584
3585 /*
3586 * Get and check the Shadow CR3.
3587 */
3588# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3589 unsigned cPDEs = X86_PG_ENTRIES;
3590 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3591# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3592# if PGM_GST_TYPE == PGM_TYPE_32BIT
3593 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3594# else
3595 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3596# endif
3597 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3598# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3599 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3600 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3601# endif
3602 if (cb != ~(RTGCPTR)0)
3603 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3604
3605/** @todo call the other two PGMAssert*() functions. */
3606
3607# if PGM_GST_TYPE == PGM_TYPE_AMD64
3608 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3609
3610 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3611 {
3612 PPGMPOOLPAGE pShwPdpt = NULL;
3613 PX86PML4E pPml4eSrc;
3614 PX86PML4E pPml4eDst;
3615 RTGCPHYS GCPhysPdptSrc;
3616
3617 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3618 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3619
3620 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3621 if (!pPml4eDst->n.u1Present)
3622 {
3623 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3624 continue;
3625 }
3626
3627 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3628 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3629
3630 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3631 {
3632 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3633 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3634 cErrors++;
3635 continue;
3636 }
3637
3638 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3639 {
3640 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3641 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3642 cErrors++;
3643 continue;
3644 }
3645
3646 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3647 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3648 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3649 {
3650 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3651 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3652 cErrors++;
3653 continue;
3654 }
3655# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3656 {
3657# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3658
3659# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3660 /*
3661 * Check the PDPTEs too.
3662 */
3663 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3664
3665 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3666 {
3667 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3668 PPGMPOOLPAGE pShwPde = NULL;
3669 PX86PDPE pPdpeDst;
3670 RTGCPHYS GCPhysPdeSrc;
3671# if PGM_GST_TYPE == PGM_TYPE_PAE
3672 X86PDPE PdpeSrc;
3673 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3674 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
3675# else
3676 PX86PML4E pPml4eSrc;
3677 X86PDPE PdpeSrc;
3678 PX86PDPT pPdptDst;
3679 PX86PDPAE pPDDst;
3680 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3681
3682 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3683 if (rc != VINF_SUCCESS)
3684 {
3685 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3686 GCPtr += 512 * _2M;
3687 continue; /* next PDPTE */
3688 }
3689 Assert(pPDDst);
3690# endif
3691 Assert(iPDSrc == 0);
3692
3693 pPdpeDst = &pPdptDst->a[iPdpt];
3694
3695 if (!pPdpeDst->n.u1Present)
3696 {
3697 GCPtr += 512 * _2M;
3698 continue; /* next PDPTE */
3699 }
3700
3701 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3702 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3703
3704 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3705 {
3706 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3707 GCPtr += 512 * _2M;
3708 cErrors++;
3709 continue;
3710 }
3711
3712 if (GCPhysPdeSrc != pShwPde->GCPhys)
3713 {
3714# if PGM_GST_TYPE == PGM_TYPE_AMD64
3715 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3716# else
3717 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3718# endif
3719 GCPtr += 512 * _2M;
3720 cErrors++;
3721 continue;
3722 }
3723
3724# if PGM_GST_TYPE == PGM_TYPE_AMD64
3725 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3726 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3727 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3728 {
3729 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3730 GCPtr += 512 * _2M;
3731 cErrors++;
3732 continue;
3733 }
3734# endif
3735
3736# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3737 {
3738# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3739# if PGM_GST_TYPE == PGM_TYPE_32BIT
3740 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3741# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3742 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
3743# endif
3744# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3745 /*
3746 * Iterate the shadow page directory.
3747 */
3748 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3749 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3750
3751 for (;
3752 iPDDst < cPDEs;
3753 iPDDst++, GCPtr += cIncrement)
3754 {
3755# if PGM_SHW_TYPE == PGM_TYPE_PAE
3756 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3757# else
3758 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3759# endif
3760 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3761 {
3762 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3763 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3764 {
3765 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3766 cErrors++;
3767 continue;
3768 }
3769 }
3770 else if ( (PdeDst.u & X86_PDE_P)
3771 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3772 )
3773 {
3774 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3775 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3776 if (!pPoolPage)
3777 {
3778 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3779 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3780 cErrors++;
3781 continue;
3782 }
3783 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3784
3785 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3786 {
3787 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3788 GCPtr, (uint64_t)PdeDst.u));
3789 cErrors++;
3790 }
3791
3792 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3793 {
3794 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3795 GCPtr, (uint64_t)PdeDst.u));
3796 cErrors++;
3797 }
3798
3799 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3800 if (!PdeSrc.n.u1Present)
3801 {
3802 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3803 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3804 cErrors++;
3805 continue;
3806 }
3807
3808 if ( !PdeSrc.b.u1Size
3809 || !fBigPagesSupported)
3810 {
3811 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3812# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3813 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3814# endif
3815 }
3816 else
3817 {
3818# if PGM_GST_TYPE == PGM_TYPE_32BIT
3819 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3820 {
3821 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3822 GCPtr, (uint64_t)PdeSrc.u));
3823 cErrors++;
3824 continue;
3825 }
3826# endif
3827 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3828# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3829 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3830# endif
3831 }
3832
3833 if ( pPoolPage->enmKind
3834 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3835 {
3836 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3837 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3838 cErrors++;
3839 }
3840
3841 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3842 if (!pPhysPage)
3843 {
3844 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3845 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3846 cErrors++;
3847 continue;
3848 }
3849
3850 if (GCPhysGst != pPoolPage->GCPhys)
3851 {
3852 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3853 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3854 cErrors++;
3855 continue;
3856 }
3857
3858 if ( !PdeSrc.b.u1Size
3859 || !fBigPagesSupported)
3860 {
3861 /*
3862 * Page Table.
3863 */
3864 const GSTPT *pPTSrc;
3865 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3866 if (RT_FAILURE(rc))
3867 {
3868 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3869 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3870 cErrors++;
3871 continue;
3872 }
3873 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3874 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3875 {
3876 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3877 // (This problem will go away when/if we shadow multiple CR3s.)
3878 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3879 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3880 cErrors++;
3881 continue;
3882 }
3883 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3884 {
3885 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3886 GCPtr, (uint64_t)PdeDst.u));
3887 cErrors++;
3888 continue;
3889 }
3890
3891 /* iterate the page table. */
3892# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3893 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3894 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3895# else
3896 const unsigned offPTSrc = 0;
3897# endif
3898 for (unsigned iPT = 0, off = 0;
3899 iPT < RT_ELEMENTS(pPTDst->a);
3900 iPT++, off += PAGE_SIZE)
3901 {
3902 const SHWPTE PteDst = pPTDst->a[iPT];
3903
3904 /* skip not-present entries. */
3905 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3906 continue;
3907 Assert(PteDst.n.u1Present);
3908
3909 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3910 if (!PteSrc.n.u1Present)
3911 {
3912# ifdef IN_RING3
3913 PGMAssertHandlerAndFlagsInSync(pVM);
3914 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3915# endif
3916 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3917 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3918 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3919 cErrors++;
3920 continue;
3921 }
3922
3923 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3924# if 1 /** @todo sync accessed bit properly... */
3925 fIgnoreFlags |= X86_PTE_A;
3926# endif
3927
3928 /* match the physical addresses */
3929 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3930 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3931
3932# ifdef IN_RING3
3933 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3934 if (RT_FAILURE(rc))
3935 {
3936 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3937 {
3938 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3939 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3940 cErrors++;
3941 continue;
3942 }
3943 }
3944 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3945 {
3946 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3947 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3948 cErrors++;
3949 continue;
3950 }
3951# endif
3952
3953 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3954 if (!pPhysPage)
3955 {
3956# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3957 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3958 {
3959 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3960 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3961 cErrors++;
3962 continue;
3963 }
3964# endif
3965 if (PteDst.n.u1Write)
3966 {
3967 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3968 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3969 cErrors++;
3970 }
3971 fIgnoreFlags |= X86_PTE_RW;
3972 }
3973 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3974 {
3975 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3976 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3977 cErrors++;
3978 continue;
3979 }
3980
3981 /* flags */
3982 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3983 {
3984 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3985 {
3986 if (PteDst.n.u1Write)
3987 {
3988 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3989 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3990 cErrors++;
3991 continue;
3992 }
3993 fIgnoreFlags |= X86_PTE_RW;
3994 }
3995 else
3996 {
3997 if (PteDst.n.u1Present)
3998 {
3999 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4000 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4001 cErrors++;
4002 continue;
4003 }
4004 fIgnoreFlags |= X86_PTE_P;
4005 }
4006 }
4007 else
4008 {
4009 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4010 {
4011 if (PteDst.n.u1Write)
4012 {
4013 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4014 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4015 cErrors++;
4016 continue;
4017 }
4018 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4019 {
4020 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4021 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4022 cErrors++;
4023 continue;
4024 }
4025 if (PteDst.n.u1Dirty)
4026 {
4027 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4028 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4029 cErrors++;
4030 }
4031# if 0 /** @todo sync access bit properly... */
4032 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4033 {
4034 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4035 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4036 cErrors++;
4037 }
4038 fIgnoreFlags |= X86_PTE_RW;
4039# else
4040 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4041# endif
4042 }
4043 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4044 {
4045 /* access bit emulation (not implemented). */
4046 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4047 {
4048 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4049 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4050 cErrors++;
4051 continue;
4052 }
4053 if (!PteDst.n.u1Accessed)
4054 {
4055 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4056 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4057 cErrors++;
4058 }
4059 fIgnoreFlags |= X86_PTE_P;
4060 }
4061# ifdef DEBUG_sandervl
4062 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4063# endif
4064 }
4065
4066 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4067 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4068 )
4069 {
4070 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4071 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4072 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4073 cErrors++;
4074 continue;
4075 }
4076 } /* foreach PTE */
4077 }
4078 else
4079 {
4080 /*
4081 * Big Page.
4082 */
4083 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4084 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4085 {
4086 if (PdeDst.n.u1Write)
4087 {
4088 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4089 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4090 cErrors++;
4091 continue;
4092 }
4093 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4094 {
4095 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4096 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4097 cErrors++;
4098 continue;
4099 }
4100# if 0 /** @todo sync access bit properly... */
4101 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4102 {
4103 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4104 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4105 cErrors++;
4106 }
4107 fIgnoreFlags |= X86_PTE_RW;
4108# else
4109 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4110# endif
4111 }
4112 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4113 {
4114 /* access bit emulation (not implemented). */
4115 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4116 {
4117 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4118 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4119 cErrors++;
4120 continue;
4121 }
4122 if (!PdeDst.n.u1Accessed)
4123 {
4124 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4125 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4126 cErrors++;
4127 }
4128 fIgnoreFlags |= X86_PTE_P;
4129 }
4130
4131 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4132 {
4133 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4134 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4135 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4136 cErrors++;
4137 }
4138
4139 /* iterate the page table. */
4140 for (unsigned iPT = 0, off = 0;
4141 iPT < RT_ELEMENTS(pPTDst->a);
4142 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4143 {
4144 const SHWPTE PteDst = pPTDst->a[iPT];
4145
4146 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4147 {
4148 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4149 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4150 cErrors++;
4151 }
4152
4153 /* skip not-present entries. */
4154 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4155 continue;
4156
4157 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4158
4159 /* match the physical addresses */
4160 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4161
4162# ifdef IN_RING3
4163 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4164 if (RT_FAILURE(rc))
4165 {
4166 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4167 {
4168 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4169 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4170 cErrors++;
4171 }
4172 }
4173 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4174 {
4175 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4176 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4177 cErrors++;
4178 continue;
4179 }
4180# endif
4181 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4182 if (!pPhysPage)
4183 {
4184# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4185 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4186 {
4187 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4188 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4189 cErrors++;
4190 continue;
4191 }
4192# endif
4193 if (PteDst.n.u1Write)
4194 {
4195 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4196 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4197 cErrors++;
4198 }
4199 fIgnoreFlags |= X86_PTE_RW;
4200 }
4201 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4202 {
4203 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4204 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4205 cErrors++;
4206 continue;
4207 }
4208
4209 /* flags */
4210 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4211 {
4212 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4213 {
4214 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4215 {
4216 if (PteDst.n.u1Write)
4217 {
4218 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4219 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4220 cErrors++;
4221 continue;
4222 }
4223 fIgnoreFlags |= X86_PTE_RW;
4224 }
4225 }
4226 else
4227 {
4228 if (PteDst.n.u1Present)
4229 {
4230 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4232 cErrors++;
4233 continue;
4234 }
4235 fIgnoreFlags |= X86_PTE_P;
4236 }
4237 }
4238
4239 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4240 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4241 )
4242 {
4243 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4244 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4245 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4246 cErrors++;
4247 continue;
4248 }
4249 } /* for each PTE */
4250 }
4251 }
4252 /* not present */
4253
4254 } /* for each PDE */
4255
4256 } /* for each PDPTE */
4257
4258 } /* for each PML4E */
4259
4260# ifdef DEBUG
4261 if (cErrors)
4262 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4263# endif
4264
4265#endif /* GST == 32BIT, PAE or AMD64 */
4266 return cErrors;
4267
4268#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4269}
4270#endif /* VBOX_STRICT */
4271
4272
4273/**
4274 * Sets up the CR3 for shadow paging
4275 *
4276 * @returns Strict VBox status code.
