VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 10507

Last change on this file since 10507 was 10496, checked in by vboxsync, 17 years ago

Attempt 2

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 187.2 KB
Line 
1/* $Id: PGMAllBth.h 10496 2008-07-11 08:57:14Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
46#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED
47# error "Invalid combination; PAE guest implies PAE shadow"
48#endif
49
50#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
51 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED)
52# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
53#endif
54
55#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
56 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED)
57# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
58#endif
59
60#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED) \
61 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
62# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
63#endif
64
65#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
66# define PGM_WITHOUT_MAPPINGS
67#endif
68
69/**
70 * #PF Handler for raw-mode guest execution.
71 *
72 * @returns VBox status code (appropriate for trap handling and GC return).
73 * @param pVM VM Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 */
78PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
79{
80#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
81 && PGM_SHW_TYPE != PGM_TYPE_NESTED
82
83# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
84 /*
85 * Hide the instruction fetch trap indicator for now.
86 */
87 /** @todo NXE will change this and we must fix NXE in the switcher too! */
88 if (uErr & X86_TRAP_PF_ID)
89 {
90 uErr &= ~X86_TRAP_PF_ID;
91 TRPMSetErrorCode(pVM, uErr);
92 }
93# endif
94
95 /*
96 * Get PDs.
97 */
98 int rc;
99# if PGM_WITH_PAGING(PGM_GST_TYPE)
100# if PGM_GST_TYPE == PGM_TYPE_32BIT
101 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
102 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
103
104# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
105
106# if PGM_GST_TYPE == PGM_TYPE_PAE
107 unsigned iPDSrc;
108 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, (RTGCUINTPTR)pvFault, &iPDSrc);
109
110# elif PGM_GST_TYPE == PGM_TYPE_AMD64
111 unsigned iPDSrc;
112 PX86PML4E pPml4eSrc;
113 X86PDPE PdpeSrc;
114 PGSTPD pPDSrc;
115
116 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
117 Assert(pPml4eSrc);
118# endif
119 /* Quick check for a valid guest trap. */
120 if (!pPDSrc)
121 {
122 LogFlow(("Trap0eHandler: guest PDPTR %d not present CR3=%VGp\n", (pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK, (CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK)));
123 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eGuestTrap; });
124 TRPMSetErrorCode(pVM, uErr);
125 return VINF_EM_RAW_GUEST_TRAP;
126 }
127# endif
128# else
129 PGSTPD pPDSrc = NULL;
130 const unsigned iPDSrc = 0;
131# endif
132
133# if PGM_SHW_TYPE == PGM_TYPE_32BIT
134 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
135 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
136# elif PGM_SHW_TYPE == PGM_TYPE_PAE
137 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
138 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
139
140# if PGM_GST_TYPE == PGM_TYPE_PAE
141 /* Did we mark the PDPT as not present in SyncCR3? */
142 unsigned iPdpte = ((RTGCUINTPTR)pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
143 if (!pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
144 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 1;
145
146# endif
147
148# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
149 const unsigned iPDDst = (((RTGCUINTPTR)pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
150 PX86PDPAE pPDDst;
151# if PGM_GST_TYPE == PGM_TYPE_PROT
152 /* AMD-V nested paging */
153 X86PML4E Pml4eSrc;
154 X86PDPE PdpeSrc;
155 PX86PML4E pPml4eSrc = &Pml4eSrc;
156
157 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
158 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
159 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
160# endif
161
162 rc = PGMShwSyncLongModePDPtr(pVM, (RTGCUINTPTR)pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
163 if (rc != VINF_SUCCESS)
164 {
165 AssertRC(rc);
166 return rc;
167 }
168 Assert(pPDDst);
169# endif
170
171# if PGM_WITH_PAGING(PGM_GST_TYPE)
172 /*
173 * If we successfully correct the write protection fault due to dirty bit
174 * tracking, or this page fault is a genuine one, then return immediately.
175 */
176 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
177 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
178 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
179 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
180 || rc == VINF_EM_RAW_GUEST_TRAP)
181 {
182 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
183 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
184 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
185 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
186 }
187
188 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
189# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
190
191 /*
192 * A common case is the not-present error caused by lazy page table syncing.
193 *
194 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
195 * so we can safely assume that the shadow PT is present when calling SyncPage later.
196 *
197 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
198 * of mapping conflict and defer to SyncCR3 in R3.
199 * (Again, we do NOT support access handlers for non-present guest pages.)
200 *
201 */
202# if PGM_WITH_PAGING(PGM_GST_TYPE)
203 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
204# else
205 GSTPDE PdeSrc;
206 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
207 PdeSrc.n.u1Present = 1;
208 PdeSrc.n.u1Write = 1;
209 PdeSrc.n.u1Accessed = 1;
210 PdeSrc.n.u1User = 1;
211# endif
212 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
213 && !pPDDst->a[iPDDst].n.u1Present
214 && PdeSrc.n.u1Present
215 )
216
217 {
218 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
219 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
220 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
221 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
222 if (VBOX_SUCCESS(rc))
223 {
224 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
225 return rc;
226 }
227 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
228 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
229 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
230 return VINF_PGM_SYNC_CR3;
231 }
232
233# if PGM_WITH_PAGING(PGM_GST_TYPE)
234 /*
235 * Check if this address is within any of our mappings.
236 *
237 * This is *very* fast and it's gonna save us a bit of effort below and prevent
238 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
239 * (BTW, it's impossible to have physical access handlers in a mapping.)
240 */
241 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
242 {
243 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
244 PPGMMAPPING pMapping = CTXALLSUFF(pVM->pgm.s.pMappings);
245 for ( ; pMapping; pMapping = CTXALLSUFF(pMapping->pNext))
246 {
247 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
248 break;
249 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
250 {
251 /*
252 * The first thing we check is if we've got an undetected conflict.
253 */
254 if (!pVM->pgm.s.fMappingsFixed)
255 {
256 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
257 while (iPT-- > 0)
258 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
259 {
260 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
261 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
262 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
263 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
264 return VINF_PGM_SYNC_CR3;
265 }
266 }
267
268 /*
269 * Check if the fault address is in a virtual page access handler range.
270 */
271 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->HyperVirtHandlers, pvFault);
272 if ( pCur
273 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
274 && uErr & X86_TRAP_PF_RW)
275 {
276# ifdef IN_GC
277 STAM_PROFILE_START(&pCur->Stat, h);
278 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
279 STAM_PROFILE_STOP(&pCur->Stat, h);
280# else
281 AssertFailed();
282 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
283# endif
284 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
285 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
286 return rc;
287 }
288
289 /*
290 * Pretend we're not here and let the guest handle the trap.
291 */
292 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
293 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
294 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
295 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
296 return VINF_EM_RAW_GUEST_TRAP;
297 }
298 }
299 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
300 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
301# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
302
303 /*
304 * Check if this fault address is flagged for special treatment,
305 * which means we'll have to figure out the physical address and
306 * check flags associated with it.
307 *
308 * ASSUME that we can limit any special access handling to pages
309 * in page tables which the guest believes to be present.
310 */
311 if (PdeSrc.n.u1Present)
312 {
313 RTGCPHYS GCPhys = NIL_RTGCPHYS;
314
315# if PGM_WITH_PAGING(PGM_GST_TYPE)
316# if PGM_GST_TYPE == PGM_TYPE_AMD64
317 bool fBigPagesSupported = true;
318# else
319 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
320# endif
321 if ( PdeSrc.b.u1Size
322 && fBigPagesSupported)
323 GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK)
324 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
325 else
326 {
327 PGSTPT pPTSrc;
328 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
329 if (VBOX_SUCCESS(rc))
330 {
331 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
332 if (pPTSrc->a[iPTESrc].n.u1Present)
333 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
334 }
335 }
336# else
337 /* No paging so the fault address is the physical address */
338 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
339# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
340
341 /*
342 * If we have a GC address we'll check if it has any flags set.
343 */
344 if (GCPhys != NIL_RTGCPHYS)
345 {
346 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
347
348 PPGMPAGE pPage;
349 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
350 if (VBOX_SUCCESS(rc))
351 {
352 if (PGM_PAGE_HAS_ANY_HANDLERS(pPage))
353 {
354 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
355 {
356 /*
357 * Physical page access handler.
358 */
359 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
360 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
361 if (pCur)
362 {
363# ifdef PGM_SYNC_N_PAGES
364 /*
365 * If the region is write protected and we got a page not present fault, then sync
366 * the pages. If the fault was caused by a read, then restart the instruction.
367 * In case of write access continue to the GC write handler.
368 *
369 * ASSUMES that there is only one handler per page or that they have similar write properties.
370 */
371 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
372 && !(uErr & X86_TRAP_PF_P))
373 {
374 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
375 if ( VBOX_FAILURE(rc)
376 || !(uErr & X86_TRAP_PF_RW)
377 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
378 {
379 AssertRC(rc);
380 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
381 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
382 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
383 return rc;
384 }
385 }
386# endif
387
388 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
389 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
390 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
391
392#if defined(IN_GC) || defined(IN_RING0)
393 if (CTXALLSUFF(pCur->pfnHandler))
394 {
395 STAM_PROFILE_START(&pCur->Stat, h);
396 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
397 STAM_PROFILE_STOP(&pCur->Stat, h);
398 }
399 else
400#endif
401 rc = VINF_EM_RAW_EMULATE_INSTR;
402 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
403 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
404 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
405 return rc;
406 }
407 }
408# if PGM_WITH_PAGING(PGM_GST_TYPE)
409 else
410 {
411# ifdef PGM_SYNC_N_PAGES
412 /*
413 * If the region is write protected and we got a page not present fault, then sync
414 * the pages. If the fault was caused by a read, then restart the instruction.
415 * In case of write access continue to the GC write handler.
416 */
417 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
418 && !(uErr & X86_TRAP_PF_P))
419 {
420 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
421 if ( VBOX_FAILURE(rc)
422 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
423 || !(uErr & X86_TRAP_PF_RW))
424 {
425 AssertRC(rc);
426 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
427 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
428 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
429 return rc;
430 }
431 }
432# endif
433 /*
434 * Ok, it's an virtual page access handler.
435 *
436 * Since it's faster to search by address, we'll do that first
437 * and then retry by GCPhys if that fails.
438 */
439 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
440 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
441 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
442 */
443 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
444 if (pCur)
445 {
446 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
447 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
448 || !(uErr & X86_TRAP_PF_P)
449 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
450 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
451
452 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
453 && ( uErr & X86_TRAP_PF_RW
454 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
455 {
456# ifdef IN_GC
457 STAM_PROFILE_START(&pCur->Stat, h);
458 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
459 STAM_PROFILE_STOP(&pCur->Stat, h);
460# else
461 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
462# endif
463 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
466 return rc;
467 }
468 /* Unhandled part of a monitored page */
469 }
470 else
471 {
472 /* Check by physical address. */
473 PPGMVIRTHANDLER pCur;
474 unsigned iPage;
475 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
476 &pCur, &iPage);
477 Assert(VBOX_SUCCESS(rc) || !pCur);
478 if ( pCur
479 && ( uErr & X86_TRAP_PF_RW
480 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
481 {
482 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
483# ifdef IN_GC
484 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
485 Assert(off < pCur->cb);
486 STAM_PROFILE_START(&pCur->Stat, h);
487 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
488 STAM_PROFILE_STOP(&pCur->Stat, h);
489# else
490 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
491# endif
492 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
493 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
494 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
495 return rc;
496 }
497 }
498 }
499# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
500
501 /*
502 * There is a handled area of the page, but this fault doesn't belong to it.
503 * We must emulate the instruction.
504 *
505 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
506 * we first check if this was a page-not-present fault for a page with only
507 * write access handlers. Restart the instruction if it wasn't a write access.
508 */
509 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
510
511 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
512 && !(uErr & X86_TRAP_PF_P))
513 {
514 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
515 if ( VBOX_FAILURE(rc)
516 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
517 || !(uErr & X86_TRAP_PF_RW))
518 {
519 AssertRC(rc);
520 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
521 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
522 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
523 return rc;
524 }
525 }
526
527 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
528 * It's writing to an unhandled part of the LDT page several million times.
529 */
530 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
531 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
532 rc, pPage->HCPhys,
533 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
534 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
535 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
536 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
537 return rc;
538 } /* if any kind of handler */
539
540# if PGM_WITH_PAGING(PGM_GST_TYPE)
541 if (uErr & X86_TRAP_PF_P)
542 {
543 /*
544 * The page isn't marked, but it might still be monitored by a virtual page access handler.
545 * (ASSUMES no temporary disabling of virtual handlers.)
546 */
547 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
548 * we should correct both the shadow page table and physical memory flags, and not only check for
549 * accesses within the handler region but for access to pages with virtual handlers. */
550 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
551 if (pCur)
552 {
553 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
554 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
555 || !(uErr & X86_TRAP_PF_P)
556 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
557 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
558
559 if ( (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
560 && ( uErr & X86_TRAP_PF_RW
561 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
562 {
563# ifdef IN_GC
564 STAM_PROFILE_START(&pCur->Stat, h);
565 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
566 STAM_PROFILE_STOP(&pCur->Stat, h);
567# else
568 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
569# endif
570 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
571 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
572 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
573 return rc;
574 }
575 }
576 }
577# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
578 }
579 else
580 {
581 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
582 * back to the recompiler to emulate the instruction.
583 */
584 LogFlow(("pgmPhysGetPageEx %VGp failed with %Vrc\n", GCPhys, rc));
585 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersInvalid);
586 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
587 return VINF_EM_RAW_EMULATE_INSTR;
588 }
589
590 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
591
592# ifdef PGM_OUT_OF_SYNC_IN_GC
593 /*
594 * We are here only if page is present in Guest page tables and trap is not handled
595 * by our handlers.
596 * Check it for page out-of-sync situation.
597 */
598 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
599
600 if (!(uErr & X86_TRAP_PF_P))
601 {
602 /*
603 * Page is not present in our page tables.
604 * Try to sync it!
605 * BTW, fPageShw is invalid in this branch!
606 */
607 if (uErr & X86_TRAP_PF_US)
608 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
609 else /* supervisor */
610 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
611
612# if defined(LOG_ENABLED) && !defined(IN_RING0)
613 RTGCPHYS GCPhys;
614 uint64_t fPageGst;
615 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
616 Log(("Page out of sync: %VGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
617 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
618# endif /* LOG_ENABLED */
619
620# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
621 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
622 {
623 uint64_t fPageGst;
624 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
625 if ( VBOX_SUCCESS(rc)
626 && !(fPageGst & X86_PTE_US))
627 {
628 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
629 if ( pvFault == (RTGCPTR)pRegFrame->eip
630 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
631# ifdef CSAM_DETECT_NEW_CODE_PAGES
632 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
633 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
634# endif /* CSAM_DETECT_NEW_CODE_PAGES */
635 )
636 {
637 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
638 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
639 if (rc != VINF_SUCCESS)
640 {
641 /*
642 * CSAM needs to perform a job in ring 3.
643 *
644 * Sync the page before going to the host context; otherwise we'll end up in a loop if
645 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
646 */
647 LogFlow(("CSAM ring 3 job\n"));
648 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
649 AssertRC(rc2);
650
651 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
652 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
653 return rc;
654 }
655 }
656# ifdef CSAM_DETECT_NEW_CODE_PAGES
657 else
658 if ( uErr == X86_TRAP_PF_RW
659 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
660 && pRegFrame->ecx < 0x10000
661 )
662 {
663 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
664 * to detect loading of new code pages.
665 */
666
667 /*
668 * Decode the instruction.
669 */
670 RTGCPTR PC;
671 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
672 if (rc == VINF_SUCCESS)
673 {
674 DISCPUSTATE Cpu;
675 uint32_t cbOp;
676 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
677
678 /* For now we'll restrict this to rep movsw/d instructions */
679 if ( rc == VINF_SUCCESS
680 && Cpu.pCurInstr->opcode == OP_MOVSWD
681 && (Cpu.prefix & PREFIX_REP))
682 {
683 CSAMMarkPossibleCodePage(pVM, pvFault);
684 }
685 }
686 }
687# endif /* CSAM_DETECT_NEW_CODE_PAGES */
688
689 /*
690 * Mark this page as safe.
691 */
692 /** @todo not correct for pages that contain both code and data!! */
693 Log2(("CSAMMarkPage %VGv; scanned=%d\n", pvFault, true));
694 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
695 }
696 }
697# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0) */
698 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
699 if (VBOX_SUCCESS(rc))
700 {
701 /* The page was successfully synced, return to the guest. */
702 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
703 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
704 return VINF_SUCCESS;
705 }
706 }
707 else
708 {
709 /*
710 * A side effect of not flushing global PDEs are out of sync pages due
711 * to physical monitored regions, that are no longer valid.
712 * Assume for now it only applies to the read/write flag
713 */
714 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
715 {
716 if (uErr & X86_TRAP_PF_US)
717 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
718 else /* supervisor */
719 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
720
721
722 /*
723 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
724 */
725 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
726 if (VBOX_SUCCESS(rc))
727 {
728 /*
729 * Page was successfully synced, return to guest.
730 */
731# ifdef VBOX_STRICT
732 RTGCPHYS GCPhys;
733 uint64_t fPageGst;
734 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
735 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
736 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
737
738 uint64_t fPageShw;
739 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
740 AssertMsg(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Vrc fPageShw=%VX64\n", rc, fPageShw));
741# endif /* VBOX_STRICT */
742 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
743 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
744 return VINF_SUCCESS;
745 }
746
747 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
748 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
749 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP|X86_CR0_PG)) == X86_CR0_PG)
750 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
751 {
752 uint64_t fPageGst;
753 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
754 if ( VBOX_SUCCESS(rc)
755 && !(fPageGst & X86_PTE_RW))
756 {
757 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
758 if (VBOX_SUCCESS(rc))
759 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulGC);
760 else
761 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eWPEmulR3);
762 return rc;
763 }
764 else
765 AssertMsgFailed(("Unexpected r/w page %x flag=%x\n", pvFault, (uint32_t)fPageGst));
766 }
767
768 }
769
770# if PGM_WITH_PAGING(PGM_GST_TYPE)
771# ifdef VBOX_STRICT
772 /*
773 * Check for VMM page flags vs. Guest page flags consistency.
774 * Currently only for debug purposes.
775 */
776 if (VBOX_SUCCESS(rc))
777 {
778 /* Get guest page flags. */
779 uint64_t fPageGst;
780 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
781 if (VBOX_SUCCESS(rc))
782 {
783 uint64_t fPageShw;
784 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
785
786 /*
787 * Compare page flags.
788 * Note: we have AVL, A, D bits desynched.
789 */
790 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
791 ("Page flags mismatch! pvFault=%VGv GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
792 }
793 else
794 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
795 }
796 else
797 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
798# endif /* VBOX_STRICT */
799# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
800 }
801 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
802# endif /* PGM_OUT_OF_SYNC_IN_GC */
803 }
804 else
805 {
806 /*
807 * Page not present in Guest OS or invalid page table address.
808 * This is potential virtual page access handler food.
809 *
810 * For the present we'll say that our access handlers don't
811 * work for this case - we've already discarded the page table
812 * not present case which is identical to this.
813 *
814 * When we perchance find we need this, we will probably have AVL
815 * trees (offset based) to operate on and we can measure their speed
816 * agains mapping a page table and probably rearrange this handling
817 * a bit. (Like, searching virtual ranges before checking the
818 * physical address.)
819 */
820 }
821 }
822
823
824# if PGM_WITH_PAGING(PGM_GST_TYPE)
825 /*
826 * Conclusion, this is a guest trap.
827 */
828 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
829 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
830 return VINF_EM_RAW_GUEST_TRAP;
831# else
832 /* present, but not a monitored page; perhaps the guest is probing physical memory */
833 return VINF_EM_RAW_EMULATE_INSTR;
834# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
835
836
837#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
838
839 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
840 return VERR_INTERNAL_ERROR;
841#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
842}
843
844
845/**
846 * Emulation of the invlpg instruction.
847 *
848 *
849 * @returns VBox status code.
850 *
851 * @param pVM VM handle.
852 * @param GCPtrPage Page to invalidate.
853 *
854 * @remark ASSUMES that the guest is updating before invalidating. This order
855 * isn't required by the CPU, so this is speculative and could cause
856 * trouble.
857 *
858 * @todo Flush page or page directory only if necessary!
859 * @todo Add a #define for simply invalidating the page.
860 */
861PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
862{
863#if PGM_WITH_PAGING(PGM_GST_TYPE) \
864 && PGM_SHW_TYPE != PGM_TYPE_NESTED
865 int rc;
866
867 LogFlow(("InvalidatePage %VGv\n", GCPtrPage));
868 /*
869 * Get the shadow PD entry and skip out if this PD isn't present.
870 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
871 */
872# if PGM_SHW_TYPE == PGM_TYPE_32BIT
873 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
874 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
875# elif PGM_SHW_TYPE == PGM_TYPE_PAE
876 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
877 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT);
878 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
879 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
880# else /* AMD64 */
881 /* PML4 */
882 AssertReturn(pVM->pgm.s.pHCPaePML4, VERR_INTERNAL_ERROR);
883
884 const unsigned iPml4e = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
885 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
886 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
887 PX86PDPAE pPDDst;
888 PX86PDPT pPdptDst;
889 PX86PML4E pPml4eDst = &pVM->pgm.s.pHCPaePML4->a[iPml4e];
890 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
891 if (rc != VINF_SUCCESS)
892 {
893 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
894 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
895 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
896 PGM_INVL_GUEST_TLBS();
897 return VINF_SUCCESS;
898 }
899 Assert(pPDDst);
900
901 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
902 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpte];
903
904 if (!pPdpeDst->n.u1Present)
905 {
906 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
907 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
908 PGM_INVL_GUEST_TLBS();
909 return VINF_SUCCESS;
910 }
911
912# endif
913
914 const SHWPDE PdeDst = *pPdeDst;
915 if (!PdeDst.n.u1Present)
916 {
917 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
918 return VINF_SUCCESS;
919 }
920
921 /*
922 * Get the guest PD entry and calc big page.
923 */
924# if PGM_GST_TYPE == PGM_TYPE_32BIT
925 PX86PD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
926 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
927 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
928# else
929 unsigned iPDSrc;
930# if PGM_GST_TYPE == PGM_TYPE_PAE
931 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
932# else /* AMD64 */
933 PX86PML4E pPml4eSrc;
934 X86PDPE PdpeSrc;
935 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
936# endif
937 GSTPDE PdeSrc;
938
939 if (pPDSrc)
940 PdeSrc = pPDSrc->a[iPDSrc];
941 else
942 PdeSrc.u = 0;
943# endif
944
945# if PGM_GST_TYPE == PGM_TYPE_AMD64
946 const bool fIsBigPage = PdeSrc.b.u1Size;
947# else
948 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
949# endif
950
951# ifdef IN_RING3
952 /*
953 * If a CR3 Sync is pending we may ignore the invalidate page operation
954 * depending on the kind of sync and if it's a global page or not.
955 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
956 */
957# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
958 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
959 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
960 && fIsBigPage
961 && PdeSrc.b.u1Global
962 )
963 )
964# else
965 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
966# endif
967 {
968 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
969 return VINF_SUCCESS;
970 }
971# endif /* IN_RING3 */
972
973# if PGM_GST_TYPE == PGM_TYPE_AMD64
974 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
975
976 /* Fetch the pgm pool shadow descriptor. */
977 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
978 Assert(pShwPdpt);
979
980 /* Fetch the pgm pool shadow descriptor. */
981 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & SHW_PDPE_PG_MASK);
982 Assert(pShwPde);
983
984 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
985 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
986
987 if ( !pPml4eSrc->n.u1Present
988 || pShwPdpt->GCPhys != GCPhysPdpt)
989 {
990 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
991 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
992 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
993 pPml4eDst->u = 0;
994 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
995 PGM_INVL_GUEST_TLBS();
996 return VINF_SUCCESS;
997 }
998 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
999 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1000 {
1001 /*
1002 * Mark not present so we can resync the PML4E when it's used.
1003 */
1004 LogFlow(("InvalidatePage: Out-of-sync PML4E at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1005 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1006 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
1007 pPml4eDst->u = 0;
1008 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1009 PGM_INVL_GUEST_TLBS();
1010 }
1011 else if (!pPml4eSrc->n.u1Accessed)
1012 {
1013 /*
1014 * Mark not present so we can set the accessed bit.
1015 */
1016 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %VGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1017 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1018 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
1019 pPml4eDst->u = 0;
1020 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1021 PGM_INVL_GUEST_TLBS();
1022 }
1023
1024 /* Check if the PDPT entry has changed. */
1025 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1026 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1027 if ( !PdpeSrc.n.u1Present
1028 || pShwPde->GCPhys != GCPhysPd)
1029 {
1030 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %VGv GCPhys=%VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1031 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1032 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1033 pPdpeDst->u = 0;
1034 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1035 PGM_INVL_GUEST_TLBS();
1036 return VINF_SUCCESS;
1037 }
1038 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1039 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1040 {
1041 /*
1042 * Mark not present so we can resync the PDPTE when it's used.
1043 */
1044 LogFlow(("InvalidatePage: Out-of-sync PDPE at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1045 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1046 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1047 pPdpeDst->u = 0;
1048 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1049 PGM_INVL_GUEST_TLBS();
1050 }
1051 else if (!PdpeSrc.lm.u1Accessed)
1052 {
1053 /*
1054 * Mark not present so we can set the accessed bit.
1055 */
1056 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %VGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1057 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1058 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpte);
1059 pPdpeDst->u = 0;
1060 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1061 PGM_INVL_GUEST_TLBS();
1062 }
1063# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
1064
1065# if PGM_GST_TYPE == PGM_TYPE_PAE
1066
1067# endif
1068
1069
1070 /*
1071 * Deal with the Guest PDE.
1072 */
1073 rc = VINF_SUCCESS;
1074 if (PdeSrc.n.u1Present)
1075 {
1076 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1077 {
1078 /*
1079 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1080 */
1081 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1082 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1083 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1084 }
1085 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1086 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1087 {
1088 /*
1089 * Mark not present so we can resync the PDE when it's used.
1090 */
1091 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1092 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1093# if PGM_GST_TYPE == PGM_TYPE_AMD64
1094 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1095# else
1096 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1097# endif
1098 pPdeDst->u = 0;
1099 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1100 PGM_INVL_GUEST_TLBS();
1101 }
1102 else if (!PdeSrc.n.u1Accessed)
1103 {
1104 /*
1105 * Mark not present so we can set the accessed bit.
1106 */
1107 LogFlow(("InvalidatePage: Out-of-sync (A) at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1108 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1109# if PGM_GST_TYPE == PGM_TYPE_AMD64
1110 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1111# else
1112 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1113# endif
1114 pPdeDst->u = 0;
1115 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
1116 PGM_INVL_GUEST_TLBS();
1117 }
1118 else if (!fIsBigPage)
1119 {
1120 /*
1121 * 4KB - page.
1122 */
1123 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1124 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1125# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1126 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1127 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1128# endif
1129 if (pShwPage->GCPhys == GCPhys)
1130 {
1131# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1132 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1133 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1134 if (pPT->a[iPTEDst].n.u1Present)
1135 {
1136# ifdef PGMPOOL_WITH_USER_TRACKING
1137 /* This is very unlikely with caching/monitoring enabled. */
1138 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1139# endif
1140 pPT->a[iPTEDst].u = 0;
1141 }
1142# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1143 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1144 if (VBOX_SUCCESS(rc))
1145 rc = VINF_SUCCESS;
1146# endif
1147 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
1148 PGM_INVL_PG(GCPtrPage);
1149 }
1150 else
1151 {
1152 /*
1153 * The page table address changed.
1154 */
1155 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
1156 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1157# if PGM_GST_TYPE == PGM_TYPE_AMD64
1158 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1159# else
1160 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1161# endif
1162 pPdeDst->u = 0;
1163 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
1164 PGM_INVL_GUEST_TLBS();
1165 }
1166 }
1167 else
1168 {
1169 /*
1170 * 2/4MB - page.
1171 */
1172 /* Before freeing the page, check if anything really changed. */
1173 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1174 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1175# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1176 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1177 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1178# endif
1179 if ( pShwPage->GCPhys == GCPhys
1180 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1181 {
1182 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1183 /** @todo PAT */
1184 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1185 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1186 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1187 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1188 {
1189 LogFlow(("Skipping flush for big page containing %VGv (PD=%X .u=%VX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1190 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
1191 return VINF_SUCCESS;
1192 }
1193 }
1194
1195 /*
1196 * Ok, the page table is present and it's been changed in the guest.
1197 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1198 * We could do this for some flushes in GC too, but we need an algorithm for
1199 * deciding which 4MB pages containing code likely to be executed very soon.
1200 */
1201 LogFlow(("InvalidatePage: Out-of-sync PD at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1202 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1203# if PGM_GST_TYPE == PGM_TYPE_AMD64
1204 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1205# else
1206 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1207# endif
1208 pPdeDst->u = 0;
1209 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
1210 PGM_INVL_BIG_PG(GCPtrPage);
1211 }
1212 }
1213 else
1214 {
1215 /*
1216 * Page directory is not present, mark shadow PDE not present.
1217 */
1218 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1219 {
1220# if PGM_GST_TYPE == PGM_TYPE_AMD64
1221 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1222# else
1223 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1224# endif
1225 pPdeDst->u = 0;
1226 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1227 PGM_INVL_PG(GCPtrPage);
1228 }
1229 else
1230 {
1231 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1232 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1233 }
1234 }
1235
1236 return rc;
1237
1238#else /* guest real and protected mode */
1239 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1240 return VINF_SUCCESS;
1241#endif
1242}
1243
1244
1245#ifdef PGMPOOL_WITH_USER_TRACKING
1246/**
1247 * Update the tracking of shadowed pages.
1248 *
1249 * @param pVM The VM handle.
1250 * @param pShwPage The shadow page.
1251 * @param HCPhys The physical page we is being dereferenced.
1252 */
1253DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1254{
1255# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1256 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1257 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1258
1259 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1260 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1261 * 2. write protect all shadowed pages. I.e. implement caching.
1262 */
1263 /*
1264 * Find the guest address.
1265 */
1266 for (PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
1267 pRam;
1268 pRam = CTXALLSUFF(pRam->pNext))
1269 {
1270 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1271 while (iPage-- > 0)
1272 {
1273 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1274 {
1275 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1276 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1277 pShwPage->cPresent--;
1278 pPool->cPresent--;
1279 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1280 return;
1281 }
1282 }
1283 }
1284
1285 for (;;)
1286 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1287# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1288 pShwPage->cPresent--;
1289 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1290# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1291}
1292
1293
1294/**
1295 * Update the tracking of shadowed pages.
1296 *
1297 * @param pVM The VM handle.
1298 * @param pShwPage The shadow page.
1299 * @param u16 The top 16-bit of the pPage->HCPhys.
1300 * @param pPage Pointer to the guest page. this will be modified.
1301 * @param iPTDst The index into the shadow table.
1302 */
1303DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1304{
1305# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1306 /*
1307 * We're making certain assumptions about the placement of cRef and idx.
1308 */
1309 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1310 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1311
1312 /*
1313 * Just deal with the simple first time here.
1314 */
1315 if (!u16)
1316 {
1317 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1318 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1319 }
1320 else
1321 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1322
1323 /* write back, trying to be clever... */
1324 Log2(("SyncPageWorkerTrackAddRef: u16=%#x pPage->HCPhys=%VHp->%VHp iPTDst=%#x\n",
1325 u16, pPage->HCPhys, (pPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1326 *((uint16_t *)&pPage->HCPhys + 3) = u16; /** @todo PAGE FLAGS */
1327# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1328
1329 /* update statistics. */
1330 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1331 pShwPage->cPresent++;
1332 if (pShwPage->iFirstPresent > iPTDst)
1333 pShwPage->iFirstPresent = iPTDst;
1334}
1335#endif /* PGMPOOL_WITH_USER_TRACKING */
1336
1337
1338/**
1339 * Creates a 4K shadow page for a guest page.
1340 *
1341 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1342 * physical address. The PdeSrc argument only the flags are used. No page structured
1343 * will be mapped in this function.
1344 *
1345 * @param pVM VM handle.
1346 * @param pPteDst Destination page table entry.
1347 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1348 * Can safely assume that only the flags are being used.
1349 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1350 * @param pShwPage Pointer to the shadow page.
1351 * @param iPTDst The index into the shadow table.
1352 *
1353 * @remark Not used for 2/4MB pages!
1354 */
1355DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1356{
1357 if (PteSrc.n.u1Present)
1358 {
1359 /*
1360 * Find the ram range.
1361 */
1362 PPGMPAGE pPage;
1363 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1364 if (VBOX_SUCCESS(rc))
1365 {
1366 /** @todo investiage PWT, PCD and PAT. */
1367 /*
1368 * Make page table entry.
1369 */
1370 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1371 SHWPTE PteDst;
1372 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1373 {
1374 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1375 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1376 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1377 | (HCPhys & X86_PTE_PAE_PG_MASK);
1378 else
1379 {
1380 LogFlow(("SyncPageWorker: monitored page (%VGp) -> mark not present\n", HCPhys));
1381 PteDst.u = 0;
1382 }
1383 /** @todo count these two kinds. */
1384 }
1385 else
1386 {
1387 /*
1388 * If the page or page directory entry is not marked accessed,
1389 * we mark the page not present.
1390 */
1391 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1392 {
1393 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1394 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1395 PteDst.u = 0;
1396 }
1397 else
1398 /*
1399 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1400 * when the page is modified.
1401 */
1402 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1403 {
1404 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1405 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1406 | (HCPhys & X86_PTE_PAE_PG_MASK)
1407 | PGM_PTFLAGS_TRACK_DIRTY;
1408 }
1409 else
1410 {
1411 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1412 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1413 | (HCPhys & X86_PTE_PAE_PG_MASK);
1414 }
1415 }
1416
1417#ifdef PGMPOOL_WITH_USER_TRACKING
1418 /*
1419 * Keep user track up to date.
1420 */
1421 if (PteDst.n.u1Present)
1422 {
1423 if (!pPteDst->n.u1Present)
1424 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1425 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1426 {
1427 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1428 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1429 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1430 }
1431 }
1432 else if (pPteDst->n.u1Present)
1433 {
1434 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1435 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1436 }
1437#endif /* PGMPOOL_WITH_USER_TRACKING */
1438
1439 /*
1440 * Update statistics and commit the entry.
1441 */
1442 if (!PteSrc.n.u1Global)
1443 pShwPage->fSeenNonGlobal = true;
1444 *pPteDst = PteDst;
1445 }
1446 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1447 /** @todo count these. */
1448 }
1449 else
1450 {
1451 /*
1452 * Page not-present.
1453 */
1454 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1455#ifdef PGMPOOL_WITH_USER_TRACKING
1456 /* Keep user track up to date. */
1457 if (pPteDst->n.u1Present)
1458 {
1459 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1460 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1461 }
1462#endif /* PGMPOOL_WITH_USER_TRACKING */
1463 pPteDst->u = 0;
1464 /** @todo count these. */
1465 }
1466}
1467
1468
1469/**
1470 * Syncs a guest OS page.
1471 *
1472 * There are no conflicts at this point, neither is there any need for
1473 * page table allocations.
1474 *
1475 * @returns VBox status code.
1476 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1477 * @param pVM VM handle.
1478 * @param PdeSrc Page directory entry of the guest.
1479 * @param GCPtrPage Guest context page address.
1480 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1481 * @param uErr Fault error (X86_TRAP_PF_*).
1482 */
1483PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1484{
1485 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1486
1487#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1488 || PGM_GST_TYPE == PGM_TYPE_PAE \
1489 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1490 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1491
1492# if PGM_WITH_NX(PGM_GST_TYPE)
1493 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1494# endif
1495
1496 /*
1497 * Assert preconditions.
1498 */
1499 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1500 Assert(PdeSrc.n.u1Present);
1501 Assert(cPages);
1502
1503 /*
1504 * Get the shadow PDE, find the shadow page table in the pool.
1505 */
1506# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1507 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1508 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1509# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1510 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1511 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT); /* no mask; flat index into the 2048 entry array. */
1512 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
1513 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1514# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1515 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1516 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1517 PX86PDPAE pPDDst;
1518 X86PDEPAE PdeDst;
1519 PX86PDPT pPdptDst;
1520
1521 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
1522 AssertRCReturn(rc, rc);
1523 Assert(pPDDst && pPdptDst);
1524 PdeDst = pPDDst->a[iPDDst];
1525# endif
1526 Assert(PdeDst.n.u1Present);
1527 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1528
1529# if PGM_GST_TYPE == PGM_TYPE_AMD64
1530 /* Fetch the pgm pool shadow descriptor. */
1531 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
1532 Assert(pShwPde);
1533# endif
1534
1535 /*
1536 * Check that the page is present and that the shadow PDE isn't out of sync.
1537 */
1538# if PGM_GST_TYPE == PGM_TYPE_AMD64
1539 const bool fBigPage = PdeSrc.b.u1Size;
1540# else
1541 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1542# endif
1543 RTGCPHYS GCPhys;
1544 if (!fBigPage)
1545 {
1546 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1547# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1548 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1549 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1550# endif
1551 }
1552 else
1553 {
1554 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
1555# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1556 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1557 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1558# endif
1559 }
1560 if ( pShwPage->GCPhys == GCPhys
1561 && PdeSrc.n.u1Present
1562 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1563 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1564# if PGM_WITH_NX(PGM_GST_TYPE)
1565 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1566# endif
1567 )
1568 {
1569 /*
1570 * Check that the PDE is marked accessed already.
1571 * Since we set the accessed bit *before* getting here on a #PF, this
1572 * check is only meant for dealing with non-#PF'ing paths.
1573 */
1574 if (PdeSrc.n.u1Accessed)
1575 {
1576 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1577 if (!fBigPage)
1578 {
1579 /*
1580 * 4KB Page - Map the guest page table.
1581 */
1582 PGSTPT pPTSrc;
1583 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1584 if (VBOX_SUCCESS(rc))
1585 {
1586# ifdef PGM_SYNC_N_PAGES
1587 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1588 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1589 {
1590 /*
1591 * This code path is currently only taken when the caller is PGMTrap0eHandler
1592 * for non-present pages!
1593 *
1594 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1595 * deal with locality.
1596 */
1597 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1598# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1599 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1600 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1601# else
1602 const unsigned offPTSrc = 0;
1603# endif
1604 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1605 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1606 iPTDst = 0;
1607 else
1608 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1609 for (; iPTDst < iPTDstEnd; iPTDst++)
1610 {
1611 if (!pPTDst->a[iPTDst].n.u1Present)
1612 {
1613 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1614 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1615 NOREF(GCPtrCurPage);
1616#ifndef IN_RING0
1617 /*
1618 * Assuming kernel code will be marked as supervisor - and not as user level
1619 * and executed using a conforming code selector - And marked as readonly.
1620 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1621 */
1622 PPGMPAGE pPage;
1623 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1624 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1625 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1626 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1627 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1628 )
1629#endif /* else: CSAM not active */
1630 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1631 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1632 GCPtrCurPage, PteSrc.n.u1Present,
1633 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1634 PteSrc.n.u1User & PdeSrc.n.u1User,
1635 (uint64_t)PteSrc.u,
1636 (uint64_t)pPTDst->a[iPTDst].u,
1637 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1638 }
1639 }
1640 }
1641 else
1642# endif /* PGM_SYNC_N_PAGES */
1643 {
1644 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1645 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1646 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1647 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1648 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1649 GCPtrPage, PteSrc.n.u1Present,
1650 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1651 PteSrc.n.u1User & PdeSrc.n.u1User,
1652 (uint64_t)PteSrc.u,
1653 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1654 }
1655 }
1656 else /* MMIO or invalid page: emulated in #PF handler. */
1657 {
1658 LogFlow(("PGM_GCPHYS_2_PTR %VGp failed with %Vrc\n", GCPhys, rc));
1659 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1660 }
1661 }
1662 else
1663 {
1664 /*
1665 * 4/2MB page - lazy syncing shadow 4K pages.
1666 * (There are many causes of getting here, it's no longer only CSAM.)
1667 */
1668 /* Calculate the GC physical address of this 4KB shadow page. */
1669 RTGCPHYS GCPhys = (PdeSrc.u & GST_PDE_BIG_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1670 /* Find ram range. */
1671 PPGMPAGE pPage;
1672 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1673 if (VBOX_SUCCESS(rc))
1674 {
1675 /*
1676 * Make shadow PTE entry.
1677 */
1678 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1679 SHWPTE PteDst;
1680 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1681 | (HCPhys & X86_PTE_PAE_PG_MASK);
1682 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1683 {
1684 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1685 PteDst.n.u1Write = 0;
1686 else
1687 PteDst.u = 0;
1688 }
1689 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1690# ifdef PGMPOOL_WITH_USER_TRACKING
1691 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1692 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1693# endif
1694 pPTDst->a[iPTDst] = PteDst;
1695
1696
1697 /*
1698 * If the page is not flagged as dirty and is writable, then make it read-only
1699 * at PD level, so we can set the dirty bit when the page is modified.
1700 *
1701 * ASSUMES that page access handlers are implemented on page table entry level.
1702 * Thus we will first catch the dirty access and set PDE.D and restart. If
1703 * there is an access handler, we'll trap again and let it work on the problem.
1704 */
1705 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1706 * As for invlpg, it simply frees the whole shadow PT.
1707 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1708 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1709 {
1710 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1711 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1712 PdeDst.n.u1Write = 0;
1713 }
1714 else
1715 {
1716 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1717 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1718 }
1719# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1720 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1721# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1722 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1723# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1724 pPDDst->a[iPDDst] = PdeDst;
1725# endif
1726 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1727 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1728 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1729 }
1730 else
1731 LogFlow(("PGM_GCPHYS_2_PTR %VGp (big) failed with %Vrc\n", GCPhys, rc));
1732 }
1733 return VINF_SUCCESS;
1734 }
1735 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1736 }
1737 else
1738 {
1739 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1740 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1741 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1742 }
1743
1744 /*
1745 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1746 * Yea, I'm lazy.
1747 */
1748 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1749# if PGM_GST_TYPE == PGM_TYPE_AMD64
1750 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1751# else
1752 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1753# endif
1754
1755# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1756 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1757# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1758 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1759# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1760 pPDDst->a[iPDDst].u = 0;
1761# endif
1762 PGM_INVL_GUEST_TLBS();
1763 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1764
1765#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1766 && PGM_SHW_TYPE != PGM_TYPE_NESTED
1767
1768# ifdef PGM_SYNC_N_PAGES
1769 /*
1770 * Get the shadow PDE, find the shadow page table in the pool.
1771 */
1772# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1773 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1774 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1775# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1776 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
1777 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1778# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1779 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1780 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1781 PX86PDPAE pPDDst;
1782 X86PDEPAE PdeDst;
1783 PX86PDPT pPdptDst;
1784
1785 int rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
1786 AssertRCReturn(rc, rc);
1787 Assert(pPDDst && pPdptDst);
1788 PdeDst = pPDDst->a[iPDDst];
1789# endif
1790 Assert(PdeDst.n.u1Present);
1791 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1792 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1793
1794 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1795 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1796 {
1797 /*
1798 * This code path is currently only taken when the caller is PGMTrap0eHandler
1799 * for non-present pages!
1800 *
1801 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1802 * deal with locality.
1803 */
1804 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1805 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1806 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1807 iPTDst = 0;
1808 else
1809 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1810 for (; iPTDst < iPTDstEnd; iPTDst++)
1811 {
1812 if (!pPTDst->a[iPTDst].n.u1Present)
1813 {
1814 GSTPTE PteSrc;
1815
1816 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1817
1818 /* Fake the page table entry */
1819 PteSrc.u = GCPtrCurPage;
1820 PteSrc.n.u1Present = 1;
1821 PteSrc.n.u1Dirty = 1;
1822 PteSrc.n.u1Accessed = 1;
1823 PteSrc.n.u1Write = 1;
1824 PteSrc.n.u1User = 1;
1825
1826 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1827
1828 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1829 GCPtrCurPage, PteSrc.n.u1Present,
1830 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1831 PteSrc.n.u1User & PdeSrc.n.u1User,
1832 (uint64_t)PteSrc.u,
1833 (uint64_t)pPTDst->a[iPTDst].u,
1834 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1835 }
1836 else
1837 Log4(("%VGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1838 }
1839 }
1840 else
1841# endif /* PGM_SYNC_N_PAGES */
1842 {
1843 GSTPTE PteSrc;
1844 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1845 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1846
1847 /* Fake the page table entry */
1848 PteSrc.u = GCPtrCurPage;
1849 PteSrc.n.u1Present = 1;
1850 PteSrc.n.u1Dirty = 1;
1851 PteSrc.n.u1Accessed = 1;
1852 PteSrc.n.u1Write = 1;
1853 PteSrc.n.u1User = 1;
1854 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1855
1856 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1857 GCPtrPage, PteSrc.n.u1Present,
1858 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1859 PteSrc.n.u1User & PdeSrc.n.u1User,
1860 (uint64_t)PteSrc.u,
1861 (uint64_t)pPTDst->a[iPTDst].u,
1862 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1863 }
1864 return VINF_SUCCESS;
1865
1866#else
1867 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1868 return VERR_INTERNAL_ERROR;
1869#endif
1870}
1871
1872
1873
1874#if PGM_WITH_PAGING(PGM_GST_TYPE)
1875
1876/**
1877 * Investigate page fault and handle write protection page faults caused by
1878 * dirty bit tracking.
1879 *
1880 * @returns VBox status code.
1881 * @param pVM VM handle.
1882 * @param uErr Page fault error code.
1883 * @param pPdeDst Shadow page directory entry.
1884 * @param pPdeSrc Guest page directory entry.
1885 * @param GCPtrPage Guest context page address.
1886 */
1887PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1888{
1889 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
1890 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
1891 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
1892# if PGM_GST_TYPE == PGM_TYPE_AMD64
1893 bool fBigPagesSupported = true;
1894# else
1895 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1896# endif
1897# if PGM_WITH_NX(PGM_GST_TYPE)
1898 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1899# endif
1900 unsigned uPageFaultLevel;
1901 int rc;
1902
1903 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1904 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1905
1906# if PGM_GST_TYPE == PGM_TYPE_PAE \
1907 || PGM_GST_TYPE == PGM_TYPE_AMD64
1908
1909# if PGM_GST_TYPE == PGM_TYPE_AMD64
1910 PX86PML4E pPml4eSrc;
1911 PX86PDPE pPdpeSrc;
1912
1913 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
1914 Assert(pPml4eSrc);
1915
1916 /*
1917 * Real page fault? (PML4E level)
1918 */
1919 if ( (uErr & X86_TRAP_PF_RSVD)
1920 || !pPml4eSrc->n.u1Present
1921 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
1922 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1923 || (fUserLevelFault && !pPml4eSrc->n.u1User)
1924 )
1925 {
1926 uPageFaultLevel = 0;
1927 goto UpperLevelPageFault;
1928 }
1929 Assert(pPdpeSrc);
1930
1931# else /* PAE */
1932 PX86PDPE pPdpeSrc = &pVM->pgm.s.CTXSUFF(pGstPaePDPT)->a[(GCPtrPage >> GST_PDPT_SHIFT) & GST_PDPT_MASK];
1933# endif
1934
1935 /*
1936 * Real page fault? (PDPE level)
1937 */
1938 if ( (uErr & X86_TRAP_PF_RSVD)
1939 || !pPdpeSrc->n.u1Present
1940# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
1941 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
1942 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
1943 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
1944# endif
1945 )
1946 {
1947 uPageFaultLevel = 1;
1948 goto UpperLevelPageFault;
1949 }
1950# endif
1951
1952 /*
1953 * Real page fault? (PDE level)
1954 */
1955 if ( (uErr & X86_TRAP_PF_RSVD)
1956 || !pPdeSrc->n.u1Present
1957# if PGM_WITH_NX(PGM_GST_TYPE)
1958 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
1959# endif
1960 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
1961 || (fUserLevelFault && !pPdeSrc->n.u1User) )
1962 {
1963 uPageFaultLevel = 2;
1964 goto UpperLevelPageFault;
1965 }
1966
1967 /*
1968 * First check the easy case where the page directory has been marked read-only to track
1969 * the dirty bit of an emulated BIG page
1970 */
1971 if (pPdeSrc->b.u1Size && fBigPagesSupported)
1972 {
1973 /* Mark guest page directory as accessed */
1974# if PGM_GST_TYPE == PGM_TYPE_AMD64
1975 pPml4eSrc->n.u1Accessed = 1;
1976 pPdpeSrc->lm.u1Accessed = 1;
1977# endif
1978 pPdeSrc->b.u1Accessed = 1;
1979
1980 /*
1981 * Only write protection page faults are relevant here.
1982 */
1983 if (fWriteFault)
1984 {
1985 /* Mark guest page directory as dirty (BIG page only). */
1986 pPdeSrc->b.u1Dirty = 1;
1987
1988 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1989 {
1990 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1991
1992 Assert(pPdeSrc->b.u1Write);
1993
1994 pPdeDst->n.u1Write = 1;
1995 pPdeDst->n.u1Accessed = 1;
1996 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1997 PGM_INVL_BIG_PG(GCPtrPage);
1998 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1999 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2000 }
2001 }
2002 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2003 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2004 }
2005 /* else: 4KB page table */
2006
2007 /*
2008 * Map the guest page table.
2009 */
2010 PGSTPT pPTSrc;
2011 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2012 if (VBOX_SUCCESS(rc))
2013 {
2014 /*
2015 * Real page fault?
2016 */
2017 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2018 const GSTPTE PteSrc = *pPteSrc;
2019 if ( !PteSrc.n.u1Present
2020# if PGM_WITH_NX(PGM_GST_TYPE)
2021 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2022# endif
2023 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2024 || (fUserLevelFault && !PteSrc.n.u1User)
2025 )
2026 {
2027# ifdef IN_GC
2028 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
2029# endif
2030 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2031 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2032
2033 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2034 * See the 2nd case above as well.
2035 */
2036 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2037 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2038
2039 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2040 return VINF_EM_RAW_GUEST_TRAP;
2041 }
2042 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2043
2044 /*
2045 * Set the accessed bits in the page directory and the page table.
2046 */
2047# if PGM_GST_TYPE == PGM_TYPE_AMD64
2048 pPml4eSrc->n.u1Accessed = 1;
2049 pPdpeSrc->lm.u1Accessed = 1;
2050# endif
2051 pPdeSrc->n.u1Accessed = 1;
2052 pPteSrc->n.u1Accessed = 1;
2053
2054 /*
2055 * Only write protection page faults are relevant here.
2056 */
2057 if (fWriteFault)
2058 {
2059 /* Write access, so mark guest entry as dirty. */
2060# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
2061 if (!pPteSrc->n.u1Dirty)
2062 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
2063 else
2064 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
2065# endif
2066
2067 pPteSrc->n.u1Dirty = 1;
2068
2069 if (pPdeDst->n.u1Present)
2070 {
2071 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2072 * Our individual shadow handlers will provide more information and force a fatal exit.
2073 */
2074 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2075 {
2076 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
2077 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2078 return VINF_SUCCESS;
2079 }
2080
2081 /*
2082 * Map shadow page table.
2083 */
2084 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2085 if (pShwPage)
2086 {
2087 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2088 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2089 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2090 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2091 {
2092 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
2093# ifdef VBOX_STRICT
2094 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2095 if (pPage)
2096 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2097 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2098# endif
2099 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
2100
2101 Assert(pPteSrc->n.u1Write);
2102
2103 pPteDst->n.u1Write = 1;
2104 pPteDst->n.u1Dirty = 1;
2105 pPteDst->n.u1Accessed = 1;
2106 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2107 PGM_INVL_PG(GCPtrPage);
2108
2109 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2110 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2111 }
2112 }
2113 else
2114 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2115 }
2116 }
2117/** @todo Optimize accessed bit emulation? */
2118# ifdef VBOX_STRICT
2119 /*
2120 * Sanity check.
2121 */
2122 else if ( !pPteSrc->n.u1Dirty
2123 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2124 && pPdeDst->n.u1Present)
2125 {
2126 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2127 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2128 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2129 if ( pPteDst->n.u1Present
2130 && pPteDst->n.u1Write)
2131 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2132 }
2133# endif /* VBOX_STRICT */
2134 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2135 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2136 }
2137 AssertRC(rc);
2138 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
2139 return rc;
2140
2141
2142UpperLevelPageFault:
2143 /* Pagefault detected while checking the PML4E, PDPE or PDE.
2144 * Single exit handler to get rid of duplicate code paths.
2145 */
2146# ifdef IN_GC
2147 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
2148# endif
2149 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
2150 LogFlow(("CheckPageFault: real page fault at %VGv (%d)\n", GCPtrPage, uPageFaultLevel));
2151
2152 if (
2153# if PGM_GST_TYPE == PGM_TYPE_AMD64
2154 pPml4eSrc->n.u1Present &&
2155# endif
2156# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2157 pPdpeSrc->n.u1Present &&
2158# endif
2159 pPdeSrc->n.u1Present)
2160 {
2161 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2162 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2163 {
2164 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2165 }
2166 else
2167 {
2168 /*
2169 * Map the guest page table.
2170 */
2171 PGSTPT pPTSrc;
2172 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2173 if (VBOX_SUCCESS(rc))
2174 {
2175 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2176 const GSTPTE PteSrc = *pPteSrc;
2177 if (pPteSrc->n.u1Present)
2178 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2179 }
2180 AssertRC(rc);
2181 }
2182 }
2183 return VINF_EM_RAW_GUEST_TRAP;
2184}
2185
2186#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2187
2188
2189/**
2190 * Sync a shadow page table.
2191 *
2192 * The shadow page table is not present. This includes the case where
2193 * there is a conflict with a mapping.
2194 *
2195 * @returns VBox status code.
2196 * @param pVM VM handle.
2197 * @param iPD Page directory index.
2198 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2199 * Assume this is a temporary mapping.
2200 * @param GCPtrPage GC Pointer of the page that caused the fault
2201 */
2202PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCUINTPTR GCPtrPage)
2203{
2204 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2205 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
2206 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
2207
2208#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2209 || PGM_GST_TYPE == PGM_TYPE_PAE \
2210 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2211 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2212
2213 int rc = VINF_SUCCESS;
2214
2215 /*
2216 * Validate input a little bit.
2217 */
2218 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%VGv\n", iPDSrc, GCPtrPage));
2219# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2220 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2221 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2222# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2223 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
2224 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT);
2225 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
2226 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2227# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2228 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2229 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2230 PX86PDPAE pPDDst;
2231 PX86PDPT pPdptDst;
2232 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2233 if (rc != VINF_SUCCESS)
2234 {
2235 AssertRC(rc);
2236 return rc;
2237 }
2238 Assert(pPDDst);
2239# endif
2240
2241 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2242 SHWPDE PdeDst = *pPdeDst;
2243
2244# if PGM_GST_TYPE == PGM_TYPE_AMD64
2245 /* Fetch the pgm pool shadow descriptor. */
2246 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
2247 Assert(pShwPde);
2248# endif
2249
2250# ifndef PGM_WITHOUT_MAPPINGS
2251 /*
2252 * Check for conflicts.
2253 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2254 * HC: Simply resolve the conflict.
2255 */
2256 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2257 {
2258 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2259# ifndef IN_RING3
2260 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
2261 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2262 return VERR_ADDRESS_CONFLICT;
2263# else
2264 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2265 Assert(pMapping);
2266# if PGM_GST_TYPE == PGM_TYPE_32BIT
2267 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2268# elif PGM_GST_TYPE == PGM_TYPE_PAE
2269 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2270# else
2271 AssertFailed(); /* can't happen for amd64 */
2272# endif
2273 if (VBOX_FAILURE(rc))
2274 {
2275 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2276 return rc;
2277 }
2278 PdeDst = *pPdeDst;
2279# endif
2280 }
2281# else /* PGM_WITHOUT_MAPPINGS */
2282 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2283# endif /* PGM_WITHOUT_MAPPINGS */
2284 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2285
2286 /*
2287 * Sync page directory entry.
2288 */
2289 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2290 if (PdeSrc.n.u1Present)
2291 {
2292 /*
2293 * Allocate & map the page table.
2294 */
2295 PSHWPT pPTDst;
2296# if PGM_GST_TYPE == PGM_TYPE_AMD64
2297 const bool fPageTable = !PdeSrc.b.u1Size;
2298# else
2299 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2300# endif
2301 PPGMPOOLPAGE pShwPage;
2302 RTGCPHYS GCPhys;
2303 if (fPageTable)
2304 {
2305 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2306# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2307 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2308 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2309# endif
2310# if PGM_GST_TYPE == PGM_TYPE_AMD64
2311 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2312# else
2313 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2314# endif
2315 }
2316 else
2317 {
2318 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
2319# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2320 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2321 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2322# endif
2323# if PGM_GST_TYPE == PGM_TYPE_AMD64
2324 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2325# else
2326 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2327# endif
2328 }
2329 if (rc == VINF_SUCCESS)
2330 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2331 else if (rc == VINF_PGM_CACHED_PAGE)
2332 {
2333 /*
2334 * The PT was cached, just hook it up.
2335 */
2336 if (fPageTable)
2337 PdeDst.u = pShwPage->Core.Key
2338 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2339 else
2340 {
2341 PdeDst.u = pShwPage->Core.Key
2342 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2343 /* (see explanation and assumptions further down.) */
2344 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2345 {
2346 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2347 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2348 PdeDst.b.u1Write = 0;
2349 }
2350 }
2351 *pPdeDst = PdeDst;
2352 return VINF_SUCCESS;
2353 }
2354 else if (rc == VERR_PGM_POOL_FLUSHED)
2355 {
2356 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2357 return VINF_PGM_SYNC_CR3;
2358 }
2359 else
2360 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2361 PdeDst.u &= X86_PDE_AVL_MASK;
2362 PdeDst.u |= pShwPage->Core.Key;
2363
2364 /*
2365 * Page directory has been accessed (this is a fault situation, remember).
2366 */
2367 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2368 if (fPageTable)
2369 {
2370 /*
2371 * Page table - 4KB.
2372 *
2373 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2374 */
2375 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2376 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2377 PGSTPT pPTSrc;
2378 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2379 if (VBOX_SUCCESS(rc))
2380 {
2381 /*
2382 * Start by syncing the page directory entry so CSAM's TLB trick works.
2383 */
2384 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2385 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2386 *pPdeDst = PdeDst;
2387
2388 /*
2389 * Directory/page user or supervisor privilege: (same goes for read/write)
2390 *
2391 * Directory Page Combined
2392 * U/S U/S U/S
2393 * 0 0 0
2394 * 0 1 0
2395 * 1 0 0
2396 * 1 1 1
2397 *
2398 * Simple AND operation. Table listed for completeness.
2399 *
2400 */
2401 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2402# ifdef PGM_SYNC_N_PAGES
2403 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2404 unsigned iPTDst = iPTBase;
2405 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2406 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2407 iPTDst = 0;
2408 else
2409 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2410# else /* !PGM_SYNC_N_PAGES */
2411 unsigned iPTDst = 0;
2412 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2413# endif /* !PGM_SYNC_N_PAGES */
2414# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2415 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2416 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2417# else
2418 const unsigned offPTSrc = 0;
2419# endif
2420 for (; iPTDst < iPTDstEnd; iPTDst++)
2421 {
2422 const unsigned iPTSrc = iPTDst + offPTSrc;
2423 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2424
2425 if (PteSrc.n.u1Present) /* we've already cleared it above */
2426 {
2427# ifndef IN_RING0
2428 /*
2429 * Assuming kernel code will be marked as supervisor - and not as user level
2430 * and executed using a conforming code selector - And marked as readonly.
2431 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2432 */
2433 PPGMPAGE pPage;
2434 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2435 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2436 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2437 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2438 )
2439# endif
2440 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2441 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2442 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2443 PteSrc.n.u1Present,
2444 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2445 PteSrc.n.u1User & PdeSrc.n.u1User,
2446 (uint64_t)PteSrc.u,
2447 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2448 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2449 }
2450 } /* for PTEs */
2451 }
2452 }
2453 else
2454 {
2455 /*
2456 * Big page - 2/4MB.
2457 *
2458 * We'll walk the ram range list in parallel and optimize lookups.
2459 * We will only sync on shadow page table at a time.
2460 */
2461 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2462
2463 /**
2464 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2465 */
2466
2467 /*
2468 * Start by syncing the page directory entry.
2469 */
2470 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2471 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2472
2473 /*
2474 * If the page is not flagged as dirty and is writable, then make it read-only
2475 * at PD level, so we can set the dirty bit when the page is modified.
2476 *
2477 * ASSUMES that page access handlers are implemented on page table entry level.
2478 * Thus we will first catch the dirty access and set PDE.D and restart. If
2479 * there is an access handler, we'll trap again and let it work on the problem.
2480 */
2481 /** @todo move the above stuff to a section in the PGM documentation. */
2482 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2483 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2484 {
2485 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2486 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2487 PdeDst.b.u1Write = 0;
2488 }
2489 *pPdeDst = PdeDst;
2490
2491 /*
2492 * Fill the shadow page table.
2493 */
2494 /* Get address and flags from the source PDE. */
2495 SHWPTE PteDstBase;
2496 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2497
2498 /* Loop thru the entries in the shadow PT. */
2499 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2500 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2501 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2502 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2503 PPGMRAMRANGE pRam = CTXALLSUFF(pVM->pgm.s.pRamRanges);
2504 unsigned iPTDst = 0;
2505 while (iPTDst < ELEMENTS(pPTDst->a))
2506 {
2507 /* Advance ram range list. */
2508 while (pRam && GCPhys > pRam->GCPhysLast)
2509 pRam = CTXALLSUFF(pRam->pNext);
2510 if (pRam && GCPhys >= pRam->GCPhys)
2511 {
2512 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2513 do
2514 {
2515 /* Make shadow PTE. */
2516 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2517 SHWPTE PteDst;
2518
2519 /* Make sure the RAM has already been allocated. */
2520 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2521 {
2522 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2523 {
2524# ifdef IN_RING3
2525 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2526# else
2527 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2528# endif
2529 if (rc != VINF_SUCCESS)
2530 return rc;
2531 }
2532 }
2533
2534 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2535 {
2536 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2537 {
2538 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2539 PteDst.n.u1Write = 0;
2540 }
2541 else
2542 PteDst.u = 0;
2543 }
2544# ifndef IN_RING0
2545 /*
2546 * Assuming kernel code will be marked as supervisor and not as user level and executed
2547 * using a conforming code selector. Don't check for readonly, as that implies the whole
2548 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2549 */
2550 else if ( !PdeSrc.n.u1User
2551 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2552 PteDst.u = 0;
2553# endif
2554 else
2555 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2556# ifdef PGMPOOL_WITH_USER_TRACKING
2557 if (PteDst.n.u1Present)
2558 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2559# endif
2560 /* commit it */
2561 pPTDst->a[iPTDst] = PteDst;
2562 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2563 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2564 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2565
2566 /* advance */
2567 GCPhys += PAGE_SIZE;
2568 iHCPage++;
2569 iPTDst++;
2570 } while ( iPTDst < ELEMENTS(pPTDst->a)
2571 && GCPhys <= pRam->GCPhysLast);
2572 }
2573 else if (pRam)
2574 {
2575 Log(("Invalid pages at %VGp\n", GCPhys));
2576 do
2577 {
2578 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2579 GCPhys += PAGE_SIZE;
2580 iPTDst++;
2581 } while ( iPTDst < ELEMENTS(pPTDst->a)
2582 && GCPhys < pRam->GCPhys);
2583 }
2584 else
2585 {
2586 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2587 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2588 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2589 }
2590 } /* while more PTEs */
2591 } /* 4KB / 4MB */
2592 }
2593 else
2594 AssertRelease(!PdeDst.n.u1Present);
2595
2596 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2597# ifdef IN_GC
2598 if (VBOX_FAILURE(rc))
2599 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2600# endif
2601 return rc;
2602
2603#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2604 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2605
2606 int rc = VINF_SUCCESS;
2607
2608 /*
2609 * Validate input a little bit.
2610 */
2611# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2612 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2613 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2614# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2615 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; /* no mask; flat index into the 2048 entry array. */
2616 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2617# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2618 const unsigned iPdpte = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2619 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2620 PX86PDPAE pPDDst;
2621 PX86PDPT pPdptDst;
2622 rc = PGMShwGetLongModePDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2623 if (rc != VINF_SUCCESS)
2624 {
2625 AssertRC(rc);
2626 return rc;
2627 }
2628 Assert(pPDDst);
2629
2630 /* Fetch the pgm pool shadow descriptor. */
2631 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpte].u & X86_PDPE_PG_MASK);
2632 Assert(pShwPde);
2633# endif
2634 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2635 SHWPDE PdeDst = *pPdeDst;
2636
2637 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2638 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2639
2640 GSTPDE PdeSrc;
2641 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2642 PdeSrc.n.u1Present = 1;
2643 PdeSrc.n.u1Write = 1;
2644 PdeSrc.n.u1Accessed = 1;
2645 PdeSrc.n.u1User = 1;
2646
2647 /*
2648 * Allocate & map the page table.
2649 */
2650 PSHWPT pPTDst;
2651 PPGMPOOLPAGE pShwPage;
2652 RTGCPHYS GCPhys;
2653
2654 /* Virtual address = physical address */
2655 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2656# if PGM_SHW_TYPE == PGM_TYPE_AMD64
2657 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2658# else
2659 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2660# endif
2661
2662 if ( rc == VINF_SUCCESS
2663 || rc == VINF_PGM_CACHED_PAGE)
2664 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2665 else
2666 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2667
2668 PdeDst.u &= X86_PDE_AVL_MASK;
2669 PdeDst.u |= pShwPage->Core.Key;
2670 PdeDst.n.u1Present = 1;
2671 PdeDst.n.u1Write = 1;
2672 PdeDst.n.u1User = 1;
2673 PdeDst.n.u1Accessed = 1;
2674 *pPdeDst = PdeDst;
2675
2676 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2677 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2678 return rc;
2679
2680#else
2681 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2682 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2683 return VERR_INTERNAL_ERROR;
2684#endif
2685}
2686
2687
2688
2689/**
2690 * Prefetch a page/set of pages.
2691 *
2692 * Typically used to sync commonly used pages before entering raw mode
2693 * after a CR3 reload.
2694 *
2695 * @returns VBox status code.
2696 * @param pVM VM handle.
2697 * @param GCPtrPage Page to invalidate.
2698 */
2699PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2700{
2701#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2702 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2703 /*
2704 * Check that all Guest levels thru the PDE are present, getting the
2705 * PD and PDE in the processes.
2706 */
2707 int rc = VINF_SUCCESS;
2708# if PGM_WITH_PAGING(PGM_GST_TYPE)
2709# if PGM_GST_TYPE == PGM_TYPE_32BIT
2710 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2711 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2712# elif PGM_GST_TYPE == PGM_TYPE_PAE
2713 unsigned iPDSrc;
2714 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2715 if (!pPDSrc)
2716 return VINF_SUCCESS; /* not present */
2717# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2718 unsigned iPDSrc;
2719 PX86PML4E pPml4eSrc;
2720 X86PDPE PdpeSrc;
2721 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2722 if (!pPDSrc)
2723 return VINF_SUCCESS; /* not present */
2724# endif
2725 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2726# else
2727 PGSTPD pPDSrc = NULL;
2728 const unsigned iPDSrc = 0;
2729 GSTPDE PdeSrc;
2730
2731 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2732 PdeSrc.n.u1Present = 1;
2733 PdeSrc.n.u1Write = 1;
2734 PdeSrc.n.u1Accessed = 1;
2735 PdeSrc.n.u1User = 1;
2736# endif
2737
2738 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2739 {
2740# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2741 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2742# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2743 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2744# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2745 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2746 PX86PDPAE pPDDst;
2747 X86PDEPAE PdeDst;
2748
2749# if PGM_GST_TYPE == PGM_TYPE_PROT
2750 /* AMD-V nested paging */
2751 X86PML4E Pml4eSrc;
2752 X86PDPE PdpeSrc;
2753 PX86PML4E pPml4eSrc = &Pml4eSrc;
2754
2755 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2756 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2757 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2758# endif
2759
2760 int rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2761 if (rc != VINF_SUCCESS)
2762 {
2763 AssertRC(rc);
2764 return rc;
2765 }
2766 Assert(pPDDst);
2767 PdeDst = pPDDst->a[iPDDst];
2768# endif
2769 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2770 {
2771 if (!PdeDst.n.u1Present)
2772 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2773 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2774 else
2775 {
2776 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2777 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2778 * makes no sense to prefetch more than one page.
2779 */
2780 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2781 if (VBOX_SUCCESS(rc))
2782 rc = VINF_SUCCESS;
2783 }
2784 }
2785 }
2786 return rc;
2787#elif PGM_SHW_TYPE == PGM_TYPE_NESTED
2788 return VINF_SUCCESS; /* ignore */
2789#endif
2790}
2791
2792
2793
2794
2795/**
2796 * Syncs a page during a PGMVerifyAccess() call.
2797 *
2798 * @returns VBox status code (informational included).
2799 * @param GCPtrPage The address of the page to sync.
2800 * @param fPage The effective guest page flags.
2801 * @param uErr The trap error code.
2802 */
2803PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2804{
2805 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2806
2807 Assert(!HWACCMIsNestedPagingActive(pVM));
2808#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
2809 && PGM_SHW_TYPE != PGM_TYPE_NESTED
2810
2811# ifndef IN_RING0
2812 if (!(fPage & X86_PTE_US))
2813 {
2814 /*
2815 * Mark this page as safe.
2816 */
2817 /** @todo not correct for pages that contain both code and data!! */
2818 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2819 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
2820 }
2821# endif
2822 /*
2823 * Get guest PD and index.
2824 */
2825
2826# if PGM_WITH_PAGING(PGM_GST_TYPE)
2827# if PGM_GST_TYPE == PGM_TYPE_32BIT
2828 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2829 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2830# elif PGM_GST_TYPE == PGM_TYPE_PAE
2831 unsigned iPDSrc;
2832 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc);
2833
2834 if (pPDSrc)
2835 {
2836 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2837 return VINF_EM_RAW_GUEST_TRAP;
2838 }
2839# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2840 unsigned iPDSrc;
2841 PX86PML4E pPml4eSrc;
2842 X86PDPE PdpeSrc;
2843 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2844 if (!pPDSrc)
2845 {
2846 Log(("PGMVerifyAccess: access violation for %VGv due to non-present PDPTR\n", GCPtrPage));
2847 return VINF_EM_RAW_GUEST_TRAP;
2848 }
2849# endif
2850# else
2851 PGSTPD pPDSrc = NULL;
2852 const unsigned iPDSrc = 0;
2853# endif
2854 int rc = VINF_SUCCESS;
2855
2856 /*
2857 * First check if the shadow pd is present.
2858 */
2859# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2860 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> SHW_PD_SHIFT];
2861# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2862 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> SHW_PD_SHIFT];
2863# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2864 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2865 PX86PDPAE pPDDst;
2866 PX86PDEPAE pPdeDst;
2867
2868# if PGM_GST_TYPE == PGM_TYPE_PROT
2869 /* AMD-V nested paging */
2870 X86PML4E Pml4eSrc;
2871 X86PDPE PdpeSrc;
2872 PX86PML4E pPml4eSrc = &Pml4eSrc;
2873
2874 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2875 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2876 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2877# endif
2878
2879 rc = PGMShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2880 if (rc != VINF_SUCCESS)
2881 {
2882 AssertRC(rc);
2883 return rc;
2884 }
2885 Assert(pPDDst);
2886 pPdeDst = &pPDDst->a[iPDDst];
2887# endif
2888 if (!pPdeDst->n.u1Present)
2889 {
2890 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2891 AssertRC(rc);
2892 if (rc != VINF_SUCCESS)
2893 return rc;
2894 }
2895
2896# if PGM_WITH_PAGING(PGM_GST_TYPE)
2897 /* Check for dirty bit fault */
2898 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2899 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2900 Log(("PGMVerifyAccess: success (dirty)\n"));
2901 else
2902 {
2903 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2904#else
2905 {
2906 GSTPDE PdeSrc;
2907 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2908 PdeSrc.n.u1Present = 1;
2909 PdeSrc.n.u1Write = 1;
2910 PdeSrc.n.u1Accessed = 1;
2911 PdeSrc.n.u1User = 1;
2912
2913#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
2914 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2915 if (uErr & X86_TRAP_PF_US)
2916 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2917 else /* supervisor */
2918 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2919
2920 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2921 if (VBOX_SUCCESS(rc))
2922 {
2923 /* Page was successfully synced */
2924 Log2(("PGMVerifyAccess: success (sync)\n"));
2925 rc = VINF_SUCCESS;
2926 }
2927 else
2928 {
2929 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2930 return VINF_EM_RAW_GUEST_TRAP;
2931 }
2932 }
2933 return rc;
2934
2935#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2936
2937 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2938 return VERR_INTERNAL_ERROR;
2939#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2940}
2941
2942
2943#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
2944# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
2945/**
2946 * Figures out which kind of shadow page this guest PDE warrants.
2947 *
2948 * @returns Shadow page kind.
2949 * @param pPdeSrc The guest PDE in question.
2950 * @param cr4 The current guest cr4 value.
2951 */
2952DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
2953{
2954# if PMG_GST_TYPE == PGM_TYPE_AMD64
2955 if (!pPdeSrc->n.u1Size)
2956# else
2957 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2958# endif
2959 return BTH_PGMPOOLKIND_PT_FOR_PT;
2960 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2961 //{
2962 // case 0:
2963 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2964 // case X86_PDE4M_RW:
2965 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2966 // case X86_PDE4M_US:
2967 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2968 // case X86_PDE4M_RW | X86_PDE4M_US:
2969 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2970# if 0
2971 // case X86_PDE4M_PAE_NX:
2972 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2973 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2974 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2975 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2976 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2977 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2978 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2979# endif
2980 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2981 //}
2982}
2983# endif
2984#endif
2985
2986#undef MY_STAM_COUNTER_INC
2987#define MY_STAM_COUNTER_INC(a) do { } while (0)
2988
2989
2990/**
2991 * Syncs the paging hierarchy starting at CR3.
2992 *
2993 * @returns VBox status code, no specials.
2994 * @param pVM The virtual machine.
2995 * @param cr0 Guest context CR0 register
2996 * @param cr3 Guest context CR3 register
2997 * @param cr4 Guest context CR4 register
2998 * @param fGlobal Including global page directories or not
2999 */
3000PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3001{
3002 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3003 fGlobal = true; /* Change this CR3 reload to be a global one. */
3004
3005#if PGM_SHW_TYPE != PGM_TYPE_NESTED
3006 /*
3007 * Update page access handlers.
3008 * The virtual are always flushed, while the physical are only on demand.
3009 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3010 * have to look into that later because it will have a bad influence on the performance.
3011 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3012 * bird: Yes, but that won't work for aliases.
3013 */
3014 /** @todo this MUST go away. See #1557. */
3015 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
3016 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3017 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
3018#endif
3019
3020#ifdef PGMPOOL_WITH_MONITORING
3021 int rc = pgmPoolSyncCR3(pVM);
3022 if (rc != VINF_SUCCESS)
3023 return rc;
3024#endif
3025
3026#if PGM_SHW_TYPE == PGM_TYPE_NESTED
3027 /** @todo check if this is really necessary */
3028 HWACCMFlushTLB(pVM);
3029 return VINF_SUCCESS;
3030
3031#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3032 /* No need to check all paging levels; we zero out the shadow parts when the guest modifies its tables. */
3033 return VINF_SUCCESS;
3034#else
3035
3036 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3037 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
3038
3039# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3040# if PGM_GST_TYPE == PGM_TYPE_AMD64
3041 bool fBigPagesSupported = true;
3042# else
3043 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3044# endif
3045
3046 /*
3047 * Get page directory addresses.
3048 */
3049# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3050 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
3051# else /* PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64*/
3052# if PGM_GST_TYPE == PGM_TYPE_32BIT
3053 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
3054# endif
3055# endif
3056
3057# if PGM_GST_TYPE == PGM_TYPE_32BIT
3058 PGSTPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
3059 Assert(pPDSrc);
3060# ifndef IN_GC
3061 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3062# endif
3063# endif
3064
3065 /*
3066 * Iterate the page directory.
3067 */
3068 PPGMMAPPING pMapping;
3069 unsigned iPdNoMapping;
3070 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3071 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
3072
3073 /* Only check mappings if they are supposed to be put into the shadow page table. */
3074 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3075 {
3076 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
3077 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3078 }
3079 else
3080 {
3081 pMapping = 0;
3082 iPdNoMapping = ~0U;
3083 }
3084# if PGM_GST_TYPE == PGM_TYPE_AMD64
3085 for (uint64_t iPml4e = 0; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3086 {
3087 PPGMPOOLPAGE pShwPdpt = NULL;
3088 PX86PML4E pPml4eSrc, pPml4eDst;
3089 RTGCPHYS GCPhysPdptSrc;
3090
3091 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3092 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3093
3094 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3095 if (!pPml4eDst->n.u1Present)
3096 continue;
3097 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3098
3099 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3100
3101 /* Anything significant changed? */
3102 if ( pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present
3103 || GCPhysPdptSrc != pShwPdpt->GCPhys)
3104 {
3105 /* Free it. */
3106 LogFlow(("SyncCR3: Out-of-sync PML4E (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3107 (uint64_t)iPml4e << X86_PML4_SHIFT, pShwPdpt->GCPhys, GCPhysPdptSrc, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
3108 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.pHCShwAmd64CR3->idx, iPml4e);
3109 pPml4eDst->u = 0;
3110 continue;
3111 }
3112 /* Force an attribute sync. */
3113 pPml4eDst->n.u1User = pPml4eSrc->n.u1User;
3114 pPml4eDst->n.u1Write = pPml4eSrc->n.u1Write;
3115 pPml4eDst->n.u1NoExecute = pPml4eSrc->n.u1NoExecute;
3116
3117# else
3118 {
3119# endif
3120# if PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3121 for (uint64_t iPdpte = 0; iPdpte < GST_PDPE_ENTRIES; iPdpte++)
3122 {
3123 unsigned iPDSrc;
3124# if PGM_GST_TYPE == PGM_TYPE_PAE
3125 PX86PDPAE pPDPAE = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3126 PX86PDEPAE pPDEDst = &pPDPAE->a[iPdpte * X86_PG_PAE_ENTRIES];
3127 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpte << X86_PDPT_SHIFT, &iPDSrc);
3128 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3129 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3130
3131 if (pPDSrc == NULL)
3132 {
3133 /* PDPE not present */
3134 if (pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present)
3135 {
3136 LogFlow(("SyncCR3: guest PDPE %d not present; clear shw pdpe\n", iPdpte));
3137 /* for each page directory entry */
3138 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3139 {
3140 if ( pPDEDst[iPD].n.u1Present
3141 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3142 {
3143 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst[iPD].u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdpte * X86_PG_PAE_ENTRIES + iPD);
3144 pPDEDst[iPD].u = 0;
3145 }
3146 }
3147 }
3148 if (!(pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].u & PGM_PLXFLAGS_MAPPING))
3149 pVM->pgm.s.CTXMID(p,PaePDPT)->a[iPdpte].n.u1Present = 0;
3150 continue;
3151 }
3152# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3153 PPGMPOOLPAGE pShwPde = NULL;
3154 RTGCPHYS GCPhysPdeSrc;
3155 PX86PDPE pPdpeDst;
3156 PX86PML4E pPml4eSrc;
3157 X86PDPE PdpeSrc;
3158 PX86PDPT pPdptDst;
3159 PX86PDPAE pPDDst;
3160 PX86PDEPAE pPDEDst;
3161 RTGCUINTPTR GCPtr = (iPml4e << X86_PML4_SHIFT) || (iPdpte << X86_PDPT_SHIFT);
3162 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3163
3164 int rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3165 if (rc != VINF_SUCCESS)
3166 {
3167 if (rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT)
3168 break; /* next PML4E */
3169
3170 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3171 continue; /* next PDPTE */
3172 }
3173 Assert(pPDDst);
3174 pPDEDst = &pPDDst->a[0];
3175 Assert(iPDSrc == 0);
3176
3177 pPdpeDst = &pPdptDst->a[iPdpte];
3178
3179 /* Fetch the pgm pool shadow descriptor if the shadow pdpte is present. */
3180 if (!pPdpeDst->n.u1Present)
3181 continue; /* next PDPTE */
3182
3183 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3184 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3185
3186 /* Anything significant changed? */
3187 if ( PdpeSrc.n.u1Present != pPdpeDst->n.u1Present
3188 || GCPhysPdeSrc != pShwPde->GCPhys)
3189 {
3190 /* Free it. */
3191 LogFlow(("SyncCR3: Out-of-sync PDPE (GCPhys) GCPtr=%VGv %VGp vs %VGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
3192 ((uint64_t)iPml4e << X86_PML4_SHIFT) + ((uint64_t)iPdpte << X86_PDPT_SHIFT), pShwPde->GCPhys, GCPhysPdeSrc, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
3193
3194 /* Mark it as not present if there's no hypervisor mapping present. (bit flipped at the top of Trap0eHandler) */
3195 Assert(!(pPdpeDst->u & PGM_PLXFLAGS_MAPPING));
3196 pgmPoolFreeByPage(pPool, pShwPde, pShwPde->idx, iPdpte);
3197 pPdpeDst->u = 0;
3198 continue; /* next guest PDPTE */
3199 }
3200 /* Force an attribute sync. */
3201 pPdpeDst->lm.u1User = PdpeSrc.lm.u1User;
3202 pPdpeDst->lm.u1Write = PdpeSrc.lm.u1Write;
3203 pPdpeDst->lm.u1NoExecute = PdpeSrc.lm.u1NoExecute;
3204# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3205
3206# else /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3207 {
3208# endif /* PGM_GST_TYPE != PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_AMD64 */
3209 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
3210 {
3211# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3212 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
3213# elif PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3214 AssertMsg(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst, ("%p vs %p\n", &pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512], pPDEDst));
3215# endif
3216 register GSTPDE PdeSrc = pPDSrc->a[iPD];
3217 if ( PdeSrc.n.u1Present
3218 && (PdeSrc.n.u1User || fRawR0Enabled))
3219 {
3220# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3221 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3222 && !defined(PGM_WITHOUT_MAPPINGS)
3223
3224 /*
3225 * Check for conflicts with GC mappings.
3226 */
3227# if PGM_GST_TYPE == PGM_TYPE_PAE
3228 if (iPD + iPdpte * X86_PG_PAE_ENTRIES == iPdNoMapping)
3229# else
3230 if (iPD == iPdNoMapping)
3231# endif
3232 {
3233 if (pVM->pgm.s.fMappingsFixed)
3234 {
3235 /* It's fixed, just skip the mapping. */
3236 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3237 iPD += cPTs - 1;
3238 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3239 pMapping = pMapping->CTXALLSUFF(pNext);
3240 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3241 continue;
3242 }
3243# ifdef IN_RING3
3244# if PGM_GST_TYPE == PGM_TYPE_32BIT
3245 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3246# elif PGM_GST_TYPE == PGM_TYPE_PAE
3247 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3248# endif
3249 if (VBOX_FAILURE(rc))
3250 return rc;
3251
3252 /*
3253 * Update iPdNoMapping and pMapping.
3254 */
3255 pMapping = pVM->pgm.s.pMappingsR3;
3256 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3257 pMapping = pMapping->pNextR3;
3258 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3259# else
3260 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3261 return VINF_PGM_SYNC_CR3;
3262# endif
3263 }
3264# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3265 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3266# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3267 /*
3268 * Sync page directory entry.
3269 *
3270 * The current approach is to allocated the page table but to set
3271 * the entry to not-present and postpone the page table synching till
3272 * it's actually used.
3273 */
3274# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3275 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3276# elif PGM_GST_TYPE == PGM_TYPE_PAE
3277 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3278# else
3279 const unsigned iPdShw = iPD; NOREF(iPdShw);
3280# endif
3281 {
3282 SHWPDE PdeDst = *pPDEDst;
3283 if (PdeDst.n.u1Present)
3284 {
3285 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3286 RTGCPHYS GCPhys;
3287 if ( !PdeSrc.b.u1Size
3288 || !fBigPagesSupported)
3289 {
3290 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3291# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3292 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3293 GCPhys |= i * (PAGE_SIZE / 2);
3294# endif
3295 }
3296 else
3297 {
3298 GCPhys = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3299# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3300 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3301 GCPhys |= i * X86_PAGE_2M_SIZE;
3302# endif
3303 }
3304
3305 if ( pShwPage->GCPhys == GCPhys
3306 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3307 && ( pShwPage->fCached
3308 || ( !fGlobal
3309 && ( false
3310# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3311 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3312# if PGM_GST_TYPE == PGM_TYPE_AMD64
3313 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3314# else
3315 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3316# endif
3317 || ( !pShwPage->fSeenNonGlobal
3318 && (cr4 & X86_CR4_PGE))
3319# endif
3320 )
3321 )
3322 )
3323 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3324 || ( fBigPagesSupported
3325 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3326 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3327 )
3328 )
3329 {
3330# ifdef VBOX_WITH_STATISTICS
3331 if ( !fGlobal
3332 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3333# if PGM_GST_TYPE == PGM_TYPE_AMD64
3334 && (cr4 & X86_CR4_PGE)) /* global 2/4MB page. */
3335# else
3336 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3337# endif
3338 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
3339 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3340 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
3341 else
3342 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
3343# endif /* VBOX_WITH_STATISTICS */
3344 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3345 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3346 //# ifdef PGMPOOL_WITH_CACHE
3347 // pgmPoolCacheUsed(pPool, pShwPage);
3348 //# endif
3349 }
3350 else
3351 {
3352# if PGM_GST_TYPE == PGM_TYPE_AMD64
3353 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPdShw);
3354# else
3355 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3356# endif
3357 pPDEDst->u = 0;
3358 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
3359 }
3360 }
3361 else
3362 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
3363 pPDEDst++;
3364 }
3365 }
3366# if PGM_GST_TYPE == PGM_TYPE_PAE
3367 else if (iPD + iPdpte * X86_PG_PAE_ENTRIES != iPdNoMapping)
3368# else
3369 else if (iPD != iPdNoMapping)
3370# endif
3371 {
3372 /*
3373 * Check if there is any page directory to mark not present here.
3374 */
3375# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3376 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3377# elif PGM_GST_TYPE == PGM_TYPE_PAE
3378 const unsigned iPdShw = iPD + iPdpte * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3379# else
3380 const unsigned iPdShw = iPD; NOREF(iPdShw);
3381# endif
3382 {
3383 if (pPDEDst->n.u1Present)
3384 {
3385# if PGM_GST_TYPE == PGM_TYPE_AMD64
3386 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), pShwPde->idx, iPdShw);
3387# else
3388 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
3389# endif
3390 pPDEDst->u = 0;
3391 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
3392 }
3393 pPDEDst++;
3394 }
3395 }
3396 else
3397 {
3398# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3399 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3400 && !defined(PGM_WITHOUT_MAPPINGS)
3401
3402 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3403
3404 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3405 if (pVM->pgm.s.fMappingsFixed)
3406 {
3407 /* It's fixed, just skip the mapping. */
3408 pMapping = pMapping->CTXALLSUFF(pNext);
3409 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3410 }
3411 else
3412 {
3413 /*
3414 * Check for conflicts for subsequent pagetables
3415 * and advance to the next mapping.
3416 */
3417 iPdNoMapping = ~0U;
3418 unsigned iPT = cPTs;
3419 while (iPT-- > 1)
3420 {
3421 if ( pPDSrc->a[iPD + iPT].n.u1Present
3422 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3423 {
3424# ifdef IN_RING3
3425# if PGM_GST_TYPE == PGM_TYPE_32BIT
3426 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3427# elif PGM_GST_TYPE == PGM_TYPE_PAE
3428 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpte << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3429# endif
3430 if (VBOX_FAILURE(rc))
3431 return rc;
3432
3433 /*
3434 * Update iPdNoMapping and pMapping.
3435 */
3436 pMapping = pVM->pgm.s.CTXALLSUFF(pMappings);
3437 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3438 pMapping = pMapping->CTXALLSUFF(pNext);
3439 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3440 break;
3441# else
3442 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3443 return VINF_PGM_SYNC_CR3;
3444# endif
3445 }
3446 }
3447 if (iPdNoMapping == ~0U && pMapping)
3448 {
3449 pMapping = pMapping->CTXALLSUFF(pNext);
3450 if (pMapping)
3451 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3452 }
3453 }
3454
3455 /* advance. */
3456 iPD += cPTs - 1;
3457 pPDEDst += cPTs + (PGM_GST_TYPE != PGM_SHW_TYPE) * cPTs; /* Only applies to the pae shadow and 32 bits guest case */
3458# if PGM_GST_TYPE != PGM_SHW_TYPE
3459 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3460# endif
3461# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3462 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3463# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3464 }
3465
3466 } /* for iPD */
3467 } /* for each PDPTE (PAE) */
3468 } /* for each page map level 4 entry (amd64) */
3469 return VINF_SUCCESS;
3470
3471# else /* guest real and protected mode */
3472 return VINF_SUCCESS;
3473# endif
3474#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
3475}
3476
3477
3478
3479
3480#ifdef VBOX_STRICT
3481#ifdef IN_GC
3482# undef AssertMsgFailed
3483# define AssertMsgFailed Log
3484#endif
3485#ifdef IN_RING3
3486# include <VBox/dbgf.h>
3487
3488/**
3489 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3490 *
3491 * @returns VBox status code (VINF_SUCCESS).
3492 * @param pVM The VM handle.
3493 * @param cr3 The root of the hierarchy.
3494 * @param crr The cr4, only PAE and PSE is currently used.
3495 * @param fLongMode Set if long mode, false if not long mode.
3496 * @param cMaxDepth Number of levels to dump.
3497 * @param pHlp Pointer to the output functions.
3498 */
3499__BEGIN_DECLS
3500PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3501__END_DECLS
3502
3503#endif
3504
3505/**
3506 * Checks that the shadow page table is in sync with the guest one.
3507 *
3508 * @returns The number of errors.
3509 * @param pVM The virtual machine.
3510 * @param cr3 Guest context CR3 register
3511 * @param cr4 Guest context CR4 register
3512 * @param GCPtr Where to start. Defaults to 0.
3513 * @param cb How much to check. Defaults to everything.
3514 */
3515PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
3516{
3517#if PGM_SHW_TYPE == PGM_TYPE_NESTED
3518 return 0;
3519#else
3520 unsigned cErrors = 0;
3521
3522#if PGM_GST_TYPE == PGM_TYPE_PAE
3523 /* @todo currently broken; crashes below somewhere */
3524 AssertFailed();
3525#endif
3526
3527#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3528 || PGM_GST_TYPE == PGM_TYPE_PAE \
3529 || PGM_GST_TYPE == PGM_TYPE_AMD64
3530
3531# if PGM_GST_TYPE == PGM_TYPE_AMD64
3532 bool fBigPagesSupported = true;
3533# else
3534 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3535# endif
3536 PPGM pPGM = &pVM->pgm.s;
3537 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3538 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3539# ifndef IN_RING0
3540 RTHCPHYS HCPhys; /* general usage. */
3541# endif
3542 int rc;
3543
3544 /*
3545 * Check that the Guest CR3 and all its mappings are correct.
3546 */
3547 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3548 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3549 false);
3550# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3551# if PGM_GST_TYPE == PGM_TYPE_32BIT
3552 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGuestPDGC, NULL, &HCPhysShw);
3553# else
3554 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePDPTGC, NULL, &HCPhysShw);
3555# endif
3556 AssertRCReturn(rc, 1);
3557 HCPhys = NIL_RTHCPHYS;
3558 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3559 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
3560# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3561 RTGCPHYS GCPhys;
3562 rc = PGMR3DbgHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
3563 AssertRCReturn(rc, 1);
3564 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
3565# endif
3566#endif /* !IN_RING0 */
3567
3568 /*
3569 * Get and check the Shadow CR3.
3570 */
3571# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3572 unsigned cPDEs = X86_PG_ENTRIES;
3573 unsigned ulIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3574# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3575# if PGM_GST_TYPE == PGM_TYPE_32BIT
3576 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3577# else
3578 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3579# endif
3580 unsigned ulIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3581# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3582 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3583 unsigned ulIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3584# endif
3585 if (cb != ~(RTGCUINTPTR)0)
3586 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3587
3588/** @todo call the other two PGMAssert*() functions. */
3589
3590# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3591 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
3592# endif
3593
3594# if PGM_GST_TYPE == PGM_TYPE_AMD64
3595 unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3596
3597 for (; iPml4e < X86_PG_PAE_ENTRIES; iPml4e++)
3598 {
3599 PPGMPOOLPAGE pShwPdpt = NULL;
3600 PX86PML4E pPml4eSrc, pPml4eDst;
3601 RTGCPHYS GCPhysPdptSrc;
3602
3603 pPml4eSrc = &pVM->pgm.s.CTXSUFF(pGstPaePML4)->a[iPml4e];
3604 pPml4eDst = &pVM->pgm.s.CTXMID(p,PaePML4)->a[iPml4e];
3605
3606 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3607 if (!pPml4eDst->n.u1Present)
3608 {
3609 GCPtr += UINT64_C(_2M * 512 * 512);
3610 continue;
3611 }
3612
3613# if PGM_GST_TYPE == PGM_TYPE_PAE
3614 /* not correct to call pgmPoolGetPage */
3615 AssertFailed();
3616# endif
3617 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3618 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3619
3620 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3621 {
3622 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3623 GCPtr += UINT64_C(_2M * 512 * 512);
3624 cErrors++;
3625 continue;
3626 }
3627
3628 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3629 {
3630 AssertMsgFailed(("Physical address doesn't match! iPml4e %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3631 GCPtr += UINT64_C(_2M * 512 * 512);
3632 cErrors++;
3633 continue;
3634 }
3635
3636 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3637 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3638 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3639 {
3640 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3641 GCPtr += UINT64_C(_2M * 512 * 512);
3642 cErrors++;
3643 continue;
3644 }
3645# else
3646 {
3647# endif
3648
3649# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3650 /*
3651 * Check the PDPTEs too.
3652 */
3653 unsigned iPdpte = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3654
3655 for (;iPdpte <= SHW_PDPT_MASK; iPdpte++)
3656 {
3657 unsigned iPDSrc;
3658 PPGMPOOLPAGE pShwPde = NULL;
3659 PX86PDPE pPdpeDst;
3660 RTGCPHYS GCPhysPdeSrc;
3661# if PGM_GST_TYPE == PGM_TYPE_PAE
3662 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
3663 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc);
3664 PX86PDPT pPdptDst = pVM->pgm.s.CTXMID(p,PaePDPT);
3665 X86PDPE PdpeSrc = CTXSUFF(pVM->pgm.s.pGstPaePDPT)->a[iPdpte];
3666# else
3667 PX86PML4E pPml4eSrc;
3668 X86PDPE PdpeSrc;
3669 PX86PDPT pPdptDst;
3670 PX86PDPAE pPDDst;
3671 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3672
3673 rc = PGMShwGetLongModePDPtr(pVM, GCPtr, &pPdptDst, &pPDDst);
3674 if (rc != VINF_SUCCESS)
3675 {
3676 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Vrc\n", rc));
3677 GCPtr += 512 * _2M;
3678 continue; /* next PDPTE */
3679 }
3680 Assert(pPDDst);
3681# endif
3682 Assert(iPDSrc == 0);
3683
3684 pPdpeDst = &pPdptDst->a[iPdpte];
3685
3686 if (!pPdpeDst->n.u1Present)
3687 {
3688 GCPtr += 512 * _2M;
3689 continue; /* next PDPTE */
3690 }
3691
3692 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3693 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3694
3695 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3696 {
3697 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3698 GCPtr += 512 * _2M;
3699 cErrors++;
3700 continue;
3701 }
3702
3703 if (GCPhysPdeSrc != pShwPde->GCPhys)
3704 {
3705# if PGM_GST_TYPE == PGM_TYPE_AMD64
3706 AssertMsgFailed(("Physical address doesn't match! iPml4e %d iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4e, iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3707# else
3708 AssertMsgFailed(("Physical address doesn't match! iPdpte %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpte, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3709# endif
3710 GCPtr += 512 * _2M;
3711 cErrors++;
3712 continue;
3713 }
3714
3715# if PGM_GST_TYPE == PGM_TYPE_AMD64
3716 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3717 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3718 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3719 {
3720 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3721 GCPtr += 512 * _2M;
3722 cErrors++;
3723 continue;
3724 }
3725# endif
3726
3727# else
3728 {
3729# endif
3730# if PGM_GST_TYPE == PGM_TYPE_32BIT
3731 const GSTPD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
3732# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3733 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
3734# else
3735 const PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries, so no need to and with SHW_PD_MASK to get iPDDst */
3736# endif
3737# endif
3738 /*
3739 * Iterate the shadow page directory.
3740 */
3741 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3742 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3743
3744 for (;
3745 iPDDst < cPDEs;
3746 iPDDst++, GCPtr += ulIncrement)
3747 {
3748 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3749 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3750 {
3751 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3752 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3753 {
3754 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3755 cErrors++;
3756 continue;
3757 }
3758 }
3759 else if ( (PdeDst.u & X86_PDE_P)
3760 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3761 )
3762 {
3763 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3764 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3765 if (!pPoolPage)
3766 {
3767 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
3768 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3769 cErrors++;
3770 continue;
3771 }
3772 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3773
3774 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3775 {
3776 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
3777 GCPtr, (uint64_t)PdeDst.u));
3778 cErrors++;
3779 }
3780
3781 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3782 {
3783 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
3784 GCPtr, (uint64_t)PdeDst.u));
3785 cErrors++;
3786 }
3787
3788 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3789 if (!PdeSrc.n.u1Present)
3790 {
3791 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3792 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3793 cErrors++;
3794 continue;
3795 }
3796
3797 if ( !PdeSrc.b.u1Size
3798 || !fBigPagesSupported)
3799 {
3800 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3801# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3802 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3803# endif
3804 }
3805 else
3806 {
3807# if PGM_GST_TYPE == PGM_TYPE_32BIT
3808 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3809 {
3810 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3811 GCPtr, (uint64_t)PdeSrc.u));
3812 cErrors++;
3813 continue;
3814 }
3815# endif
3816 GCPhysGst = PdeSrc.u & GST_PDE_BIG_PG_MASK;
3817# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3818 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3819# endif
3820 }
3821
3822 if ( pPoolPage->enmKind
3823 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3824 {
3825 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3826 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3827 cErrors++;
3828 }
3829
3830 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3831 if (!pPhysPage)
3832 {
3833 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3834 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3835 cErrors++;
3836 continue;
3837 }
3838
3839 if (GCPhysGst != pPoolPage->GCPhys)
3840 {
3841 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3842 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3843 cErrors++;
3844 continue;
3845 }
3846
3847 if ( !PdeSrc.b.u1Size
3848 || !fBigPagesSupported)
3849 {
3850 /*
3851 * Page Table.
3852 */
3853 const GSTPT *pPTSrc;
3854 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3855 if (VBOX_FAILURE(rc))
3856 {
3857 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3858 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3859 cErrors++;
3860 continue;
3861 }
3862 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3863 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3864 {
3865 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3866 // (This problem will go away when/if we shadow multiple CR3s.)
3867 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3868 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3869 cErrors++;
3870 continue;
3871 }
3872 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3873 {
3874 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3875 GCPtr, (uint64_t)PdeDst.u));
3876 cErrors++;
3877 continue;
3878 }
3879
3880 /* iterate the page table. */
3881# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3882 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3883 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3884# else
3885 const unsigned offPTSrc = 0;
3886# endif
3887 for (unsigned iPT = 0, off = 0;
3888 iPT < ELEMENTS(pPTDst->a);
3889 iPT++, off += PAGE_SIZE)
3890 {
3891 const SHWPTE PteDst = pPTDst->a[iPT];
3892
3893 /* skip not-present entries. */
3894 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3895 continue;
3896 Assert(PteDst.n.u1Present);
3897
3898 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3899 if (!PteSrc.n.u1Present)
3900 {
3901# ifdef IN_RING3
3902 PGMAssertHandlerAndFlagsInSync(pVM);
3903 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3904# endif
3905 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3906 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3907 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3908 cErrors++;
3909 continue;
3910 }
3911
3912 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3913# if 1 /** @todo sync accessed bit properly... */
3914 fIgnoreFlags |= X86_PTE_A;
3915# endif
3916
3917 /* match the physical addresses */
3918 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3919 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3920
3921# ifdef IN_RING3
3922 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3923 if (VBOX_FAILURE(rc))
3924 {
3925 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3926 {
3927 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3928 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3929 cErrors++;
3930 continue;
3931 }
3932 }
3933 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3934 {
3935 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3936 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3937 cErrors++;
3938 continue;
3939 }
3940# endif
3941
3942 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3943 if (!pPhysPage)
3944 {
3945# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3946 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3947 {
3948 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3949 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3950 cErrors++;
3951 continue;
3952 }
3953# endif
3954 if (PteDst.n.u1Write)
3955 {
3956 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3957 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3958 cErrors++;
3959 }
3960 fIgnoreFlags |= X86_PTE_RW;
3961 }
3962 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
3963 {
3964 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3965 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3966 cErrors++;
3967 continue;
3968 }
3969
3970 /* flags */
3971 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3972 {
3973 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3974 {
3975 if (PteDst.n.u1Write)
3976 {
3977 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3978 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3979 cErrors++;
3980 continue;
3981 }
3982 fIgnoreFlags |= X86_PTE_RW;
3983 }
3984 else
3985 {
3986 if (PteDst.n.u1Present)
3987 {
3988 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3989 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3990 cErrors++;
3991 continue;
3992 }
3993 fIgnoreFlags |= X86_PTE_P;
3994 }
3995 }
3996 else
3997 {
3998 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3999 {
4000 if (PteDst.n.u1Write)
4001 {
4002 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4003 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4004 cErrors++;
4005 continue;
4006 }
4007 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4008 {
4009 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4010 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4011 cErrors++;
4012 continue;
4013 }
4014 if (PteDst.n.u1Dirty)
4015 {
4016 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4017 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4018 cErrors++;
4019 }
4020# if 0 /** @todo sync access bit properly... */
4021 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4022 {
4023 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4024 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4025 cErrors++;
4026 }
4027 fIgnoreFlags |= X86_PTE_RW;
4028# else
4029 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4030# endif
4031 }
4032 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4033 {
4034 /* access bit emulation (not implemented). */
4035 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4036 {
4037 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4038 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4039 cErrors++;
4040 continue;
4041 }
4042 if (!PteDst.n.u1Accessed)
4043 {
4044 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4045 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4046 cErrors++;
4047 }
4048 fIgnoreFlags |= X86_PTE_P;
4049 }
4050# ifdef DEBUG_sandervl
4051 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4052# endif
4053 }
4054
4055 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4056 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4057 )
4058 {
4059 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4060 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4061 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4062 cErrors++;
4063 continue;
4064 }
4065 } /* foreach PTE */
4066 }
4067 else
4068 {
4069 /*
4070 * Big Page.
4071 */
4072 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4073 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4074 {
4075 if (PdeDst.n.u1Write)
4076 {
4077 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4078 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4079 cErrors++;
4080 continue;
4081 }
4082 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4083 {
4084 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4085 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4086 cErrors++;
4087 continue;
4088 }
4089# if 0 /** @todo sync access bit properly... */
4090 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4091 {
4092 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4093 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4094 cErrors++;
4095 }
4096 fIgnoreFlags |= X86_PTE_RW;
4097# else
4098 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4099# endif
4100 }
4101 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4102 {
4103 /* access bit emulation (not implemented). */
4104 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4105 {
4106 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4107 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4108 cErrors++;
4109 continue;
4110 }
4111 if (!PdeDst.n.u1Accessed)
4112 {
4113 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4114 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4115 cErrors++;
4116 }
4117 fIgnoreFlags |= X86_PTE_P;
4118 }
4119
4120 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4121 {
4122 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4123 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4124 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4125 cErrors++;
4126 }
4127
4128 /* iterate the page table. */
4129 for (unsigned iPT = 0, off = 0;
4130 iPT < ELEMENTS(pPTDst->a);
4131 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4132 {
4133 const SHWPTE PteDst = pPTDst->a[iPT];
4134
4135 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4136 {
4137 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4138 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4139 cErrors++;
4140 }
4141
4142 /* skip not-present entries. */
4143 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4144 continue;
4145
4146 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4147
4148 /* match the physical addresses */
4149 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4150
4151# ifdef IN_RING3
4152 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4153 if (VBOX_FAILURE(rc))
4154 {
4155 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4156 {
4157 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4158 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4159 cErrors++;
4160 }
4161 }
4162 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4163 {
4164 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4165 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4166 cErrors++;
4167 continue;
4168 }
4169# endif
4170 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4171 if (!pPhysPage)
4172 {
4173# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4174 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4175 {
4176 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4177 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4178 cErrors++;
4179 continue;
4180 }
4181# endif
4182 if (PteDst.n.u1Write)
4183 {
4184 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4185 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4186 cErrors++;
4187 }
4188 fIgnoreFlags |= X86_PTE_RW;
4189 }
4190 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
4191 {
4192 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4193 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4194 cErrors++;
4195 continue;
4196 }
4197
4198 /* flags */
4199 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4200 {
4201 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4202 {
4203 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4204 {
4205 if (PteDst.n.u1Write)
4206 {
4207 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4208 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4209 cErrors++;
4210 continue;
4211 }
4212 fIgnoreFlags |= X86_PTE_RW;
4213 }
4214 }
4215 else
4216 {
4217 if (PteDst.n.u1Present)
4218 {
4219 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
4220 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4221 cErrors++;
4222 continue;
4223 }
4224 fIgnoreFlags |= X86_PTE_P;
4225 }
4226 }
4227
4228 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4229 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4230 )
4231 {
4232 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4233 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4234 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4235 cErrors++;
4236 continue;
4237 }
4238 } /* for each PTE */
4239 }
4240 }
4241 /* not present */
4242
4243 } /* for each PDE */
4244
4245 } /* for each PDPTE */
4246
4247 } /* for each PML4E */
4248
4249# ifdef DEBUG
4250 if (cErrors)
4251 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4252# endif
4253
4254#endif
4255 return cErrors;
4256
4257#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED */
4258}
4259#endif /* VBOX_STRICT */
4260
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette