VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 45548

Last change on this file since 45548 was 45407, checked in by vboxsync, 12 years ago

VMM: Invalidate page even when it's not present now.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 204.9 KB
Line 
1/* $Id: PGMAllBth.h 45407 2013-04-08 13:45:38Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2013 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The current CPU.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
108 {
109 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
110 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
111 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
112 return VINF_EM_RAW_EMULATE_INSTR;
113 }
114# endif
115
116 /*
117 * Calc the error code for the guest trap.
118 */
119 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
120 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
121 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
122 if (pGstWalk->Core.fBadPhysAddr)
123 {
124 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
125 Assert(!pGstWalk->Core.fNotPresent);
126 }
127 else if (!pGstWalk->Core.fNotPresent)
128 uNewErr |= X86_TRAP_PF_P;
129 TRPMSetErrorCode(pVCpu, uNewErr);
130
131 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
132 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
133 return VINF_EM_RAW_GUEST_TRAP;
134}
135# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
136
137
138/**
139 * Deal with a guest page fault.
140 *
141 * The caller has taken the PGM lock.
142 *
143 * @returns Strict VBox status code.
144 *
145 * @param pVCpu The current CPU.
146 * @param uErr The error code.
147 * @param pRegFrame The register frame.
148 * @param pvFault The fault address.
149 * @param pPage The guest page at @a pvFault.
150 * @param pGstWalk The guest page table walk result.
151 * @param pfLockTaken PGM lock taken here or not (out). This is true
152 * when we're called.
153 */
154static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
155 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
156# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
157 , PGSTPTWALK pGstWalk
158# endif
159 )
160{
161# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
162 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
163#endif
164 PVM pVM = pVCpu->CTX_SUFF(pVM);
165 int rc;
166
167 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
168 {
169 /*
170 * Physical page access handler.
171 */
172# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
173 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
174# else
175 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
176# endif
177 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
178 if (pCur)
179 {
180# ifdef PGM_SYNC_N_PAGES
181 /*
182 * If the region is write protected and we got a page not present fault, then sync
183 * the pages. If the fault was caused by a read, then restart the instruction.
184 * In case of write access continue to the GC write handler.
185 *
186 * ASSUMES that there is only one handler per page or that they have similar write properties.
187 */
188 if ( !(uErr & X86_TRAP_PF_P)
189 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
190 {
191# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
192 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
193# else
194 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
195# endif
196 if ( RT_FAILURE(rc)
197 || !(uErr & X86_TRAP_PF_RW)
198 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
199 {
200 AssertRC(rc);
201 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
202 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
203 return rc;
204 }
205 }
206# endif
207# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
208 /*
209 * If the access was not thru a #PF(RSVD|...) resync the page.
210 */
211 if ( !(uErr & X86_TRAP_PF_RSVD)
212 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
213# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
214 && pGstWalk->Core.fEffectiveRW
215 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
216# endif
217 )
218 {
219# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
220 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
221# else
222 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
223# endif
224 if ( RT_FAILURE(rc)
225 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
226 {
227 AssertRC(rc);
228 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
229 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
230 return rc;
231 }
232 }
233# endif
234
235 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
236 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
237 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
238 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
239 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
240 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
241 else
242 {
243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
244 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
245 }
246
247 if (pCur->CTX_SUFF(pfnHandler))
248 {
249 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
250 void *pvUser = pCur->CTX_SUFF(pvUser);
251# ifdef IN_RING0
252 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
253# else
254 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
255# endif
256
257 STAM_PROFILE_START(&pCur->Stat, h);
258 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
259 {
260 pgmUnlock(pVM);
261 *pfLockTaken = false;
262 }
263
264 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
265
266# ifdef VBOX_WITH_STATISTICS
267 pgmLock(pVM);
268 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
269 if (pCur)
270 STAM_PROFILE_STOP(&pCur->Stat, h);
271 pgmUnlock(pVM);
272# endif
273 }
274 else
275 rc = VINF_EM_RAW_EMULATE_INSTR;
276
277 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
278 return rc;
279 }
280 }
281# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
282 else
283 {
284# ifdef PGM_SYNC_N_PAGES
285 /*
286 * If the region is write protected and we got a page not present fault, then sync
287 * the pages. If the fault was caused by a read, then restart the instruction.
288 * In case of write access continue to the GC write handler.
289 */
290 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
291 && !(uErr & X86_TRAP_PF_P))
292 {
293 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
294 if ( RT_FAILURE(rc)
295 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
296 || !(uErr & X86_TRAP_PF_RW))
297 {
298 AssertRC(rc);
299 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
300 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
301 return rc;
302 }
303 }
304# endif
305 /*
306 * Ok, it's an virtual page access handler.
307 *
308 * Since it's faster to search by address, we'll do that first
309 * and then retry by GCPhys if that fails.
310 */
311 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
312 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
313 * out of sync, because the page was changed without us noticing it (not-present -> present
314 * without invlpg or mov cr3, xxx).
315 */
316 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
317 if (pCur)
318 {
319 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
320 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
321 || !(uErr & X86_TRAP_PF_P)
322 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
323 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
324 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
325
326 if ( pvFault - pCur->Core.Key < pCur->cb
327 && ( uErr & X86_TRAP_PF_RW
328 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
329 {
330# ifdef IN_RC
331 STAM_PROFILE_START(&pCur->Stat, h);
332 RTGCPTR GCPtrStart = pCur->Core.Key;
333 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
334 pgmUnlock(pVM);
335 *pfLockTaken = false;
336
337 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
338
339# ifdef VBOX_WITH_STATISTICS
340 pgmLock(pVM);
341 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
342 if (pCur)
343 STAM_PROFILE_STOP(&pCur->Stat, h);
344 pgmUnlock(pVM);
345# endif
346# else
347 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
348# endif
349 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
350 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
351 return rc;
352 }
353 /* Unhandled part of a monitored page */
354 Log(("Unhandled part of monitored page %RGv\n", pvFault));
355 }
356 else
357 {
358 /* Check by physical address. */
359 unsigned iPage;
360 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
361 Assert(RT_SUCCESS(rc) || !pCur);
362 if ( pCur
363 && ( uErr & X86_TRAP_PF_RW
364 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
365 {
366 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
367# ifdef IN_RC
368 STAM_PROFILE_START(&pCur->Stat, h);
369 RTGCPTR GCPtrStart = pCur->Core.Key;
370 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
371 pgmUnlock(pVM);
372 *pfLockTaken = false;
373
374 RTGCPTR off = (iPage << PAGE_SHIFT)
375 + (pvFault & PAGE_OFFSET_MASK)
376 - (GCPtrStart & PAGE_OFFSET_MASK);
377 Assert(off < pCur->cb);
378 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
379
380# ifdef VBOX_WITH_STATISTICS
381 pgmLock(pVM);
382 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
383 if (pCur)
384 STAM_PROFILE_STOP(&pCur->Stat, h);
385 pgmUnlock(pVM);
386# endif
387# else
388 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
389# endif
390 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
391 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
392 return rc;
393 }
394 }
395 }
396# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
397
398 /*
399 * There is a handled area of the page, but this fault doesn't belong to it.
400 * We must emulate the instruction.
401 *
402 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
403 * we first check if this was a page-not-present fault for a page with only
404 * write access handlers. Restart the instruction if it wasn't a write access.
405 */
406 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
407
408 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
409 && !(uErr & X86_TRAP_PF_P))
410 {
411# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
412 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
413# else
414 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
415# endif
416 if ( RT_FAILURE(rc)
417 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
418 || !(uErr & X86_TRAP_PF_RW))
419 {
420 AssertRC(rc);
421 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
422 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
423 return rc;
424 }
425 }
426
427 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
428 * It's writing to an unhandled part of the LDT page several million times.
429 */
430 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
431 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
432 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
433 return rc;
434} /* if any kind of handler */
435
436
437/**
438 * #PF Handler for raw-mode guest execution.
439 *
440 * @returns VBox status code (appropriate for trap handling and GC return).
441 *
442 * @param pVCpu Pointer to the VMCPU.
443 * @param uErr The trap error code.
444 * @param pRegFrame Trap register frame.
445 * @param pvFault The fault address.
446 * @param pfLockTaken PGM lock taken here or not (out)
447 */
448PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
449{
450 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
451
452 *pfLockTaken = false;
453
454# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
455 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
456 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
457 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
458 int rc;
459
460# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
461 /*
462 * Walk the guest page translation tables and check if it's a guest fault.
463 */
464 GSTPTWALK GstWalk;
465 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
466 if (RT_FAILURE_NP(rc))
467 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
468
469 /* assert some GstWalk sanity. */
470# if PGM_GST_TYPE == PGM_TYPE_AMD64
471 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
472# endif
473# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
474 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
475# endif
476 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
477 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
478 Assert(GstWalk.Core.fSucceeded);
479
480 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
481 {
482 if ( ( (uErr & X86_TRAP_PF_RW)
483 && !GstWalk.Core.fEffectiveRW
484 && ( (uErr & X86_TRAP_PF_US)
485 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
486 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
487 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
488 )
489 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
490 }
491
492 /*
493 * Set the accessed and dirty flags.
494 */
495# if PGM_GST_TYPE == PGM_TYPE_AMD64
496 GstWalk.Pml4e.u |= X86_PML4E_A;
497 GstWalk.pPml4e->u |= X86_PML4E_A;
498 GstWalk.Pdpe.u |= X86_PDPE_A;
499 GstWalk.pPdpe->u |= X86_PDPE_A;
500# endif
501 if (GstWalk.Core.fBigPage)
502 {
503 Assert(GstWalk.Pde.b.u1Size);
504 if (uErr & X86_TRAP_PF_RW)
505 {
506 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
507 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
508 }
509 else
510 {
511 GstWalk.Pde.u |= X86_PDE4M_A;
512 GstWalk.pPde->u |= X86_PDE4M_A;
513 }
514 }
515 else
516 {
517 Assert(!GstWalk.Pde.b.u1Size);
518 GstWalk.Pde.u |= X86_PDE_A;
519 GstWalk.pPde->u |= X86_PDE_A;
520 if (uErr & X86_TRAP_PF_RW)
521 {
522# ifdef VBOX_WITH_STATISTICS
523 if (!GstWalk.Pte.n.u1Dirty)
524 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
525 else
526 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
527# endif
528 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
529 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
530 }
531 else
532 {
533 GstWalk.Pte.u |= X86_PTE_A;
534 GstWalk.pPte->u |= X86_PTE_A;
535 }
536 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
537 }
538 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
539 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
540# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
541 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
542# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
543
544 /* Take the big lock now. */
545 *pfLockTaken = true;
546 pgmLock(pVM);
547
548# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
549 /*
550 * If it is a reserved bit fault we know that it is an MMIO (access
551 * handler) related fault and can skip some 200 lines of code.
552 */
553 if (uErr & X86_TRAP_PF_RSVD)
554 {
555 Assert(uErr & X86_TRAP_PF_P);
556 PPGMPAGE pPage;
557# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
558 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
559 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
560 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
561 pfLockTaken, &GstWalk));
562 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
563# else
564 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
565 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
566 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
567 pfLockTaken));
568 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
569# endif
570 AssertRC(rc);
571 PGM_INVL_PG(pVCpu, pvFault);
572 return rc; /* Restart with the corrected entry. */
573 }
574# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
575
576 /*
577 * Fetch the guest PDE, PDPE and PML4E.
578 */
579# if PGM_SHW_TYPE == PGM_TYPE_32BIT
580 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
581 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
582
583# elif PGM_SHW_TYPE == PGM_TYPE_PAE
584 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
585 PX86PDPAE pPDDst;
586# if PGM_GST_TYPE == PGM_TYPE_PAE
587 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
588# else
589 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
590# endif
591 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
592
593# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
594 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
595 PX86PDPAE pPDDst;
596# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
597 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
598 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
599# else
600 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
601# endif
602 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
603
604# elif PGM_SHW_TYPE == PGM_TYPE_EPT
605 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
606 PEPTPD pPDDst;
607 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
608 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
609# endif
610 Assert(pPDDst);
611
612# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
613 /*
614 * Dirty page handling.
615 *
616 * If we successfully correct the write protection fault due to dirty bit
617 * tracking, then return immediately.
618 */
619 if (uErr & X86_TRAP_PF_RW) /* write fault? */
620 {
621 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
622 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
623 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
624 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
625 {
626 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
627 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
628 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
629 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
630 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
631 return VINF_SUCCESS;
632 }
633 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
634 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
635 }
636
637# if 0 /* rarely useful; leave for debugging. */
638 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
639# endif
640# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
641
642 /*
643 * A common case is the not-present error caused by lazy page table syncing.
644 *
645 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
646 * here so we can safely assume that the shadow PT is present when calling
647 * SyncPage later.
648 *
649 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
650 * of mapping conflict and defer to SyncCR3 in R3.
651 * (Again, we do NOT support access handlers for non-present guest pages.)
652 *
653 */
654# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
655 Assert(GstWalk.Pde.n.u1Present);
656# endif
657 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
658 && !pPDDst->a[iPDDst].n.u1Present)
659 {
660 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
661# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
662 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
663 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
664# else
665 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
666 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
667# endif
668 if (RT_SUCCESS(rc))
669 return rc;
670 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
671 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
672 return VINF_PGM_SYNC_CR3;
673 }
674
675# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
676 /*
677 * Check if this address is within any of our mappings.
678 *
679 * This is *very* fast and it's gonna save us a bit of effort below and prevent
680 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
681 * (BTW, it's impossible to have physical access handlers in a mapping.)
682 */
683 if (pgmMapAreMappingsEnabled(pVM))
684 {
685 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
686 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
687 {
688 if (pvFault < pMapping->GCPtr)
689 break;
690 if (pvFault - pMapping->GCPtr < pMapping->cb)
691 {
692 /*
693 * The first thing we check is if we've got an undetected conflict.
694 */
695 if (pgmMapAreMappingsFloating(pVM))
696 {
697 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
698 while (iPT-- > 0)
699 if (GstWalk.pPde[iPT].n.u1Present)
700 {
701 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
702 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
703 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
704 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
705 return VINF_PGM_SYNC_CR3;
706 }
707 }
708
709 /*
710 * Check if the fault address is in a virtual page access handler range.
711 */
712 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
713 if ( pCur
714 && pvFault - pCur->Core.Key < pCur->cb
715 && uErr & X86_TRAP_PF_RW)
716 {
717# ifdef IN_RC
718 STAM_PROFILE_START(&pCur->Stat, h);
719 pgmUnlock(pVM);
720 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
721 pgmLock(pVM);
722 STAM_PROFILE_STOP(&pCur->Stat, h);
723# else
724 AssertFailed();
725 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
726# endif
727 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
728 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
729 return rc;
730 }
731
732 /*
733 * Pretend we're not here and let the guest handle the trap.
734 */
735 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
736 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
737 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
738 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
739 return VINF_EM_RAW_GUEST_TRAP;
740 }
741 }
742 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
743# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
744
745 /*
746 * Check if this fault address is flagged for special treatment,
747 * which means we'll have to figure out the physical address and
748 * check flags associated with it.
749 *
750 * ASSUME that we can limit any special access handling to pages
751 * in page tables which the guest believes to be present.
752 */
753# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
754 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
755# else
756 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
757# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
758 PPGMPAGE pPage;
759 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
760 if (RT_FAILURE(rc))
761 {
762 /*
763 * When the guest accesses invalid physical memory (e.g. probing
764 * of RAM or accessing a remapped MMIO range), then we'll fall
765 * back to the recompiler to emulate the instruction.
766 */
767 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
768 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
769 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
770 return VINF_EM_RAW_EMULATE_INSTR;
771 }
772
773 /*
774 * Any handlers for this page?
775 */
776 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
777# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
778 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
779 &GstWalk));
780# else
781 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
782# endif
783
784 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
785
786# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
787 if (uErr & X86_TRAP_PF_P)
788 {
789 /*
790 * The page isn't marked, but it might still be monitored by a virtual page access handler.
791 * (ASSUMES no temporary disabling of virtual handlers.)
792 */
793 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
794 * we should correct both the shadow page table and physical memory flags, and not only check for
795 * accesses within the handler region but for access to pages with virtual handlers. */
796 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
797 if (pCur)
798 {
799 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
800 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
801 || !(uErr & X86_TRAP_PF_P)
802 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
803 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
804
805 if ( pvFault - pCur->Core.Key < pCur->cb
806 && ( uErr & X86_TRAP_PF_RW
807 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
808 {
809# ifdef IN_RC
810 STAM_PROFILE_START(&pCur->Stat, h);
811 pgmUnlock(pVM);
812 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
813 pgmLock(pVM);
814 STAM_PROFILE_STOP(&pCur->Stat, h);
815# else
816 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
817# endif
818 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
819 return rc;
820 }
821 }
822 }
823# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
824
825 /*
826 * We are here only if page is present in Guest page tables and
827 * trap is not handled by our handlers.
828 *
829 * Check it for page out-of-sync situation.
830 */
831 if (!(uErr & X86_TRAP_PF_P))
832 {
833 /*
834 * Page is not present in our page tables. Try to sync it!
835 */
836 if (uErr & X86_TRAP_PF_US)
837 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
838 else /* supervisor */
839 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
840
841 if (PGM_PAGE_IS_BALLOONED(pPage))
842 {
843 /* Emulate reads from ballooned pages as they are not present in
844 our shadow page tables. (Required for e.g. Solaris guests; soft
845 ecc, random nr generator.) */
846 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
847 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
848 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
849 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
850 return rc;
851 }
852
853# if defined(LOG_ENABLED) && !defined(IN_RING0)
854 RTGCPHYS GCPhys2;
855 uint64_t fPageGst2;
856 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
857# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
858 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
859 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
860# else
861 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
862 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
863# endif
864# endif /* LOG_ENABLED */
865
866# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
867 if ( !GstWalk.Core.fEffectiveUS
868 && CPUMGetGuestCPL(pVCpu) == 0)
869 {
870 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
871 if ( pvFault == (RTGCPTR)pRegFrame->eip
872 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
873# ifdef CSAM_DETECT_NEW_CODE_PAGES
874 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
875 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
876# endif /* CSAM_DETECT_NEW_CODE_PAGES */
877 )
878 {
879 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
880 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
881 if (rc != VINF_SUCCESS)
882 {
883 /*
884 * CSAM needs to perform a job in ring 3.
885 *
886 * Sync the page before going to the host context; otherwise we'll end up in a loop if
887 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
888 */
889 LogFlow(("CSAM ring 3 job\n"));
890 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
891 AssertRC(rc2);
892
893 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
894 return rc;
895 }
896 }
897# ifdef CSAM_DETECT_NEW_CODE_PAGES
898 else if ( uErr == X86_TRAP_PF_RW
899 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
900 && pRegFrame->ecx < 0x10000)
901 {
902 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
903 * to detect loading of new code pages.
904 */
905
906 /*
907 * Decode the instruction.
908 */
909 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
910 uint32_t cbOp;
911 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
912
913 /* For now we'll restrict this to rep movsw/d instructions */
914 if ( rc == VINF_SUCCESS
915 && pDis->pCurInstr->opcode == OP_MOVSWD
916 && (pDis->prefix & DISPREFIX_REP))
917 {
918 CSAMMarkPossibleCodePage(pVM, pvFault);
919 }
920 }
921# endif /* CSAM_DETECT_NEW_CODE_PAGES */
922
923 /*
924 * Mark this page as safe.
925 */
926 /** @todo not correct for pages that contain both code and data!! */
927 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
928 CSAMMarkPage(pVM, pvFault, true);
929 }
930# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
931# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
932 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
933# else
934 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
935# endif
936 if (RT_SUCCESS(rc))
937 {
938 /* The page was successfully synced, return to the guest. */
939 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
940 return VINF_SUCCESS;
941 }
942 }
943 else /* uErr & X86_TRAP_PF_P: */
944 {
945 /*
946 * Write protected pages are made writable when the guest makes the
947 * first write to it. This happens for pages that are shared, write
948 * monitored or not yet allocated.
949 *
950 * We may also end up here when CR0.WP=0 in the guest.
951 *
952 * Also, a side effect of not flushing global PDEs are out of sync
953 * pages due to physical monitored regions, that are no longer valid.
954 * Assume for now it only applies to the read/write flag.
955 */
956 if (uErr & X86_TRAP_PF_RW)
957 {
958 /*
959 * Check if it is a read-only page.
960 */
961 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
962 {
963 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
964 Assert(!PGM_PAGE_IS_ZERO(pPage));
965 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
966 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
967
968 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
969 if (rc != VINF_SUCCESS)
970 {
971 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
972 return rc;
973 }
974 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
975 return VINF_EM_NO_MEMORY;
976 }
977
978# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
979 /*
980 * Check to see if we need to emulate the instruction if CR0.WP=0.
981 */
982 if ( !GstWalk.Core.fEffectiveRW
983 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
984 && CPUMGetGuestCPL(pVCpu) == 0)
985 {
986 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
987 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
988 if (RT_SUCCESS(rc))
989 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
990 else
991 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
992 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
993 return rc;
994 }
995# endif
996 /// @todo count the above case; else
997 if (uErr & X86_TRAP_PF_US)
998 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
999 else /* supervisor */
1000 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1001
1002 /*
1003 * Sync the page.
1004 *
1005 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1006 * page is not present, which is not true in this case.
1007 */
1008# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1009 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1010# else
1011 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1012# endif
1013 if (RT_SUCCESS(rc))
1014 {
1015 /*
1016 * Page was successfully synced, return to guest but invalidate
1017 * the TLB first as the page is very likely to be in it.
1018 */
1019# if PGM_SHW_TYPE == PGM_TYPE_EPT
1020 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1021# else
1022 PGM_INVL_PG(pVCpu, pvFault);
1023# endif
1024# ifdef VBOX_STRICT
1025 RTGCPHYS GCPhys2;
1026 uint64_t fPageGst;
1027 if (!pVM->pgm.s.fNestedPaging)
1028 {
1029 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1030 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1031 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1032 }
1033 uint64_t fPageShw;
1034 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1035 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1036 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1037# endif /* VBOX_STRICT */
1038 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1039 return VINF_SUCCESS;
1040 }
1041 }
1042 /** @todo else: why are we here? */
1043
1044# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1045 /*
1046 * Check for VMM page flags vs. Guest page flags consistency.
1047 * Currently only for debug purposes.
1048 */
1049 if (RT_SUCCESS(rc))
1050 {
1051 /* Get guest page flags. */
1052 uint64_t fPageGst;
1053 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1054 if (RT_SUCCESS(rc))
1055 {
1056 uint64_t fPageShw;
1057 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1058
1059 /*
1060 * Compare page flags.
1061 * Note: we have AVL, A, D bits desynced.
1062 */
1063 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1064 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1065 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1066 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1067 }
1068 else
1069 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1070 }
1071 else
1072 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1073# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1074 }
1075
1076
1077 /*
1078 * If we get here it is because something failed above, i.e. most like guru
1079 * meditiation time.
1080 */
1081 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1082 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1083 return rc;
1084
1085# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1086 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1087 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1088 return VERR_PGM_NOT_USED_IN_MODE;
1089# endif
1090}
1091#endif /* !IN_RING3 */
1092
1093
1094/**
1095 * Emulation of the invlpg instruction.
1096 *
1097 *
1098 * @returns VBox status code.
1099 *
1100 * @param pVCpu Pointer to the VMCPU.
1101 * @param GCPtrPage Page to invalidate.
1102 *
1103 * @remark ASSUMES that the guest is updating before invalidating. This order
1104 * isn't required by the CPU, so this is speculative and could cause
1105 * trouble.
1106 * @remark No TLB shootdown is done on any other VCPU as we assume that
1107 * invlpg emulation is the *only* reason for calling this function.
1108 * (The guest has to shoot down TLB entries on other CPUs itself)
1109 * Currently true, but keep in mind!
1110 *
1111 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1112 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1113 */
1114PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1115{
1116#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1117 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1118 && PGM_SHW_TYPE != PGM_TYPE_EPT
1119 int rc;
1120 PVM pVM = pVCpu->CTX_SUFF(pVM);
1121 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1122
1123 PGM_LOCK_ASSERT_OWNER(pVM);
1124
1125 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1126
1127 /*
1128 * Get the shadow PD entry and skip out if this PD isn't present.
1129 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1130 */
1131# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1132 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1133 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1134
1135 /* Fetch the pgm pool shadow descriptor. */
1136 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1137 Assert(pShwPde);
1138
1139# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1140 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1141 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1142
1143 /* If the shadow PDPE isn't present, then skip the invalidate. */
1144 if (!pPdptDst->a[iPdpt].n.u1Present)
1145 {
1146 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1147 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1148 return VINF_SUCCESS;
1149 }
1150
1151 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1152 PPGMPOOLPAGE pShwPde = NULL;
1153 PX86PDPAE pPDDst;
1154
1155 /* Fetch the pgm pool shadow descriptor. */
1156 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1157 AssertRCSuccessReturn(rc, rc);
1158 Assert(pShwPde);
1159
1160 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1161 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1162
1163# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1164 /* PML4 */
1165 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1166 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1167 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1168 PX86PDPAE pPDDst;
1169 PX86PDPT pPdptDst;
1170 PX86PML4E pPml4eDst;
1171 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1172 if (rc != VINF_SUCCESS)
1173 {
1174 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1175 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1176 return VINF_SUCCESS;
1177 }
1178 Assert(pPDDst);
1179
1180 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1181 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1182
1183 if (!pPdpeDst->n.u1Present)
1184 {
1185 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1186 return VINF_SUCCESS;
1187 }
1188
1189 /* Fetch the pgm pool shadow descriptor. */
1190 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1191 Assert(pShwPde);
1192
1193# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1194
1195 const SHWPDE PdeDst = *pPdeDst;
1196 if (!PdeDst.n.u1Present)
1197 {
1198 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1199 PGM_INVL_PG(pVCpu, GCPtrPage);
1200 return VINF_SUCCESS;
1201 }
1202
1203 /*
1204 * Get the guest PD entry and calc big page.
1205 */
1206# if PGM_GST_TYPE == PGM_TYPE_32BIT
1207 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1208 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1209 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1210# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1211 unsigned iPDSrc = 0;
1212# if PGM_GST_TYPE == PGM_TYPE_PAE
1213 X86PDPE PdpeSrcIgn;
1214 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1215# else /* AMD64 */
1216 PX86PML4E pPml4eSrcIgn;
1217 X86PDPE PdpeSrcIgn;
1218 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1219# endif
1220 GSTPDE PdeSrc;
1221
1222 if (pPDSrc)
1223 PdeSrc = pPDSrc->a[iPDSrc];
1224 else
1225 PdeSrc.u = 0;
1226# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1227 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1228
1229# ifdef IN_RING3
1230 /*
1231 * If a CR3 Sync is pending we may ignore the invalidate page operation
1232 * depending on the kind of sync and if it's a global page or not.
1233 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1234 */
1235# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1236 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1237 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1238 && fIsBigPage
1239 && PdeSrc.b.u1Global
1240 )
1241 )
1242# else
1243 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1244# endif
1245 {
1246 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1247 return VINF_SUCCESS;
1248 }
1249# endif /* IN_RING3 */
1250
1251 /*
1252 * Deal with the Guest PDE.
1253 */
1254 rc = VINF_SUCCESS;
1255 if (PdeSrc.n.u1Present)
1256 {
1257 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1258 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1259# ifndef PGM_WITHOUT_MAPPING
1260 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1261 {
1262 /*
1263 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1264 */
1265 Assert(pgmMapAreMappingsEnabled(pVM));
1266 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1267 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1268 }
1269 else
1270# endif /* !PGM_WITHOUT_MAPPING */
1271 if (!fIsBigPage)
1272 {
1273 /*
1274 * 4KB - page.
1275 */
1276 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1277 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1278
1279# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1280 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1281 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1282# endif
1283 if (pShwPage->GCPhys == GCPhys)
1284 {
1285 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1286 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1287
1288 PGSTPT pPTSrc;
1289 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1290 if (RT_SUCCESS(rc))
1291 {
1292 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1293 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1294 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1295 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1296 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1297 GCPtrPage, PteSrc.n.u1Present,
1298 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1299 PteSrc.n.u1User & PdeSrc.n.u1User,
1300 (uint64_t)PteSrc.u,
1301 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1302 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1303 }
1304 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1305 PGM_INVL_PG(pVCpu, GCPtrPage);
1306 }
1307 else
1308 {
1309 /*
1310 * The page table address changed.
1311 */
1312 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1313 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1314 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1315 ASMAtomicWriteSize(pPdeDst, 0);
1316 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1317 PGM_INVL_VCPU_TLBS(pVCpu);
1318 }
1319 }
1320 else
1321 {
1322 /*
1323 * 2/4MB - page.
1324 */
1325 /* Before freeing the page, check if anything really changed. */
1326 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1327 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1328# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1329 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1330 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1331# endif
1332 if ( pShwPage->GCPhys == GCPhys
1333 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1334 {
1335 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1336 /** @todo This test is wrong as it cannot check the G bit!
1337 * FIXME */
1338 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1339 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1340 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1341 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1342 {
1343 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1344 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1345 return VINF_SUCCESS;
1346 }
1347 }
1348
1349 /*
1350 * Ok, the page table is present and it's been changed in the guest.
1351 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1352 * We could do this for some flushes in GC too, but we need an algorithm for
1353 * deciding which 4MB pages containing code likely to be executed very soon.
1354 */
1355 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1356 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1357 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1358 ASMAtomicWriteSize(pPdeDst, 0);
1359 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1360 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1361 }
1362 }
1363 else
1364 {
1365 /*
1366 * Page directory is not present, mark shadow PDE not present.
1367 */
1368 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1369 {
1370 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1371 ASMAtomicWriteSize(pPdeDst, 0);
1372 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1373 PGM_INVL_PG(pVCpu, GCPtrPage);
1374 }
1375 else
1376 {
1377 Assert(pgmMapAreMappingsEnabled(pVM));
1378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1379 }
1380 }
1381 return rc;
1382
1383#else /* guest real and protected mode */
1384 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1385 NOREF(pVCpu); NOREF(GCPtrPage);
1386 return VINF_SUCCESS;
1387#endif
1388}
1389
1390
1391/**
1392 * Update the tracking of shadowed pages.
1393 *
1394 * @param pVCpu Pointer to the VMCPU.
1395 * @param pShwPage The shadow page.
1396 * @param HCPhys The physical page we is being dereferenced.
1397 * @param iPte Shadow PTE index
1398 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1399 */
1400DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1401 RTGCPHYS GCPhysPage)
1402{
1403 PVM pVM = pVCpu->CTX_SUFF(pVM);
1404
1405# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1406 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1407 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1408
1409 /* Use the hint we retrieved from the cached guest PT. */
1410 if (pShwPage->fDirty)
1411 {
1412 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1413
1414 Assert(pShwPage->cPresent);
1415 Assert(pPool->cPresent);
1416 pShwPage->cPresent--;
1417 pPool->cPresent--;
1418
1419 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1420 AssertRelease(pPhysPage);
1421 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1422 return;
1423 }
1424# else
1425 NOREF(GCPhysPage);
1426# endif
1427
1428 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1429 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1430
1431 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1432 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1433 * 2. write protect all shadowed pages. I.e. implement caching.
1434 */
1435 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1436
1437 /*
1438 * Find the guest address.
1439 */
1440 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1441 pRam;
1442 pRam = pRam->CTX_SUFF(pNext))
1443 {
1444 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1445 while (iPage-- > 0)
1446 {
1447 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1448 {
1449 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1450
1451 Assert(pShwPage->cPresent);
1452 Assert(pPool->cPresent);
1453 pShwPage->cPresent--;
1454 pPool->cPresent--;
1455
1456 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1457 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1458 return;
1459 }
1460 }
1461 }
1462
1463 for (;;)
1464 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1465}
1466
1467
1468/**
1469 * Update the tracking of shadowed pages.
1470 *
1471 * @param pVCpu Pointer to the VMCPU.
1472 * @param pShwPage The shadow page.
1473 * @param u16 The top 16-bit of the pPage->HCPhys.
1474 * @param pPage Pointer to the guest page. this will be modified.
1475 * @param iPTDst The index into the shadow table.
1476 */
1477DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1478{
1479 PVM pVM = pVCpu->CTX_SUFF(pVM);
1480
1481 /*
1482 * Just deal with the simple first time here.
1483 */
1484 if (!u16)
1485 {
1486 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1487 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1488 /* Save the page table index. */
1489 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1490 }
1491 else
1492 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1493
1494 /* write back */
1495 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1496 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1497
1498 /* update statistics. */
1499 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1500 pShwPage->cPresent++;
1501 if (pShwPage->iFirstPresent > iPTDst)
1502 pShwPage->iFirstPresent = iPTDst;
1503}
1504
1505
1506/**
1507 * Modifies a shadow PTE to account for access handlers.
1508 *
1509 * @param pVM Pointer to the VM.
1510 * @param pPage The page in question.
1511 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1512 * A (accessed) bit so it can be emulated correctly.
1513 * @param pPteDst The shadow PTE (output). This is temporary storage and
1514 * does not need to be set atomically.
1515 */
1516DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1517{
1518 NOREF(pVM);
1519 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1520 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1521 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1522 {
1523 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1524#if PGM_SHW_TYPE == PGM_TYPE_EPT
1525 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1526 pPteDst->n.u1Present = 1;
1527 pPteDst->n.u1Execute = 1;
1528 pPteDst->n.u1IgnorePAT = 1;
1529 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1530 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1531#else
1532 if (fPteSrc & X86_PTE_A)
1533 {
1534 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1535 SHW_PTE_SET_RO(*pPteDst);
1536 }
1537 else
1538 SHW_PTE_SET(*pPteDst, 0);
1539#endif
1540 }
1541#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1542# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1543 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1544 && ( BTH_IS_NP_ACTIVE(pVM)
1545 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1546# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1547 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1548# endif
1549 )
1550 {
1551 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1552# if PGM_SHW_TYPE == PGM_TYPE_EPT
1553 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1554 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1555 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1556 pPteDst->n.u1Present = 0;
1557 pPteDst->n.u1Write = 1;
1558 pPteDst->n.u1Execute = 0;
1559 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1560 pPteDst->n.u3EMT = 7;
1561# else
1562 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1563 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1564# endif
1565 }
1566# endif
1567#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1568 else
1569 {
1570 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1571 SHW_PTE_SET(*pPteDst, 0);
1572 }
1573 /** @todo count these kinds of entries. */
1574}
1575
1576
1577/**
1578 * Creates a 4K shadow page for a guest page.
1579 *
1580 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1581 * physical address. The PdeSrc argument only the flags are used. No page
1582 * structured will be mapped in this function.
1583 *
1584 * @param pVCpu Pointer to the VMCPU.
1585 * @param pPteDst Destination page table entry.
1586 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1587 * Can safely assume that only the flags are being used.
1588 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1589 * @param pShwPage Pointer to the shadow page.
1590 * @param iPTDst The index into the shadow table.
1591 *
1592 * @remark Not used for 2/4MB pages!
1593 */
1594#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1595static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1596 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1597#else
1598static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1599#endif
1600{
1601 PVM pVM = pVCpu->CTX_SUFF(pVM);
1602 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1603
1604#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1605 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1606 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1607
1608 if (pShwPage->fDirty)
1609 {
1610 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1611 PGSTPT pGstPT;
1612
1613 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1614 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1615 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1616 pGstPT->a[iPTDst].u = PteSrc.u;
1617 }
1618#else
1619 Assert(!pShwPage->fDirty);
1620#endif
1621
1622#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1623 if ( PteSrc.n.u1Present
1624 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1625#endif
1626 {
1627# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1628 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1629# endif
1630 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1631
1632 /*
1633 * Find the ram range.
1634 */
1635 PPGMPAGE pPage;
1636 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1637 if (RT_SUCCESS(rc))
1638 {
1639 /* Ignore ballooned pages.
1640 Don't return errors or use a fatal assert here as part of a
1641 shadow sync range might included ballooned pages. */
1642 if (PGM_PAGE_IS_BALLOONED(pPage))
1643 {
1644 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1645 return;
1646 }
1647
1648#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1649 /* Make the page writable if necessary. */
1650 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1651 && ( PGM_PAGE_IS_ZERO(pPage)
1652# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1653 || ( PteSrc.n.u1Write
1654# else
1655 || ( 1
1656# endif
1657 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1658# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1659 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1660# endif
1661# ifdef VBOX_WITH_PAGE_SHARING
1662 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1663# endif
1664 )
1665 )
1666 )
1667 {
1668 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1669 AssertRC(rc);
1670 }
1671#endif
1672
1673 /*
1674 * Make page table entry.
1675 */
1676 SHWPTE PteDst;
1677# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1678 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1679# else
1680 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1681# endif
1682 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1683 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1684 else
1685 {
1686#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1687 /*
1688 * If the page or page directory entry is not marked accessed,
1689 * we mark the page not present.
1690 */
1691 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1692 {
1693 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1694 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1695 SHW_PTE_SET(PteDst, 0);
1696 }
1697 /*
1698 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1699 * when the page is modified.
1700 */
1701 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1702 {
1703 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1704 SHW_PTE_SET(PteDst,
1705 fGstShwPteFlags
1706 | PGM_PAGE_GET_HCPHYS(pPage)
1707 | PGM_PTFLAGS_TRACK_DIRTY);
1708 SHW_PTE_SET_RO(PteDst);
1709 }
1710 else
1711#endif
1712 {
1713 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1714#if PGM_SHW_TYPE == PGM_TYPE_EPT
1715 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1716 PteDst.n.u1Present = 1;
1717 PteDst.n.u1Write = 1;
1718 PteDst.n.u1Execute = 1;
1719 PteDst.n.u1IgnorePAT = 1;
1720 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1721 /* PteDst.n.u1Size = 0 */
1722#else
1723 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1724#endif
1725 }
1726
1727 /*
1728 * Make sure only allocated pages are mapped writable.
1729 */
1730 if ( SHW_PTE_IS_P_RW(PteDst)
1731 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1732 {
1733 /* Still applies to shared pages. */
1734 Assert(!PGM_PAGE_IS_ZERO(pPage));
1735 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1736 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1737 }
1738 }
1739
1740 /*
1741 * Keep user track up to date.
1742 */
1743 if (SHW_PTE_IS_P(PteDst))
1744 {
1745 if (!SHW_PTE_IS_P(*pPteDst))
1746 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1747 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1748 {
1749 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1750 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1751 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1752 }
1753 }
1754 else if (SHW_PTE_IS_P(*pPteDst))
1755 {
1756 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1757 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1758 }
1759
1760 /*
1761 * Update statistics and commit the entry.
1762 */
1763#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1764 if (!PteSrc.n.u1Global)
1765 pShwPage->fSeenNonGlobal = true;
1766#endif
1767 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1768 return;
1769 }
1770
1771/** @todo count these three different kinds. */
1772 Log2(("SyncPageWorker: invalid address in Pte\n"));
1773 }
1774#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1775 else if (!PteSrc.n.u1Present)
1776 Log2(("SyncPageWorker: page not present in Pte\n"));
1777 else
1778 Log2(("SyncPageWorker: invalid Pte\n"));
1779#endif
1780
1781 /*
1782 * The page is not present or the PTE is bad. Replace the shadow PTE by
1783 * an empty entry, making sure to keep the user tracking up to date.
1784 */
1785 if (SHW_PTE_IS_P(*pPteDst))
1786 {
1787 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1788 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1789 }
1790 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1791}
1792
1793
1794/**
1795 * Syncs a guest OS page.
1796 *
1797 * There are no conflicts at this point, neither is there any need for
1798 * page table allocations.
1799 *
1800 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1801 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1802 *
1803 * @returns VBox status code.
1804 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1805 * @param pVCpu Pointer to the VMCPU.
1806 * @param PdeSrc Page directory entry of the guest.
1807 * @param GCPtrPage Guest context page address.
1808 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1809 * @param uErr Fault error (X86_TRAP_PF_*).
1810 */
1811static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1812{
1813 PVM pVM = pVCpu->CTX_SUFF(pVM);
1814 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1815 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1816
1817 PGM_LOCK_ASSERT_OWNER(pVM);
1818
1819#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1820 || PGM_GST_TYPE == PGM_TYPE_PAE \
1821 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1822 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1823 && PGM_SHW_TYPE != PGM_TYPE_EPT
1824
1825 /*
1826 * Assert preconditions.
1827 */
1828 Assert(PdeSrc.n.u1Present);
1829 Assert(cPages);
1830# if 0 /* rarely useful; leave for debugging. */
1831 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1832# endif
1833
1834 /*
1835 * Get the shadow PDE, find the shadow page table in the pool.
1836 */
1837# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1838 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1839 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1840
1841 /* Fetch the pgm pool shadow descriptor. */
1842 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1843 Assert(pShwPde);
1844
1845# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1846 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1847 PPGMPOOLPAGE pShwPde = NULL;
1848 PX86PDPAE pPDDst;
1849
1850 /* Fetch the pgm pool shadow descriptor. */
1851 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1852 AssertRCSuccessReturn(rc2, rc2);
1853 Assert(pShwPde);
1854
1855 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1856 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1857
1858# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1859 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1860 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1861 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1862 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1863
1864 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1865 AssertRCSuccessReturn(rc2, rc2);
1866 Assert(pPDDst && pPdptDst);
1867 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1868# endif
1869 SHWPDE PdeDst = *pPdeDst;
1870
1871 /*
1872 * - In the guest SMP case we could have blocked while another VCPU reused
1873 * this page table.
1874 * - With W7-64 we may also take this path when the A bit is cleared on
1875 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1876 * relevant TLB entries. If we're write monitoring any page mapped by
1877 * the modified entry, we may end up here with a "stale" TLB entry.
1878 */
1879 if (!PdeDst.n.u1Present)
1880 {
1881 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1882 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1883 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1884 if (uErr & X86_TRAP_PF_P)
1885 PGM_INVL_PG(pVCpu, GCPtrPage);
1886 return VINF_SUCCESS; /* force the instruction to be executed again. */
1887 }
1888
1889 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1890 Assert(pShwPage);
1891
1892# if PGM_GST_TYPE == PGM_TYPE_AMD64
1893 /* Fetch the pgm pool shadow descriptor. */
1894 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1895 Assert(pShwPde);
1896# endif
1897
1898 /*
1899 * Check that the page is present and that the shadow PDE isn't out of sync.
1900 */
1901 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1902 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1903 RTGCPHYS GCPhys;
1904 if (!fBigPage)
1905 {
1906 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1907# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1908 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1909 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1910# endif
1911 }
1912 else
1913 {
1914 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1915# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1916 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1917 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1918# endif
1919 }
1920 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1921 if ( fPdeValid
1922 && pShwPage->GCPhys == GCPhys
1923 && PdeSrc.n.u1Present
1924 && PdeSrc.n.u1User == PdeDst.n.u1User
1925 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1926# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1927 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1928# endif
1929 )
1930 {
1931 /*
1932 * Check that the PDE is marked accessed already.
1933 * Since we set the accessed bit *before* getting here on a #PF, this
1934 * check is only meant for dealing with non-#PF'ing paths.
1935 */
1936 if (PdeSrc.n.u1Accessed)
1937 {
1938 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1939 if (!fBigPage)
1940 {
1941 /*
1942 * 4KB Page - Map the guest page table.
1943 */
1944 PGSTPT pPTSrc;
1945 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1946 if (RT_SUCCESS(rc))
1947 {
1948# ifdef PGM_SYNC_N_PAGES
1949 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1950 if ( cPages > 1
1951 && !(uErr & X86_TRAP_PF_P)
1952 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1953 {
1954 /*
1955 * This code path is currently only taken when the caller is PGMTrap0eHandler
1956 * for non-present pages!
1957 *
1958 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1959 * deal with locality.
1960 */
1961 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1962# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1963 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1964 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1965# else
1966 const unsigned offPTSrc = 0;
1967# endif
1968 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1969 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1970 iPTDst = 0;
1971 else
1972 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1973
1974 for (; iPTDst < iPTDstEnd; iPTDst++)
1975 {
1976 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1977
1978 if ( pPteSrc->n.u1Present
1979 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1980 {
1981 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1982 NOREF(GCPtrCurPage);
1983# ifdef VBOX_WITH_RAW_MODE_NOT_R0
1984 /*
1985 * Assuming kernel code will be marked as supervisor - and not as user level
1986 * and executed using a conforming code selector - And marked as readonly.
1987 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1988 */
1989 PPGMPAGE pPage;
1990 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
1991 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1992 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1993 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
1994 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1995 )
1996# endif /* else: CSAM not active */
1997 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1998 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1999 GCPtrCurPage, pPteSrc->n.u1Present,
2000 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2001 pPteSrc->n.u1User & PdeSrc.n.u1User,
2002 (uint64_t)pPteSrc->u,
2003 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2004 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2005 }
2006 }
2007 }
2008 else
2009# endif /* PGM_SYNC_N_PAGES */
2010 {
2011 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2012 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2013 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2014 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2015 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2016 GCPtrPage, PteSrc.n.u1Present,
2017 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2018 PteSrc.n.u1User & PdeSrc.n.u1User,
2019 (uint64_t)PteSrc.u,
2020 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2021 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2022 }
2023 }
2024 else /* MMIO or invalid page: emulated in #PF handler. */
2025 {
2026 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2027 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2028 }
2029 }
2030 else
2031 {
2032 /*
2033 * 4/2MB page - lazy syncing shadow 4K pages.
2034 * (There are many causes of getting here, it's no longer only CSAM.)
2035 */
2036 /* Calculate the GC physical address of this 4KB shadow page. */
2037 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2038 /* Find ram range. */
2039 PPGMPAGE pPage;
2040 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2041 if (RT_SUCCESS(rc))
2042 {
2043 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2044
2045# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2046 /* Try to make the page writable if necessary. */
2047 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2048 && ( PGM_PAGE_IS_ZERO(pPage)
2049 || ( PdeSrc.n.u1Write
2050 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2051# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2052 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2053# endif
2054# ifdef VBOX_WITH_PAGE_SHARING
2055 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2056# endif
2057 )
2058 )
2059 )
2060 {
2061 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2062 AssertRC(rc);
2063 }
2064# endif
2065
2066 /*
2067 * Make shadow PTE entry.
2068 */
2069 SHWPTE PteDst;
2070 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2071 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2072 else
2073 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2074
2075 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2076 if ( SHW_PTE_IS_P(PteDst)
2077 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2078 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2079
2080 /* Make sure only allocated pages are mapped writable. */
2081 if ( SHW_PTE_IS_P_RW(PteDst)
2082 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2083 {
2084 /* Still applies to shared pages. */
2085 Assert(!PGM_PAGE_IS_ZERO(pPage));
2086 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2087 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2088 }
2089
2090 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2091
2092 /*
2093 * If the page is not flagged as dirty and is writable, then make it read-only
2094 * at PD level, so we can set the dirty bit when the page is modified.
2095 *
2096 * ASSUMES that page access handlers are implemented on page table entry level.
2097 * Thus we will first catch the dirty access and set PDE.D and restart. If
2098 * there is an access handler, we'll trap again and let it work on the problem.
2099 */
2100 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2101 * As for invlpg, it simply frees the whole shadow PT.
2102 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2103 if ( !PdeSrc.b.u1Dirty
2104 && PdeSrc.b.u1Write)
2105 {
2106 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2107 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2108 PdeDst.n.u1Write = 0;
2109 }
2110 else
2111 {
2112 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2113 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2114 }
2115 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2116 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2117 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2118 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2119 }
2120 else
2121 {
2122 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2123 /** @todo must wipe the shadow page table entry in this
2124 * case. */
2125 }
2126 }
2127 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2128 return VINF_SUCCESS;
2129 }
2130
2131 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2132 }
2133 else if (fPdeValid)
2134 {
2135 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2136 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2137 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2138 }
2139 else
2140 {
2141/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2142 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2143 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2144 }
2145
2146 /*
2147 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2148 * Yea, I'm lazy.
2149 */
2150 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2151 ASMAtomicWriteSize(pPdeDst, 0);
2152
2153 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2154 PGM_INVL_VCPU_TLBS(pVCpu);
2155 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2156
2157
2158#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2159 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2160 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2161 && !defined(IN_RC)
2162 NOREF(PdeSrc);
2163
2164# ifdef PGM_SYNC_N_PAGES
2165 /*
2166 * Get the shadow PDE, find the shadow page table in the pool.
2167 */
2168# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2169 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2170
2171# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2172 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2173
2174# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2175 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2176 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2177 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2178 X86PDEPAE PdeDst;
2179 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2180
2181 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2182 AssertRCSuccessReturn(rc, rc);
2183 Assert(pPDDst && pPdptDst);
2184 PdeDst = pPDDst->a[iPDDst];
2185# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2186 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2187 PEPTPD pPDDst;
2188 EPTPDE PdeDst;
2189
2190 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2191 if (rc != VINF_SUCCESS)
2192 {
2193 AssertRC(rc);
2194 return rc;
2195 }
2196 Assert(pPDDst);
2197 PdeDst = pPDDst->a[iPDDst];
2198# endif
2199 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2200 if (!PdeDst.n.u1Present)
2201 {
2202 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2203 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2204 return VINF_SUCCESS; /* force the instruction to be executed again. */
2205 }
2206
2207 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2208 if (PdeDst.n.u1Size)
2209 {
2210 Assert(pVM->pgm.s.fNestedPaging);
2211 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2212 return VINF_SUCCESS;
2213 }
2214
2215 /* Mask away the page offset. */
2216 GCPtrPage &= ~((RTGCPTR)0xfff);
2217
2218 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2219 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2220
2221 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2222 if ( cPages > 1
2223 && !(uErr & X86_TRAP_PF_P)
2224 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2225 {
2226 /*
2227 * This code path is currently only taken when the caller is PGMTrap0eHandler
2228 * for non-present pages!
2229 *
2230 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2231 * deal with locality.
2232 */
2233 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2234 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2235 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2236 iPTDst = 0;
2237 else
2238 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2239 for (; iPTDst < iPTDstEnd; iPTDst++)
2240 {
2241 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2242 {
2243 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2244 | (iPTDst << PAGE_SHIFT));
2245
2246 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2247 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2248 GCPtrCurPage,
2249 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2250 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2251
2252 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2253 break;
2254 }
2255 else
2256 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2257 }
2258 }
2259 else
2260# endif /* PGM_SYNC_N_PAGES */
2261 {
2262 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2263 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2264 | (iPTDst << PAGE_SHIFT));
2265
2266 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2267
2268 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2269 GCPtrPage,
2270 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2271 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2272 }
2273 return VINF_SUCCESS;
2274
2275#else
2276 NOREF(PdeSrc);
2277 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2278 return VERR_PGM_NOT_USED_IN_MODE;
2279#endif
2280}
2281
2282
2283#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2284
2285/**
2286 * CheckPageFault helper for returning a page fault indicating a non-present
2287 * (NP) entry in the page translation structures.
2288 *
2289 * @returns VINF_EM_RAW_GUEST_TRAP.
2290 * @param pVCpu Pointer to the VMCPU.
2291 * @param uErr The error code of the shadow fault. Corrections to
2292 * TRPM's copy will be made if necessary.
2293 * @param GCPtrPage For logging.
2294 * @param uPageFaultLevel For logging.
2295 */
2296DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2297{
2298 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2299 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2300 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2301 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2302 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2303
2304 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2305 return VINF_EM_RAW_GUEST_TRAP;
2306}
2307
2308
2309/**
2310 * CheckPageFault helper for returning a page fault indicating a reserved bit
2311 * (RSVD) error in the page translation structures.
2312 *
2313 * @returns VINF_EM_RAW_GUEST_TRAP.
2314 * @param pVCpu Pointer to the VMCPU.
2315 * @param uErr The error code of the shadow fault. Corrections to
2316 * TRPM's copy will be made if necessary.
2317 * @param GCPtrPage For logging.
2318 * @param uPageFaultLevel For logging.
2319 */
2320DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2321{
2322 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2323 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2324 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2325
2326 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2327 return VINF_EM_RAW_GUEST_TRAP;
2328}
2329
2330
2331/**
2332 * CheckPageFault helper for returning a page protection fault (P).
2333 *
2334 * @returns VINF_EM_RAW_GUEST_TRAP.
2335 * @param pVCpu Pointer to the VMCPU.
2336 * @param uErr The error code of the shadow fault. Corrections to
2337 * TRPM's copy will be made if necessary.
2338 * @param GCPtrPage For logging.
2339 * @param uPageFaultLevel For logging.
2340 */
2341DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2342{
2343 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2344 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2345 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2346 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2347
2348 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2349 return VINF_EM_RAW_GUEST_TRAP;
2350}
2351
2352
2353/**
2354 * Handle dirty bit tracking faults.
2355 *
2356 * @returns VBox status code.
2357 * @param pVCpu Pointer to the VMCPU.
2358 * @param uErr Page fault error code.
2359 * @param pPdeSrc Guest page directory entry.
2360 * @param pPdeDst Shadow page directory entry.
2361 * @param GCPtrPage Guest context page address.
2362 */
2363static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2364 RTGCPTR GCPtrPage)
2365{
2366 PVM pVM = pVCpu->CTX_SUFF(pVM);
2367 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2368 NOREF(uErr);
2369
2370 PGM_LOCK_ASSERT_OWNER(pVM);
2371
2372 /*
2373 * Handle big page.
2374 */
2375 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2376 {
2377 if ( pPdeDst->n.u1Present
2378 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2379 {
2380 SHWPDE PdeDst = *pPdeDst;
2381
2382 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2383 Assert(pPdeSrc->b.u1Write);
2384
2385 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2386 * fault again and take this path to only invalidate the entry (see below).
2387 */
2388 PdeDst.n.u1Write = 1;
2389 PdeDst.n.u1Accessed = 1;
2390 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2391 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2392 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2393 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2394 }
2395
2396# ifdef IN_RING0
2397 /* Check for stale TLB entry; only applies to the SMP guest case. */
2398 if ( pVM->cCpus > 1
2399 && pPdeDst->n.u1Write
2400 && pPdeDst->n.u1Accessed)
2401 {
2402 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2403 if (pShwPage)
2404 {
2405 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2406 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2407 if (SHW_PTE_IS_P_RW(*pPteDst))
2408 {
2409 /* Stale TLB entry. */
2410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2411 PGM_INVL_PG(pVCpu, GCPtrPage);
2412 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2413 }
2414 }
2415 }
2416# endif /* IN_RING0 */
2417 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2418 }
2419
2420 /*
2421 * Map the guest page table.
2422 */
2423 PGSTPT pPTSrc;
2424 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2425 if (RT_FAILURE(rc))
2426 {
2427 AssertRC(rc);
2428 return rc;
2429 }
2430
2431 if (pPdeDst->n.u1Present)
2432 {
2433 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2434 const GSTPTE PteSrc = *pPteSrc;
2435
2436#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2437 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2438 * Our individual shadow handlers will provide more information and force a fatal exit.
2439 */
2440 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2441 {
2442 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2443 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2444 }
2445#endif
2446 /*
2447 * Map shadow page table.
2448 */
2449 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2450 if (pShwPage)
2451 {
2452 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2453 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2454 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2455 {
2456 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2457 {
2458 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2459 SHWPTE PteDst = *pPteDst;
2460
2461 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2462 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2463
2464 Assert(PteSrc.n.u1Write);
2465
2466 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2467 * entry will not harm; write access will simply fault again and
2468 * take this path to only invalidate the entry.
2469 */
2470 if (RT_LIKELY(pPage))
2471 {
2472 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2473 {
2474 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2475 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2476 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2477 SHW_PTE_SET_RO(PteDst);
2478 }
2479 else
2480 {
2481 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2482 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2483 {
2484 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2485 AssertRC(rc);
2486 }
2487 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2488 SHW_PTE_SET_RW(PteDst);
2489 else
2490 {
2491 /* Still applies to shared pages. */
2492 Assert(!PGM_PAGE_IS_ZERO(pPage));
2493 SHW_PTE_SET_RO(PteDst);
2494 }
2495 }
2496 }
2497 else
2498 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2499
2500 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2501 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2502 PGM_INVL_PG(pVCpu, GCPtrPage);
2503 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2504 }
2505
2506# ifdef IN_RING0
2507 /* Check for stale TLB entry; only applies to the SMP guest case. */
2508 if ( pVM->cCpus > 1
2509 && SHW_PTE_IS_RW(*pPteDst)
2510 && SHW_PTE_IS_A(*pPteDst))
2511 {
2512 /* Stale TLB entry. */
2513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2514 PGM_INVL_PG(pVCpu, GCPtrPage);
2515 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2516 }
2517# endif
2518 }
2519 }
2520 else
2521 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2522 }
2523
2524 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2525}
2526
2527#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2528
2529
2530/**
2531 * Sync a shadow page table.
2532 *
2533 * The shadow page table is not present in the shadow PDE.
2534 *
2535 * Handles mapping conflicts.
2536 *
2537 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2538 * conflict), and Trap0eHandler.
2539 *
2540 * A precondition for this method is that the shadow PDE is not present. The
2541 * caller must take the PGM lock before checking this and continue to hold it
2542 * when calling this method.
2543 *
2544 * @returns VBox status code.
2545 * @param pVCpu Pointer to the VMCPU.
2546 * @param iPD Page directory index.
2547 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2548 * Assume this is a temporary mapping.
2549 * @param GCPtrPage GC Pointer of the page that caused the fault
2550 */
2551static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2552{
2553 PVM pVM = pVCpu->CTX_SUFF(pVM);
2554 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2555
2556#if 0 /* rarely useful; leave for debugging. */
2557 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2558#endif
2559 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2560
2561 PGM_LOCK_ASSERT_OWNER(pVM);
2562
2563#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2564 || PGM_GST_TYPE == PGM_TYPE_PAE \
2565 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2566 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2567 && PGM_SHW_TYPE != PGM_TYPE_EPT
2568
2569 int rc = VINF_SUCCESS;
2570
2571 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2572
2573 /*
2574 * Some input validation first.
2575 */
2576 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2577
2578 /*
2579 * Get the relevant shadow PDE entry.
2580 */
2581# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2582 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2583 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2584
2585 /* Fetch the pgm pool shadow descriptor. */
2586 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2587 Assert(pShwPde);
2588
2589# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2590 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2591 PPGMPOOLPAGE pShwPde = NULL;
2592 PX86PDPAE pPDDst;
2593 PSHWPDE pPdeDst;
2594
2595 /* Fetch the pgm pool shadow descriptor. */
2596 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2597 AssertRCSuccessReturn(rc, rc);
2598 Assert(pShwPde);
2599
2600 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2601 pPdeDst = &pPDDst->a[iPDDst];
2602
2603# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2604 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2605 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2606 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2607 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2608 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2609 AssertRCSuccessReturn(rc, rc);
2610 Assert(pPDDst);
2611 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2612# endif
2613 SHWPDE PdeDst = *pPdeDst;
2614
2615# if PGM_GST_TYPE == PGM_TYPE_AMD64
2616 /* Fetch the pgm pool shadow descriptor. */
2617 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2618 Assert(pShwPde);
2619# endif
2620
2621# ifndef PGM_WITHOUT_MAPPINGS
2622 /*
2623 * Check for conflicts.
2624 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2625 * R3: Simply resolve the conflict.
2626 */
2627 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2628 {
2629 Assert(pgmMapAreMappingsEnabled(pVM));
2630# ifndef IN_RING3
2631 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2632 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2633 return VERR_ADDRESS_CONFLICT;
2634
2635# else /* IN_RING3 */
2636 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2637 Assert(pMapping);
2638# if PGM_GST_TYPE == PGM_TYPE_32BIT
2639 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2640# elif PGM_GST_TYPE == PGM_TYPE_PAE
2641 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2642# else
2643 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2644# endif
2645 if (RT_FAILURE(rc))
2646 {
2647 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2648 return rc;
2649 }
2650 PdeDst = *pPdeDst;
2651# endif /* IN_RING3 */
2652 }
2653# endif /* !PGM_WITHOUT_MAPPINGS */
2654 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2655
2656 /*
2657 * Sync the page directory entry.
2658 */
2659 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2660 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2661 if ( PdeSrc.n.u1Present
2662 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2663 {
2664 /*
2665 * Allocate & map the page table.
2666 */
2667 PSHWPT pPTDst;
2668 PPGMPOOLPAGE pShwPage;
2669 RTGCPHYS GCPhys;
2670 if (fPageTable)
2671 {
2672 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2673# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2674 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2675 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2676# endif
2677 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2678 pShwPde->idx, iPDDst, false /*fLockPage*/,
2679 &pShwPage);
2680 }
2681 else
2682 {
2683 PGMPOOLACCESS enmAccess;
2684# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2685 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2686# else
2687 const bool fNoExecute = false;
2688# endif
2689
2690 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2691# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2692 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2693 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2694# endif
2695 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2696 if (PdeSrc.n.u1User)
2697 {
2698 if (PdeSrc.n.u1Write)
2699 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2700 else
2701 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2702 }
2703 else
2704 {
2705 if (PdeSrc.n.u1Write)
2706 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2707 else
2708 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2709 }
2710 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2711 pShwPde->idx, iPDDst, false /*fLockPage*/,
2712 &pShwPage);
2713 }
2714 if (rc == VINF_SUCCESS)
2715 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2716 else if (rc == VINF_PGM_CACHED_PAGE)
2717 {
2718 /*
2719 * The PT was cached, just hook it up.
2720 */
2721 if (fPageTable)
2722 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2723 else
2724 {
2725 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2726 /* (see explanation and assumptions further down.) */
2727 if ( !PdeSrc.b.u1Dirty
2728 && PdeSrc.b.u1Write)
2729 {
2730 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2731 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2732 PdeDst.b.u1Write = 0;
2733 }
2734 }
2735 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2736 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2737 return VINF_SUCCESS;
2738 }
2739 else if (rc == VERR_PGM_POOL_FLUSHED)
2740 {
2741 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2742 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2743 return VINF_PGM_SYNC_CR3;
2744 }
2745 else
2746 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2747 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2748 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2749 * irrelevant at this point. */
2750 PdeDst.u &= X86_PDE_AVL_MASK;
2751 PdeDst.u |= pShwPage->Core.Key;
2752
2753 /*
2754 * Page directory has been accessed (this is a fault situation, remember).
2755 */
2756 /** @todo
2757 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2758 * fault situation. What's more, the Trap0eHandler has already set the
2759 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2760 * might need setting the accessed flag.
2761 *
2762 * The best idea is to leave this change to the caller and add an
2763 * assertion that it's set already. */
2764 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2765 if (fPageTable)
2766 {
2767 /*
2768 * Page table - 4KB.
2769 *
2770 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2771 */
2772 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2773 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2774 PGSTPT pPTSrc;
2775 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2776 if (RT_SUCCESS(rc))
2777 {
2778 /*
2779 * Start by syncing the page directory entry so CSAM's TLB trick works.
2780 */
2781 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2782 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2783 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2784 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2785
2786 /*
2787 * Directory/page user or supervisor privilege: (same goes for read/write)
2788 *
2789 * Directory Page Combined
2790 * U/S U/S U/S
2791 * 0 0 0
2792 * 0 1 0
2793 * 1 0 0
2794 * 1 1 1
2795 *
2796 * Simple AND operation. Table listed for completeness.
2797 *
2798 */
2799 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2800# ifdef PGM_SYNC_N_PAGES
2801 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2802 unsigned iPTDst = iPTBase;
2803 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2804 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2805 iPTDst = 0;
2806 else
2807 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2808# else /* !PGM_SYNC_N_PAGES */
2809 unsigned iPTDst = 0;
2810 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2811# endif /* !PGM_SYNC_N_PAGES */
2812 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2813 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2814# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2815 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2816 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2817# else
2818 const unsigned offPTSrc = 0;
2819# endif
2820 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2821 {
2822 const unsigned iPTSrc = iPTDst + offPTSrc;
2823 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2824
2825 if (PteSrc.n.u1Present)
2826 {
2827# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2828 /*
2829 * Assuming kernel code will be marked as supervisor - and not as user level
2830 * and executed using a conforming code selector - And marked as readonly.
2831 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2832 */
2833 PPGMPAGE pPage;
2834 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2835 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2836 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2837 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2838 )
2839# endif
2840 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2841 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2842 GCPtrCur,
2843 PteSrc.n.u1Present,
2844 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2845 PteSrc.n.u1User & PdeSrc.n.u1User,
2846 (uint64_t)PteSrc.u,
2847 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2848 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2849 }
2850 /* else: the page table was cleared by the pool */
2851 } /* for PTEs */
2852 }
2853 }
2854 else
2855 {
2856 /*
2857 * Big page - 2/4MB.
2858 *
2859 * We'll walk the ram range list in parallel and optimize lookups.
2860 * We will only sync one shadow page table at a time.
2861 */
2862 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2863
2864 /**
2865 * @todo It might be more efficient to sync only a part of the 4MB
2866 * page (similar to what we do for 4KB PDs).
2867 */
2868
2869 /*
2870 * Start by syncing the page directory entry.
2871 */
2872 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2873 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2874
2875 /*
2876 * If the page is not flagged as dirty and is writable, then make it read-only
2877 * at PD level, so we can set the dirty bit when the page is modified.
2878 *
2879 * ASSUMES that page access handlers are implemented on page table entry level.
2880 * Thus we will first catch the dirty access and set PDE.D and restart. If
2881 * there is an access handler, we'll trap again and let it work on the problem.
2882 */
2883 /** @todo move the above stuff to a section in the PGM documentation. */
2884 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2885 if ( !PdeSrc.b.u1Dirty
2886 && PdeSrc.b.u1Write)
2887 {
2888 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2889 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2890 PdeDst.b.u1Write = 0;
2891 }
2892 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2893 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2894
2895 /*
2896 * Fill the shadow page table.
2897 */
2898 /* Get address and flags from the source PDE. */
2899 SHWPTE PteDstBase;
2900 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2901
2902 /* Loop thru the entries in the shadow PT. */
2903 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2904 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2905 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2906 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2907 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2908 unsigned iPTDst = 0;
2909 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2910 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2911 {
2912 if (pRam && GCPhys >= pRam->GCPhys)
2913 {
2914# ifndef PGM_WITH_A20
2915 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2916# endif
2917 do
2918 {
2919 /* Make shadow PTE. */
2920# ifdef PGM_WITH_A20
2921 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2922# else
2923 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2924# endif
2925 SHWPTE PteDst;
2926
2927# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2928 /* Try to make the page writable if necessary. */
2929 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2930 && ( PGM_PAGE_IS_ZERO(pPage)
2931 || ( SHW_PTE_IS_RW(PteDstBase)
2932 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2933# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2934 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2935# endif
2936# ifdef VBOX_WITH_PAGE_SHARING
2937 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2938# endif
2939 && !PGM_PAGE_IS_BALLOONED(pPage))
2940 )
2941 )
2942 {
2943 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2944 AssertRCReturn(rc, rc);
2945 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2946 break;
2947 }
2948# endif
2949
2950 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2951 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2952 else if (PGM_PAGE_IS_BALLOONED(pPage))
2953 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2954# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2955 /*
2956 * Assuming kernel code will be marked as supervisor and not as user level and executed
2957 * using a conforming code selector. Don't check for readonly, as that implies the whole
2958 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2959 */
2960 else if ( !PdeSrc.n.u1User
2961 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2962 SHW_PTE_SET(PteDst, 0);
2963# endif
2964 else
2965 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2966
2967 /* Only map writable pages writable. */
2968 if ( SHW_PTE_IS_P_RW(PteDst)
2969 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2970 {
2971 /* Still applies to shared pages. */
2972 Assert(!PGM_PAGE_IS_ZERO(pPage));
2973 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2974 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2975 }
2976
2977 if (SHW_PTE_IS_P(PteDst))
2978 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2979
2980 /* commit it (not atomic, new table) */
2981 pPTDst->a[iPTDst] = PteDst;
2982 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2983 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2984 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2985
2986 /* advance */
2987 GCPhys += PAGE_SIZE;
2988 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
2989# ifndef PGM_WITH_A20
2990 iHCPage++;
2991# endif
2992 iPTDst++;
2993 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2994 && GCPhys <= pRam->GCPhysLast);
2995
2996 /* Advance ram range list. */
2997 while (pRam && GCPhys > pRam->GCPhysLast)
2998 pRam = pRam->CTX_SUFF(pNext);
2999 }
3000 else if (pRam)
3001 {
3002 Log(("Invalid pages at %RGp\n", GCPhys));
3003 do
3004 {
3005 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3006 GCPhys += PAGE_SIZE;
3007 iPTDst++;
3008 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3009 && GCPhys < pRam->GCPhys);
3010 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3011 }
3012 else
3013 {
3014 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3015 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3016 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3017 }
3018 } /* while more PTEs */
3019 } /* 4KB / 4MB */
3020 }
3021 else
3022 AssertRelease(!PdeDst.n.u1Present);
3023
3024 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3025 if (RT_FAILURE(rc))
3026 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3027 return rc;
3028
3029#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3030 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3031 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3032 && !defined(IN_RC)
3033 NOREF(iPDSrc); NOREF(pPDSrc);
3034
3035 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3036
3037 /*
3038 * Validate input a little bit.
3039 */
3040 int rc = VINF_SUCCESS;
3041# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3042 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3043 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3044
3045 /* Fetch the pgm pool shadow descriptor. */
3046 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3047 Assert(pShwPde);
3048
3049# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3050 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3051 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3052 PX86PDPAE pPDDst;
3053 PSHWPDE pPdeDst;
3054
3055 /* Fetch the pgm pool shadow descriptor. */
3056 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3057 AssertRCSuccessReturn(rc, rc);
3058 Assert(pShwPde);
3059
3060 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3061 pPdeDst = &pPDDst->a[iPDDst];
3062
3063# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3064 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3065 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3066 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3067 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3068 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3069 AssertRCSuccessReturn(rc, rc);
3070 Assert(pPDDst);
3071 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3072
3073 /* Fetch the pgm pool shadow descriptor. */
3074 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3075 Assert(pShwPde);
3076
3077# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3078 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3079 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3080 PEPTPD pPDDst;
3081 PEPTPDPT pPdptDst;
3082
3083 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3084 if (rc != VINF_SUCCESS)
3085 {
3086 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3087 AssertRC(rc);
3088 return rc;
3089 }
3090 Assert(pPDDst);
3091 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3092
3093 /* Fetch the pgm pool shadow descriptor. */
3094 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3095 Assert(pShwPde);
3096# endif
3097 SHWPDE PdeDst = *pPdeDst;
3098
3099 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3100 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3101
3102# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3103 if (BTH_IS_NP_ACTIVE(pVM))
3104 {
3105 /* Check if we allocated a big page before for this 2 MB range. */
3106 PPGMPAGE pPage;
3107 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3108 if (RT_SUCCESS(rc))
3109 {
3110 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3111 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3112 {
3113 if (PGM_A20_IS_ENABLED(pVCpu))
3114 {
3115 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3116 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3117 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3118 }
3119 else
3120 {
3121 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3122 pVM->pgm.s.cLargePagesDisabled++;
3123 }
3124 }
3125 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3126 && PGM_A20_IS_ENABLED(pVCpu))
3127 {
3128 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3129 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3130 if (RT_SUCCESS(rc))
3131 {
3132 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3133 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3134 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3135 }
3136 }
3137 else if ( PGMIsUsingLargePages(pVM)
3138 && PGM_A20_IS_ENABLED(pVCpu))
3139 {
3140 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3141 if (RT_SUCCESS(rc))
3142 {
3143 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3144 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3145 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3146 }
3147 else
3148 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3149 }
3150
3151 if (HCPhys != NIL_RTHCPHYS)
3152 {
3153 PdeDst.u &= X86_PDE_AVL_MASK;
3154 PdeDst.u |= HCPhys;
3155 PdeDst.n.u1Present = 1;
3156 PdeDst.n.u1Write = 1;
3157 PdeDst.b.u1Size = 1;
3158# if PGM_SHW_TYPE == PGM_TYPE_EPT
3159 PdeDst.n.u1Execute = 1;
3160 PdeDst.b.u1IgnorePAT = 1;
3161 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3162# else
3163 PdeDst.n.u1User = 1;
3164# endif
3165 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3166
3167 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3168 /* Add a reference to the first page only. */
3169 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3170
3171 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3172 return VINF_SUCCESS;
3173 }
3174 }
3175 }
3176# endif /* HC_ARCH_BITS == 64 */
3177
3178 /*
3179 * Allocate & map the page table.
3180 */
3181 PSHWPT pPTDst;
3182 PPGMPOOLPAGE pShwPage;
3183 RTGCPHYS GCPhys;
3184
3185 /* Virtual address = physical address */
3186 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3187 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3188 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3189 &pShwPage);
3190 if ( rc == VINF_SUCCESS
3191 || rc == VINF_PGM_CACHED_PAGE)
3192 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3193 else
3194 {
3195 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3196 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3197 }
3198
3199 if (rc == VINF_SUCCESS)
3200 {
3201 /* New page table; fully set it up. */
3202 Assert(pPTDst);
3203
3204 /* Mask away the page offset. */
3205 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3206
3207 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3208 {
3209 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3210 | (iPTDst << PAGE_SHIFT));
3211
3212 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3213 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3214 GCPtrCurPage,
3215 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3216 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3217
3218 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3219 break;
3220 }
3221 }
3222 else
3223 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3224
3225 /* Save the new PDE. */
3226 PdeDst.u &= X86_PDE_AVL_MASK;
3227 PdeDst.u |= pShwPage->Core.Key;
3228 PdeDst.n.u1Present = 1;
3229 PdeDst.n.u1Write = 1;
3230# if PGM_SHW_TYPE == PGM_TYPE_EPT
3231 PdeDst.n.u1Execute = 1;
3232# else
3233 PdeDst.n.u1User = 1;
3234 PdeDst.n.u1Accessed = 1;
3235# endif
3236 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3237
3238 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3239 if (RT_FAILURE(rc))
3240 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3241 return rc;
3242
3243#else
3244 NOREF(iPDSrc); NOREF(pPDSrc);
3245 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3246 return VERR_PGM_NOT_USED_IN_MODE;
3247#endif
3248}
3249
3250
3251
3252/**
3253 * Prefetch a page/set of pages.
3254 *
3255 * Typically used to sync commonly used pages before entering raw mode
3256 * after a CR3 reload.
3257 *
3258 * @returns VBox status code.
3259 * @param pVCpu Pointer to the VMCPU.
3260 * @param GCPtrPage Page to invalidate.
3261 */
3262PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3263{
3264#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3265 || PGM_GST_TYPE == PGM_TYPE_REAL \
3266 || PGM_GST_TYPE == PGM_TYPE_PROT \
3267 || PGM_GST_TYPE == PGM_TYPE_PAE \
3268 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3269 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3270 && PGM_SHW_TYPE != PGM_TYPE_EPT
3271
3272 /*
3273 * Check that all Guest levels thru the PDE are present, getting the
3274 * PD and PDE in the processes.
3275 */
3276 int rc = VINF_SUCCESS;
3277# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3278# if PGM_GST_TYPE == PGM_TYPE_32BIT
3279 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3280 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3281# elif PGM_GST_TYPE == PGM_TYPE_PAE
3282 unsigned iPDSrc;
3283 X86PDPE PdpeSrc;
3284 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3285 if (!pPDSrc)
3286 return VINF_SUCCESS; /* not present */
3287# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3288 unsigned iPDSrc;
3289 PX86PML4E pPml4eSrc;
3290 X86PDPE PdpeSrc;
3291 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3292 if (!pPDSrc)
3293 return VINF_SUCCESS; /* not present */
3294# endif
3295 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3296# else
3297 PGSTPD pPDSrc = NULL;
3298 const unsigned iPDSrc = 0;
3299 GSTPDE PdeSrc;
3300
3301 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3302 PdeSrc.n.u1Present = 1;
3303 PdeSrc.n.u1Write = 1;
3304 PdeSrc.n.u1Accessed = 1;
3305 PdeSrc.n.u1User = 1;
3306# endif
3307
3308 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3309 {
3310 PVM pVM = pVCpu->CTX_SUFF(pVM);
3311 pgmLock(pVM);
3312
3313# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3314 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3315# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3316 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3317 PX86PDPAE pPDDst;
3318 X86PDEPAE PdeDst;
3319# if PGM_GST_TYPE != PGM_TYPE_PAE
3320 X86PDPE PdpeSrc;
3321
3322 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3323 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3324# endif
3325 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3326 if (rc != VINF_SUCCESS)
3327 {
3328 pgmUnlock(pVM);
3329 AssertRC(rc);
3330 return rc;
3331 }
3332 Assert(pPDDst);
3333 PdeDst = pPDDst->a[iPDDst];
3334
3335# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3336 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3337 PX86PDPAE pPDDst;
3338 X86PDEPAE PdeDst;
3339
3340# if PGM_GST_TYPE == PGM_TYPE_PROT
3341 /* AMD-V nested paging */
3342 X86PML4E Pml4eSrc;
3343 X86PDPE PdpeSrc;
3344 PX86PML4E pPml4eSrc = &Pml4eSrc;
3345
3346 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3347 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3348 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3349# endif
3350
3351 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3352 if (rc != VINF_SUCCESS)
3353 {
3354 pgmUnlock(pVM);
3355 AssertRC(rc);
3356 return rc;
3357 }
3358 Assert(pPDDst);
3359 PdeDst = pPDDst->a[iPDDst];
3360# endif
3361 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3362 {
3363 if (!PdeDst.n.u1Present)
3364 {
3365 /** @todo r=bird: This guy will set the A bit on the PDE,
3366 * probably harmless. */
3367 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3368 }
3369 else
3370 {
3371 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3372 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3373 * makes no sense to prefetch more than one page.
3374 */
3375 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3376 if (RT_SUCCESS(rc))
3377 rc = VINF_SUCCESS;
3378 }
3379 }
3380 pgmUnlock(pVM);
3381 }
3382 return rc;
3383
3384#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3385 NOREF(pVCpu); NOREF(GCPtrPage);
3386 return VINF_SUCCESS; /* ignore */
3387#else
3388 AssertCompile(0);
3389#endif
3390}
3391
3392
3393
3394
3395/**
3396 * Syncs a page during a PGMVerifyAccess() call.
3397 *
3398 * @returns VBox status code (informational included).
3399 * @param pVCpu Pointer to the VMCPU.
3400 * @param GCPtrPage The address of the page to sync.
3401 * @param fPage The effective guest page flags.
3402 * @param uErr The trap error code.
3403 * @remarks This will normally never be called on invalid guest page
3404 * translation entries.
3405 */
3406PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3407{
3408 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3409
3410 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3411
3412 Assert(!pVM->pgm.s.fNestedPaging);
3413#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3414 || PGM_GST_TYPE == PGM_TYPE_REAL \
3415 || PGM_GST_TYPE == PGM_TYPE_PROT \
3416 || PGM_GST_TYPE == PGM_TYPE_PAE \
3417 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3418 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3419 && PGM_SHW_TYPE != PGM_TYPE_EPT
3420
3421# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3422 if (!(fPage & X86_PTE_US))
3423 {
3424 /*
3425 * Mark this page as safe.
3426 */
3427 /** @todo not correct for pages that contain both code and data!! */
3428 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3429 CSAMMarkPage(pVM, GCPtrPage, true);
3430 }
3431# endif
3432
3433 /*
3434 * Get guest PD and index.
3435 */
3436 /** @todo Performance: We've done all this a jiffy ago in the
3437 * PGMGstGetPage call. */
3438# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3439# if PGM_GST_TYPE == PGM_TYPE_32BIT
3440 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3441 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3442
3443# elif PGM_GST_TYPE == PGM_TYPE_PAE
3444 unsigned iPDSrc = 0;
3445 X86PDPE PdpeSrc;
3446 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3447 if (RT_UNLIKELY(!pPDSrc))
3448 {
3449 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3450 return VINF_EM_RAW_GUEST_TRAP;
3451 }
3452
3453# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3454 unsigned iPDSrc = 0; /* shut up gcc */
3455 PX86PML4E pPml4eSrc = NULL; /* ditto */
3456 X86PDPE PdpeSrc;
3457 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3458 if (RT_UNLIKELY(!pPDSrc))
3459 {
3460 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3461 return VINF_EM_RAW_GUEST_TRAP;
3462 }
3463# endif
3464
3465# else /* !PGM_WITH_PAGING */
3466 PGSTPD pPDSrc = NULL;
3467 const unsigned iPDSrc = 0;
3468# endif /* !PGM_WITH_PAGING */
3469 int rc = VINF_SUCCESS;
3470
3471 pgmLock(pVM);
3472
3473 /*
3474 * First check if the shadow pd is present.
3475 */
3476# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3477 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3478
3479# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3480 PX86PDEPAE pPdeDst;
3481 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3482 PX86PDPAE pPDDst;
3483# if PGM_GST_TYPE != PGM_TYPE_PAE
3484 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3485 X86PDPE PdpeSrc;
3486 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3487# endif
3488 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3489 if (rc != VINF_SUCCESS)
3490 {
3491 pgmUnlock(pVM);
3492 AssertRC(rc);
3493 return rc;
3494 }
3495 Assert(pPDDst);
3496 pPdeDst = &pPDDst->a[iPDDst];
3497
3498# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3499 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3500 PX86PDPAE pPDDst;
3501 PX86PDEPAE pPdeDst;
3502
3503# if PGM_GST_TYPE == PGM_TYPE_PROT
3504 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3505 X86PML4E Pml4eSrc;
3506 X86PDPE PdpeSrc;
3507 PX86PML4E pPml4eSrc = &Pml4eSrc;
3508 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3509 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3510# endif
3511
3512 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3513 if (rc != VINF_SUCCESS)
3514 {
3515 pgmUnlock(pVM);
3516 AssertRC(rc);
3517 return rc;
3518 }
3519 Assert(pPDDst);
3520 pPdeDst = &pPDDst->a[iPDDst];
3521# endif
3522
3523 if (!pPdeDst->n.u1Present)
3524 {
3525 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3526 if (rc != VINF_SUCCESS)
3527 {
3528 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3529 pgmUnlock(pVM);
3530 AssertRC(rc);
3531 return rc;
3532 }
3533 }
3534
3535# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3536 /* Check for dirty bit fault */
3537 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3538 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3539 Log(("PGMVerifyAccess: success (dirty)\n"));
3540 else
3541# endif
3542 {
3543# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3544 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3545# else
3546 GSTPDE PdeSrc;
3547 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3548 PdeSrc.n.u1Present = 1;
3549 PdeSrc.n.u1Write = 1;
3550 PdeSrc.n.u1Accessed = 1;
3551 PdeSrc.n.u1User = 1;
3552# endif
3553
3554 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3555 if (uErr & X86_TRAP_PF_US)
3556 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3557 else /* supervisor */
3558 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3559
3560 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3561 if (RT_SUCCESS(rc))
3562 {
3563 /* Page was successfully synced */
3564 Log2(("PGMVerifyAccess: success (sync)\n"));
3565 rc = VINF_SUCCESS;
3566 }
3567 else
3568 {
3569 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3570 rc = VINF_EM_RAW_GUEST_TRAP;
3571 }
3572 }
3573 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3574 pgmUnlock(pVM);
3575 return rc;
3576
3577#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3578
3579 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3580 return VERR_PGM_NOT_USED_IN_MODE;
3581#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3582}
3583
3584
3585/**
3586 * Syncs the paging hierarchy starting at CR3.
3587 *
3588 * @returns VBox status code, no specials.
3589 * @param pVCpu Pointer to the VMCPU.
3590 * @param cr0 Guest context CR0 register.
3591 * @param cr3 Guest context CR3 register. Not subjected to the A20
3592 * mask.
3593 * @param cr4 Guest context CR4 register.
3594 * @param fGlobal Including global page directories or not
3595 */
3596PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3597{
3598 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3599 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3600
3601 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3602
3603#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3604
3605 pgmLock(pVM);
3606
3607# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3608 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3609 if (pPool->cDirtyPages)
3610 pgmPoolResetDirtyPages(pVM);
3611# endif
3612
3613 /*
3614 * Update page access handlers.
3615 * The virtual are always flushed, while the physical are only on demand.
3616 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3617 * have to look into that later because it will have a bad influence on the performance.
3618 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3619 * bird: Yes, but that won't work for aliases.
3620 */
3621 /** @todo this MUST go away. See @bugref{1557}. */
3622 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3623 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3624 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3625 pgmUnlock(pVM);
3626#endif /* !NESTED && !EPT */
3627
3628#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3629 /*
3630 * Nested / EPT - almost no work.
3631 */
3632 Assert(!pgmMapAreMappingsEnabled(pVM));
3633 return VINF_SUCCESS;
3634
3635#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3636 /*
3637 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3638 * out the shadow parts when the guest modifies its tables.
3639 */
3640 Assert(!pgmMapAreMappingsEnabled(pVM));
3641 return VINF_SUCCESS;
3642
3643#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3644
3645# ifndef PGM_WITHOUT_MAPPINGS
3646 /*
3647 * Check for and resolve conflicts with our guest mappings if they
3648 * are enabled and not fixed.
3649 */
3650 if (pgmMapAreMappingsFloating(pVM))
3651 {
3652 int rc = pgmMapResolveConflicts(pVM);
3653 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3654 if (rc == VINF_PGM_SYNC_CR3)
3655 {
3656 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3657 return VINF_PGM_SYNC_CR3;
3658 }
3659 }
3660# else
3661 Assert(!pgmMapAreMappingsEnabled(pVM));
3662# endif
3663 return VINF_SUCCESS;
3664#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3665}
3666
3667
3668
3669
3670#ifdef VBOX_STRICT
3671# ifdef IN_RC
3672# undef AssertMsgFailed
3673# define AssertMsgFailed Log
3674# endif
3675
3676/**
3677 * Checks that the shadow page table is in sync with the guest one.
3678 *
3679 * @returns The number of errors.
3680 * @param pVM The virtual machine.
3681 * @param pVCpu Pointer to the VMCPU.
3682 * @param cr3 Guest context CR3 register.
3683 * @param cr4 Guest context CR4 register.
3684 * @param GCPtr Where to start. Defaults to 0.
3685 * @param cb How much to check. Defaults to everything.
3686 */
3687PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3688{
3689 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3690#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3691 return 0;
3692#else
3693 unsigned cErrors = 0;
3694 PVM pVM = pVCpu->CTX_SUFF(pVM);
3695 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3696
3697# if PGM_GST_TYPE == PGM_TYPE_PAE
3698 /** @todo currently broken; crashes below somewhere */
3699 AssertFailed();
3700# endif
3701
3702# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3703 || PGM_GST_TYPE == PGM_TYPE_PAE \
3704 || PGM_GST_TYPE == PGM_TYPE_AMD64
3705
3706 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3707 PPGMCPU pPGM = &pVCpu->pgm.s;
3708 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3709 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3710# ifndef IN_RING0
3711 RTHCPHYS HCPhys; /* general usage. */
3712# endif
3713 int rc;
3714
3715 /*
3716 * Check that the Guest CR3 and all its mappings are correct.
3717 */
3718 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3719 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3720 false);
3721# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3722# if PGM_GST_TYPE == PGM_TYPE_32BIT
3723 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3724# else
3725 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3726# endif
3727 AssertRCReturn(rc, 1);
3728 HCPhys = NIL_RTHCPHYS;
3729 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3730 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3731# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3732 pgmGstGet32bitPDPtr(pVCpu);
3733 RTGCPHYS GCPhys;
3734 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3735 AssertRCReturn(rc, 1);
3736 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3737# endif
3738# endif /* !IN_RING0 */
3739
3740 /*
3741 * Get and check the Shadow CR3.
3742 */
3743# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3744 unsigned cPDEs = X86_PG_ENTRIES;
3745 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3746# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3747# if PGM_GST_TYPE == PGM_TYPE_32BIT
3748 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3749# else
3750 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3751# endif
3752 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3753# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3754 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3755 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3756# endif
3757 if (cb != ~(RTGCPTR)0)
3758 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3759
3760/** @todo call the other two PGMAssert*() functions. */
3761
3762# if PGM_GST_TYPE == PGM_TYPE_AMD64
3763 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3764
3765 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3766 {
3767 PPGMPOOLPAGE pShwPdpt = NULL;
3768 PX86PML4E pPml4eSrc;
3769 PX86PML4E pPml4eDst;
3770 RTGCPHYS GCPhysPdptSrc;
3771
3772 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3773 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3774
3775 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3776 if (!pPml4eDst->n.u1Present)
3777 {
3778 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3779 continue;
3780 }
3781
3782 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3783 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3784
3785 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3786 {
3787 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3788 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3789 cErrors++;
3790 continue;
3791 }
3792
3793 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3794 {
3795 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3796 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3797 cErrors++;
3798 continue;
3799 }
3800
3801 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3802 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3803 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3804 {
3805 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3806 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3807 cErrors++;
3808 continue;
3809 }
3810# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3811 {
3812# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3813
3814# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3815 /*
3816 * Check the PDPTEs too.
3817 */
3818 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3819
3820 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3821 {
3822 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3823 PPGMPOOLPAGE pShwPde = NULL;
3824 PX86PDPE pPdpeDst;
3825 RTGCPHYS GCPhysPdeSrc;
3826 X86PDPE PdpeSrc;
3827 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3828# if PGM_GST_TYPE == PGM_TYPE_PAE
3829 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3830 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3831# else
3832 PX86PML4E pPml4eSrcIgn;
3833 PX86PDPT pPdptDst;
3834 PX86PDPAE pPDDst;
3835 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3836
3837 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3838 if (rc != VINF_SUCCESS)
3839 {
3840 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3841 GCPtr += 512 * _2M;
3842 continue; /* next PDPTE */
3843 }
3844 Assert(pPDDst);
3845# endif
3846 Assert(iPDSrc == 0);
3847
3848 pPdpeDst = &pPdptDst->a[iPdpt];
3849
3850 if (!pPdpeDst->n.u1Present)
3851 {
3852 GCPtr += 512 * _2M;
3853 continue; /* next PDPTE */
3854 }
3855
3856 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3857 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3858
3859 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3860 {
3861 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3862 GCPtr += 512 * _2M;
3863 cErrors++;
3864 continue;
3865 }
3866
3867 if (GCPhysPdeSrc != pShwPde->GCPhys)
3868 {
3869# if PGM_GST_TYPE == PGM_TYPE_AMD64
3870 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3871# else
3872 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3873# endif
3874 GCPtr += 512 * _2M;
3875 cErrors++;
3876 continue;
3877 }
3878
3879# if PGM_GST_TYPE == PGM_TYPE_AMD64
3880 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3881 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3882 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3883 {
3884 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3885 GCPtr += 512 * _2M;
3886 cErrors++;
3887 continue;
3888 }
3889# endif
3890
3891# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3892 {
3893# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3894# if PGM_GST_TYPE == PGM_TYPE_32BIT
3895 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3896# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3897 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3898# endif
3899# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3900 /*
3901 * Iterate the shadow page directory.
3902 */
3903 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3904 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3905
3906 for (;
3907 iPDDst < cPDEs;
3908 iPDDst++, GCPtr += cIncrement)
3909 {
3910# if PGM_SHW_TYPE == PGM_TYPE_PAE
3911 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3912# else
3913 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3914# endif
3915 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3916 {
3917 Assert(pgmMapAreMappingsEnabled(pVM));
3918 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3919 {
3920 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3921 cErrors++;
3922 continue;
3923 }
3924 }
3925 else if ( (PdeDst.u & X86_PDE_P)
3926 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3927 )
3928 {
3929 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3930 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3931 if (!pPoolPage)
3932 {
3933 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3934 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3935 cErrors++;
3936 continue;
3937 }
3938 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3939
3940 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3941 {
3942 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3943 GCPtr, (uint64_t)PdeDst.u));
3944 cErrors++;
3945 }
3946
3947 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3948 {
3949 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3950 GCPtr, (uint64_t)PdeDst.u));
3951 cErrors++;
3952 }
3953
3954 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3955 if (!PdeSrc.n.u1Present)
3956 {
3957 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3958 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3959 cErrors++;
3960 continue;
3961 }
3962
3963 if ( !PdeSrc.b.u1Size
3964 || !fBigPagesSupported)
3965 {
3966 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3967# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3968 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
3969# endif
3970 }
3971 else
3972 {
3973# if PGM_GST_TYPE == PGM_TYPE_32BIT
3974 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3975 {
3976 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3977 GCPtr, (uint64_t)PdeSrc.u));
3978 cErrors++;
3979 continue;
3980 }
3981# endif
3982 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3983# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3984 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
3985# endif
3986 }
3987
3988 if ( pPoolPage->enmKind
3989 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3990 {
3991 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3992 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3993 cErrors++;
3994 }
3995
3996 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
3997 if (!pPhysPage)
3998 {
3999 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4000 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4001 cErrors++;
4002 continue;
4003 }
4004
4005 if (GCPhysGst != pPoolPage->GCPhys)
4006 {
4007 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4008 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4009 cErrors++;
4010 continue;
4011 }
4012
4013 if ( !PdeSrc.b.u1Size
4014 || !fBigPagesSupported)
4015 {
4016 /*
4017 * Page Table.
4018 */
4019 const GSTPT *pPTSrc;
4020 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4021 &pPTSrc);
4022 if (RT_FAILURE(rc))
4023 {
4024 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4025 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4026 cErrors++;
4027 continue;
4028 }
4029 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4030 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4031 {
4032 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4033 // (This problem will go away when/if we shadow multiple CR3s.)
4034 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4035 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4036 cErrors++;
4037 continue;
4038 }
4039 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4040 {
4041 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4042 GCPtr, (uint64_t)PdeDst.u));
4043 cErrors++;
4044 continue;
4045 }
4046
4047 /* iterate the page table. */
4048# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4049 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4050 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4051# else
4052 const unsigned offPTSrc = 0;
4053# endif
4054 for (unsigned iPT = 0, off = 0;
4055 iPT < RT_ELEMENTS(pPTDst->a);
4056 iPT++, off += PAGE_SIZE)
4057 {
4058 const SHWPTE PteDst = pPTDst->a[iPT];
4059
4060 /* skip not-present and dirty tracked entries. */
4061 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4062 continue;
4063 Assert(SHW_PTE_IS_P(PteDst));
4064
4065 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4066 if (!PteSrc.n.u1Present)
4067 {
4068# ifdef IN_RING3
4069 PGMAssertHandlerAndFlagsInSync(pVM);
4070 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4071 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4072 0, 0, UINT64_MAX, 99, NULL);
4073# endif
4074 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4075 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4076 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4077 cErrors++;
4078 continue;
4079 }
4080
4081 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4082# if 1 /** @todo sync accessed bit properly... */
4083 fIgnoreFlags |= X86_PTE_A;
4084# endif
4085
4086 /* match the physical addresses */
4087 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4088 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4089
4090# ifdef IN_RING3
4091 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4092 if (RT_FAILURE(rc))
4093 {
4094 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4095 {
4096 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4097 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4098 cErrors++;
4099 continue;
4100 }
4101 }
4102 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4103 {
4104 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4105 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4106 cErrors++;
4107 continue;
4108 }
4109# endif
4110
4111 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4112 if (!pPhysPage)
4113 {
4114# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4115 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4116 {
4117 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4118 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4119 cErrors++;
4120 continue;
4121 }
4122# endif
4123 if (SHW_PTE_IS_RW(PteDst))
4124 {
4125 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4126 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4127 cErrors++;
4128 }
4129 fIgnoreFlags |= X86_PTE_RW;
4130 }
4131 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4132 {
4133 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4134 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4135 cErrors++;
4136 continue;
4137 }
4138
4139 /* flags */
4140 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4141 {
4142 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4143 {
4144 if (SHW_PTE_IS_RW(PteDst))
4145 {
4146 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4147 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4148 cErrors++;
4149 continue;
4150 }
4151 fIgnoreFlags |= X86_PTE_RW;
4152 }
4153 else
4154 {
4155 if ( SHW_PTE_IS_P(PteDst)
4156# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4157 && !PGM_PAGE_IS_MMIO(pPhysPage)
4158# endif
4159 )
4160 {
4161 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4162 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4163 cErrors++;
4164 continue;
4165 }
4166 fIgnoreFlags |= X86_PTE_P;
4167 }
4168 }
4169 else
4170 {
4171 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4172 {
4173 if (SHW_PTE_IS_RW(PteDst))
4174 {
4175 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4176 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4177 cErrors++;
4178 continue;
4179 }
4180 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4181 {
4182 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4183 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4184 cErrors++;
4185 continue;
4186 }
4187 if (SHW_PTE_IS_D(PteDst))
4188 {
4189 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4190 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4191 cErrors++;
4192 }
4193# if 0 /** @todo sync access bit properly... */
4194 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4195 {
4196 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4197 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4198 cErrors++;
4199 }
4200 fIgnoreFlags |= X86_PTE_RW;
4201# else
4202 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4203# endif
4204 }
4205 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4206 {
4207 /* access bit emulation (not implemented). */
4208 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4209 {
4210 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4211 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4212 cErrors++;
4213 continue;
4214 }
4215 if (!SHW_PTE_IS_A(PteDst))
4216 {
4217 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4218 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4219 cErrors++;
4220 }
4221 fIgnoreFlags |= X86_PTE_P;
4222 }
4223# ifdef DEBUG_sandervl
4224 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4225# endif
4226 }
4227
4228 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4229 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4230 )
4231 {
4232 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4233 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4234 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4235 cErrors++;
4236 continue;
4237 }
4238 } /* foreach PTE */
4239 }
4240 else
4241 {
4242 /*
4243 * Big Page.
4244 */
4245 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4246 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4247 {
4248 if (PdeDst.n.u1Write)
4249 {
4250 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4251 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4252 cErrors++;
4253 continue;
4254 }
4255 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4256 {
4257 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4258 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4259 cErrors++;
4260 continue;
4261 }
4262# if 0 /** @todo sync access bit properly... */
4263 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4264 {
4265 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4266 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4267 cErrors++;
4268 }
4269 fIgnoreFlags |= X86_PTE_RW;
4270# else
4271 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4272# endif
4273 }
4274 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4275 {
4276 /* access bit emulation (not implemented). */
4277 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4278 {
4279 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4280 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4281 cErrors++;
4282 continue;
4283 }
4284 if (!PdeDst.n.u1Accessed)
4285 {
4286 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4287 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4288 cErrors++;
4289 }
4290 fIgnoreFlags |= X86_PTE_P;
4291 }
4292
4293 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4294 {
4295 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4296 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4297 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4298 cErrors++;
4299 }
4300
4301 /* iterate the page table. */
4302 for (unsigned iPT = 0, off = 0;
4303 iPT < RT_ELEMENTS(pPTDst->a);
4304 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4305 {
4306 const SHWPTE PteDst = pPTDst->a[iPT];
4307
4308 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4309 {
4310 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4311 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4312 cErrors++;
4313 }
4314
4315 /* skip not-present entries. */
4316 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4317 continue;
4318
4319 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4320
4321 /* match the physical addresses */
4322 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4323
4324# ifdef IN_RING3
4325 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4326 if (RT_FAILURE(rc))
4327 {
4328 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4329 {
4330 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4331 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4332 cErrors++;
4333 }
4334 }
4335 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4336 {
4337 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4338 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4339 cErrors++;
4340 continue;
4341 }
4342# endif
4343 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4344 if (!pPhysPage)
4345 {
4346# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4347 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4348 {
4349 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4350 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4351 cErrors++;
4352 continue;
4353 }
4354# endif
4355 if (SHW_PTE_IS_RW(PteDst))
4356 {
4357 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4358 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4359 cErrors++;
4360 }
4361 fIgnoreFlags |= X86_PTE_RW;
4362 }
4363 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4364 {
4365 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4366 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4367 cErrors++;
4368 continue;
4369 }
4370
4371 /* flags */
4372 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4373 {
4374 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4375 {
4376 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4377 {
4378 if (SHW_PTE_IS_RW(PteDst))
4379 {
4380 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4381 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4382 cErrors++;
4383 continue;
4384 }
4385 fIgnoreFlags |= X86_PTE_RW;
4386 }
4387 }
4388 else
4389 {
4390 if ( SHW_PTE_IS_P(PteDst)
4391# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4392 && !PGM_PAGE_IS_MMIO(pPhysPage)
4393# endif
4394 )
4395 {
4396 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4397 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4398 cErrors++;
4399 continue;
4400 }
4401 fIgnoreFlags |= X86_PTE_P;
4402 }
4403 }
4404
4405 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4406 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4407 )
4408 {
4409 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4410 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4411 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4412 cErrors++;
4413 continue;
4414 }
4415 } /* for each PTE */
4416 }
4417 }
4418 /* not present */
4419
4420 } /* for each PDE */
4421
4422 } /* for each PDPTE */
4423
4424 } /* for each PML4E */
4425
4426# ifdef DEBUG
4427 if (cErrors)
4428 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4429# endif
4430# endif /* GST is in {32BIT, PAE, AMD64} */
4431 return cErrors;
4432#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4433}
4434#endif /* VBOX_STRICT */
4435
4436
4437/**
4438 * Sets up the CR3 for shadow paging
4439 *
4440 * @returns Strict VBox status code.
4441 * @retval VINF_SUCCESS.
4442 *
4443 * @param pVCpu Pointer to the VMCPU.
4444 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4445 * mask already applied.)
4446 */
4447PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4448{
4449 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4450
4451 /* Update guest paging info. */
4452#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4453 || PGM_GST_TYPE == PGM_TYPE_PAE \
4454 || PGM_GST_TYPE == PGM_TYPE_AMD64
4455
4456 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4457 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4458
4459 /*
4460 * Map the page CR3 points at.
4461 */
4462 RTHCPTR HCPtrGuestCR3;
4463 RTHCPHYS HCPhysGuestCR3;
4464 pgmLock(pVM);
4465 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4466 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4467 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4468 /** @todo this needs some reworking wrt. locking? */
4469# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4470 HCPtrGuestCR3 = NIL_RTHCPTR;
4471 int rc = VINF_SUCCESS;
4472# else
4473 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4474# endif
4475 pgmUnlock(pVM);
4476 if (RT_SUCCESS(rc))
4477 {
4478 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4479 if (RT_SUCCESS(rc))
4480 {
4481# ifdef IN_RC
4482 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4483# endif
4484# if PGM_GST_TYPE == PGM_TYPE_32BIT
4485 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4486# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4487 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4488# endif
4489 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4490
4491# elif PGM_GST_TYPE == PGM_TYPE_PAE
4492 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4493 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4494# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4495 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4496# endif
4497 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4498 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4499
4500 /*
4501 * Map the 4 PDs too.
4502 */
4503 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4504 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4505 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4506 {
4507 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4508 if (pGuestPDPT->a[i].n.u1Present)
4509 {
4510 RTHCPTR HCPtr;
4511 RTHCPHYS HCPhys;
4512 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4513 pgmLock(pVM);
4514 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4515 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4516 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4517# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4518 HCPtr = NIL_RTHCPTR;
4519 int rc2 = VINF_SUCCESS;
4520# else
4521 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4522# endif
4523 pgmUnlock(pVM);
4524 if (RT_SUCCESS(rc2))
4525 {
4526 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4527 AssertRCReturn(rc, rc);
4528
4529 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4530# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4531 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4532# endif
4533 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4534 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4535# ifdef IN_RC
4536 PGM_INVL_PG(pVCpu, GCPtr);
4537# endif
4538 continue;
4539 }
4540 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4541 }
4542
4543 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4544# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4545 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4546# endif
4547 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4548 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4549# ifdef IN_RC
4550 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4551# endif
4552 }
4553
4554# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4555 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4556# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4557 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4558# endif
4559# endif
4560 }
4561 else
4562 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4563 }
4564 else
4565 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4566
4567#else /* prot/real stub */
4568 int rc = VINF_SUCCESS;
4569#endif
4570
4571 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4572# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4573 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4574 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4575 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4576 && PGM_GST_TYPE != PGM_TYPE_PROT))
4577
4578 Assert(!pVM->pgm.s.fNestedPaging);
4579 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4580
4581 /*
4582 * Update the shadow root page as well since that's not fixed.
4583 */
4584 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4585 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4586 PPGMPOOLPAGE pNewShwPageCR3;
4587
4588 pgmLock(pVM);
4589
4590# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4591 if (pPool->cDirtyPages)
4592 pgmPoolResetDirtyPages(pVM);
4593# endif
4594
4595 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4596 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4597 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4598 &pNewShwPageCR3);
4599 AssertFatalRC(rc);
4600 rc = VINF_SUCCESS;
4601
4602# ifdef IN_RC
4603 /*
4604 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4605 * state will be inconsistent! Flush important things now while
4606 * we still can and then make sure there are no ring-3 calls.
4607 */
4608# ifdef VBOX_WITH_REM
4609 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4610# endif
4611 VMMRZCallRing3Disable(pVCpu);
4612# endif
4613
4614 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4615# ifdef IN_RING0
4616 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4617 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4618# elif defined(IN_RC)
4619 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4620 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4621# else
4622 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4623 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4624# endif
4625
4626# ifndef PGM_WITHOUT_MAPPINGS
4627 /*
4628 * Apply all hypervisor mappings to the new CR3.
4629 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4630 * make sure we check for conflicts in the new CR3 root.
4631 */
4632# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4633 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4634# endif
4635 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4636 AssertRCReturn(rc, rc);
4637# endif
4638
4639 /* Set the current hypervisor CR3. */
4640 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4641 SELMShadowCR3Changed(pVM, pVCpu);
4642
4643# ifdef IN_RC
4644 /* NOTE: The state is consistent again. */
4645 VMMRZCallRing3Enable(pVCpu);
4646# endif
4647
4648 /* Clean up the old CR3 root. */
4649 if ( pOldShwPageCR3
4650 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4651 {
4652 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4653# ifndef PGM_WITHOUT_MAPPINGS
4654 /* Remove the hypervisor mappings from the shadow page table. */
4655 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4656# endif
4657 /* Mark the page as unlocked; allow flushing again. */
4658 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4659
4660 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4661 }
4662 pgmUnlock(pVM);
4663# else
4664 NOREF(GCPhysCR3);
4665# endif
4666
4667 return rc;
4668}
4669
4670/**
4671 * Unmaps the shadow CR3.
4672 *
4673 * @returns VBox status, no specials.
4674 * @param pVCpu Pointer to the VMCPU.
4675 */
4676PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4677{
4678 LogFlow(("UnmapCR3\n"));
4679
4680 int rc = VINF_SUCCESS;
4681 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4682
4683 /*
4684 * Update guest paging info.
4685 */
4686#if PGM_GST_TYPE == PGM_TYPE_32BIT
4687 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4688# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4689 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4690# endif
4691 pVCpu->pgm.s.pGst32BitPdRC = 0;
4692
4693#elif PGM_GST_TYPE == PGM_TYPE_PAE
4694 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4695# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4696 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4697# endif
4698 pVCpu->pgm.s.pGstPaePdptRC = 0;
4699 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4700 {
4701 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4702# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4703 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4704# endif
4705 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4706 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4707 }
4708
4709#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4710 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4711# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4712 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4713# endif
4714
4715#else /* prot/real mode stub */
4716 /* nothing to do */
4717#endif
4718
4719#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4720 /*
4721 * Update shadow paging info.
4722 */
4723# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4724 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4725 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4726
4727# if PGM_GST_TYPE != PGM_TYPE_REAL
4728 Assert(!pVM->pgm.s.fNestedPaging);
4729# endif
4730
4731 pgmLock(pVM);
4732
4733# ifndef PGM_WITHOUT_MAPPINGS
4734 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4735 /* Remove the hypervisor mappings from the shadow page table. */
4736 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4737# endif
4738
4739 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4740 {
4741 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4742
4743# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4744 if (pPool->cDirtyPages)
4745 pgmPoolResetDirtyPages(pVM);
4746# endif
4747
4748 /* Mark the page as unlocked; allow flushing again. */
4749 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4750
4751 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4752 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4753 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4754 pVCpu->pgm.s.pShwPageCR3RC = 0;
4755 }
4756 pgmUnlock(pVM);
4757# endif
4758#endif /* !IN_RC*/
4759
4760 return rc;
4761}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette