VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 66650

Last change on this file since 66650 was 66649, checked in by vboxsync, 8 years ago

Backed the PGMAllBoth.h and IEMR3.cpp parts of r111975 since these are unrelated changes and should've been comitted separately.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 212.4 KB
Line 
1/* $Id: PGMAllBth.h 66649 2017-04-22 09:27:06Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2016 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
108 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
109 {
110 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
111 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
113 return VINF_EM_RAW_EMULATE_INSTR;
114 }
115# endif
116
117 /*
118 * Calc the error code for the guest trap.
119 */
120 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
121 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
122 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
123 if ( pGstWalk->Core.fRsvdError
124 || pGstWalk->Core.fBadPhysAddr)
125 {
126 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
127 Assert(!pGstWalk->Core.fNotPresent);
128 }
129 else if (!pGstWalk->Core.fNotPresent)
130 uNewErr |= X86_TRAP_PF_P;
131 TRPMSetErrorCode(pVCpu, uNewErr);
132
133 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
134 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
135 return VINF_EM_RAW_GUEST_TRAP;
136}
137# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
138
139
140/**
141 * Deal with a guest page fault.
142 *
143 * The caller has taken the PGM lock.
144 *
145 * @returns Strict VBox status code.
146 *
147 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
148 * @param uErr The error code.
149 * @param pRegFrame The register frame.
150 * @param pvFault The fault address.
151 * @param pPage The guest page at @a pvFault.
152 * @param pGstWalk The guest page table walk result.
153 * @param pfLockTaken PGM lock taken here or not (out). This is true
154 * when we're called.
155 */
156static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
157 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
158# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
159 , PGSTPTWALK pGstWalk
160# endif
161 )
162{
163# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
164 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
165#endif
166 PVM pVM = pVCpu->CTX_SUFF(pVM);
167 VBOXSTRICTRC rcStrict;
168
169 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
170 {
171 /*
172 * Physical page access handler.
173 */
174# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
175 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
176# else
177 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
178# endif
179 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
180 if (pCur)
181 {
182 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
183
184# ifdef PGM_SYNC_N_PAGES
185 /*
186 * If the region is write protected and we got a page not present fault, then sync
187 * the pages. If the fault was caused by a read, then restart the instruction.
188 * In case of write access continue to the GC write handler.
189 *
190 * ASSUMES that there is only one handler per page or that they have similar write properties.
191 */
192 if ( !(uErr & X86_TRAP_PF_P)
193 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
194 {
195# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
196 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
197# else
198 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
199# endif
200 if ( RT_FAILURE(rcStrict)
201 || !(uErr & X86_TRAP_PF_RW)
202 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
203 {
204 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
205 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
206 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
207 return rcStrict;
208 }
209 }
210# endif
211# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
212 /*
213 * If the access was not thru a #PF(RSVD|...) resync the page.
214 */
215 if ( !(uErr & X86_TRAP_PF_RSVD)
216 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
217# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
218 && pGstWalk->Core.fEffectiveRW
219 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
220# endif
221 )
222 {
223# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
224 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
225# else
226 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
227# endif
228 if ( RT_FAILURE(rcStrict)
229 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
230 {
231 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
232 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
233 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
234 return rcStrict;
235 }
236 }
237# endif
238
239 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
240 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
241 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
242 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
243 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
244 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
245 else
246 {
247 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
248 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
249 }
250
251 if (pCurType->CTX_SUFF(pfnPfHandler))
252 {
253 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
254 void *pvUser = pCur->CTX_SUFF(pvUser);
255
256 STAM_PROFILE_START(&pCur->Stat, h);
257 if (pCur->hType != pPool->hAccessHandlerType)
258 {
259 pgmUnlock(pVM);
260 *pfLockTaken = false;
261 }
262
263 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
264
265# ifdef VBOX_WITH_STATISTICS
266 pgmLock(pVM);
267 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
268 if (pCur)
269 STAM_PROFILE_STOP(&pCur->Stat, h);
270 pgmUnlock(pVM);
271# endif
272 }
273 else
274 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
275
276 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
277 return rcStrict;
278 }
279 }
280# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
281 else
282 {
283# ifdef PGM_SYNC_N_PAGES
284 /*
285 * If the region is write protected and we got a page not present fault, then sync
286 * the pages. If the fault was caused by a read, then restart the instruction.
287 * In case of write access continue to the GC write handler.
288 */
289 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
290 && !(uErr & X86_TRAP_PF_P))
291 {
292 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
293 if ( RT_FAILURE(rcStrict)
294 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
295 || !(uErr & X86_TRAP_PF_RW))
296 {
297 AssertRC(rcStrict);
298 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
299 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
300 return rcStrict;
301 }
302 }
303# endif
304 /*
305 * Ok, it's an virtual page access handler.
306 *
307 * Since it's faster to search by address, we'll do that first
308 * and then retry by GCPhys if that fails.
309 */
310 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
311 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
312 * out of sync, because the page was changed without us noticing it (not-present -> present
313 * without invlpg or mov cr3, xxx).
314 */
315 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
316 if (pCur)
317 {
318 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
319 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
320 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
321 || !(uErr & X86_TRAP_PF_P)
322 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
323 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n",
324 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind));
325
326 if ( pvFault - pCur->Core.Key < pCur->cb
327 && ( uErr & X86_TRAP_PF_RW
328 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
329 {
330# ifdef IN_RC
331 STAM_PROFILE_START(&pCur->Stat, h);
332 RTGCPTR GCPtrStart = pCur->Core.Key;
333 void *pvUser = pCur->CTX_SUFF(pvUser);
334 pgmUnlock(pVM);
335 *pfLockTaken = false;
336
337 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart,
338 pvFault - GCPtrStart, pvUser);
339
340# ifdef VBOX_WITH_STATISTICS
341 pgmLock(pVM);
342 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
343 if (pCur)
344 STAM_PROFILE_STOP(&pCur->Stat, h);
345 pgmUnlock(pVM);
346# endif
347# else
348 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
349# endif
350 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
351 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
352 return rcStrict;
353 }
354 /* Unhandled part of a monitored page */
355 Log(("Unhandled part of monitored page %RGv\n", pvFault));
356 }
357 else
358 {
359 /* Check by physical address. */
360 unsigned iPage;
361 pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage);
362 if (pCur)
363 {
364 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
365 if ( uErr & X86_TRAP_PF_RW
366 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE )
367 {
368 Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK)
369 == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
370# ifdef IN_RC
371 STAM_PROFILE_START(&pCur->Stat, h);
372 RTGCPTR GCPtrStart = pCur->Core.Key;
373 void *pvUser = pCur->CTX_SUFF(pvUser);
374 pgmUnlock(pVM);
375 *pfLockTaken = false;
376
377 RTGCPTR off = (iPage << PAGE_SHIFT)
378 + (pvFault & PAGE_OFFSET_MASK)
379 - (GCPtrStart & PAGE_OFFSET_MASK);
380 Assert(off < pCur->cb);
381 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser);
382
383# ifdef VBOX_WITH_STATISTICS
384 pgmLock(pVM);
385 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
386 if (pCur)
387 STAM_PROFILE_STOP(&pCur->Stat, h);
388 pgmUnlock(pVM);
389# endif
390# else
391 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
392# endif
393 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
394 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
395 return rcStrict;
396 }
397 }
398 }
399 }
400# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
401
402 /*
403 * There is a handled area of the page, but this fault doesn't belong to it.
404 * We must emulate the instruction.
405 *
406 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
407 * we first check if this was a page-not-present fault for a page with only
408 * write access handlers. Restart the instruction if it wasn't a write access.
409 */
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
411
412 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
413 && !(uErr & X86_TRAP_PF_P))
414 {
415# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
416 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
417# else
418 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
419# endif
420 if ( RT_FAILURE(rcStrict)
421 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
422 || !(uErr & X86_TRAP_PF_RW))
423 {
424 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
426 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
427 return rcStrict;
428 }
429 }
430
431 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
432 * It's writing to an unhandled part of the LDT page several million times.
433 */
434 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
435 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
436 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
437 return rcStrict;
438} /* if any kind of handler */
439
440
441/**
442 * \#PF Handler for raw-mode guest execution.
443 *
444 * @returns VBox status code (appropriate for trap handling and GC return).
445 *
446 * @param pVCpu The cross context virtual CPU structure.
447 * @param uErr The trap error code.
448 * @param pRegFrame Trap register frame.
449 * @param pvFault The fault address.
450 * @param pfLockTaken PGM lock taken here or not (out)
451 */
452PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
453{
454 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
455
456 *pfLockTaken = false;
457
458# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
459 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
460 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
461 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
462 int rc;
463
464# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
465 /*
466 * Walk the guest page translation tables and check if it's a guest fault.
467 */
468 GSTPTWALK GstWalk;
469 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
470 if (RT_FAILURE_NP(rc))
471 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
472
473 /* assert some GstWalk sanity. */
474# if PGM_GST_TYPE == PGM_TYPE_AMD64
475 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
476# endif
477# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
478 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
479# endif
480 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
481 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
482 Assert(GstWalk.Core.fSucceeded);
483
484 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
485 {
486 if ( ( (uErr & X86_TRAP_PF_RW)
487 && !GstWalk.Core.fEffectiveRW
488 && ( (uErr & X86_TRAP_PF_US)
489 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
490 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
491 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
492 )
493 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
494 }
495
496 /*
497 * Set the accessed and dirty flags.
498 */
499# if PGM_GST_TYPE == PGM_TYPE_AMD64
500 GstWalk.Pml4e.u |= X86_PML4E_A;
501 GstWalk.pPml4e->u |= X86_PML4E_A;
502 GstWalk.Pdpe.u |= X86_PDPE_A;
503 GstWalk.pPdpe->u |= X86_PDPE_A;
504# endif
505 if (GstWalk.Core.fBigPage)
506 {
507 Assert(GstWalk.Pde.b.u1Size);
508 if (uErr & X86_TRAP_PF_RW)
509 {
510 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
511 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
512 }
513 else
514 {
515 GstWalk.Pde.u |= X86_PDE4M_A;
516 GstWalk.pPde->u |= X86_PDE4M_A;
517 }
518 }
519 else
520 {
521 Assert(!GstWalk.Pde.b.u1Size);
522 GstWalk.Pde.u |= X86_PDE_A;
523 GstWalk.pPde->u |= X86_PDE_A;
524 if (uErr & X86_TRAP_PF_RW)
525 {
526# ifdef VBOX_WITH_STATISTICS
527 if (!GstWalk.Pte.n.u1Dirty)
528 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
529 else
530 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
531# endif
532 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
533 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
534 }
535 else
536 {
537 GstWalk.Pte.u |= X86_PTE_A;
538 GstWalk.pPte->u |= X86_PTE_A;
539 }
540 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
541 }
542 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
543 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
544# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
545 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
546# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
547
548 /* Take the big lock now. */
549 *pfLockTaken = true;
550 pgmLock(pVM);
551
552# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
553 /*
554 * If it is a reserved bit fault we know that it is an MMIO (access
555 * handler) related fault and can skip some 200 lines of code.
556 */
557 if (uErr & X86_TRAP_PF_RSVD)
558 {
559 Assert(uErr & X86_TRAP_PF_P);
560 PPGMPAGE pPage;
561# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
562 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
563 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
564 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
565 pfLockTaken, &GstWalk));
566 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
567# else
568 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
569 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
570 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
571 pfLockTaken));
572 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
573#endif
574 AssertRC(rc);
575 PGM_INVL_PG(pVCpu, pvFault);
576 return rc; /* Restart with the corrected entry. */
577 }
578# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
579
580 /*
581 * Fetch the guest PDE, PDPE and PML4E.
582 */
583# if PGM_SHW_TYPE == PGM_TYPE_32BIT
584 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
585 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
586
587# elif PGM_SHW_TYPE == PGM_TYPE_PAE
588 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
589 PX86PDPAE pPDDst;
590# if PGM_GST_TYPE == PGM_TYPE_PAE
591 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
592# else
593 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
594# endif
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
596
597# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
598 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
599 PX86PDPAE pPDDst;
600# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
601 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
602 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
603# else
604 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
605# endif
606 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
607
608# elif PGM_SHW_TYPE == PGM_TYPE_EPT
609 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
610 PEPTPD pPDDst;
611 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
612 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
613# endif
614 Assert(pPDDst);
615
616# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
617 /*
618 * Dirty page handling.
619 *
620 * If we successfully correct the write protection fault due to dirty bit
621 * tracking, then return immediately.
622 */
623 if (uErr & X86_TRAP_PF_RW) /* write fault? */
624 {
625 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
626 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
627 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
628 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
629 {
630 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
631 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
632 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
633 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
634 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
635 return VINF_SUCCESS;
636 }
637 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
638 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
639 }
640
641# if 0 /* rarely useful; leave for debugging. */
642 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
643# endif
644# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
645
646 /*
647 * A common case is the not-present error caused by lazy page table syncing.
648 *
649 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
650 * here so we can safely assume that the shadow PT is present when calling
651 * SyncPage later.
652 *
653 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
654 * of mapping conflict and defer to SyncCR3 in R3.
655 * (Again, we do NOT support access handlers for non-present guest pages.)
656 *
657 */
658# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
659 Assert(GstWalk.Pde.n.u1Present);
660# endif
661 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
662 && !pPDDst->a[iPDDst].n.u1Present)
663 {
664 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
665# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
666 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
667 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
668# else
669 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
670 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
671# endif
672 if (RT_SUCCESS(rc))
673 return rc;
674 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
675 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
676 return VINF_PGM_SYNC_CR3;
677 }
678
679# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
680 /*
681 * Check if this address is within any of our mappings.
682 *
683 * This is *very* fast and it's gonna save us a bit of effort below and prevent
684 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
685 * (BTW, it's impossible to have physical access handlers in a mapping.)
686 */
687 if (pgmMapAreMappingsEnabled(pVM))
688 {
689 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
690 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
691 {
692 if (pvFault < pMapping->GCPtr)
693 break;
694 if (pvFault - pMapping->GCPtr < pMapping->cb)
695 {
696 /*
697 * The first thing we check is if we've got an undetected conflict.
698 */
699 if (pgmMapAreMappingsFloating(pVM))
700 {
701 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
702 while (iPT-- > 0)
703 if (GstWalk.pPde[iPT].n.u1Present)
704 {
705 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
706 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
707 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
708 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
709 return VINF_PGM_SYNC_CR3;
710 }
711 }
712
713 /*
714 * Check if the fault address is in a virtual page access handler range.
715 */
716 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers,
717 pvFault);
718 if ( pCur
719 && pvFault - pCur->Core.Key < pCur->cb
720 && uErr & X86_TRAP_PF_RW)
721 {
722 VBOXSTRICTRC rcStrict;
723# ifdef IN_RC
724 STAM_PROFILE_START(&pCur->Stat, h);
725 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
726 void *pvUser = pCur->CTX_SUFF(pvUser);
727 pgmUnlock(pVM);
728 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
729 pvFault - pCur->Core.Key, pvUser);
730 pgmLock(pVM);
731 STAM_PROFILE_STOP(&pCur->Stat, h);
732# else
733 AssertFailed();
734 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
735# endif
736 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
737 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
738 return VBOXSTRICTRC_TODO(rcStrict);
739 }
740
741 /*
742 * Pretend we're not here and let the guest handle the trap.
743 */
744 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
745 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
746 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
747 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
748 return VINF_EM_RAW_GUEST_TRAP;
749 }
750 }
751 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
752# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
753
754 /*
755 * Check if this fault address is flagged for special treatment,
756 * which means we'll have to figure out the physical address and
757 * check flags associated with it.
758 *
759 * ASSUME that we can limit any special access handling to pages
760 * in page tables which the guest believes to be present.
761 */
762# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
763 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
764# else
765 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
766# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
767 PPGMPAGE pPage;
768 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
769 if (RT_FAILURE(rc))
770 {
771 /*
772 * When the guest accesses invalid physical memory (e.g. probing
773 * of RAM or accessing a remapped MMIO range), then we'll fall
774 * back to the recompiler to emulate the instruction.
775 */
776 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
777 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
778 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
779 return VINF_EM_RAW_EMULATE_INSTR;
780 }
781
782 /*
783 * Any handlers for this page?
784 */
785 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
786# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
787 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
788 &GstWalk));
789# else
790 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
791# endif
792
793# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
794 if (uErr & X86_TRAP_PF_P)
795 {
796 /*
797 * The page isn't marked, but it might still be monitored by a virtual page access handler.
798 * (ASSUMES no temporary disabling of virtual handlers.)
799 */
800 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
801 * we should correct both the shadow page table and physical memory flags, and not only check for
802 * accesses within the handler region but for access to pages with virtual handlers. */
803 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
804 if (pCur)
805 {
806 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
807 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
808 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
809 || !(uErr & X86_TRAP_PF_P)
810 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
811 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n",
812 pvFault, GCPhys, pPage, uErr, pCurType->enmKind));
813
814 if ( pvFault - pCur->Core.Key < pCur->cb
815 && ( uErr & X86_TRAP_PF_RW
816 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
817 {
818 VBOXSTRICTRC rcStrict;
819# ifdef IN_RC
820 STAM_PROFILE_START(&pCur->Stat, h);
821 void *pvUser = pCur->CTX_SUFF(pvUser);
822 pgmUnlock(pVM);
823 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
824 pvFault - pCur->Core.Key, pvUser);
825 pgmLock(pVM);
826 STAM_PROFILE_STOP(&pCur->Stat, h);
827# else
828 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
829# endif
830 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
831 return VBOXSTRICTRC_TODO(rcStrict);
832 }
833 }
834 }
835# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
836
837 /*
838 * We are here only if page is present in Guest page tables and
839 * trap is not handled by our handlers.
840 *
841 * Check it for page out-of-sync situation.
842 */
843 if (!(uErr & X86_TRAP_PF_P))
844 {
845 /*
846 * Page is not present in our page tables. Try to sync it!
847 */
848 if (uErr & X86_TRAP_PF_US)
849 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
850 else /* supervisor */
851 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
852
853 if (PGM_PAGE_IS_BALLOONED(pPage))
854 {
855 /* Emulate reads from ballooned pages as they are not present in
856 our shadow page tables. (Required for e.g. Solaris guests; soft
857 ecc, random nr generator.) */
858 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
859 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
860 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
861 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
862 return rc;
863 }
864
865# if defined(LOG_ENABLED) && !defined(IN_RING0)
866 RTGCPHYS GCPhys2;
867 uint64_t fPageGst2;
868 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
869# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
870 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
871 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
872# else
873 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
874 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
875# endif
876# endif /* LOG_ENABLED */
877
878# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
879 if ( !GstWalk.Core.fEffectiveUS
880 && CSAMIsEnabled(pVM)
881 && CPUMGetGuestCPL(pVCpu) == 0)
882 {
883 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
884 if ( pvFault == (RTGCPTR)pRegFrame->eip
885 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
886# ifdef CSAM_DETECT_NEW_CODE_PAGES
887 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
888 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
889# endif /* CSAM_DETECT_NEW_CODE_PAGES */
890 )
891 {
892 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
893 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
894 if (rc != VINF_SUCCESS)
895 {
896 /*
897 * CSAM needs to perform a job in ring 3.
898 *
899 * Sync the page before going to the host context; otherwise we'll end up in a loop if
900 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
901 */
902 LogFlow(("CSAM ring 3 job\n"));
903 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
904 AssertRC(rc2);
905
906 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
907 return rc;
908 }
909 }
910# ifdef CSAM_DETECT_NEW_CODE_PAGES
911 else if ( uErr == X86_TRAP_PF_RW
912 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
913 && pRegFrame->ecx < 0x10000)
914 {
915 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
916 * to detect loading of new code pages.
917 */
918
919 /*
920 * Decode the instruction.
921 */
922 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
923 uint32_t cbOp;
924 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
925
926 /* For now we'll restrict this to rep movsw/d instructions */
927 if ( rc == VINF_SUCCESS
928 && pDis->pCurInstr->opcode == OP_MOVSWD
929 && (pDis->prefix & DISPREFIX_REP))
930 {
931 CSAMMarkPossibleCodePage(pVM, pvFault);
932 }
933 }
934# endif /* CSAM_DETECT_NEW_CODE_PAGES */
935
936 /*
937 * Mark this page as safe.
938 */
939 /** @todo not correct for pages that contain both code and data!! */
940 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
941 CSAMMarkPage(pVM, pvFault, true);
942 }
943# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
944# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
945 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
946# else
947 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
948# endif
949 if (RT_SUCCESS(rc))
950 {
951 /* The page was successfully synced, return to the guest. */
952 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
953 return VINF_SUCCESS;
954 }
955 }
956 else /* uErr & X86_TRAP_PF_P: */
957 {
958 /*
959 * Write protected pages are made writable when the guest makes the
960 * first write to it. This happens for pages that are shared, write
961 * monitored or not yet allocated.
962 *
963 * We may also end up here when CR0.WP=0 in the guest.
964 *
965 * Also, a side effect of not flushing global PDEs are out of sync
966 * pages due to physical monitored regions, that are no longer valid.
967 * Assume for now it only applies to the read/write flag.
968 */
969 if (uErr & X86_TRAP_PF_RW)
970 {
971 /*
972 * Check if it is a read-only page.
973 */
974 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
975 {
976 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
977 Assert(!PGM_PAGE_IS_ZERO(pPage));
978 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
979 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
980
981 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
982 if (rc != VINF_SUCCESS)
983 {
984 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
985 return rc;
986 }
987 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
988 return VINF_EM_NO_MEMORY;
989 }
990
991# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
992 /*
993 * Check to see if we need to emulate the instruction if CR0.WP=0.
994 */
995 if ( !GstWalk.Core.fEffectiveRW
996 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
997 && CPUMGetGuestCPL(pVCpu) < 3)
998 {
999 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
1000
1001 /*
1002 * The Netware WP0+RO+US hack.
1003 *
1004 * Netware sometimes(/always?) runs with WP0. It has been observed doing
1005 * excessive write accesses to pages which are mapped with US=1 and RW=0
1006 * while WP=0. This causes a lot of exits and extremely slow execution.
1007 * To avoid trapping and emulating every write here, we change the shadow
1008 * page table entry to map it as US=0 and RW=1 until user mode tries to
1009 * access it again (see further below). We count these shadow page table
1010 * changes so we can avoid having to clear the page pool every time the WP
1011 * bit changes to 1 (see PGMCr0WpEnabled()).
1012 */
1013# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
1014 if ( GstWalk.Core.fEffectiveUS
1015 && !GstWalk.Core.fEffectiveRW
1016 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1017 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1018 {
1019 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
1020 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
1021 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1022 {
1023 PGM_INVL_PG(pVCpu, pvFault);
1024 pVCpu->pgm.s.cNetwareWp0Hacks++;
1025 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1026 return rc;
1027 }
1028 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1029 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1030 }
1031# endif
1032
1033 /* Interpret the access. */
1034 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1035 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
1036 if (RT_SUCCESS(rc))
1037 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1038 else
1039 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1040 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1041 return rc;
1042 }
1043# endif
1044 /// @todo count the above case; else
1045 if (uErr & X86_TRAP_PF_US)
1046 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1047 else /* supervisor */
1048 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1049
1050 /*
1051 * Sync the page.
1052 *
1053 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1054 * page is not present, which is not true in this case.
1055 */
1056# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1057 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1058# else
1059 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1060# endif
1061 if (RT_SUCCESS(rc))
1062 {
1063 /*
1064 * Page was successfully synced, return to guest but invalidate
1065 * the TLB first as the page is very likely to be in it.
1066 */
1067# if PGM_SHW_TYPE == PGM_TYPE_EPT
1068 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1069# else
1070 PGM_INVL_PG(pVCpu, pvFault);
1071# endif
1072# ifdef VBOX_STRICT
1073 RTGCPHYS GCPhys2 = RTGCPHYS_MAX;
1074 uint64_t fPageGst = UINT64_MAX;
1075 if (!pVM->pgm.s.fNestedPaging)
1076 {
1077 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1078 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1079 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1080 }
1081# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */
1082 uint64_t fPageShw = 0;
1083 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1084 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1085 ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GCPhys2, fPageGst, pvFault));
1086# endif
1087# endif /* VBOX_STRICT */
1088 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1089 return VINF_SUCCESS;
1090 }
1091 }
1092# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1093 /*
1094 * Check for Netware WP0+RO+US hack from above and undo it when user
1095 * mode accesses the page again.
1096 */
1097 else if ( GstWalk.Core.fEffectiveUS
1098 && !GstWalk.Core.fEffectiveRW
1099 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1100 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1101 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1102 && CPUMGetGuestCPL(pVCpu) == 3
1103 && pVM->cCpus == 1
1104 )
1105 {
1106 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1107 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1108 if (RT_SUCCESS(rc))
1109 {
1110 PGM_INVL_PG(pVCpu, pvFault);
1111 pVCpu->pgm.s.cNetwareWp0Hacks--;
1112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1113 return VINF_SUCCESS;
1114 }
1115 }
1116# endif /* PGM_WITH_PAGING */
1117
1118 /** @todo else: why are we here? */
1119
1120# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1121 /*
1122 * Check for VMM page flags vs. Guest page flags consistency.
1123 * Currently only for debug purposes.
1124 */
1125 if (RT_SUCCESS(rc))
1126 {
1127 /* Get guest page flags. */
1128 uint64_t fPageGst;
1129 int rc2 = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1130 if (RT_SUCCESS(rc2))
1131 {
1132 uint64_t fPageShw = 0;
1133 rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1134
1135 /*
1136 * Compare page flags.
1137 * Note: we have AVL, A, D bits desynced.
1138 */
1139 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1140 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1141 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
1142 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1143 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1144 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
1145 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
1146 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n",
1147 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc));
1148 }
1149 else
1150 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1151 }
1152 else
1153 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1154# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1155 }
1156
1157
1158 /*
1159 * If we get here it is because something failed above, i.e. most like guru
1160 * meditiation time.
1161 */
1162 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1163 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1164 return rc;
1165
1166# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1167 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1168 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1169 return VERR_PGM_NOT_USED_IN_MODE;
1170# endif
1171}
1172#endif /* !IN_RING3 */
1173
1174
1175/**
1176 * Emulation of the invlpg instruction.
1177 *
1178 *
1179 * @returns VBox status code.
1180 *
1181 * @param pVCpu The cross context virtual CPU structure.
1182 * @param GCPtrPage Page to invalidate.
1183 *
1184 * @remark ASSUMES that the guest is updating before invalidating. This order
1185 * isn't required by the CPU, so this is speculative and could cause
1186 * trouble.
1187 * @remark No TLB shootdown is done on any other VCPU as we assume that
1188 * invlpg emulation is the *only* reason for calling this function.
1189 * (The guest has to shoot down TLB entries on other CPUs itself)
1190 * Currently true, but keep in mind!
1191 *
1192 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1193 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1194 */
1195PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1196{
1197#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1198 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1199 && PGM_SHW_TYPE != PGM_TYPE_EPT
1200 int rc;
1201 PVM pVM = pVCpu->CTX_SUFF(pVM);
1202 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1203
1204 PGM_LOCK_ASSERT_OWNER(pVM);
1205
1206 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1207
1208 /*
1209 * Get the shadow PD entry and skip out if this PD isn't present.
1210 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1211 */
1212# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1213 const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT;
1214 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1215
1216 /* Fetch the pgm pool shadow descriptor. */
1217 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1218# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1219 if (!pShwPde)
1220 {
1221 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1222 return VINF_SUCCESS;
1223 }
1224# else
1225 Assert(pShwPde);
1226# endif
1227
1228# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1229 const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT;
1230 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1231
1232 /* If the shadow PDPE isn't present, then skip the invalidate. */
1233# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */
1234 if (!pPdptDst || !pPdptDst->a[iPdpt].n.u1Present)
1235# else
1236 if (!pPdptDst->a[iPdpt].n.u1Present)
1237# endif
1238 {
1239 Assert(!pPdptDst || !(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1240 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1241 PGM_INVL_PG(pVCpu, GCPtrPage);
1242 return VINF_SUCCESS;
1243 }
1244
1245 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1246 PPGMPOOLPAGE pShwPde = NULL;
1247 PX86PDPAE pPDDst;
1248
1249 /* Fetch the pgm pool shadow descriptor. */
1250 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1251 AssertRCSuccessReturn(rc, rc);
1252 Assert(pShwPde);
1253
1254 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1255 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1256
1257# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1258 /* PML4 */
1259 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1260 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1261 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1262 PX86PDPAE pPDDst;
1263 PX86PDPT pPdptDst;
1264 PX86PML4E pPml4eDst;
1265 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1266 if (rc != VINF_SUCCESS)
1267 {
1268 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1269 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1270 PGM_INVL_PG(pVCpu, GCPtrPage);
1271 return VINF_SUCCESS;
1272 }
1273 Assert(pPDDst);
1274
1275 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1276 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1277
1278 if (!pPdpeDst->n.u1Present)
1279 {
1280 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1281 PGM_INVL_PG(pVCpu, GCPtrPage);
1282 return VINF_SUCCESS;
1283 }
1284
1285 /* Fetch the pgm pool shadow descriptor. */
1286 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1287 Assert(pShwPde);
1288
1289# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1290
1291 const SHWPDE PdeDst = *pPdeDst;
1292 if (!PdeDst.n.u1Present)
1293 {
1294 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1295 PGM_INVL_PG(pVCpu, GCPtrPage);
1296 return VINF_SUCCESS;
1297 }
1298
1299 /*
1300 * Get the guest PD entry and calc big page.
1301 */
1302# if PGM_GST_TYPE == PGM_TYPE_32BIT
1303 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1304 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
1305 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1306# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1307 unsigned iPDSrc = 0;
1308# if PGM_GST_TYPE == PGM_TYPE_PAE
1309 X86PDPE PdpeSrcIgn;
1310 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1311# else /* AMD64 */
1312 PX86PML4E pPml4eSrcIgn;
1313 X86PDPE PdpeSrcIgn;
1314 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1315# endif
1316 GSTPDE PdeSrc;
1317
1318 if (pPDSrc)
1319 PdeSrc = pPDSrc->a[iPDSrc];
1320 else
1321 PdeSrc.u = 0;
1322# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1323 const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE);
1324 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1325 if (fWasBigPage != fIsBigPage)
1326 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1327
1328# ifdef IN_RING3
1329 /*
1330 * If a CR3 Sync is pending we may ignore the invalidate page operation
1331 * depending on the kind of sync and if it's a global page or not.
1332 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1333 */
1334# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1335 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1336 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1337 && fIsBigPage
1338 && PdeSrc.b.u1Global
1339 )
1340 )
1341# else
1342 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1343# endif
1344 {
1345 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1346 return VINF_SUCCESS;
1347 }
1348# endif /* IN_RING3 */
1349
1350 /*
1351 * Deal with the Guest PDE.
1352 */
1353 rc = VINF_SUCCESS;
1354 if (PdeSrc.n.u1Present)
1355 {
1356 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1357 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1358# ifndef PGM_WITHOUT_MAPPING
1359 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1360 {
1361 /*
1362 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1363 */
1364 Assert(pgmMapAreMappingsEnabled(pVM));
1365 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1366 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1367 }
1368 else
1369# endif /* !PGM_WITHOUT_MAPPING */
1370 if (!fIsBigPage)
1371 {
1372 /*
1373 * 4KB - page.
1374 */
1375 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1376 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1377
1378# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1379 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1380 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1381# endif
1382 if (pShwPage->GCPhys == GCPhys)
1383 {
1384 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1385 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1386
1387 PGSTPT pPTSrc;
1388 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1389 if (RT_SUCCESS(rc))
1390 {
1391 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1392 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1393 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1394 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1395 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1396 GCPtrPage, PteSrc.n.u1Present,
1397 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1398 PteSrc.n.u1User & PdeSrc.n.u1User,
1399 (uint64_t)PteSrc.u,
1400 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1401 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1402 }
1403 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1404 PGM_INVL_PG(pVCpu, GCPtrPage);
1405 }
1406 else
1407 {
1408 /*
1409 * The page table address changed.
1410 */
1411 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1412 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1413 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1414 ASMAtomicWriteSize(pPdeDst, 0);
1415 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1416 PGM_INVL_VCPU_TLBS(pVCpu);
1417 }
1418 }
1419 else
1420 {
1421 /*
1422 * 2/4MB - page.
1423 */
1424 /* Before freeing the page, check if anything really changed. */
1425 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1426 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1427# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1428 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1429 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1430# endif
1431 if ( pShwPage->GCPhys == GCPhys
1432 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1433 {
1434 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1435 /** @todo This test is wrong as it cannot check the G bit!
1436 * FIXME */
1437 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1438 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1439 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1440 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1441 {
1442 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1443 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1444 return VINF_SUCCESS;
1445 }
1446 }
1447
1448 /*
1449 * Ok, the page table is present and it's been changed in the guest.
1450 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1451 * We could do this for some flushes in GC too, but we need an algorithm for
1452 * deciding which 4MB pages containing code likely to be executed very soon.
1453 */
1454 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1455 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1456 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1457 ASMAtomicWriteSize(pPdeDst, 0);
1458 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1459 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1460 }
1461 }
1462 else
1463 {
1464 /*
1465 * Page directory is not present, mark shadow PDE not present.
1466 */
1467 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1468 {
1469 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1470 ASMAtomicWriteSize(pPdeDst, 0);
1471 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1472 PGM_INVL_PG(pVCpu, GCPtrPage);
1473 }
1474 else
1475 {
1476 Assert(pgmMapAreMappingsEnabled(pVM));
1477 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1478 }
1479 }
1480 return rc;
1481
1482#else /* guest real and protected mode */
1483 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1484 NOREF(pVCpu); NOREF(GCPtrPage);
1485 return VINF_SUCCESS;
1486#endif
1487}
1488
1489
1490/**
1491 * Update the tracking of shadowed pages.
1492 *
1493 * @param pVCpu The cross context virtual CPU structure.
1494 * @param pShwPage The shadow page.
1495 * @param HCPhys The physical page we is being dereferenced.
1496 * @param iPte Shadow PTE index
1497 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1498 */
1499DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1500 RTGCPHYS GCPhysPage)
1501{
1502 PVM pVM = pVCpu->CTX_SUFF(pVM);
1503
1504# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1505 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1506 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1507
1508 /* Use the hint we retrieved from the cached guest PT. */
1509 if (pShwPage->fDirty)
1510 {
1511 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1512
1513 Assert(pShwPage->cPresent);
1514 Assert(pPool->cPresent);
1515 pShwPage->cPresent--;
1516 pPool->cPresent--;
1517
1518 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1519 AssertRelease(pPhysPage);
1520 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1521 return;
1522 }
1523# else
1524 NOREF(GCPhysPage);
1525# endif
1526
1527 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1528 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1529
1530 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1531 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1532 * 2. write protect all shadowed pages. I.e. implement caching.
1533 */
1534 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1535
1536 /*
1537 * Find the guest address.
1538 */
1539 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1540 pRam;
1541 pRam = pRam->CTX_SUFF(pNext))
1542 {
1543 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1544 while (iPage-- > 0)
1545 {
1546 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1547 {
1548 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1549
1550 Assert(pShwPage->cPresent);
1551 Assert(pPool->cPresent);
1552 pShwPage->cPresent--;
1553 pPool->cPresent--;
1554
1555 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1556 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1557 return;
1558 }
1559 }
1560 }
1561
1562 for (;;)
1563 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1564}
1565
1566
1567/**
1568 * Update the tracking of shadowed pages.
1569 *
1570 * @param pVCpu The cross context virtual CPU structure.
1571 * @param pShwPage The shadow page.
1572 * @param u16 The top 16-bit of the pPage->HCPhys.
1573 * @param pPage Pointer to the guest page. this will be modified.
1574 * @param iPTDst The index into the shadow table.
1575 */
1576DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1577{
1578 PVM pVM = pVCpu->CTX_SUFF(pVM);
1579
1580 /*
1581 * Just deal with the simple first time here.
1582 */
1583 if (!u16)
1584 {
1585 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1586 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1587 /* Save the page table index. */
1588 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1589 }
1590 else
1591 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1592
1593 /* write back */
1594 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1595 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1596
1597 /* update statistics. */
1598 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1599 pShwPage->cPresent++;
1600 if (pShwPage->iFirstPresent > iPTDst)
1601 pShwPage->iFirstPresent = iPTDst;
1602}
1603
1604
1605/**
1606 * Modifies a shadow PTE to account for access handlers.
1607 *
1608 * @param pVM The cross context VM structure.
1609 * @param pPage The page in question.
1610 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1611 * A (accessed) bit so it can be emulated correctly.
1612 * @param pPteDst The shadow PTE (output). This is temporary storage and
1613 * does not need to be set atomically.
1614 */
1615DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1616{
1617 NOREF(pVM); RT_NOREF_PV(fPteSrc);
1618
1619 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1620 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1621 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1622 {
1623 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1624#if PGM_SHW_TYPE == PGM_TYPE_EPT
1625 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1626 pPteDst->n.u1Present = 1;
1627 pPteDst->n.u1Execute = 1;
1628 pPteDst->n.u1IgnorePAT = 1;
1629 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1630 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1631#else
1632 if (fPteSrc & X86_PTE_A)
1633 {
1634 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1635 SHW_PTE_SET_RO(*pPteDst);
1636 }
1637 else
1638 SHW_PTE_SET(*pPteDst, 0);
1639#endif
1640 }
1641#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1642# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1643 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1644 && ( BTH_IS_NP_ACTIVE(pVM)
1645 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1646# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1647 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1648# endif
1649 )
1650 {
1651 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1652# if PGM_SHW_TYPE == PGM_TYPE_EPT
1653 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1654 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1655 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1656 pPteDst->n.u1Present = 0;
1657 pPteDst->n.u1Write = 1;
1658 pPteDst->n.u1Execute = 0;
1659 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1660 pPteDst->n.u3EMT = 7;
1661# else
1662 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1663 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1664# endif
1665 }
1666# endif
1667#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1668 else
1669 {
1670 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1671 SHW_PTE_SET(*pPteDst, 0);
1672 }
1673 /** @todo count these kinds of entries. */
1674}
1675
1676
1677/**
1678 * Creates a 4K shadow page for a guest page.
1679 *
1680 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1681 * physical address. The PdeSrc argument only the flags are used. No page
1682 * structured will be mapped in this function.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 * @param pPteDst Destination page table entry.
1686 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1687 * Can safely assume that only the flags are being used.
1688 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1689 * @param pShwPage Pointer to the shadow page.
1690 * @param iPTDst The index into the shadow table.
1691 *
1692 * @remark Not used for 2/4MB pages!
1693 */
1694#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING)
1695static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1696 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1697#else
1698static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage,
1699 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1700#endif
1701{
1702 PVM pVM = pVCpu->CTX_SUFF(pVM);
1703 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1704
1705#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1706 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1707 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1708
1709 if (pShwPage->fDirty)
1710 {
1711 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1712 PGSTPT pGstPT;
1713
1714 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1715 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1716 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1717 pGstPT->a[iPTDst].u = PteSrc.u;
1718 }
1719#else
1720 Assert(!pShwPage->fDirty);
1721#endif
1722
1723#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1724 if ( PteSrc.n.u1Present
1725 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1726#endif
1727 {
1728# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1729 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1730# endif
1731 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1732
1733 /*
1734 * Find the ram range.
1735 */
1736 PPGMPAGE pPage;
1737 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1738 if (RT_SUCCESS(rc))
1739 {
1740 /* Ignore ballooned pages.
1741 Don't return errors or use a fatal assert here as part of a
1742 shadow sync range might included ballooned pages. */
1743 if (PGM_PAGE_IS_BALLOONED(pPage))
1744 {
1745 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1746 return;
1747 }
1748
1749#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1750 /* Make the page writable if necessary. */
1751 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1752 && ( PGM_PAGE_IS_ZERO(pPage)
1753# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1754 || ( PteSrc.n.u1Write
1755# else
1756 || ( 1
1757# endif
1758 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1759# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1760 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1761# endif
1762# ifdef VBOX_WITH_PAGE_SHARING
1763 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1764# endif
1765 )
1766 )
1767 )
1768 {
1769 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1770 AssertRC(rc);
1771 }
1772#endif
1773
1774 /*
1775 * Make page table entry.
1776 */
1777 SHWPTE PteDst;
1778# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1779 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1780# else
1781 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1782# endif
1783 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1784 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1785 else
1786 {
1787#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1788 /*
1789 * If the page or page directory entry is not marked accessed,
1790 * we mark the page not present.
1791 */
1792 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1793 {
1794 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1795 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1796 SHW_PTE_SET(PteDst, 0);
1797 }
1798 /*
1799 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1800 * when the page is modified.
1801 */
1802 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1803 {
1804 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1805 SHW_PTE_SET(PteDst,
1806 fGstShwPteFlags
1807 | PGM_PAGE_GET_HCPHYS(pPage)
1808 | PGM_PTFLAGS_TRACK_DIRTY);
1809 SHW_PTE_SET_RO(PteDst);
1810 }
1811 else
1812#endif
1813 {
1814 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1815#if PGM_SHW_TYPE == PGM_TYPE_EPT
1816 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1817 PteDst.n.u1Present = 1;
1818 PteDst.n.u1Write = 1;
1819 PteDst.n.u1Execute = 1;
1820 PteDst.n.u1IgnorePAT = 1;
1821 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1822 /* PteDst.n.u1Size = 0 */
1823#else
1824 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1825#endif
1826 }
1827
1828 /*
1829 * Make sure only allocated pages are mapped writable.
1830 */
1831 if ( SHW_PTE_IS_P_RW(PteDst)
1832 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1833 {
1834 /* Still applies to shared pages. */
1835 Assert(!PGM_PAGE_IS_ZERO(pPage));
1836 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1837 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1838 }
1839 }
1840
1841 /*
1842 * Keep user track up to date.
1843 */
1844 if (SHW_PTE_IS_P(PteDst))
1845 {
1846 if (!SHW_PTE_IS_P(*pPteDst))
1847 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1848 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1849 {
1850 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1851 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1852 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1853 }
1854 }
1855 else if (SHW_PTE_IS_P(*pPteDst))
1856 {
1857 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1858 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1859 }
1860
1861 /*
1862 * Update statistics and commit the entry.
1863 */
1864#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1865 if (!PteSrc.n.u1Global)
1866 pShwPage->fSeenNonGlobal = true;
1867#endif
1868 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1869 return;
1870 }
1871
1872/** @todo count these three different kinds. */
1873 Log2(("SyncPageWorker: invalid address in Pte\n"));
1874 }
1875#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1876 else if (!PteSrc.n.u1Present)
1877 Log2(("SyncPageWorker: page not present in Pte\n"));
1878 else
1879 Log2(("SyncPageWorker: invalid Pte\n"));
1880#endif
1881
1882 /*
1883 * The page is not present or the PTE is bad. Replace the shadow PTE by
1884 * an empty entry, making sure to keep the user tracking up to date.
1885 */
1886 if (SHW_PTE_IS_P(*pPteDst))
1887 {
1888 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1889 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1890 }
1891 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1892}
1893
1894
1895/**
1896 * Syncs a guest OS page.
1897 *
1898 * There are no conflicts at this point, neither is there any need for
1899 * page table allocations.
1900 *
1901 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1902 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1903 *
1904 * @returns VBox status code.
1905 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1906 * @param pVCpu The cross context virtual CPU structure.
1907 * @param PdeSrc Page directory entry of the guest.
1908 * @param GCPtrPage Guest context page address.
1909 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1910 * @param uErr Fault error (X86_TRAP_PF_*).
1911 */
1912static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1913{
1914 PVM pVM = pVCpu->CTX_SUFF(pVM);
1915 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1916 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1917 RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage);
1918
1919 PGM_LOCK_ASSERT_OWNER(pVM);
1920
1921#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1922 || PGM_GST_TYPE == PGM_TYPE_PAE \
1923 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1924 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1925 && PGM_SHW_TYPE != PGM_TYPE_EPT
1926
1927 /*
1928 * Assert preconditions.
1929 */
1930 Assert(PdeSrc.n.u1Present);
1931 Assert(cPages);
1932# if 0 /* rarely useful; leave for debugging. */
1933 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1934# endif
1935
1936 /*
1937 * Get the shadow PDE, find the shadow page table in the pool.
1938 */
1939# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1940 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1941 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1942
1943 /* Fetch the pgm pool shadow descriptor. */
1944 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1945 Assert(pShwPde);
1946
1947# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1948 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1949 PPGMPOOLPAGE pShwPde = NULL;
1950 PX86PDPAE pPDDst;
1951
1952 /* Fetch the pgm pool shadow descriptor. */
1953 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1954 AssertRCSuccessReturn(rc2, rc2);
1955 Assert(pShwPde);
1956
1957 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1958 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1959
1960# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1961 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1962 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1963 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1964 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1965
1966 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1967 AssertRCSuccessReturn(rc2, rc2);
1968 Assert(pPDDst && pPdptDst);
1969 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1970# endif
1971 SHWPDE PdeDst = *pPdeDst;
1972
1973 /*
1974 * - In the guest SMP case we could have blocked while another VCPU reused
1975 * this page table.
1976 * - With W7-64 we may also take this path when the A bit is cleared on
1977 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1978 * relevant TLB entries. If we're write monitoring any page mapped by
1979 * the modified entry, we may end up here with a "stale" TLB entry.
1980 */
1981 if (!PdeDst.n.u1Present)
1982 {
1983 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1984 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1985 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1986 if (uErr & X86_TRAP_PF_P)
1987 PGM_INVL_PG(pVCpu, GCPtrPage);
1988 return VINF_SUCCESS; /* force the instruction to be executed again. */
1989 }
1990
1991 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1992 Assert(pShwPage);
1993
1994# if PGM_GST_TYPE == PGM_TYPE_AMD64
1995 /* Fetch the pgm pool shadow descriptor. */
1996 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1997 Assert(pShwPde);
1998# endif
1999
2000 /*
2001 * Check that the page is present and that the shadow PDE isn't out of sync.
2002 */
2003 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
2004 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
2005 RTGCPHYS GCPhys;
2006 if (!fBigPage)
2007 {
2008 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2009# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2010 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2011 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2012# endif
2013 }
2014 else
2015 {
2016 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2017# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2018 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2019 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2020# endif
2021 }
2022 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2023 if ( fPdeValid
2024 && pShwPage->GCPhys == GCPhys
2025 && PdeSrc.n.u1Present
2026 && PdeSrc.n.u1User == PdeDst.n.u1User
2027 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
2028# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2029 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
2030# endif
2031 )
2032 {
2033 /*
2034 * Check that the PDE is marked accessed already.
2035 * Since we set the accessed bit *before* getting here on a #PF, this
2036 * check is only meant for dealing with non-#PF'ing paths.
2037 */
2038 if (PdeSrc.n.u1Accessed)
2039 {
2040 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2041 if (!fBigPage)
2042 {
2043 /*
2044 * 4KB Page - Map the guest page table.
2045 */
2046 PGSTPT pPTSrc;
2047 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2048 if (RT_SUCCESS(rc))
2049 {
2050# ifdef PGM_SYNC_N_PAGES
2051 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2052 if ( cPages > 1
2053 && !(uErr & X86_TRAP_PF_P)
2054 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2055 {
2056 /*
2057 * This code path is currently only taken when the caller is PGMTrap0eHandler
2058 * for non-present pages!
2059 *
2060 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2061 * deal with locality.
2062 */
2063 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2064# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2065 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2066 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2067# else
2068 const unsigned offPTSrc = 0;
2069# endif
2070 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2071 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2072 iPTDst = 0;
2073 else
2074 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2075
2076 for (; iPTDst < iPTDstEnd; iPTDst++)
2077 {
2078 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2079
2080 if ( pPteSrc->n.u1Present
2081 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2082 {
2083 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2084 NOREF(GCPtrCurPage);
2085# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2086 /*
2087 * Assuming kernel code will be marked as supervisor - and not as user level
2088 * and executed using a conforming code selector - And marked as readonly.
2089 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2090 */
2091 PPGMPAGE pPage;
2092 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2093 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2094 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2095 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2096 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2097 )
2098# endif /* else: CSAM not active */
2099 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2100 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2101 GCPtrCurPage, pPteSrc->n.u1Present,
2102 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2103 pPteSrc->n.u1User & PdeSrc.n.u1User,
2104 (uint64_t)pPteSrc->u,
2105 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2106 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2107 }
2108 }
2109 }
2110 else
2111# endif /* PGM_SYNC_N_PAGES */
2112 {
2113 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2114 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2115 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2116 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2117 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2118 GCPtrPage, PteSrc.n.u1Present,
2119 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2120 PteSrc.n.u1User & PdeSrc.n.u1User,
2121 (uint64_t)PteSrc.u,
2122 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2123 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2124 }
2125 }
2126 else /* MMIO or invalid page: emulated in #PF handler. */
2127 {
2128 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2129 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2130 }
2131 }
2132 else
2133 {
2134 /*
2135 * 4/2MB page - lazy syncing shadow 4K pages.
2136 * (There are many causes of getting here, it's no longer only CSAM.)
2137 */
2138 /* Calculate the GC physical address of this 4KB shadow page. */
2139 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2140 /* Find ram range. */
2141 PPGMPAGE pPage;
2142 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2143 if (RT_SUCCESS(rc))
2144 {
2145 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2146
2147# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2148 /* Try to make the page writable if necessary. */
2149 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2150 && ( PGM_PAGE_IS_ZERO(pPage)
2151 || ( PdeSrc.n.u1Write
2152 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2153# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2154 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2155# endif
2156# ifdef VBOX_WITH_PAGE_SHARING
2157 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2158# endif
2159 )
2160 )
2161 )
2162 {
2163 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2164 AssertRC(rc);
2165 }
2166# endif
2167
2168 /*
2169 * Make shadow PTE entry.
2170 */
2171 SHWPTE PteDst;
2172 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2173 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2174 else
2175 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2176
2177 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2178 if ( SHW_PTE_IS_P(PteDst)
2179 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2180 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2181
2182 /* Make sure only allocated pages are mapped writable. */
2183 if ( SHW_PTE_IS_P_RW(PteDst)
2184 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2185 {
2186 /* Still applies to shared pages. */
2187 Assert(!PGM_PAGE_IS_ZERO(pPage));
2188 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2189 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2190 }
2191
2192 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2193
2194 /*
2195 * If the page is not flagged as dirty and is writable, then make it read-only
2196 * at PD level, so we can set the dirty bit when the page is modified.
2197 *
2198 * ASSUMES that page access handlers are implemented on page table entry level.
2199 * Thus we will first catch the dirty access and set PDE.D and restart. If
2200 * there is an access handler, we'll trap again and let it work on the problem.
2201 */
2202 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2203 * As for invlpg, it simply frees the whole shadow PT.
2204 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2205 if ( !PdeSrc.b.u1Dirty
2206 && PdeSrc.b.u1Write)
2207 {
2208 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2209 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2210 PdeDst.n.u1Write = 0;
2211 }
2212 else
2213 {
2214 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2215 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2216 }
2217 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2218 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2219 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2220 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2221 }
2222 else
2223 {
2224 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2225 /** @todo must wipe the shadow page table entry in this
2226 * case. */
2227 }
2228 }
2229 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2230 return VINF_SUCCESS;
2231 }
2232
2233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2234 }
2235 else if (fPdeValid)
2236 {
2237 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2238 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2239 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2240 }
2241 else
2242 {
2243/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2244 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2245 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2246 }
2247
2248 /*
2249 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2250 * Yea, I'm lazy.
2251 */
2252 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2253 ASMAtomicWriteSize(pPdeDst, 0);
2254
2255 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2256 PGM_INVL_VCPU_TLBS(pVCpu);
2257 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2258
2259
2260#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2261 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2262 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2263 && !defined(IN_RC)
2264 NOREF(PdeSrc);
2265
2266# ifdef PGM_SYNC_N_PAGES
2267 /*
2268 * Get the shadow PDE, find the shadow page table in the pool.
2269 */
2270# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2271 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2272
2273# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2274 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2275
2276# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2277 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2278 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2279 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2280 X86PDEPAE PdeDst;
2281 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2282
2283 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2284 AssertRCSuccessReturn(rc, rc);
2285 Assert(pPDDst && pPdptDst);
2286 PdeDst = pPDDst->a[iPDDst];
2287# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2288 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2289 PEPTPD pPDDst;
2290 EPTPDE PdeDst;
2291
2292 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2293 if (rc != VINF_SUCCESS)
2294 {
2295 AssertRC(rc);
2296 return rc;
2297 }
2298 Assert(pPDDst);
2299 PdeDst = pPDDst->a[iPDDst];
2300# endif
2301 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2302 if (!PdeDst.n.u1Present)
2303 {
2304 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2305 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2306 return VINF_SUCCESS; /* force the instruction to be executed again. */
2307 }
2308
2309 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2310 if (PdeDst.n.u1Size)
2311 {
2312 Assert(pVM->pgm.s.fNestedPaging);
2313 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2314 return VINF_SUCCESS;
2315 }
2316
2317 /* Mask away the page offset. */
2318 GCPtrPage &= ~((RTGCPTR)0xfff);
2319
2320 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2321 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2322
2323 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2324 if ( cPages > 1
2325 && !(uErr & X86_TRAP_PF_P)
2326 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2327 {
2328 /*
2329 * This code path is currently only taken when the caller is PGMTrap0eHandler
2330 * for non-present pages!
2331 *
2332 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2333 * deal with locality.
2334 */
2335 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2336 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2337 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2338 iPTDst = 0;
2339 else
2340 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2341 for (; iPTDst < iPTDstEnd; iPTDst++)
2342 {
2343 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2344 {
2345 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2346 | (iPTDst << PAGE_SHIFT));
2347
2348 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2349 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2350 GCPtrCurPage,
2351 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2352 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2353
2354 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2355 break;
2356 }
2357 else
2358 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2359 }
2360 }
2361 else
2362# endif /* PGM_SYNC_N_PAGES */
2363 {
2364 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2365 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2366 | (iPTDst << PAGE_SHIFT));
2367
2368 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2369
2370 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2371 GCPtrPage,
2372 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2373 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2374 }
2375 return VINF_SUCCESS;
2376
2377#else
2378 NOREF(PdeSrc);
2379 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2380 return VERR_PGM_NOT_USED_IN_MODE;
2381#endif
2382}
2383
2384
2385#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2386
2387/**
2388 * CheckPageFault helper for returning a page fault indicating a non-present
2389 * (NP) entry in the page translation structures.
2390 *
2391 * @returns VINF_EM_RAW_GUEST_TRAP.
2392 * @param pVCpu The cross context virtual CPU structure.
2393 * @param uErr The error code of the shadow fault. Corrections to
2394 * TRPM's copy will be made if necessary.
2395 * @param GCPtrPage For logging.
2396 * @param uPageFaultLevel For logging.
2397 */
2398DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2399{
2400 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2401 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2402 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2403 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2404 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2405
2406 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2407 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2408 return VINF_EM_RAW_GUEST_TRAP;
2409}
2410
2411
2412/**
2413 * CheckPageFault helper for returning a page fault indicating a reserved bit
2414 * (RSVD) error in the page translation structures.
2415 *
2416 * @returns VINF_EM_RAW_GUEST_TRAP.
2417 * @param pVCpu The cross context virtual CPU structure.
2418 * @param uErr The error code of the shadow fault. Corrections to
2419 * TRPM's copy will be made if necessary.
2420 * @param GCPtrPage For logging.
2421 * @param uPageFaultLevel For logging.
2422 */
2423DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2424{
2425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2426 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2427 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2428
2429 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2430 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2431 return VINF_EM_RAW_GUEST_TRAP;
2432}
2433
2434
2435/**
2436 * CheckPageFault helper for returning a page protection fault (P).
2437 *
2438 * @returns VINF_EM_RAW_GUEST_TRAP.
2439 * @param pVCpu The cross context virtual CPU structure.
2440 * @param uErr The error code of the shadow fault. Corrections to
2441 * TRPM's copy will be made if necessary.
2442 * @param GCPtrPage For logging.
2443 * @param uPageFaultLevel For logging.
2444 */
2445DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2446{
2447 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2448 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2449 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2450 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2451
2452 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2453 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel);
2454 return VINF_EM_RAW_GUEST_TRAP;
2455}
2456
2457
2458/**
2459 * Handle dirty bit tracking faults.
2460 *
2461 * @returns VBox status code.
2462 * @param pVCpu The cross context virtual CPU structure.
2463 * @param uErr Page fault error code.
2464 * @param pPdeSrc Guest page directory entry.
2465 * @param pPdeDst Shadow page directory entry.
2466 * @param GCPtrPage Guest context page address.
2467 */
2468static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2469 RTGCPTR GCPtrPage)
2470{
2471 PVM pVM = pVCpu->CTX_SUFF(pVM);
2472 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2473 NOREF(uErr);
2474
2475 PGM_LOCK_ASSERT_OWNER(pVM);
2476
2477 /*
2478 * Handle big page.
2479 */
2480 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2481 {
2482 if ( pPdeDst->n.u1Present
2483 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2484 {
2485 SHWPDE PdeDst = *pPdeDst;
2486
2487 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2488 Assert(pPdeSrc->b.u1Write);
2489
2490 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2491 * fault again and take this path to only invalidate the entry (see below).
2492 */
2493 PdeDst.n.u1Write = 1;
2494 PdeDst.n.u1Accessed = 1;
2495 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2496 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2497 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2498 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2499 }
2500
2501# ifdef IN_RING0
2502 /* Check for stale TLB entry; only applies to the SMP guest case. */
2503 if ( pVM->cCpus > 1
2504 && pPdeDst->n.u1Write
2505 && pPdeDst->n.u1Accessed)
2506 {
2507 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2508 if (pShwPage)
2509 {
2510 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2511 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2512 if (SHW_PTE_IS_P_RW(*pPteDst))
2513 {
2514 /* Stale TLB entry. */
2515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2516 PGM_INVL_PG(pVCpu, GCPtrPage);
2517 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2518 }
2519 }
2520 }
2521# endif /* IN_RING0 */
2522 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2523 }
2524
2525 /*
2526 * Map the guest page table.
2527 */
2528 PGSTPT pPTSrc;
2529 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2530 if (RT_FAILURE(rc))
2531 {
2532 AssertRC(rc);
2533 return rc;
2534 }
2535
2536 if (pPdeDst->n.u1Present)
2537 {
2538 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2539 const GSTPTE PteSrc = *pPteSrc;
2540
2541#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2542 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2543 * Our individual shadow handlers will provide more information and force a fatal exit.
2544 */
2545 if ( !HMIsEnabled(pVM)
2546 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2547 {
2548 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2549 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2550 }
2551#endif
2552 /*
2553 * Map shadow page table.
2554 */
2555 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2556 if (pShwPage)
2557 {
2558 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2559 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2560 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2561 {
2562 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2563 {
2564 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2565 SHWPTE PteDst = *pPteDst;
2566
2567 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2568 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2569
2570 Assert(PteSrc.n.u1Write);
2571
2572 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2573 * entry will not harm; write access will simply fault again and
2574 * take this path to only invalidate the entry.
2575 */
2576 if (RT_LIKELY(pPage))
2577 {
2578 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2579 {
2580 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2581 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2582 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2583 SHW_PTE_SET_RO(PteDst);
2584 }
2585 else
2586 {
2587 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2588 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2589 {
2590 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2591 AssertRC(rc);
2592 }
2593 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2594 SHW_PTE_SET_RW(PteDst);
2595 else
2596 {
2597 /* Still applies to shared pages. */
2598 Assert(!PGM_PAGE_IS_ZERO(pPage));
2599 SHW_PTE_SET_RO(PteDst);
2600 }
2601 }
2602 }
2603 else
2604 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2605
2606 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2607 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2608 PGM_INVL_PG(pVCpu, GCPtrPage);
2609 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2610 }
2611
2612# ifdef IN_RING0
2613 /* Check for stale TLB entry; only applies to the SMP guest case. */
2614 if ( pVM->cCpus > 1
2615 && SHW_PTE_IS_RW(*pPteDst)
2616 && SHW_PTE_IS_A(*pPteDst))
2617 {
2618 /* Stale TLB entry. */
2619 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2620 PGM_INVL_PG(pVCpu, GCPtrPage);
2621 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2622 }
2623# endif
2624 }
2625 }
2626 else
2627 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2628 }
2629
2630 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2631}
2632
2633#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2634
2635
2636/**
2637 * Sync a shadow page table.
2638 *
2639 * The shadow page table is not present in the shadow PDE.
2640 *
2641 * Handles mapping conflicts.
2642 *
2643 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2644 * conflict), and Trap0eHandler.
2645 *
2646 * A precondition for this method is that the shadow PDE is not present. The
2647 * caller must take the PGM lock before checking this and continue to hold it
2648 * when calling this method.
2649 *
2650 * @returns VBox status code.
2651 * @param pVCpu The cross context virtual CPU structure.
2652 * @param iPDSrc Page directory index.
2653 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2654 * Assume this is a temporary mapping.
2655 * @param GCPtrPage GC Pointer of the page that caused the fault
2656 */
2657static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2658{
2659 PVM pVM = pVCpu->CTX_SUFF(pVM);
2660 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2661
2662#if 0 /* rarely useful; leave for debugging. */
2663 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2664#endif
2665 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
2666
2667 PGM_LOCK_ASSERT_OWNER(pVM);
2668
2669#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2670 || PGM_GST_TYPE == PGM_TYPE_PAE \
2671 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2672 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2673 && PGM_SHW_TYPE != PGM_TYPE_EPT
2674
2675 int rc = VINF_SUCCESS;
2676
2677 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2678
2679 /*
2680 * Some input validation first.
2681 */
2682 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2683
2684 /*
2685 * Get the relevant shadow PDE entry.
2686 */
2687# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2688 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2689 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2690
2691 /* Fetch the pgm pool shadow descriptor. */
2692 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2693 Assert(pShwPde);
2694
2695# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2696 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2697 PPGMPOOLPAGE pShwPde = NULL;
2698 PX86PDPAE pPDDst;
2699 PSHWPDE pPdeDst;
2700
2701 /* Fetch the pgm pool shadow descriptor. */
2702 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2703 AssertRCSuccessReturn(rc, rc);
2704 Assert(pShwPde);
2705
2706 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2707 pPdeDst = &pPDDst->a[iPDDst];
2708
2709# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2710 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2711 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2712 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2713 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2714 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2715 AssertRCSuccessReturn(rc, rc);
2716 Assert(pPDDst);
2717 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2718# endif
2719 SHWPDE PdeDst = *pPdeDst;
2720
2721# if PGM_GST_TYPE == PGM_TYPE_AMD64
2722 /* Fetch the pgm pool shadow descriptor. */
2723 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2724 Assert(pShwPde);
2725# endif
2726
2727# ifndef PGM_WITHOUT_MAPPINGS
2728 /*
2729 * Check for conflicts.
2730 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2731 * R3: Simply resolve the conflict.
2732 */
2733 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2734 {
2735 Assert(pgmMapAreMappingsEnabled(pVM));
2736# ifndef IN_RING3
2737 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2738 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2739 return VERR_ADDRESS_CONFLICT;
2740
2741# else /* IN_RING3 */
2742 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2743 Assert(pMapping);
2744# if PGM_GST_TYPE == PGM_TYPE_32BIT
2745 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2746# elif PGM_GST_TYPE == PGM_TYPE_PAE
2747 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2748# else
2749 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2750# endif
2751 if (RT_FAILURE(rc))
2752 {
2753 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2754 return rc;
2755 }
2756 PdeDst = *pPdeDst;
2757# endif /* IN_RING3 */
2758 }
2759# endif /* !PGM_WITHOUT_MAPPINGS */
2760 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2761
2762 /*
2763 * Sync the page directory entry.
2764 */
2765 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2766 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2767 if ( PdeSrc.n.u1Present
2768 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2769 {
2770 /*
2771 * Allocate & map the page table.
2772 */
2773 PSHWPT pPTDst;
2774 PPGMPOOLPAGE pShwPage;
2775 RTGCPHYS GCPhys;
2776 if (fPageTable)
2777 {
2778 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2779# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2780 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2781 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2782# endif
2783 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2784 pShwPde->idx, iPDDst, false /*fLockPage*/,
2785 &pShwPage);
2786 }
2787 else
2788 {
2789 PGMPOOLACCESS enmAccess;
2790# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2791 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2792# else
2793 const bool fNoExecute = false;
2794# endif
2795
2796 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2797# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2798 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2799 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2800# endif
2801 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2802 if (PdeSrc.n.u1User)
2803 {
2804 if (PdeSrc.n.u1Write)
2805 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2806 else
2807 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2808 }
2809 else
2810 {
2811 if (PdeSrc.n.u1Write)
2812 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2813 else
2814 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2815 }
2816 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2817 pShwPde->idx, iPDDst, false /*fLockPage*/,
2818 &pShwPage);
2819 }
2820 if (rc == VINF_SUCCESS)
2821 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2822 else if (rc == VINF_PGM_CACHED_PAGE)
2823 {
2824 /*
2825 * The PT was cached, just hook it up.
2826 */
2827 if (fPageTable)
2828 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2829 else
2830 {
2831 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2832 /* (see explanation and assumptions further down.) */
2833 if ( !PdeSrc.b.u1Dirty
2834 && PdeSrc.b.u1Write)
2835 {
2836 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2837 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2838 PdeDst.b.u1Write = 0;
2839 }
2840 }
2841 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2842 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2843 return VINF_SUCCESS;
2844 }
2845 else if (rc == VERR_PGM_POOL_FLUSHED)
2846 {
2847 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2848 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2849 return VINF_PGM_SYNC_CR3;
2850 }
2851 else
2852 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2853 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2854 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2855 * irrelevant at this point. */
2856 PdeDst.u &= X86_PDE_AVL_MASK;
2857 PdeDst.u |= pShwPage->Core.Key;
2858
2859 /*
2860 * Page directory has been accessed (this is a fault situation, remember).
2861 */
2862 /** @todo
2863 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2864 * fault situation. What's more, the Trap0eHandler has already set the
2865 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2866 * might need setting the accessed flag.
2867 *
2868 * The best idea is to leave this change to the caller and add an
2869 * assertion that it's set already. */
2870 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2871 if (fPageTable)
2872 {
2873 /*
2874 * Page table - 4KB.
2875 *
2876 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2877 */
2878 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2879 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2880 PGSTPT pPTSrc;
2881 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2882 if (RT_SUCCESS(rc))
2883 {
2884 /*
2885 * Start by syncing the page directory entry so CSAM's TLB trick works.
2886 */
2887 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2888 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2889 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2890 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2891
2892 /*
2893 * Directory/page user or supervisor privilege: (same goes for read/write)
2894 *
2895 * Directory Page Combined
2896 * U/S U/S U/S
2897 * 0 0 0
2898 * 0 1 0
2899 * 1 0 0
2900 * 1 1 1
2901 *
2902 * Simple AND operation. Table listed for completeness.
2903 *
2904 */
2905 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2906# ifdef PGM_SYNC_N_PAGES
2907 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2908 unsigned iPTDst = iPTBase;
2909 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2910 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2911 iPTDst = 0;
2912 else
2913 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2914# else /* !PGM_SYNC_N_PAGES */
2915 unsigned iPTDst = 0;
2916 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2917# endif /* !PGM_SYNC_N_PAGES */
2918 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2919 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2920# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2921 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2922 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2923# else
2924 const unsigned offPTSrc = 0;
2925# endif
2926 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2927 {
2928 const unsigned iPTSrc = iPTDst + offPTSrc;
2929 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2930
2931 if (PteSrc.n.u1Present)
2932 {
2933# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2934 /*
2935 * Assuming kernel code will be marked as supervisor - and not as user level
2936 * and executed using a conforming code selector - And marked as readonly.
2937 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2938 */
2939 PPGMPAGE pPage;
2940 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2941 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2942 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2943 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2944 )
2945# endif
2946 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2947 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2948 GCPtrCur,
2949 PteSrc.n.u1Present,
2950 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2951 PteSrc.n.u1User & PdeSrc.n.u1User,
2952 (uint64_t)PteSrc.u,
2953 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2954 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2955 }
2956 /* else: the page table was cleared by the pool */
2957 } /* for PTEs */
2958 }
2959 }
2960 else
2961 {
2962 /*
2963 * Big page - 2/4MB.
2964 *
2965 * We'll walk the ram range list in parallel and optimize lookups.
2966 * We will only sync one shadow page table at a time.
2967 */
2968 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2969
2970 /**
2971 * @todo It might be more efficient to sync only a part of the 4MB
2972 * page (similar to what we do for 4KB PDs).
2973 */
2974
2975 /*
2976 * Start by syncing the page directory entry.
2977 */
2978 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2979 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2980
2981 /*
2982 * If the page is not flagged as dirty and is writable, then make it read-only
2983 * at PD level, so we can set the dirty bit when the page is modified.
2984 *
2985 * ASSUMES that page access handlers are implemented on page table entry level.
2986 * Thus we will first catch the dirty access and set PDE.D and restart. If
2987 * there is an access handler, we'll trap again and let it work on the problem.
2988 */
2989 /** @todo move the above stuff to a section in the PGM documentation. */
2990 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2991 if ( !PdeSrc.b.u1Dirty
2992 && PdeSrc.b.u1Write)
2993 {
2994 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2995 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2996 PdeDst.b.u1Write = 0;
2997 }
2998 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2999 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3000
3001 /*
3002 * Fill the shadow page table.
3003 */
3004 /* Get address and flags from the source PDE. */
3005 SHWPTE PteDstBase;
3006 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
3007
3008 /* Loop thru the entries in the shadow PT. */
3009 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
3010 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
3011 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
3012 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
3013 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
3014 unsigned iPTDst = 0;
3015 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3016 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
3017 {
3018 if (pRam && GCPhys >= pRam->GCPhys)
3019 {
3020# ifndef PGM_WITH_A20
3021 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
3022# endif
3023 do
3024 {
3025 /* Make shadow PTE. */
3026# ifdef PGM_WITH_A20
3027 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3028# else
3029 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3030# endif
3031 SHWPTE PteDst;
3032
3033# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3034 /* Try to make the page writable if necessary. */
3035 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3036 && ( PGM_PAGE_IS_ZERO(pPage)
3037 || ( SHW_PTE_IS_RW(PteDstBase)
3038 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3039# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3040 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3041# endif
3042# ifdef VBOX_WITH_PAGE_SHARING
3043 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3044# endif
3045 && !PGM_PAGE_IS_BALLOONED(pPage))
3046 )
3047 )
3048 {
3049 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3050 AssertRCReturn(rc, rc);
3051 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
3052 break;
3053 }
3054# endif
3055
3056 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3057 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3058 else if (PGM_PAGE_IS_BALLOONED(pPage))
3059 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3060# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3061 /*
3062 * Assuming kernel code will be marked as supervisor and not as user level and executed
3063 * using a conforming code selector. Don't check for readonly, as that implies the whole
3064 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3065 */
3066 else if ( !PdeSrc.n.u1User
3067 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3068 SHW_PTE_SET(PteDst, 0);
3069# endif
3070 else
3071 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3072
3073 /* Only map writable pages writable. */
3074 if ( SHW_PTE_IS_P_RW(PteDst)
3075 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3076 {
3077 /* Still applies to shared pages. */
3078 Assert(!PGM_PAGE_IS_ZERO(pPage));
3079 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3080 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3081 }
3082
3083 if (SHW_PTE_IS_P(PteDst))
3084 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3085
3086 /* commit it (not atomic, new table) */
3087 pPTDst->a[iPTDst] = PteDst;
3088 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3089 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3090 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3091
3092 /* advance */
3093 GCPhys += PAGE_SIZE;
3094 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3095# ifndef PGM_WITH_A20
3096 iHCPage++;
3097# endif
3098 iPTDst++;
3099 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3100 && GCPhys <= pRam->GCPhysLast);
3101
3102 /* Advance ram range list. */
3103 while (pRam && GCPhys > pRam->GCPhysLast)
3104 pRam = pRam->CTX_SUFF(pNext);
3105 }
3106 else if (pRam)
3107 {
3108 Log(("Invalid pages at %RGp\n", GCPhys));
3109 do
3110 {
3111 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3112 GCPhys += PAGE_SIZE;
3113 iPTDst++;
3114 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3115 && GCPhys < pRam->GCPhys);
3116 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3117 }
3118 else
3119 {
3120 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3121 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3122 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3123 }
3124 } /* while more PTEs */
3125 } /* 4KB / 4MB */
3126 }
3127 else
3128 AssertRelease(!PdeDst.n.u1Present);
3129
3130 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3131 if (RT_FAILURE(rc))
3132 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3133 return rc;
3134
3135#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3136 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3137 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3138 && !defined(IN_RC)
3139 NOREF(iPDSrc); NOREF(pPDSrc);
3140
3141 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3142
3143 /*
3144 * Validate input a little bit.
3145 */
3146 int rc = VINF_SUCCESS;
3147# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3148 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3149 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3150
3151 /* Fetch the pgm pool shadow descriptor. */
3152 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3153 Assert(pShwPde);
3154
3155# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3156 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3157 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3158 PX86PDPAE pPDDst;
3159 PSHWPDE pPdeDst;
3160
3161 /* Fetch the pgm pool shadow descriptor. */
3162 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3163 AssertRCSuccessReturn(rc, rc);
3164 Assert(pShwPde);
3165
3166 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3167 pPdeDst = &pPDDst->a[iPDDst];
3168
3169# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3170 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3171 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3172 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3173 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3174 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3175 AssertRCSuccessReturn(rc, rc);
3176 Assert(pPDDst);
3177 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3178
3179 /* Fetch the pgm pool shadow descriptor. */
3180 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3181 Assert(pShwPde);
3182
3183# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3184 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3185 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3186 PEPTPD pPDDst;
3187 PEPTPDPT pPdptDst;
3188
3189 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3190 if (rc != VINF_SUCCESS)
3191 {
3192 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3193 AssertRC(rc);
3194 return rc;
3195 }
3196 Assert(pPDDst);
3197 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3198
3199 /* Fetch the pgm pool shadow descriptor. */
3200 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3201 Assert(pShwPde);
3202# endif
3203 SHWPDE PdeDst = *pPdeDst;
3204
3205 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3206 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3207
3208# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3209 if (BTH_IS_NP_ACTIVE(pVM))
3210 {
3211 /* Check if we allocated a big page before for this 2 MB range. */
3212 PPGMPAGE pPage;
3213 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3214 if (RT_SUCCESS(rc))
3215 {
3216 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3217 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3218 {
3219 if (PGM_A20_IS_ENABLED(pVCpu))
3220 {
3221 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3222 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3223 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3224 }
3225 else
3226 {
3227 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3228 pVM->pgm.s.cLargePagesDisabled++;
3229 }
3230 }
3231 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3232 && PGM_A20_IS_ENABLED(pVCpu))
3233 {
3234 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3235 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3236 if (RT_SUCCESS(rc))
3237 {
3238 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3239 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3240 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3241 }
3242 }
3243 else if ( PGMIsUsingLargePages(pVM)
3244 && PGM_A20_IS_ENABLED(pVCpu))
3245 {
3246 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3247 if (RT_SUCCESS(rc))
3248 {
3249 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3250 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3251 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3252 }
3253 else
3254 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3255 }
3256
3257 if (HCPhys != NIL_RTHCPHYS)
3258 {
3259 PdeDst.u &= X86_PDE_AVL_MASK;
3260 PdeDst.u |= HCPhys;
3261 PdeDst.n.u1Present = 1;
3262 PdeDst.n.u1Write = 1;
3263 PdeDst.b.u1Size = 1;
3264# if PGM_SHW_TYPE == PGM_TYPE_EPT
3265 PdeDst.n.u1Execute = 1;
3266 PdeDst.b.u1IgnorePAT = 1;
3267 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3268# else
3269 PdeDst.n.u1User = 1;
3270# endif
3271 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3272
3273 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3274 /* Add a reference to the first page only. */
3275 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3276
3277 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3278 return VINF_SUCCESS;
3279 }
3280 }
3281 }
3282# endif /* HC_ARCH_BITS == 64 */
3283
3284 /*
3285 * Allocate & map the page table.
3286 */
3287 PSHWPT pPTDst;
3288 PPGMPOOLPAGE pShwPage;
3289 RTGCPHYS GCPhys;
3290
3291 /* Virtual address = physical address */
3292 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3293 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3294 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3295 &pShwPage);
3296 if ( rc == VINF_SUCCESS
3297 || rc == VINF_PGM_CACHED_PAGE)
3298 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3299 else
3300 {
3301 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3302 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3303 }
3304
3305 if (rc == VINF_SUCCESS)
3306 {
3307 /* New page table; fully set it up. */
3308 Assert(pPTDst);
3309
3310 /* Mask away the page offset. */
3311 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3312
3313 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3314 {
3315 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3316 | (iPTDst << PAGE_SHIFT));
3317
3318 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3319 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3320 GCPtrCurPage,
3321 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3322 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3323
3324 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3325 break;
3326 }
3327 }
3328 else
3329 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3330
3331 /* Save the new PDE. */
3332 PdeDst.u &= X86_PDE_AVL_MASK;
3333 PdeDst.u |= pShwPage->Core.Key;
3334 PdeDst.n.u1Present = 1;
3335 PdeDst.n.u1Write = 1;
3336# if PGM_SHW_TYPE == PGM_TYPE_EPT
3337 PdeDst.n.u1Execute = 1;
3338# else
3339 PdeDst.n.u1User = 1;
3340 PdeDst.n.u1Accessed = 1;
3341# endif
3342 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3343
3344 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3345 if (RT_FAILURE(rc))
3346 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3347 return rc;
3348
3349#else
3350 NOREF(iPDSrc); NOREF(pPDSrc);
3351 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3352 return VERR_PGM_NOT_USED_IN_MODE;
3353#endif
3354}
3355
3356
3357
3358/**
3359 * Prefetch a page/set of pages.
3360 *
3361 * Typically used to sync commonly used pages before entering raw mode
3362 * after a CR3 reload.
3363 *
3364 * @returns VBox status code.
3365 * @param pVCpu The cross context virtual CPU structure.
3366 * @param GCPtrPage Page to invalidate.
3367 */
3368PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3369{
3370#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3371 || PGM_GST_TYPE == PGM_TYPE_REAL \
3372 || PGM_GST_TYPE == PGM_TYPE_PROT \
3373 || PGM_GST_TYPE == PGM_TYPE_PAE \
3374 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3375 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3376 && PGM_SHW_TYPE != PGM_TYPE_EPT
3377
3378 /*
3379 * Check that all Guest levels thru the PDE are present, getting the
3380 * PD and PDE in the processes.
3381 */
3382 int rc = VINF_SUCCESS;
3383# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3384# if PGM_GST_TYPE == PGM_TYPE_32BIT
3385 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3386 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3387# elif PGM_GST_TYPE == PGM_TYPE_PAE
3388 unsigned iPDSrc;
3389 X86PDPE PdpeSrc;
3390 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3391 if (!pPDSrc)
3392 return VINF_SUCCESS; /* not present */
3393# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3394 unsigned iPDSrc;
3395 PX86PML4E pPml4eSrc;
3396 X86PDPE PdpeSrc;
3397 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3398 if (!pPDSrc)
3399 return VINF_SUCCESS; /* not present */
3400# endif
3401 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3402# else
3403 PGSTPD pPDSrc = NULL;
3404 const unsigned iPDSrc = 0;
3405 GSTPDE PdeSrc;
3406
3407 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3408 PdeSrc.n.u1Present = 1;
3409 PdeSrc.n.u1Write = 1;
3410 PdeSrc.n.u1Accessed = 1;
3411 PdeSrc.n.u1User = 1;
3412# endif
3413
3414 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3415 {
3416 PVM pVM = pVCpu->CTX_SUFF(pVM);
3417 pgmLock(pVM);
3418
3419# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3420 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3421# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3422 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3423 PX86PDPAE pPDDst;
3424 X86PDEPAE PdeDst;
3425# if PGM_GST_TYPE != PGM_TYPE_PAE
3426 X86PDPE PdpeSrc;
3427
3428 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3429 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3430# endif
3431 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3432 if (rc != VINF_SUCCESS)
3433 {
3434 pgmUnlock(pVM);
3435 AssertRC(rc);
3436 return rc;
3437 }
3438 Assert(pPDDst);
3439 PdeDst = pPDDst->a[iPDDst];
3440
3441# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3442 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3443 PX86PDPAE pPDDst;
3444 X86PDEPAE PdeDst;
3445
3446# if PGM_GST_TYPE == PGM_TYPE_PROT
3447 /* AMD-V nested paging */
3448 X86PML4E Pml4eSrc;
3449 X86PDPE PdpeSrc;
3450 PX86PML4E pPml4eSrc = &Pml4eSrc;
3451
3452 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3453 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3454 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3455# endif
3456
3457 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3458 if (rc != VINF_SUCCESS)
3459 {
3460 pgmUnlock(pVM);
3461 AssertRC(rc);
3462 return rc;
3463 }
3464 Assert(pPDDst);
3465 PdeDst = pPDDst->a[iPDDst];
3466# endif
3467 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3468 {
3469 if (!PdeDst.n.u1Present)
3470 {
3471 /** @todo r=bird: This guy will set the A bit on the PDE,
3472 * probably harmless. */
3473 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3474 }
3475 else
3476 {
3477 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3478 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3479 * makes no sense to prefetch more than one page.
3480 */
3481 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3482 if (RT_SUCCESS(rc))
3483 rc = VINF_SUCCESS;
3484 }
3485 }
3486 pgmUnlock(pVM);
3487 }
3488 return rc;
3489
3490#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3491 NOREF(pVCpu); NOREF(GCPtrPage);
3492 return VINF_SUCCESS; /* ignore */
3493#else
3494 AssertCompile(0);
3495#endif
3496}
3497
3498
3499
3500
3501/**
3502 * Syncs a page during a PGMVerifyAccess() call.
3503 *
3504 * @returns VBox status code (informational included).
3505 * @param pVCpu The cross context virtual CPU structure.
3506 * @param GCPtrPage The address of the page to sync.
3507 * @param fPage The effective guest page flags.
3508 * @param uErr The trap error code.
3509 * @remarks This will normally never be called on invalid guest page
3510 * translation entries.
3511 */
3512PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3513{
3514 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3515
3516 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3517 RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr);
3518
3519 Assert(!pVM->pgm.s.fNestedPaging);
3520#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3521 || PGM_GST_TYPE == PGM_TYPE_REAL \
3522 || PGM_GST_TYPE == PGM_TYPE_PROT \
3523 || PGM_GST_TYPE == PGM_TYPE_PAE \
3524 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3525 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3526 && PGM_SHW_TYPE != PGM_TYPE_EPT
3527
3528# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3529 if (!(fPage & X86_PTE_US))
3530 {
3531 /*
3532 * Mark this page as safe.
3533 */
3534 /** @todo not correct for pages that contain both code and data!! */
3535 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3536 CSAMMarkPage(pVM, GCPtrPage, true);
3537 }
3538# endif
3539
3540 /*
3541 * Get guest PD and index.
3542 */
3543 /** @todo Performance: We've done all this a jiffy ago in the
3544 * PGMGstGetPage call. */
3545# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3546# if PGM_GST_TYPE == PGM_TYPE_32BIT
3547 const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT;
3548 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3549
3550# elif PGM_GST_TYPE == PGM_TYPE_PAE
3551 unsigned iPDSrc = 0;
3552 X86PDPE PdpeSrc;
3553 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3554 if (RT_UNLIKELY(!pPDSrc))
3555 {
3556 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3557 return VINF_EM_RAW_GUEST_TRAP;
3558 }
3559
3560# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3561 unsigned iPDSrc = 0; /* shut up gcc */
3562 PX86PML4E pPml4eSrc = NULL; /* ditto */
3563 X86PDPE PdpeSrc;
3564 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3565 if (RT_UNLIKELY(!pPDSrc))
3566 {
3567 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3568 return VINF_EM_RAW_GUEST_TRAP;
3569 }
3570# endif
3571
3572# else /* !PGM_WITH_PAGING */
3573 PGSTPD pPDSrc = NULL;
3574 const unsigned iPDSrc = 0;
3575# endif /* !PGM_WITH_PAGING */
3576 int rc = VINF_SUCCESS;
3577
3578 pgmLock(pVM);
3579
3580 /*
3581 * First check if the shadow pd is present.
3582 */
3583# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3584 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3585
3586# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3587 PX86PDEPAE pPdeDst;
3588 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3589 PX86PDPAE pPDDst;
3590# if PGM_GST_TYPE != PGM_TYPE_PAE
3591 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3592 X86PDPE PdpeSrc;
3593 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3594# endif
3595 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3596 if (rc != VINF_SUCCESS)
3597 {
3598 pgmUnlock(pVM);
3599 AssertRC(rc);
3600 return rc;
3601 }
3602 Assert(pPDDst);
3603 pPdeDst = &pPDDst->a[iPDDst];
3604
3605# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3606 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3607 PX86PDPAE pPDDst;
3608 PX86PDEPAE pPdeDst;
3609
3610# if PGM_GST_TYPE == PGM_TYPE_PROT
3611 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3612 X86PML4E Pml4eSrc;
3613 X86PDPE PdpeSrc;
3614 PX86PML4E pPml4eSrc = &Pml4eSrc;
3615 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3616 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3617# endif
3618
3619 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3620 if (rc != VINF_SUCCESS)
3621 {
3622 pgmUnlock(pVM);
3623 AssertRC(rc);
3624 return rc;
3625 }
3626 Assert(pPDDst);
3627 pPdeDst = &pPDDst->a[iPDDst];
3628# endif
3629
3630 if (!pPdeDst->n.u1Present)
3631 {
3632 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3633 if (rc != VINF_SUCCESS)
3634 {
3635 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3636 pgmUnlock(pVM);
3637 AssertRC(rc);
3638 return rc;
3639 }
3640 }
3641
3642# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3643 /* Check for dirty bit fault */
3644 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3645 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3646 Log(("PGMVerifyAccess: success (dirty)\n"));
3647 else
3648# endif
3649 {
3650# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3651 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3652# else
3653 GSTPDE PdeSrc;
3654 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3655 PdeSrc.n.u1Present = 1;
3656 PdeSrc.n.u1Write = 1;
3657 PdeSrc.n.u1Accessed = 1;
3658 PdeSrc.n.u1User = 1;
3659# endif
3660
3661 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3662 if (uErr & X86_TRAP_PF_US)
3663 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3664 else /* supervisor */
3665 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3666
3667 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3668 if (RT_SUCCESS(rc))
3669 {
3670 /* Page was successfully synced */
3671 Log2(("PGMVerifyAccess: success (sync)\n"));
3672 rc = VINF_SUCCESS;
3673 }
3674 else
3675 {
3676 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3677 rc = VINF_EM_RAW_GUEST_TRAP;
3678 }
3679 }
3680 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3681 pgmUnlock(pVM);
3682 return rc;
3683
3684#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3685
3686 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3687 return VERR_PGM_NOT_USED_IN_MODE;
3688#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3689}
3690
3691
3692/**
3693 * Syncs the paging hierarchy starting at CR3.
3694 *
3695 * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other
3696 * informational status codes.
3697 * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map
3698 * the VMM into guest context.
3699 * @param pVCpu The cross context virtual CPU structure.
3700 * @param cr0 Guest context CR0 register.
3701 * @param cr3 Guest context CR3 register. Not subjected to the A20
3702 * mask.
3703 * @param cr4 Guest context CR4 register.
3704 * @param fGlobal Including global page directories or not
3705 */
3706PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3707{
3708 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3709 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3710
3711 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3712
3713#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3714
3715 pgmLock(pVM);
3716
3717# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3718 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3719 if (pPool->cDirtyPages)
3720 pgmPoolResetDirtyPages(pVM);
3721# endif
3722
3723 /*
3724 * Update page access handlers.
3725 * The virtual are always flushed, while the physical are only on demand.
3726 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3727 * have to look into that later because it will have a bad influence on the performance.
3728 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3729 * bird: Yes, but that won't work for aliases.
3730 */
3731 /** @todo this MUST go away. See @bugref{1557}. */
3732 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3733 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3734 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3735 pgmUnlock(pVM);
3736#endif /* !NESTED && !EPT */
3737
3738#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3739 /*
3740 * Nested / EPT - almost no work.
3741 */
3742 Assert(!pgmMapAreMappingsEnabled(pVM));
3743 return VINF_SUCCESS;
3744
3745#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3746 /*
3747 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3748 * out the shadow parts when the guest modifies its tables.
3749 */
3750 Assert(!pgmMapAreMappingsEnabled(pVM));
3751 return VINF_SUCCESS;
3752
3753#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3754
3755# ifndef PGM_WITHOUT_MAPPINGS
3756 /*
3757 * Check for and resolve conflicts with our guest mappings if they
3758 * are enabled and not fixed.
3759 */
3760 if (pgmMapAreMappingsFloating(pVM))
3761 {
3762 int rc = pgmMapResolveConflicts(pVM);
3763 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3764 if (rc == VINF_SUCCESS)
3765 { /* likely */ }
3766 else if (rc == VINF_PGM_SYNC_CR3)
3767 {
3768 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3769 return VINF_PGM_SYNC_CR3;
3770 }
3771 else if (RT_FAILURE(rc))
3772 return rc;
3773 else
3774 AssertMsgFailed(("%Rrc\n", rc));
3775 }
3776# else
3777 Assert(!pgmMapAreMappingsEnabled(pVM));
3778# endif
3779 return VINF_SUCCESS;
3780#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3781}
3782
3783
3784
3785
3786#ifdef VBOX_STRICT
3787# ifdef IN_RC
3788# undef AssertMsgFailed
3789# define AssertMsgFailed Log
3790# endif
3791
3792/**
3793 * Checks that the shadow page table is in sync with the guest one.
3794 *
3795 * @returns The number of errors.
3796 * @param pVCpu The cross context virtual CPU structure.
3797 * @param cr3 Guest context CR3 register.
3798 * @param cr4 Guest context CR4 register.
3799 * @param GCPtr Where to start. Defaults to 0.
3800 * @param cb How much to check. Defaults to everything.
3801 */
3802PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3803{
3804 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3805#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3806 return 0;
3807#else
3808 unsigned cErrors = 0;
3809 PVM pVM = pVCpu->CTX_SUFF(pVM);
3810 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3811
3812# if PGM_GST_TYPE == PGM_TYPE_PAE
3813 /** @todo currently broken; crashes below somewhere */
3814 AssertFailed();
3815# endif
3816
3817# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3818 || PGM_GST_TYPE == PGM_TYPE_PAE \
3819 || PGM_GST_TYPE == PGM_TYPE_AMD64
3820
3821 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3822 PPGMCPU pPGM = &pVCpu->pgm.s;
3823 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3824 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3825# ifndef IN_RING0
3826 RTHCPHYS HCPhys; /* general usage. */
3827# endif
3828 int rc;
3829
3830 /*
3831 * Check that the Guest CR3 and all its mappings are correct.
3832 */
3833 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3834 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3835 false);
3836# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3837# if PGM_GST_TYPE == PGM_TYPE_32BIT
3838 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3839# else
3840 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3841# endif
3842 AssertRCReturn(rc, 1);
3843 HCPhys = NIL_RTHCPHYS;
3844 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3845 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3846# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3847 pgmGstGet32bitPDPtr(pVCpu);
3848 RTGCPHYS GCPhys;
3849 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3850 AssertRCReturn(rc, 1);
3851 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3852# endif
3853# endif /* !IN_RING0 */
3854
3855 /*
3856 * Get and check the Shadow CR3.
3857 */
3858# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3859 unsigned cPDEs = X86_PG_ENTRIES;
3860 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3861# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3862# if PGM_GST_TYPE == PGM_TYPE_32BIT
3863 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3864# else
3865 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3866# endif
3867 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3868# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3869 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3870 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3871# endif
3872 if (cb != ~(RTGCPTR)0)
3873 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3874
3875/** @todo call the other two PGMAssert*() functions. */
3876
3877# if PGM_GST_TYPE == PGM_TYPE_AMD64
3878 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3879
3880 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3881 {
3882 PPGMPOOLPAGE pShwPdpt = NULL;
3883 PX86PML4E pPml4eSrc;
3884 PX86PML4E pPml4eDst;
3885 RTGCPHYS GCPhysPdptSrc;
3886
3887 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3888 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3889
3890 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3891 if (!pPml4eDst->n.u1Present)
3892 {
3893 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3894 continue;
3895 }
3896
3897 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3898 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3899
3900 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3901 {
3902 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3903 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3904 cErrors++;
3905 continue;
3906 }
3907
3908 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3909 {
3910 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3911 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3912 cErrors++;
3913 continue;
3914 }
3915
3916 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3917 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3918 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3919 {
3920 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3921 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3922 cErrors++;
3923 continue;
3924 }
3925# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3926 {
3927# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3928
3929# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3930 /*
3931 * Check the PDPTEs too.
3932 */
3933 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3934
3935 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3936 {
3937 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3938 PPGMPOOLPAGE pShwPde = NULL;
3939 PX86PDPE pPdpeDst;
3940 RTGCPHYS GCPhysPdeSrc;
3941 X86PDPE PdpeSrc;
3942 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3943# if PGM_GST_TYPE == PGM_TYPE_PAE
3944 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3945 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3946# else
3947 PX86PML4E pPml4eSrcIgn;
3948 PX86PDPT pPdptDst;
3949 PX86PDPAE pPDDst;
3950 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3951
3952 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3953 if (rc != VINF_SUCCESS)
3954 {
3955 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3956 GCPtr += 512 * _2M;
3957 continue; /* next PDPTE */
3958 }
3959 Assert(pPDDst);
3960# endif
3961 Assert(iPDSrc == 0);
3962
3963 pPdpeDst = &pPdptDst->a[iPdpt];
3964
3965 if (!pPdpeDst->n.u1Present)
3966 {
3967 GCPtr += 512 * _2M;
3968 continue; /* next PDPTE */
3969 }
3970
3971 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3972 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3973
3974 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3975 {
3976 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3977 GCPtr += 512 * _2M;
3978 cErrors++;
3979 continue;
3980 }
3981
3982 if (GCPhysPdeSrc != pShwPde->GCPhys)
3983 {
3984# if PGM_GST_TYPE == PGM_TYPE_AMD64
3985 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3986# else
3987 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3988# endif
3989 GCPtr += 512 * _2M;
3990 cErrors++;
3991 continue;
3992 }
3993
3994# if PGM_GST_TYPE == PGM_TYPE_AMD64
3995 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3996 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3997 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3998 {
3999 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4000 GCPtr += 512 * _2M;
4001 cErrors++;
4002 continue;
4003 }
4004# endif
4005
4006# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4007 {
4008# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4009# if PGM_GST_TYPE == PGM_TYPE_32BIT
4010 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
4011# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4012 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
4013# endif
4014# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
4015 /*
4016 * Iterate the shadow page directory.
4017 */
4018 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
4019 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
4020
4021 for (;
4022 iPDDst < cPDEs;
4023 iPDDst++, GCPtr += cIncrement)
4024 {
4025# if PGM_SHW_TYPE == PGM_TYPE_PAE
4026 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
4027# else
4028 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4029# endif
4030 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4031 {
4032 Assert(pgmMapAreMappingsEnabled(pVM));
4033 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4034 {
4035 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4036 cErrors++;
4037 continue;
4038 }
4039 }
4040 else if ( (PdeDst.u & X86_PDE_P)
4041 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4042 )
4043 {
4044 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4045 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4046 if (!pPoolPage)
4047 {
4048 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4049 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4050 cErrors++;
4051 continue;
4052 }
4053 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4054
4055 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4056 {
4057 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4058 GCPtr, (uint64_t)PdeDst.u));
4059 cErrors++;
4060 }
4061
4062 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4063 {
4064 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4065 GCPtr, (uint64_t)PdeDst.u));
4066 cErrors++;
4067 }
4068
4069 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4070 if (!PdeSrc.n.u1Present)
4071 {
4072 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4073 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4074 cErrors++;
4075 continue;
4076 }
4077
4078 if ( !PdeSrc.b.u1Size
4079 || !fBigPagesSupported)
4080 {
4081 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4082# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4083 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4084# endif
4085 }
4086 else
4087 {
4088# if PGM_GST_TYPE == PGM_TYPE_32BIT
4089 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4090 {
4091 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4092 GCPtr, (uint64_t)PdeSrc.u));
4093 cErrors++;
4094 continue;
4095 }
4096# endif
4097 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4098# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4099 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4100# endif
4101 }
4102
4103 if ( pPoolPage->enmKind
4104 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4105 {
4106 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4107 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4108 cErrors++;
4109 }
4110
4111 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4112 if (!pPhysPage)
4113 {
4114 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4115 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4116 cErrors++;
4117 continue;
4118 }
4119
4120 if (GCPhysGst != pPoolPage->GCPhys)
4121 {
4122 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4123 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4124 cErrors++;
4125 continue;
4126 }
4127
4128 if ( !PdeSrc.b.u1Size
4129 || !fBigPagesSupported)
4130 {
4131 /*
4132 * Page Table.
4133 */
4134 const GSTPT *pPTSrc;
4135 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4136 &pPTSrc);
4137 if (RT_FAILURE(rc))
4138 {
4139 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4140 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4141 cErrors++;
4142 continue;
4143 }
4144 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4145 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4146 {
4147 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4148 // (This problem will go away when/if we shadow multiple CR3s.)
4149 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4150 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4151 cErrors++;
4152 continue;
4153 }
4154 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4155 {
4156 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4157 GCPtr, (uint64_t)PdeDst.u));
4158 cErrors++;
4159 continue;
4160 }
4161
4162 /* iterate the page table. */
4163# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4164 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4165 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4166# else
4167 const unsigned offPTSrc = 0;
4168# endif
4169 for (unsigned iPT = 0, off = 0;
4170 iPT < RT_ELEMENTS(pPTDst->a);
4171 iPT++, off += PAGE_SIZE)
4172 {
4173 const SHWPTE PteDst = pPTDst->a[iPT];
4174
4175 /* skip not-present and dirty tracked entries. */
4176 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4177 continue;
4178 Assert(SHW_PTE_IS_P(PteDst));
4179
4180 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4181 if (!PteSrc.n.u1Present)
4182 {
4183# ifdef IN_RING3
4184 PGMAssertHandlerAndFlagsInSync(pVM);
4185 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4186 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4187 0, 0, UINT64_MAX, 99, NULL);
4188# endif
4189 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4190 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4191 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4192 cErrors++;
4193 continue;
4194 }
4195
4196 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4197# if 1 /** @todo sync accessed bit properly... */
4198 fIgnoreFlags |= X86_PTE_A;
4199# endif
4200
4201 /* match the physical addresses */
4202 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4203 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4204
4205# ifdef IN_RING3
4206 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4207 if (RT_FAILURE(rc))
4208 {
4209 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4210 {
4211 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4212 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4213 cErrors++;
4214 continue;
4215 }
4216 }
4217 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4218 {
4219 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4220 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4221 cErrors++;
4222 continue;
4223 }
4224# endif
4225
4226 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4227 if (!pPhysPage)
4228 {
4229# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4230 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4231 {
4232 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4233 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4234 cErrors++;
4235 continue;
4236 }
4237# endif
4238 if (SHW_PTE_IS_RW(PteDst))
4239 {
4240 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4241 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4242 cErrors++;
4243 }
4244 fIgnoreFlags |= X86_PTE_RW;
4245 }
4246 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4247 {
4248 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4249 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4250 cErrors++;
4251 continue;
4252 }
4253
4254 /* flags */
4255 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4256 {
4257 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4258 {
4259 if (SHW_PTE_IS_RW(PteDst))
4260 {
4261 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4262 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4263 cErrors++;
4264 continue;
4265 }
4266 fIgnoreFlags |= X86_PTE_RW;
4267 }
4268 else
4269 {
4270 if ( SHW_PTE_IS_P(PteDst)
4271# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4272 && !PGM_PAGE_IS_MMIO(pPhysPage)
4273# endif
4274 )
4275 {
4276 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4277 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4278 cErrors++;
4279 continue;
4280 }
4281 fIgnoreFlags |= X86_PTE_P;
4282 }
4283 }
4284 else
4285 {
4286 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4287 {
4288 if (SHW_PTE_IS_RW(PteDst))
4289 {
4290 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4291 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4292 cErrors++;
4293 continue;
4294 }
4295 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4296 {
4297 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4298 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4299 cErrors++;
4300 continue;
4301 }
4302 if (SHW_PTE_IS_D(PteDst))
4303 {
4304 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4305 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4306 cErrors++;
4307 }
4308# if 0 /** @todo sync access bit properly... */
4309 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4310 {
4311 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4312 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4313 cErrors++;
4314 }
4315 fIgnoreFlags |= X86_PTE_RW;
4316# else
4317 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4318# endif
4319 }
4320 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4321 {
4322 /* access bit emulation (not implemented). */
4323 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4324 {
4325 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4326 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4327 cErrors++;
4328 continue;
4329 }
4330 if (!SHW_PTE_IS_A(PteDst))
4331 {
4332 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4333 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4334 cErrors++;
4335 }
4336 fIgnoreFlags |= X86_PTE_P;
4337 }
4338# ifdef DEBUG_sandervl
4339 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4340# endif
4341 }
4342
4343 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4344 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4345 )
4346 {
4347 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4348 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4349 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4350 cErrors++;
4351 continue;
4352 }
4353 } /* foreach PTE */
4354 }
4355 else
4356 {
4357 /*
4358 * Big Page.
4359 */
4360 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4361 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4362 {
4363 if (PdeDst.n.u1Write)
4364 {
4365 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4366 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4367 cErrors++;
4368 continue;
4369 }
4370 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4371 {
4372 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4373 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4374 cErrors++;
4375 continue;
4376 }
4377# if 0 /** @todo sync access bit properly... */
4378 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4379 {
4380 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4381 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4382 cErrors++;
4383 }
4384 fIgnoreFlags |= X86_PTE_RW;
4385# else
4386 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4387# endif
4388 }
4389 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4390 {
4391 /* access bit emulation (not implemented). */
4392 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4393 {
4394 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4395 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4396 cErrors++;
4397 continue;
4398 }
4399 if (!PdeDst.n.u1Accessed)
4400 {
4401 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4402 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4403 cErrors++;
4404 }
4405 fIgnoreFlags |= X86_PTE_P;
4406 }
4407
4408 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4409 {
4410 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4411 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4412 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4413 cErrors++;
4414 }
4415
4416 /* iterate the page table. */
4417 for (unsigned iPT = 0, off = 0;
4418 iPT < RT_ELEMENTS(pPTDst->a);
4419 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4420 {
4421 const SHWPTE PteDst = pPTDst->a[iPT];
4422
4423 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4424 {
4425 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4426 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4427 cErrors++;
4428 }
4429
4430 /* skip not-present entries. */
4431 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4432 continue;
4433
4434 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4435
4436 /* match the physical addresses */
4437 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4438
4439# ifdef IN_RING3
4440 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4441 if (RT_FAILURE(rc))
4442 {
4443 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4444 {
4445 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4446 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4447 cErrors++;
4448 }
4449 }
4450 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4451 {
4452 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4453 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4454 cErrors++;
4455 continue;
4456 }
4457# endif
4458 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4459 if (!pPhysPage)
4460 {
4461# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4462 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4463 {
4464 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4465 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4466 cErrors++;
4467 continue;
4468 }
4469# endif
4470 if (SHW_PTE_IS_RW(PteDst))
4471 {
4472 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4473 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4474 cErrors++;
4475 }
4476 fIgnoreFlags |= X86_PTE_RW;
4477 }
4478 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4479 {
4480 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4481 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4482 cErrors++;
4483 continue;
4484 }
4485
4486 /* flags */
4487 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4488 {
4489 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4490 {
4491 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4492 {
4493 if (SHW_PTE_IS_RW(PteDst))
4494 {
4495 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4496 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4497 cErrors++;
4498 continue;
4499 }
4500 fIgnoreFlags |= X86_PTE_RW;
4501 }
4502 }
4503 else
4504 {
4505 if ( SHW_PTE_IS_P(PteDst)
4506# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4507 && !PGM_PAGE_IS_MMIO(pPhysPage)
4508# endif
4509 )
4510 {
4511 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4512 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4513 cErrors++;
4514 continue;
4515 }
4516 fIgnoreFlags |= X86_PTE_P;
4517 }
4518 }
4519
4520 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4521 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4522 )
4523 {
4524 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4525 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4526 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4527 cErrors++;
4528 continue;
4529 }
4530 } /* for each PTE */
4531 }
4532 }
4533 /* not present */
4534
4535 } /* for each PDE */
4536
4537 } /* for each PDPTE */
4538
4539 } /* for each PML4E */
4540
4541# ifdef DEBUG
4542 if (cErrors)
4543 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4544# endif
4545# endif /* GST is in {32BIT, PAE, AMD64} */
4546 return cErrors;
4547#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4548}
4549#endif /* VBOX_STRICT */
4550
4551
4552/**
4553 * Sets up the CR3 for shadow paging
4554 *
4555 * @returns Strict VBox status code.
4556 * @retval VINF_SUCCESS.
4557 *
4558 * @param pVCpu The cross context virtual CPU structure.
4559 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4560 * mask already applied.)
4561 */
4562PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4563{
4564 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4565
4566 /* Update guest paging info. */
4567#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4568 || PGM_GST_TYPE == PGM_TYPE_PAE \
4569 || PGM_GST_TYPE == PGM_TYPE_AMD64
4570
4571 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4572 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4573
4574 /*
4575 * Map the page CR3 points at.
4576 */
4577 RTHCPTR HCPtrGuestCR3;
4578 RTHCPHYS HCPhysGuestCR3;
4579 pgmLock(pVM);
4580 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4581 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4582 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4583 /** @todo this needs some reworking wrt. locking? */
4584# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4585 HCPtrGuestCR3 = NIL_RTHCPTR;
4586 int rc = VINF_SUCCESS;
4587# else
4588 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4589# endif
4590 pgmUnlock(pVM);
4591 if (RT_SUCCESS(rc))
4592 {
4593 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4594 if (RT_SUCCESS(rc))
4595 {
4596# ifdef IN_RC
4597 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4598# endif
4599# if PGM_GST_TYPE == PGM_TYPE_32BIT
4600 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4601# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4602 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4603# endif
4604 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4605
4606# elif PGM_GST_TYPE == PGM_TYPE_PAE
4607 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4608 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4609# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4610 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4611# endif
4612 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4613 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4614
4615 /*
4616 * Map the 4 PDs too.
4617 */
4618 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4619 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4620 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4621 {
4622 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4623 if (pGuestPDPT->a[i].n.u1Present)
4624 {
4625 RTHCPTR HCPtr;
4626 RTHCPHYS HCPhys;
4627 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4628 pgmLock(pVM);
4629 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4630 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4631 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4632# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4633 HCPtr = NIL_RTHCPTR;
4634 int rc2 = VINF_SUCCESS;
4635# else
4636 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4637# endif
4638 pgmUnlock(pVM);
4639 if (RT_SUCCESS(rc2))
4640 {
4641 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4642 AssertRCReturn(rc, rc);
4643
4644 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4645# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4646 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4647# endif
4648 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4649 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4650# ifdef IN_RC
4651 PGM_INVL_PG(pVCpu, GCPtr);
4652# endif
4653 continue;
4654 }
4655 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4656 }
4657
4658 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4659# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4660 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4661# endif
4662 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4663 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4664# ifdef IN_RC
4665 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4666# endif
4667 }
4668
4669# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4670 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4671# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4672 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4673# endif
4674# endif
4675 }
4676 else
4677 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4678 }
4679 else
4680 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4681
4682#else /* prot/real stub */
4683 int rc = VINF_SUCCESS;
4684#endif
4685
4686 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4687# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4688 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4689 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4690 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4691 && PGM_GST_TYPE != PGM_TYPE_PROT))
4692
4693 Assert(!pVM->pgm.s.fNestedPaging);
4694 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4695
4696 /*
4697 * Update the shadow root page as well since that's not fixed.
4698 */
4699 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4700 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4701 PPGMPOOLPAGE pNewShwPageCR3;
4702
4703 pgmLock(pVM);
4704
4705# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4706 if (pPool->cDirtyPages)
4707 pgmPoolResetDirtyPages(pVM);
4708# endif
4709
4710 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4711 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4712 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4713 &pNewShwPageCR3);
4714 AssertFatalRC(rc);
4715 rc = VINF_SUCCESS;
4716
4717# ifdef IN_RC
4718 /*
4719 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4720 * state will be inconsistent! Flush important things now while
4721 * we still can and then make sure there are no ring-3 calls.
4722 */
4723# ifdef VBOX_WITH_REM
4724 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4725# endif
4726 VMMRZCallRing3Disable(pVCpu);
4727# endif
4728
4729 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4730# ifdef IN_RING0
4731 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4732 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4733# elif defined(IN_RC)
4734 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4735 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4736# else
4737 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4738 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4739# endif
4740
4741# ifndef PGM_WITHOUT_MAPPINGS
4742 /*
4743 * Apply all hypervisor mappings to the new CR3.
4744 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4745 * make sure we check for conflicts in the new CR3 root.
4746 */
4747# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4748 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4749# endif
4750 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4751 AssertRCReturn(rc, rc);
4752# endif
4753
4754 /* Set the current hypervisor CR3. */
4755 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4756 SELMShadowCR3Changed(pVM, pVCpu);
4757
4758# ifdef IN_RC
4759 /* NOTE: The state is consistent again. */
4760 VMMRZCallRing3Enable(pVCpu);
4761# endif
4762
4763 /* Clean up the old CR3 root. */
4764 if ( pOldShwPageCR3
4765 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4766 {
4767 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4768# ifndef PGM_WITHOUT_MAPPINGS
4769 /* Remove the hypervisor mappings from the shadow page table. */
4770 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4771# endif
4772 /* Mark the page as unlocked; allow flushing again. */
4773 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4774
4775 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4776 }
4777 pgmUnlock(pVM);
4778# else
4779 NOREF(GCPhysCR3);
4780# endif
4781
4782 return rc;
4783}
4784
4785/**
4786 * Unmaps the shadow CR3.
4787 *
4788 * @returns VBox status, no specials.
4789 * @param pVCpu The cross context virtual CPU structure.
4790 */
4791PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4792{
4793 LogFlow(("UnmapCR3\n"));
4794
4795 int rc = VINF_SUCCESS;
4796 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4797
4798 /*
4799 * Update guest paging info.
4800 */
4801#if PGM_GST_TYPE == PGM_TYPE_32BIT
4802 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4803# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4804 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4805# endif
4806 pVCpu->pgm.s.pGst32BitPdRC = 0;
4807
4808#elif PGM_GST_TYPE == PGM_TYPE_PAE
4809 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4810# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4811 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4812# endif
4813 pVCpu->pgm.s.pGstPaePdptRC = 0;
4814 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4815 {
4816 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4817# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4818 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4819# endif
4820 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4821 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4822 }
4823
4824#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4825 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4826# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4827 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4828# endif
4829
4830#else /* prot/real mode stub */
4831 /* nothing to do */
4832#endif
4833
4834#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4835 /*
4836 * Update shadow paging info.
4837 */
4838# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4839 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4840 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4841
4842# if PGM_GST_TYPE != PGM_TYPE_REAL
4843 Assert(!pVM->pgm.s.fNestedPaging);
4844# endif
4845
4846 pgmLock(pVM);
4847
4848# ifndef PGM_WITHOUT_MAPPINGS
4849 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4850 /* Remove the hypervisor mappings from the shadow page table. */
4851 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4852# endif
4853
4854 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4855 {
4856 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4857
4858# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4859 if (pPool->cDirtyPages)
4860 pgmPoolResetDirtyPages(pVM);
4861# endif
4862
4863 /* Mark the page as unlocked; allow flushing again. */
4864 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4865
4866 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4867 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4868 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4869 pVCpu->pgm.s.pShwPageCR3RC = 0;
4870 }
4871 pgmUnlock(pVM);
4872# endif
4873#endif /* !IN_RC*/
4874
4875 return rc;
4876}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette