VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 17285

Last change on this file since 17285 was 17285, checked in by vboxsync, 16 years ago

PGM: Gone are MM_RAM_FLAGS_CREFS_SHIFT and MM_RAM_FLAGS_CREFS_MASK.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 207.8 KB
Line 
1/* $Id: PGMAllBth.h 17285 2009-03-03 14:34:35Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3);
43PGM_BTH_DECL(int, UnmapCR3)(PVM pVM);
44__END_DECLS
45
46
47/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
48#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
49# error "Invalid combination; PAE guest implies PAE shadow"
50#endif
51
52#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
53 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
54# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
55#endif
56
57#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
58 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
59# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
60#endif
61
62#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
63 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
64# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
65#endif
66
67#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
68# define PGM_WITHOUT_MAPPINGS
69#endif
70
71
72#ifndef IN_RING3
73/**
74 * #PF Handler for raw-mode guest execution.
75 *
76 * @returns VBox status code (appropriate for trap handling and GC return).
77 * @param pVM VM Handle.
78 * @param uErr The trap error code.
79 * @param pRegFrame Trap register frame.
80 * @param pvFault The fault address.
81 */
82PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
83{
84# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY) && defined(VBOX_STRICT)
85 PGMDynCheckLocks(pVM);
86# endif
87
88# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
89 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
90 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
91
92# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
93 /*
94 * Hide the instruction fetch trap indicator for now.
95 */
96 /** @todo NXE will change this and we must fix NXE in the switcher too! */
97 if (uErr & X86_TRAP_PF_ID)
98 {
99 uErr &= ~X86_TRAP_PF_ID;
100 TRPMSetErrorCode(pVM, uErr);
101 }
102# endif
103
104 /*
105 * Get PDs.
106 */
107 int rc;
108# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
109# if PGM_GST_TYPE == PGM_TYPE_32BIT
110 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
111 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
112
113# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
114
115# if PGM_GST_TYPE == PGM_TYPE_PAE
116 unsigned iPDSrc;
117# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
118 X86PDPE PdpeSrc;
119 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
120# else
121 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, NULL);
122# endif
123
124# elif PGM_GST_TYPE == PGM_TYPE_AMD64
125 unsigned iPDSrc;
126 PX86PML4E pPml4eSrc;
127 X86PDPE PdpeSrc;
128 PGSTPD pPDSrc;
129
130 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
131 Assert(pPml4eSrc);
132# endif
133
134 /* Quick check for a valid guest trap. (PAE & AMD64) */
135 if (!pPDSrc)
136 {
137# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
138 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
139# else
140 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
141# endif
142 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
143 TRPMSetErrorCode(pVM, uErr);
144 return VINF_EM_RAW_GUEST_TRAP;
145 }
146# endif
147
148# else /* !PGM_WITH_PAGING */
149 PGSTPD pPDSrc = NULL;
150 const unsigned iPDSrc = 0;
151# endif /* !PGM_WITH_PAGING */
152
153
154# if PGM_SHW_TYPE == PGM_TYPE_32BIT
155 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
156 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
157
158# elif PGM_SHW_TYPE == PGM_TYPE_PAE
159 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
160
161# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
162 PX86PDPAE pPDDst;
163# if PGM_GST_TYPE != PGM_TYPE_PAE
164 X86PDPE PdpeSrc;
165
166 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
167 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
168# endif
169 rc = pgmShwSyncPaePDPtr(pVM, pvFault, &PdpeSrc, &pPDDst);
170 if (rc != VINF_SUCCESS)
171 {
172 AssertRC(rc);
173 return rc;
174 }
175 Assert(pPDDst);
176
177# else
178 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, pvFault);
179
180 /* Did we mark the PDPT as not present in SyncCR3? */
181 unsigned iPdpt = (pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
182 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
183 if (!pPdptDst->a[iPdpt].n.u1Present)
184 pPdptDst->a[iPdpt].n.u1Present = 1;
185# endif
186
187# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
188 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
189 PX86PDPAE pPDDst;
190# if PGM_GST_TYPE == PGM_TYPE_PROT
191 /* AMD-V nested paging */
192 X86PML4E Pml4eSrc;
193 X86PDPE PdpeSrc;
194 PX86PML4E pPml4eSrc = &Pml4eSrc;
195
196 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
197 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
198 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
199# endif
200
201 rc = pgmShwSyncLongModePDPtr(pVM, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
202 if (rc != VINF_SUCCESS)
203 {
204 AssertRC(rc);
205 return rc;
206 }
207 Assert(pPDDst);
208
209# elif PGM_SHW_TYPE == PGM_TYPE_EPT
210 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
211 PEPTPD pPDDst;
212
213 rc = pgmShwGetEPTPDPtr(pVM, pvFault, NULL, &pPDDst);
214 if (rc != VINF_SUCCESS)
215 {
216 AssertRC(rc);
217 return rc;
218 }
219 Assert(pPDDst);
220# endif
221
222# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
223 /*
224 * If we successfully correct the write protection fault due to dirty bit
225 * tracking, or this page fault is a genuine one, then return immediately.
226 */
227 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
228 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
229 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
230 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
231 || rc == VINF_EM_RAW_GUEST_TRAP)
232 {
233 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
234 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
235 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
236 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
237 }
238
239 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0ePD[iPDSrc]);
240# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
241
242 /*
243 * A common case is the not-present error caused by lazy page table syncing.
244 *
245 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
246 * so we can safely assume that the shadow PT is present when calling SyncPage later.
247 *
248 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
249 * of mapping conflict and defer to SyncCR3 in R3.
250 * (Again, we do NOT support access handlers for non-present guest pages.)
251 *
252 */
253# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
254 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
255# else
256 GSTPDE PdeSrc;
257 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
258 PdeSrc.n.u1Present = 1;
259 PdeSrc.n.u1Write = 1;
260 PdeSrc.n.u1Accessed = 1;
261 PdeSrc.n.u1User = 1;
262# endif
263 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
264 && !pPDDst->a[iPDDst].n.u1Present
265 && PdeSrc.n.u1Present
266 )
267
268 {
269 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2SyncPT; });
270 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
271 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
272 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, pvFault);
273 if (RT_SUCCESS(rc))
274 {
275 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
276 return rc;
277 }
278 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
279 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
280 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
281 return VINF_PGM_SYNC_CR3;
282 }
283
284# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
285 /*
286 * Check if this address is within any of our mappings.
287 *
288 * This is *very* fast and it's gonna save us a bit of effort below and prevent
289 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
290 * (BTW, it's impossible to have physical access handlers in a mapping.)
291 */
292 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
293 {
294 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
295 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
296 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
297 {
298 if (pvFault < pMapping->GCPtr)
299 break;
300 if (pvFault - pMapping->GCPtr < pMapping->cb)
301 {
302 /*
303 * The first thing we check is if we've got an undetected conflict.
304 */
305 if (!pVM->pgm.s.fMappingsFixed)
306 {
307 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
308 while (iPT-- > 0)
309 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
310 {
311 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eConflicts);
312 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
313 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
314 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
315 return VINF_PGM_SYNC_CR3;
316 }
317 }
318
319 /*
320 * Check if the fault address is in a virtual page access handler range.
321 */
322 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
323 if ( pCur
324 && pvFault - pCur->Core.Key < pCur->cb
325 && uErr & X86_TRAP_PF_RW)
326 {
327# ifdef IN_RC
328 STAM_PROFILE_START(&pCur->Stat, h);
329 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
330 STAM_PROFILE_STOP(&pCur->Stat, h);
331# else
332 AssertFailed();
333 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
334# endif
335 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersMapping);
336 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
337 return rc;
338 }
339
340 /*
341 * Pretend we're not here and let the guest handle the trap.
342 */
343 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
344 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFMapping);
345 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
346 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
347 return VINF_EM_RAW_GUEST_TRAP;
348 }
349 }
350 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
351 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
352# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
353
354 /*
355 * Check if this fault address is flagged for special treatment,
356 * which means we'll have to figure out the physical address and
357 * check flags associated with it.
358 *
359 * ASSUME that we can limit any special access handling to pages
360 * in page tables which the guest believes to be present.
361 */
362 if (PdeSrc.n.u1Present)
363 {
364 RTGCPHYS GCPhys = NIL_RTGCPHYS;
365
366# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
367# if PGM_GST_TYPE == PGM_TYPE_AMD64
368 bool fBigPagesSupported = true;
369# else
370 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
371# endif
372 if ( PdeSrc.b.u1Size
373 && fBigPagesSupported)
374 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
375 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
376 else
377 {
378 PGSTPT pPTSrc;
379 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
380 if (RT_SUCCESS(rc))
381 {
382 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
383 if (pPTSrc->a[iPTESrc].n.u1Present)
384 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
385 }
386 }
387# else
388 /* No paging so the fault address is the physical address */
389 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
390# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
391
392 /*
393 * If we have a GC address we'll check if it has any flags set.
394 */
395 if (GCPhys != NIL_RTGCPHYS)
396 {
397 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
398
399 PPGMPAGE pPage;
400 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
401 if (RT_SUCCESS(rc))
402 {
403 if ( PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage)
404 || PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
405 {
406 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
407 {
408 /*
409 * Physical page access handler.
410 */
411 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
412 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
413 if (pCur)
414 {
415# ifdef PGM_SYNC_N_PAGES
416 /*
417 * If the region is write protected and we got a page not present fault, then sync
418 * the pages. If the fault was caused by a read, then restart the instruction.
419 * In case of write access continue to the GC write handler.
420 *
421 * ASSUMES that there is only one handler per page or that they have similar write properties.
422 */
423 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
424 && !(uErr & X86_TRAP_PF_P))
425 {
426 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
427 if ( RT_FAILURE(rc)
428 || !(uErr & X86_TRAP_PF_RW)
429 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
430 {
431 AssertRC(rc);
432 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
433 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
434 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
435 return rc;
436 }
437 }
438# endif
439
440 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
441 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
442 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
443
444# if defined(IN_RC) || defined(IN_RING0)
445 if (pCur->CTX_SUFF(pfnHandler))
446 {
447 STAM_PROFILE_START(&pCur->Stat, h);
448 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pCur->CTX_SUFF(pvUser));
449 STAM_PROFILE_STOP(&pCur->Stat, h);
450 }
451 else
452# endif
453 rc = VINF_EM_RAW_EMULATE_INSTR;
454 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersPhysical);
455 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
456 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndPhys; });
457 return rc;
458 }
459 }
460# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
461 else
462 {
463# ifdef PGM_SYNC_N_PAGES
464 /*
465 * If the region is write protected and we got a page not present fault, then sync
466 * the pages. If the fault was caused by a read, then restart the instruction.
467 * In case of write access continue to the GC write handler.
468 */
469 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
470 && !(uErr & X86_TRAP_PF_P))
471 {
472 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
473 if ( RT_FAILURE(rc)
474 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
475 || !(uErr & X86_TRAP_PF_RW))
476 {
477 AssertRC(rc);
478 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
479 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
480 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
481 return rc;
482 }
483 }
484# endif
485 /*
486 * Ok, it's an virtual page access handler.
487 *
488 * Since it's faster to search by address, we'll do that first
489 * and then retry by GCPhys if that fails.
490 */
491 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
492 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
493 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
494 */
495 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
496 if (pCur)
497 {
498 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
499 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
500 || !(uErr & X86_TRAP_PF_P)
501 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
502 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
503
504 if ( pvFault - pCur->Core.Key < pCur->cb
505 && ( uErr & X86_TRAP_PF_RW
506 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
507 {
508# ifdef IN_RC
509 STAM_PROFILE_START(&pCur->Stat, h);
510 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
511 STAM_PROFILE_STOP(&pCur->Stat, h);
512# else
513 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
514# endif
515 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtual);
516 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
517 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
518 return rc;
519 }
520 /* Unhandled part of a monitored page */
521 }
522 else
523 {
524 /* Check by physical address. */
525 PPGMVIRTHANDLER pCur;
526 unsigned iPage;
527 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
528 &pCur, &iPage);
529 Assert(RT_SUCCESS(rc) || !pCur);
530 if ( pCur
531 && ( uErr & X86_TRAP_PF_RW
532 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
533 {
534 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
535# ifdef IN_RC
536 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
537 Assert(off < pCur->cb);
538 STAM_PROFILE_START(&pCur->Stat, h);
539 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
540 STAM_PROFILE_STOP(&pCur->Stat, h);
541# else
542 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
543# endif
544 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
545 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
546 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
547 return rc;
548 }
549 }
550 }
551# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
552
553 /*
554 * There is a handled area of the page, but this fault doesn't belong to it.
555 * We must emulate the instruction.
556 *
557 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
558 * we first check if this was a page-not-present fault for a page with only
559 * write access handlers. Restart the instruction if it wasn't a write access.
560 */
561 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersUnhandled);
562
563 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
564 && !(uErr & X86_TRAP_PF_P))
565 {
566 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
567 if ( RT_FAILURE(rc)
568 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
569 || !(uErr & X86_TRAP_PF_RW))
570 {
571 AssertRC(rc);
572 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
573 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
574 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
575 return rc;
576 }
577 }
578
579 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
580 * It's writing to an unhandled part of the LDT page several million times.
581 */
582 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
583 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%RHp%s%s\n",
584 rc, pPage->HCPhys,
585 PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ? " phys" : "",
586 PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ? " virt" : ""));
587 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
588 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndUnhandled; });
589 return rc;
590 } /* if any kind of handler */
591
592# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
593 if (uErr & X86_TRAP_PF_P)
594 {
595 /*
596 * The page isn't marked, but it might still be monitored by a virtual page access handler.
597 * (ASSUMES no temporary disabling of virtual handlers.)
598 */
599 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
600 * we should correct both the shadow page table and physical memory flags, and not only check for
601 * accesses within the handler region but for access to pages with virtual handlers. */
602 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
603 if (pCur)
604 {
605 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
606 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
607 || !(uErr & X86_TRAP_PF_P)
608 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
609 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, pPage->HCPhys, uErr, pCur->enmType));
610
611 if ( pvFault - pCur->Core.Key < pCur->cb
612 && ( uErr & X86_TRAP_PF_RW
613 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
614 {
615# ifdef IN_RC
616 STAM_PROFILE_START(&pCur->Stat, h);
617 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
618 STAM_PROFILE_STOP(&pCur->Stat, h);
619# else
620 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
621# endif
622 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
623 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
624 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
625 return rc;
626 }
627 }
628 }
629# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
630 }
631 else
632 {
633 /* When the guest accesses invalid physical memory (e.g. probing of RAM or accessing a remapped MMIO range), then we'll fall
634 * back to the recompiler to emulate the instruction.
635 */
636 LogFlow(("pgmPhysGetPageEx %RGp failed with %Rrc\n", GCPhys, rc));
637 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersInvalid);
638 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
639 return VINF_EM_RAW_EMULATE_INSTR;
640 }
641
642 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
643
644# ifdef PGM_OUT_OF_SYNC_IN_GC
645 /*
646 * We are here only if page is present in Guest page tables and trap is not handled
647 * by our handlers.
648 * Check it for page out-of-sync situation.
649 */
650 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
651
652 if (!(uErr & X86_TRAP_PF_P))
653 {
654 /*
655 * Page is not present in our page tables.
656 * Try to sync it!
657 * BTW, fPageShw is invalid in this branch!
658 */
659 if (uErr & X86_TRAP_PF_US)
660 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
661 else /* supervisor */
662 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
663
664# if defined(LOG_ENABLED) && !defined(IN_RING0)
665 RTGCPHYS GCPhys;
666 uint64_t fPageGst;
667 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
668 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%RGp scan=%d\n",
669 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
670# endif /* LOG_ENABLED */
671
672# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
673 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
674 {
675 uint64_t fPageGst;
676 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
677 if ( RT_SUCCESS(rc)
678 && !(fPageGst & X86_PTE_US))
679 {
680 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
681 if ( pvFault == (RTGCPTR)pRegFrame->eip
682 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
683# ifdef CSAM_DETECT_NEW_CODE_PAGES
684 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
685 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
686# endif /* CSAM_DETECT_NEW_CODE_PAGES */
687 )
688 {
689 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
690 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
691 if (rc != VINF_SUCCESS)
692 {
693 /*
694 * CSAM needs to perform a job in ring 3.
695 *
696 * Sync the page before going to the host context; otherwise we'll end up in a loop if
697 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
698 */
699 LogFlow(("CSAM ring 3 job\n"));
700 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
701 AssertRC(rc2);
702
703 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
704 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2CSAM; });
705 return rc;
706 }
707 }
708# ifdef CSAM_DETECT_NEW_CODE_PAGES
709 else if ( uErr == X86_TRAP_PF_RW
710 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
711 && pRegFrame->ecx < 0x10000)
712 {
713 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
714 * to detect loading of new code pages.
715 */
716
717 /*
718 * Decode the instruction.
719 */
720 RTGCPTR PC;
721 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
722 if (rc == VINF_SUCCESS)
723 {
724 DISCPUSTATE Cpu;
725 uint32_t cbOp;
726 rc = EMInterpretDisasOneEx(pVM, PC, pRegFrame, &Cpu, &cbOp);
727
728 /* For now we'll restrict this to rep movsw/d instructions */
729 if ( rc == VINF_SUCCESS
730 && Cpu.pCurInstr->opcode == OP_MOVSWD
731 && (Cpu.prefix & PREFIX_REP))
732 {
733 CSAMMarkPossibleCodePage(pVM, pvFault);
734 }
735 }
736 }
737# endif /* CSAM_DETECT_NEW_CODE_PAGES */
738
739 /*
740 * Mark this page as safe.
741 */
742 /** @todo not correct for pages that contain both code and data!! */
743 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
744 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
745 }
746 }
747# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
748 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
749 if (RT_SUCCESS(rc))
750 {
751 /* The page was successfully synced, return to the guest. */
752 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
753 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSync; });
754 return VINF_SUCCESS;
755 }
756 }
757 else
758 {
759 /*
760 * A side effect of not flushing global PDEs are out of sync pages due
761 * to physical monitored regions, that are no longer valid.
762 * Assume for now it only applies to the read/write flag
763 */
764 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
765 {
766 if (uErr & X86_TRAP_PF_US)
767 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
768 else /* supervisor */
769 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
770
771
772 /*
773 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
774 */
775 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
776 if (RT_SUCCESS(rc))
777 {
778 /*
779 * Page was successfully synced, return to guest.
780 */
781# ifdef VBOX_STRICT
782 RTGCPHYS GCPhys;
783 uint64_t fPageGst;
784 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
785 Assert(RT_SUCCESS(rc) && fPageGst & X86_PTE_RW);
786 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
787
788 uint64_t fPageShw;
789 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
790 AssertMsg(RT_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
791# endif /* VBOX_STRICT */
792 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
793 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
794 return VINF_SUCCESS;
795 }
796
797 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
798 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
799 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)
800 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
801 {
802 uint64_t fPageGst;
803 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
804 if ( RT_SUCCESS(rc)
805 && !(fPageGst & X86_PTE_RW))
806 {
807 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
808 if (RT_SUCCESS(rc))
809 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulInRZ);
810 else
811 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulToR3);
812 return rc;
813 }
814 AssertMsgFailed(("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
815 }
816 }
817
818# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
819# ifdef VBOX_STRICT
820 /*
821 * Check for VMM page flags vs. Guest page flags consistency.
822 * Currently only for debug purposes.
823 */
824 if (RT_SUCCESS(rc))
825 {
826 /* Get guest page flags. */
827 uint64_t fPageGst;
828 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
829 if (RT_SUCCESS(rc))
830 {
831 uint64_t fPageShw;
832 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
833
834 /*
835 * Compare page flags.
836 * Note: we have AVL, A, D bits desynched.
837 */
838 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
839 ("Page flags mismatch! pvFault=%RGv GCPhys=%RGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
840 }
841 else
842 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
843 }
844 else
845 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
846# endif /* VBOX_STRICT */
847# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
848 }
849 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
850# endif /* PGM_OUT_OF_SYNC_IN_GC */
851 }
852 else
853 {
854 /*
855 * Page not present in Guest OS or invalid page table address.
856 * This is potential virtual page access handler food.
857 *
858 * For the present we'll say that our access handlers don't
859 * work for this case - we've already discarded the page table
860 * not present case which is identical to this.
861 *
862 * When we perchance find we need this, we will probably have AVL
863 * trees (offset based) to operate on and we can measure their speed
864 * agains mapping a page table and probably rearrange this handling
865 * a bit. (Like, searching virtual ranges before checking the
866 * physical address.)
867 */
868 }
869 }
870
871
872# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
873 /*
874 * Conclusion, this is a guest trap.
875 */
876 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
877 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFUnh);
878 return VINF_EM_RAW_GUEST_TRAP;
879# else
880 /* present, but not a monitored page; perhaps the guest is probing physical memory */
881 return VINF_EM_RAW_EMULATE_INSTR;
882# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
883
884
885# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
886
887 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
888 return VERR_INTERNAL_ERROR;
889# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
890}
891#endif /* !IN_RING3 */
892
893
894/**
895 * Emulation of the invlpg instruction.
896 *
897 *
898 * @returns VBox status code.
899 *
900 * @param pVM VM handle.
901 * @param GCPtrPage Page to invalidate.
902 *
903 * @remark ASSUMES that the guest is updating before invalidating. This order
904 * isn't required by the CPU, so this is speculative and could cause
905 * trouble.
906 *
907 * @todo Flush page or page directory only if necessary!
908 * @todo Add a #define for simply invalidating the page.
909 */
910PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage)
911{
912#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
913 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
914 && PGM_SHW_TYPE != PGM_TYPE_EPT
915 int rc;
916
917 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
918 /*
919 * Get the shadow PD entry and skip out if this PD isn't present.
920 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
921 */
922# if PGM_SHW_TYPE == PGM_TYPE_32BIT
923 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
924 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
925
926# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
927 /* Fetch the pgm pool shadow descriptor. */
928 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
929 Assert(pShwPde);
930# endif
931
932# elif PGM_SHW_TYPE == PGM_TYPE_PAE
933 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
934 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
935
936 /* If the shadow PDPE isn't present, then skip the invalidate. */
937 if (!pPdptDst->a[iPdpt].n.u1Present)
938 {
939 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
940 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
941 return VINF_SUCCESS;
942 }
943
944# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
945 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
946 PPGMPOOLPAGE pShwPde;
947 PX86PDPAE pPDDst;
948
949 /* Fetch the pgm pool shadow descriptor. */
950 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
951 AssertRCSuccessReturn(rc, rc);
952 Assert(pShwPde);
953
954 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
955 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
956# else
957 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - pool index only atm! */;
958 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
959# endif
960
961# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
962 /* PML4 */
963 AssertReturn(pVM->pgm.s.pShwRootR3, VERR_INTERNAL_ERROR);
964
965 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
966 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
967 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
968 PX86PDPAE pPDDst;
969 PX86PDPT pPdptDst;
970 PX86PML4E pPml4eDst;
971 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
972 if (rc != VINF_SUCCESS)
973 {
974 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
975 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
976 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
977 PGM_INVL_GUEST_TLBS();
978 return VINF_SUCCESS;
979 }
980 Assert(pPDDst);
981
982 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
983 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
984
985 if (!pPdpeDst->n.u1Present)
986 {
987 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
988 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
989 PGM_INVL_GUEST_TLBS();
990 return VINF_SUCCESS;
991 }
992
993# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
994
995 const SHWPDE PdeDst = *pPdeDst;
996 if (!PdeDst.n.u1Present)
997 {
998 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
999 return VINF_SUCCESS;
1000 }
1001
1002 /*
1003 * Get the guest PD entry and calc big page.
1004 */
1005# if PGM_GST_TYPE == PGM_TYPE_32BIT
1006 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
1007 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1008 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1009# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1010 unsigned iPDSrc;
1011# if PGM_GST_TYPE == PGM_TYPE_PAE
1012 X86PDPE PdpeSrc;
1013 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1014# else /* AMD64 */
1015 PX86PML4E pPml4eSrc;
1016 X86PDPE PdpeSrc;
1017 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1018# endif
1019 GSTPDE PdeSrc;
1020
1021 if (pPDSrc)
1022 PdeSrc = pPDSrc->a[iPDSrc];
1023 else
1024 PdeSrc.u = 0;
1025# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1026
1027# if PGM_GST_TYPE == PGM_TYPE_AMD64
1028 const bool fIsBigPage = PdeSrc.b.u1Size;
1029# else
1030 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1031# endif
1032
1033# ifdef IN_RING3
1034 /*
1035 * If a CR3 Sync is pending we may ignore the invalidate page operation
1036 * depending on the kind of sync and if it's a global page or not.
1037 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1038 */
1039# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1040 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
1041 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
1042 && fIsBigPage
1043 && PdeSrc.b.u1Global
1044 )
1045 )
1046# else
1047 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1048# endif
1049 {
1050 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1051 return VINF_SUCCESS;
1052 }
1053# endif /* IN_RING3 */
1054
1055# if PGM_GST_TYPE == PGM_TYPE_AMD64
1056 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1057
1058 /* Fetch the pgm pool shadow descriptor. */
1059 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
1060 Assert(pShwPdpt);
1061
1062 /* Fetch the pgm pool shadow descriptor. */
1063 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1064 Assert(pShwPde);
1065
1066 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1067 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1068
1069 if ( !pPml4eSrc->n.u1Present
1070 || pShwPdpt->GCPhys != GCPhysPdpt)
1071 {
1072 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1073 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1074 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1075 pPml4eDst->u = 0;
1076 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1077 PGM_INVL_GUEST_TLBS();
1078 return VINF_SUCCESS;
1079 }
1080 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1081 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1082 {
1083 /*
1084 * Mark not present so we can resync the PML4E when it's used.
1085 */
1086 LogFlow(("InvalidatePage: Out-of-sync PML4E at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1087 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1088 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1089 pPml4eDst->u = 0;
1090 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1091 PGM_INVL_GUEST_TLBS();
1092 }
1093 else if (!pPml4eSrc->n.u1Accessed)
1094 {
1095 /*
1096 * Mark not present so we can set the accessed bit.
1097 */
1098 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1099 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1100 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1101 pPml4eDst->u = 0;
1102 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1103 PGM_INVL_GUEST_TLBS();
1104 }
1105
1106 /* Check if the PDPT entry has changed. */
1107 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1108 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1109 if ( !PdpeSrc.n.u1Present
1110 || pShwPde->GCPhys != GCPhysPd)
1111 {
1112 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1113 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1114 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1115 pPdpeDst->u = 0;
1116 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1117 PGM_INVL_GUEST_TLBS();
1118 return VINF_SUCCESS;
1119 }
1120 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1121 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1122 {
1123 /*
1124 * Mark not present so we can resync the PDPTE when it's used.
1125 */
1126 LogFlow(("InvalidatePage: Out-of-sync PDPE at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1127 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1128 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1129 pPdpeDst->u = 0;
1130 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1131 PGM_INVL_GUEST_TLBS();
1132 }
1133 else if (!PdpeSrc.lm.u1Accessed)
1134 {
1135 /*
1136 * Mark not present so we can set the accessed bit.
1137 */
1138 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1139 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1140 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1141 pPdpeDst->u = 0;
1142 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1143 PGM_INVL_GUEST_TLBS();
1144 }
1145# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1146
1147# if PGM_GST_TYPE == PGM_TYPE_PAE && !defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1148 /*
1149 * Update the shadow PDPE and free all the shadow PD entries if the PDPE is marked not present.
1150 * Note: This shouldn't actually be necessary as we monitor the PDPT page for changes.
1151 */
1152 if (!pPDSrc)
1153 {
1154 /* Guest PDPE not present */
1155 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, GCPtrPage);
1156 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1157
1158 Assert(!PdpeSrc.n.u1Present);
1159 LogFlow(("InvalidatePage: guest PDPE %d not present; clear shw pdpe\n", iPdpt));
1160
1161 /* for each page directory entry */
1162 for (unsigned iPD = 0; iPD < X86_PG_PAE_ENTRIES; iPD++)
1163 {
1164 if ( pPDDst->a[iPD].n.u1Present
1165 && !(pPDDst->a[iPD].u & PGM_PDFLAGS_MAPPING))
1166 {
1167 pgmPoolFree(pVM, pPDDst->a[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
1168 pPDDst->a[iPD].u = 0;
1169 }
1170 }
1171 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
1172 pPdptDst->a[iPdpt].n.u1Present = 0;
1173 PGM_INVL_GUEST_TLBS();
1174 }
1175 AssertMsg(pVM->pgm.s.fMappingsFixed || (PdpeSrc.u & X86_PDPE_PG_MASK) == pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt], ("%RGp vs %RGp (mon)\n", (PdpeSrc.u & X86_PDPE_PG_MASK), pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt]));
1176# endif
1177
1178
1179 /*
1180 * Deal with the Guest PDE.
1181 */
1182 rc = VINF_SUCCESS;
1183 if (PdeSrc.n.u1Present)
1184 {
1185 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1186 {
1187 /*
1188 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1189 */
1190 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1191 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1192 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1193 }
1194 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1195 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1196 {
1197 /*
1198 * Mark not present so we can resync the PDE when it's used.
1199 */
1200 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1201 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1202# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1203 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1204# else
1205 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1206# endif
1207 pPdeDst->u = 0;
1208 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1209 PGM_INVL_GUEST_TLBS();
1210 }
1211 else if (!PdeSrc.n.u1Accessed)
1212 {
1213 /*
1214 * Mark not present so we can set the accessed bit.
1215 */
1216 LogFlow(("InvalidatePage: Out-of-sync (A) at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1217 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1218# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1219 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1220# else
1221 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1222# endif
1223 pPdeDst->u = 0;
1224 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1225 PGM_INVL_GUEST_TLBS();
1226 }
1227 else if (!fIsBigPage)
1228 {
1229 /*
1230 * 4KB - page.
1231 */
1232 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1233 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1234# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1235 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1236 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1237# endif
1238 if (pShwPage->GCPhys == GCPhys)
1239 {
1240# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1241 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1242 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1243 if (pPT->a[iPTEDst].n.u1Present)
1244 {
1245# ifdef PGMPOOL_WITH_USER_TRACKING
1246 /* This is very unlikely with caching/monitoring enabled. */
1247 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1248# endif
1249 pPT->a[iPTEDst].u = 0;
1250 }
1251# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1252 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1253 if (RT_SUCCESS(rc))
1254 rc = VINF_SUCCESS;
1255# endif
1256 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1257 PGM_INVL_PG(GCPtrPage);
1258 }
1259 else
1260 {
1261 /*
1262 * The page table address changed.
1263 */
1264 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1265 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1266# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1267 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1268# else
1269 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1270# endif
1271 pPdeDst->u = 0;
1272 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1273 PGM_INVL_GUEST_TLBS();
1274 }
1275 }
1276 else
1277 {
1278 /*
1279 * 2/4MB - page.
1280 */
1281 /* Before freeing the page, check if anything really changed. */
1282 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1283 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1284# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1285 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1286 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1287# endif
1288 if ( pShwPage->GCPhys == GCPhys
1289 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1290 {
1291 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1292 /** @todo PAT */
1293 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1294 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1295 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1296 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1297 {
1298 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1299 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1300 return VINF_SUCCESS;
1301 }
1302 }
1303
1304 /*
1305 * Ok, the page table is present and it's been changed in the guest.
1306 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1307 * We could do this for some flushes in GC too, but we need an algorithm for
1308 * deciding which 4MB pages containing code likely to be executed very soon.
1309 */
1310 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1311 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1312# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1313 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1314# else
1315 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1316# endif
1317 pPdeDst->u = 0;
1318 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1319 PGM_INVL_BIG_PG(GCPtrPage);
1320 }
1321 }
1322 else
1323 {
1324 /*
1325 * Page directory is not present, mark shadow PDE not present.
1326 */
1327 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1328 {
1329# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1330 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1331# else
1332 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1333# endif
1334 pPdeDst->u = 0;
1335 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1336 PGM_INVL_PG(GCPtrPage);
1337 }
1338 else
1339 {
1340 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1341 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1342 }
1343 }
1344
1345 return rc;
1346
1347#else /* guest real and protected mode */
1348 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1349 return VINF_SUCCESS;
1350#endif
1351}
1352
1353
1354#ifdef PGMPOOL_WITH_USER_TRACKING
1355/**
1356 * Update the tracking of shadowed pages.
1357 *
1358 * @param pVM The VM handle.
1359 * @param pShwPage The shadow page.
1360 * @param HCPhys The physical page we is being dereferenced.
1361 */
1362DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1363{
1364# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1365 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1366 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1367
1368 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1369 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1370 * 2. write protect all shadowed pages. I.e. implement caching.
1371 */
1372 /*
1373 * Find the guest address.
1374 */
1375 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1376 pRam;
1377 pRam = pRam->CTX_SUFF(pNext))
1378 {
1379 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1380 while (iPage-- > 0)
1381 {
1382 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1383 {
1384 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1385 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1386 pShwPage->cPresent--;
1387 pPool->cPresent--;
1388 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1389 return;
1390 }
1391 }
1392 }
1393
1394 for (;;)
1395 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1396# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1397 pShwPage->cPresent--;
1398 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1399# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1400}
1401
1402
1403/**
1404 * Update the tracking of shadowed pages.
1405 *
1406 * @param pVM The VM handle.
1407 * @param pShwPage The shadow page.
1408 * @param u16 The top 16-bit of the pPage->HCPhys.
1409 * @param pPage Pointer to the guest page. this will be modified.
1410 * @param iPTDst The index into the shadow table.
1411 */
1412DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1413{
1414# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1415 /*
1416 * Just deal with the simple first time here.
1417 */
1418 if (!u16)
1419 {
1420 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1421 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1422 }
1423 else
1424 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1425
1426 /* write back */
1427 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1428 PGM_PAGE_SET_TRACKING(pPage, u16);
1429
1430# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1431
1432 /* update statistics. */
1433 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1434 pShwPage->cPresent++;
1435 if (pShwPage->iFirstPresent > iPTDst)
1436 pShwPage->iFirstPresent = iPTDst;
1437}
1438#endif /* PGMPOOL_WITH_USER_TRACKING */
1439
1440
1441/**
1442 * Creates a 4K shadow page for a guest page.
1443 *
1444 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1445 * physical address. The PdeSrc argument only the flags are used. No page structured
1446 * will be mapped in this function.
1447 *
1448 * @param pVM VM handle.
1449 * @param pPteDst Destination page table entry.
1450 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1451 * Can safely assume that only the flags are being used.
1452 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1453 * @param pShwPage Pointer to the shadow page.
1454 * @param iPTDst The index into the shadow table.
1455 *
1456 * @remark Not used for 2/4MB pages!
1457 */
1458DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1459{
1460 if (PteSrc.n.u1Present)
1461 {
1462 /*
1463 * Find the ram range.
1464 */
1465 PPGMPAGE pPage;
1466 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1467 if (RT_SUCCESS(rc))
1468 {
1469 /** @todo investiage PWT, PCD and PAT. */
1470 /*
1471 * Make page table entry.
1472 */
1473 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo FLAGS */
1474 SHWPTE PteDst;
1475 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1476 {
1477 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1478 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1479 {
1480#if PGM_SHW_TYPE == PGM_TYPE_EPT
1481 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1482 PteDst.n.u1Present = 1;
1483 PteDst.n.u1Execute = 1;
1484 PteDst.n.u1IgnorePAT = 1;
1485 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1486 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1487#else
1488 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1489 | (HCPhys & X86_PTE_PAE_PG_MASK);
1490#endif
1491 }
1492 else
1493 {
1494 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", HCPhys));
1495 PteDst.u = 0;
1496 }
1497 /** @todo count these two kinds. */
1498 }
1499 else
1500 {
1501#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1502 /*
1503 * If the page or page directory entry is not marked accessed,
1504 * we mark the page not present.
1505 */
1506 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1507 {
1508 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1509 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1510 PteDst.u = 0;
1511 }
1512 else
1513 /*
1514 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1515 * when the page is modified.
1516 */
1517 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1518 {
1519 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1520 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1521 | (HCPhys & X86_PTE_PAE_PG_MASK)
1522 | PGM_PTFLAGS_TRACK_DIRTY;
1523 }
1524 else
1525#endif
1526 {
1527 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1528#if PGM_SHW_TYPE == PGM_TYPE_EPT
1529 PteDst.u = (HCPhys & EPT_PTE_PG_MASK);
1530 PteDst.n.u1Present = 1;
1531 PteDst.n.u1Write = 1;
1532 PteDst.n.u1Execute = 1;
1533 PteDst.n.u1IgnorePAT = 1;
1534 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1535 /* PteDst.n.u1Size = 0 */
1536#else
1537 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1538 | (HCPhys & X86_PTE_PAE_PG_MASK);
1539#endif
1540 }
1541 }
1542
1543#ifdef PGMPOOL_WITH_USER_TRACKING
1544 /*
1545 * Keep user track up to date.
1546 */
1547 if (PteDst.n.u1Present)
1548 {
1549 if (!pPteDst->n.u1Present)
1550 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1551 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1552 {
1553 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1554 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1555 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1556 }
1557 }
1558 else if (pPteDst->n.u1Present)
1559 {
1560 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1561 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1562 }
1563#endif /* PGMPOOL_WITH_USER_TRACKING */
1564
1565 /*
1566 * Update statistics and commit the entry.
1567 */
1568#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1569 if (!PteSrc.n.u1Global)
1570 pShwPage->fSeenNonGlobal = true;
1571#endif
1572 *pPteDst = PteDst;
1573 }
1574 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1575 /** @todo count these. */
1576 }
1577 else
1578 {
1579 /*
1580 * Page not-present.
1581 */
1582 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1583#ifdef PGMPOOL_WITH_USER_TRACKING
1584 /* Keep user track up to date. */
1585 if (pPteDst->n.u1Present)
1586 {
1587 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1588 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1589 }
1590#endif /* PGMPOOL_WITH_USER_TRACKING */
1591 pPteDst->u = 0;
1592 /** @todo count these. */
1593 }
1594}
1595
1596
1597/**
1598 * Syncs a guest OS page.
1599 *
1600 * There are no conflicts at this point, neither is there any need for
1601 * page table allocations.
1602 *
1603 * @returns VBox status code.
1604 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1605 * @param pVM VM handle.
1606 * @param PdeSrc Page directory entry of the guest.
1607 * @param GCPtrPage Guest context page address.
1608 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1609 * @param uErr Fault error (X86_TRAP_PF_*).
1610 */
1611PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1612{
1613 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1614
1615#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1616 || PGM_GST_TYPE == PGM_TYPE_PAE \
1617 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1618 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1619 && PGM_SHW_TYPE != PGM_TYPE_EPT
1620
1621# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1622 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1623# endif
1624
1625 /*
1626 * Assert preconditions.
1627 */
1628 Assert(PdeSrc.n.u1Present);
1629 Assert(cPages);
1630 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1631
1632 /*
1633 * Get the shadow PDE, find the shadow page table in the pool.
1634 */
1635# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1636 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1637 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
1638
1639# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1640 /* Fetch the pgm pool shadow descriptor. */
1641 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
1642 Assert(pShwPde);
1643# endif
1644
1645# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1646
1647# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1648 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1649 PPGMPOOLPAGE pShwPde;
1650 PX86PDPAE pPDDst;
1651
1652 /* Fetch the pgm pool shadow descriptor. */
1653 int rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
1654 AssertRCSuccessReturn(rc, rc);
1655 Assert(pShwPde);
1656
1657 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1658 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1659# else
1660 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
1661 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1662 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
1663 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
1664 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR);
1665# endif
1666# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1667 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1668 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1669 PX86PDPAE pPDDst;
1670 PX86PDPT pPdptDst;
1671
1672 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1673 AssertRCSuccessReturn(rc, rc);
1674 Assert(pPDDst && pPdptDst);
1675 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1676# endif
1677
1678 SHWPDE PdeDst = *pPdeDst;
1679 AssertMsg(PdeDst.n.u1Present, ("%p=%llx\n", pPdeDst, (uint64_t)PdeDst.u));
1680 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1681
1682# if PGM_GST_TYPE == PGM_TYPE_AMD64
1683 /* Fetch the pgm pool shadow descriptor. */
1684 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1685 Assert(pShwPde);
1686# endif
1687
1688 /*
1689 * Check that the page is present and that the shadow PDE isn't out of sync.
1690 */
1691# if PGM_GST_TYPE == PGM_TYPE_AMD64
1692 const bool fBigPage = PdeSrc.b.u1Size;
1693# else
1694 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1695# endif
1696 RTGCPHYS GCPhys;
1697 if (!fBigPage)
1698 {
1699 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1700# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1701 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1702 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1703# endif
1704 }
1705 else
1706 {
1707 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1708# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1709 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1710 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1711# endif
1712 }
1713 if ( pShwPage->GCPhys == GCPhys
1714 && PdeSrc.n.u1Present
1715 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1716 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1717# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1718 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1719# endif
1720 )
1721 {
1722 /*
1723 * Check that the PDE is marked accessed already.
1724 * Since we set the accessed bit *before* getting here on a #PF, this
1725 * check is only meant for dealing with non-#PF'ing paths.
1726 */
1727 if (PdeSrc.n.u1Accessed)
1728 {
1729 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1730 if (!fBigPage)
1731 {
1732 /*
1733 * 4KB Page - Map the guest page table.
1734 */
1735 PGSTPT pPTSrc;
1736 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1737 if (RT_SUCCESS(rc))
1738 {
1739# ifdef PGM_SYNC_N_PAGES
1740 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1741 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1742 {
1743 /*
1744 * This code path is currently only taken when the caller is PGMTrap0eHandler
1745 * for non-present pages!
1746 *
1747 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1748 * deal with locality.
1749 */
1750 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1751# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1752 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1753 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1754# else
1755 const unsigned offPTSrc = 0;
1756# endif
1757 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1758 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1759 iPTDst = 0;
1760 else
1761 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1762 for (; iPTDst < iPTDstEnd; iPTDst++)
1763 {
1764 if (!pPTDst->a[iPTDst].n.u1Present)
1765 {
1766 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1767 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1768 NOREF(GCPtrCurPage);
1769#ifndef IN_RING0
1770 /*
1771 * Assuming kernel code will be marked as supervisor - and not as user level
1772 * and executed using a conforming code selector - And marked as readonly.
1773 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1774 */
1775 PPGMPAGE pPage;
1776 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1777 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1778 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1779 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1780 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1781 )
1782#endif /* else: CSAM not active */
1783 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1784 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1785 GCPtrCurPage, PteSrc.n.u1Present,
1786 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1787 PteSrc.n.u1User & PdeSrc.n.u1User,
1788 (uint64_t)PteSrc.u,
1789 (uint64_t)pPTDst->a[iPTDst].u,
1790 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1791 }
1792 }
1793 }
1794 else
1795# endif /* PGM_SYNC_N_PAGES */
1796 {
1797 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1798 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1799 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1800 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1801 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1802 GCPtrPage, PteSrc.n.u1Present,
1803 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1804 PteSrc.n.u1User & PdeSrc.n.u1User,
1805 (uint64_t)PteSrc.u,
1806 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1807 }
1808 }
1809 else /* MMIO or invalid page: emulated in #PF handler. */
1810 {
1811 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1812 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1813 }
1814 }
1815 else
1816 {
1817 /*
1818 * 4/2MB page - lazy syncing shadow 4K pages.
1819 * (There are many causes of getting here, it's no longer only CSAM.)
1820 */
1821 /* Calculate the GC physical address of this 4KB shadow page. */
1822 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1823 /* Find ram range. */
1824 PPGMPAGE pPage;
1825 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1826 if (RT_SUCCESS(rc))
1827 {
1828 /*
1829 * Make shadow PTE entry.
1830 */
1831 const RTHCPHYS HCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
1832 SHWPTE PteDst;
1833 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1834 | (HCPhys & X86_PTE_PAE_PG_MASK);
1835 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1836 {
1837 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1838 PteDst.n.u1Write = 0;
1839 else
1840 PteDst.u = 0;
1841 }
1842 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1843# ifdef PGMPOOL_WITH_USER_TRACKING
1844 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1845 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst);
1846# endif
1847 pPTDst->a[iPTDst] = PteDst;
1848
1849
1850 /*
1851 * If the page is not flagged as dirty and is writable, then make it read-only
1852 * at PD level, so we can set the dirty bit when the page is modified.
1853 *
1854 * ASSUMES that page access handlers are implemented on page table entry level.
1855 * Thus we will first catch the dirty access and set PDE.D and restart. If
1856 * there is an access handler, we'll trap again and let it work on the problem.
1857 */
1858 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1859 * As for invlpg, it simply frees the whole shadow PT.
1860 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1861 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1862 {
1863 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1864 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1865 PdeDst.n.u1Write = 0;
1866 }
1867 else
1868 {
1869 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1870 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1871 }
1872 *pPdeDst = PdeDst;
1873 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1874 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1875 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1876 }
1877 else
1878 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1879 }
1880 return VINF_SUCCESS;
1881 }
1882 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1883 }
1884 else
1885 {
1886 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1887 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1888 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1889 }
1890
1891 /*
1892 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1893 * Yea, I'm lazy.
1894 */
1895 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1896# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1897 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1898# else
1899 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1900# endif
1901
1902 pPdeDst->u = 0;
1903 PGM_INVL_GUEST_TLBS();
1904 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1905
1906#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1907 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1908 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
1909
1910# ifdef PGM_SYNC_N_PAGES
1911 /*
1912 * Get the shadow PDE, find the shadow page table in the pool.
1913 */
1914# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1915 X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
1916
1917# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1918 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
1919
1920# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1921 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1922 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1923 PX86PDPAE pPDDst;
1924 X86PDEPAE PdeDst;
1925 PX86PDPT pPdptDst;
1926
1927 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1928 AssertRCSuccessReturn(rc, rc);
1929 Assert(pPDDst && pPdptDst);
1930 PdeDst = pPDDst->a[iPDDst];
1931# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1932 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1933 PEPTPD pPDDst;
1934 EPTPDE PdeDst;
1935
1936 int rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, NULL, &pPDDst);
1937 if (rc != VINF_SUCCESS)
1938 {
1939 AssertRC(rc);
1940 return rc;
1941 }
1942 Assert(pPDDst);
1943 PdeDst = pPDDst->a[iPDDst];
1944# endif
1945 AssertMsg(PdeDst.n.u1Present, ("%#llx\n", (uint64_t)PdeDst.u));
1946 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1947 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1948
1949 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1950 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1951 {
1952 /*
1953 * This code path is currently only taken when the caller is PGMTrap0eHandler
1954 * for non-present pages!
1955 *
1956 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1957 * deal with locality.
1958 */
1959 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1960 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1961 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1962 iPTDst = 0;
1963 else
1964 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1965 for (; iPTDst < iPTDstEnd; iPTDst++)
1966 {
1967 if (!pPTDst->a[iPTDst].n.u1Present)
1968 {
1969 GSTPTE PteSrc;
1970
1971 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1972
1973 /* Fake the page table entry */
1974 PteSrc.u = GCPtrCurPage;
1975 PteSrc.n.u1Present = 1;
1976 PteSrc.n.u1Dirty = 1;
1977 PteSrc.n.u1Accessed = 1;
1978 PteSrc.n.u1Write = 1;
1979 PteSrc.n.u1User = 1;
1980
1981 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1982
1983 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1984 GCPtrCurPage, PteSrc.n.u1Present,
1985 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1986 PteSrc.n.u1User & PdeSrc.n.u1User,
1987 (uint64_t)PteSrc.u,
1988 (uint64_t)pPTDst->a[iPTDst].u,
1989 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1990 }
1991 else
1992 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1993 }
1994 }
1995 else
1996# endif /* PGM_SYNC_N_PAGES */
1997 {
1998 GSTPTE PteSrc;
1999 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2000 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2001
2002 /* Fake the page table entry */
2003 PteSrc.u = GCPtrCurPage;
2004 PteSrc.n.u1Present = 1;
2005 PteSrc.n.u1Dirty = 1;
2006 PteSrc.n.u1Accessed = 1;
2007 PteSrc.n.u1Write = 1;
2008 PteSrc.n.u1User = 1;
2009 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2010
2011 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2012 GCPtrPage, PteSrc.n.u1Present,
2013 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2014 PteSrc.n.u1User & PdeSrc.n.u1User,
2015 (uint64_t)PteSrc.u,
2016 (uint64_t)pPTDst->a[iPTDst].u,
2017 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2018 }
2019 return VINF_SUCCESS;
2020
2021#else
2022 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2023 return VERR_INTERNAL_ERROR;
2024#endif
2025}
2026
2027
2028#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2029/**
2030 * Investigate page fault and handle write protection page faults caused by
2031 * dirty bit tracking.
2032 *
2033 * @returns VBox status code.
2034 * @param pVM VM handle.
2035 * @param uErr Page fault error code.
2036 * @param pPdeDst Shadow page directory entry.
2037 * @param pPdeSrc Guest page directory entry.
2038 * @param GCPtrPage Guest context page address.
2039 */
2040PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2041{
2042 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
2043 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2044 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2045# if PGM_GST_TYPE == PGM_TYPE_AMD64
2046 bool fBigPagesSupported = true;
2047# else
2048 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2049# endif
2050# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2051 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
2052# endif
2053 unsigned uPageFaultLevel;
2054 int rc;
2055
2056 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2057 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2058
2059# if PGM_GST_TYPE == PGM_TYPE_PAE \
2060 || PGM_GST_TYPE == PGM_TYPE_AMD64
2061
2062# if PGM_GST_TYPE == PGM_TYPE_AMD64
2063 PX86PML4E pPml4eSrc;
2064 PX86PDPE pPdpeSrc;
2065
2066 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
2067 Assert(pPml4eSrc);
2068
2069 /*
2070 * Real page fault? (PML4E level)
2071 */
2072 if ( (uErr & X86_TRAP_PF_RSVD)
2073 || !pPml4eSrc->n.u1Present
2074 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2075 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2076 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2077 )
2078 {
2079 uPageFaultLevel = 0;
2080 goto l_UpperLevelPageFault;
2081 }
2082 Assert(pPdpeSrc);
2083
2084# else /* PAE */
2085 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVM->pgm.s, GCPtrPage);
2086# endif /* PAE */
2087
2088 /*
2089 * Real page fault? (PDPE level)
2090 */
2091 if ( (uErr & X86_TRAP_PF_RSVD)
2092 || !pPdpeSrc->n.u1Present
2093# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2094 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2095 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2096 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2097# endif
2098 )
2099 {
2100 uPageFaultLevel = 1;
2101 goto l_UpperLevelPageFault;
2102 }
2103# endif
2104
2105 /*
2106 * Real page fault? (PDE level)
2107 */
2108 if ( (uErr & X86_TRAP_PF_RSVD)
2109 || !pPdeSrc->n.u1Present
2110# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2111 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2112# endif
2113 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2114 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2115 {
2116 uPageFaultLevel = 2;
2117 goto l_UpperLevelPageFault;
2118 }
2119
2120 /*
2121 * First check the easy case where the page directory has been marked read-only to track
2122 * the dirty bit of an emulated BIG page
2123 */
2124 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2125 {
2126 /* Mark guest page directory as accessed */
2127# if PGM_GST_TYPE == PGM_TYPE_AMD64
2128 pPml4eSrc->n.u1Accessed = 1;
2129 pPdpeSrc->lm.u1Accessed = 1;
2130# endif
2131 pPdeSrc->b.u1Accessed = 1;
2132
2133 /*
2134 * Only write protection page faults are relevant here.
2135 */
2136 if (fWriteFault)
2137 {
2138 /* Mark guest page directory as dirty (BIG page only). */
2139 pPdeSrc->b.u1Dirty = 1;
2140
2141 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2142 {
2143 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2144
2145 Assert(pPdeSrc->b.u1Write);
2146
2147 pPdeDst->n.u1Write = 1;
2148 pPdeDst->n.u1Accessed = 1;
2149 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2150 PGM_INVL_BIG_PG(GCPtrPage);
2151 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2152 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2153 }
2154 }
2155 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2156 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2157 }
2158 /* else: 4KB page table */
2159
2160 /*
2161 * Map the guest page table.
2162 */
2163 PGSTPT pPTSrc;
2164 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2165 if (RT_SUCCESS(rc))
2166 {
2167 /*
2168 * Real page fault?
2169 */
2170 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2171 const GSTPTE PteSrc = *pPteSrc;
2172 if ( !PteSrc.n.u1Present
2173# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2174 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2175# endif
2176 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2177 || (fUserLevelFault && !PteSrc.n.u1User)
2178 )
2179 {
2180 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2181 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2182 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2183
2184 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2185 * See the 2nd case above as well.
2186 */
2187 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2188 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2189
2190 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2191 return VINF_EM_RAW_GUEST_TRAP;
2192 }
2193 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2194
2195 /*
2196 * Set the accessed bits in the page directory and the page table.
2197 */
2198# if PGM_GST_TYPE == PGM_TYPE_AMD64
2199 pPml4eSrc->n.u1Accessed = 1;
2200 pPdpeSrc->lm.u1Accessed = 1;
2201# endif
2202 pPdeSrc->n.u1Accessed = 1;
2203 pPteSrc->n.u1Accessed = 1;
2204
2205 /*
2206 * Only write protection page faults are relevant here.
2207 */
2208 if (fWriteFault)
2209 {
2210 /* Write access, so mark guest entry as dirty. */
2211# ifdef VBOX_WITH_STATISTICS
2212 if (!pPteSrc->n.u1Dirty)
2213 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2214 else
2215 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2216# endif
2217
2218 pPteSrc->n.u1Dirty = 1;
2219
2220 if (pPdeDst->n.u1Present)
2221 {
2222#ifndef IN_RING0
2223 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2224 * Our individual shadow handlers will provide more information and force a fatal exit.
2225 */
2226 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2227 {
2228 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2229 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2230 return VINF_SUCCESS;
2231 }
2232#endif
2233 /*
2234 * Map shadow page table.
2235 */
2236 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2237 if (pShwPage)
2238 {
2239 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2240 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2241 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2242 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2243 {
2244 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2245# ifdef VBOX_STRICT
2246 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2247 if (pPage)
2248 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2249 ("Unexpected dirty bit tracking on monitored page %RGv (phys %RGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2250# endif
2251 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2252
2253 Assert(pPteSrc->n.u1Write);
2254
2255 pPteDst->n.u1Write = 1;
2256 pPteDst->n.u1Dirty = 1;
2257 pPteDst->n.u1Accessed = 1;
2258 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2259 PGM_INVL_PG(GCPtrPage);
2260
2261 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2262 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2263 }
2264 }
2265 else
2266 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2267 }
2268 }
2269/** @todo Optimize accessed bit emulation? */
2270# ifdef VBOX_STRICT
2271 /*
2272 * Sanity check.
2273 */
2274 else if ( !pPteSrc->n.u1Dirty
2275 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2276 && pPdeDst->n.u1Present)
2277 {
2278 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2279 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2280 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2281 if ( pPteDst->n.u1Present
2282 && pPteDst->n.u1Write)
2283 LogFlow(("Writable present page %RGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2284 }
2285# endif /* VBOX_STRICT */
2286 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2287 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2288 }
2289 AssertRC(rc);
2290 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2291 return rc;
2292
2293
2294l_UpperLevelPageFault:
2295 /*
2296 * Pagefault detected while checking the PML4E, PDPE or PDE.
2297 * Single exit handler to get rid of duplicate code paths.
2298 */
2299 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2300 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2301 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2302
2303 if (
2304# if PGM_GST_TYPE == PGM_TYPE_AMD64
2305 pPml4eSrc->n.u1Present &&
2306# endif
2307# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2308 pPdpeSrc->n.u1Present &&
2309# endif
2310 pPdeSrc->n.u1Present)
2311 {
2312 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2313 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2314 {
2315 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2316 }
2317 else
2318 {
2319 /*
2320 * Map the guest page table.
2321 */
2322 PGSTPT pPTSrc;
2323 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2324 if (RT_SUCCESS(rc))
2325 {
2326 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2327 const GSTPTE PteSrc = *pPteSrc;
2328 if (pPteSrc->n.u1Present)
2329 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2330 }
2331 AssertRC(rc);
2332 }
2333 }
2334 return VINF_EM_RAW_GUEST_TRAP;
2335}
2336#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2337
2338
2339/**
2340 * Sync a shadow page table.
2341 *
2342 * The shadow page table is not present. This includes the case where
2343 * there is a conflict with a mapping.
2344 *
2345 * @returns VBox status code.
2346 * @param pVM VM handle.
2347 * @param iPD Page directory index.
2348 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2349 * Assume this is a temporary mapping.
2350 * @param GCPtrPage GC Pointer of the page that caused the fault
2351 */
2352PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2353{
2354 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2355 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPtPD[iPDSrc]);
2356 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2357
2358#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2359 || PGM_GST_TYPE == PGM_TYPE_PAE \
2360 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2361 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2362 && PGM_SHW_TYPE != PGM_TYPE_EPT
2363
2364 int rc = VINF_SUCCESS;
2365
2366 /*
2367 * Validate input a little bit.
2368 */
2369 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2370# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2371 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2372 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2373
2374# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2375 /* Fetch the pgm pool shadow descriptor. */
2376 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2377 Assert(pShwPde);
2378# endif
2379
2380# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2381# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2382 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2383 PPGMPOOLPAGE pShwPde;
2384 PX86PDPAE pPDDst;
2385 PSHWPDE pPdeDst;
2386
2387 /* Fetch the pgm pool shadow descriptor. */
2388 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2389 AssertRCSuccessReturn(rc, rc);
2390 Assert(pShwPde);
2391
2392 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2393 pPdeDst = &pPDDst->a[iPDDst];
2394# else
2395 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
2396 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpt);
2397 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
2398 PSHWPDE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2399# endif
2400# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2401 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2402 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2403 PX86PDPAE pPDDst;
2404 PX86PDPT pPdptDst;
2405 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2406 AssertRCSuccessReturn(rc, rc);
2407 Assert(pPDDst);
2408 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2409# endif
2410 SHWPDE PdeDst = *pPdeDst;
2411
2412# if PGM_GST_TYPE == PGM_TYPE_AMD64
2413 /* Fetch the pgm pool shadow descriptor. */
2414 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2415 Assert(pShwPde);
2416# endif
2417
2418# ifndef PGM_WITHOUT_MAPPINGS
2419 /*
2420 * Check for conflicts.
2421 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2422 * HC: Simply resolve the conflict.
2423 */
2424 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2425 {
2426 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2427# ifndef IN_RING3
2428 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2429 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2430 return VERR_ADDRESS_CONFLICT;
2431# else
2432 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2433 Assert(pMapping);
2434# if PGM_GST_TYPE == PGM_TYPE_32BIT
2435 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2436# elif PGM_GST_TYPE == PGM_TYPE_PAE
2437 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2438# else
2439 AssertFailed(); /* can't happen for amd64 */
2440# endif
2441 if (RT_FAILURE(rc))
2442 {
2443 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2444 return rc;
2445 }
2446 PdeDst = *pPdeDst;
2447# endif
2448 }
2449# else /* PGM_WITHOUT_MAPPINGS */
2450 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2451# endif /* PGM_WITHOUT_MAPPINGS */
2452 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2453
2454# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2455 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2456 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2457# endif
2458
2459 /*
2460 * Sync page directory entry.
2461 */
2462 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2463 if (PdeSrc.n.u1Present)
2464 {
2465 /*
2466 * Allocate & map the page table.
2467 */
2468 PSHWPT pPTDst;
2469# if PGM_GST_TYPE == PGM_TYPE_AMD64
2470 const bool fPageTable = !PdeSrc.b.u1Size;
2471# else
2472 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2473# endif
2474 PPGMPOOLPAGE pShwPage;
2475 RTGCPHYS GCPhys;
2476 if (fPageTable)
2477 {
2478 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2479# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2480 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2481 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2482# endif
2483# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2484 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2485# else
2486 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2487# endif
2488 }
2489 else
2490 {
2491 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2492# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2493 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2494 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2495# endif
2496# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2497 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2498# else
2499 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2500# endif
2501 }
2502 if (rc == VINF_SUCCESS)
2503 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2504 else if (rc == VINF_PGM_CACHED_PAGE)
2505 {
2506 /*
2507 * The PT was cached, just hook it up.
2508 */
2509 if (fPageTable)
2510 PdeDst.u = pShwPage->Core.Key
2511 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2512 else
2513 {
2514 PdeDst.u = pShwPage->Core.Key
2515 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2516 /* (see explanation and assumptions further down.) */
2517 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2518 {
2519 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2520 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2521 PdeDst.b.u1Write = 0;
2522 }
2523 }
2524 *pPdeDst = PdeDst;
2525# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2526 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2527# endif
2528 return VINF_SUCCESS;
2529 }
2530 else if (rc == VERR_PGM_POOL_FLUSHED)
2531 {
2532 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2533# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2534 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2535# endif
2536 return VINF_PGM_SYNC_CR3;
2537 }
2538 else
2539 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2540 PdeDst.u &= X86_PDE_AVL_MASK;
2541 PdeDst.u |= pShwPage->Core.Key;
2542
2543 /*
2544 * Page directory has been accessed (this is a fault situation, remember).
2545 */
2546 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2547 if (fPageTable)
2548 {
2549 /*
2550 * Page table - 4KB.
2551 *
2552 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2553 */
2554 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2555 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2556 PGSTPT pPTSrc;
2557 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2558 if (RT_SUCCESS(rc))
2559 {
2560 /*
2561 * Start by syncing the page directory entry so CSAM's TLB trick works.
2562 */
2563 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2564 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2565 *pPdeDst = PdeDst;
2566# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2567 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2568# endif
2569
2570 /*
2571 * Directory/page user or supervisor privilege: (same goes for read/write)
2572 *
2573 * Directory Page Combined
2574 * U/S U/S U/S
2575 * 0 0 0
2576 * 0 1 0
2577 * 1 0 0
2578 * 1 1 1
2579 *
2580 * Simple AND operation. Table listed for completeness.
2581 *
2582 */
2583 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2584# ifdef PGM_SYNC_N_PAGES
2585 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2586 unsigned iPTDst = iPTBase;
2587 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2588 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2589 iPTDst = 0;
2590 else
2591 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2592# else /* !PGM_SYNC_N_PAGES */
2593 unsigned iPTDst = 0;
2594 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2595# endif /* !PGM_SYNC_N_PAGES */
2596# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2597 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2598 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2599# else
2600 const unsigned offPTSrc = 0;
2601# endif
2602 for (; iPTDst < iPTDstEnd; iPTDst++)
2603 {
2604 const unsigned iPTSrc = iPTDst + offPTSrc;
2605 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2606
2607 if (PteSrc.n.u1Present) /* we've already cleared it above */
2608 {
2609# ifndef IN_RING0
2610 /*
2611 * Assuming kernel code will be marked as supervisor - and not as user level
2612 * and executed using a conforming code selector - And marked as readonly.
2613 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2614 */
2615 PPGMPAGE pPage;
2616 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2617 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2618 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2619 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2620 )
2621# endif
2622 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2623 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2624 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2625 PteSrc.n.u1Present,
2626 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2627 PteSrc.n.u1User & PdeSrc.n.u1User,
2628 (uint64_t)PteSrc.u,
2629 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2630 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2631 }
2632 } /* for PTEs */
2633 }
2634 }
2635 else
2636 {
2637 /*
2638 * Big page - 2/4MB.
2639 *
2640 * We'll walk the ram range list in parallel and optimize lookups.
2641 * We will only sync on shadow page table at a time.
2642 */
2643 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2644
2645 /**
2646 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2647 */
2648
2649 /*
2650 * Start by syncing the page directory entry.
2651 */
2652 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2653 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2654
2655 /*
2656 * If the page is not flagged as dirty and is writable, then make it read-only
2657 * at PD level, so we can set the dirty bit when the page is modified.
2658 *
2659 * ASSUMES that page access handlers are implemented on page table entry level.
2660 * Thus we will first catch the dirty access and set PDE.D and restart. If
2661 * there is an access handler, we'll trap again and let it work on the problem.
2662 */
2663 /** @todo move the above stuff to a section in the PGM documentation. */
2664 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2665 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2666 {
2667 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2668 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2669 PdeDst.b.u1Write = 0;
2670 }
2671 *pPdeDst = PdeDst;
2672# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2673 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2674# endif
2675
2676 /*
2677 * Fill the shadow page table.
2678 */
2679 /* Get address and flags from the source PDE. */
2680 SHWPTE PteDstBase;
2681 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2682
2683 /* Loop thru the entries in the shadow PT. */
2684 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2685 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2686 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2687 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2688 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2689 unsigned iPTDst = 0;
2690 while (iPTDst < RT_ELEMENTS(pPTDst->a))
2691 {
2692 /* Advance ram range list. */
2693 while (pRam && GCPhys > pRam->GCPhysLast)
2694 pRam = pRam->CTX_SUFF(pNext);
2695 if (pRam && GCPhys >= pRam->GCPhys)
2696 {
2697 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2698 do
2699 {
2700 /* Make shadow PTE. */
2701 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2702 SHWPTE PteDst;
2703
2704 /* Make sure the RAM has already been allocated. */
2705 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2706 {
2707 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2708 {
2709# ifdef IN_RING3
2710 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2711# else
2712 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2713# endif
2714 if (rc != VINF_SUCCESS)
2715 return rc;
2716 }
2717 }
2718
2719 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2720 {
2721 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2722 {
2723 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2724 PteDst.n.u1Write = 0;
2725 }
2726 else
2727 PteDst.u = 0;
2728 }
2729# ifndef IN_RING0
2730 /*
2731 * Assuming kernel code will be marked as supervisor and not as user level and executed
2732 * using a conforming code selector. Don't check for readonly, as that implies the whole
2733 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2734 */
2735 else if ( !PdeSrc.n.u1User
2736 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2737 PteDst.u = 0;
2738# endif
2739 else
2740 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2741# ifdef PGMPOOL_WITH_USER_TRACKING
2742 if (PteDst.n.u1Present)
2743 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, pPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pPage, iPTDst); /** @todo PAGE FLAGS */
2744# endif
2745 /* commit it */
2746 pPTDst->a[iPTDst] = PteDst;
2747 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2748 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2749 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2750
2751 /* advance */
2752 GCPhys += PAGE_SIZE;
2753 iHCPage++;
2754 iPTDst++;
2755 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2756 && GCPhys <= pRam->GCPhysLast);
2757 }
2758 else if (pRam)
2759 {
2760 Log(("Invalid pages at %RGp\n", GCPhys));
2761 do
2762 {
2763 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2764 GCPhys += PAGE_SIZE;
2765 iPTDst++;
2766 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2767 && GCPhys < pRam->GCPhys);
2768 }
2769 else
2770 {
2771 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2772 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2773 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2774 }
2775 } /* while more PTEs */
2776 } /* 4KB / 4MB */
2777 }
2778 else
2779 AssertRelease(!PdeDst.n.u1Present);
2780
2781 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2782 if (RT_FAILURE(rc))
2783 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2784 return rc;
2785
2786#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2787 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2788 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2789
2790
2791 /*
2792 * Validate input a little bit.
2793 */
2794 int rc = VINF_SUCCESS;
2795# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2796 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2797 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2798
2799# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2800 /* Fetch the pgm pool shadow descriptor. */
2801 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2802 Assert(pShwPde);
2803# endif
2804
2805# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2806# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2807 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2808 PPGMPOOLPAGE pShwPde;
2809 PX86PDPAE pPDDst;
2810 PSHWPDE pPdeDst;
2811
2812 /* Fetch the pgm pool shadow descriptor. */
2813 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2814 AssertRCSuccessReturn(rc, rc);
2815 Assert(pShwPde);
2816
2817 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2818 pPdeDst = &pPDDst->a[iPDDst];
2819# else
2820 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm!*/;
2821 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2822# endif
2823
2824# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2825 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2826 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2827 PX86PDPAE pPDDst;
2828 PX86PDPT pPdptDst;
2829 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2830 AssertRCSuccessReturn(rc, rc);
2831 Assert(pPDDst);
2832 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2833
2834 /* Fetch the pgm pool shadow descriptor. */
2835 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2836 Assert(pShwPde);
2837
2838# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2839 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2840 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2841 PEPTPD pPDDst;
2842 PEPTPDPT pPdptDst;
2843
2844 rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2845 if (rc != VINF_SUCCESS)
2846 {
2847 AssertRC(rc);
2848 return rc;
2849 }
2850 Assert(pPDDst);
2851 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2852
2853 /* Fetch the pgm pool shadow descriptor. */
2854 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2855 Assert(pShwPde);
2856# endif
2857 SHWPDE PdeDst = *pPdeDst;
2858
2859 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2860 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2861
2862 GSTPDE PdeSrc;
2863 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2864 PdeSrc.n.u1Present = 1;
2865 PdeSrc.n.u1Write = 1;
2866 PdeSrc.n.u1Accessed = 1;
2867 PdeSrc.n.u1User = 1;
2868
2869 /*
2870 * Allocate & map the page table.
2871 */
2872 PSHWPT pPTDst;
2873 PPGMPOOLPAGE pShwPage;
2874 RTGCPHYS GCPhys;
2875
2876 /* Virtual address = physical address */
2877 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2878# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_EPT || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2879 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2880# else
2881 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2882# endif
2883
2884 if ( rc == VINF_SUCCESS
2885 || rc == VINF_PGM_CACHED_PAGE)
2886 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2887 else
2888 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2889
2890 PdeDst.u &= X86_PDE_AVL_MASK;
2891 PdeDst.u |= pShwPage->Core.Key;
2892 PdeDst.n.u1Present = 1;
2893 PdeDst.n.u1Write = 1;
2894# if PGM_SHW_TYPE == PGM_TYPE_EPT
2895 PdeDst.n.u1Execute = 1;
2896# else
2897 PdeDst.n.u1User = 1;
2898 PdeDst.n.u1Accessed = 1;
2899# endif
2900 *pPdeDst = PdeDst;
2901
2902 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2903 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2904 return rc;
2905
2906#else
2907 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2908 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2909 return VERR_INTERNAL_ERROR;
2910#endif
2911}
2912
2913
2914
2915/**
2916 * Prefetch a page/set of pages.
2917 *
2918 * Typically used to sync commonly used pages before entering raw mode
2919 * after a CR3 reload.
2920 *
2921 * @returns VBox status code.
2922 * @param pVM VM handle.
2923 * @param GCPtrPage Page to invalidate.
2924 */
2925PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage)
2926{
2927#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2928 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2929 /*
2930 * Check that all Guest levels thru the PDE are present, getting the
2931 * PD and PDE in the processes.
2932 */
2933 int rc = VINF_SUCCESS;
2934# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2935# if PGM_GST_TYPE == PGM_TYPE_32BIT
2936 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
2937 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
2938# elif PGM_GST_TYPE == PGM_TYPE_PAE
2939 unsigned iPDSrc;
2940# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2941 X86PDPE PdpeSrc;
2942 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
2943# else
2944 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
2945# endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
2946 if (!pPDSrc)
2947 return VINF_SUCCESS; /* not present */
2948# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2949 unsigned iPDSrc;
2950 PX86PML4E pPml4eSrc;
2951 X86PDPE PdpeSrc;
2952 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2953 if (!pPDSrc)
2954 return VINF_SUCCESS; /* not present */
2955# endif
2956 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2957# else
2958 PGSTPD pPDSrc = NULL;
2959 const unsigned iPDSrc = 0;
2960 GSTPDE PdeSrc;
2961
2962 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2963 PdeSrc.n.u1Present = 1;
2964 PdeSrc.n.u1Write = 1;
2965 PdeSrc.n.u1Accessed = 1;
2966 PdeSrc.n.u1User = 1;
2967# endif
2968
2969 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2970 {
2971# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2972 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
2973# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2974# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2975 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2976 PX86PDPAE pPDDst;
2977 X86PDEPAE PdeDst;
2978# if PGM_GST_TYPE != PGM_TYPE_PAE
2979 X86PDPE PdpeSrc;
2980
2981 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
2982 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
2983# endif
2984 int rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
2985 if (rc != VINF_SUCCESS)
2986 {
2987 AssertRC(rc);
2988 return rc;
2989 }
2990 Assert(pPDDst);
2991 PdeDst = pPDDst->a[iPDDst];
2992# else
2993 const X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
2994# endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
2995
2996# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2997 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2998 PX86PDPAE pPDDst;
2999 X86PDEPAE PdeDst;
3000
3001# if PGM_GST_TYPE == PGM_TYPE_PROT
3002 /* AMD-V nested paging */
3003 X86PML4E Pml4eSrc;
3004 X86PDPE PdpeSrc;
3005 PX86PML4E pPml4eSrc = &Pml4eSrc;
3006
3007 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3008 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3009 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3010# endif
3011
3012 int rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3013 if (rc != VINF_SUCCESS)
3014 {
3015 AssertRC(rc);
3016 return rc;
3017 }
3018 Assert(pPDDst);
3019 PdeDst = pPDDst->a[iPDDst];
3020# endif
3021 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3022 {
3023 if (!PdeDst.n.u1Present)
3024 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3025 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3026 else
3027 {
3028 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3029 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3030 * makes no sense to prefetch more than one page.
3031 */
3032 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3033 if (RT_SUCCESS(rc))
3034 rc = VINF_SUCCESS;
3035 }
3036 }
3037 }
3038 return rc;
3039
3040#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3041 return VINF_SUCCESS; /* ignore */
3042#endif
3043}
3044
3045
3046
3047
3048/**
3049 * Syncs a page during a PGMVerifyAccess() call.
3050 *
3051 * @returns VBox status code (informational included).
3052 * @param GCPtrPage The address of the page to sync.
3053 * @param fPage The effective guest page flags.
3054 * @param uErr The trap error code.
3055 */
3056PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3057{
3058 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3059
3060 Assert(!HWACCMIsNestedPagingActive(pVM));
3061#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3062 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3063
3064# ifndef IN_RING0
3065 if (!(fPage & X86_PTE_US))
3066 {
3067 /*
3068 * Mark this page as safe.
3069 */
3070 /** @todo not correct for pages that contain both code and data!! */
3071 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3072 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
3073 }
3074# endif
3075
3076 /*
3077 * Get guest PD and index.
3078 */
3079# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3080# if PGM_GST_TYPE == PGM_TYPE_32BIT
3081 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3082 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3083# elif PGM_GST_TYPE == PGM_TYPE_PAE
3084 unsigned iPDSrc;
3085# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3086 X86PDPE PdpeSrc;
3087 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3088# else
3089 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
3090# endif
3091
3092 if (pPDSrc)
3093 {
3094 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3095 return VINF_EM_RAW_GUEST_TRAP;
3096 }
3097# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3098 unsigned iPDSrc;
3099 PX86PML4E pPml4eSrc;
3100 X86PDPE PdpeSrc;
3101 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3102 if (!pPDSrc)
3103 {
3104 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3105 return VINF_EM_RAW_GUEST_TRAP;
3106 }
3107# endif
3108# else
3109 PGSTPD pPDSrc = NULL;
3110 const unsigned iPDSrc = 0;
3111# endif
3112 int rc = VINF_SUCCESS;
3113
3114 /*
3115 * First check if the shadow pd is present.
3116 */
3117# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3118 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
3119# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3120 PX86PDEPAE pPdeDst;
3121# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3122 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3123 PX86PDPAE pPDDst;
3124# if PGM_GST_TYPE != PGM_TYPE_PAE
3125 X86PDPE PdpeSrc;
3126
3127 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3128 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3129# endif
3130 rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
3131 if (rc != VINF_SUCCESS)
3132 {
3133 AssertRC(rc);
3134 return rc;
3135 }
3136 Assert(pPDDst);
3137 pPdeDst = &pPDDst->a[iPDDst];
3138# else
3139 pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
3140# endif
3141# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3142 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3143 PX86PDPAE pPDDst;
3144 PX86PDEPAE pPdeDst;
3145
3146# if PGM_GST_TYPE == PGM_TYPE_PROT
3147 /* AMD-V nested paging */
3148 X86PML4E Pml4eSrc;
3149 X86PDPE PdpeSrc;
3150 PX86PML4E pPml4eSrc = &Pml4eSrc;
3151
3152 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3153 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3154 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3155# endif
3156
3157 rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3158 if (rc != VINF_SUCCESS)
3159 {
3160 AssertRC(rc);
3161 return rc;
3162 }
3163 Assert(pPDDst);
3164 pPdeDst = &pPDDst->a[iPDDst];
3165# endif
3166 if (!pPdeDst->n.u1Present)
3167 {
3168 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3169 AssertRC(rc);
3170 if (rc != VINF_SUCCESS)
3171 return rc;
3172 }
3173
3174# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3175 /* Check for dirty bit fault */
3176 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3177 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3178 Log(("PGMVerifyAccess: success (dirty)\n"));
3179 else
3180 {
3181 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3182#else
3183 {
3184 GSTPDE PdeSrc;
3185 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3186 PdeSrc.n.u1Present = 1;
3187 PdeSrc.n.u1Write = 1;
3188 PdeSrc.n.u1Accessed = 1;
3189 PdeSrc.n.u1User = 1;
3190
3191#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3192 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3193 if (uErr & X86_TRAP_PF_US)
3194 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3195 else /* supervisor */
3196 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3197
3198 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3199 if (RT_SUCCESS(rc))
3200 {
3201 /* Page was successfully synced */
3202 Log2(("PGMVerifyAccess: success (sync)\n"));
3203 rc = VINF_SUCCESS;
3204 }
3205 else
3206 {
3207 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3208 return VINF_EM_RAW_GUEST_TRAP;
3209 }
3210 }
3211 return rc;
3212
3213#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3214
3215 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3216 return VERR_INTERNAL_ERROR;
3217#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3218}
3219
3220
3221#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3222# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3223/**
3224 * Figures out which kind of shadow page this guest PDE warrants.
3225 *
3226 * @returns Shadow page kind.
3227 * @param pPdeSrc The guest PDE in question.
3228 * @param cr4 The current guest cr4 value.
3229 */
3230DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
3231{
3232# if PMG_GST_TYPE == PGM_TYPE_AMD64
3233 if (!pPdeSrc->n.u1Size)
3234# else
3235 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
3236# endif
3237 return BTH_PGMPOOLKIND_PT_FOR_PT;
3238 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
3239 //{
3240 // case 0:
3241 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
3242 // case X86_PDE4M_RW:
3243 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
3244 // case X86_PDE4M_US:
3245 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
3246 // case X86_PDE4M_RW | X86_PDE4M_US:
3247 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
3248# if 0
3249 // case X86_PDE4M_PAE_NX:
3250 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
3251 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
3252 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
3253 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
3254 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
3255 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
3256 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
3257# endif
3258 return BTH_PGMPOOLKIND_PT_FOR_BIG;
3259 //}
3260}
3261# endif
3262#endif
3263
3264#undef MY_STAM_COUNTER_INC
3265#define MY_STAM_COUNTER_INC(a) do { } while (0)
3266
3267
3268/**
3269 * Syncs the paging hierarchy starting at CR3.
3270 *
3271 * @returns VBox status code, no specials.
3272 * @param pVM The virtual machine.
3273 * @param cr0 Guest context CR0 register
3274 * @param cr3 Guest context CR3 register
3275 * @param cr4 Guest context CR4 register
3276 * @param fGlobal Including global page directories or not
3277 */
3278PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3279{
3280 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3281 fGlobal = true; /* Change this CR3 reload to be a global one. */
3282
3283 LogFlow(("SyncCR3 %d\n", fGlobal));
3284
3285#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3286 /*
3287 * Update page access handlers.
3288 * The virtual are always flushed, while the physical are only on demand.
3289 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3290 * have to look into that later because it will have a bad influence on the performance.
3291 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3292 * bird: Yes, but that won't work for aliases.
3293 */
3294 /** @todo this MUST go away. See #1557. */
3295 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3296 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3297 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3298#endif
3299
3300#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3301 /*
3302 * Nested / EPT - almost no work.
3303 */
3304 /** @todo check if this is really necessary; the call does it as well... */
3305 HWACCMFlushTLB(pVM);
3306 return VINF_SUCCESS;
3307
3308#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3309 /*
3310 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3311 * out the shadow parts when the guest modifies its tables.
3312 */
3313 return VINF_SUCCESS;
3314
3315#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3316
3317# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3318# ifdef PGM_WITHOUT_MAPPINGS
3319 Assert(pVM->pgm.s.fMappingsFixed);
3320 return VINF_SUCCESS;
3321# else
3322 /* Nothing to do when mappings are fixed. */
3323 if (pVM->pgm.s.fMappingsFixed)
3324 return VINF_SUCCESS;
3325
3326 int rc = PGMMapResolveConflicts(pVM);
3327 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3328 if (rc == VINF_PGM_SYNC_CR3)
3329 {
3330 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3331 return VINF_PGM_SYNC_CR3;
3332 }
3333# endif
3334 return VINF_SUCCESS;
3335# else
3336 /*
3337 * PAE and 32-bit legacy mode (shadow).
3338 * (Guest PAE, 32-bit legacy, protected and real modes.)
3339 */
3340 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3341 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Global) : &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3NotGlobal));
3342
3343# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
3344 bool const fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3345
3346 /*
3347 * Get page directory addresses.
3348 */
3349# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3350 PX86PDE pPDEDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, 0);
3351# else /* PGM_SHW_TYPE == PGM_TYPE_PAE */
3352# if PGM_GST_TYPE == PGM_TYPE_32BIT
3353 PX86PDEPAE pPDEDst = NULL;
3354# endif
3355# endif
3356
3357# if PGM_GST_TYPE == PGM_TYPE_32BIT
3358 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3359 Assert(pPDSrc);
3360# if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3361 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == (RTR3PTR)pPDSrc);
3362# endif
3363# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3364
3365 /*
3366 * Iterate the the CR3 page.
3367 */
3368 PPGMMAPPING pMapping;
3369 unsigned iPdNoMapping;
3370 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3371 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3372
3373 /* Only check mappings if they are supposed to be put into the shadow page table. */
3374 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3375 {
3376 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3377 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3378 }
3379 else
3380 {
3381 pMapping = 0;
3382 iPdNoMapping = ~0U;
3383 }
3384
3385# if PGM_GST_TYPE == PGM_TYPE_PAE
3386 for (uint64_t iPdpt = 0; iPdpt < GST_PDPE_ENTRIES; iPdpt++)
3387 {
3388 unsigned iPDSrc;
3389 X86PDPE PdpeSrc;
3390 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT, &iPDSrc, &PdpeSrc);
3391 PX86PDEPAE pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT);
3392 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3393
3394 if (pPDSrc == NULL)
3395 {
3396 /* PDPE not present */
3397 if (pPdptDst->a[iPdpt].n.u1Present)
3398 {
3399 LogFlow(("SyncCR3: guest PDPE %lld not present; clear shw pdpe\n", iPdpt));
3400 /* for each page directory entry */
3401 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3402 {
3403 if ( pPDEDst[iPD].n.u1Present
3404 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3405 {
3406 pgmPoolFree(pVM, pPDEDst[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
3407 pPDEDst[iPD].u = 0;
3408 }
3409 }
3410 }
3411 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
3412 pPdptDst->a[iPdpt].n.u1Present = 0;
3413 continue;
3414 }
3415# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3416 {
3417# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3418 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3419 {
3420# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3421 if ((iPD & 255) == 0) /* Start of new PD. */
3422 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)iPD << GST_PD_SHIFT);
3423# endif
3424# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3425 Assert(pgmShwGet32BitPDEPtr(&pVM->pgm.s, (uint32_t)iPD << SHW_PD_SHIFT) == pPDEDst);
3426# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3427# if defined(VBOX_STRICT) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* Unfortuantely not reliable with PGMR0DynMap and multiple VMs. */
3428 RTGCPTR GCPtrStrict = (uint32_t)iPD << GST_PD_SHIFT;
3429# if PGM_GST_TYPE == PGM_TYPE_PAE
3430 GCPtrStrict |= iPdpt << X86_PDPT_SHIFT;
3431# endif
3432 AssertMsg(pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict) == pPDEDst, ("%p vs %p (%RGv)\n", pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict), pPDEDst, GCPtrStrict));
3433# endif /* VBOX_STRICT */
3434# endif
3435 GSTPDE PdeSrc = pPDSrc->a[iPD];
3436 if ( PdeSrc.n.u1Present
3437 && (PdeSrc.n.u1User || fRawR0Enabled))
3438 {
3439# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3440 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3441 && !defined(PGM_WITHOUT_MAPPINGS)
3442
3443 /*
3444 * Check for conflicts with GC mappings.
3445 */
3446# if PGM_GST_TYPE == PGM_TYPE_PAE
3447 if (iPD + iPdpt * X86_PG_PAE_ENTRIES == iPdNoMapping)
3448# else
3449 if (iPD == iPdNoMapping)
3450# endif
3451 {
3452 if (pVM->pgm.s.fMappingsFixed)
3453 {
3454 /* It's fixed, just skip the mapping. */
3455 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3456 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3457 iPD += cPTs - 1;
3458# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3459 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3460# else
3461 pPDEDst += cPTs;
3462# endif
3463 pMapping = pMapping->CTX_SUFF(pNext);
3464 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3465 continue;
3466 }
3467# ifdef IN_RING3
3468# if PGM_GST_TYPE == PGM_TYPE_32BIT
3469 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3470# elif PGM_GST_TYPE == PGM_TYPE_PAE
3471 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3472# endif
3473 if (RT_FAILURE(rc))
3474 return rc;
3475
3476 /*
3477 * Update iPdNoMapping and pMapping.
3478 */
3479 pMapping = pVM->pgm.s.pMappingsR3;
3480 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3481 pMapping = pMapping->pNextR3;
3482 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3483# else /* !IN_RING3 */
3484 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3485 return VINF_PGM_SYNC_CR3;
3486# endif /* !IN_RING3 */
3487 }
3488# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3489 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3490# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3491
3492 /*
3493 * Sync page directory entry.
3494 *
3495 * The current approach is to allocated the page table but to set
3496 * the entry to not-present and postpone the page table synching till
3497 * it's actually used.
3498 */
3499# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3500 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3501# elif PGM_GST_TYPE == PGM_TYPE_PAE
3502 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3503# else
3504 const unsigned iPdShw = iPD; NOREF(iPdShw);
3505# endif
3506 {
3507 SHWPDE PdeDst = *pPDEDst;
3508 if (PdeDst.n.u1Present)
3509 {
3510 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3511 RTGCPHYS GCPhys;
3512 if ( !PdeSrc.b.u1Size
3513 || !fBigPagesSupported)
3514 {
3515 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3516# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3517 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3518 GCPhys |= i * (PAGE_SIZE / 2);
3519# endif
3520 }
3521 else
3522 {
3523 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3524# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3525 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3526 GCPhys |= i * X86_PAGE_2M_SIZE;
3527# endif
3528 }
3529
3530 if ( pShwPage->GCPhys == GCPhys
3531 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3532 && ( pShwPage->fCached
3533 || ( !fGlobal
3534 && ( false
3535# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3536 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3537 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3538 || ( !pShwPage->fSeenNonGlobal
3539 && (cr4 & X86_CR4_PGE))
3540# endif
3541 )
3542 )
3543 )
3544 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3545 || ( fBigPagesSupported
3546 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3547 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3548 )
3549 )
3550 {
3551# ifdef VBOX_WITH_STATISTICS
3552 if ( !fGlobal
3553 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3554 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3555 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPD));
3556 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3557 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPT));
3558 else
3559 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstCacheHit));
3560# endif /* VBOX_WITH_STATISTICS */
3561 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3562 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3563 //# ifdef PGMPOOL_WITH_CACHE
3564 // pgmPoolCacheUsed(pPool, pShwPage);
3565 //# endif
3566 }
3567 else
3568 {
3569 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3570 pPDEDst->u = 0;
3571 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreed));
3572 }
3573 }
3574 else
3575 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstNotPresent));
3576
3577 /* advance */
3578 pPDEDst++;
3579 } /* foreach 2MB PAE PDE in 4MB guest PDE */
3580 }
3581# if PGM_GST_TYPE == PGM_TYPE_PAE
3582 else if (iPD + iPdpt * X86_PG_PAE_ENTRIES != iPdNoMapping)
3583# else
3584 else if (iPD != iPdNoMapping)
3585# endif
3586 {
3587 /*
3588 * Check if there is any page directory to mark not present here.
3589 */
3590# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3591 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3592# elif PGM_GST_TYPE == PGM_TYPE_PAE
3593 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES;
3594# else
3595 const unsigned iPdShw = iPD;
3596# endif
3597 {
3598 if (pPDEDst->n.u1Present)
3599 {
3600 pgmPoolFree(pVM, pPDEDst->u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdShw);
3601 pPDEDst->u = 0;
3602 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreedSrcNP));
3603 }
3604 pPDEDst++;
3605 }
3606 }
3607 else
3608 {
3609# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3610 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3611 && !defined(PGM_WITHOUT_MAPPINGS)
3612
3613 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3614
3615 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3616 if (pVM->pgm.s.fMappingsFixed)
3617 {
3618 /* It's fixed, just skip the mapping. */
3619 pMapping = pMapping->CTX_SUFF(pNext);
3620 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3621 }
3622 else
3623 {
3624 /*
3625 * Check for conflicts for subsequent pagetables
3626 * and advance to the next mapping.
3627 */
3628 iPdNoMapping = ~0U;
3629 unsigned iPT = cPTs;
3630 while (iPT-- > 1)
3631 {
3632 if ( pPDSrc->a[iPD + iPT].n.u1Present
3633 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3634 {
3635# ifdef IN_RING3
3636# if PGM_GST_TYPE == PGM_TYPE_32BIT
3637 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3638# elif PGM_GST_TYPE == PGM_TYPE_PAE
3639 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3640# endif
3641 if (RT_FAILURE(rc))
3642 return rc;
3643
3644 /*
3645 * Update iPdNoMapping and pMapping.
3646 */
3647 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3648 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3649 pMapping = pMapping->CTX_SUFF(pNext);
3650 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3651 break;
3652# else
3653 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3654 return VINF_PGM_SYNC_CR3;
3655# endif
3656 }
3657 }
3658 if (iPdNoMapping == ~0U && pMapping)
3659 {
3660 pMapping = pMapping->CTX_SUFF(pNext);
3661 if (pMapping)
3662 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3663 }
3664 }
3665
3666 /* advance. */
3667 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3668 iPD += cPTs - 1;
3669# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3670 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3671# else
3672 pPDEDst += cPTs;
3673# endif
3674# if PGM_GST_TYPE != PGM_SHW_TYPE
3675 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3676# endif
3677# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3678 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3679# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3680 }
3681
3682 } /* for iPD */
3683 } /* for each PDPTE (PAE) */
3684 return VINF_SUCCESS;
3685
3686# else /* guest real and protected mode */
3687 return VINF_SUCCESS;
3688# endif
3689#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
3690#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3691}
3692
3693
3694
3695
3696#ifdef VBOX_STRICT
3697#ifdef IN_RC
3698# undef AssertMsgFailed
3699# define AssertMsgFailed Log
3700#endif
3701#ifdef IN_RING3
3702# include <VBox/dbgf.h>
3703
3704/**
3705 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3706 *
3707 * @returns VBox status code (VINF_SUCCESS).
3708 * @param pVM The VM handle.
3709 * @param cr3 The root of the hierarchy.
3710 * @param crr The cr4, only PAE and PSE is currently used.
3711 * @param fLongMode Set if long mode, false if not long mode.
3712 * @param cMaxDepth Number of levels to dump.
3713 * @param pHlp Pointer to the output functions.
3714 */
3715__BEGIN_DECLS
3716VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3717__END_DECLS
3718
3719#endif
3720
3721/**
3722 * Checks that the shadow page table is in sync with the guest one.
3723 *
3724 * @returns The number of errors.
3725 * @param pVM The virtual machine.
3726 * @param cr3 Guest context CR3 register
3727 * @param cr4 Guest context CR4 register
3728 * @param GCPtr Where to start. Defaults to 0.
3729 * @param cb How much to check. Defaults to everything.
3730 */
3731PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3732{
3733#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3734 return 0;
3735#else
3736 unsigned cErrors = 0;
3737
3738#if PGM_GST_TYPE == PGM_TYPE_PAE
3739 /** @todo currently broken; crashes below somewhere */
3740 AssertFailed();
3741#endif
3742
3743#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3744 || PGM_GST_TYPE == PGM_TYPE_PAE \
3745 || PGM_GST_TYPE == PGM_TYPE_AMD64
3746
3747# if PGM_GST_TYPE == PGM_TYPE_AMD64
3748 bool fBigPagesSupported = true;
3749# else
3750 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3751# endif
3752 PPGM pPGM = &pVM->pgm.s;
3753 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3754 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3755# ifndef IN_RING0
3756 RTHCPHYS HCPhys; /* general usage. */
3757# endif
3758 int rc;
3759
3760 /*
3761 * Check that the Guest CR3 and all its mappings are correct.
3762 */
3763 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3764 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3765 false);
3766# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3767# if PGM_GST_TYPE == PGM_TYPE_32BIT
3768 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3769# else
3770 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3771# endif
3772 AssertRCReturn(rc, 1);
3773 HCPhys = NIL_RTHCPHYS;
3774 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3775 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3776# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3777 RTGCPHYS GCPhys;
3778 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3779 AssertRCReturn(rc, 1);
3780 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3781# endif
3782# endif /* !IN_RING0 */
3783
3784 /*
3785 * Get and check the Shadow CR3.
3786 */
3787# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3788 unsigned cPDEs = X86_PG_ENTRIES;
3789 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3790# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3791# if PGM_GST_TYPE == PGM_TYPE_32BIT
3792 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3793# else
3794 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3795# endif
3796 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3797# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3798 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3799 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3800# endif
3801 if (cb != ~(RTGCPTR)0)
3802 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3803
3804/** @todo call the other two PGMAssert*() functions. */
3805
3806# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3807 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3808# endif
3809
3810# if PGM_GST_TYPE == PGM_TYPE_AMD64
3811 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3812
3813 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3814 {
3815 PPGMPOOLPAGE pShwPdpt = NULL;
3816 PX86PML4E pPml4eSrc;
3817 PX86PML4E pPml4eDst;
3818 RTGCPHYS GCPhysPdptSrc;
3819
3820 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3821 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3822
3823 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3824 if (!pPml4eDst->n.u1Present)
3825 {
3826 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3827 continue;
3828 }
3829
3830 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3831 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3832
3833 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3834 {
3835 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3836 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3837 cErrors++;
3838 continue;
3839 }
3840
3841 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3842 {
3843 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3844 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3845 cErrors++;
3846 continue;
3847 }
3848
3849 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3850 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3851 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3852 {
3853 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3854 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3855 cErrors++;
3856 continue;
3857 }
3858# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3859 {
3860# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3861
3862# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3863 /*
3864 * Check the PDPTEs too.
3865 */
3866 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3867
3868 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3869 {
3870 unsigned iPDSrc;
3871 PPGMPOOLPAGE pShwPde = NULL;
3872 PX86PDPE pPdpeDst;
3873 RTGCPHYS GCPhysPdeSrc;
3874# if PGM_GST_TYPE == PGM_TYPE_PAE
3875 X86PDPE PdpeSrc;
3876 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3877 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3878# else
3879 PX86PML4E pPml4eSrc;
3880 X86PDPE PdpeSrc;
3881 PX86PDPT pPdptDst;
3882 PX86PDPAE pPDDst;
3883 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3884
3885 rc = pgmShwGetLongModePDPtr(pVM, GCPtr, NULL, &pPdptDst, &pPDDst);
3886 if (rc != VINF_SUCCESS)
3887 {
3888 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3889 GCPtr += 512 * _2M;
3890 continue; /* next PDPTE */
3891 }
3892 Assert(pPDDst);
3893# endif
3894 Assert(iPDSrc == 0);
3895
3896 pPdpeDst = &pPdptDst->a[iPdpt];
3897
3898 if (!pPdpeDst->n.u1Present)
3899 {
3900 GCPtr += 512 * _2M;
3901 continue; /* next PDPTE */
3902 }
3903
3904 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3905 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3906
3907 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3908 {
3909 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3910 GCPtr += 512 * _2M;
3911 cErrors++;
3912 continue;
3913 }
3914
3915 if (GCPhysPdeSrc != pShwPde->GCPhys)
3916 {
3917# if PGM_GST_TYPE == PGM_TYPE_AMD64
3918 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3919# else
3920 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3921# endif
3922 GCPtr += 512 * _2M;
3923 cErrors++;
3924 continue;
3925 }
3926
3927# if PGM_GST_TYPE == PGM_TYPE_AMD64
3928 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3929 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3930 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3931 {
3932 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3933 GCPtr += 512 * _2M;
3934 cErrors++;
3935 continue;
3936 }
3937# endif
3938
3939# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3940 {
3941# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3942# if PGM_GST_TYPE == PGM_TYPE_32BIT
3943 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3944# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3945 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
3946# endif
3947# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3948 /*
3949 * Iterate the shadow page directory.
3950 */
3951 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3952 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3953
3954 for (;
3955 iPDDst < cPDEs;
3956 iPDDst++, GCPtr += cIncrement)
3957 {
3958# if PGM_SHW_TYPE == PGM_TYPE_PAE
3959 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3960# else
3961 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3962# endif
3963 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3964 {
3965 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3966 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3967 {
3968 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3969 cErrors++;
3970 continue;
3971 }
3972 }
3973 else if ( (PdeDst.u & X86_PDE_P)
3974 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3975 )
3976 {
3977 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3978 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3979 if (!pPoolPage)
3980 {
3981 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3982 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3983 cErrors++;
3984 continue;
3985 }
3986 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3987
3988 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3989 {
3990 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3991 GCPtr, (uint64_t)PdeDst.u));
3992 cErrors++;
3993 }
3994
3995 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3996 {
3997 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3998 GCPtr, (uint64_t)PdeDst.u));
3999 cErrors++;
4000 }
4001
4002 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4003 if (!PdeSrc.n.u1Present)
4004 {
4005 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4006 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4007 cErrors++;
4008 continue;
4009 }
4010
4011 if ( !PdeSrc.b.u1Size
4012 || !fBigPagesSupported)
4013 {
4014 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
4015# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4016 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
4017# endif
4018 }
4019 else
4020 {
4021# if PGM_GST_TYPE == PGM_TYPE_32BIT
4022 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4023 {
4024 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4025 GCPtr, (uint64_t)PdeSrc.u));
4026 cErrors++;
4027 continue;
4028 }
4029# endif
4030 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
4031# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4032 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
4033# endif
4034 }
4035
4036 if ( pPoolPage->enmKind
4037 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4038 {
4039 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4040 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4041 cErrors++;
4042 }
4043
4044 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4045 if (!pPhysPage)
4046 {
4047 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4048 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4049 cErrors++;
4050 continue;
4051 }
4052
4053 if (GCPhysGst != pPoolPage->GCPhys)
4054 {
4055 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4056 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4057 cErrors++;
4058 continue;
4059 }
4060
4061 if ( !PdeSrc.b.u1Size
4062 || !fBigPagesSupported)
4063 {
4064 /*
4065 * Page Table.
4066 */
4067 const GSTPT *pPTSrc;
4068 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
4069 if (RT_FAILURE(rc))
4070 {
4071 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4072 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4073 cErrors++;
4074 continue;
4075 }
4076 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4077 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4078 {
4079 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4080 // (This problem will go away when/if we shadow multiple CR3s.)
4081 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4082 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4083 cErrors++;
4084 continue;
4085 }
4086 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4087 {
4088 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4089 GCPtr, (uint64_t)PdeDst.u));
4090 cErrors++;
4091 continue;
4092 }
4093
4094 /* iterate the page table. */
4095# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4096 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4097 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4098# else
4099 const unsigned offPTSrc = 0;
4100# endif
4101 for (unsigned iPT = 0, off = 0;
4102 iPT < RT_ELEMENTS(pPTDst->a);
4103 iPT++, off += PAGE_SIZE)
4104 {
4105 const SHWPTE PteDst = pPTDst->a[iPT];
4106
4107 /* skip not-present entries. */
4108 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4109 continue;
4110 Assert(PteDst.n.u1Present);
4111
4112 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4113 if (!PteSrc.n.u1Present)
4114 {
4115# ifdef IN_RING3
4116 PGMAssertHandlerAndFlagsInSync(pVM);
4117 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
4118# endif
4119 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4120 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4121 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
4122 cErrors++;
4123 continue;
4124 }
4125
4126 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4127# if 1 /** @todo sync accessed bit properly... */
4128 fIgnoreFlags |= X86_PTE_A;
4129# endif
4130
4131 /* match the physical addresses */
4132 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
4133 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
4134
4135# ifdef IN_RING3
4136 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4137 if (RT_FAILURE(rc))
4138 {
4139 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4140 {
4141 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4142 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4143 cErrors++;
4144 continue;
4145 }
4146 }
4147 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4148 {
4149 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4150 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4151 cErrors++;
4152 continue;
4153 }
4154# endif
4155
4156 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4157 if (!pPhysPage)
4158 {
4159# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4160 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4161 {
4162 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4163 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4164 cErrors++;
4165 continue;
4166 }
4167# endif
4168 if (PteDst.n.u1Write)
4169 {
4170 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4171 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4172 cErrors++;
4173 }
4174 fIgnoreFlags |= X86_PTE_RW;
4175 }
4176 else if (HCPhysShw != (PGM_PAGE_GET_HCPHYS(pPhysPage) & SHW_PTE_PG_MASK))
4177 {
4178 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4179 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4180 cErrors++;
4181 continue;
4182 }
4183
4184 /* flags */
4185 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4186 {
4187 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4188 {
4189 if (PteDst.n.u1Write)
4190 {
4191 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! HCPhys=%RHp PteSrc=%#RX64 PteDst=%#RX64\n",
4192 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4193 cErrors++;
4194 continue;
4195 }
4196 fIgnoreFlags |= X86_PTE_RW;
4197 }
4198 else
4199 {
4200 if (PteDst.n.u1Present)
4201 {
4202 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! HCPhys=%RHp PteSrc=%#RX64 PteDst=%#RX64\n",
4203 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4204 cErrors++;
4205 continue;
4206 }
4207 fIgnoreFlags |= X86_PTE_P;
4208 }
4209 }
4210 else
4211 {
4212 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4213 {
4214 if (PteDst.n.u1Write)
4215 {
4216 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4217 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4218 cErrors++;
4219 continue;
4220 }
4221 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4222 {
4223 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4224 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4225 cErrors++;
4226 continue;
4227 }
4228 if (PteDst.n.u1Dirty)
4229 {
4230 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4232 cErrors++;
4233 }
4234# if 0 /** @todo sync access bit properly... */
4235 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4236 {
4237 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4238 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4239 cErrors++;
4240 }
4241 fIgnoreFlags |= X86_PTE_RW;
4242# else
4243 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4244# endif
4245 }
4246 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4247 {
4248 /* access bit emulation (not implemented). */
4249 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4250 {
4251 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4252 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4253 cErrors++;
4254 continue;
4255 }
4256 if (!PteDst.n.u1Accessed)
4257 {
4258 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4259 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4260 cErrors++;
4261 }
4262 fIgnoreFlags |= X86_PTE_P;
4263 }
4264# ifdef DEBUG_sandervl
4265 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4266# endif
4267 }
4268
4269 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4270 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4271 )
4272 {
4273 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4274 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4275 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4276 cErrors++;
4277 continue;
4278 }
4279 } /* foreach PTE */
4280 }
4281 else
4282 {
4283 /*
4284 * Big Page.
4285 */
4286 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4287 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4288 {
4289 if (PdeDst.n.u1Write)
4290 {
4291 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4292 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4293 cErrors++;
4294 continue;
4295 }
4296 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4297 {
4298 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4299 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4300 cErrors++;
4301 continue;
4302 }
4303# if 0 /** @todo sync access bit properly... */
4304 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4305 {
4306 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4307 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4308 cErrors++;
4309 }
4310 fIgnoreFlags |= X86_PTE_RW;
4311# else
4312 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4313# endif
4314 }
4315 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4316 {
4317 /* access bit emulation (not implemented). */
4318 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4319 {
4320 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4321 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4322 cErrors++;
4323 continue;
4324 }
4325 if (!PdeDst.n.u1Accessed)
4326 {
4327 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4328 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4329 cErrors++;
4330 }
4331 fIgnoreFlags |= X86_PTE_P;
4332 }
4333
4334 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4335 {
4336 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4337 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4338 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4339 cErrors++;
4340 }
4341
4342 /* iterate the page table. */
4343 for (unsigned iPT = 0, off = 0;
4344 iPT < RT_ELEMENTS(pPTDst->a);
4345 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4346 {
4347 const SHWPTE PteDst = pPTDst->a[iPT];
4348
4349 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4350 {
4351 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4352 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4353 cErrors++;
4354 }
4355
4356 /* skip not-present entries. */
4357 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4358 continue;
4359
4360 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4361
4362 /* match the physical addresses */
4363 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4364
4365# ifdef IN_RING3
4366 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4367 if (RT_FAILURE(rc))
4368 {
4369 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4370 {
4371 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4372 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4373 cErrors++;
4374 }
4375 }
4376 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4377 {
4378 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4379 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4380 cErrors++;
4381 continue;
4382 }
4383# endif
4384 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4385 if (!pPhysPage)
4386 {
4387# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4388 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4389 {
4390 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4391 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4392 cErrors++;
4393 continue;
4394 }
4395# endif
4396 if (PteDst.n.u1Write)
4397 {
4398 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4399 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4400 cErrors++;
4401 }
4402 fIgnoreFlags |= X86_PTE_RW;
4403 }
4404 else if (HCPhysShw != (pPhysPage->HCPhys & X86_PTE_PAE_PG_MASK))
4405 {
4406 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4407 GCPtr + off, HCPhysShw, pPhysPage->HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4408 cErrors++;
4409 continue;
4410 }
4411
4412 /* flags */
4413 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4414 {
4415 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4416 {
4417 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4418 {
4419 if (PteDst.n.u1Write)
4420 {
4421 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! HCPhys=%RHp PdeSrc=%#RX64 PteDst=%#RX64\n",
4422 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4423 cErrors++;
4424 continue;
4425 }
4426 fIgnoreFlags |= X86_PTE_RW;
4427 }
4428 }
4429 else
4430 {
4431 if (PteDst.n.u1Present)
4432 {
4433 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! HCPhys=%RHp PdeSrc=%#RX64 PteDst=%#RX64\n",
4434 GCPtr + off, pPhysPage->HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4435 cErrors++;
4436 continue;
4437 }
4438 fIgnoreFlags |= X86_PTE_P;
4439 }
4440 }
4441
4442 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4443 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4444 )
4445 {
4446 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4447 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4448 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4449 cErrors++;
4450 continue;
4451 }
4452 } /* for each PTE */
4453 }
4454 }
4455 /* not present */
4456
4457 } /* for each PDE */
4458
4459 } /* for each PDPTE */
4460
4461 } /* for each PML4E */
4462
4463# ifdef DEBUG
4464 if (cErrors)
4465 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4466# endif
4467
4468#endif /* GST == 32BIT, PAE or AMD64 */
4469 return cErrors;
4470
4471#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4472}
4473#endif /* VBOX_STRICT */
4474
4475
4476/**
4477 * Sets up the CR3 for shadow paging
4478 *
4479 * @returns Strict VBox status code.
4480 * @retval VINF_SUCCESS.
4481 *
4482 * @param pVM VM handle.
4483 * @param GCPhysCR3 The physical address in the CR3 register.
4484 */
4485PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3)
4486{
4487 /* Update guest paging info. */
4488#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4489 || PGM_GST_TYPE == PGM_TYPE_PAE \
4490 || PGM_GST_TYPE == PGM_TYPE_AMD64
4491
4492 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4493
4494 /*
4495 * Map the page CR3 points at.
4496 */
4497 RTHCPHYS HCPhysGuestCR3;
4498 RTHCPTR HCPtrGuestCR3;
4499 int rc = pgmRamGCPhys2HCPtrAndHCPhysWithFlags(&pVM->pgm.s, GCPhysCR3 & GST_CR3_PAGE_MASK, &HCPtrGuestCR3, &HCPhysGuestCR3);
4500 if (RT_SUCCESS(rc))
4501 {
4502 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4503 if (RT_SUCCESS(rc))
4504 {
4505# ifdef IN_RC
4506 PGM_INVL_PG(pVM->pgm.s.GCPtrCR3Mapping);
4507# endif
4508# if PGM_GST_TYPE == PGM_TYPE_32BIT
4509 pVM->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4510# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4511 pVM->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4512# endif
4513 pVM->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))pVM->pgm.s.GCPtrCR3Mapping;
4514
4515# elif PGM_GST_TYPE == PGM_TYPE_PAE
4516 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4517 pVM->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4518# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4519 pVM->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4520# endif
4521 pVM->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RCPTRTYPE(uint8_t *))pVM->pgm.s.GCPtrCR3Mapping + off);
4522 Log(("Cached mapping %RRv\n", pVM->pgm.s.pGstPaePdptRC));
4523
4524 /*
4525 * Map the 4 PDs too.
4526 */
4527 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVM->pgm.s);
4528 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4529 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4530 {
4531 if (pGuestPDPT->a[i].n.u1Present)
4532 {
4533 RTHCPTR HCPtr;
4534 RTHCPHYS HCPhys;
4535 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4536 int rc2 = pgmRamGCPhys2HCPtrAndHCPhysWithFlags(&pVM->pgm.s, GCPhys, &HCPtr, &HCPhys);
4537 if (RT_SUCCESS(rc2))
4538 {
4539 rc = PGMMap(pVM, GCPtr, HCPhys & X86_PTE_PAE_PG_MASK, PAGE_SIZE, 0);
4540 AssertRCReturn(rc, rc);
4541
4542 pVM->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4543# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4544 pVM->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4545# endif
4546 pVM->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))GCPtr;
4547 pVM->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4548 PGM_INVL_PG(GCPtr); /** @todo This ends up calling HWACCMInvalidatePage, is that correct? */
4549 continue;
4550 }
4551 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4552 }
4553
4554 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4555# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4556 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4557# endif
4558 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4559 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4560 PGM_INVL_PG(GCPtr); /** @todo this shouldn't be necessary? */
4561 }
4562
4563# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4564 pVM->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4565# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4566 pVM->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4567# endif
4568# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
4569 if (!HWACCMIsNestedPagingActive(pVM))
4570 {
4571 /*
4572 * Update the shadow root page as well since that's not fixed.
4573 */
4574 /** @todo Move this into PGMAllBth.h. */
4575 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4576 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4577 {
4578 /* It might have been freed already by a pool flush (see e.g. PGMR3MappingsUnfix). */
4579 /** @todo Coordinate this better with the pool. */
4580 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3)->enmKind != PGMPOOLKIND_FREE)
4581 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), PGMPOOL_IDX_AMD64_CR3, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->GCPhys >> PAGE_SHIFT);
4582 pVM->pgm.s.pShwPageCR3R3 = 0;
4583 pVM->pgm.s.pShwPageCR3R0 = 0;
4584 pVM->pgm.s.pShwRootR3 = 0;
4585# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4586 pVM->pgm.s.pShwRootR0 = 0;
4587# endif
4588 pVM->pgm.s.HCPhysShwCR3 = 0;
4589 }
4590
4591 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4592 rc = pgmPoolAlloc(pVM, GCPhysCR3, PGMPOOLKIND_64BIT_PML4, PGMPOOL_IDX_AMD64_CR3, GCPhysCR3 >> PAGE_SHIFT, &pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4593 if (rc == VERR_PGM_POOL_FLUSHED)
4594 {
4595 Log(("MapCR3: PGM pool flushed -> signal sync cr3\n"));
4596 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4597 return VINF_PGM_SYNC_CR3;
4598 }
4599 AssertRCReturn(rc, rc);
4600# ifdef IN_RING0
4601 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4602# else
4603 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4604# endif
4605 pVM->pgm.s.pShwRootR3 = (R3PTRTYPE(void *))pVM->pgm.s.CTX_SUFF(pShwPageCR3)->pvPageR3;
4606 Assert(pVM->pgm.s.pShwRootR3);
4607# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4608 pVM->pgm.s.pShwRootR0 = (R0PTRTYPE(void *))PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4609# endif
4610 pVM->pgm.s.HCPhysShwCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
4611 rc = VINF_SUCCESS; /* clear it - pgmPoolAlloc returns hints. */
4612 }
4613# endif /* !VBOX_WITH_PGMPOOL_PAGING_ONLY */
4614# endif
4615 }
4616 else
4617 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4618 }
4619 else
4620 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4621
4622#else /* prot/real stub */
4623 int rc = VINF_SUCCESS;
4624#endif
4625
4626#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4627 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4628# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4629 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4630 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4631 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4632 && PGM_GST_TYPE != PGM_TYPE_PROT))
4633
4634 Assert(!HWACCMIsNestedPagingActive(pVM));
4635
4636 /*
4637 * Update the shadow root page as well since that's not fixed.
4638 */
4639 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4640 PPGMPOOLPAGE pOldShwPageCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
4641 uint32_t iOldShwUserTable = pVM->pgm.s.iShwUserTable;
4642 uint32_t iOldShwUser = pVM->pgm.s.iShwUser;
4643 PPGMPOOLPAGE pNewShwPageCR3;
4644
4645 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4646 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3);
4647 if (rc == VERR_PGM_POOL_FLUSHED)
4648 {
4649 Log(("MapCR3: PGM pool flushed -> signal sync cr3\n"));
4650 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4651 return VINF_PGM_SYNC_CR3;
4652 }
4653 AssertRCReturn(rc, rc);
4654 rc = VINF_SUCCESS;
4655
4656# ifdef IN_RC
4657 /** NOTE: We can't deal with jumps to ring 3 here as we're now in an inconsistent state! */
4658 VMMGCLogDisable(pVM);
4659# endif
4660 /* Mark the page as locked; disallow flushing. */
4661 pgmPoolLockPage(pPool, pNewShwPageCR3);
4662
4663 pVM->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4664 pVM->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4665 pVM->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4666# ifdef IN_RING0
4667 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4668 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4669# elif defined(IN_RC)
4670 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4671 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4672# else
4673 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4674 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4675# endif
4676 pVM->pgm.s.pShwRootR3 = (R3PTRTYPE(void *))pVM->pgm.s.CTX_SUFF(pShwPageCR3)->pvPageR3;
4677 Assert(pVM->pgm.s.pShwRootR3);
4678# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4679 pVM->pgm.s.pShwRootR0 = (R0PTRTYPE(void *))PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4680# endif
4681 pVM->pgm.s.HCPhysShwCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
4682
4683# ifndef PGM_WITHOUT_MAPPINGS
4684 /* Apply all hypervisor mappings to the new CR3.
4685 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4686 * make sure we check for conflicts in the new CR3 root.
4687 */
4688# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4689 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL));
4690# endif
4691 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4692 AssertRCReturn(rc, rc);
4693# endif
4694
4695 /* Set the current hypervisor CR3. */
4696 CPUMSetHyperCR3(pVM, PGMGetHyperCR3(pVM));
4697
4698# ifdef IN_RC
4699 VMMGCLogEnable(pVM);
4700# endif
4701
4702 /* Clean up the old CR3 root. */
4703 if (pOldShwPageCR3)
4704 {
4705 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4706# ifndef PGM_WITHOUT_MAPPINGS
4707 /* Remove the hypervisor mappings from the shadow page table. */
4708 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4709# endif
4710 /* Mark the page as unlocked; allow flushing again. */
4711 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4712
4713 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4714 }
4715
4716# endif
4717#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
4718
4719 return rc;
4720}
4721
4722/**
4723 * Unmaps the shadow CR3.
4724 *
4725 * @returns VBox status, no specials.
4726 * @param pVM VM handle.
4727 */
4728PGM_BTH_DECL(int, UnmapCR3)(PVM pVM)
4729{
4730 LogFlow(("UnmapCR3\n"));
4731
4732 int rc = VINF_SUCCESS;
4733
4734 /* Update guest paging info. */
4735#if PGM_GST_TYPE == PGM_TYPE_32BIT
4736 pVM->pgm.s.pGst32BitPdR3 = 0;
4737#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4738 pVM->pgm.s.pGst32BitPdR0 = 0;
4739#endif
4740 pVM->pgm.s.pGst32BitPdRC = 0;
4741
4742#elif PGM_GST_TYPE == PGM_TYPE_PAE
4743 pVM->pgm.s.pGstPaePdptR3 = 0;
4744# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4745 pVM->pgm.s.pGstPaePdptR0 = 0;
4746# endif
4747 pVM->pgm.s.pGstPaePdptRC = 0;
4748 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4749 {
4750 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4751# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4752 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4753# endif
4754 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4755 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4756 }
4757
4758#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4759 pVM->pgm.s.pGstAmd64Pml4R3 = 0;
4760# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4761 pVM->pgm.s.pGstAmd64Pml4R0 = 0;
4762# endif
4763# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
4764 if (!HWACCMIsNestedPagingActive(pVM))
4765 {
4766 pVM->pgm.s.pShwRootR3 = 0;
4767# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4768 pVM->pgm.s.pShwRootR0 = 0;
4769# endif
4770 pVM->pgm.s.HCPhysShwCR3 = 0;
4771 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4772 {
4773 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4774 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), PGMPOOL_IDX_AMD64_CR3, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->GCPhys >> PAGE_SHIFT);
4775 pVM->pgm.s.pShwPageCR3R3 = 0;
4776 pVM->pgm.s.pShwPageCR3R0 = 0;
4777 }
4778 }
4779# endif /* !VBOX_WITH_PGMPOOL_PAGING_ONLY */
4780
4781#else /* prot/real mode stub */
4782 /* nothing to do */
4783#endif
4784
4785#if defined(VBOX_WITH_PGMPOOL_PAGING_ONLY) && !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4786 /* Update shadow paging info. */
4787# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4788 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4789 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4790
4791# if PGM_GST_TYPE != PGM_TYPE_REAL
4792 Assert(!HWACCMIsNestedPagingActive(pVM));
4793# endif
4794
4795# ifndef PGM_WITHOUT_MAPPINGS
4796 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4797 /* Remove the hypervisor mappings from the shadow page table. */
4798 pgmMapDeactivateCR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4799# endif
4800
4801 pVM->pgm.s.pShwRootR3 = 0;
4802# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4803 pVM->pgm.s.pShwRootR0 = 0;
4804# endif
4805 pVM->pgm.s.HCPhysShwCR3 = 0;
4806 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4807 {
4808 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4809
4810 /* Mark the page as unlocked; allow flushing again. */
4811 pgmPoolUnlockPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4812
4813 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), pVM->pgm.s.iShwUser, pVM->pgm.s.iShwUserTable);
4814 pVM->pgm.s.pShwPageCR3R3 = 0;
4815 pVM->pgm.s.pShwPageCR3R0 = 0;
4816 pVM->pgm.s.iShwUser = 0;
4817 pVM->pgm.s.iShwUserTable = 0;
4818 }
4819# endif
4820#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY && !IN_RC*/
4821
4822 return rc;
4823}
4824
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette