1 | /* $Id: PGMAllBth.h 35754 2011-01-28 11:03:21Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
|
---|
4 | *
|
---|
5 | * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
|
---|
6 | * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
|
---|
7 | * set to PGM_TYPE_PROT. Half of the code in this file is not
|
---|
8 | * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
|
---|
9 | *
|
---|
10 | * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
|
---|
11 | * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
|
---|
12 | *
|
---|
13 | * @remarks This file is one big \#ifdef-orgy!
|
---|
14 | *
|
---|
15 | */
|
---|
16 |
|
---|
17 | /*
|
---|
18 | * Copyright (C) 2006-2010 Oracle Corporation
|
---|
19 | *
|
---|
20 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
21 | * available from http://www.virtualbox.org. This file is free software;
|
---|
22 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
23 | * General Public License (GPL) as published by the Free Software
|
---|
24 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
25 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
26 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
27 | */
|
---|
28 |
|
---|
29 |
|
---|
30 | /*******************************************************************************
|
---|
31 | * Internal Functions *
|
---|
32 | *******************************************************************************/
|
---|
33 | RT_C_DECLS_BEGIN
|
---|
34 | PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
|
---|
35 | PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
|
---|
36 | static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
|
---|
37 | static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
|
---|
38 | static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
|
---|
39 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
40 | static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
|
---|
41 | #else
|
---|
42 | static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
|
---|
43 | #endif
|
---|
44 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
|
---|
45 | PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
|
---|
46 | PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
|
---|
47 | #ifdef VBOX_STRICT
|
---|
48 | PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
|
---|
49 | #endif
|
---|
50 | PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
|
---|
51 | PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
|
---|
52 | RT_C_DECLS_END
|
---|
53 |
|
---|
54 |
|
---|
55 | /*
|
---|
56 | * Filter out some illegal combinations of guest and shadow paging, so we can
|
---|
57 | * remove redundant checks inside functions.
|
---|
58 | */
|
---|
59 | #if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
60 | # error "Invalid combination; PAE guest implies PAE shadow"
|
---|
61 | #endif
|
---|
62 |
|
---|
63 | #if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
64 | && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
|
---|
65 | # error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
|
---|
66 | #endif
|
---|
67 |
|
---|
68 | #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
|
---|
69 | && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
|
---|
70 | # error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
|
---|
71 | #endif
|
---|
72 |
|
---|
73 | #if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
|
---|
74 | || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
|
---|
75 | # error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
|
---|
76 | #endif
|
---|
77 |
|
---|
78 | #ifndef IN_RING3
|
---|
79 |
|
---|
80 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
81 | /**
|
---|
82 | * Deal with a guest page fault.
|
---|
83 | *
|
---|
84 | * @returns Strict VBox status code.
|
---|
85 | * @retval VINF_EM_RAW_GUEST_TRAP
|
---|
86 | * @retval VINF_EM_RAW_EMULATE_INSTR
|
---|
87 | *
|
---|
88 | * @param pVCpu The current CPU.
|
---|
89 | * @param pGstWalk The guest page table walk result.
|
---|
90 | * @param uErr The error code.
|
---|
91 | */
|
---|
92 | PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
|
---|
93 | {
|
---|
94 | # if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
|
---|
95 | /*
|
---|
96 | * Check for write conflicts with our hypervisor mapping.
|
---|
97 | *
|
---|
98 | * If the guest happens to access a non-present page, where our hypervisor
|
---|
99 | * is currently mapped, then we'll create a #PF storm in the guest.
|
---|
100 | */
|
---|
101 | if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
|
---|
102 | && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
|
---|
103 | {
|
---|
104 | /* Force a CR3 sync to check for conflicts and emulate the instruction. */
|
---|
105 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
106 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
|
---|
107 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
108 | }
|
---|
109 | # endif
|
---|
110 |
|
---|
111 | /*
|
---|
112 | * Calc the error code for the guest trap.
|
---|
113 | */
|
---|
114 | uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
|
---|
115 | ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
|
---|
116 | : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
|
---|
117 | if (pGstWalk->Core.fBadPhysAddr)
|
---|
118 | {
|
---|
119 | uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
|
---|
120 | Assert(!pGstWalk->Core.fNotPresent);
|
---|
121 | }
|
---|
122 | else if (!pGstWalk->Core.fNotPresent)
|
---|
123 | uNewErr |= X86_TRAP_PF_P;
|
---|
124 | TRPMSetErrorCode(pVCpu, uNewErr);
|
---|
125 |
|
---|
126 | LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
|
---|
127 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
|
---|
128 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
129 | }
|
---|
130 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
131 |
|
---|
132 |
|
---|
133 | /**
|
---|
134 | * Deal with a guest page fault.
|
---|
135 | *
|
---|
136 | * The caller has taken the PGM lock.
|
---|
137 | *
|
---|
138 | * @returns Strict VBox status code.
|
---|
139 | *
|
---|
140 | * @param pVCpu The current CPU.
|
---|
141 | * @param uErr The error code.
|
---|
142 | * @param pRegFrame The register frame.
|
---|
143 | * @param pvFault The fault address.
|
---|
144 | * @param pPage The guest page at @a pvFault.
|
---|
145 | * @param pGstWalk The guest page table walk result.
|
---|
146 | * @param pfLockTaken PGM lock taken here or not (out). This is true
|
---|
147 | * when we're called.
|
---|
148 | */
|
---|
149 | static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
|
---|
150 | RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
|
---|
151 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
152 | , PGSTPTWALK pGstWalk
|
---|
153 | # endif
|
---|
154 | )
|
---|
155 | {
|
---|
156 | # if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
157 | GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
|
---|
158 | #endif
|
---|
159 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
160 | int rc;
|
---|
161 |
|
---|
162 | if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
|
---|
163 | {
|
---|
164 | /*
|
---|
165 | * Physical page access handler.
|
---|
166 | */
|
---|
167 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
168 | const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
|
---|
169 | # else
|
---|
170 | const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
|
---|
171 | # endif
|
---|
172 | PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
|
---|
173 | if (pCur)
|
---|
174 | {
|
---|
175 | # ifdef PGM_SYNC_N_PAGES
|
---|
176 | /*
|
---|
177 | * If the region is write protected and we got a page not present fault, then sync
|
---|
178 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
179 | * In case of write access continue to the GC write handler.
|
---|
180 | *
|
---|
181 | * ASSUMES that there is only one handler per page or that they have similar write properties.
|
---|
182 | */
|
---|
183 | if ( !(uErr & X86_TRAP_PF_P)
|
---|
184 | && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
|
---|
185 | {
|
---|
186 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
187 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
188 | # else
|
---|
189 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
190 | # endif
|
---|
191 | if ( RT_FAILURE(rc)
|
---|
192 | || !(uErr & X86_TRAP_PF_RW)
|
---|
193 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
|
---|
194 | {
|
---|
195 | AssertRC(rc);
|
---|
196 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
|
---|
197 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
|
---|
198 | return rc;
|
---|
199 | }
|
---|
200 | }
|
---|
201 | # endif
|
---|
202 | # ifdef PGM_WITH_MMIO_OPTIMIZATIONS
|
---|
203 | /*
|
---|
204 | * If the access was not thru a #PF(RSVD|...) resync the page.
|
---|
205 | */
|
---|
206 | if ( !(uErr & X86_TRAP_PF_RSVD)
|
---|
207 | && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
208 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
209 | && pGstWalk->Core.fEffectiveRW
|
---|
210 | && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
|
---|
211 | # endif
|
---|
212 | )
|
---|
213 | {
|
---|
214 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
215 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
216 | # else
|
---|
217 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
218 | # endif
|
---|
219 | if ( RT_FAILURE(rc)
|
---|
220 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
|
---|
221 | {
|
---|
222 | AssertRC(rc);
|
---|
223 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
|
---|
224 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
|
---|
225 | return rc;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | # endif
|
---|
229 |
|
---|
230 | AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
231 | || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
|
---|
232 | ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
|
---|
233 | pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
|
---|
234 | if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
|
---|
235 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
|
---|
236 | else
|
---|
237 | {
|
---|
238 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
|
---|
239 | if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
|
---|
240 | }
|
---|
241 |
|
---|
242 | if (pCur->CTX_SUFF(pfnHandler))
|
---|
243 | {
|
---|
244 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
245 | void *pvUser = pCur->CTX_SUFF(pvUser);
|
---|
246 | # ifdef IN_RING0
|
---|
247 | PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
248 | # else
|
---|
249 | PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
250 | # endif
|
---|
251 |
|
---|
252 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
253 | if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
|
---|
254 | {
|
---|
255 | pgmUnlock(pVM);
|
---|
256 | *pfLockTaken = false;
|
---|
257 | }
|
---|
258 |
|
---|
259 | rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
|
---|
260 |
|
---|
261 | # ifdef VBOX_WITH_STATISTICS
|
---|
262 | pgmLock(pVM);
|
---|
263 | pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
|
---|
264 | if (pCur)
|
---|
265 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
266 | pgmUnlock(pVM);
|
---|
267 | # endif
|
---|
268 | }
|
---|
269 | else
|
---|
270 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
271 |
|
---|
272 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
|
---|
273 | return rc;
|
---|
274 | }
|
---|
275 | }
|
---|
276 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
|
---|
277 | else
|
---|
278 | {
|
---|
279 | # ifdef PGM_SYNC_N_PAGES
|
---|
280 | /*
|
---|
281 | * If the region is write protected and we got a page not present fault, then sync
|
---|
282 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
283 | * In case of write access continue to the GC write handler.
|
---|
284 | */
|
---|
285 | if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
|
---|
286 | && !(uErr & X86_TRAP_PF_P))
|
---|
287 | {
|
---|
288 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
289 | if ( RT_FAILURE(rc)
|
---|
290 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
291 | || !(uErr & X86_TRAP_PF_RW))
|
---|
292 | {
|
---|
293 | AssertRC(rc);
|
---|
294 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
|
---|
295 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
|
---|
296 | return rc;
|
---|
297 | }
|
---|
298 | }
|
---|
299 | # endif
|
---|
300 | /*
|
---|
301 | * Ok, it's an virtual page access handler.
|
---|
302 | *
|
---|
303 | * Since it's faster to search by address, we'll do that first
|
---|
304 | * and then retry by GCPhys if that fails.
|
---|
305 | */
|
---|
306 | /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
|
---|
307 | * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
|
---|
308 | * out of sync, because the page was changed without us noticing it (not-present -> present
|
---|
309 | * without invlpg or mov cr3, xxx).
|
---|
310 | */
|
---|
311 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
|
---|
312 | if (pCur)
|
---|
313 | {
|
---|
314 | AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
|
---|
315 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
316 | || !(uErr & X86_TRAP_PF_P)
|
---|
317 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
318 | ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
|
---|
319 | pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
|
---|
320 |
|
---|
321 | if ( pvFault - pCur->Core.Key < pCur->cb
|
---|
322 | && ( uErr & X86_TRAP_PF_RW
|
---|
323 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
324 | {
|
---|
325 | # ifdef IN_RC
|
---|
326 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
327 | RTGCPTR GCPtrStart = pCur->Core.Key;
|
---|
328 | CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
329 | pgmUnlock(pVM);
|
---|
330 | *pfLockTaken = false;
|
---|
331 |
|
---|
332 | rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
|
---|
333 |
|
---|
334 | # ifdef VBOX_WITH_STATISTICS
|
---|
335 | pgmLock(pVM);
|
---|
336 | pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
|
---|
337 | if (pCur)
|
---|
338 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
339 | pgmUnlock(pVM);
|
---|
340 | # endif
|
---|
341 | # else
|
---|
342 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
343 | # endif
|
---|
344 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
|
---|
345 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
|
---|
346 | return rc;
|
---|
347 | }
|
---|
348 | /* Unhandled part of a monitored page */
|
---|
349 | }
|
---|
350 | else
|
---|
351 | {
|
---|
352 | /* Check by physical address. */
|
---|
353 | unsigned iPage;
|
---|
354 | rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
|
---|
355 | Assert(RT_SUCCESS(rc) || !pCur);
|
---|
356 | if ( pCur
|
---|
357 | && ( uErr & X86_TRAP_PF_RW
|
---|
358 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
359 | {
|
---|
360 | Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
|
---|
361 | # ifdef IN_RC
|
---|
362 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
363 | RTGCPTR GCPtrStart = pCur->Core.Key;
|
---|
364 | CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
365 | pgmUnlock(pVM);
|
---|
366 | *pfLockTaken = false;
|
---|
367 |
|
---|
368 | RTGCPTR off = (iPage << PAGE_SHIFT)
|
---|
369 | + (pvFault & PAGE_OFFSET_MASK)
|
---|
370 | - (GCPtrStart & PAGE_OFFSET_MASK);
|
---|
371 | Assert(off < pCur->cb);
|
---|
372 | rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
|
---|
373 |
|
---|
374 | # ifdef VBOX_WITH_STATISTICS
|
---|
375 | pgmLock(pVM);
|
---|
376 | pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
|
---|
377 | if (pCur)
|
---|
378 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
379 | pgmUnlock(pVM);
|
---|
380 | # endif
|
---|
381 | # else
|
---|
382 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
383 | # endif
|
---|
384 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
|
---|
385 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
|
---|
386 | return rc;
|
---|
387 | }
|
---|
388 | }
|
---|
389 | }
|
---|
390 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
391 |
|
---|
392 | /*
|
---|
393 | * There is a handled area of the page, but this fault doesn't belong to it.
|
---|
394 | * We must emulate the instruction.
|
---|
395 | *
|
---|
396 | * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
|
---|
397 | * we first check if this was a page-not-present fault for a page with only
|
---|
398 | * write access handlers. Restart the instruction if it wasn't a write access.
|
---|
399 | */
|
---|
400 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
|
---|
401 |
|
---|
402 | if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
403 | && !(uErr & X86_TRAP_PF_P))
|
---|
404 | {
|
---|
405 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
406 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
407 | # else
|
---|
408 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
409 | # endif
|
---|
410 | if ( RT_FAILURE(rc)
|
---|
411 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
412 | || !(uErr & X86_TRAP_PF_RW))
|
---|
413 | {
|
---|
414 | AssertRC(rc);
|
---|
415 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
|
---|
416 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
|
---|
417 | return rc;
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 | /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
|
---|
422 | * It's writing to an unhandled part of the LDT page several million times.
|
---|
423 | */
|
---|
424 | rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
|
---|
425 | LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
|
---|
426 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
|
---|
427 | return rc;
|
---|
428 | } /* if any kind of handler */
|
---|
429 |
|
---|
430 |
|
---|
431 | /**
|
---|
432 | * #PF Handler for raw-mode guest execution.
|
---|
433 | *
|
---|
434 | * @returns VBox status code (appropriate for trap handling and GC return).
|
---|
435 | *
|
---|
436 | * @param pVCpu VMCPU Handle.
|
---|
437 | * @param uErr The trap error code.
|
---|
438 | * @param pRegFrame Trap register frame.
|
---|
439 | * @param pvFault The fault address.
|
---|
440 | * @param pfLockTaken PGM lock taken here or not (out)
|
---|
441 | */
|
---|
442 | PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
|
---|
443 | {
|
---|
444 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
445 |
|
---|
446 | *pfLockTaken = false;
|
---|
447 |
|
---|
448 | # if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
449 | || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
450 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
451 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
|
---|
452 | int rc;
|
---|
453 |
|
---|
454 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
455 | /*
|
---|
456 | * Walk the guest page translation tables and check if it's a guest fault.
|
---|
457 | */
|
---|
458 | GSTPTWALK GstWalk;
|
---|
459 | rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
|
---|
460 | if (RT_FAILURE_NP(rc))
|
---|
461 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
|
---|
462 |
|
---|
463 | /* assert some GstWalk sanity. */
|
---|
464 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
465 | AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
|
---|
466 | # endif
|
---|
467 | # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
468 | AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
|
---|
469 | # endif
|
---|
470 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
|
---|
471 | AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
|
---|
472 | Assert(GstWalk.Core.fSucceeded);
|
---|
473 |
|
---|
474 | if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
|
---|
475 | {
|
---|
476 | if ( ( (uErr & X86_TRAP_PF_RW)
|
---|
477 | && !GstWalk.Core.fEffectiveRW
|
---|
478 | && ( (uErr & X86_TRAP_PF_US)
|
---|
479 | || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
|
---|
480 | || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
|
---|
481 | || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
|
---|
482 | )
|
---|
483 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
|
---|
484 | }
|
---|
485 |
|
---|
486 | /*
|
---|
487 | * Set the accessed and dirty flags.
|
---|
488 | */
|
---|
489 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
490 | GstWalk.Pml4e.u |= X86_PML4E_A;
|
---|
491 | GstWalk.pPml4e->u |= X86_PML4E_A;
|
---|
492 | GstWalk.Pdpe.u |= X86_PDPE_A;
|
---|
493 | GstWalk.pPdpe->u |= X86_PDPE_A;
|
---|
494 | # endif
|
---|
495 | if (GstWalk.Core.fBigPage)
|
---|
496 | {
|
---|
497 | Assert(GstWalk.Pde.b.u1Size);
|
---|
498 | if (uErr & X86_TRAP_PF_RW)
|
---|
499 | {
|
---|
500 | GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
|
---|
501 | GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
|
---|
502 | }
|
---|
503 | else
|
---|
504 | {
|
---|
505 | GstWalk.Pde.u |= X86_PDE4M_A;
|
---|
506 | GstWalk.pPde->u |= X86_PDE4M_A;
|
---|
507 | }
|
---|
508 | }
|
---|
509 | else
|
---|
510 | {
|
---|
511 | Assert(!GstWalk.Pde.b.u1Size);
|
---|
512 | GstWalk.Pde.u |= X86_PDE_A;
|
---|
513 | GstWalk.pPde->u |= X86_PDE_A;
|
---|
514 | if (uErr & X86_TRAP_PF_RW)
|
---|
515 | {
|
---|
516 | # ifdef VBOX_WITH_STATISTICS
|
---|
517 | if (!GstWalk.Pte.n.u1Dirty)
|
---|
518 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
|
---|
519 | else
|
---|
520 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
|
---|
521 | # endif
|
---|
522 | GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
|
---|
523 | GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
|
---|
524 | }
|
---|
525 | else
|
---|
526 | {
|
---|
527 | GstWalk.Pte.u |= X86_PTE_A;
|
---|
528 | GstWalk.pPte->u |= X86_PTE_A;
|
---|
529 | }
|
---|
530 | Assert(GstWalk.Pte.u == GstWalk.pPte->u);
|
---|
531 | }
|
---|
532 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
|
---|
533 | ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
|
---|
534 | # else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
535 | GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
|
---|
536 | # endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
537 |
|
---|
538 | /* Take the big lock now. */
|
---|
539 | *pfLockTaken = true;
|
---|
540 | pgmLock(pVM);
|
---|
541 |
|
---|
542 | # ifdef PGM_WITH_MMIO_OPTIMIZATIONS
|
---|
543 | /*
|
---|
544 | * If it is a reserved bit fault we know that it is an MMIO (access
|
---|
545 | * handler) related fault and can skip some 200 lines of code.
|
---|
546 | */
|
---|
547 | if (uErr & X86_TRAP_PF_RSVD)
|
---|
548 | {
|
---|
549 | Assert(uErr & X86_TRAP_PF_P);
|
---|
550 | PPGMPAGE pPage;
|
---|
551 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
552 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
|
---|
553 | if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
554 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
|
---|
555 | pfLockTaken, &GstWalk));
|
---|
556 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
|
---|
557 | # else
|
---|
558 | rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
|
---|
559 | if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
560 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
|
---|
561 | pfLockTaken));
|
---|
562 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
|
---|
563 | # endif
|
---|
564 | AssertRC(rc);
|
---|
565 | PGM_INVL_PG(pVCpu, pvFault);
|
---|
566 | return rc; /* Restart with the corrected entry. */
|
---|
567 | }
|
---|
568 | # endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
|
---|
569 |
|
---|
570 | /*
|
---|
571 | * Fetch the guest PDE, PDPE and PML4E.
|
---|
572 | */
|
---|
573 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
574 | const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
|
---|
575 | PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
|
---|
576 |
|
---|
577 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
578 | const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
|
---|
579 | PX86PDPAE pPDDst;
|
---|
580 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
581 | rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
|
---|
582 | # else
|
---|
583 | rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
|
---|
584 | # endif
|
---|
585 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
586 |
|
---|
587 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
588 | const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
589 | PX86PDPAE pPDDst;
|
---|
590 | # if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
|
---|
591 | rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
|
---|
592 | X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
|
---|
593 | # else
|
---|
594 | rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
|
---|
595 | # endif
|
---|
596 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
597 |
|
---|
598 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
599 | const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
600 | PEPTPD pPDDst;
|
---|
601 | rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
|
---|
602 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
603 | # endif
|
---|
604 | Assert(pPDDst);
|
---|
605 |
|
---|
606 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
607 | /*
|
---|
608 | * Dirty page handling.
|
---|
609 | *
|
---|
610 | * If we successfully correct the write protection fault due to dirty bit
|
---|
611 | * tracking, then return immediately.
|
---|
612 | */
|
---|
613 | if (uErr & X86_TRAP_PF_RW) /* write fault? */
|
---|
614 | {
|
---|
615 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
|
---|
616 | rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
|
---|
617 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
|
---|
618 | if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
|
---|
619 | {
|
---|
620 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
|
---|
621 | = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
|
---|
622 | ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
|
---|
623 | : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
|
---|
624 | LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
|
---|
625 | return VINF_SUCCESS;
|
---|
626 | }
|
---|
627 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
|
---|
628 | AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
|
---|
629 | }
|
---|
630 |
|
---|
631 | # if 0 /* rarely useful; leave for debugging. */
|
---|
632 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
|
---|
633 | # endif
|
---|
634 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
635 |
|
---|
636 | /*
|
---|
637 | * A common case is the not-present error caused by lazy page table syncing.
|
---|
638 | *
|
---|
639 | * It is IMPORTANT that we weed out any access to non-present shadow PDEs
|
---|
640 | * here so we can safely assume that the shadow PT is present when calling
|
---|
641 | * SyncPage later.
|
---|
642 | *
|
---|
643 | * On failure, we ASSUME that SyncPT is out of memory or detected some kind
|
---|
644 | * of mapping conflict and defer to SyncCR3 in R3.
|
---|
645 | * (Again, we do NOT support access handlers for non-present guest pages.)
|
---|
646 | *
|
---|
647 | */
|
---|
648 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
649 | Assert(GstWalk.Pde.n.u1Present);
|
---|
650 | # endif
|
---|
651 | if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
|
---|
652 | && !pPDDst->a[iPDDst].n.u1Present)
|
---|
653 | {
|
---|
654 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
|
---|
655 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
656 | LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
|
---|
657 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
|
---|
658 | # else
|
---|
659 | LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
|
---|
660 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
|
---|
661 | # endif
|
---|
662 | if (RT_SUCCESS(rc))
|
---|
663 | return rc;
|
---|
664 | Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
|
---|
665 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
|
---|
666 | return VINF_PGM_SYNC_CR3;
|
---|
667 | }
|
---|
668 |
|
---|
669 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
|
---|
670 | /*
|
---|
671 | * Check if this address is within any of our mappings.
|
---|
672 | *
|
---|
673 | * This is *very* fast and it's gonna save us a bit of effort below and prevent
|
---|
674 | * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
|
---|
675 | * (BTW, it's impossible to have physical access handlers in a mapping.)
|
---|
676 | */
|
---|
677 | if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
|
---|
678 | {
|
---|
679 | PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
|
---|
680 | for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
|
---|
681 | {
|
---|
682 | if (pvFault < pMapping->GCPtr)
|
---|
683 | break;
|
---|
684 | if (pvFault - pMapping->GCPtr < pMapping->cb)
|
---|
685 | {
|
---|
686 | /*
|
---|
687 | * The first thing we check is if we've got an undetected conflict.
|
---|
688 | */
|
---|
689 | if (pgmMapAreMappingsFloating(&pVM->pgm.s))
|
---|
690 | {
|
---|
691 | unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
|
---|
692 | while (iPT-- > 0)
|
---|
693 | if (GstWalk.pPde[iPT].n.u1Present)
|
---|
694 | {
|
---|
695 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
|
---|
696 | Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
|
---|
697 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
|
---|
698 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
|
---|
699 | return VINF_PGM_SYNC_CR3;
|
---|
700 | }
|
---|
701 | }
|
---|
702 |
|
---|
703 | /*
|
---|
704 | * Check if the fault address is in a virtual page access handler range.
|
---|
705 | */
|
---|
706 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
|
---|
707 | if ( pCur
|
---|
708 | && pvFault - pCur->Core.Key < pCur->cb
|
---|
709 | && uErr & X86_TRAP_PF_RW)
|
---|
710 | {
|
---|
711 | # ifdef IN_RC
|
---|
712 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
713 | pgmUnlock(pVM);
|
---|
714 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
|
---|
715 | pgmLock(pVM);
|
---|
716 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
717 | # else
|
---|
718 | AssertFailed();
|
---|
719 | rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
|
---|
720 | # endif
|
---|
721 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
|
---|
722 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
|
---|
723 | return rc;
|
---|
724 | }
|
---|
725 |
|
---|
726 | /*
|
---|
727 | * Pretend we're not here and let the guest handle the trap.
|
---|
728 | */
|
---|
729 | TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
|
---|
730 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
|
---|
731 | LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
|
---|
732 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
|
---|
733 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
734 | }
|
---|
735 | }
|
---|
736 | } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
|
---|
737 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
738 |
|
---|
739 | /*
|
---|
740 | * Check if this fault address is flagged for special treatment,
|
---|
741 | * which means we'll have to figure out the physical address and
|
---|
742 | * check flags associated with it.
|
---|
743 | *
|
---|
744 | * ASSUME that we can limit any special access handling to pages
|
---|
745 | * in page tables which the guest believes to be present.
|
---|
746 | */
|
---|
747 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
748 | RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
749 | # else
|
---|
750 | RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
751 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
752 | PPGMPAGE pPage;
|
---|
753 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
754 | if (RT_FAILURE(rc))
|
---|
755 | {
|
---|
756 | /*
|
---|
757 | * When the guest accesses invalid physical memory (e.g. probing
|
---|
758 | * of RAM or accessing a remapped MMIO range), then we'll fall
|
---|
759 | * back to the recompiler to emulate the instruction.
|
---|
760 | */
|
---|
761 | LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
|
---|
762 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
|
---|
763 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
|
---|
764 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
765 | }
|
---|
766 |
|
---|
767 | /*
|
---|
768 | * Any handlers for this page?
|
---|
769 | */
|
---|
770 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
771 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
772 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
|
---|
773 | &GstWalk));
|
---|
774 | # else
|
---|
775 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
|
---|
776 | # endif
|
---|
777 |
|
---|
778 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
|
---|
779 |
|
---|
780 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
|
---|
781 | if (uErr & X86_TRAP_PF_P)
|
---|
782 | {
|
---|
783 | /*
|
---|
784 | * The page isn't marked, but it might still be monitored by a virtual page access handler.
|
---|
785 | * (ASSUMES no temporary disabling of virtual handlers.)
|
---|
786 | */
|
---|
787 | /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
|
---|
788 | * we should correct both the shadow page table and physical memory flags, and not only check for
|
---|
789 | * accesses within the handler region but for access to pages with virtual handlers. */
|
---|
790 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
|
---|
791 | if (pCur)
|
---|
792 | {
|
---|
793 | AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
|
---|
794 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
795 | || !(uErr & X86_TRAP_PF_P)
|
---|
796 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
797 | ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
|
---|
798 |
|
---|
799 | if ( pvFault - pCur->Core.Key < pCur->cb
|
---|
800 | && ( uErr & X86_TRAP_PF_RW
|
---|
801 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
802 | {
|
---|
803 | # ifdef IN_RC
|
---|
804 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
805 | pgmUnlock(pVM);
|
---|
806 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
|
---|
807 | pgmLock(pVM);
|
---|
808 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
809 | # else
|
---|
810 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
811 | # endif
|
---|
812 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
|
---|
813 | return rc;
|
---|
814 | }
|
---|
815 | }
|
---|
816 | }
|
---|
817 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * We are here only if page is present in Guest page tables and
|
---|
821 | * trap is not handled by our handlers.
|
---|
822 | *
|
---|
823 | * Check it for page out-of-sync situation.
|
---|
824 | */
|
---|
825 | if (!(uErr & X86_TRAP_PF_P))
|
---|
826 | {
|
---|
827 | /*
|
---|
828 | * Page is not present in our page tables. Try to sync it!
|
---|
829 | */
|
---|
830 | if (uErr & X86_TRAP_PF_US)
|
---|
831 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
|
---|
832 | else /* supervisor */
|
---|
833 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
|
---|
834 |
|
---|
835 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
836 | {
|
---|
837 | /* Emulate reads from ballooned pages as they are not present in
|
---|
838 | our shadow page tables. (Required for e.g. Solaris guests; soft
|
---|
839 | ecc, random nr generator.) */
|
---|
840 | rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
|
---|
841 | LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
|
---|
842 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
|
---|
843 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
|
---|
844 | return rc;
|
---|
845 | }
|
---|
846 |
|
---|
847 | # if defined(LOG_ENABLED) && !defined(IN_RING0)
|
---|
848 | RTGCPHYS GCPhys2;
|
---|
849 | uint64_t fPageGst2;
|
---|
850 | PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
|
---|
851 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
852 | Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
|
---|
853 | pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
|
---|
854 | # else
|
---|
855 | Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
|
---|
856 | pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
|
---|
857 | # endif
|
---|
858 | # endif /* LOG_ENABLED */
|
---|
859 |
|
---|
860 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
|
---|
861 | if ( !GstWalk.Core.fEffectiveUS
|
---|
862 | && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
|
---|
863 | {
|
---|
864 | /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
|
---|
865 | if ( pvFault == (RTGCPTR)pRegFrame->eip
|
---|
866 | || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
|
---|
867 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
868 | || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
|
---|
869 | && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
|
---|
870 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
871 | )
|
---|
872 | {
|
---|
873 | LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
|
---|
874 | rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
|
---|
875 | if (rc != VINF_SUCCESS)
|
---|
876 | {
|
---|
877 | /*
|
---|
878 | * CSAM needs to perform a job in ring 3.
|
---|
879 | *
|
---|
880 | * Sync the page before going to the host context; otherwise we'll end up in a loop if
|
---|
881 | * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
|
---|
882 | */
|
---|
883 | LogFlow(("CSAM ring 3 job\n"));
|
---|
884 | int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
|
---|
885 | AssertRC(rc2);
|
---|
886 |
|
---|
887 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
|
---|
888 | return rc;
|
---|
889 | }
|
---|
890 | }
|
---|
891 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
892 | else if ( uErr == X86_TRAP_PF_RW
|
---|
893 | && pRegFrame->ecx >= 0x100 /* early check for movswd count */
|
---|
894 | && pRegFrame->ecx < 0x10000)
|
---|
895 | {
|
---|
896 | /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
|
---|
897 | * to detect loading of new code pages.
|
---|
898 | */
|
---|
899 |
|
---|
900 | /*
|
---|
901 | * Decode the instruction.
|
---|
902 | */
|
---|
903 | RTGCPTR PC;
|
---|
904 | rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
|
---|
905 | &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
|
---|
906 | if (rc == VINF_SUCCESS)
|
---|
907 | {
|
---|
908 | PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
|
---|
909 | uint32_t cbOp;
|
---|
910 | rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
|
---|
911 |
|
---|
912 | /* For now we'll restrict this to rep movsw/d instructions */
|
---|
913 | if ( rc == VINF_SUCCESS
|
---|
914 | && pDis->pCurInstr->opcode == OP_MOVSWD
|
---|
915 | && (pDis->prefix & PREFIX_REP))
|
---|
916 | {
|
---|
917 | CSAMMarkPossibleCodePage(pVM, pvFault);
|
---|
918 | }
|
---|
919 | }
|
---|
920 | }
|
---|
921 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
922 |
|
---|
923 | /*
|
---|
924 | * Mark this page as safe.
|
---|
925 | */
|
---|
926 | /** @todo not correct for pages that contain both code and data!! */
|
---|
927 | Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
|
---|
928 | CSAMMarkPage(pVM, pvFault, true);
|
---|
929 | }
|
---|
930 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
|
---|
931 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
932 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
933 | # else
|
---|
934 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
935 | # endif
|
---|
936 | if (RT_SUCCESS(rc))
|
---|
937 | {
|
---|
938 | /* The page was successfully synced, return to the guest. */
|
---|
939 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
|
---|
940 | return VINF_SUCCESS;
|
---|
941 | }
|
---|
942 | }
|
---|
943 | else /* uErr & X86_TRAP_PF_P: */
|
---|
944 | {
|
---|
945 | /*
|
---|
946 | * Write protected pages are made writable when the guest makes the
|
---|
947 | * first write to it. This happens for pages that are shared, write
|
---|
948 | * monitored or not yet allocated.
|
---|
949 | *
|
---|
950 | * We may also end up here when CR0.WP=0 in the guest.
|
---|
951 | *
|
---|
952 | * Also, a side effect of not flushing global PDEs are out of sync
|
---|
953 | * pages due to physical monitored regions, that are no longer valid.
|
---|
954 | * Assume for now it only applies to the read/write flag.
|
---|
955 | */
|
---|
956 | if (uErr & X86_TRAP_PF_RW)
|
---|
957 | {
|
---|
958 | /*
|
---|
959 | * Check if it is a read-only page.
|
---|
960 | */
|
---|
961 | if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
962 | {
|
---|
963 | Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
|
---|
964 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
965 | AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
|
---|
966 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
|
---|
967 |
|
---|
968 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
969 | if (rc != VINF_SUCCESS)
|
---|
970 | {
|
---|
971 | AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
|
---|
972 | return rc;
|
---|
973 | }
|
---|
974 | if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
|
---|
975 | return VINF_EM_NO_MEMORY;
|
---|
976 | }
|
---|
977 |
|
---|
978 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
979 | /*
|
---|
980 | * Check to see if we need to emulate the instruction if CR0.WP=0.
|
---|
981 | */
|
---|
982 | if ( !GstWalk.Core.fEffectiveRW
|
---|
983 | && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
|
---|
984 | && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
|
---|
985 | {
|
---|
986 | Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
|
---|
987 | rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
|
---|
988 | if (RT_SUCCESS(rc))
|
---|
989 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
|
---|
990 | else
|
---|
991 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
|
---|
992 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
|
---|
993 | return rc;
|
---|
994 | }
|
---|
995 | # endif
|
---|
996 | /// @todo count the above case; else
|
---|
997 | if (uErr & X86_TRAP_PF_US)
|
---|
998 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
|
---|
999 | else /* supervisor */
|
---|
1000 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
|
---|
1001 |
|
---|
1002 | /*
|
---|
1003 | * Sync the page.
|
---|
1004 | *
|
---|
1005 | * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
|
---|
1006 | * page is not present, which is not true in this case.
|
---|
1007 | */
|
---|
1008 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1009 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
|
---|
1010 | # else
|
---|
1011 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
|
---|
1012 | # endif
|
---|
1013 | if (RT_SUCCESS(rc))
|
---|
1014 | {
|
---|
1015 | /*
|
---|
1016 | * Page was successfully synced, return to guest but invalidate
|
---|
1017 | * the TLB first as the page is very likely to be in it.
|
---|
1018 | */
|
---|
1019 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1020 | HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
|
---|
1021 | # else
|
---|
1022 | PGM_INVL_PG(pVCpu, pvFault);
|
---|
1023 | # endif
|
---|
1024 | # ifdef VBOX_STRICT
|
---|
1025 | RTGCPHYS GCPhys2;
|
---|
1026 | uint64_t fPageGst;
|
---|
1027 | if (!pVM->pgm.s.fNestedPaging)
|
---|
1028 | {
|
---|
1029 | rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
|
---|
1030 | AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
|
---|
1031 | LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
|
---|
1032 | }
|
---|
1033 | uint64_t fPageShw;
|
---|
1034 | rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
|
---|
1035 | AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
|
---|
1036 | ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
|
---|
1037 | # endif /* VBOX_STRICT */
|
---|
1038 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
|
---|
1039 | return VINF_SUCCESS;
|
---|
1040 | }
|
---|
1041 | }
|
---|
1042 | /** @todo else: why are we here? */
|
---|
1043 |
|
---|
1044 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
|
---|
1045 | /*
|
---|
1046 | * Check for VMM page flags vs. Guest page flags consistency.
|
---|
1047 | * Currently only for debug purposes.
|
---|
1048 | */
|
---|
1049 | if (RT_SUCCESS(rc))
|
---|
1050 | {
|
---|
1051 | /* Get guest page flags. */
|
---|
1052 | uint64_t fPageGst;
|
---|
1053 | rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
|
---|
1054 | if (RT_SUCCESS(rc))
|
---|
1055 | {
|
---|
1056 | uint64_t fPageShw;
|
---|
1057 | rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
|
---|
1058 |
|
---|
1059 | /*
|
---|
1060 | * Compare page flags.
|
---|
1061 | * Note: we have AVL, A, D bits desynced.
|
---|
1062 | */
|
---|
1063 | AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
|
---|
1064 | == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
|
---|
1065 | ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
|
---|
1066 | pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
|
---|
1067 | }
|
---|
1068 | else
|
---|
1069 | AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
|
---|
1070 | }
|
---|
1071 | else
|
---|
1072 | AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
|
---|
1073 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | /*
|
---|
1078 | * If we get here it is because something failed above, i.e. most like guru
|
---|
1079 | * meditiation time.
|
---|
1080 | */
|
---|
1081 | LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
|
---|
1082 | __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
|
---|
1083 | return rc;
|
---|
1084 |
|
---|
1085 | # else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
|
---|
1086 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
1087 | return VERR_INTERNAL_ERROR;
|
---|
1088 | # endif
|
---|
1089 | }
|
---|
1090 | #endif /* !IN_RING3 */
|
---|
1091 |
|
---|
1092 |
|
---|
1093 | /**
|
---|
1094 | * Emulation of the invlpg instruction.
|
---|
1095 | *
|
---|
1096 | *
|
---|
1097 | * @returns VBox status code.
|
---|
1098 | *
|
---|
1099 | * @param pVCpu The VMCPU handle.
|
---|
1100 | * @param GCPtrPage Page to invalidate.
|
---|
1101 | *
|
---|
1102 | * @remark ASSUMES that the guest is updating before invalidating. This order
|
---|
1103 | * isn't required by the CPU, so this is speculative and could cause
|
---|
1104 | * trouble.
|
---|
1105 | * @remark No TLB shootdown is done on any other VCPU as we assume that
|
---|
1106 | * invlpg emulation is the *only* reason for calling this function.
|
---|
1107 | * (The guest has to shoot down TLB entries on other CPUs itself)
|
---|
1108 | * Currently true, but keep in mind!
|
---|
1109 | *
|
---|
1110 | * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
|
---|
1111 | * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
|
---|
1112 | */
|
---|
1113 | PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
|
---|
1114 | {
|
---|
1115 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
|
---|
1116 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
1117 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
1118 | int rc;
|
---|
1119 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1120 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1121 |
|
---|
1122 | Assert(PGMIsLockOwner(pVM));
|
---|
1123 |
|
---|
1124 | LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
|
---|
1125 |
|
---|
1126 | /*
|
---|
1127 | * Get the shadow PD entry and skip out if this PD isn't present.
|
---|
1128 | * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
|
---|
1129 | */
|
---|
1130 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1131 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1132 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
|
---|
1133 |
|
---|
1134 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1135 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
1136 | Assert(pShwPde);
|
---|
1137 |
|
---|
1138 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
1139 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
|
---|
1140 | PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
|
---|
1141 |
|
---|
1142 | /* If the shadow PDPE isn't present, then skip the invalidate. */
|
---|
1143 | if (!pPdptDst->a[iPdpt].n.u1Present)
|
---|
1144 | {
|
---|
1145 | Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
|
---|
1146 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1147 | return VINF_SUCCESS;
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1151 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
1152 | PX86PDPAE pPDDst;
|
---|
1153 |
|
---|
1154 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1155 | rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
|
---|
1156 | AssertRCSuccessReturn(rc, rc);
|
---|
1157 | Assert(pShwPde);
|
---|
1158 |
|
---|
1159 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
|
---|
1160 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1161 |
|
---|
1162 | # else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
|
---|
1163 | /* PML4 */
|
---|
1164 | const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
|
---|
1165 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
1166 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1167 | PX86PDPAE pPDDst;
|
---|
1168 | PX86PDPT pPdptDst;
|
---|
1169 | PX86PML4E pPml4eDst;
|
---|
1170 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
|
---|
1171 | if (rc != VINF_SUCCESS)
|
---|
1172 | {
|
---|
1173 | AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
|
---|
1174 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1175 | return VINF_SUCCESS;
|
---|
1176 | }
|
---|
1177 | Assert(pPDDst);
|
---|
1178 |
|
---|
1179 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1180 | PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
|
---|
1181 |
|
---|
1182 | if (!pPdpeDst->n.u1Present)
|
---|
1183 | {
|
---|
1184 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1185 | return VINF_SUCCESS;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1189 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
|
---|
1190 | Assert(pShwPde);
|
---|
1191 |
|
---|
1192 | # endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
|
---|
1193 |
|
---|
1194 | const SHWPDE PdeDst = *pPdeDst;
|
---|
1195 | if (!PdeDst.n.u1Present)
|
---|
1196 | {
|
---|
1197 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1198 | return VINF_SUCCESS;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /*
|
---|
1202 | * Get the guest PD entry and calc big page.
|
---|
1203 | */
|
---|
1204 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1205 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
1206 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
1207 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
1208 | # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1209 | unsigned iPDSrc = 0;
|
---|
1210 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
1211 | X86PDPE PdpeSrcIgn;
|
---|
1212 | PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
|
---|
1213 | # else /* AMD64 */
|
---|
1214 | PX86PML4E pPml4eSrcIgn;
|
---|
1215 | X86PDPE PdpeSrcIgn;
|
---|
1216 | PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
|
---|
1217 | # endif
|
---|
1218 | GSTPDE PdeSrc;
|
---|
1219 |
|
---|
1220 | if (pPDSrc)
|
---|
1221 | PdeSrc = pPDSrc->a[iPDSrc];
|
---|
1222 | else
|
---|
1223 | PdeSrc.u = 0;
|
---|
1224 | # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1225 | const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
|
---|
1226 |
|
---|
1227 | # ifdef IN_RING3
|
---|
1228 | /*
|
---|
1229 | * If a CR3 Sync is pending we may ignore the invalidate page operation
|
---|
1230 | * depending on the kind of sync and if it's a global page or not.
|
---|
1231 | * This doesn't make sense in GC/R0 so we'll skip it entirely there.
|
---|
1232 | */
|
---|
1233 | # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
|
---|
1234 | if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
|
---|
1235 | || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
|
---|
1236 | && fIsBigPage
|
---|
1237 | && PdeSrc.b.u1Global
|
---|
1238 | )
|
---|
1239 | )
|
---|
1240 | # else
|
---|
1241 | if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
|
---|
1242 | # endif
|
---|
1243 | {
|
---|
1244 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1245 | return VINF_SUCCESS;
|
---|
1246 | }
|
---|
1247 | # endif /* IN_RING3 */
|
---|
1248 |
|
---|
1249 | /*
|
---|
1250 | * Deal with the Guest PDE.
|
---|
1251 | */
|
---|
1252 | rc = VINF_SUCCESS;
|
---|
1253 | if (PdeSrc.n.u1Present)
|
---|
1254 | {
|
---|
1255 | Assert( PdeSrc.n.u1User == PdeDst.n.u1User
|
---|
1256 | && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
|
---|
1257 | # ifndef PGM_WITHOUT_MAPPING
|
---|
1258 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
1259 | {
|
---|
1260 | /*
|
---|
1261 | * Conflict - Let SyncPT deal with it to avoid duplicate code.
|
---|
1262 | */
|
---|
1263 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
1264 | Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
|
---|
1265 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
1266 | }
|
---|
1267 | else
|
---|
1268 | # endif /* !PGM_WITHOUT_MAPPING */
|
---|
1269 | if (!fIsBigPage)
|
---|
1270 | {
|
---|
1271 | /*
|
---|
1272 | * 4KB - page.
|
---|
1273 | */
|
---|
1274 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1275 | RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
|
---|
1276 |
|
---|
1277 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1278 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1279 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
|
---|
1280 | # endif
|
---|
1281 | if (pShwPage->GCPhys == GCPhys)
|
---|
1282 | {
|
---|
1283 | /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
|
---|
1284 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
1285 |
|
---|
1286 | PGSTPT pPTSrc;
|
---|
1287 | rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
|
---|
1288 | if (RT_SUCCESS(rc))
|
---|
1289 | {
|
---|
1290 | const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
|
---|
1291 | GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
1292 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1293 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1294 | Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
|
---|
1295 | GCPtrPage, PteSrc.n.u1Present,
|
---|
1296 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1297 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1298 | (uint64_t)PteSrc.u,
|
---|
1299 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
1300 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
1301 | }
|
---|
1302 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
|
---|
1303 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
1304 | }
|
---|
1305 | else
|
---|
1306 | {
|
---|
1307 | /*
|
---|
1308 | * The page table address changed.
|
---|
1309 | */
|
---|
1310 | LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
|
---|
1311 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
|
---|
1312 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1313 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1314 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
|
---|
1315 | PGM_INVL_VCPU_TLBS(pVCpu);
|
---|
1316 | }
|
---|
1317 | }
|
---|
1318 | else
|
---|
1319 | {
|
---|
1320 | /*
|
---|
1321 | * 2/4MB - page.
|
---|
1322 | */
|
---|
1323 | /* Before freeing the page, check if anything really changed. */
|
---|
1324 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1325 | RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
|
---|
1326 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1327 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
1328 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
1329 | # endif
|
---|
1330 | if ( pShwPage->GCPhys == GCPhys
|
---|
1331 | && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
|
---|
1332 | {
|
---|
1333 | /* ASSUMES a the given bits are identical for 4M and normal PDEs */
|
---|
1334 | /** @todo This test is wrong as it cannot check the G bit!
|
---|
1335 | * FIXME */
|
---|
1336 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
|
---|
1337 | == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
|
---|
1338 | && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
|
---|
1339 | || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
1340 | {
|
---|
1341 | LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
|
---|
1342 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
|
---|
1343 | return VINF_SUCCESS;
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /*
|
---|
1348 | * Ok, the page table is present and it's been changed in the guest.
|
---|
1349 | * If we're in host context, we'll just mark it as not present taking the lazy approach.
|
---|
1350 | * We could do this for some flushes in GC too, but we need an algorithm for
|
---|
1351 | * deciding which 4MB pages containing code likely to be executed very soon.
|
---|
1352 | */
|
---|
1353 | LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
|
---|
1354 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
1355 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1356 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1357 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
|
---|
1358 | PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | else
|
---|
1362 | {
|
---|
1363 | /*
|
---|
1364 | * Page directory is not present, mark shadow PDE not present.
|
---|
1365 | */
|
---|
1366 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
1367 | {
|
---|
1368 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1369 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1370 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
|
---|
1371 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
1372 | }
|
---|
1373 | else
|
---|
1374 | {
|
---|
1375 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
1376 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
|
---|
1377 | }
|
---|
1378 | }
|
---|
1379 | return rc;
|
---|
1380 |
|
---|
1381 | #else /* guest real and protected mode */
|
---|
1382 | /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
|
---|
1383 | return VINF_SUCCESS;
|
---|
1384 | #endif
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 |
|
---|
1388 | /**
|
---|
1389 | * Update the tracking of shadowed pages.
|
---|
1390 | *
|
---|
1391 | * @param pVCpu The VMCPU handle.
|
---|
1392 | * @param pShwPage The shadow page.
|
---|
1393 | * @param HCPhys The physical page we is being dereferenced.
|
---|
1394 | * @param iPte Shadow PTE index
|
---|
1395 | * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
|
---|
1396 | */
|
---|
1397 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, RTGCPHYS GCPhysPage)
|
---|
1398 | {
|
---|
1399 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1400 |
|
---|
1401 | # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
|
---|
1402 | && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
|
---|
1403 | && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
|
---|
1404 |
|
---|
1405 | /* Use the hint we retrieved from the cached guest PT. */
|
---|
1406 | if (pShwPage->fDirty)
|
---|
1407 | {
|
---|
1408 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1409 |
|
---|
1410 | Assert(pShwPage->cPresent);
|
---|
1411 | Assert(pPool->cPresent);
|
---|
1412 | pShwPage->cPresent--;
|
---|
1413 | pPool->cPresent--;
|
---|
1414 |
|
---|
1415 | PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysPage);
|
---|
1416 | AssertRelease(pPhysPage);
|
---|
1417 | pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
|
---|
1418 | return;
|
---|
1419 | }
|
---|
1420 | # endif
|
---|
1421 |
|
---|
1422 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
|
---|
1423 | LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
|
---|
1424 |
|
---|
1425 | /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
|
---|
1426 | * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
|
---|
1427 | * 2. write protect all shadowed pages. I.e. implement caching.
|
---|
1428 | */
|
---|
1429 | /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
|
---|
1430 |
|
---|
1431 | /*
|
---|
1432 | * Find the guest address.
|
---|
1433 | */
|
---|
1434 | for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
|
---|
1435 | pRam;
|
---|
1436 | pRam = pRam->CTX_SUFF(pNext))
|
---|
1437 | {
|
---|
1438 | unsigned iPage = pRam->cb >> PAGE_SHIFT;
|
---|
1439 | while (iPage-- > 0)
|
---|
1440 | {
|
---|
1441 | if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
|
---|
1442 | {
|
---|
1443 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1444 |
|
---|
1445 | Assert(pShwPage->cPresent);
|
---|
1446 | Assert(pPool->cPresent);
|
---|
1447 | pShwPage->cPresent--;
|
---|
1448 | pPool->cPresent--;
|
---|
1449 |
|
---|
1450 | pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
|
---|
1451 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
|
---|
1452 | return;
|
---|
1453 | }
|
---|
1454 | }
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 | for (;;)
|
---|
1458 | AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Update the tracking of shadowed pages.
|
---|
1464 | *
|
---|
1465 | * @param pVCpu The VMCPU handle.
|
---|
1466 | * @param pShwPage The shadow page.
|
---|
1467 | * @param u16 The top 16-bit of the pPage->HCPhys.
|
---|
1468 | * @param pPage Pointer to the guest page. this will be modified.
|
---|
1469 | * @param iPTDst The index into the shadow table.
|
---|
1470 | */
|
---|
1471 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
|
---|
1472 | {
|
---|
1473 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1474 |
|
---|
1475 | /*
|
---|
1476 | * Just deal with the simple first time here.
|
---|
1477 | */
|
---|
1478 | if (!u16)
|
---|
1479 | {
|
---|
1480 | STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
|
---|
1481 | u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
|
---|
1482 | /* Save the page table index. */
|
---|
1483 | PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
|
---|
1484 | }
|
---|
1485 | else
|
---|
1486 | u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
|
---|
1487 |
|
---|
1488 | /* write back */
|
---|
1489 | Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
|
---|
1490 | PGM_PAGE_SET_TRACKING(pPage, u16);
|
---|
1491 |
|
---|
1492 | /* update statistics. */
|
---|
1493 | pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
|
---|
1494 | pShwPage->cPresent++;
|
---|
1495 | if (pShwPage->iFirstPresent > iPTDst)
|
---|
1496 | pShwPage->iFirstPresent = iPTDst;
|
---|
1497 | }
|
---|
1498 |
|
---|
1499 |
|
---|
1500 | /**
|
---|
1501 | * Modifies a shadow PTE to account for access handlers.
|
---|
1502 | *
|
---|
1503 | * @param pVM The VM handle.
|
---|
1504 | * @param pPage The page in question.
|
---|
1505 | * @param fPteSrc The shadowed flags of the source PTE. Must include the
|
---|
1506 | * A (accessed) bit so it can be emulated correctly.
|
---|
1507 | * @param pPteDst The shadow PTE (output). This is temporary storage and
|
---|
1508 | * does not need to be set atomically.
|
---|
1509 | */
|
---|
1510 | DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
|
---|
1511 | {
|
---|
1512 | /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
|
---|
1513 | * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
|
---|
1514 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
1515 | {
|
---|
1516 | LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
|
---|
1517 | #if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1518 | pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1519 | pPteDst->n.u1Present = 1;
|
---|
1520 | pPteDst->n.u1Execute = 1;
|
---|
1521 | pPteDst->n.u1IgnorePAT = 1;
|
---|
1522 | pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
1523 | /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
|
---|
1524 | #else
|
---|
1525 | if (fPteSrc & X86_PTE_A)
|
---|
1526 | {
|
---|
1527 | SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
|
---|
1528 | SHW_PTE_SET_RO(*pPteDst);
|
---|
1529 | }
|
---|
1530 | else
|
---|
1531 | SHW_PTE_SET(*pPteDst, 0);
|
---|
1532 | #endif
|
---|
1533 | }
|
---|
1534 | #ifdef PGM_WITH_MMIO_OPTIMIZATIONS
|
---|
1535 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1536 | else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
1537 | && ( BTH_IS_NP_ACTIVE(pVM)
|
---|
1538 | || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
|
---|
1539 | # if PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1540 | && pVM->pgm.s.fLessThan52PhysicalAddressBits
|
---|
1541 | # endif
|
---|
1542 | )
|
---|
1543 | {
|
---|
1544 | LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
|
---|
1545 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1546 | /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
|
---|
1547 | pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
|
---|
1548 | /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
|
---|
1549 | pPteDst->n.u1Present = 0;
|
---|
1550 | pPteDst->n.u1Write = 1;
|
---|
1551 | pPteDst->n.u1Execute = 0;
|
---|
1552 | /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
|
---|
1553 | pPteDst->n.u3EMT = 7;
|
---|
1554 | # else
|
---|
1555 | /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
|
---|
1556 | SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
|
---|
1557 | # endif
|
---|
1558 | }
|
---|
1559 | # endif
|
---|
1560 | #endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
|
---|
1561 | else
|
---|
1562 | {
|
---|
1563 | LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
|
---|
1564 | SHW_PTE_SET(*pPteDst, 0);
|
---|
1565 | }
|
---|
1566 | /** @todo count these kinds of entries. */
|
---|
1567 | }
|
---|
1568 |
|
---|
1569 |
|
---|
1570 | /**
|
---|
1571 | * Creates a 4K shadow page for a guest page.
|
---|
1572 | *
|
---|
1573 | * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
|
---|
1574 | * physical address. The PdeSrc argument only the flags are used. No page
|
---|
1575 | * structured will be mapped in this function.
|
---|
1576 | *
|
---|
1577 | * @param pVCpu The VMCPU handle.
|
---|
1578 | * @param pPteDst Destination page table entry.
|
---|
1579 | * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
|
---|
1580 | * Can safely assume that only the flags are being used.
|
---|
1581 | * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
|
---|
1582 | * @param pShwPage Pointer to the shadow page.
|
---|
1583 | * @param iPTDst The index into the shadow table.
|
---|
1584 | *
|
---|
1585 | * @remark Not used for 2/4MB pages!
|
---|
1586 | */
|
---|
1587 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1588 | static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
|
---|
1589 | PPGMPOOLPAGE pShwPage, unsigned iPTDst)
|
---|
1590 | #else
|
---|
1591 | static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
|
---|
1592 | #endif
|
---|
1593 | {
|
---|
1594 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1595 | RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
|
---|
1596 |
|
---|
1597 | #if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
|
---|
1598 | && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
|
---|
1599 | && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
|
---|
1600 |
|
---|
1601 | if (pShwPage->fDirty)
|
---|
1602 | {
|
---|
1603 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1604 | PGSTPT pGstPT;
|
---|
1605 |
|
---|
1606 | /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
|
---|
1607 | pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirty].aPage[0];
|
---|
1608 | GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
|
---|
1609 | pGstPT->a[iPTDst].u = PteSrc.u;
|
---|
1610 | }
|
---|
1611 | #else
|
---|
1612 | Assert(!pShwPage->fDirty);
|
---|
1613 | #endif
|
---|
1614 |
|
---|
1615 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1616 | if ( PteSrc.n.u1Present
|
---|
1617 | && GST_IS_PTE_VALID(pVCpu, PteSrc))
|
---|
1618 | #endif
|
---|
1619 | {
|
---|
1620 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1621 | RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
|
---|
1622 | # endif
|
---|
1623 | /*
|
---|
1624 | * Find the ram range.
|
---|
1625 | */
|
---|
1626 | PPGMPAGE pPage;
|
---|
1627 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
|
---|
1628 | if (RT_SUCCESS(rc))
|
---|
1629 | {
|
---|
1630 | /* Ignore ballooned pages.
|
---|
1631 | Don't return errors or use a fatal assert here as part of a
|
---|
1632 | shadow sync range might included ballooned pages. */
|
---|
1633 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
1634 | {
|
---|
1635 | Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
|
---|
1636 | return;
|
---|
1637 | }
|
---|
1638 |
|
---|
1639 | #ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
1640 | /* Make the page writable if necessary. */
|
---|
1641 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
1642 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
1643 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1644 | || ( PteSrc.n.u1Write
|
---|
1645 | # else
|
---|
1646 | || ( 1
|
---|
1647 | # endif
|
---|
1648 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
1649 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
1650 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
1651 | # endif
|
---|
1652 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
1653 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
1654 | # endif
|
---|
1655 | )
|
---|
1656 | )
|
---|
1657 | )
|
---|
1658 | {
|
---|
1659 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
|
---|
1660 | AssertRC(rc);
|
---|
1661 | }
|
---|
1662 | #endif
|
---|
1663 |
|
---|
1664 | /*
|
---|
1665 | * Make page table entry.
|
---|
1666 | */
|
---|
1667 | SHWPTE PteDst;
|
---|
1668 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1669 | uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
|
---|
1670 | # else
|
---|
1671 | uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
|
---|
1672 | # endif
|
---|
1673 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
1674 | PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
|
---|
1675 | else
|
---|
1676 | {
|
---|
1677 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1678 | /*
|
---|
1679 | * If the page or page directory entry is not marked accessed,
|
---|
1680 | * we mark the page not present.
|
---|
1681 | */
|
---|
1682 | if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
|
---|
1683 | {
|
---|
1684 | LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
|
---|
1685 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
|
---|
1686 | SHW_PTE_SET(PteDst, 0);
|
---|
1687 | }
|
---|
1688 | /*
|
---|
1689 | * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
|
---|
1690 | * when the page is modified.
|
---|
1691 | */
|
---|
1692 | else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
|
---|
1693 | {
|
---|
1694 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
|
---|
1695 | SHW_PTE_SET(PteDst,
|
---|
1696 | fGstShwPteFlags
|
---|
1697 | | PGM_PAGE_GET_HCPHYS(pPage)
|
---|
1698 | | PGM_PTFLAGS_TRACK_DIRTY);
|
---|
1699 | SHW_PTE_SET_RO(PteDst);
|
---|
1700 | }
|
---|
1701 | else
|
---|
1702 | #endif
|
---|
1703 | {
|
---|
1704 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
|
---|
1705 | #if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1706 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1707 | PteDst.n.u1Present = 1;
|
---|
1708 | PteDst.n.u1Write = 1;
|
---|
1709 | PteDst.n.u1Execute = 1;
|
---|
1710 | PteDst.n.u1IgnorePAT = 1;
|
---|
1711 | PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
1712 | /* PteDst.n.u1Size = 0 */
|
---|
1713 | #else
|
---|
1714 | SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
|
---|
1715 | #endif
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | /*
|
---|
1719 | * Make sure only allocated pages are mapped writable.
|
---|
1720 | */
|
---|
1721 | if ( SHW_PTE_IS_P_RW(PteDst)
|
---|
1722 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
1723 | {
|
---|
1724 | /* Still applies to shared pages. */
|
---|
1725 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
1726 | SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
|
---|
1727 | Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
|
---|
1728 | }
|
---|
1729 | }
|
---|
1730 |
|
---|
1731 | /*
|
---|
1732 | * Keep user track up to date.
|
---|
1733 | */
|
---|
1734 | if (SHW_PTE_IS_P(PteDst))
|
---|
1735 | {
|
---|
1736 | if (!SHW_PTE_IS_P(*pPteDst))
|
---|
1737 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
1738 | else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
|
---|
1739 | {
|
---|
1740 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
|
---|
1741 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
|
---|
1742 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
1743 | }
|
---|
1744 | }
|
---|
1745 | else if (SHW_PTE_IS_P(*pPteDst))
|
---|
1746 | {
|
---|
1747 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
|
---|
1748 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
|
---|
1749 | }
|
---|
1750 |
|
---|
1751 | /*
|
---|
1752 | * Update statistics and commit the entry.
|
---|
1753 | */
|
---|
1754 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1755 | if (!PteSrc.n.u1Global)
|
---|
1756 | pShwPage->fSeenNonGlobal = true;
|
---|
1757 | #endif
|
---|
1758 | SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
|
---|
1759 | return;
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | /** @todo count these three different kinds. */
|
---|
1763 | Log2(("SyncPageWorker: invalid address in Pte\n"));
|
---|
1764 | }
|
---|
1765 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1766 | else if (!PteSrc.n.u1Present)
|
---|
1767 | Log2(("SyncPageWorker: page not present in Pte\n"));
|
---|
1768 | else
|
---|
1769 | Log2(("SyncPageWorker: invalid Pte\n"));
|
---|
1770 | #endif
|
---|
1771 |
|
---|
1772 | /*
|
---|
1773 | * The page is not present or the PTE is bad. Replace the shadow PTE by
|
---|
1774 | * an empty entry, making sure to keep the user tracking up to date.
|
---|
1775 | */
|
---|
1776 | if (SHW_PTE_IS_P(*pPteDst))
|
---|
1777 | {
|
---|
1778 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
|
---|
1779 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
|
---|
1780 | }
|
---|
1781 | SHW_PTE_ATOMIC_SET(*pPteDst, 0);
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 |
|
---|
1785 | /**
|
---|
1786 | * Syncs a guest OS page.
|
---|
1787 | *
|
---|
1788 | * There are no conflicts at this point, neither is there any need for
|
---|
1789 | * page table allocations.
|
---|
1790 | *
|
---|
1791 | * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
|
---|
1792 | * When called in AMD64 guest mode, the guest PML4E shall be valid.
|
---|
1793 | *
|
---|
1794 | * @returns VBox status code.
|
---|
1795 | * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
|
---|
1796 | * @param pVCpu The VMCPU handle.
|
---|
1797 | * @param PdeSrc Page directory entry of the guest.
|
---|
1798 | * @param GCPtrPage Guest context page address.
|
---|
1799 | * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
|
---|
1800 | * @param uErr Fault error (X86_TRAP_PF_*).
|
---|
1801 | */
|
---|
1802 | static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
|
---|
1803 | {
|
---|
1804 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1805 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1806 | LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
|
---|
1807 |
|
---|
1808 | Assert(PGMIsLockOwner(pVM));
|
---|
1809 |
|
---|
1810 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
1811 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
1812 | || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
1813 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
1814 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
1815 |
|
---|
1816 | /*
|
---|
1817 | * Assert preconditions.
|
---|
1818 | */
|
---|
1819 | Assert(PdeSrc.n.u1Present);
|
---|
1820 | Assert(cPages);
|
---|
1821 | # if 0 /* rarely useful; leave for debugging. */
|
---|
1822 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
|
---|
1823 | # endif
|
---|
1824 |
|
---|
1825 | /*
|
---|
1826 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
1827 | */
|
---|
1828 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1829 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1830 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
|
---|
1831 |
|
---|
1832 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1833 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
1834 | Assert(pShwPde);
|
---|
1835 |
|
---|
1836 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
1837 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1838 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
1839 | PX86PDPAE pPDDst;
|
---|
1840 |
|
---|
1841 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1842 | int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
|
---|
1843 | AssertRCSuccessReturn(rc2, rc2);
|
---|
1844 | Assert(pShwPde);
|
---|
1845 |
|
---|
1846 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
|
---|
1847 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1848 |
|
---|
1849 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1850 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1851 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
1852 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
1853 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
1854 |
|
---|
1855 | int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
1856 | AssertRCSuccessReturn(rc2, rc2);
|
---|
1857 | Assert(pPDDst && pPdptDst);
|
---|
1858 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1859 | # endif
|
---|
1860 | SHWPDE PdeDst = *pPdeDst;
|
---|
1861 |
|
---|
1862 | /*
|
---|
1863 | * - In the guest SMP case we could have blocked while another VCPU reused
|
---|
1864 | * this page table.
|
---|
1865 | * - With W7-64 we may also take this path when the the A bit is cleared on
|
---|
1866 | * higher level tables (PDPE/PML4E). The guest does not invalidate the
|
---|
1867 | * relevant TLB entries. If we're write monitoring any page mapped by
|
---|
1868 | * the modified entry, we may end up here with a "stale" TLB entry.
|
---|
1869 | */
|
---|
1870 | if (!PdeDst.n.u1Present)
|
---|
1871 | {
|
---|
1872 | Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
|
---|
1873 | AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
|
---|
1874 | ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
|
---|
1875 | if (uErr & X86_TRAP_PF_P)
|
---|
1876 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
1877 | return VINF_SUCCESS; /* force the instruction to be executed again. */
|
---|
1878 | }
|
---|
1879 |
|
---|
1880 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1881 | Assert(pShwPage);
|
---|
1882 |
|
---|
1883 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
1884 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1885 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
1886 | Assert(pShwPde);
|
---|
1887 | # endif
|
---|
1888 |
|
---|
1889 | /*
|
---|
1890 | * Check that the page is present and that the shadow PDE isn't out of sync.
|
---|
1891 | */
|
---|
1892 | const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
|
---|
1893 | const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
|
---|
1894 | RTGCPHYS GCPhys;
|
---|
1895 | if (!fBigPage)
|
---|
1896 | {
|
---|
1897 | GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
|
---|
1898 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1899 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1900 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
1901 | # endif
|
---|
1902 | }
|
---|
1903 | else
|
---|
1904 | {
|
---|
1905 | GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
|
---|
1906 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1907 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
1908 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
1909 | # endif
|
---|
1910 | }
|
---|
1911 | /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
|
---|
1912 | if ( fPdeValid
|
---|
1913 | && pShwPage->GCPhys == GCPhys
|
---|
1914 | && PdeSrc.n.u1Present
|
---|
1915 | && PdeSrc.n.u1User == PdeDst.n.u1User
|
---|
1916 | && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
|
---|
1917 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1918 | && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
|
---|
1919 | # endif
|
---|
1920 | )
|
---|
1921 | {
|
---|
1922 | /*
|
---|
1923 | * Check that the PDE is marked accessed already.
|
---|
1924 | * Since we set the accessed bit *before* getting here on a #PF, this
|
---|
1925 | * check is only meant for dealing with non-#PF'ing paths.
|
---|
1926 | */
|
---|
1927 | if (PdeSrc.n.u1Accessed)
|
---|
1928 | {
|
---|
1929 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
1930 | if (!fBigPage)
|
---|
1931 | {
|
---|
1932 | /*
|
---|
1933 | * 4KB Page - Map the guest page table.
|
---|
1934 | */
|
---|
1935 | PGSTPT pPTSrc;
|
---|
1936 | int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
|
---|
1937 | if (RT_SUCCESS(rc))
|
---|
1938 | {
|
---|
1939 | # ifdef PGM_SYNC_N_PAGES
|
---|
1940 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
1941 | if ( cPages > 1
|
---|
1942 | && !(uErr & X86_TRAP_PF_P)
|
---|
1943 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
1944 | {
|
---|
1945 | /*
|
---|
1946 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
1947 | * for non-present pages!
|
---|
1948 | *
|
---|
1949 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
1950 | * deal with locality.
|
---|
1951 | */
|
---|
1952 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1953 | const unsigned iPTDstPage = iPTDst;
|
---|
1954 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1955 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1956 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
1957 | # else
|
---|
1958 | const unsigned offPTSrc = 0;
|
---|
1959 | # endif
|
---|
1960 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
1961 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
1962 | iPTDst = 0;
|
---|
1963 | else
|
---|
1964 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
1965 |
|
---|
1966 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
1967 | {
|
---|
1968 | const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
|
---|
1969 |
|
---|
1970 | if ( pPteSrc->n.u1Present
|
---|
1971 | && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
|
---|
1972 | {
|
---|
1973 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
|
---|
1974 | NOREF(GCPtrCurPage);
|
---|
1975 | #ifndef IN_RING0
|
---|
1976 | /*
|
---|
1977 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
1978 | * and executed using a conforming code selector - And marked as readonly.
|
---|
1979 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
1980 | */
|
---|
1981 | PPGMPAGE pPage;
|
---|
1982 | if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
|
---|
1983 | || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
|
---|
1984 | || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
|
---|
1985 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK))
|
---|
1986 | && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
1987 | )
|
---|
1988 | #endif /* else: CSAM not active */
|
---|
1989 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
|
---|
1990 | Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
|
---|
1991 | GCPtrCurPage, pPteSrc->n.u1Present,
|
---|
1992 | pPteSrc->n.u1Write & PdeSrc.n.u1Write,
|
---|
1993 | pPteSrc->n.u1User & PdeSrc.n.u1User,
|
---|
1994 | (uint64_t)pPteSrc->u,
|
---|
1995 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
1996 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
1997 | }
|
---|
1998 | }
|
---|
1999 | }
|
---|
2000 | else
|
---|
2001 | # endif /* PGM_SYNC_N_PAGES */
|
---|
2002 | {
|
---|
2003 | const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
|
---|
2004 | GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
2005 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2006 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2007 | Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
|
---|
2008 | GCPtrPage, PteSrc.n.u1Present,
|
---|
2009 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2010 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2011 | (uint64_t)PteSrc.u,
|
---|
2012 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
2013 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
2014 | }
|
---|
2015 | }
|
---|
2016 | else /* MMIO or invalid page: emulated in #PF handler. */
|
---|
2017 | {
|
---|
2018 | LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
|
---|
2019 | Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
|
---|
2020 | }
|
---|
2021 | }
|
---|
2022 | else
|
---|
2023 | {
|
---|
2024 | /*
|
---|
2025 | * 4/2MB page - lazy syncing shadow 4K pages.
|
---|
2026 | * (There are many causes of getting here, it's no longer only CSAM.)
|
---|
2027 | */
|
---|
2028 | /* Calculate the GC physical address of this 4KB shadow page. */
|
---|
2029 | GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
|
---|
2030 | /* Find ram range. */
|
---|
2031 | PPGMPAGE pPage;
|
---|
2032 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
2033 | if (RT_SUCCESS(rc))
|
---|
2034 | {
|
---|
2035 | AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
|
---|
2036 |
|
---|
2037 | # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
2038 | /* Try to make the page writable if necessary. */
|
---|
2039 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
2040 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
2041 | || ( PdeSrc.n.u1Write
|
---|
2042 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
2043 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
2044 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
2045 | # endif
|
---|
2046 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
2047 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
2048 | # endif
|
---|
2049 | )
|
---|
2050 | )
|
---|
2051 | )
|
---|
2052 | {
|
---|
2053 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
2054 | AssertRC(rc);
|
---|
2055 | }
|
---|
2056 | # endif
|
---|
2057 |
|
---|
2058 | /*
|
---|
2059 | * Make shadow PTE entry.
|
---|
2060 | */
|
---|
2061 | SHWPTE PteDst;
|
---|
2062 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2063 | PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
|
---|
2064 | else
|
---|
2065 | SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
|
---|
2066 |
|
---|
2067 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2068 | if ( SHW_PTE_IS_P(PteDst)
|
---|
2069 | && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
|
---|
2070 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
2071 |
|
---|
2072 | /* Make sure only allocated pages are mapped writable. */
|
---|
2073 | if ( SHW_PTE_IS_P_RW(PteDst)
|
---|
2074 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
2075 | {
|
---|
2076 | /* Still applies to shared pages. */
|
---|
2077 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
2078 | SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
|
---|
2079 | Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
|
---|
2080 | }
|
---|
2081 |
|
---|
2082 | SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
|
---|
2083 |
|
---|
2084 | /*
|
---|
2085 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
2086 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
2087 | *
|
---|
2088 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
2089 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
2090 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
2091 | */
|
---|
2092 | /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
|
---|
2093 | * As for invlpg, it simply frees the whole shadow PT.
|
---|
2094 | * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
|
---|
2095 | if ( !PdeSrc.b.u1Dirty
|
---|
2096 | && PdeSrc.b.u1Write)
|
---|
2097 | {
|
---|
2098 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
|
---|
2099 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2100 | PdeDst.n.u1Write = 0;
|
---|
2101 | }
|
---|
2102 | else
|
---|
2103 | {
|
---|
2104 | PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2105 | PdeDst.n.u1Write = PdeSrc.n.u1Write;
|
---|
2106 | }
|
---|
2107 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2108 | Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
|
---|
2109 | GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
|
---|
2110 | PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2111 | }
|
---|
2112 | else
|
---|
2113 | {
|
---|
2114 | LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
|
---|
2115 | /** @todo must wipe the shadow page table entry in this
|
---|
2116 | * case. */
|
---|
2117 | }
|
---|
2118 | }
|
---|
2119 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2120 | return VINF_SUCCESS;
|
---|
2121 | }
|
---|
2122 |
|
---|
2123 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
|
---|
2124 | }
|
---|
2125 | else if (fPdeValid)
|
---|
2126 | {
|
---|
2127 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
|
---|
2128 | Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
|
---|
2129 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
|
---|
2130 | }
|
---|
2131 | else
|
---|
2132 | {
|
---|
2133 | /// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
|
---|
2134 | Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
|
---|
2135 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
|
---|
2136 | }
|
---|
2137 |
|
---|
2138 | /*
|
---|
2139 | * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
|
---|
2140 | * Yea, I'm lazy.
|
---|
2141 | */
|
---|
2142 | pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
|
---|
2143 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
2144 |
|
---|
2145 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2146 | PGM_INVL_VCPU_TLBS(pVCpu);
|
---|
2147 | return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
|
---|
2148 |
|
---|
2149 |
|
---|
2150 | #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
2151 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
2152 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
2153 | && !defined(IN_RC)
|
---|
2154 |
|
---|
2155 | # ifdef PGM_SYNC_N_PAGES
|
---|
2156 | /*
|
---|
2157 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
2158 | */
|
---|
2159 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2160 | X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
|
---|
2161 |
|
---|
2162 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2163 | X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
|
---|
2164 |
|
---|
2165 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2166 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
2167 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
|
---|
2168 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
2169 | X86PDEPAE PdeDst;
|
---|
2170 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
2171 |
|
---|
2172 | int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
2173 | AssertRCSuccessReturn(rc, rc);
|
---|
2174 | Assert(pPDDst && pPdptDst);
|
---|
2175 | PdeDst = pPDDst->a[iPDDst];
|
---|
2176 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
2177 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
2178 | PEPTPD pPDDst;
|
---|
2179 | EPTPDE PdeDst;
|
---|
2180 |
|
---|
2181 | int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
|
---|
2182 | if (rc != VINF_SUCCESS)
|
---|
2183 | {
|
---|
2184 | AssertRC(rc);
|
---|
2185 | return rc;
|
---|
2186 | }
|
---|
2187 | Assert(pPDDst);
|
---|
2188 | PdeDst = pPDDst->a[iPDDst];
|
---|
2189 | # endif
|
---|
2190 | /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
|
---|
2191 | if (!PdeDst.n.u1Present)
|
---|
2192 | {
|
---|
2193 | AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
|
---|
2194 | Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
|
---|
2195 | return VINF_SUCCESS; /* force the instruction to be executed again. */
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 | /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
|
---|
2199 | if (PdeDst.n.u1Size)
|
---|
2200 | {
|
---|
2201 | Assert(pVM->pgm.s.fNestedPaging);
|
---|
2202 | Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
|
---|
2203 | return VINF_SUCCESS;
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | /* Mask away the page offset. */
|
---|
2207 | GCPtrPage &= ~((RTGCPTR)0xfff);
|
---|
2208 |
|
---|
2209 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
2210 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
2211 |
|
---|
2212 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
2213 | if ( cPages > 1
|
---|
2214 | && !(uErr & X86_TRAP_PF_P)
|
---|
2215 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
2216 | {
|
---|
2217 | /*
|
---|
2218 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
2219 | * for non-present pages!
|
---|
2220 | *
|
---|
2221 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
2222 | * deal with locality.
|
---|
2223 | */
|
---|
2224 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2225 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
2226 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
2227 | iPTDst = 0;
|
---|
2228 | else
|
---|
2229 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
2230 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
2231 | {
|
---|
2232 | if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
|
---|
2233 | {
|
---|
2234 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
|
---|
2235 |
|
---|
2236 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
|
---|
2237 | Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
|
---|
2238 | GCPtrCurPage,
|
---|
2239 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
2240 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
2241 |
|
---|
2242 | if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
|
---|
2243 | break;
|
---|
2244 | }
|
---|
2245 | else
|
---|
2246 | Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
|
---|
2247 | }
|
---|
2248 | }
|
---|
2249 | else
|
---|
2250 | # endif /* PGM_SYNC_N_PAGES */
|
---|
2251 | {
|
---|
2252 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2253 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
|
---|
2254 |
|
---|
2255 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
|
---|
2256 |
|
---|
2257 | Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
|
---|
2258 | GCPtrPage,
|
---|
2259 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
2260 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
2261 | }
|
---|
2262 | return VINF_SUCCESS;
|
---|
2263 |
|
---|
2264 | #else
|
---|
2265 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
2266 | return VERR_INTERNAL_ERROR;
|
---|
2267 | #endif
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 |
|
---|
2271 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2272 |
|
---|
2273 | /**
|
---|
2274 | * CheckPageFault helper for returning a page fault indicating a non-present
|
---|
2275 | * (NP) entry in the page translation structures.
|
---|
2276 | *
|
---|
2277 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2278 | * @param pVCpu The virtual CPU to operate on.
|
---|
2279 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2280 | * TRPM's copy will be made if necessary.
|
---|
2281 | * @param GCPtrPage For logging.
|
---|
2282 | * @param uPageFaultLevel For logging.
|
---|
2283 | */
|
---|
2284 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2285 | {
|
---|
2286 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2287 | AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
|
---|
2288 | AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
|
---|
2289 | if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
2290 | TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
|
---|
2291 |
|
---|
2292 | Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2293 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2294 | }
|
---|
2295 |
|
---|
2296 |
|
---|
2297 | /**
|
---|
2298 | * CheckPageFault helper for returning a page fault indicating a reserved bit
|
---|
2299 | * (RSVD) error in the page translation structures.
|
---|
2300 | *
|
---|
2301 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2302 | * @param pVCpu The virtual CPU to operate on.
|
---|
2303 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2304 | * TRPM's copy will be made if necessary.
|
---|
2305 | * @param GCPtrPage For logging.
|
---|
2306 | * @param uPageFaultLevel For logging.
|
---|
2307 | */
|
---|
2308 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2309 | {
|
---|
2310 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2311 | if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
2312 | TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
|
---|
2313 |
|
---|
2314 | Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2315 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2316 | }
|
---|
2317 |
|
---|
2318 |
|
---|
2319 | /**
|
---|
2320 | * CheckPageFault helper for returning a page protection fault (P).
|
---|
2321 | *
|
---|
2322 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2323 | * @param pVCpu The virtual CPU to operate on.
|
---|
2324 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2325 | * TRPM's copy will be made if necessary.
|
---|
2326 | * @param GCPtrPage For logging.
|
---|
2327 | * @param uPageFaultLevel For logging.
|
---|
2328 | */
|
---|
2329 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2330 | {
|
---|
2331 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2332 | AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
|
---|
2333 | if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
|
---|
2334 | TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
|
---|
2335 |
|
---|
2336 | Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2337 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2338 | }
|
---|
2339 |
|
---|
2340 |
|
---|
2341 | /**
|
---|
2342 | * Handle dirty bit tracking faults.
|
---|
2343 | *
|
---|
2344 | * @returns VBox status code.
|
---|
2345 | * @param pVCpu The VMCPU handle.
|
---|
2346 | * @param uErr Page fault error code.
|
---|
2347 | * @param pPdeSrc Guest page directory entry.
|
---|
2348 | * @param pPdeDst Shadow page directory entry.
|
---|
2349 | * @param GCPtrPage Guest context page address.
|
---|
2350 | */
|
---|
2351 | static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
|
---|
2352 | {
|
---|
2353 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2354 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
2355 |
|
---|
2356 | Assert(PGMIsLockOwner(pVM));
|
---|
2357 |
|
---|
2358 | /*
|
---|
2359 | * Handle big page.
|
---|
2360 | */
|
---|
2361 | if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
|
---|
2362 | {
|
---|
2363 | if ( pPdeDst->n.u1Present
|
---|
2364 | && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
2365 | {
|
---|
2366 | SHWPDE PdeDst = *pPdeDst;
|
---|
2367 |
|
---|
2368 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
|
---|
2369 | Assert(pPdeSrc->b.u1Write);
|
---|
2370 |
|
---|
2371 | /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
|
---|
2372 | * fault again and take this path to only invalidate the entry (see below).
|
---|
2373 | */
|
---|
2374 | PdeDst.n.u1Write = 1;
|
---|
2375 | PdeDst.n.u1Accessed = 1;
|
---|
2376 | PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2377 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2378 | PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
|
---|
2379 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2380 | }
|
---|
2381 |
|
---|
2382 | # ifdef IN_RING0
|
---|
2383 | /* Check for stale TLB entry; only applies to the SMP guest case. */
|
---|
2384 | if ( pVM->cCpus > 1
|
---|
2385 | && pPdeDst->n.u1Write
|
---|
2386 | && pPdeDst->n.u1Accessed)
|
---|
2387 | {
|
---|
2388 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
2389 | if (pShwPage)
|
---|
2390 | {
|
---|
2391 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
2392 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
2393 | if (SHW_PTE_IS_P_RW(*pPteDst))
|
---|
2394 | {
|
---|
2395 | /* Stale TLB entry. */
|
---|
2396 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
|
---|
2397 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2398 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2399 | }
|
---|
2400 | }
|
---|
2401 | }
|
---|
2402 | # endif /* IN_RING0 */
|
---|
2403 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2404 | }
|
---|
2405 |
|
---|
2406 | /*
|
---|
2407 | * Map the guest page table.
|
---|
2408 | */
|
---|
2409 | PGSTPT pPTSrc;
|
---|
2410 | int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
|
---|
2411 | if (RT_FAILURE(rc))
|
---|
2412 | {
|
---|
2413 | AssertRC(rc);
|
---|
2414 | return rc;
|
---|
2415 | }
|
---|
2416 |
|
---|
2417 | if (pPdeDst->n.u1Present)
|
---|
2418 | {
|
---|
2419 | GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
|
---|
2420 | const GSTPTE PteSrc = *pPteSrc;
|
---|
2421 |
|
---|
2422 | #ifndef IN_RING0
|
---|
2423 | /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
|
---|
2424 | * Our individual shadow handlers will provide more information and force a fatal exit.
|
---|
2425 | */
|
---|
2426 | if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
|
---|
2427 | {
|
---|
2428 | LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
|
---|
2429 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2430 | }
|
---|
2431 | #endif
|
---|
2432 | /*
|
---|
2433 | * Map shadow page table.
|
---|
2434 | */
|
---|
2435 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
2436 | if (pShwPage)
|
---|
2437 | {
|
---|
2438 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
2439 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
2440 | if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
|
---|
2441 | {
|
---|
2442 | if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
|
---|
2443 | {
|
---|
2444 | PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(*pPteSrc));
|
---|
2445 | SHWPTE PteDst = *pPteDst;
|
---|
2446 |
|
---|
2447 | LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
|
---|
2448 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
|
---|
2449 |
|
---|
2450 | Assert(pPteSrc->n.u1Write);
|
---|
2451 |
|
---|
2452 | /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
|
---|
2453 | * entry will not harm; write access will simply fault again and
|
---|
2454 | * take this path to only invalidate the entry.
|
---|
2455 | */
|
---|
2456 | if (RT_LIKELY(pPage))
|
---|
2457 | {
|
---|
2458 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2459 | {
|
---|
2460 | AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
|
---|
2461 | Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
|
---|
2462 | /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
|
---|
2463 | SHW_PTE_SET_RO(PteDst);
|
---|
2464 | }
|
---|
2465 | else
|
---|
2466 | {
|
---|
2467 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
2468 | && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
|
---|
2469 | {
|
---|
2470 | rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(*pPteSrc));
|
---|
2471 | AssertRC(rc);
|
---|
2472 | }
|
---|
2473 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
|
---|
2474 | SHW_PTE_SET_RW(PteDst);
|
---|
2475 | else
|
---|
2476 | {
|
---|
2477 | /* Still applies to shared pages. */
|
---|
2478 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
2479 | SHW_PTE_SET_RO(PteDst);
|
---|
2480 | }
|
---|
2481 | }
|
---|
2482 | }
|
---|
2483 | else
|
---|
2484 | SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
|
---|
2485 |
|
---|
2486 | SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
|
---|
2487 | SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
|
---|
2488 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2489 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2490 | }
|
---|
2491 |
|
---|
2492 | # ifdef IN_RING0
|
---|
2493 | /* Check for stale TLB entry; only applies to the SMP guest case. */
|
---|
2494 | if ( pVM->cCpus > 1
|
---|
2495 | && SHW_PTE_IS_RW(*pPteDst)
|
---|
2496 | && SHW_PTE_IS_A(*pPteDst))
|
---|
2497 | {
|
---|
2498 | /* Stale TLB entry. */
|
---|
2499 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
|
---|
2500 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2501 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2502 | }
|
---|
2503 | # endif
|
---|
2504 | }
|
---|
2505 | }
|
---|
2506 | else
|
---|
2507 | AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | #endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
2514 |
|
---|
2515 |
|
---|
2516 | /**
|
---|
2517 | * Sync a shadow page table.
|
---|
2518 | *
|
---|
2519 | * The shadow page table is not present in the shadow PDE.
|
---|
2520 | *
|
---|
2521 | * Handles mapping conflicts.
|
---|
2522 | *
|
---|
2523 | * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
|
---|
2524 | * conflict), and Trap0eHandler.
|
---|
2525 | *
|
---|
2526 | * A precondition for this method is that the shadow PDE is not present. The
|
---|
2527 | * caller must take the PGM lock before checking this and continue to hold it
|
---|
2528 | * when calling this method.
|
---|
2529 | *
|
---|
2530 | * @returns VBox status code.
|
---|
2531 | * @param pVCpu The VMCPU handle.
|
---|
2532 | * @param iPD Page directory index.
|
---|
2533 | * @param pPDSrc Source page directory (i.e. Guest OS page directory).
|
---|
2534 | * Assume this is a temporary mapping.
|
---|
2535 | * @param GCPtrPage GC Pointer of the page that caused the fault
|
---|
2536 | */
|
---|
2537 | static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
|
---|
2538 | {
|
---|
2539 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2540 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
2541 |
|
---|
2542 | #if 0 /* rarely useful; leave for debugging. */
|
---|
2543 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
|
---|
2544 | #endif
|
---|
2545 | LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
|
---|
2546 |
|
---|
2547 | Assert(PGMIsLocked(pVM));
|
---|
2548 |
|
---|
2549 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
2550 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
2551 | || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
2552 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
2553 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
2554 |
|
---|
2555 | int rc = VINF_SUCCESS;
|
---|
2556 |
|
---|
2557 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
2558 |
|
---|
2559 | /*
|
---|
2560 | * Some input validation first.
|
---|
2561 | */
|
---|
2562 | AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
|
---|
2563 |
|
---|
2564 | /*
|
---|
2565 | * Get the relevant shadow PDE entry.
|
---|
2566 | */
|
---|
2567 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2568 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
2569 | PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
|
---|
2570 |
|
---|
2571 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2572 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
2573 | Assert(pShwPde);
|
---|
2574 |
|
---|
2575 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2576 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
2577 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
2578 | PX86PDPAE pPDDst;
|
---|
2579 | PSHWPDE pPdeDst;
|
---|
2580 |
|
---|
2581 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2582 | rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
|
---|
2583 | AssertRCSuccessReturn(rc, rc);
|
---|
2584 | Assert(pShwPde);
|
---|
2585 |
|
---|
2586 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
|
---|
2587 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
2588 |
|
---|
2589 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2590 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
2591 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
2592 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
2593 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
2594 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
2595 | AssertRCSuccessReturn(rc, rc);
|
---|
2596 | Assert(pPDDst);
|
---|
2597 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
2598 | # endif
|
---|
2599 | SHWPDE PdeDst = *pPdeDst;
|
---|
2600 |
|
---|
2601 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2602 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2603 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
2604 | Assert(pShwPde);
|
---|
2605 | # endif
|
---|
2606 |
|
---|
2607 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
2608 | /*
|
---|
2609 | * Check for conflicts.
|
---|
2610 | * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
|
---|
2611 | * R3: Simply resolve the conflict.
|
---|
2612 | */
|
---|
2613 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
2614 | {
|
---|
2615 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
2616 | # ifndef IN_RING3
|
---|
2617 | Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
|
---|
2618 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
2619 | return VERR_ADDRESS_CONFLICT;
|
---|
2620 |
|
---|
2621 | # else /* IN_RING3 */
|
---|
2622 | PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
|
---|
2623 | Assert(pMapping);
|
---|
2624 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2625 | rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
|
---|
2626 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
2627 | rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
|
---|
2628 | # else
|
---|
2629 | AssertFailed(); /* can't happen for amd64 */
|
---|
2630 | # endif
|
---|
2631 | if (RT_FAILURE(rc))
|
---|
2632 | {
|
---|
2633 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
2634 | return rc;
|
---|
2635 | }
|
---|
2636 | PdeDst = *pPdeDst;
|
---|
2637 | # endif /* IN_RING3 */
|
---|
2638 | }
|
---|
2639 | # endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
2640 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
2641 |
|
---|
2642 | /*
|
---|
2643 | * Sync the page directory entry.
|
---|
2644 | */
|
---|
2645 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
2646 | const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
|
---|
2647 | if ( PdeSrc.n.u1Present
|
---|
2648 | && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
|
---|
2649 | {
|
---|
2650 | /*
|
---|
2651 | * Allocate & map the page table.
|
---|
2652 | */
|
---|
2653 | PSHWPT pPTDst;
|
---|
2654 | PPGMPOOLPAGE pShwPage;
|
---|
2655 | RTGCPHYS GCPhys;
|
---|
2656 | if (fPageTable)
|
---|
2657 | {
|
---|
2658 | GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
|
---|
2659 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2660 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
2661 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
2662 | # endif
|
---|
2663 | rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
|
---|
2664 | }
|
---|
2665 | else
|
---|
2666 | {
|
---|
2667 | PGMPOOLACCESS enmAccess;
|
---|
2668 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2669 | const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
|
---|
2670 | # else
|
---|
2671 | const bool fNoExecute = false;
|
---|
2672 | # endif
|
---|
2673 |
|
---|
2674 | GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
|
---|
2675 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2676 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
2677 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
2678 | # endif
|
---|
2679 | /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
|
---|
2680 | if (PdeSrc.n.u1User)
|
---|
2681 | {
|
---|
2682 | if (PdeSrc.n.u1Write)
|
---|
2683 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
|
---|
2684 | else
|
---|
2685 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
|
---|
2686 | }
|
---|
2687 | else
|
---|
2688 | {
|
---|
2689 | if (PdeSrc.n.u1Write)
|
---|
2690 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
|
---|
2691 | else
|
---|
2692 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
|
---|
2693 | }
|
---|
2694 | rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, false /*fLockPage*/,
|
---|
2695 | &pShwPage);
|
---|
2696 | }
|
---|
2697 | if (rc == VINF_SUCCESS)
|
---|
2698 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
2699 | else if (rc == VINF_PGM_CACHED_PAGE)
|
---|
2700 | {
|
---|
2701 | /*
|
---|
2702 | * The PT was cached, just hook it up.
|
---|
2703 | */
|
---|
2704 | if (fPageTable)
|
---|
2705 | PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
|
---|
2706 | else
|
---|
2707 | {
|
---|
2708 | PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
|
---|
2709 | /* (see explanation and assumptions further down.) */
|
---|
2710 | if ( !PdeSrc.b.u1Dirty
|
---|
2711 | && PdeSrc.b.u1Write)
|
---|
2712 | {
|
---|
2713 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
|
---|
2714 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2715 | PdeDst.b.u1Write = 0;
|
---|
2716 | }
|
---|
2717 | }
|
---|
2718 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2719 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2720 | return VINF_SUCCESS;
|
---|
2721 | }
|
---|
2722 | else if (rc == VERR_PGM_POOL_FLUSHED)
|
---|
2723 | {
|
---|
2724 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2725 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2726 | return VINF_PGM_SYNC_CR3;
|
---|
2727 | }
|
---|
2728 | else
|
---|
2729 | AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
2730 | /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
|
---|
2731 | * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
|
---|
2732 | * irrelevant at this point. */
|
---|
2733 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
2734 | PdeDst.u |= pShwPage->Core.Key;
|
---|
2735 |
|
---|
2736 | /*
|
---|
2737 | * Page directory has been accessed (this is a fault situation, remember).
|
---|
2738 | */
|
---|
2739 | /** @todo
|
---|
2740 | * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
|
---|
2741 | * fault situation. What's more, the Trap0eHandler has already set the
|
---|
2742 | * accessed bit. So, it's actually just VerifyAccessSyncPage which
|
---|
2743 | * might need setting the accessed flag.
|
---|
2744 | *
|
---|
2745 | * The best idea is to leave this change to the caller and add an
|
---|
2746 | * assertion that it's set already. */
|
---|
2747 | pPDSrc->a[iPDSrc].n.u1Accessed = 1;
|
---|
2748 | if (fPageTable)
|
---|
2749 | {
|
---|
2750 | /*
|
---|
2751 | * Page table - 4KB.
|
---|
2752 | *
|
---|
2753 | * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
|
---|
2754 | */
|
---|
2755 | Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
|
---|
2756 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
|
---|
2757 | PGSTPT pPTSrc;
|
---|
2758 | rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
|
---|
2759 | if (RT_SUCCESS(rc))
|
---|
2760 | {
|
---|
2761 | /*
|
---|
2762 | * Start by syncing the page directory entry so CSAM's TLB trick works.
|
---|
2763 | */
|
---|
2764 | PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
|
---|
2765 | | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
|
---|
2766 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2767 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2768 |
|
---|
2769 | /*
|
---|
2770 | * Directory/page user or supervisor privilege: (same goes for read/write)
|
---|
2771 | *
|
---|
2772 | * Directory Page Combined
|
---|
2773 | * U/S U/S U/S
|
---|
2774 | * 0 0 0
|
---|
2775 | * 0 1 0
|
---|
2776 | * 1 0 0
|
---|
2777 | * 1 1 1
|
---|
2778 | *
|
---|
2779 | * Simple AND operation. Table listed for completeness.
|
---|
2780 | *
|
---|
2781 | */
|
---|
2782 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
|
---|
2783 | # ifdef PGM_SYNC_N_PAGES
|
---|
2784 | unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2785 | unsigned iPTDst = iPTBase;
|
---|
2786 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
2787 | if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
|
---|
2788 | iPTDst = 0;
|
---|
2789 | else
|
---|
2790 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
2791 | # else /* !PGM_SYNC_N_PAGES */
|
---|
2792 | unsigned iPTDst = 0;
|
---|
2793 | const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
|
---|
2794 | # endif /* !PGM_SYNC_N_PAGES */
|
---|
2795 | RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
|
---|
2796 | | ((RTGCPTR)iPTDst << PAGE_SHIFT);
|
---|
2797 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2798 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
2799 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
2800 | # else
|
---|
2801 | const unsigned offPTSrc = 0;
|
---|
2802 | # endif
|
---|
2803 | for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
|
---|
2804 | {
|
---|
2805 | const unsigned iPTSrc = iPTDst + offPTSrc;
|
---|
2806 | const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
2807 |
|
---|
2808 | if (PteSrc.n.u1Present)
|
---|
2809 | {
|
---|
2810 | # ifndef IN_RING0
|
---|
2811 | /*
|
---|
2812 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
2813 | * and executed using a conforming code selector - And marked as readonly.
|
---|
2814 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
2815 | */
|
---|
2816 | PPGMPAGE pPage;
|
---|
2817 | if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
|
---|
2818 | || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
|
---|
2819 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc)))
|
---|
2820 | && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2821 | )
|
---|
2822 | # endif
|
---|
2823 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2824 | Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
|
---|
2825 | GCPtrCur,
|
---|
2826 | PteSrc.n.u1Present,
|
---|
2827 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2828 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2829 | (uint64_t)PteSrc.u,
|
---|
2830 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
|
---|
2831 | (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
|
---|
2832 | }
|
---|
2833 | /* else: the page table was cleared by the pool */
|
---|
2834 | } /* for PTEs */
|
---|
2835 | }
|
---|
2836 | }
|
---|
2837 | else
|
---|
2838 | {
|
---|
2839 | /*
|
---|
2840 | * Big page - 2/4MB.
|
---|
2841 | *
|
---|
2842 | * We'll walk the ram range list in parallel and optimize lookups.
|
---|
2843 | * We will only sync on shadow page table at a time.
|
---|
2844 | */
|
---|
2845 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
|
---|
2846 |
|
---|
2847 | /**
|
---|
2848 | * @todo It might be more efficient to sync only a part of the 4MB
|
---|
2849 | * page (similar to what we do for 4KB PDs).
|
---|
2850 | */
|
---|
2851 |
|
---|
2852 | /*
|
---|
2853 | * Start by syncing the page directory entry.
|
---|
2854 | */
|
---|
2855 | PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
2856 | | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
|
---|
2857 |
|
---|
2858 | /*
|
---|
2859 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
2860 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
2861 | *
|
---|
2862 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
2863 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
2864 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
2865 | */
|
---|
2866 | /** @todo move the above stuff to a section in the PGM documentation. */
|
---|
2867 | Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
|
---|
2868 | if ( !PdeSrc.b.u1Dirty
|
---|
2869 | && PdeSrc.b.u1Write)
|
---|
2870 | {
|
---|
2871 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
|
---|
2872 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2873 | PdeDst.b.u1Write = 0;
|
---|
2874 | }
|
---|
2875 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2876 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
2877 |
|
---|
2878 | /*
|
---|
2879 | * Fill the shadow page table.
|
---|
2880 | */
|
---|
2881 | /* Get address and flags from the source PDE. */
|
---|
2882 | SHWPTE PteDstBase;
|
---|
2883 | SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
|
---|
2884 |
|
---|
2885 | /* Loop thru the entries in the shadow PT. */
|
---|
2886 | const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
|
---|
2887 | Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
|
---|
2888 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
|
---|
2889 | GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2890 | PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
|
---|
2891 | unsigned iPTDst = 0;
|
---|
2892 | while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
2893 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
2894 | {
|
---|
2895 | /* Advance ram range list. */
|
---|
2896 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
2897 | pRam = pRam->CTX_SUFF(pNext);
|
---|
2898 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
2899 | {
|
---|
2900 | unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
2901 | do
|
---|
2902 | {
|
---|
2903 | /* Make shadow PTE. */
|
---|
2904 | PPGMPAGE pPage = &pRam->aPages[iHCPage];
|
---|
2905 | SHWPTE PteDst;
|
---|
2906 |
|
---|
2907 | # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
2908 | /* Try to make the page writable if necessary. */
|
---|
2909 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
2910 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
2911 | || ( SHW_PTE_IS_RW(PteDstBase)
|
---|
2912 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
2913 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
2914 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
2915 | # endif
|
---|
2916 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
2917 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
2918 | # endif
|
---|
2919 | && !PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2920 | )
|
---|
2921 | )
|
---|
2922 | {
|
---|
2923 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
2924 | AssertRCReturn(rc, rc);
|
---|
2925 | if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
2926 | break;
|
---|
2927 | }
|
---|
2928 | # endif
|
---|
2929 |
|
---|
2930 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2931 | PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
|
---|
2932 | else if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2933 | SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
|
---|
2934 | # ifndef IN_RING0
|
---|
2935 | /*
|
---|
2936 | * Assuming kernel code will be marked as supervisor and not as user level and executed
|
---|
2937 | * using a conforming code selector. Don't check for readonly, as that implies the whole
|
---|
2938 | * 4MB can be code or readonly data. Linux enables write access for its large pages.
|
---|
2939 | */
|
---|
2940 | else if ( !PdeSrc.n.u1User
|
---|
2941 | && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
|
---|
2942 | SHW_PTE_SET(PteDst, 0);
|
---|
2943 | # endif
|
---|
2944 | else
|
---|
2945 | SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
|
---|
2946 |
|
---|
2947 | /* Only map writable pages writable. */
|
---|
2948 | if ( SHW_PTE_IS_P_RW(PteDst)
|
---|
2949 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
2950 | {
|
---|
2951 | /* Still applies to shared pages. */
|
---|
2952 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
2953 | SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
|
---|
2954 | Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
|
---|
2955 | }
|
---|
2956 |
|
---|
2957 | if (SHW_PTE_IS_P(PteDst))
|
---|
2958 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
2959 |
|
---|
2960 | /* commit it (not atomic, new table) */
|
---|
2961 | pPTDst->a[iPTDst] = PteDst;
|
---|
2962 | Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
|
---|
2963 | (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
|
---|
2964 | SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
|
---|
2965 |
|
---|
2966 | /* advance */
|
---|
2967 | GCPhys += PAGE_SIZE;
|
---|
2968 | iHCPage++;
|
---|
2969 | iPTDst++;
|
---|
2970 | } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
2971 | && GCPhys <= pRam->GCPhysLast);
|
---|
2972 | }
|
---|
2973 | else if (pRam)
|
---|
2974 | {
|
---|
2975 | Log(("Invalid pages at %RGp\n", GCPhys));
|
---|
2976 | do
|
---|
2977 | {
|
---|
2978 | SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
|
---|
2979 | GCPhys += PAGE_SIZE;
|
---|
2980 | iPTDst++;
|
---|
2981 | } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
2982 | && GCPhys < pRam->GCPhys);
|
---|
2983 | }
|
---|
2984 | else
|
---|
2985 | {
|
---|
2986 | Log(("Invalid pages at %RGp (2)\n", GCPhys));
|
---|
2987 | for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
|
---|
2988 | SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
|
---|
2989 | }
|
---|
2990 | } /* while more PTEs */
|
---|
2991 | } /* 4KB / 4MB */
|
---|
2992 | }
|
---|
2993 | else
|
---|
2994 | AssertRelease(!PdeDst.n.u1Present);
|
---|
2995 |
|
---|
2996 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
2997 | if (RT_FAILURE(rc))
|
---|
2998 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
|
---|
2999 | return rc;
|
---|
3000 |
|
---|
3001 | #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
3002 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3003 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
3004 | && !defined(IN_RC)
|
---|
3005 |
|
---|
3006 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
3007 |
|
---|
3008 | /*
|
---|
3009 | * Validate input a little bit.
|
---|
3010 | */
|
---|
3011 | int rc = VINF_SUCCESS;
|
---|
3012 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3013 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3014 | PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
|
---|
3015 |
|
---|
3016 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3017 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
3018 | Assert(pShwPde);
|
---|
3019 |
|
---|
3020 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3021 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3022 | PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
|
---|
3023 | PX86PDPAE pPDDst;
|
---|
3024 | PSHWPDE pPdeDst;
|
---|
3025 |
|
---|
3026 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3027 | rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
|
---|
3028 | AssertRCSuccessReturn(rc, rc);
|
---|
3029 | Assert(pShwPde);
|
---|
3030 |
|
---|
3031 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
|
---|
3032 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3033 |
|
---|
3034 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3035 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
3036 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3037 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
3038 | PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
|
---|
3039 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
3040 | AssertRCSuccessReturn(rc, rc);
|
---|
3041 | Assert(pPDDst);
|
---|
3042 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
3043 |
|
---|
3044 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3045 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
3046 | Assert(pShwPde);
|
---|
3047 |
|
---|
3048 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3049 | const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
|
---|
3050 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3051 | PEPTPD pPDDst;
|
---|
3052 | PEPTPDPT pPdptDst;
|
---|
3053 |
|
---|
3054 | rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
|
---|
3055 | if (rc != VINF_SUCCESS)
|
---|
3056 | {
|
---|
3057 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
3058 | AssertRC(rc);
|
---|
3059 | return rc;
|
---|
3060 | }
|
---|
3061 | Assert(pPDDst);
|
---|
3062 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
3063 |
|
---|
3064 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3065 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
|
---|
3066 | Assert(pShwPde);
|
---|
3067 | # endif
|
---|
3068 | SHWPDE PdeDst = *pPdeDst;
|
---|
3069 |
|
---|
3070 | Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
|
---|
3071 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
3072 |
|
---|
3073 | # if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
3074 | if (BTH_IS_NP_ACTIVE(pVM))
|
---|
3075 | {
|
---|
3076 | PPGMPAGE pPage;
|
---|
3077 |
|
---|
3078 | /* Check if we allocated a big page before for this 2 MB range. */
|
---|
3079 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
|
---|
3080 | if (RT_SUCCESS(rc))
|
---|
3081 | {
|
---|
3082 | RTHCPHYS HCPhys = NIL_RTHCPHYS;
|
---|
3083 |
|
---|
3084 | if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
|
---|
3085 | {
|
---|
3086 | STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
|
---|
3087 | AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3088 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3089 | }
|
---|
3090 | else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
|
---|
3091 | {
|
---|
3092 | /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
|
---|
3093 | rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
|
---|
3094 | if (RT_SUCCESS(rc))
|
---|
3095 | {
|
---|
3096 | Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3097 | Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
|
---|
3098 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3099 | }
|
---|
3100 | }
|
---|
3101 | else if (PGMIsUsingLargePages(pVM))
|
---|
3102 | {
|
---|
3103 | rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
|
---|
3104 | if (RT_SUCCESS(rc))
|
---|
3105 | {
|
---|
3106 | Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3107 | Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
|
---|
3108 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3109 | }
|
---|
3110 | else
|
---|
3111 | LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
|
---|
3112 | }
|
---|
3113 |
|
---|
3114 | if (HCPhys != NIL_RTHCPHYS)
|
---|
3115 | {
|
---|
3116 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
3117 | PdeDst.u |= HCPhys;
|
---|
3118 | PdeDst.n.u1Present = 1;
|
---|
3119 | PdeDst.n.u1Write = 1;
|
---|
3120 | PdeDst.b.u1Size = 1;
|
---|
3121 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3122 | PdeDst.n.u1Execute = 1;
|
---|
3123 | PdeDst.b.u1IgnorePAT = 1;
|
---|
3124 | PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
3125 | # else
|
---|
3126 | PdeDst.n.u1User = 1;
|
---|
3127 | # endif
|
---|
3128 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
3129 |
|
---|
3130 | Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
|
---|
3131 | /* Add a reference to the first page only. */
|
---|
3132 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
|
---|
3133 |
|
---|
3134 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
3135 | return VINF_SUCCESS;
|
---|
3136 | }
|
---|
3137 | }
|
---|
3138 | }
|
---|
3139 | # endif /* HC_ARCH_BITS == 64 */
|
---|
3140 |
|
---|
3141 | /*
|
---|
3142 | * Allocate & map the page table.
|
---|
3143 | */
|
---|
3144 | PSHWPT pPTDst;
|
---|
3145 | PPGMPOOLPAGE pShwPage;
|
---|
3146 | RTGCPHYS GCPhys;
|
---|
3147 |
|
---|
3148 | /* Virtual address = physical address */
|
---|
3149 | GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
|
---|
3150 | rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
|
---|
3151 |
|
---|
3152 | if ( rc == VINF_SUCCESS
|
---|
3153 | || rc == VINF_PGM_CACHED_PAGE)
|
---|
3154 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
|
---|
3155 | else
|
---|
3156 | {
|
---|
3157 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
3158 | AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
3159 | }
|
---|
3160 |
|
---|
3161 | if (rc == VINF_SUCCESS)
|
---|
3162 | {
|
---|
3163 | /* New page table; fully set it up. */
|
---|
3164 | Assert(pPTDst);
|
---|
3165 |
|
---|
3166 | /* Mask away the page offset. */
|
---|
3167 | GCPtrPage &= ~((RTGCPTR)0xfff);
|
---|
3168 |
|
---|
3169 | for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
|
---|
3170 | {
|
---|
3171 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
|
---|
3172 |
|
---|
3173 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
|
---|
3174 | Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
|
---|
3175 | GCPtrCurPage,
|
---|
3176 | SHW_PTE_LOG64(pPTDst->a[iPTDst]),
|
---|
3177 | SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
|
---|
3178 |
|
---|
3179 | if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
|
---|
3180 | break;
|
---|
3181 | }
|
---|
3182 | }
|
---|
3183 | else
|
---|
3184 | rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
|
---|
3185 |
|
---|
3186 | /* Save the new PDE. */
|
---|
3187 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
3188 | PdeDst.u |= pShwPage->Core.Key;
|
---|
3189 | PdeDst.n.u1Present = 1;
|
---|
3190 | PdeDst.n.u1Write = 1;
|
---|
3191 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3192 | PdeDst.n.u1Execute = 1;
|
---|
3193 | # else
|
---|
3194 | PdeDst.n.u1User = 1;
|
---|
3195 | PdeDst.n.u1Accessed = 1;
|
---|
3196 | # endif
|
---|
3197 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
3198 |
|
---|
3199 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
|
---|
3200 | if (RT_FAILURE(rc))
|
---|
3201 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
|
---|
3202 | return rc;
|
---|
3203 |
|
---|
3204 | #else
|
---|
3205 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
|
---|
3206 | return VERR_INTERNAL_ERROR;
|
---|
3207 | #endif
|
---|
3208 | }
|
---|
3209 |
|
---|
3210 |
|
---|
3211 |
|
---|
3212 | /**
|
---|
3213 | * Prefetch a page/set of pages.
|
---|
3214 | *
|
---|
3215 | * Typically used to sync commonly used pages before entering raw mode
|
---|
3216 | * after a CR3 reload.
|
---|
3217 | *
|
---|
3218 | * @returns VBox status code.
|
---|
3219 | * @param pVCpu The VMCPU handle.
|
---|
3220 | * @param GCPtrPage Page to invalidate.
|
---|
3221 | */
|
---|
3222 | PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
|
---|
3223 | {
|
---|
3224 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3225 | || PGM_GST_TYPE == PGM_TYPE_REAL \
|
---|
3226 | || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
3227 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3228 | || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
|
---|
3229 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3230 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3231 |
|
---|
3232 | /*
|
---|
3233 | * Check that all Guest levels thru the PDE are present, getting the
|
---|
3234 | * PD and PDE in the processes.
|
---|
3235 | */
|
---|
3236 | int rc = VINF_SUCCESS;
|
---|
3237 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3238 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3239 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
3240 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
3241 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3242 | unsigned iPDSrc;
|
---|
3243 | X86PDPE PdpeSrc;
|
---|
3244 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
|
---|
3245 | if (!pPDSrc)
|
---|
3246 | return VINF_SUCCESS; /* not present */
|
---|
3247 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3248 | unsigned iPDSrc;
|
---|
3249 | PX86PML4E pPml4eSrc;
|
---|
3250 | X86PDPE PdpeSrc;
|
---|
3251 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
|
---|
3252 | if (!pPDSrc)
|
---|
3253 | return VINF_SUCCESS; /* not present */
|
---|
3254 | # endif
|
---|
3255 | const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
3256 | # else
|
---|
3257 | PGSTPD pPDSrc = NULL;
|
---|
3258 | const unsigned iPDSrc = 0;
|
---|
3259 | GSTPDE PdeSrc;
|
---|
3260 |
|
---|
3261 | PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
|
---|
3262 | PdeSrc.n.u1Present = 1;
|
---|
3263 | PdeSrc.n.u1Write = 1;
|
---|
3264 | PdeSrc.n.u1Accessed = 1;
|
---|
3265 | PdeSrc.n.u1User = 1;
|
---|
3266 | # endif
|
---|
3267 |
|
---|
3268 | if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
|
---|
3269 | {
|
---|
3270 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3271 | pgmLock(pVM);
|
---|
3272 |
|
---|
3273 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3274 | const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
|
---|
3275 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3276 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3277 | PX86PDPAE pPDDst;
|
---|
3278 | X86PDEPAE PdeDst;
|
---|
3279 | # if PGM_GST_TYPE != PGM_TYPE_PAE
|
---|
3280 | X86PDPE PdpeSrc;
|
---|
3281 |
|
---|
3282 | /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3283 | PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
|
---|
3284 | # endif
|
---|
3285 | rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
|
---|
3286 | if (rc != VINF_SUCCESS)
|
---|
3287 | {
|
---|
3288 | pgmUnlock(pVM);
|
---|
3289 | AssertRC(rc);
|
---|
3290 | return rc;
|
---|
3291 | }
|
---|
3292 | Assert(pPDDst);
|
---|
3293 | PdeDst = pPDDst->a[iPDDst];
|
---|
3294 |
|
---|
3295 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3296 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3297 | PX86PDPAE pPDDst;
|
---|
3298 | X86PDEPAE PdeDst;
|
---|
3299 |
|
---|
3300 | # if PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
3301 | /* AMD-V nested paging */
|
---|
3302 | X86PML4E Pml4eSrc;
|
---|
3303 | X86PDPE PdpeSrc;
|
---|
3304 | PX86PML4E pPml4eSrc = &Pml4eSrc;
|
---|
3305 |
|
---|
3306 | /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3307 | Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
|
---|
3308 | PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
|
---|
3309 | # endif
|
---|
3310 |
|
---|
3311 | rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
|
---|
3312 | if (rc != VINF_SUCCESS)
|
---|
3313 | {
|
---|
3314 | pgmUnlock(pVM);
|
---|
3315 | AssertRC(rc);
|
---|
3316 | return rc;
|
---|
3317 | }
|
---|
3318 | Assert(pPDDst);
|
---|
3319 | PdeDst = pPDDst->a[iPDDst];
|
---|
3320 | # endif
|
---|
3321 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
3322 | {
|
---|
3323 | if (!PdeDst.n.u1Present)
|
---|
3324 | {
|
---|
3325 | /** @todo r=bird: This guy will set the A bit on the PDE,
|
---|
3326 | * probably harmless. */
|
---|
3327 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
3328 | }
|
---|
3329 | else
|
---|
3330 | {
|
---|
3331 | /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
|
---|
3332 | * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
|
---|
3333 | * makes no sense to prefetch more than one page.
|
---|
3334 | */
|
---|
3335 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
|
---|
3336 | if (RT_SUCCESS(rc))
|
---|
3337 | rc = VINF_SUCCESS;
|
---|
3338 | }
|
---|
3339 | }
|
---|
3340 | pgmUnlock(pVM);
|
---|
3341 | }
|
---|
3342 | return rc;
|
---|
3343 |
|
---|
3344 | #elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3345 | return VINF_SUCCESS; /* ignore */
|
---|
3346 | #else
|
---|
3347 | AssertCompile(0);
|
---|
3348 | #endif
|
---|
3349 | }
|
---|
3350 |
|
---|
3351 |
|
---|
3352 |
|
---|
3353 |
|
---|
3354 | /**
|
---|
3355 | * Syncs a page during a PGMVerifyAccess() call.
|
---|
3356 | *
|
---|
3357 | * @returns VBox status code (informational included).
|
---|
3358 | * @param pVCpu The VMCPU handle.
|
---|
3359 | * @param GCPtrPage The address of the page to sync.
|
---|
3360 | * @param fPage The effective guest page flags.
|
---|
3361 | * @param uErr The trap error code.
|
---|
3362 | * @remarks This will normally never be called on invalid guest page
|
---|
3363 | * translation entries.
|
---|
3364 | */
|
---|
3365 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
|
---|
3366 | {
|
---|
3367 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3368 |
|
---|
3369 | LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
|
---|
3370 |
|
---|
3371 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
3372 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3373 | || PGM_GST_TYPE == PGM_TYPE_REAL \
|
---|
3374 | || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
3375 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3376 | || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
|
---|
3377 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3378 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3379 |
|
---|
3380 | # ifndef IN_RING0
|
---|
3381 | if (!(fPage & X86_PTE_US))
|
---|
3382 | {
|
---|
3383 | /*
|
---|
3384 | * Mark this page as safe.
|
---|
3385 | */
|
---|
3386 | /** @todo not correct for pages that contain both code and data!! */
|
---|
3387 | Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
|
---|
3388 | CSAMMarkPage(pVM, GCPtrPage, true);
|
---|
3389 | }
|
---|
3390 | # endif
|
---|
3391 |
|
---|
3392 | /*
|
---|
3393 | * Get guest PD and index.
|
---|
3394 | */
|
---|
3395 | /** @todo Performance: We've done all this a jiffy ago in the
|
---|
3396 | * PGMGstGetPage call. */
|
---|
3397 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3398 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3399 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
3400 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
3401 |
|
---|
3402 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3403 | unsigned iPDSrc = 0;
|
---|
3404 | X86PDPE PdpeSrc;
|
---|
3405 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
|
---|
3406 | if (RT_UNLIKELY(!pPDSrc))
|
---|
3407 | {
|
---|
3408 | Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
|
---|
3409 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
3410 | }
|
---|
3411 |
|
---|
3412 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3413 | unsigned iPDSrc = 0; /* shut up gcc */
|
---|
3414 | PX86PML4E pPml4eSrc = NULL; /* ditto */
|
---|
3415 | X86PDPE PdpeSrc;
|
---|
3416 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
|
---|
3417 | if (RT_UNLIKELY(!pPDSrc))
|
---|
3418 | {
|
---|
3419 | Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
|
---|
3420 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
3421 | }
|
---|
3422 | # endif
|
---|
3423 |
|
---|
3424 | # else /* !PGM_WITH_PAGING */
|
---|
3425 | PGSTPD pPDSrc = NULL;
|
---|
3426 | const unsigned iPDSrc = 0;
|
---|
3427 | # endif /* !PGM_WITH_PAGING */
|
---|
3428 | int rc = VINF_SUCCESS;
|
---|
3429 |
|
---|
3430 | pgmLock(pVM);
|
---|
3431 |
|
---|
3432 | /*
|
---|
3433 | * First check if the shadow pd is present.
|
---|
3434 | */
|
---|
3435 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3436 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
|
---|
3437 |
|
---|
3438 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3439 | PX86PDEPAE pPdeDst;
|
---|
3440 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3441 | PX86PDPAE pPDDst;
|
---|
3442 | # if PGM_GST_TYPE != PGM_TYPE_PAE
|
---|
3443 | /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3444 | X86PDPE PdpeSrc;
|
---|
3445 | PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
|
---|
3446 | # endif
|
---|
3447 | rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
|
---|
3448 | if (rc != VINF_SUCCESS)
|
---|
3449 | {
|
---|
3450 | pgmUnlock(pVM);
|
---|
3451 | AssertRC(rc);
|
---|
3452 | return rc;
|
---|
3453 | }
|
---|
3454 | Assert(pPDDst);
|
---|
3455 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3456 |
|
---|
3457 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3458 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3459 | PX86PDPAE pPDDst;
|
---|
3460 | PX86PDEPAE pPdeDst;
|
---|
3461 |
|
---|
3462 | # if PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
3463 | /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3464 | X86PML4E Pml4eSrc;
|
---|
3465 | X86PDPE PdpeSrc;
|
---|
3466 | PX86PML4E pPml4eSrc = &Pml4eSrc;
|
---|
3467 | Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
|
---|
3468 | PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
|
---|
3469 | # endif
|
---|
3470 |
|
---|
3471 | rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
|
---|
3472 | if (rc != VINF_SUCCESS)
|
---|
3473 | {
|
---|
3474 | pgmUnlock(pVM);
|
---|
3475 | AssertRC(rc);
|
---|
3476 | return rc;
|
---|
3477 | }
|
---|
3478 | Assert(pPDDst);
|
---|
3479 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3480 | # endif
|
---|
3481 |
|
---|
3482 | if (!pPdeDst->n.u1Present)
|
---|
3483 | {
|
---|
3484 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
3485 | if (rc != VINF_SUCCESS)
|
---|
3486 | {
|
---|
3487 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
3488 | pgmUnlock(pVM);
|
---|
3489 | AssertRC(rc);
|
---|
3490 | return rc;
|
---|
3491 | }
|
---|
3492 | }
|
---|
3493 |
|
---|
3494 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3495 | /* Check for dirty bit fault */
|
---|
3496 | rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
|
---|
3497 | if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
|
---|
3498 | Log(("PGMVerifyAccess: success (dirty)\n"));
|
---|
3499 | else
|
---|
3500 | # endif
|
---|
3501 | {
|
---|
3502 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3503 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
3504 | # else
|
---|
3505 | GSTPDE PdeSrc;
|
---|
3506 | PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
|
---|
3507 | PdeSrc.n.u1Present = 1;
|
---|
3508 | PdeSrc.n.u1Write = 1;
|
---|
3509 | PdeSrc.n.u1Accessed = 1;
|
---|
3510 | PdeSrc.n.u1User = 1;
|
---|
3511 | # endif
|
---|
3512 |
|
---|
3513 | Assert(rc != VINF_EM_RAW_GUEST_TRAP);
|
---|
3514 | if (uErr & X86_TRAP_PF_US)
|
---|
3515 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
|
---|
3516 | else /* supervisor */
|
---|
3517 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
|
---|
3518 |
|
---|
3519 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
|
---|
3520 | if (RT_SUCCESS(rc))
|
---|
3521 | {
|
---|
3522 | /* Page was successfully synced */
|
---|
3523 | Log2(("PGMVerifyAccess: success (sync)\n"));
|
---|
3524 | rc = VINF_SUCCESS;
|
---|
3525 | }
|
---|
3526 | else
|
---|
3527 | {
|
---|
3528 | Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
|
---|
3529 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 | PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
|
---|
3533 | pgmUnlock(pVM);
|
---|
3534 | return rc;
|
---|
3535 |
|
---|
3536 | #else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
|
---|
3537 |
|
---|
3538 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
3539 | return VERR_INTERNAL_ERROR;
|
---|
3540 | #endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
|
---|
3541 | }
|
---|
3542 |
|
---|
3543 |
|
---|
3544 | /**
|
---|
3545 | * Syncs the paging hierarchy starting at CR3.
|
---|
3546 | *
|
---|
3547 | * @returns VBox status code, no specials.
|
---|
3548 | * @param pVCpu The VMCPU handle.
|
---|
3549 | * @param cr0 Guest context CR0 register
|
---|
3550 | * @param cr3 Guest context CR3 register
|
---|
3551 | * @param cr4 Guest context CR4 register
|
---|
3552 | * @param fGlobal Including global page directories or not
|
---|
3553 | */
|
---|
3554 | PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
|
---|
3555 | {
|
---|
3556 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3557 |
|
---|
3558 | LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
|
---|
3559 |
|
---|
3560 | #if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3561 |
|
---|
3562 | pgmLock(pVM);
|
---|
3563 |
|
---|
3564 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
3565 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
3566 | if (pPool->cDirtyPages)
|
---|
3567 | pgmPoolResetDirtyPages(pVM);
|
---|
3568 | # endif
|
---|
3569 |
|
---|
3570 | /*
|
---|
3571 | * Update page access handlers.
|
---|
3572 | * The virtual are always flushed, while the physical are only on demand.
|
---|
3573 | * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
|
---|
3574 | * have to look into that later because it will have a bad influence on the performance.
|
---|
3575 | * @note SvL: There's no need for that. Just invalidate the virtual range(s).
|
---|
3576 | * bird: Yes, but that won't work for aliases.
|
---|
3577 | */
|
---|
3578 | /** @todo this MUST go away. See #1557. */
|
---|
3579 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
|
---|
3580 | PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
|
---|
3581 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
|
---|
3582 | pgmUnlock(pVM);
|
---|
3583 | #endif /* !NESTED && !EPT */
|
---|
3584 |
|
---|
3585 | #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3586 | /*
|
---|
3587 | * Nested / EPT - almost no work.
|
---|
3588 | */
|
---|
3589 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3590 | return VINF_SUCCESS;
|
---|
3591 |
|
---|
3592 | #elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3593 | /*
|
---|
3594 | * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
|
---|
3595 | * out the shadow parts when the guest modifies its tables.
|
---|
3596 | */
|
---|
3597 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3598 | return VINF_SUCCESS;
|
---|
3599 |
|
---|
3600 | #else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
3601 |
|
---|
3602 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
3603 | /*
|
---|
3604 | * Check for and resolve conflicts with our guest mappings if they
|
---|
3605 | * are enabled and not fixed.
|
---|
3606 | */
|
---|
3607 | if (pgmMapAreMappingsFloating(&pVM->pgm.s))
|
---|
3608 | {
|
---|
3609 | int rc = pgmMapResolveConflicts(pVM);
|
---|
3610 | Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
|
---|
3611 | if (rc == VINF_PGM_SYNC_CR3)
|
---|
3612 | {
|
---|
3613 | LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
|
---|
3614 | return VINF_PGM_SYNC_CR3;
|
---|
3615 | }
|
---|
3616 | }
|
---|
3617 | # else
|
---|
3618 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3619 | # endif
|
---|
3620 | return VINF_SUCCESS;
|
---|
3621 | #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
3622 | }
|
---|
3623 |
|
---|
3624 |
|
---|
3625 |
|
---|
3626 |
|
---|
3627 | #ifdef VBOX_STRICT
|
---|
3628 | # ifdef IN_RC
|
---|
3629 | # undef AssertMsgFailed
|
---|
3630 | # define AssertMsgFailed Log
|
---|
3631 | # endif
|
---|
3632 |
|
---|
3633 | /**
|
---|
3634 | * Checks that the shadow page table is in sync with the guest one.
|
---|
3635 | *
|
---|
3636 | * @returns The number of errors.
|
---|
3637 | * @param pVM The virtual machine.
|
---|
3638 | * @param pVCpu The VMCPU handle.
|
---|
3639 | * @param cr3 Guest context CR3 register
|
---|
3640 | * @param cr4 Guest context CR4 register
|
---|
3641 | * @param GCPtr Where to start. Defaults to 0.
|
---|
3642 | * @param cb How much to check. Defaults to everything.
|
---|
3643 | */
|
---|
3644 | PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
|
---|
3645 | {
|
---|
3646 | #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3647 | return 0;
|
---|
3648 | #else
|
---|
3649 | unsigned cErrors = 0;
|
---|
3650 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3651 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
3652 |
|
---|
3653 | #if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3654 | /** @todo currently broken; crashes below somewhere */
|
---|
3655 | AssertFailed();
|
---|
3656 | #endif
|
---|
3657 |
|
---|
3658 | #if PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3659 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3660 | || PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3661 |
|
---|
3662 | bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
|
---|
3663 | PPGMCPU pPGM = &pVCpu->pgm.s;
|
---|
3664 | RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
|
---|
3665 | RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
|
---|
3666 | # ifndef IN_RING0
|
---|
3667 | RTHCPHYS HCPhys; /* general usage. */
|
---|
3668 | # endif
|
---|
3669 | int rc;
|
---|
3670 |
|
---|
3671 | /*
|
---|
3672 | * Check that the Guest CR3 and all its mappings are correct.
|
---|
3673 | */
|
---|
3674 | AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
|
---|
3675 | ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
|
---|
3676 | false);
|
---|
3677 | # if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
|
---|
3678 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3679 | rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
|
---|
3680 | # else
|
---|
3681 | rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
|
---|
3682 | # endif
|
---|
3683 | AssertRCReturn(rc, 1);
|
---|
3684 | HCPhys = NIL_RTHCPHYS;
|
---|
3685 | rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
|
---|
3686 | AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
|
---|
3687 | # if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
|
---|
3688 | pgmGstGet32bitPDPtr(pVCpu);
|
---|
3689 | RTGCPHYS GCPhys;
|
---|
3690 | rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
|
---|
3691 | AssertRCReturn(rc, 1);
|
---|
3692 | AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
|
---|
3693 | # endif
|
---|
3694 | # endif /* !IN_RING0 */
|
---|
3695 |
|
---|
3696 | /*
|
---|
3697 | * Get and check the Shadow CR3.
|
---|
3698 | */
|
---|
3699 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3700 | unsigned cPDEs = X86_PG_ENTRIES;
|
---|
3701 | unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
|
---|
3702 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3703 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3704 | unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
|
---|
3705 | # else
|
---|
3706 | unsigned cPDEs = X86_PG_PAE_ENTRIES;
|
---|
3707 | # endif
|
---|
3708 | unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
|
---|
3709 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3710 | unsigned cPDEs = X86_PG_PAE_ENTRIES;
|
---|
3711 | unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
|
---|
3712 | # endif
|
---|
3713 | if (cb != ~(RTGCPTR)0)
|
---|
3714 | cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
|
---|
3715 |
|
---|
3716 | /** @todo call the other two PGMAssert*() functions. */
|
---|
3717 |
|
---|
3718 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3719 | unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
|
---|
3720 |
|
---|
3721 | for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
|
---|
3722 | {
|
---|
3723 | PPGMPOOLPAGE pShwPdpt = NULL;
|
---|
3724 | PX86PML4E pPml4eSrc;
|
---|
3725 | PX86PML4E pPml4eDst;
|
---|
3726 | RTGCPHYS GCPhysPdptSrc;
|
---|
3727 |
|
---|
3728 | pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
|
---|
3729 | pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
|
---|
3730 |
|
---|
3731 | /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
|
---|
3732 | if (!pPml4eDst->n.u1Present)
|
---|
3733 | {
|
---|
3734 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3735 | continue;
|
---|
3736 | }
|
---|
3737 |
|
---|
3738 | pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
|
---|
3739 | GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK;
|
---|
3740 |
|
---|
3741 | if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
|
---|
3742 | {
|
---|
3743 | AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
|
---|
3744 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3745 | cErrors++;
|
---|
3746 | continue;
|
---|
3747 | }
|
---|
3748 |
|
---|
3749 | if (GCPhysPdptSrc != pShwPdpt->GCPhys)
|
---|
3750 | {
|
---|
3751 | AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
|
---|
3752 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3753 | cErrors++;
|
---|
3754 | continue;
|
---|
3755 | }
|
---|
3756 |
|
---|
3757 | if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
|
---|
3758 | || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
|
---|
3759 | || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
|
---|
3760 | {
|
---|
3761 | AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
|
---|
3762 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3763 | cErrors++;
|
---|
3764 | continue;
|
---|
3765 | }
|
---|
3766 | # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
|
---|
3767 | {
|
---|
3768 | # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
|
---|
3769 |
|
---|
3770 | # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3771 | /*
|
---|
3772 | * Check the PDPTEs too.
|
---|
3773 | */
|
---|
3774 | unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
|
---|
3775 |
|
---|
3776 | for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
|
---|
3777 | {
|
---|
3778 | unsigned iPDSrc = 0; /* initialized to shut up gcc */
|
---|
3779 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
3780 | PX86PDPE pPdpeDst;
|
---|
3781 | RTGCPHYS GCPhysPdeSrc;
|
---|
3782 | X86PDPE PdpeSrc;
|
---|
3783 | PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
|
---|
3784 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3785 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
|
---|
3786 | PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
|
---|
3787 | # else
|
---|
3788 | PX86PML4E pPml4eSrcIgn;
|
---|
3789 | PX86PDPT pPdptDst;
|
---|
3790 | PX86PDPAE pPDDst;
|
---|
3791 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
|
---|
3792 |
|
---|
3793 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
|
---|
3794 | if (rc != VINF_SUCCESS)
|
---|
3795 | {
|
---|
3796 | AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
|
---|
3797 | GCPtr += 512 * _2M;
|
---|
3798 | continue; /* next PDPTE */
|
---|
3799 | }
|
---|
3800 | Assert(pPDDst);
|
---|
3801 | # endif
|
---|
3802 | Assert(iPDSrc == 0);
|
---|
3803 |
|
---|
3804 | pPdpeDst = &pPdptDst->a[iPdpt];
|
---|
3805 |
|
---|
3806 | if (!pPdpeDst->n.u1Present)
|
---|
3807 | {
|
---|
3808 | GCPtr += 512 * _2M;
|
---|
3809 | continue; /* next PDPTE */
|
---|
3810 | }
|
---|
3811 |
|
---|
3812 | pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
|
---|
3813 | GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
|
---|
3814 |
|
---|
3815 | if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
|
---|
3816 | {
|
---|
3817 | AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
|
---|
3818 | GCPtr += 512 * _2M;
|
---|
3819 | cErrors++;
|
---|
3820 | continue;
|
---|
3821 | }
|
---|
3822 |
|
---|
3823 | if (GCPhysPdeSrc != pShwPde->GCPhys)
|
---|
3824 | {
|
---|
3825 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3826 | AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
|
---|
3827 | # else
|
---|
3828 | AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
|
---|
3829 | # endif
|
---|
3830 | GCPtr += 512 * _2M;
|
---|
3831 | cErrors++;
|
---|
3832 | continue;
|
---|
3833 | }
|
---|
3834 |
|
---|
3835 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3836 | if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
|
---|
3837 | || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
|
---|
3838 | || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
|
---|
3839 | {
|
---|
3840 | AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
|
---|
3841 | GCPtr += 512 * _2M;
|
---|
3842 | cErrors++;
|
---|
3843 | continue;
|
---|
3844 | }
|
---|
3845 | # endif
|
---|
3846 |
|
---|
3847 | # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
|
---|
3848 | {
|
---|
3849 | # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
|
---|
3850 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3851 | GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
3852 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3853 | PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
|
---|
3854 | # endif
|
---|
3855 | # endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
|
---|
3856 | /*
|
---|
3857 | * Iterate the shadow page directory.
|
---|
3858 | */
|
---|
3859 | GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
|
---|
3860 | unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3861 |
|
---|
3862 | for (;
|
---|
3863 | iPDDst < cPDEs;
|
---|
3864 | iPDDst++, GCPtr += cIncrement)
|
---|
3865 | {
|
---|
3866 | # if PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3867 | const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
|
---|
3868 | # else
|
---|
3869 | const SHWPDE PdeDst = pPDDst->a[iPDDst];
|
---|
3870 | # endif
|
---|
3871 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
3872 | {
|
---|
3873 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3874 | if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
|
---|
3875 | {
|
---|
3876 | AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
|
---|
3877 | cErrors++;
|
---|
3878 | continue;
|
---|
3879 | }
|
---|
3880 | }
|
---|
3881 | else if ( (PdeDst.u & X86_PDE_P)
|
---|
3882 | || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
|
---|
3883 | )
|
---|
3884 | {
|
---|
3885 | HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
|
---|
3886 | PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
|
---|
3887 | if (!pPoolPage)
|
---|
3888 | {
|
---|
3889 | AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
|
---|
3890 | HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
|
---|
3891 | cErrors++;
|
---|
3892 | continue;
|
---|
3893 | }
|
---|
3894 | const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
|
---|
3895 |
|
---|
3896 | if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
|
---|
3897 | {
|
---|
3898 | AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
|
---|
3899 | GCPtr, (uint64_t)PdeDst.u));
|
---|
3900 | cErrors++;
|
---|
3901 | }
|
---|
3902 |
|
---|
3903 | if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
|
---|
3904 | {
|
---|
3905 | AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
|
---|
3906 | GCPtr, (uint64_t)PdeDst.u));
|
---|
3907 | cErrors++;
|
---|
3908 | }
|
---|
3909 |
|
---|
3910 | const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
|
---|
3911 | if (!PdeSrc.n.u1Present)
|
---|
3912 | {
|
---|
3913 | AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
|
---|
3914 | GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
|
---|
3915 | cErrors++;
|
---|
3916 | continue;
|
---|
3917 | }
|
---|
3918 |
|
---|
3919 | if ( !PdeSrc.b.u1Size
|
---|
3920 | || !fBigPagesSupported)
|
---|
3921 | {
|
---|
3922 | GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
|
---|
3923 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3924 | GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
3925 | # endif
|
---|
3926 | }
|
---|
3927 | else
|
---|
3928 | {
|
---|
3929 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3930 | if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
|
---|
3931 | {
|
---|
3932 | AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
|
---|
3933 | GCPtr, (uint64_t)PdeSrc.u));
|
---|
3934 | cErrors++;
|
---|
3935 | continue;
|
---|
3936 | }
|
---|
3937 | # endif
|
---|
3938 | GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
|
---|
3939 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3940 | GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
|
---|
3941 | # endif
|
---|
3942 | }
|
---|
3943 |
|
---|
3944 | if ( pPoolPage->enmKind
|
---|
3945 | != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
|
---|
3946 | {
|
---|
3947 | AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
|
---|
3948 | pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3949 | cErrors++;
|
---|
3950 | }
|
---|
3951 |
|
---|
3952 | PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
3953 | if (!pPhysPage)
|
---|
3954 | {
|
---|
3955 | AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
|
---|
3956 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3957 | cErrors++;
|
---|
3958 | continue;
|
---|
3959 | }
|
---|
3960 |
|
---|
3961 | if (GCPhysGst != pPoolPage->GCPhys)
|
---|
3962 | {
|
---|
3963 | AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
|
---|
3964 | GCPhysGst, pPoolPage->GCPhys, GCPtr));
|
---|
3965 | cErrors++;
|
---|
3966 | continue;
|
---|
3967 | }
|
---|
3968 |
|
---|
3969 | if ( !PdeSrc.b.u1Size
|
---|
3970 | || !fBigPagesSupported)
|
---|
3971 | {
|
---|
3972 | /*
|
---|
3973 | * Page Table.
|
---|
3974 | */
|
---|
3975 | const GSTPT *pPTSrc;
|
---|
3976 | rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
|
---|
3977 | if (RT_FAILURE(rc))
|
---|
3978 | {
|
---|
3979 | AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
|
---|
3980 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
3981 | cErrors++;
|
---|
3982 | continue;
|
---|
3983 | }
|
---|
3984 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
|
---|
3985 | != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
|
---|
3986 | {
|
---|
3987 | /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
|
---|
3988 | // (This problem will go away when/if we shadow multiple CR3s.)
|
---|
3989 | AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
3990 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
3991 | cErrors++;
|
---|
3992 | continue;
|
---|
3993 | }
|
---|
3994 | if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
3995 | {
|
---|
3996 | AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
|
---|
3997 | GCPtr, (uint64_t)PdeDst.u));
|
---|
3998 | cErrors++;
|
---|
3999 | continue;
|
---|
4000 | }
|
---|
4001 |
|
---|
4002 | /* iterate the page table. */
|
---|
4003 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4004 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
4005 | const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
|
---|
4006 | # else
|
---|
4007 | const unsigned offPTSrc = 0;
|
---|
4008 | # endif
|
---|
4009 | for (unsigned iPT = 0, off = 0;
|
---|
4010 | iPT < RT_ELEMENTS(pPTDst->a);
|
---|
4011 | iPT++, off += PAGE_SIZE)
|
---|
4012 | {
|
---|
4013 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
4014 |
|
---|
4015 | /* skip not-present and dirty tracked entries. */
|
---|
4016 | if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
4017 | continue;
|
---|
4018 | Assert(SHW_PTE_IS_P(PteDst));
|
---|
4019 |
|
---|
4020 | const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
|
---|
4021 | if (!PteSrc.n.u1Present)
|
---|
4022 | {
|
---|
4023 | # ifdef IN_RING3
|
---|
4024 | PGMAssertHandlerAndFlagsInSync(pVM);
|
---|
4025 | DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
|
---|
4026 | | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
|
---|
4027 | 0, 0, UINT64_MAX, 99, NULL);
|
---|
4028 | # endif
|
---|
4029 | AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
|
---|
4030 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
|
---|
4031 | (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
|
---|
4032 | cErrors++;
|
---|
4033 | continue;
|
---|
4034 | }
|
---|
4035 |
|
---|
4036 | uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
|
---|
4037 | # if 1 /** @todo sync accessed bit properly... */
|
---|
4038 | fIgnoreFlags |= X86_PTE_A;
|
---|
4039 | # endif
|
---|
4040 |
|
---|
4041 | /* match the physical addresses */
|
---|
4042 | HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
|
---|
4043 | GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
|
---|
4044 |
|
---|
4045 | # ifdef IN_RING3
|
---|
4046 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
4047 | if (RT_FAILURE(rc))
|
---|
4048 | {
|
---|
4049 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4050 | {
|
---|
4051 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4052 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4053 | cErrors++;
|
---|
4054 | continue;
|
---|
4055 | }
|
---|
4056 | }
|
---|
4057 | else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
|
---|
4058 | {
|
---|
4059 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4060 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4061 | cErrors++;
|
---|
4062 | continue;
|
---|
4063 | }
|
---|
4064 | # endif
|
---|
4065 |
|
---|
4066 | pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
4067 | if (!pPhysPage)
|
---|
4068 | {
|
---|
4069 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
4070 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4071 | {
|
---|
4072 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4073 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4074 | cErrors++;
|
---|
4075 | continue;
|
---|
4076 | }
|
---|
4077 | # endif
|
---|
4078 | if (SHW_PTE_IS_RW(PteDst))
|
---|
4079 | {
|
---|
4080 | AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4081 | GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4082 | cErrors++;
|
---|
4083 | }
|
---|
4084 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4085 | }
|
---|
4086 | else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
|
---|
4087 | {
|
---|
4088 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4089 | GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4090 | cErrors++;
|
---|
4091 | continue;
|
---|
4092 | }
|
---|
4093 |
|
---|
4094 | /* flags */
|
---|
4095 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
|
---|
4096 | {
|
---|
4097 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
4098 | {
|
---|
4099 | if (SHW_PTE_IS_RW(PteDst))
|
---|
4100 | {
|
---|
4101 | AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4102 | GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4103 | cErrors++;
|
---|
4104 | continue;
|
---|
4105 | }
|
---|
4106 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4107 | }
|
---|
4108 | else
|
---|
4109 | {
|
---|
4110 | if ( SHW_PTE_IS_P(PteDst)
|
---|
4111 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
4112 | && !PGM_PAGE_IS_MMIO(pPhysPage)
|
---|
4113 | # endif
|
---|
4114 | )
|
---|
4115 | {
|
---|
4116 | AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4117 | GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4118 | cErrors++;
|
---|
4119 | continue;
|
---|
4120 | }
|
---|
4121 | fIgnoreFlags |= X86_PTE_P;
|
---|
4122 | }
|
---|
4123 | }
|
---|
4124 | else
|
---|
4125 | {
|
---|
4126 | if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
|
---|
4127 | {
|
---|
4128 | if (SHW_PTE_IS_RW(PteDst))
|
---|
4129 | {
|
---|
4130 | AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4131 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4132 | cErrors++;
|
---|
4133 | continue;
|
---|
4134 | }
|
---|
4135 | if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
|
---|
4136 | {
|
---|
4137 | AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4138 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4139 | cErrors++;
|
---|
4140 | continue;
|
---|
4141 | }
|
---|
4142 | if (SHW_PTE_IS_D(PteDst))
|
---|
4143 | {
|
---|
4144 | AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4145 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4146 | cErrors++;
|
---|
4147 | }
|
---|
4148 | # if 0 /** @todo sync access bit properly... */
|
---|
4149 | if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
|
---|
4150 | {
|
---|
4151 | AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4152 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4153 | cErrors++;
|
---|
4154 | }
|
---|
4155 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4156 | # else
|
---|
4157 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
4158 | # endif
|
---|
4159 | }
|
---|
4160 | else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
|
---|
4161 | {
|
---|
4162 | /* access bit emulation (not implemented). */
|
---|
4163 | if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
|
---|
4164 | {
|
---|
4165 | AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4166 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4167 | cErrors++;
|
---|
4168 | continue;
|
---|
4169 | }
|
---|
4170 | if (!SHW_PTE_IS_A(PteDst))
|
---|
4171 | {
|
---|
4172 | AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4173 | GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4174 | cErrors++;
|
---|
4175 | }
|
---|
4176 | fIgnoreFlags |= X86_PTE_P;
|
---|
4177 | }
|
---|
4178 | # ifdef DEBUG_sandervl
|
---|
4179 | fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
|
---|
4180 | # endif
|
---|
4181 | }
|
---|
4182 |
|
---|
4183 | if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
|
---|
4184 | && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
|
---|
4185 | )
|
---|
4186 | {
|
---|
4187 | AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4188 | GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
|
---|
4189 | fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4190 | cErrors++;
|
---|
4191 | continue;
|
---|
4192 | }
|
---|
4193 | } /* foreach PTE */
|
---|
4194 | }
|
---|
4195 | else
|
---|
4196 | {
|
---|
4197 | /*
|
---|
4198 | * Big Page.
|
---|
4199 | */
|
---|
4200 | uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
|
---|
4201 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
4202 | {
|
---|
4203 | if (PdeDst.n.u1Write)
|
---|
4204 | {
|
---|
4205 | AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4206 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4207 | cErrors++;
|
---|
4208 | continue;
|
---|
4209 | }
|
---|
4210 | if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
4211 | {
|
---|
4212 | AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4213 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4214 | cErrors++;
|
---|
4215 | continue;
|
---|
4216 | }
|
---|
4217 | # if 0 /** @todo sync access bit properly... */
|
---|
4218 | if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
|
---|
4219 | {
|
---|
4220 | AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4221 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4222 | cErrors++;
|
---|
4223 | }
|
---|
4224 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4225 | # else
|
---|
4226 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
4227 | # endif
|
---|
4228 | }
|
---|
4229 | else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
4230 | {
|
---|
4231 | /* access bit emulation (not implemented). */
|
---|
4232 | if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
|
---|
4233 | {
|
---|
4234 | AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4235 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4236 | cErrors++;
|
---|
4237 | continue;
|
---|
4238 | }
|
---|
4239 | if (!PdeDst.n.u1Accessed)
|
---|
4240 | {
|
---|
4241 | AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4242 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4243 | cErrors++;
|
---|
4244 | }
|
---|
4245 | fIgnoreFlags |= X86_PTE_P;
|
---|
4246 | }
|
---|
4247 |
|
---|
4248 | if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
|
---|
4249 | {
|
---|
4250 | AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4251 | GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
|
---|
4252 | fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4253 | cErrors++;
|
---|
4254 | }
|
---|
4255 |
|
---|
4256 | /* iterate the page table. */
|
---|
4257 | for (unsigned iPT = 0, off = 0;
|
---|
4258 | iPT < RT_ELEMENTS(pPTDst->a);
|
---|
4259 | iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
|
---|
4260 | {
|
---|
4261 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
4262 |
|
---|
4263 | if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
|
---|
4264 | {
|
---|
4265 | AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4266 | GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4267 | cErrors++;
|
---|
4268 | }
|
---|
4269 |
|
---|
4270 | /* skip not-present entries. */
|
---|
4271 | if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
4272 | continue;
|
---|
4273 |
|
---|
4274 | fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
|
---|
4275 |
|
---|
4276 | /* match the physical addresses */
|
---|
4277 | HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
|
---|
4278 |
|
---|
4279 | # ifdef IN_RING3
|
---|
4280 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
4281 | if (RT_FAILURE(rc))
|
---|
4282 | {
|
---|
4283 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4284 | {
|
---|
4285 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4286 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4287 | cErrors++;
|
---|
4288 | }
|
---|
4289 | }
|
---|
4290 | else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
|
---|
4291 | {
|
---|
4292 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4293 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4294 | cErrors++;
|
---|
4295 | continue;
|
---|
4296 | }
|
---|
4297 | # endif
|
---|
4298 | pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
4299 | if (!pPhysPage)
|
---|
4300 | {
|
---|
4301 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
4302 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4303 | {
|
---|
4304 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4305 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4306 | cErrors++;
|
---|
4307 | continue;
|
---|
4308 | }
|
---|
4309 | # endif
|
---|
4310 | if (SHW_PTE_IS_RW(PteDst))
|
---|
4311 | {
|
---|
4312 | AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4313 | GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4314 | cErrors++;
|
---|
4315 | }
|
---|
4316 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4317 | }
|
---|
4318 | else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
|
---|
4319 | {
|
---|
4320 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4321 | GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4322 | cErrors++;
|
---|
4323 | continue;
|
---|
4324 | }
|
---|
4325 |
|
---|
4326 | /* flags */
|
---|
4327 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
|
---|
4328 | {
|
---|
4329 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
4330 | {
|
---|
4331 | if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
|
---|
4332 | {
|
---|
4333 | if (SHW_PTE_IS_RW(PteDst))
|
---|
4334 | {
|
---|
4335 | AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4336 | GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4337 | cErrors++;
|
---|
4338 | continue;
|
---|
4339 | }
|
---|
4340 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4341 | }
|
---|
4342 | }
|
---|
4343 | else
|
---|
4344 | {
|
---|
4345 | if ( SHW_PTE_IS_P(PteDst)
|
---|
4346 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
4347 | && !PGM_PAGE_IS_MMIO(pPhysPage)
|
---|
4348 | # endif
|
---|
4349 | )
|
---|
4350 | {
|
---|
4351 | AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4352 | GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4353 | cErrors++;
|
---|
4354 | continue;
|
---|
4355 | }
|
---|
4356 | fIgnoreFlags |= X86_PTE_P;
|
---|
4357 | }
|
---|
4358 | }
|
---|
4359 |
|
---|
4360 | if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
|
---|
4361 | && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
|
---|
4362 | )
|
---|
4363 | {
|
---|
4364 | AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4365 | GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
|
---|
4366 | fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
|
---|
4367 | cErrors++;
|
---|
4368 | continue;
|
---|
4369 | }
|
---|
4370 | } /* for each PTE */
|
---|
4371 | }
|
---|
4372 | }
|
---|
4373 | /* not present */
|
---|
4374 |
|
---|
4375 | } /* for each PDE */
|
---|
4376 |
|
---|
4377 | } /* for each PDPTE */
|
---|
4378 |
|
---|
4379 | } /* for each PML4E */
|
---|
4380 |
|
---|
4381 | # ifdef DEBUG
|
---|
4382 | if (cErrors)
|
---|
4383 | LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
|
---|
4384 | # endif
|
---|
4385 |
|
---|
4386 | #endif /* GST == 32BIT, PAE or AMD64 */
|
---|
4387 | return cErrors;
|
---|
4388 |
|
---|
4389 | #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
|
---|
4390 | }
|
---|
4391 | #endif /* VBOX_STRICT */
|
---|
4392 |
|
---|
4393 |
|
---|
4394 | /**
|
---|
4395 | * Sets up the CR3 for shadow paging
|
---|
4396 | *
|
---|
4397 | * @returns Strict VBox status code.
|
---|
4398 | * @retval VINF_SUCCESS.
|
---|
4399 | *
|
---|
4400 | * @param pVCpu The VMCPU handle.
|
---|
4401 | * @param GCPhysCR3 The physical address in the CR3 register.
|
---|
4402 | */
|
---|
4403 | PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
|
---|
4404 | {
|
---|
4405 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4406 |
|
---|
4407 | /* Update guest paging info. */
|
---|
4408 | #if PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
4409 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
4410 | || PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4411 |
|
---|
4412 | LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
|
---|
4413 |
|
---|
4414 | /*
|
---|
4415 | * Map the page CR3 points at.
|
---|
4416 | */
|
---|
4417 | RTHCPTR HCPtrGuestCR3;
|
---|
4418 | RTHCPHYS HCPhysGuestCR3;
|
---|
4419 | pgmLock(pVM);
|
---|
4420 | PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
|
---|
4421 | AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
|
---|
4422 | HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
|
---|
4423 | /** @todo this needs some reworking wrt. locking? */
|
---|
4424 | # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
|
---|
4425 | HCPtrGuestCR3 = NIL_RTHCPTR;
|
---|
4426 | int rc = VINF_SUCCESS;
|
---|
4427 | # else
|
---|
4428 | int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
|
---|
4429 | # endif
|
---|
4430 | pgmUnlock(pVM);
|
---|
4431 | if (RT_SUCCESS(rc))
|
---|
4432 | {
|
---|
4433 | rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
|
---|
4434 | if (RT_SUCCESS(rc))
|
---|
4435 | {
|
---|
4436 | # ifdef IN_RC
|
---|
4437 | PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
|
---|
4438 | # endif
|
---|
4439 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4440 | pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
|
---|
4441 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4442 | pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
|
---|
4443 | # endif
|
---|
4444 | pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
|
---|
4445 |
|
---|
4446 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
4447 | unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
|
---|
4448 | pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
|
---|
4449 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4450 | pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
|
---|
4451 | # endif
|
---|
4452 | pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
|
---|
4453 | LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
|
---|
4454 |
|
---|
4455 | /*
|
---|
4456 | * Map the 4 PDs too.
|
---|
4457 | */
|
---|
4458 | PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
|
---|
4459 | RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
|
---|
4460 | for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
|
---|
4461 | {
|
---|
4462 | if (pGuestPDPT->a[i].n.u1Present)
|
---|
4463 | {
|
---|
4464 | RTHCPTR HCPtr;
|
---|
4465 | RTHCPHYS HCPhys;
|
---|
4466 | RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
|
---|
4467 | pgmLock(pVM);
|
---|
4468 | PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
|
---|
4469 | AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
|
---|
4470 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
4471 | # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
|
---|
4472 | HCPtr = NIL_RTHCPTR;
|
---|
4473 | int rc2 = VINF_SUCCESS;
|
---|
4474 | # else
|
---|
4475 | int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
|
---|
4476 | # endif
|
---|
4477 | pgmUnlock(pVM);
|
---|
4478 | if (RT_SUCCESS(rc2))
|
---|
4479 | {
|
---|
4480 | rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
|
---|
4481 | AssertRCReturn(rc, rc);
|
---|
4482 |
|
---|
4483 | pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
|
---|
4484 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4485 | pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
|
---|
4486 | # endif
|
---|
4487 | pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
|
---|
4488 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
|
---|
4489 | # ifdef IN_RC
|
---|
4490 | PGM_INVL_PG(pVCpu, GCPtr);
|
---|
4491 | # endif
|
---|
4492 | continue;
|
---|
4493 | }
|
---|
4494 | AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
|
---|
4495 | }
|
---|
4496 |
|
---|
4497 | pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
|
---|
4498 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4499 | pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
|
---|
4500 | # endif
|
---|
4501 | pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
|
---|
4502 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
|
---|
4503 | # ifdef IN_RC
|
---|
4504 | PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
|
---|
4505 | # endif
|
---|
4506 | }
|
---|
4507 |
|
---|
4508 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4509 | pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
|
---|
4510 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4511 | pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
|
---|
4512 | # endif
|
---|
4513 | # endif
|
---|
4514 | }
|
---|
4515 | else
|
---|
4516 | AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
|
---|
4517 | }
|
---|
4518 | else
|
---|
4519 | AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
|
---|
4520 |
|
---|
4521 | #else /* prot/real stub */
|
---|
4522 | int rc = VINF_SUCCESS;
|
---|
4523 | #endif
|
---|
4524 |
|
---|
4525 | /* Update shadow paging info for guest modes with paging (32, pae, 64). */
|
---|
4526 | # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|
---|
4527 | || PGM_SHW_TYPE == PGM_TYPE_PAE \
|
---|
4528 | || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
|
---|
4529 | && ( PGM_GST_TYPE != PGM_TYPE_REAL \
|
---|
4530 | && PGM_GST_TYPE != PGM_TYPE_PROT))
|
---|
4531 |
|
---|
4532 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
4533 |
|
---|
4534 | /*
|
---|
4535 | * Update the shadow root page as well since that's not fixed.
|
---|
4536 | */
|
---|
4537 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
4538 | PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
4539 | uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
|
---|
4540 | uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
|
---|
4541 | PPGMPOOLPAGE pNewShwPageCR3;
|
---|
4542 |
|
---|
4543 | pgmLock(pVM);
|
---|
4544 |
|
---|
4545 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
4546 | if (pPool->cDirtyPages)
|
---|
4547 | pgmPoolResetDirtyPages(pVM);
|
---|
4548 | # endif
|
---|
4549 |
|
---|
4550 | Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
|
---|
4551 | rc = pgmPoolAllocEx(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, SHW_POOL_ROOT_IDX,
|
---|
4552 | GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/, &pNewShwPageCR3);
|
---|
4553 | AssertFatalRC(rc);
|
---|
4554 | rc = VINF_SUCCESS;
|
---|
4555 |
|
---|
4556 | # ifdef IN_RC
|
---|
4557 | /*
|
---|
4558 | * WARNING! We can't deal with jumps to ring 3 in the code below as the
|
---|
4559 | * state will be inconsistent! Flush important things now while
|
---|
4560 | * we still can and then make sure there are no ring-3 calls.
|
---|
4561 | */
|
---|
4562 | REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
|
---|
4563 | VMMRZCallRing3Disable(pVCpu);
|
---|
4564 | # endif
|
---|
4565 |
|
---|
4566 | pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
|
---|
4567 | pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
|
---|
4568 | pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
|
---|
4569 | # ifdef IN_RING0
|
---|
4570 | pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4571 | pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4572 | # elif defined(IN_RC)
|
---|
4573 | pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4574 | pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4575 | # else
|
---|
4576 | pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4577 | pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4578 | # endif
|
---|
4579 |
|
---|
4580 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4581 | /*
|
---|
4582 | * Apply all hypervisor mappings to the new CR3.
|
---|
4583 | * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
|
---|
4584 | * make sure we check for conflicts in the new CR3 root.
|
---|
4585 | */
|
---|
4586 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
4587 | Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
4588 | # endif
|
---|
4589 | rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
|
---|
4590 | AssertRCReturn(rc, rc);
|
---|
4591 | # endif
|
---|
4592 |
|
---|
4593 | /* Set the current hypervisor CR3. */
|
---|
4594 | CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
|
---|
4595 | SELMShadowCR3Changed(pVM, pVCpu);
|
---|
4596 |
|
---|
4597 | # ifdef IN_RC
|
---|
4598 | /* NOTE: The state is consistent again. */
|
---|
4599 | VMMRZCallRing3Enable(pVCpu);
|
---|
4600 | # endif
|
---|
4601 |
|
---|
4602 | /* Clean up the old CR3 root. */
|
---|
4603 | if ( pOldShwPageCR3
|
---|
4604 | && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
|
---|
4605 | {
|
---|
4606 | Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
|
---|
4607 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4608 | /* Remove the hypervisor mappings from the shadow page table. */
|
---|
4609 | pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
|
---|
4610 | # endif
|
---|
4611 | /* Mark the page as unlocked; allow flushing again. */
|
---|
4612 | pgmPoolUnlockPage(pPool, pOldShwPageCR3);
|
---|
4613 |
|
---|
4614 | pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
|
---|
4615 | }
|
---|
4616 | pgmUnlock(pVM);
|
---|
4617 | # endif
|
---|
4618 |
|
---|
4619 | return rc;
|
---|
4620 | }
|
---|
4621 |
|
---|
4622 | /**
|
---|
4623 | * Unmaps the shadow CR3.
|
---|
4624 | *
|
---|
4625 | * @returns VBox status, no specials.
|
---|
4626 | * @param pVCpu The VMCPU handle.
|
---|
4627 | */
|
---|
4628 | PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
|
---|
4629 | {
|
---|
4630 | LogFlow(("UnmapCR3\n"));
|
---|
4631 |
|
---|
4632 | int rc = VINF_SUCCESS;
|
---|
4633 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4634 |
|
---|
4635 | /*
|
---|
4636 | * Update guest paging info.
|
---|
4637 | */
|
---|
4638 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4639 | pVCpu->pgm.s.pGst32BitPdR3 = 0;
|
---|
4640 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4641 | pVCpu->pgm.s.pGst32BitPdR0 = 0;
|
---|
4642 | # endif
|
---|
4643 | pVCpu->pgm.s.pGst32BitPdRC = 0;
|
---|
4644 |
|
---|
4645 | #elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
4646 | pVCpu->pgm.s.pGstPaePdptR3 = 0;
|
---|
4647 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4648 | pVCpu->pgm.s.pGstPaePdptR0 = 0;
|
---|
4649 | # endif
|
---|
4650 | pVCpu->pgm.s.pGstPaePdptRC = 0;
|
---|
4651 | for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
|
---|
4652 | {
|
---|
4653 | pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
|
---|
4654 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4655 | pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
|
---|
4656 | # endif
|
---|
4657 | pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
|
---|
4658 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
|
---|
4659 | }
|
---|
4660 |
|
---|
4661 | #elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4662 | pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
|
---|
4663 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4664 | pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
|
---|
4665 | # endif
|
---|
4666 |
|
---|
4667 | #else /* prot/real mode stub */
|
---|
4668 | /* nothing to do */
|
---|
4669 | #endif
|
---|
4670 |
|
---|
4671 | #if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
|
---|
4672 | /*
|
---|
4673 | * Update shadow paging info.
|
---|
4674 | */
|
---|
4675 | # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|
---|
4676 | || PGM_SHW_TYPE == PGM_TYPE_PAE \
|
---|
4677 | || PGM_SHW_TYPE == PGM_TYPE_AMD64))
|
---|
4678 |
|
---|
4679 | # if PGM_GST_TYPE != PGM_TYPE_REAL
|
---|
4680 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
4681 | # endif
|
---|
4682 |
|
---|
4683 | pgmLock(pVM);
|
---|
4684 |
|
---|
4685 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4686 | if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
|
---|
4687 | /* Remove the hypervisor mappings from the shadow page table. */
|
---|
4688 | pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4689 | # endif
|
---|
4690 |
|
---|
4691 | if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
|
---|
4692 | {
|
---|
4693 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
4694 |
|
---|
4695 | Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
|
---|
4696 |
|
---|
4697 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
4698 | if (pPool->cDirtyPages)
|
---|
4699 | pgmPoolResetDirtyPages(pVM);
|
---|
4700 | # endif
|
---|
4701 |
|
---|
4702 | /* Mark the page as unlocked; allow flushing again. */
|
---|
4703 | pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4704 |
|
---|
4705 | pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
|
---|
4706 | pVCpu->pgm.s.pShwPageCR3R3 = 0;
|
---|
4707 | pVCpu->pgm.s.pShwPageCR3R0 = 0;
|
---|
4708 | pVCpu->pgm.s.pShwPageCR3RC = 0;
|
---|
4709 | pVCpu->pgm.s.iShwUser = 0;
|
---|
4710 | pVCpu->pgm.s.iShwUserTable = 0;
|
---|
4711 | }
|
---|
4712 | pgmUnlock(pVM);
|
---|
4713 | # endif
|
---|
4714 | #endif /* !IN_RC*/
|
---|
4715 |
|
---|
4716 | return rc;
|
---|
4717 | }
|
---|