4277 * @retval VINF_SUCCESS.
4278 *
4279 * @param pVCpu The VMCPU handle.
4280 * @param GCPhysCR3 The physical address in the CR3 register.
4281 */
4282PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4283{
4284 PVM pVM = pVCpu->CTX_SUFF(pVM);
4285
4286 /* Update guest paging info. */
4287#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4288 || PGM_GST_TYPE == PGM_TYPE_PAE \
4289 || PGM_GST_TYPE == PGM_TYPE_AMD64
4290
4291 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4292
4293 /*
4294 * Map the page CR3 points at.
4295 */
4296 RTHCPTR HCPtrGuestCR3;
4297 RTHCPHYS HCPhysGuestCR3;
4298 pgmLock(pVM);
4299 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4300 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4301 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPage);
4302 /** @todo this needs some reworking wrt. locking. */
4303# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4304 HCPtrGuestCR3 = NIL_RTHCPTR;
4305 int rc = VINF_SUCCESS;
4306# else
4307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4308# endif
4309 pgmUnlock(pVM);
4310 if (RT_SUCCESS(rc))
4311 {
4312 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4313 if (RT_SUCCESS(rc))
4314 {
4315# ifdef IN_RC
4316 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4317# endif
4318# if PGM_GST_TYPE == PGM_TYPE_32BIT
4319 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4320# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4321 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4322# endif
4323 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))pVM->pgm.s.GCPtrCR3Mapping;
4324
4325# elif PGM_GST_TYPE == PGM_TYPE_PAE
4326 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4327 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4328# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4329 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4330# endif
4331 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RCPTRTYPE(uint8_t *))pVM->pgm.s.GCPtrCR3Mapping + off);
4332 Log(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4333
4334 /*
4335 * Map the 4 PDs too.
4336 */
4337 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVCpu->pgm.s);
4338 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4339 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4340 {
4341 if (pGuestPDPT->a[i].n.u1Present)
4342 {
4343 RTHCPTR HCPtr;
4344 RTHCPHYS HCPhys;
4345 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4346 pgmLock(pVM);
4347 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4348 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4349 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4350# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4351 HCPtr = NIL_RTHCPTR;
4352 int rc2 = VINF_SUCCESS;
4353# else
4354 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4355# endif
4356 pgmUnlock(pVM);
4357 if (RT_SUCCESS(rc2))
4358 {
4359 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4360 AssertRCReturn(rc, rc);
4361
4362 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4363# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4364 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4365# endif
4366 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))GCPtr;
4367 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4368# ifdef IN_RC
4369 PGM_INVL_PG(pVCpu, GCPtr);
4370# endif
4371 continue;
4372 }
4373 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4374 }
4375
4376 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4377# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4378 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4379# endif
4380 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4381 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4382# ifdef IN_RC
4383 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4384# endif
4385 }
4386
4387# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4388 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4389# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4390 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4391# endif
4392# endif
4393 }
4394 else
4395 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4396 }
4397 else
4398 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4399
4400#else /* prot/real stub */
4401 int rc = VINF_SUCCESS;
4402#endif
4403
4404 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4405# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4406 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4407 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4408 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4409 && PGM_GST_TYPE != PGM_TYPE_PROT))
4410
4411 Assert(!HWACCMIsNestedPagingActive(pVM));
4412
4413 /*
4414 * Update the shadow root page as well since that's not fixed.
4415 */
4416 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4417 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4418 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4419 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4420 PPGMPOOLPAGE pNewShwPageCR3;
4421
4422 pgmLock(pVM);
4423
4424# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4425 if (pPool->cDirtyPages)
4426 pgmPoolResetDirtyPages(pVM);
4427# endif
4428
4429 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4430 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4431 AssertFatalRC(rc);
4432 rc = VINF_SUCCESS;
4433
4434# ifdef IN_RC
4435 /*
4436 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4437 * state will be inconsistent! Flush important things now while
4438 * we still can and then make sure there are no ring-3 calls.
4439 */
4440 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4441 VMMRZCallRing3Disable(pVCpu);
4442# endif
4443
4444 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4445 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4446 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4447# ifdef IN_RING0
4448 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4449 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4450# elif defined(IN_RC)
4451 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4452 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4453# else
4454 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4455 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4456# endif
4457
4458# ifndef PGM_WITHOUT_MAPPINGS
4459 /*
4460 * Apply all hypervisor mappings to the new CR3.
4461 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4462 * make sure we check for conflicts in the new CR3 root.
4463 */
4464# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4465 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4466# endif
4467 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4468 AssertRCReturn(rc, rc);
4469# endif
4470
4471 /* Set the current hypervisor CR3. */
4472 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4473 SELMShadowCR3Changed(pVM, pVCpu);
4474
4475# ifdef IN_RC
4476 /* NOTE: The state is consistent again. */
4477 VMMRZCallRing3Enable(pVCpu);
4478# endif
4479
4480 /* Clean up the old CR3 root. */
4481 if ( pOldShwPageCR3
4482 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4483 {
4484 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4485# ifndef PGM_WITHOUT_MAPPINGS
4486 /* Remove the hypervisor mappings from the shadow page table. */
4487 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4488# endif
4489 /* Mark the page as unlocked; allow flushing again. */
4490 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4491
4492 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4493 }
4494 pgmUnlock(pVM);
4495# endif
4496
4497 return rc;
4498}
4499
4500/**
4501 * Unmaps the shadow CR3.
4502 *
4503 * @returns VBox status, no specials.
4504 * @param pVCpu The VMCPU handle.
4505 */
4506PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4507{
4508 LogFlow(("UnmapCR3\n"));
4509
4510 int rc = VINF_SUCCESS;
4511 PVM pVM = pVCpu->CTX_SUFF(pVM);
4512
4513 /*
4514 * Update guest paging info.
4515 */
4516#if PGM_GST_TYPE == PGM_TYPE_32BIT
4517 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4518# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4519 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4520# endif
4521 pVCpu->pgm.s.pGst32BitPdRC = 0;
4522
4523#elif PGM_GST_TYPE == PGM_TYPE_PAE
4524 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4525# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4526 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4527# endif
4528 pVCpu->pgm.s.pGstPaePdptRC = 0;
4529 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4530 {
4531 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4532# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4533 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4534# endif
4535 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4536 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4537 }
4538
4539#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4540 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4541# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4542 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4543# endif
4544
4545#else /* prot/real mode stub */
4546 /* nothing to do */
4547#endif
4548
4549#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4550 /*
4551 * Update shadow paging info.
4552 */
4553# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4554 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4555 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4556
4557# if PGM_GST_TYPE != PGM_TYPE_REAL
4558 Assert(!HWACCMIsNestedPagingActive(pVM));
4559# endif
4560
4561 pgmLock(pVM);
4562
4563# ifndef PGM_WITHOUT_MAPPINGS
4564 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4565 /* Remove the hypervisor mappings from the shadow page table. */
4566 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4567# endif
4568
4569 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4570 {
4571 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4572
4573 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4574
4575# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4576 if (pPool->cDirtyPages)
4577 pgmPoolResetDirtyPages(pVM);
4578# endif
4579
4580 /* Mark the page as unlocked; allow flushing again. */
4581 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4582
4583 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4584 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4585 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4586 pVCpu->pgm.s.pShwPageCR3RC = 0;
4587 pVCpu->pgm.s.iShwUser = 0;
4588 pVCpu->pgm.s.iShwUserTable = 0;
4589 }
4590 pgmUnlock(pVM);
4591# endif
4592#endif /* !IN_RC*/
4593
4594 return rc;
4595}
4596
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette