VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 17562

Last change on this file since 17562 was 17562, checked in by vboxsync, 16 years ago

Backed out 44000; code was already inactive

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 212.9 KB
Line 
1/* $Id: PGMAllBth.h 17562 2009-03-09 10:55:59Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3);
43PGM_BTH_DECL(int, UnmapCR3)(PVM pVM);
44__END_DECLS
45
46
47/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
48#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
49# error "Invalid combination; PAE guest implies PAE shadow"
50#endif
51
52#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
53 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
54# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
55#endif
56
57#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
58 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
59# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
60#endif
61
62#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
63 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
64# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
65#endif
66
67#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
68# define PGM_WITHOUT_MAPPINGS
69#endif
70
71
72#ifndef IN_RING3
73/**
74 * #PF Handler for raw-mode guest execution.
75 *
76 * @returns VBox status code (appropriate for trap handling and GC return).
77 * @param pVM VM Handle.
78 * @param uErr The trap error code.
79 * @param pRegFrame Trap register frame.
80 * @param pvFault The fault address.
81 */
82PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
83{
84# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY) && defined(VBOX_STRICT)
85 PGMDynCheckLocks(pVM);
86# endif
87
88# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
89 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
90 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
91
92# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
93 /*
94 * Hide the instruction fetch trap indicator for now.
95 */
96 /** @todo NXE will change this and we must fix NXE in the switcher too! */
97 if (uErr & X86_TRAP_PF_ID)
98 {
99 uErr &= ~X86_TRAP_PF_ID;
100 TRPMSetErrorCode(pVM, uErr);
101 }
102# endif
103
104 /*
105 * Get PDs.
106 */
107 int rc;
108# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
109# if PGM_GST_TYPE == PGM_TYPE_32BIT
110 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
111 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
112
113# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
114
115# if PGM_GST_TYPE == PGM_TYPE_PAE
116 unsigned iPDSrc;
117# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
118 X86PDPE PdpeSrc;
119 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
120# else
121 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, NULL);
122# endif
123
124# elif PGM_GST_TYPE == PGM_TYPE_AMD64
125 unsigned iPDSrc;
126 PX86PML4E pPml4eSrc;
127 X86PDPE PdpeSrc;
128 PGSTPD pPDSrc;
129
130 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
131 Assert(pPml4eSrc);
132# endif
133
134 /* Quick check for a valid guest trap. (PAE & AMD64) */
135 if (!pPDSrc)
136 {
137# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
138 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
139# else
140 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
141# endif
142 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
143 TRPMSetErrorCode(pVM, uErr);
144 return VINF_EM_RAW_GUEST_TRAP;
145 }
146# endif
147
148# else /* !PGM_WITH_PAGING */
149 PGSTPD pPDSrc = NULL;
150 const unsigned iPDSrc = 0;
151# endif /* !PGM_WITH_PAGING */
152
153
154# if PGM_SHW_TYPE == PGM_TYPE_32BIT
155 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
156 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
157
158# elif PGM_SHW_TYPE == PGM_TYPE_PAE
159 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
160
161# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
162 PX86PDPAE pPDDst;
163# if PGM_GST_TYPE != PGM_TYPE_PAE
164 X86PDPE PdpeSrc;
165
166 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
167 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
168# endif
169 rc = pgmShwSyncPaePDPtr(pVM, pvFault, &PdpeSrc, &pPDDst);
170 if (rc != VINF_SUCCESS)
171 {
172 AssertRC(rc);
173 return rc;
174 }
175 Assert(pPDDst);
176
177# else
178 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, pvFault);
179
180 /* Did we mark the PDPT as not present in SyncCR3? */
181 unsigned iPdpt = (pvFault >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
182 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
183 if (!pPdptDst->a[iPdpt].n.u1Present)
184 pPdptDst->a[iPdpt].n.u1Present = 1;
185# endif
186
187# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
188 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
189 PX86PDPAE pPDDst;
190# if PGM_GST_TYPE == PGM_TYPE_PROT
191 /* AMD-V nested paging */
192 X86PML4E Pml4eSrc;
193 X86PDPE PdpeSrc;
194 PX86PML4E pPml4eSrc = &Pml4eSrc;
195
196 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
197 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
198 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
199# endif
200
201 rc = pgmShwSyncLongModePDPtr(pVM, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
202 if (rc != VINF_SUCCESS)
203 {
204 AssertRC(rc);
205 return rc;
206 }
207 Assert(pPDDst);
208
209# elif PGM_SHW_TYPE == PGM_TYPE_EPT
210 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
211 PEPTPD pPDDst;
212
213 rc = pgmShwGetEPTPDPtr(pVM, pvFault, NULL, &pPDDst);
214 if (rc != VINF_SUCCESS)
215 {
216 AssertRC(rc);
217 return rc;
218 }
219 Assert(pPDDst);
220# endif
221
222# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
223 /*
224 * If we successfully correct the write protection fault due to dirty bit
225 * tracking, or this page fault is a genuine one, then return immediately.
226 */
227 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
228 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
229 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
230 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
231 || rc == VINF_EM_RAW_GUEST_TRAP)
232 {
233 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
234 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
235 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
236 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
237 }
238
239 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0ePD[iPDSrc]);
240# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
241
242 /*
243 * A common case is the not-present error caused by lazy page table syncing.
244 *
245 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
246 * so we can safely assume that the shadow PT is present when calling SyncPage later.
247 *
248 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
249 * of mapping conflict and defer to SyncCR3 in R3.
250 * (Again, we do NOT support access handlers for non-present guest pages.)
251 *
252 */
253# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
254 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
255# else
256 GSTPDE PdeSrc;
257 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
258 PdeSrc.n.u1Present = 1;
259 PdeSrc.n.u1Write = 1;
260 PdeSrc.n.u1Accessed = 1;
261 PdeSrc.n.u1User = 1;
262# endif
263 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
264 && !pPDDst->a[iPDDst].n.u1Present
265 && PdeSrc.n.u1Present
266 )
267
268 {
269 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2SyncPT; });
270 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
271 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
272 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, pvFault);
273 if (RT_SUCCESS(rc))
274 {
275 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
276 return rc;
277 }
278 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
279 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
280 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
281 return VINF_PGM_SYNC_CR3;
282 }
283
284# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
285 /*
286 * Check if this address is within any of our mappings.
287 *
288 * This is *very* fast and it's gonna save us a bit of effort below and prevent
289 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
290 * (BTW, it's impossible to have physical access handlers in a mapping.)
291 */
292 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
293 {
294 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
295 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
296 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
297 {
298 if (pvFault < pMapping->GCPtr)
299 break;
300 if (pvFault - pMapping->GCPtr < pMapping->cb)
301 {
302 /*
303 * The first thing we check is if we've got an undetected conflict.
304 */
305 if (!pVM->pgm.s.fMappingsFixed)
306 {
307 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
308 while (iPT-- > 0)
309 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
310 {
311 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eConflicts);
312 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
313 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
314 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
315 return VINF_PGM_SYNC_CR3;
316 }
317 }
318
319 /*
320 * Check if the fault address is in a virtual page access handler range.
321 */
322 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
323 if ( pCur
324 && pvFault - pCur->Core.Key < pCur->cb
325 && uErr & X86_TRAP_PF_RW)
326 {
327# ifdef IN_RC
328 STAM_PROFILE_START(&pCur->Stat, h);
329 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
330 STAM_PROFILE_STOP(&pCur->Stat, h);
331# else
332 AssertFailed();
333 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
334# endif
335 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersMapping);
336 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
337 return rc;
338 }
339
340 /*
341 * Pretend we're not here and let the guest handle the trap.
342 */
343 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
344 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFMapping);
345 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
346 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
347 return VINF_EM_RAW_GUEST_TRAP;
348 }
349 }
350 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
351 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
352# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
353
354 /*
355 * Check if this fault address is flagged for special treatment,
356 * which means we'll have to figure out the physical address and
357 * check flags associated with it.
358 *
359 * ASSUME that we can limit any special access handling to pages
360 * in page tables which the guest believes to be present.
361 */
362 if (PdeSrc.n.u1Present)
363 {
364 RTGCPHYS GCPhys = NIL_RTGCPHYS;
365
366# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
367# if PGM_GST_TYPE == PGM_TYPE_AMD64
368 bool fBigPagesSupported = true;
369# else
370 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
371# endif
372 if ( PdeSrc.b.u1Size
373 && fBigPagesSupported)
374 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
375 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
376 else
377 {
378 PGSTPT pPTSrc;
379 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
380 if (RT_SUCCESS(rc))
381 {
382 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
383 if (pPTSrc->a[iPTESrc].n.u1Present)
384 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
385 }
386 }
387# else
388 /* No paging so the fault address is the physical address */
389 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
390# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
391
392 /*
393 * If we have a GC address we'll check if it has any flags set.
394 */
395 if (GCPhys != NIL_RTGCPHYS)
396 {
397 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
398
399 PPGMPAGE pPage;
400 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
401 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
402 {
403 if ( PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage)
404 || PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
405 {
406 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
407 {
408 /*
409 * Physical page access handler.
410 */
411 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
412 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
413 if (pCur)
414 {
415# ifdef PGM_SYNC_N_PAGES
416 /*
417 * If the region is write protected and we got a page not present fault, then sync
418 * the pages. If the fault was caused by a read, then restart the instruction.
419 * In case of write access continue to the GC write handler.
420 *
421 * ASSUMES that there is only one handler per page or that they have similar write properties.
422 */
423 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
424 && !(uErr & X86_TRAP_PF_P))
425 {
426 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
427 if ( RT_FAILURE(rc)
428 || !(uErr & X86_TRAP_PF_RW)
429 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
430 {
431 AssertRC(rc);
432 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
433 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
434 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
435 return rc;
436 }
437 }
438# endif
439
440 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
441 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
442 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
443
444# if defined(IN_RC) || defined(IN_RING0)
445 if (pCur->CTX_SUFF(pfnHandler))
446 {
447 STAM_PROFILE_START(&pCur->Stat, h);
448 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pCur->CTX_SUFF(pvUser));
449 STAM_PROFILE_STOP(&pCur->Stat, h);
450 }
451 else
452# endif
453 rc = VINF_EM_RAW_EMULATE_INSTR;
454 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersPhysical);
455 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
456 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndPhys; });
457 return rc;
458 }
459 }
460# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
461 else
462 {
463# ifdef PGM_SYNC_N_PAGES
464 /*
465 * If the region is write protected and we got a page not present fault, then sync
466 * the pages. If the fault was caused by a read, then restart the instruction.
467 * In case of write access continue to the GC write handler.
468 */
469 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
470 && !(uErr & X86_TRAP_PF_P))
471 {
472 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
473 if ( RT_FAILURE(rc)
474 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
475 || !(uErr & X86_TRAP_PF_RW))
476 {
477 AssertRC(rc);
478 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
479 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
480 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
481 return rc;
482 }
483 }
484# endif
485 /*
486 * Ok, it's an virtual page access handler.
487 *
488 * Since it's faster to search by address, we'll do that first
489 * and then retry by GCPhys if that fails.
490 */
491 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
492 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
493 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
494 */
495 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
496 if (pCur)
497 {
498 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
499 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
500 || !(uErr & X86_TRAP_PF_P)
501 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
502 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
503
504 if ( pvFault - pCur->Core.Key < pCur->cb
505 && ( uErr & X86_TRAP_PF_RW
506 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
507 {
508# ifdef IN_RC
509 STAM_PROFILE_START(&pCur->Stat, h);
510 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
511 STAM_PROFILE_STOP(&pCur->Stat, h);
512# else
513 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
514# endif
515 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtual);
516 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
517 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
518 return rc;
519 }
520 /* Unhandled part of a monitored page */
521 }
522 else
523 {
524 /* Check by physical address. */
525 PPGMVIRTHANDLER pCur;
526 unsigned iPage;
527 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
528 &pCur, &iPage);
529 Assert(RT_SUCCESS(rc) || !pCur);
530 if ( pCur
531 && ( uErr & X86_TRAP_PF_RW
532 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
533 {
534 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
535# ifdef IN_RC
536 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
537 Assert(off < pCur->cb);
538 STAM_PROFILE_START(&pCur->Stat, h);
539 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
540 STAM_PROFILE_STOP(&pCur->Stat, h);
541# else
542 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
543# endif
544 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
545 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
546 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
547 return rc;
548 }
549 }
550 }
551# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
552
553 /*
554 * There is a handled area of the page, but this fault doesn't belong to it.
555 * We must emulate the instruction.
556 *
557 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
558 * we first check if this was a page-not-present fault for a page with only
559 * write access handlers. Restart the instruction if it wasn't a write access.
560 */
561 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersUnhandled);
562
563 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
564 && !(uErr & X86_TRAP_PF_P))
565 {
566 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
567 if ( RT_FAILURE(rc)
568 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
569 || !(uErr & X86_TRAP_PF_RW))
570 {
571 AssertRC(rc);
572 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
573 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
574 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
575 return rc;
576 }
577 }
578
579 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
580 * It's writing to an unhandled part of the LDT page several million times.
581 */
582 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
583 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
584 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
585 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndUnhandled; });
586 return rc;
587 } /* if any kind of handler */
588
589# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
590 if (uErr & X86_TRAP_PF_P)
591 {
592 /*
593 * The page isn't marked, but it might still be monitored by a virtual page access handler.
594 * (ASSUMES no temporary disabling of virtual handlers.)
595 */
596 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
597 * we should correct both the shadow page table and physical memory flags, and not only check for
598 * accesses within the handler region but for access to pages with virtual handlers. */
599 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
600 if (pCur)
601 {
602 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
603 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
604 || !(uErr & X86_TRAP_PF_P)
605 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
606 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
607
608 if ( pvFault - pCur->Core.Key < pCur->cb
609 && ( uErr & X86_TRAP_PF_RW
610 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
611 {
612# ifdef IN_RC
613 STAM_PROFILE_START(&pCur->Stat, h);
614 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
615 STAM_PROFILE_STOP(&pCur->Stat, h);
616# else
617 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
618# endif
619 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
620 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
621 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
622 return rc;
623 }
624 }
625 }
626# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
627 }
628 else
629 {
630 /*
631 * When the guest accesses invalid physical memory (e.g. probing
632 * of RAM or accessing a remapped MMIO range), then we'll fall
633 * back to the recompiler to emulate the instruction.
634 */
635 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
636 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersInvalid);
637 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
638 return VINF_EM_RAW_EMULATE_INSTR;
639 }
640
641 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
642
643# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
644 /*
645 * We are here only if page is present in Guest page tables and
646 * trap is not handled by our handlers.
647 *
648 * Check it for page out-of-sync situation.
649 */
650 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
651
652 if (!(uErr & X86_TRAP_PF_P))
653 {
654 /*
655 * Page is not present in our page tables.
656 * Try to sync it!
657 * BTW, fPageShw is invalid in this branch!
658 */
659 if (uErr & X86_TRAP_PF_US)
660 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
661 else /* supervisor */
662 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
663
664# if defined(LOG_ENABLED) && !defined(IN_RING0)
665 RTGCPHYS GCPhys;
666 uint64_t fPageGst;
667 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
668 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%RGp scan=%d\n",
669 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
670# endif /* LOG_ENABLED */
671
672# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
673 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
674 {
675 uint64_t fPageGst;
676 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
677 if ( RT_SUCCESS(rc)
678 && !(fPageGst & X86_PTE_US))
679 {
680 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
681 if ( pvFault == (RTGCPTR)pRegFrame->eip
682 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
683# ifdef CSAM_DETECT_NEW_CODE_PAGES
684 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
685 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
686# endif /* CSAM_DETECT_NEW_CODE_PAGES */
687 )
688 {
689 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
690 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
691 if (rc != VINF_SUCCESS)
692 {
693 /*
694 * CSAM needs to perform a job in ring 3.
695 *
696 * Sync the page before going to the host context; otherwise we'll end up in a loop if
697 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
698 */
699 LogFlow(("CSAM ring 3 job\n"));
700 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
701 AssertRC(rc2);
702
703 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
704 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2CSAM; });
705 return rc;
706 }
707 }
708# ifdef CSAM_DETECT_NEW_CODE_PAGES
709 else if ( uErr == X86_TRAP_PF_RW
710 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
711 && pRegFrame->ecx < 0x10000)
712 {
713 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
714 * to detect loading of new code pages.
715 */
716
717 /*
718 * Decode the instruction.
719 */
720 RTGCPTR PC;
721 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
722 if (rc == VINF_SUCCESS)
723 {
724 DISCPUSTATE Cpu;
725 uint32_t cbOp;
726 rc = EMInterpretDisasOneEx(pVM, PC, pRegFrame, &Cpu, &cbOp);
727
728 /* For now we'll restrict this to rep movsw/d instructions */
729 if ( rc == VINF_SUCCESS
730 && Cpu.pCurInstr->opcode == OP_MOVSWD
731 && (Cpu.prefix & PREFIX_REP))
732 {
733 CSAMMarkPossibleCodePage(pVM, pvFault);
734 }
735 }
736 }
737# endif /* CSAM_DETECT_NEW_CODE_PAGES */
738
739 /*
740 * Mark this page as safe.
741 */
742 /** @todo not correct for pages that contain both code and data!! */
743 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
744 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
745 }
746 }
747# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
748 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
749 if (RT_SUCCESS(rc))
750 {
751 /* The page was successfully synced, return to the guest. */
752 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
753 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSync; });
754 return VINF_SUCCESS;
755 }
756 }
757 else /* uErr & X86_TRAP_PF_P: */
758 {
759 /*
760 * Write protected pages is make writable when the guest makes the first
761 * write to it. This happens for pages that are shared, write monitored
762 * and not yet allocated.
763 *
764 * Also, a side effect of not flushing global PDEs are out of sync pages due
765 * to physical monitored regions, that are no longer valid.
766 * Assume for now it only applies to the read/write flag.
767 */
768 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
769 {
770# ifdef VBOX_WITH_NEW_PHYS_CODE
771 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
772 {
773 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n",
774 GCPhys, pPage, pvFault, uErr));
775 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
776 if (rc != VINF_SUCCESS)
777 {
778 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
779 return rc;
780 }
781 }
782 /// @todo count the above case; else
783# endif /* VBOX_WITH_NEW_PHYS_CODE */
784 if (uErr & X86_TRAP_PF_US)
785 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
786 else /* supervisor */
787 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
788
789 /*
790 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
791 * page is not present, which is not true in this case.
792 */
793 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
794 if (RT_SUCCESS(rc))
795 {
796 /*
797 * Page was successfully synced, return to guest.
798 */
799# ifdef VBOX_STRICT
800 RTGCPHYS GCPhys;
801 uint64_t fPageGst;
802 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
803 Assert(RT_SUCCESS(rc) && fPageGst & X86_PTE_RW);
804 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
805
806 uint64_t fPageShw;
807 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
808 AssertMsg(RT_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
809# endif /* VBOX_STRICT */
810 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
811 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
812 return VINF_SUCCESS;
813 }
814
815 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
816 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
817 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)
818 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
819 {
820 uint64_t fPageGst;
821 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
822 if ( RT_SUCCESS(rc)
823 && !(fPageGst & X86_PTE_RW))
824 {
825 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
826 if (RT_SUCCESS(rc))
827 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulInRZ);
828 else
829 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulToR3);
830 return rc;
831 }
832 AssertMsgFailed(("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
833 }
834 }
835
836# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
837# ifdef VBOX_STRICT
838 /*
839 * Check for VMM page flags vs. Guest page flags consistency.
840 * Currently only for debug purposes.
841 */
842 if (RT_SUCCESS(rc))
843 {
844 /* Get guest page flags. */
845 uint64_t fPageGst;
846 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
847 if (RT_SUCCESS(rc))
848 {
849 uint64_t fPageShw;
850 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
851
852 /*
853 * Compare page flags.
854 * Note: we have AVL, A, D bits desynched.
855 */
856 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
857 ("Page flags mismatch! pvFault=%RGv GCPhys=%RGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
858 }
859 else
860 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
861 }
862 else
863 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
864# endif /* VBOX_STRICT */
865# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
866 }
867 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
868# endif /* PGM_OUT_OF_SYNC_IN_GC */
869 }
870 else /* GCPhys == NIL_RTGCPHYS */
871 {
872 /*
873 * Page not present in Guest OS or invalid page table address.
874 * This is potential virtual page access handler food.
875 *
876 * For the present we'll say that our access handlers don't
877 * work for this case - we've already discarded the page table
878 * not present case which is identical to this.
879 *
880 * When we perchance find we need this, we will probably have AVL
881 * trees (offset based) to operate on and we can measure their speed
882 * agains mapping a page table and probably rearrange this handling
883 * a bit. (Like, searching virtual ranges before checking the
884 * physical address.)
885 */
886 }
887 }
888 /* else: !present (guest) */
889
890
891# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
892 /*
893 * Conclusion, this is a guest trap.
894 */
895 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
896 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFUnh);
897 return VINF_EM_RAW_GUEST_TRAP;
898# else
899 /* present, but not a monitored page; perhaps the guest is probing physical memory */
900 return VINF_EM_RAW_EMULATE_INSTR;
901# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
902
903
904# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
905
906 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
907 return VERR_INTERNAL_ERROR;
908# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
909}
910#endif /* !IN_RING3 */
911
912
913/**
914 * Emulation of the invlpg instruction.
915 *
916 *
917 * @returns VBox status code.
918 *
919 * @param pVM VM handle.
920 * @param GCPtrPage Page to invalidate.
921 *
922 * @remark ASSUMES that the guest is updating before invalidating. This order
923 * isn't required by the CPU, so this is speculative and could cause
924 * trouble.
925 *
926 * @todo Flush page or page directory only if necessary!
927 * @todo Add a #define for simply invalidating the page.
928 */
929PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage)
930{
931#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
932 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
933 && PGM_SHW_TYPE != PGM_TYPE_EPT
934 int rc;
935
936 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
937 /*
938 * Get the shadow PD entry and skip out if this PD isn't present.
939 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
940 */
941# if PGM_SHW_TYPE == PGM_TYPE_32BIT
942 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
943 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
944
945# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
946 /* Fetch the pgm pool shadow descriptor. */
947 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
948 Assert(pShwPde);
949# endif
950
951# elif PGM_SHW_TYPE == PGM_TYPE_PAE
952 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
953 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
954
955 /* If the shadow PDPE isn't present, then skip the invalidate. */
956 if (!pPdptDst->a[iPdpt].n.u1Present)
957 {
958 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
959 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
960 return VINF_SUCCESS;
961 }
962
963# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
964 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
965 PPGMPOOLPAGE pShwPde;
966 PX86PDPAE pPDDst;
967
968 /* Fetch the pgm pool shadow descriptor. */
969 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
970 AssertRCSuccessReturn(rc, rc);
971 Assert(pShwPde);
972
973 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
974 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
975# else
976 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - pool index only atm! */;
977 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
978# endif
979
980# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
981 /* PML4 */
982# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
983 AssertReturn(pVM->pgm.s.pShwRootR3, VERR_INTERNAL_ERROR);
984# endif
985
986 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
987 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
988 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
989 PX86PDPAE pPDDst;
990 PX86PDPT pPdptDst;
991 PX86PML4E pPml4eDst;
992 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
993 if (rc != VINF_SUCCESS)
994 {
995 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
996 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
997 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
998 PGM_INVL_GUEST_TLBS();
999 return VINF_SUCCESS;
1000 }
1001 Assert(pPDDst);
1002
1003 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1004 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1005
1006 if (!pPdpeDst->n.u1Present)
1007 {
1008 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1009 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
1010 PGM_INVL_GUEST_TLBS();
1011 return VINF_SUCCESS;
1012 }
1013
1014# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1015
1016 const SHWPDE PdeDst = *pPdeDst;
1017 if (!PdeDst.n.u1Present)
1018 {
1019 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1020 return VINF_SUCCESS;
1021 }
1022
1023 /*
1024 * Get the guest PD entry and calc big page.
1025 */
1026# if PGM_GST_TYPE == PGM_TYPE_32BIT
1027 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
1028 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1029 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1030# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1031 unsigned iPDSrc;
1032# if PGM_GST_TYPE == PGM_TYPE_PAE
1033 X86PDPE PdpeSrc;
1034 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1035# else /* AMD64 */
1036 PX86PML4E pPml4eSrc;
1037 X86PDPE PdpeSrc;
1038 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1039# endif
1040 GSTPDE PdeSrc;
1041
1042 if (pPDSrc)
1043 PdeSrc = pPDSrc->a[iPDSrc];
1044 else
1045 PdeSrc.u = 0;
1046# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1047
1048# if PGM_GST_TYPE == PGM_TYPE_AMD64
1049 const bool fIsBigPage = PdeSrc.b.u1Size;
1050# else
1051 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1052# endif
1053
1054# ifdef IN_RING3
1055 /*
1056 * If a CR3 Sync is pending we may ignore the invalidate page operation
1057 * depending on the kind of sync and if it's a global page or not.
1058 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1059 */
1060# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1061 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
1062 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
1063 && fIsBigPage
1064 && PdeSrc.b.u1Global
1065 )
1066 )
1067# else
1068 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1069# endif
1070 {
1071 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1072 return VINF_SUCCESS;
1073 }
1074# endif /* IN_RING3 */
1075
1076# if PGM_GST_TYPE == PGM_TYPE_AMD64
1077 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1078
1079 /* Fetch the pgm pool shadow descriptor. */
1080 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
1081 Assert(pShwPdpt);
1082
1083 /* Fetch the pgm pool shadow descriptor. */
1084 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1085 Assert(pShwPde);
1086
1087 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1088 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1089
1090 if ( !pPml4eSrc->n.u1Present
1091 || pShwPdpt->GCPhys != GCPhysPdpt)
1092 {
1093 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1094 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1095 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1096 pPml4eDst->u = 0;
1097 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1098 PGM_INVL_GUEST_TLBS();
1099 return VINF_SUCCESS;
1100 }
1101 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1102 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1103 {
1104 /*
1105 * Mark not present so we can resync the PML4E when it's used.
1106 */
1107 LogFlow(("InvalidatePage: Out-of-sync PML4E at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1108 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1109 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1110 pPml4eDst->u = 0;
1111 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1112 PGM_INVL_GUEST_TLBS();
1113 }
1114 else if (!pPml4eSrc->n.u1Accessed)
1115 {
1116 /*
1117 * Mark not present so we can set the accessed bit.
1118 */
1119 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1120 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1121 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1122 pPml4eDst->u = 0;
1123 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1124 PGM_INVL_GUEST_TLBS();
1125 }
1126
1127 /* Check if the PDPT entry has changed. */
1128 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1129 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1130 if ( !PdpeSrc.n.u1Present
1131 || pShwPde->GCPhys != GCPhysPd)
1132 {
1133 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1134 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1135 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1136 pPdpeDst->u = 0;
1137 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1138 PGM_INVL_GUEST_TLBS();
1139 return VINF_SUCCESS;
1140 }
1141 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1142 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1143 {
1144 /*
1145 * Mark not present so we can resync the PDPTE when it's used.
1146 */
1147 LogFlow(("InvalidatePage: Out-of-sync PDPE at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1148 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1149 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1150 pPdpeDst->u = 0;
1151 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1152 PGM_INVL_GUEST_TLBS();
1153 }
1154 else if (!PdpeSrc.lm.u1Accessed)
1155 {
1156 /*
1157 * Mark not present so we can set the accessed bit.
1158 */
1159 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1160 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1161 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1162 pPdpeDst->u = 0;
1163 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1164 PGM_INVL_GUEST_TLBS();
1165 }
1166# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1167
1168# if PGM_GST_TYPE == PGM_TYPE_PAE && !defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1169 /*
1170 * Update the shadow PDPE and free all the shadow PD entries if the PDPE is marked not present.
1171 * Note: This shouldn't actually be necessary as we monitor the PDPT page for changes.
1172 */
1173 if (!pPDSrc)
1174 {
1175 /* Guest PDPE not present */
1176 PX86PDPAE pPDDst = pgmShwGetPaePDPtr(&pVM->pgm.s, GCPtrPage);
1177 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1178
1179 Assert(!PdpeSrc.n.u1Present);
1180 LogFlow(("InvalidatePage: guest PDPE %d not present; clear shw pdpe\n", iPdpt));
1181
1182 /* for each page directory entry */
1183 for (unsigned iPD = 0; iPD < X86_PG_PAE_ENTRIES; iPD++)
1184 {
1185 if ( pPDDst->a[iPD].n.u1Present
1186 && !(pPDDst->a[iPD].u & PGM_PDFLAGS_MAPPING))
1187 {
1188 pgmPoolFree(pVM, pPDDst->a[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
1189 pPDDst->a[iPD].u = 0;
1190 }
1191 }
1192 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
1193 pPdptDst->a[iPdpt].n.u1Present = 0;
1194 PGM_INVL_GUEST_TLBS();
1195 }
1196 AssertMsg(pVM->pgm.s.fMappingsFixed || (PdpeSrc.u & X86_PDPE_PG_MASK) == pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt], ("%RGp vs %RGp (mon)\n", (PdpeSrc.u & X86_PDPE_PG_MASK), pVM->pgm.s.aGCPhysGstPaePDsMonitored[iPdpt]));
1197# endif
1198
1199
1200 /*
1201 * Deal with the Guest PDE.
1202 */
1203 rc = VINF_SUCCESS;
1204 if (PdeSrc.n.u1Present)
1205 {
1206 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1207 {
1208 /*
1209 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1210 */
1211 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1212 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1213 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1214 }
1215 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1216 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1217 {
1218 /*
1219 * Mark not present so we can resync the PDE when it's used.
1220 */
1221 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1222 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1223# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1224 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1225# else
1226 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1227# endif
1228 pPdeDst->u = 0;
1229 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1230 PGM_INVL_GUEST_TLBS();
1231 }
1232 else if (!PdeSrc.n.u1Accessed)
1233 {
1234 /*
1235 * Mark not present so we can set the accessed bit.
1236 */
1237 LogFlow(("InvalidatePage: Out-of-sync (A) at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1238 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1239# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1240 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1241# else
1242 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1243# endif
1244 pPdeDst->u = 0;
1245 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1246 PGM_INVL_GUEST_TLBS();
1247 }
1248 else if (!fIsBigPage)
1249 {
1250 /*
1251 * 4KB - page.
1252 */
1253 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1254 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1255# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1256 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1257 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1258# endif
1259 if (pShwPage->GCPhys == GCPhys)
1260 {
1261# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1262 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1263 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1264 if (pPT->a[iPTEDst].n.u1Present)
1265 {
1266# ifdef PGMPOOL_WITH_USER_TRACKING
1267 /* This is very unlikely with caching/monitoring enabled. */
1268 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1269# endif
1270 pPT->a[iPTEDst].u = 0;
1271 }
1272# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1273 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1274 if (RT_SUCCESS(rc))
1275 rc = VINF_SUCCESS;
1276# endif
1277 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1278 PGM_INVL_PG(GCPtrPage);
1279 }
1280 else
1281 {
1282 /*
1283 * The page table address changed.
1284 */
1285 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1286 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1287# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1288 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1289# else
1290 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1291# endif
1292 pPdeDst->u = 0;
1293 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1294 PGM_INVL_GUEST_TLBS();
1295 }
1296 }
1297 else
1298 {
1299 /*
1300 * 2/4MB - page.
1301 */
1302 /* Before freeing the page, check if anything really changed. */
1303 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1304 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1305# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1306 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1307 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1308# endif
1309 if ( pShwPage->GCPhys == GCPhys
1310 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1311 {
1312 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1313 /** @todo PAT */
1314 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1315 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1316 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1317 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1318 {
1319 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1320 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1321 return VINF_SUCCESS;
1322 }
1323 }
1324
1325 /*
1326 * Ok, the page table is present and it's been changed in the guest.
1327 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1328 * We could do this for some flushes in GC too, but we need an algorithm for
1329 * deciding which 4MB pages containing code likely to be executed very soon.
1330 */
1331 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1332 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1333# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1334 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1335# else
1336 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1337# endif
1338 pPdeDst->u = 0;
1339 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1340 PGM_INVL_BIG_PG(GCPtrPage);
1341 }
1342 }
1343 else
1344 {
1345 /*
1346 * Page directory is not present, mark shadow PDE not present.
1347 */
1348 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1349 {
1350# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1351 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1352# else
1353 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1354# endif
1355 pPdeDst->u = 0;
1356 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1357 PGM_INVL_PG(GCPtrPage);
1358 }
1359 else
1360 {
1361 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1362 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1363 }
1364 }
1365
1366 return rc;
1367
1368#else /* guest real and protected mode */
1369 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1370 return VINF_SUCCESS;
1371#endif
1372}
1373
1374
1375#ifdef PGMPOOL_WITH_USER_TRACKING
1376/**
1377 * Update the tracking of shadowed pages.
1378 *
1379 * @param pVM The VM handle.
1380 * @param pShwPage The shadow page.
1381 * @param HCPhys The physical page we is being dereferenced.
1382 */
1383DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1384{
1385# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1386 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1387 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1388
1389 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1390 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1391 * 2. write protect all shadowed pages. I.e. implement caching.
1392 */
1393 /*
1394 * Find the guest address.
1395 */
1396 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1397 pRam;
1398 pRam = pRam->CTX_SUFF(pNext))
1399 {
1400 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1401 while (iPage-- > 0)
1402 {
1403 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1404 {
1405 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1406 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1407 pShwPage->cPresent--;
1408 pPool->cPresent--;
1409 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1410 return;
1411 }
1412 }
1413 }
1414
1415 for (;;)
1416 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1417# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1418 pShwPage->cPresent--;
1419 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1420# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1421}
1422
1423
1424/**
1425 * Update the tracking of shadowed pages.
1426 *
1427 * @param pVM The VM handle.
1428 * @param pShwPage The shadow page.
1429 * @param u16 The top 16-bit of the pPage->HCPhys.
1430 * @param pPage Pointer to the guest page. this will be modified.
1431 * @param iPTDst The index into the shadow table.
1432 */
1433DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1434{
1435# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1436 /*
1437 * Just deal with the simple first time here.
1438 */
1439 if (!u16)
1440 {
1441 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1442 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1443 }
1444 else
1445 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1446
1447 /* write back */
1448 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1449 PGM_PAGE_SET_TRACKING(pPage, u16);
1450
1451# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1452
1453 /* update statistics. */
1454 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1455 pShwPage->cPresent++;
1456 if (pShwPage->iFirstPresent > iPTDst)
1457 pShwPage->iFirstPresent = iPTDst;
1458}
1459#endif /* PGMPOOL_WITH_USER_TRACKING */
1460
1461
1462/**
1463 * Creates a 4K shadow page for a guest page.
1464 *
1465 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1466 * physical address. The PdeSrc argument only the flags are used. No page structured
1467 * will be mapped in this function.
1468 *
1469 * @param pVM VM handle.
1470 * @param pPteDst Destination page table entry.
1471 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1472 * Can safely assume that only the flags are being used.
1473 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1474 * @param pShwPage Pointer to the shadow page.
1475 * @param iPTDst The index into the shadow table.
1476 *
1477 * @remark Not used for 2/4MB pages!
1478 */
1479DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1480{
1481 if (PteSrc.n.u1Present)
1482 {
1483 /*
1484 * Find the ram range.
1485 */
1486 PPGMPAGE pPage;
1487 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1488 if (RT_SUCCESS(rc))
1489 {
1490#ifdef VBOX_WITH_NEW_PHYS_CODE
1491# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1492 /* Try make the page writable if necessary. */
1493 if ( PteSrc.n.u1Write
1494 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1495 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1496 {
1497 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1498 AssertRC(rc);
1499 }
1500# endif
1501#endif
1502
1503 /** @todo investiage PWT, PCD and PAT. */
1504 /*
1505 * Make page table entry.
1506 */
1507 SHWPTE PteDst;
1508 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1509 {
1510 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1511 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1512 {
1513#if PGM_SHW_TYPE == PGM_TYPE_EPT
1514 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1515 PteDst.n.u1Present = 1;
1516 PteDst.n.u1Execute = 1;
1517 PteDst.n.u1IgnorePAT = 1;
1518 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1519 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1520#else
1521 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1522 | PGM_PAGE_GET_HCPHYS(pPage);
1523#endif
1524 }
1525 else
1526 {
1527 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1528 PteDst.u = 0;
1529 }
1530 /** @todo count these two kinds. */
1531 }
1532 else
1533 {
1534#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1535 /*
1536 * If the page or page directory entry is not marked accessed,
1537 * we mark the page not present.
1538 */
1539 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1540 {
1541 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1542 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1543 PteDst.u = 0;
1544 }
1545 else
1546 /*
1547 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1548 * when the page is modified.
1549 */
1550 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1551 {
1552 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1553 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1554 | PGM_PAGE_GET_HCPHYS(pPage)
1555 | PGM_PTFLAGS_TRACK_DIRTY;
1556 }
1557 else
1558#endif
1559 {
1560 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1561#if PGM_SHW_TYPE == PGM_TYPE_EPT
1562 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1563 PteDst.n.u1Present = 1;
1564 PteDst.n.u1Write = 1;
1565 PteDst.n.u1Execute = 1;
1566 PteDst.n.u1IgnorePAT = 1;
1567 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1568 /* PteDst.n.u1Size = 0 */
1569#else
1570 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1571 | PGM_PAGE_GET_HCPHYS(pPage);
1572#endif
1573 }
1574 }
1575
1576#ifdef VBOX_WITH_NEW_PHYS_CODE
1577 /*
1578 * Make sure only allocated pages are mapped writable.
1579 */
1580 if ( PteDst.n.u1Write
1581 && PteDst.n.u1Present
1582 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1583 {
1584 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1585 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1586 }
1587#endif
1588
1589#ifdef PGMPOOL_WITH_USER_TRACKING
1590 /*
1591 * Keep user track up to date.
1592 */
1593 if (PteDst.n.u1Present)
1594 {
1595 if (!pPteDst->n.u1Present)
1596 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1597 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1598 {
1599 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1600 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1601 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1602 }
1603 }
1604 else if (pPteDst->n.u1Present)
1605 {
1606 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1607 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1608 }
1609#endif /* PGMPOOL_WITH_USER_TRACKING */
1610
1611 /*
1612 * Update statistics and commit the entry.
1613 */
1614#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1615 if (!PteSrc.n.u1Global)
1616 pShwPage->fSeenNonGlobal = true;
1617#endif
1618 *pPteDst = PteDst;
1619 }
1620 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1621 /** @todo count these. */
1622 }
1623 else
1624 {
1625 /*
1626 * Page not-present.
1627 */
1628 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1629#ifdef PGMPOOL_WITH_USER_TRACKING
1630 /* Keep user track up to date. */
1631 if (pPteDst->n.u1Present)
1632 {
1633 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1634 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1635 }
1636#endif /* PGMPOOL_WITH_USER_TRACKING */
1637 pPteDst->u = 0;
1638 /** @todo count these. */
1639 }
1640}
1641
1642
1643/**
1644 * Syncs a guest OS page.
1645 *
1646 * There are no conflicts at this point, neither is there any need for
1647 * page table allocations.
1648 *
1649 * @returns VBox status code.
1650 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1651 * @param pVM VM handle.
1652 * @param PdeSrc Page directory entry of the guest.
1653 * @param GCPtrPage Guest context page address.
1654 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1655 * @param uErr Fault error (X86_TRAP_PF_*).
1656 */
1657PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1658{
1659 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1660
1661#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1662 || PGM_GST_TYPE == PGM_TYPE_PAE \
1663 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1664 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1665 && PGM_SHW_TYPE != PGM_TYPE_EPT
1666
1667# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1668 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1669# endif
1670
1671 /*
1672 * Assert preconditions.
1673 */
1674 Assert(PdeSrc.n.u1Present);
1675 Assert(cPages);
1676 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1677
1678 /*
1679 * Get the shadow PDE, find the shadow page table in the pool.
1680 */
1681# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1682 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1683 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
1684
1685# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1686 /* Fetch the pgm pool shadow descriptor. */
1687 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
1688 Assert(pShwPde);
1689# endif
1690
1691# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1692
1693# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1694 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1695 PPGMPOOLPAGE pShwPde;
1696 PX86PDPAE pPDDst;
1697
1698 /* Fetch the pgm pool shadow descriptor. */
1699 int rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
1700 AssertRCSuccessReturn(rc, rc);
1701 Assert(pShwPde);
1702
1703 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1704 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1705# else
1706 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
1707 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1708 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
1709 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
1710 AssertReturn(pPdeDst, VERR_INTERNAL_ERROR);
1711# endif
1712# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1713 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1714 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1715 PX86PDPAE pPDDst;
1716 PX86PDPT pPdptDst;
1717
1718 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1719 AssertRCSuccessReturn(rc, rc);
1720 Assert(pPDDst && pPdptDst);
1721 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1722# endif
1723
1724 SHWPDE PdeDst = *pPdeDst;
1725 AssertMsg(PdeDst.n.u1Present, ("%p=%llx\n", pPdeDst, (uint64_t)PdeDst.u));
1726 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1727
1728# if PGM_GST_TYPE == PGM_TYPE_AMD64
1729 /* Fetch the pgm pool shadow descriptor. */
1730 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1731 Assert(pShwPde);
1732# endif
1733
1734 /*
1735 * Check that the page is present and that the shadow PDE isn't out of sync.
1736 */
1737# if PGM_GST_TYPE == PGM_TYPE_AMD64
1738 const bool fBigPage = PdeSrc.b.u1Size;
1739# else
1740 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1741# endif
1742 RTGCPHYS GCPhys;
1743 if (!fBigPage)
1744 {
1745 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1746# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1747 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1748 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1749# endif
1750 }
1751 else
1752 {
1753 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1754# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1755 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1756 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1757# endif
1758 }
1759 if ( pShwPage->GCPhys == GCPhys
1760 && PdeSrc.n.u1Present
1761 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1762 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1763# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1764 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1765# endif
1766 )
1767 {
1768 /*
1769 * Check that the PDE is marked accessed already.
1770 * Since we set the accessed bit *before* getting here on a #PF, this
1771 * check is only meant for dealing with non-#PF'ing paths.
1772 */
1773 if (PdeSrc.n.u1Accessed)
1774 {
1775 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1776 if (!fBigPage)
1777 {
1778 /*
1779 * 4KB Page - Map the guest page table.
1780 */
1781 PGSTPT pPTSrc;
1782 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1783 if (RT_SUCCESS(rc))
1784 {
1785# ifdef PGM_SYNC_N_PAGES
1786 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1787 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1788 {
1789 /*
1790 * This code path is currently only taken when the caller is PGMTrap0eHandler
1791 * for non-present pages!
1792 *
1793 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1794 * deal with locality.
1795 */
1796 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1797# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1798 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1799 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1800# else
1801 const unsigned offPTSrc = 0;
1802# endif
1803 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1804 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1805 iPTDst = 0;
1806 else
1807 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1808 for (; iPTDst < iPTDstEnd; iPTDst++)
1809 {
1810 if (!pPTDst->a[iPTDst].n.u1Present)
1811 {
1812 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1813 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1814 NOREF(GCPtrCurPage);
1815#ifndef IN_RING0
1816 /*
1817 * Assuming kernel code will be marked as supervisor - and not as user level
1818 * and executed using a conforming code selector - And marked as readonly.
1819 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1820 */
1821 PPGMPAGE pPage;
1822 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1823 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1824 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1825 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1826 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1827 )
1828#endif /* else: CSAM not active */
1829 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1830 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1831 GCPtrCurPage, PteSrc.n.u1Present,
1832 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1833 PteSrc.n.u1User & PdeSrc.n.u1User,
1834 (uint64_t)PteSrc.u,
1835 (uint64_t)pPTDst->a[iPTDst].u,
1836 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1837 }
1838 }
1839 }
1840 else
1841# endif /* PGM_SYNC_N_PAGES */
1842 {
1843 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1844 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1845 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1846 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1847 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1848 GCPtrPage, PteSrc.n.u1Present,
1849 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1850 PteSrc.n.u1User & PdeSrc.n.u1User,
1851 (uint64_t)PteSrc.u,
1852 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1853 }
1854 }
1855 else /* MMIO or invalid page: emulated in #PF handler. */
1856 {
1857 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1858 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1859 }
1860 }
1861 else
1862 {
1863 /*
1864 * 4/2MB page - lazy syncing shadow 4K pages.
1865 * (There are many causes of getting here, it's no longer only CSAM.)
1866 */
1867 /* Calculate the GC physical address of this 4KB shadow page. */
1868 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1869 /* Find ram range. */
1870 PPGMPAGE pPage;
1871 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1872 if (RT_SUCCESS(rc))
1873 {
1874# ifdef VBOX_WITH_NEW_PHYS_CODE
1875# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1876 /* Try make the page writable if necessary. */
1877 if ( PdeSrc.n.u1Write
1878 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1879 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1880 {
1881 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
1882 AssertRC(rc);
1883 }
1884# endif
1885# endif
1886
1887 /*
1888 * Make shadow PTE entry.
1889 */
1890 SHWPTE PteDst;
1891 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1892 | PGM_PAGE_GET_HCPHYS(pPage);
1893 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1894 {
1895 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1896 PteDst.n.u1Write = 0;
1897 else
1898 PteDst.u = 0;
1899 }
1900 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1901# ifdef PGMPOOL_WITH_USER_TRACKING
1902 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1903 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1904# endif
1905# ifdef VBOX_WITH_NEW_PHYS_CODE
1906 /* Make sure only allocated pages are mapped writable. */
1907 if ( PteDst.n.u1Write
1908 && PteDst.n.u1Present
1909 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1910 {
1911 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1912 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1913 }
1914# endif
1915
1916 pPTDst->a[iPTDst] = PteDst;
1917
1918
1919 /*
1920 * If the page is not flagged as dirty and is writable, then make it read-only
1921 * at PD level, so we can set the dirty bit when the page is modified.
1922 *
1923 * ASSUMES that page access handlers are implemented on page table entry level.
1924 * Thus we will first catch the dirty access and set PDE.D and restart. If
1925 * there is an access handler, we'll trap again and let it work on the problem.
1926 */
1927 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1928 * As for invlpg, it simply frees the whole shadow PT.
1929 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1930 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1931 {
1932 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1933 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1934 PdeDst.n.u1Write = 0;
1935 }
1936 else
1937 {
1938 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1939 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1940 }
1941 *pPdeDst = PdeDst;
1942 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1943 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1944 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1945 }
1946 else
1947 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1948 }
1949 return VINF_SUCCESS;
1950 }
1951 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1952 }
1953 else
1954 {
1955 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1956 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1957 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1958 }
1959
1960 /*
1961 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1962 * Yea, I'm lazy.
1963 */
1964 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1965# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
1966 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1967# else
1968 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPDDst);
1969# endif
1970
1971 pPdeDst->u = 0;
1972 PGM_INVL_GUEST_TLBS();
1973 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1974
1975#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1976 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1977 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
1978
1979# ifdef PGM_SYNC_N_PAGES
1980 /*
1981 * Get the shadow PDE, find the shadow page table in the pool.
1982 */
1983# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1984 X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
1985
1986# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1987 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
1988
1989# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1990 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1991 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1992 PX86PDPAE pPDDst;
1993 X86PDEPAE PdeDst;
1994 PX86PDPT pPdptDst;
1995
1996 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1997 AssertRCSuccessReturn(rc, rc);
1998 Assert(pPDDst && pPdptDst);
1999 PdeDst = pPDDst->a[iPDDst];
2000# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2001 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2002 PEPTPD pPDDst;
2003 EPTPDE PdeDst;
2004
2005 int rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, NULL, &pPDDst);
2006 if (rc != VINF_SUCCESS)
2007 {
2008 AssertRC(rc);
2009 return rc;
2010 }
2011 Assert(pPDDst);
2012 PdeDst = pPDDst->a[iPDDst];
2013# endif
2014 AssertMsg(PdeDst.n.u1Present, ("%#llx\n", (uint64_t)PdeDst.u));
2015 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
2016 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2017
2018 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2019 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
2020 {
2021 /*
2022 * This code path is currently only taken when the caller is PGMTrap0eHandler
2023 * for non-present pages!
2024 *
2025 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2026 * deal with locality.
2027 */
2028 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2029 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2030 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2031 iPTDst = 0;
2032 else
2033 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2034 for (; iPTDst < iPTDstEnd; iPTDst++)
2035 {
2036 if (!pPTDst->a[iPTDst].n.u1Present)
2037 {
2038 GSTPTE PteSrc;
2039
2040 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2041
2042 /* Fake the page table entry */
2043 PteSrc.u = GCPtrCurPage;
2044 PteSrc.n.u1Present = 1;
2045 PteSrc.n.u1Dirty = 1;
2046 PteSrc.n.u1Accessed = 1;
2047 PteSrc.n.u1Write = 1;
2048 PteSrc.n.u1User = 1;
2049
2050 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2051
2052 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2053 GCPtrCurPage, PteSrc.n.u1Present,
2054 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2055 PteSrc.n.u1User & PdeSrc.n.u1User,
2056 (uint64_t)PteSrc.u,
2057 (uint64_t)pPTDst->a[iPTDst].u,
2058 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2059 }
2060 else
2061 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
2062 }
2063 }
2064 else
2065# endif /* PGM_SYNC_N_PAGES */
2066 {
2067 GSTPTE PteSrc;
2068 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2069 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2070
2071 /* Fake the page table entry */
2072 PteSrc.u = GCPtrCurPage;
2073 PteSrc.n.u1Present = 1;
2074 PteSrc.n.u1Dirty = 1;
2075 PteSrc.n.u1Accessed = 1;
2076 PteSrc.n.u1Write = 1;
2077 PteSrc.n.u1User = 1;
2078 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2079
2080 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2081 GCPtrPage, PteSrc.n.u1Present,
2082 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2083 PteSrc.n.u1User & PdeSrc.n.u1User,
2084 (uint64_t)PteSrc.u,
2085 (uint64_t)pPTDst->a[iPTDst].u,
2086 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2087 }
2088 return VINF_SUCCESS;
2089
2090#else
2091 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2092 return VERR_INTERNAL_ERROR;
2093#endif
2094}
2095
2096
2097#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2098/**
2099 * Investigate page fault and handle write protection page faults caused by
2100 * dirty bit tracking.
2101 *
2102 * @returns VBox status code.
2103 * @param pVM VM handle.
2104 * @param uErr Page fault error code.
2105 * @param pPdeDst Shadow page directory entry.
2106 * @param pPdeSrc Guest page directory entry.
2107 * @param GCPtrPage Guest context page address.
2108 */
2109PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2110{
2111 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
2112 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2113 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2114# if PGM_GST_TYPE == PGM_TYPE_AMD64
2115 bool fBigPagesSupported = true;
2116# else
2117 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2118# endif
2119# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2120 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
2121# endif
2122 unsigned uPageFaultLevel;
2123 int rc;
2124
2125 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2126 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2127
2128# if PGM_GST_TYPE == PGM_TYPE_PAE \
2129 || PGM_GST_TYPE == PGM_TYPE_AMD64
2130
2131# if PGM_GST_TYPE == PGM_TYPE_AMD64
2132 PX86PML4E pPml4eSrc;
2133 PX86PDPE pPdpeSrc;
2134
2135 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
2136 Assert(pPml4eSrc);
2137
2138 /*
2139 * Real page fault? (PML4E level)
2140 */
2141 if ( (uErr & X86_TRAP_PF_RSVD)
2142 || !pPml4eSrc->n.u1Present
2143 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2144 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2145 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2146 )
2147 {
2148 uPageFaultLevel = 0;
2149 goto l_UpperLevelPageFault;
2150 }
2151 Assert(pPdpeSrc);
2152
2153# else /* PAE */
2154 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVM->pgm.s, GCPtrPage);
2155# endif /* PAE */
2156
2157 /*
2158 * Real page fault? (PDPE level)
2159 */
2160 if ( (uErr & X86_TRAP_PF_RSVD)
2161 || !pPdpeSrc->n.u1Present
2162# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2163 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2164 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2165 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2166# endif
2167 )
2168 {
2169 uPageFaultLevel = 1;
2170 goto l_UpperLevelPageFault;
2171 }
2172# endif
2173
2174 /*
2175 * Real page fault? (PDE level)
2176 */
2177 if ( (uErr & X86_TRAP_PF_RSVD)
2178 || !pPdeSrc->n.u1Present
2179# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2180 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2181# endif
2182 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2183 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2184 {
2185 uPageFaultLevel = 2;
2186 goto l_UpperLevelPageFault;
2187 }
2188
2189 /*
2190 * First check the easy case where the page directory has been marked read-only to track
2191 * the dirty bit of an emulated BIG page
2192 */
2193 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2194 {
2195 /* Mark guest page directory as accessed */
2196# if PGM_GST_TYPE == PGM_TYPE_AMD64
2197 pPml4eSrc->n.u1Accessed = 1;
2198 pPdpeSrc->lm.u1Accessed = 1;
2199# endif
2200 pPdeSrc->b.u1Accessed = 1;
2201
2202 /*
2203 * Only write protection page faults are relevant here.
2204 */
2205 if (fWriteFault)
2206 {
2207 /* Mark guest page directory as dirty (BIG page only). */
2208 pPdeSrc->b.u1Dirty = 1;
2209
2210 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2211 {
2212 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2213
2214 Assert(pPdeSrc->b.u1Write);
2215
2216 pPdeDst->n.u1Write = 1;
2217 pPdeDst->n.u1Accessed = 1;
2218 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2219 PGM_INVL_BIG_PG(GCPtrPage);
2220 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2221 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2222 }
2223 }
2224 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2225 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2226 }
2227 /* else: 4KB page table */
2228
2229 /*
2230 * Map the guest page table.
2231 */
2232 PGSTPT pPTSrc;
2233 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2234 if (RT_SUCCESS(rc))
2235 {
2236 /*
2237 * Real page fault?
2238 */
2239 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2240 const GSTPTE PteSrc = *pPteSrc;
2241 if ( !PteSrc.n.u1Present
2242# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2243 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2244# endif
2245 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2246 || (fUserLevelFault && !PteSrc.n.u1User)
2247 )
2248 {
2249 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2250 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2251 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2252
2253 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2254 * See the 2nd case above as well.
2255 */
2256 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2257 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2258
2259 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2260 return VINF_EM_RAW_GUEST_TRAP;
2261 }
2262 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2263
2264 /*
2265 * Set the accessed bits in the page directory and the page table.
2266 */
2267# if PGM_GST_TYPE == PGM_TYPE_AMD64
2268 pPml4eSrc->n.u1Accessed = 1;
2269 pPdpeSrc->lm.u1Accessed = 1;
2270# endif
2271 pPdeSrc->n.u1Accessed = 1;
2272 pPteSrc->n.u1Accessed = 1;
2273
2274 /*
2275 * Only write protection page faults are relevant here.
2276 */
2277 if (fWriteFault)
2278 {
2279 /* Write access, so mark guest entry as dirty. */
2280# ifdef VBOX_WITH_STATISTICS
2281 if (!pPteSrc->n.u1Dirty)
2282 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2283 else
2284 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2285# endif
2286
2287 pPteSrc->n.u1Dirty = 1;
2288
2289 if (pPdeDst->n.u1Present)
2290 {
2291#ifndef IN_RING0
2292 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2293 * Our individual shadow handlers will provide more information and force a fatal exit.
2294 */
2295 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2296 {
2297 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2298 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2299 return VINF_SUCCESS;
2300 }
2301#endif
2302 /*
2303 * Map shadow page table.
2304 */
2305 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2306 if (pShwPage)
2307 {
2308 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2309 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2310 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2311 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2312 {
2313 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2314# ifdef VBOX_STRICT
2315 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2316 if (pPage)
2317 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2318 ("Unexpected dirty bit tracking on monitored page %RGv (phys %RGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2319# endif
2320 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2321
2322 Assert(pPteSrc->n.u1Write);
2323
2324 pPteDst->n.u1Write = 1;
2325 pPteDst->n.u1Dirty = 1;
2326 pPteDst->n.u1Accessed = 1;
2327 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2328 PGM_INVL_PG(GCPtrPage);
2329
2330 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2331 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2332 }
2333 }
2334 else
2335 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2336 }
2337 }
2338/** @todo Optimize accessed bit emulation? */
2339# ifdef VBOX_STRICT
2340 /*
2341 * Sanity check.
2342 */
2343 else if ( !pPteSrc->n.u1Dirty
2344 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2345 && pPdeDst->n.u1Present)
2346 {
2347 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2348 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2349 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2350 if ( pPteDst->n.u1Present
2351 && pPteDst->n.u1Write)
2352 LogFlow(("Writable present page %RGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2353 }
2354# endif /* VBOX_STRICT */
2355 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2356 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2357 }
2358 AssertRC(rc);
2359 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2360 return rc;
2361
2362
2363l_UpperLevelPageFault:
2364 /*
2365 * Pagefault detected while checking the PML4E, PDPE or PDE.
2366 * Single exit handler to get rid of duplicate code paths.
2367 */
2368 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2369 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2370 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2371
2372 if (
2373# if PGM_GST_TYPE == PGM_TYPE_AMD64
2374 pPml4eSrc->n.u1Present &&
2375# endif
2376# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2377 pPdpeSrc->n.u1Present &&
2378# endif
2379 pPdeSrc->n.u1Present)
2380 {
2381 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2382 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2383 {
2384 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2385 }
2386 else
2387 {
2388 /*
2389 * Map the guest page table.
2390 */
2391 PGSTPT pPTSrc;
2392 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2393 if (RT_SUCCESS(rc))
2394 {
2395 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2396 const GSTPTE PteSrc = *pPteSrc;
2397 if (pPteSrc->n.u1Present)
2398 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2399 }
2400 AssertRC(rc);
2401 }
2402 }
2403 return VINF_EM_RAW_GUEST_TRAP;
2404}
2405#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2406
2407
2408/**
2409 * Sync a shadow page table.
2410 *
2411 * The shadow page table is not present. This includes the case where
2412 * there is a conflict with a mapping.
2413 *
2414 * @returns VBox status code.
2415 * @param pVM VM handle.
2416 * @param iPD Page directory index.
2417 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2418 * Assume this is a temporary mapping.
2419 * @param GCPtrPage GC Pointer of the page that caused the fault
2420 */
2421PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2422{
2423 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2424 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPtPD[iPDSrc]);
2425 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2426
2427#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2428 || PGM_GST_TYPE == PGM_TYPE_PAE \
2429 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2430 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2431 && PGM_SHW_TYPE != PGM_TYPE_EPT
2432
2433 int rc = VINF_SUCCESS;
2434
2435 /*
2436 * Validate input a little bit.
2437 */
2438 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2439# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2440 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2441 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2442
2443# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2444 /* Fetch the pgm pool shadow descriptor. */
2445 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2446 Assert(pShwPde);
2447# endif
2448
2449# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2450# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2451 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2452 PPGMPOOLPAGE pShwPde;
2453 PX86PDPAE pPDDst;
2454 PSHWPDE pPdeDst;
2455
2456 /* Fetch the pgm pool shadow descriptor. */
2457 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2458 AssertRCSuccessReturn(rc, rc);
2459 Assert(pShwPde);
2460
2461 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2462 pPdeDst = &pPDDst->a[iPDDst];
2463# else
2464 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm! */;
2465 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT); NOREF(iPdpt);
2466 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s); NOREF(pPdptDst);
2467 PSHWPDE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2468# endif
2469# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2470 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2471 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2472 PX86PDPAE pPDDst;
2473 PX86PDPT pPdptDst;
2474 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2475 AssertRCSuccessReturn(rc, rc);
2476 Assert(pPDDst);
2477 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2478# endif
2479 SHWPDE PdeDst = *pPdeDst;
2480
2481# if PGM_GST_TYPE == PGM_TYPE_AMD64
2482 /* Fetch the pgm pool shadow descriptor. */
2483 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2484 Assert(pShwPde);
2485# endif
2486
2487# ifndef PGM_WITHOUT_MAPPINGS
2488 /*
2489 * Check for conflicts.
2490 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2491 * HC: Simply resolve the conflict.
2492 */
2493 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2494 {
2495 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2496# ifndef IN_RING3
2497 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2498 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2499 return VERR_ADDRESS_CONFLICT;
2500# else
2501 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2502 Assert(pMapping);
2503# if PGM_GST_TYPE == PGM_TYPE_32BIT
2504 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2505# elif PGM_GST_TYPE == PGM_TYPE_PAE
2506 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2507# else
2508 AssertFailed(); /* can't happen for amd64 */
2509# endif
2510 if (RT_FAILURE(rc))
2511 {
2512 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2513 return rc;
2514 }
2515 PdeDst = *pPdeDst;
2516# endif
2517 }
2518# else /* PGM_WITHOUT_MAPPINGS */
2519 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2520# endif /* PGM_WITHOUT_MAPPINGS */
2521 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2522
2523# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2524 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2525 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2526# endif
2527
2528 /*
2529 * Sync page directory entry.
2530 */
2531 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2532 if (PdeSrc.n.u1Present)
2533 {
2534 /*
2535 * Allocate & map the page table.
2536 */
2537 PSHWPT pPTDst;
2538# if PGM_GST_TYPE == PGM_TYPE_AMD64
2539 const bool fPageTable = !PdeSrc.b.u1Size;
2540# else
2541 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2542# endif
2543 PPGMPOOLPAGE pShwPage;
2544 RTGCPHYS GCPhys;
2545 if (fPageTable)
2546 {
2547 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2548# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2549 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2550 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2551# endif
2552# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2553 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2554# else
2555 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2556# endif
2557 }
2558 else
2559 {
2560 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2561# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2562 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2563 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2564# endif
2565# if PGM_GST_TYPE == PGM_TYPE_AMD64 || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2566 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2567# else
2568 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2569# endif
2570 }
2571 if (rc == VINF_SUCCESS)
2572 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2573 else if (rc == VINF_PGM_CACHED_PAGE)
2574 {
2575 /*
2576 * The PT was cached, just hook it up.
2577 */
2578 if (fPageTable)
2579 PdeDst.u = pShwPage->Core.Key
2580 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2581 else
2582 {
2583 PdeDst.u = pShwPage->Core.Key
2584 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2585 /* (see explanation and assumptions further down.) */
2586 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2587 {
2588 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2589 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2590 PdeDst.b.u1Write = 0;
2591 }
2592 }
2593 *pPdeDst = PdeDst;
2594# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2595 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2596# endif
2597 return VINF_SUCCESS;
2598 }
2599 else if (rc == VERR_PGM_POOL_FLUSHED)
2600 {
2601 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2602# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2603 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2604# endif
2605 return VINF_PGM_SYNC_CR3;
2606 }
2607 else
2608 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2609 PdeDst.u &= X86_PDE_AVL_MASK;
2610 PdeDst.u |= pShwPage->Core.Key;
2611
2612 /*
2613 * Page directory has been accessed (this is a fault situation, remember).
2614 */
2615 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2616 if (fPageTable)
2617 {
2618 /*
2619 * Page table - 4KB.
2620 *
2621 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2622 */
2623 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2624 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2625 PGSTPT pPTSrc;
2626 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2627 if (RT_SUCCESS(rc))
2628 {
2629 /*
2630 * Start by syncing the page directory entry so CSAM's TLB trick works.
2631 */
2632 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2633 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2634 *pPdeDst = PdeDst;
2635# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2636 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2637# endif
2638
2639 /*
2640 * Directory/page user or supervisor privilege: (same goes for read/write)
2641 *
2642 * Directory Page Combined
2643 * U/S U/S U/S
2644 * 0 0 0
2645 * 0 1 0
2646 * 1 0 0
2647 * 1 1 1
2648 *
2649 * Simple AND operation. Table listed for completeness.
2650 *
2651 */
2652 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2653# ifdef PGM_SYNC_N_PAGES
2654 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2655 unsigned iPTDst = iPTBase;
2656 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2657 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2658 iPTDst = 0;
2659 else
2660 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2661# else /* !PGM_SYNC_N_PAGES */
2662 unsigned iPTDst = 0;
2663 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2664# endif /* !PGM_SYNC_N_PAGES */
2665# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2666 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2667 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2668# else
2669 const unsigned offPTSrc = 0;
2670# endif
2671 for (; iPTDst < iPTDstEnd; iPTDst++)
2672 {
2673 const unsigned iPTSrc = iPTDst + offPTSrc;
2674 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2675
2676 if (PteSrc.n.u1Present) /* we've already cleared it above */
2677 {
2678# ifndef IN_RING0
2679 /*
2680 * Assuming kernel code will be marked as supervisor - and not as user level
2681 * and executed using a conforming code selector - And marked as readonly.
2682 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2683 */
2684 PPGMPAGE pPage;
2685 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2686 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2687 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2688 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2689 )
2690# endif
2691 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2692 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2693 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2694 PteSrc.n.u1Present,
2695 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2696 PteSrc.n.u1User & PdeSrc.n.u1User,
2697 (uint64_t)PteSrc.u,
2698 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2699 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2700 }
2701 } /* for PTEs */
2702 }
2703 }
2704 else
2705 {
2706 /*
2707 * Big page - 2/4MB.
2708 *
2709 * We'll walk the ram range list in parallel and optimize lookups.
2710 * We will only sync on shadow page table at a time.
2711 */
2712 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2713
2714 /**
2715 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2716 */
2717
2718 /*
2719 * Start by syncing the page directory entry.
2720 */
2721 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2722 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2723
2724 /*
2725 * If the page is not flagged as dirty and is writable, then make it read-only
2726 * at PD level, so we can set the dirty bit when the page is modified.
2727 *
2728 * ASSUMES that page access handlers are implemented on page table entry level.
2729 * Thus we will first catch the dirty access and set PDE.D and restart. If
2730 * there is an access handler, we'll trap again and let it work on the problem.
2731 */
2732 /** @todo move the above stuff to a section in the PGM documentation. */
2733 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2734 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2735 {
2736 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2737 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2738 PdeDst.b.u1Write = 0;
2739 }
2740 *pPdeDst = PdeDst;
2741# if defined(IN_RC) && defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2742 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2743# endif
2744
2745 /*
2746 * Fill the shadow page table.
2747 */
2748 /* Get address and flags from the source PDE. */
2749 SHWPTE PteDstBase;
2750 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2751
2752 /* Loop thru the entries in the shadow PT. */
2753 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2754 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2755 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2756 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2757 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2758 unsigned iPTDst = 0;
2759 while (iPTDst < RT_ELEMENTS(pPTDst->a))
2760 {
2761 /* Advance ram range list. */
2762 while (pRam && GCPhys > pRam->GCPhysLast)
2763 pRam = pRam->CTX_SUFF(pNext);
2764 if (pRam && GCPhys >= pRam->GCPhys)
2765 {
2766 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2767 do
2768 {
2769 /* Make shadow PTE. */
2770 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2771 SHWPTE PteDst;
2772
2773# ifdef VBOX_WITH_NEW_PHYS_CODE
2774# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2775 /* Try make the page writable if necessary. */
2776 if ( PteDstBase.n.u1Write
2777 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2778 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2779 {
2780 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
2781 AssertRCReturn(rc, rc);
2782 }
2783# endif
2784# else /* !VBOX_WITH_NEW_PHYS_CODE */
2785 /* Make sure the RAM has already been allocated. */
2786 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2787 {
2788 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2789 {
2790# ifdef IN_RING3
2791 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2792# else
2793 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2794# endif
2795 if (rc != VINF_SUCCESS)
2796 return rc;
2797 }
2798 }
2799# endif /* !VBOX_WITH_NEW_PHYS_CODE */
2800
2801 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2802 {
2803 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2804 {
2805 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2806 PteDst.n.u1Write = 0;
2807 }
2808 else
2809 PteDst.u = 0;
2810 }
2811# ifndef IN_RING0
2812 /*
2813 * Assuming kernel code will be marked as supervisor and not as user level and executed
2814 * using a conforming code selector. Don't check for readonly, as that implies the whole
2815 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2816 */
2817 else if ( !PdeSrc.n.u1User
2818 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2819 PteDst.u = 0;
2820# endif
2821 else
2822 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2823
2824# ifdef VBOX_WITH_NEW_PHYS_CODE
2825 /* Only map writable pages writable. */
2826 if ( PteDst.n.u1Write
2827 && PteDst.n.u1Present
2828 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2829 {
2830 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2831 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2832 }
2833# endif
2834
2835# ifdef PGMPOOL_WITH_USER_TRACKING
2836 if (PteDst.n.u1Present)
2837 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2838# endif
2839 /* commit it */
2840 pPTDst->a[iPTDst] = PteDst;
2841 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2842 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2843 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2844
2845 /* advance */
2846 GCPhys += PAGE_SIZE;
2847 iHCPage++;
2848 iPTDst++;
2849 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2850 && GCPhys <= pRam->GCPhysLast);
2851 }
2852 else if (pRam)
2853 {
2854 Log(("Invalid pages at %RGp\n", GCPhys));
2855 do
2856 {
2857 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2858 GCPhys += PAGE_SIZE;
2859 iPTDst++;
2860 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2861 && GCPhys < pRam->GCPhys);
2862 }
2863 else
2864 {
2865 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2866 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2867 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2868 }
2869 } /* while more PTEs */
2870 } /* 4KB / 4MB */
2871 }
2872 else
2873 AssertRelease(!PdeDst.n.u1Present);
2874
2875 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2876 if (RT_FAILURE(rc))
2877 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2878 return rc;
2879
2880#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2881 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2882 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2883
2884
2885 /*
2886 * Validate input a little bit.
2887 */
2888 int rc = VINF_SUCCESS;
2889# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2890 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2891 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2892
2893# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2894 /* Fetch the pgm pool shadow descriptor. */
2895 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2896 Assert(pShwPde);
2897# endif
2898
2899# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2900# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2901 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2902 PPGMPOOLPAGE pShwPde;
2903 PX86PDPAE pPDDst;
2904 PSHWPDE pPdeDst;
2905
2906 /* Fetch the pgm pool shadow descriptor. */
2907 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2908 AssertRCSuccessReturn(rc, rc);
2909 Assert(pShwPde);
2910
2911 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2912 pPdeDst = &pPDDst->a[iPDDst];
2913# else
2914 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) /*& SHW_PD_MASK - only pool index atm!*/;
2915 PX86PDEPAE pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
2916# endif
2917
2918# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2919 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2920 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2921 PX86PDPAE pPDDst;
2922 PX86PDPT pPdptDst;
2923 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2924 AssertRCSuccessReturn(rc, rc);
2925 Assert(pPDDst);
2926 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2927
2928 /* Fetch the pgm pool shadow descriptor. */
2929 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2930 Assert(pShwPde);
2931
2932# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2933 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2934 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2935 PEPTPD pPDDst;
2936 PEPTPDPT pPdptDst;
2937
2938 rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2939 if (rc != VINF_SUCCESS)
2940 {
2941 AssertRC(rc);
2942 return rc;
2943 }
2944 Assert(pPDDst);
2945 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2946
2947 /* Fetch the pgm pool shadow descriptor. */
2948 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2949 Assert(pShwPde);
2950# endif
2951 SHWPDE PdeDst = *pPdeDst;
2952
2953 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2954 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2955
2956 GSTPDE PdeSrc;
2957 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2958 PdeSrc.n.u1Present = 1;
2959 PdeSrc.n.u1Write = 1;
2960 PdeSrc.n.u1Accessed = 1;
2961 PdeSrc.n.u1User = 1;
2962
2963 /*
2964 * Allocate & map the page table.
2965 */
2966 PSHWPT pPTDst;
2967 PPGMPOOLPAGE pShwPage;
2968 RTGCPHYS GCPhys;
2969
2970 /* Virtual address = physical address */
2971 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2972# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_EPT || defined(VBOX_WITH_PGMPOOL_PAGING_ONLY)
2973 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2974# else
2975 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2976# endif
2977
2978 if ( rc == VINF_SUCCESS
2979 || rc == VINF_PGM_CACHED_PAGE)
2980 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2981 else
2982 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2983
2984 PdeDst.u &= X86_PDE_AVL_MASK;
2985 PdeDst.u |= pShwPage->Core.Key;
2986 PdeDst.n.u1Present = 1;
2987 PdeDst.n.u1Write = 1;
2988# if PGM_SHW_TYPE == PGM_TYPE_EPT
2989 PdeDst.n.u1Execute = 1;
2990# else
2991 PdeDst.n.u1User = 1;
2992 PdeDst.n.u1Accessed = 1;
2993# endif
2994 *pPdeDst = PdeDst;
2995
2996 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2997 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2998 return rc;
2999
3000#else
3001 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3002 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3003 return VERR_INTERNAL_ERROR;
3004#endif
3005}
3006
3007
3008
3009/**
3010 * Prefetch a page/set of pages.
3011 *
3012 * Typically used to sync commonly used pages before entering raw mode
3013 * after a CR3 reload.
3014 *
3015 * @returns VBox status code.
3016 * @param pVM VM handle.
3017 * @param GCPtrPage Page to invalidate.
3018 */
3019PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage)
3020{
3021#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3022 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3023 /*
3024 * Check that all Guest levels thru the PDE are present, getting the
3025 * PD and PDE in the processes.
3026 */
3027 int rc = VINF_SUCCESS;
3028# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3029# if PGM_GST_TYPE == PGM_TYPE_32BIT
3030 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3031 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3032# elif PGM_GST_TYPE == PGM_TYPE_PAE
3033 unsigned iPDSrc;
3034# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3035 X86PDPE PdpeSrc;
3036 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3037# else
3038 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
3039# endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
3040 if (!pPDSrc)
3041 return VINF_SUCCESS; /* not present */
3042# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3043 unsigned iPDSrc;
3044 PX86PML4E pPml4eSrc;
3045 X86PDPE PdpeSrc;
3046 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3047 if (!pPDSrc)
3048 return VINF_SUCCESS; /* not present */
3049# endif
3050 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3051# else
3052 PGSTPD pPDSrc = NULL;
3053 const unsigned iPDSrc = 0;
3054 GSTPDE PdeSrc;
3055
3056 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3057 PdeSrc.n.u1Present = 1;
3058 PdeSrc.n.u1Write = 1;
3059 PdeSrc.n.u1Accessed = 1;
3060 PdeSrc.n.u1User = 1;
3061# endif
3062
3063 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3064 {
3065# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3066 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
3067# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3068# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3069 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3070 PX86PDPAE pPDDst;
3071 X86PDEPAE PdeDst;
3072# if PGM_GST_TYPE != PGM_TYPE_PAE
3073 X86PDPE PdpeSrc;
3074
3075 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3076 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3077# endif
3078 int rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
3079 if (rc != VINF_SUCCESS)
3080 {
3081 AssertRC(rc);
3082 return rc;
3083 }
3084 Assert(pPDDst);
3085 PdeDst = pPDDst->a[iPDDst];
3086# else
3087 const X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
3088# endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
3089
3090# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3091 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3092 PX86PDPAE pPDDst;
3093 X86PDEPAE PdeDst;
3094
3095# if PGM_GST_TYPE == PGM_TYPE_PROT
3096 /* AMD-V nested paging */
3097 X86PML4E Pml4eSrc;
3098 X86PDPE PdpeSrc;
3099 PX86PML4E pPml4eSrc = &Pml4eSrc;
3100
3101 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3102 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3103 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3104# endif
3105
3106 int rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3107 if (rc != VINF_SUCCESS)
3108 {
3109 AssertRC(rc);
3110 return rc;
3111 }
3112 Assert(pPDDst);
3113 PdeDst = pPDDst->a[iPDDst];
3114# endif
3115 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3116 {
3117 if (!PdeDst.n.u1Present)
3118 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3119 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3120 else
3121 {
3122 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3123 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3124 * makes no sense to prefetch more than one page.
3125 */
3126 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3127 if (RT_SUCCESS(rc))
3128 rc = VINF_SUCCESS;
3129 }
3130 }
3131 }
3132 return rc;
3133
3134#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3135 return VINF_SUCCESS; /* ignore */
3136#endif
3137}
3138
3139
3140
3141
3142/**
3143 * Syncs a page during a PGMVerifyAccess() call.
3144 *
3145 * @returns VBox status code (informational included).
3146 * @param GCPtrPage The address of the page to sync.
3147 * @param fPage The effective guest page flags.
3148 * @param uErr The trap error code.
3149 */
3150PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3151{
3152 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3153
3154 Assert(!HWACCMIsNestedPagingActive(pVM));
3155#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3156 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3157
3158# ifndef IN_RING0
3159 if (!(fPage & X86_PTE_US))
3160 {
3161 /*
3162 * Mark this page as safe.
3163 */
3164 /** @todo not correct for pages that contain both code and data!! */
3165 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3166 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
3167 }
3168# endif
3169
3170 /*
3171 * Get guest PD and index.
3172 */
3173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3174# if PGM_GST_TYPE == PGM_TYPE_32BIT
3175 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3176 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3177# elif PGM_GST_TYPE == PGM_TYPE_PAE
3178 unsigned iPDSrc;
3179# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3180 X86PDPE PdpeSrc;
3181 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3182# else
3183 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, NULL);
3184# endif
3185
3186 if (pPDSrc)
3187 {
3188 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3189 return VINF_EM_RAW_GUEST_TRAP;
3190 }
3191# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3192 unsigned iPDSrc;
3193 PX86PML4E pPml4eSrc;
3194 X86PDPE PdpeSrc;
3195 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3196 if (!pPDSrc)
3197 {
3198 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3199 return VINF_EM_RAW_GUEST_TRAP;
3200 }
3201# endif
3202# else
3203 PGSTPD pPDSrc = NULL;
3204 const unsigned iPDSrc = 0;
3205# endif
3206 int rc = VINF_SUCCESS;
3207
3208 /*
3209 * First check if the shadow pd is present.
3210 */
3211# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3212 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
3213# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3214 PX86PDEPAE pPdeDst;
3215# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3216 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3217 PX86PDPAE pPDDst;
3218# if PGM_GST_TYPE != PGM_TYPE_PAE
3219 X86PDPE PdpeSrc;
3220
3221 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3222 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3223# endif
3224 rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
3225 if (rc != VINF_SUCCESS)
3226 {
3227 AssertRC(rc);
3228 return rc;
3229 }
3230 Assert(pPDDst);
3231 pPdeDst = &pPDDst->a[iPDDst];
3232# else
3233 pPdeDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrPage);
3234# endif
3235# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3236 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3237 PX86PDPAE pPDDst;
3238 PX86PDEPAE pPdeDst;
3239
3240# if PGM_GST_TYPE == PGM_TYPE_PROT
3241 /* AMD-V nested paging */
3242 X86PML4E Pml4eSrc;
3243 X86PDPE PdpeSrc;
3244 PX86PML4E pPml4eSrc = &Pml4eSrc;
3245
3246 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3247 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3248 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3249# endif
3250
3251 rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3252 if (rc != VINF_SUCCESS)
3253 {
3254 AssertRC(rc);
3255 return rc;
3256 }
3257 Assert(pPDDst);
3258 pPdeDst = &pPDDst->a[iPDDst];
3259# endif
3260 if (!pPdeDst->n.u1Present)
3261 {
3262 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3263 AssertRC(rc);
3264 if (rc != VINF_SUCCESS)
3265 return rc;
3266 }
3267
3268# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3269 /* Check for dirty bit fault */
3270 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3271 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3272 Log(("PGMVerifyAccess: success (dirty)\n"));
3273 else
3274 {
3275 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3276#else
3277 {
3278 GSTPDE PdeSrc;
3279 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3280 PdeSrc.n.u1Present = 1;
3281 PdeSrc.n.u1Write = 1;
3282 PdeSrc.n.u1Accessed = 1;
3283 PdeSrc.n.u1User = 1;
3284
3285#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3286 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3287 if (uErr & X86_TRAP_PF_US)
3288 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3289 else /* supervisor */
3290 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3291
3292 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3293 if (RT_SUCCESS(rc))
3294 {
3295 /* Page was successfully synced */
3296 Log2(("PGMVerifyAccess: success (sync)\n"));
3297 rc = VINF_SUCCESS;
3298 }
3299 else
3300 {
3301 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3302 return VINF_EM_RAW_GUEST_TRAP;
3303 }
3304 }
3305 return rc;
3306
3307#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3308
3309 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3310 return VERR_INTERNAL_ERROR;
3311#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3312}
3313
3314
3315#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3316# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3317/**
3318 * Figures out which kind of shadow page this guest PDE warrants.
3319 *
3320 * @returns Shadow page kind.
3321 * @param pPdeSrc The guest PDE in question.
3322 * @param cr4 The current guest cr4 value.
3323 */
3324DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
3325{
3326# if PMG_GST_TYPE == PGM_TYPE_AMD64
3327 if (!pPdeSrc->n.u1Size)
3328# else
3329 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
3330# endif
3331 return BTH_PGMPOOLKIND_PT_FOR_PT;
3332 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
3333 //{
3334 // case 0:
3335 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
3336 // case X86_PDE4M_RW:
3337 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
3338 // case X86_PDE4M_US:
3339 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
3340 // case X86_PDE4M_RW | X86_PDE4M_US:
3341 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
3342# if 0
3343 // case X86_PDE4M_PAE_NX:
3344 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
3345 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
3346 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
3347 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
3348 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
3349 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
3350 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
3351# endif
3352 return BTH_PGMPOOLKIND_PT_FOR_BIG;
3353 //}
3354}
3355# endif
3356#endif
3357
3358#undef MY_STAM_COUNTER_INC
3359#define MY_STAM_COUNTER_INC(a) do { } while (0)
3360
3361
3362/**
3363 * Syncs the paging hierarchy starting at CR3.
3364 *
3365 * @returns VBox status code, no specials.
3366 * @param pVM The virtual machine.
3367 * @param cr0 Guest context CR0 register
3368 * @param cr3 Guest context CR3 register
3369 * @param cr4 Guest context CR4 register
3370 * @param fGlobal Including global page directories or not
3371 */
3372PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3373{
3374 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3375 fGlobal = true; /* Change this CR3 reload to be a global one. */
3376
3377 LogFlow(("SyncCR3 %d\n", fGlobal));
3378
3379#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3380 /*
3381 * Update page access handlers.
3382 * The virtual are always flushed, while the physical are only on demand.
3383 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3384 * have to look into that later because it will have a bad influence on the performance.
3385 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3386 * bird: Yes, but that won't work for aliases.
3387 */
3388 /** @todo this MUST go away. See #1557. */
3389 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3390 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3391 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3392#endif
3393
3394#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3395 /*
3396 * Nested / EPT - almost no work.
3397 */
3398 /** @todo check if this is really necessary; the call does it as well... */
3399 HWACCMFlushTLB(pVM);
3400 return VINF_SUCCESS;
3401
3402#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3403 /*
3404 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3405 * out the shadow parts when the guest modifies its tables.
3406 */
3407 return VINF_SUCCESS;
3408
3409#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3410
3411# ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3412# ifdef PGM_WITHOUT_MAPPINGS
3413 Assert(pVM->pgm.s.fMappingsFixed);
3414 return VINF_SUCCESS;
3415# else
3416 /* Nothing to do when mappings are fixed. */
3417 if (pVM->pgm.s.fMappingsFixed)
3418 return VINF_SUCCESS;
3419
3420 int rc = PGMMapResolveConflicts(pVM);
3421 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3422 if (rc == VINF_PGM_SYNC_CR3)
3423 {
3424 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3425 return VINF_PGM_SYNC_CR3;
3426 }
3427# endif
3428 return VINF_SUCCESS;
3429# else
3430 /*
3431 * PAE and 32-bit legacy mode (shadow).
3432 * (Guest PAE, 32-bit legacy, protected and real modes.)
3433 */
3434 Assert(fGlobal || (cr4 & X86_CR4_PGE));
3435 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Global) : &pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3NotGlobal));
3436
3437# if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE
3438 bool const fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3439
3440 /*
3441 * Get page directory addresses.
3442 */
3443# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3444 PX86PDE pPDEDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, 0);
3445# else /* PGM_SHW_TYPE == PGM_TYPE_PAE */
3446# if PGM_GST_TYPE == PGM_TYPE_32BIT
3447 PX86PDEPAE pPDEDst = NULL;
3448# endif
3449# endif
3450
3451# if PGM_GST_TYPE == PGM_TYPE_32BIT
3452 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3453 Assert(pPDSrc);
3454# if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3455 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(cr3 & GST_CR3_PAGE_MASK), sizeof(*pPDSrc)) == (RTR3PTR)pPDSrc);
3456# endif
3457# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3458
3459 /*
3460 * Iterate the the CR3 page.
3461 */
3462 PPGMMAPPING pMapping;
3463 unsigned iPdNoMapping;
3464 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
3465 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3466
3467 /* Only check mappings if they are supposed to be put into the shadow page table. */
3468 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
3469 {
3470 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3471 iPdNoMapping = (pMapping) ? (pMapping->GCPtr >> GST_PD_SHIFT) : ~0U;
3472 }
3473 else
3474 {
3475 pMapping = 0;
3476 iPdNoMapping = ~0U;
3477 }
3478
3479# if PGM_GST_TYPE == PGM_TYPE_PAE
3480 for (uint64_t iPdpt = 0; iPdpt < GST_PDPE_ENTRIES; iPdpt++)
3481 {
3482 unsigned iPDSrc;
3483 X86PDPE PdpeSrc;
3484 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT, &iPDSrc, &PdpeSrc);
3485 PX86PDEPAE pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, iPdpt << X86_PDPT_SHIFT);
3486 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3487
3488 if (pPDSrc == NULL)
3489 {
3490 /* PDPE not present */
3491 if (pPdptDst->a[iPdpt].n.u1Present)
3492 {
3493 LogFlow(("SyncCR3: guest PDPE %lld not present; clear shw pdpe\n", iPdpt));
3494 /* for each page directory entry */
3495 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3496 {
3497 if ( pPDEDst[iPD].n.u1Present
3498 && !(pPDEDst[iPD].u & PGM_PDFLAGS_MAPPING))
3499 {
3500 pgmPoolFree(pVM, pPDEDst[iPD].u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdpt * X86_PG_PAE_ENTRIES + iPD);
3501 pPDEDst[iPD].u = 0;
3502 }
3503 }
3504 }
3505 if (!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING))
3506 pPdptDst->a[iPdpt].n.u1Present = 0;
3507 continue;
3508 }
3509# else /* PGM_GST_TYPE != PGM_TYPE_PAE */
3510 {
3511# endif /* PGM_GST_TYPE != PGM_TYPE_PAE */
3512 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3513 {
3514# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3515 if ((iPD & 255) == 0) /* Start of new PD. */
3516 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)iPD << GST_PD_SHIFT);
3517# endif
3518# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3519 Assert(pgmShwGet32BitPDEPtr(&pVM->pgm.s, (uint32_t)iPD << SHW_PD_SHIFT) == pPDEDst);
3520# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3521# if defined(VBOX_STRICT) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* Unfortuantely not reliable with PGMR0DynMap and multiple VMs. */
3522 RTGCPTR GCPtrStrict = (uint32_t)iPD << GST_PD_SHIFT;
3523# if PGM_GST_TYPE == PGM_TYPE_PAE
3524 GCPtrStrict |= iPdpt << X86_PDPT_SHIFT;
3525# endif
3526 AssertMsg(pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict) == pPDEDst, ("%p vs %p (%RGv)\n", pgmShwGetPaePDEPtr(&pVM->pgm.s, GCPtrStrict), pPDEDst, GCPtrStrict));
3527# endif /* VBOX_STRICT */
3528# endif
3529 GSTPDE PdeSrc = pPDSrc->a[iPD];
3530 if ( PdeSrc.n.u1Present
3531 && (PdeSrc.n.u1User || fRawR0Enabled))
3532 {
3533# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3534 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3535 && !defined(PGM_WITHOUT_MAPPINGS)
3536
3537 /*
3538 * Check for conflicts with GC mappings.
3539 */
3540# if PGM_GST_TYPE == PGM_TYPE_PAE
3541 if (iPD + iPdpt * X86_PG_PAE_ENTRIES == iPdNoMapping)
3542# else
3543 if (iPD == iPdNoMapping)
3544# endif
3545 {
3546 if (pVM->pgm.s.fMappingsFixed)
3547 {
3548 /* It's fixed, just skip the mapping. */
3549 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3550 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3551 iPD += cPTs - 1;
3552# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3553 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3554# else
3555 pPDEDst += cPTs;
3556# endif
3557 pMapping = pMapping->CTX_SUFF(pNext);
3558 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3559 continue;
3560 }
3561# ifdef IN_RING3
3562# if PGM_GST_TYPE == PGM_TYPE_32BIT
3563 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3564# elif PGM_GST_TYPE == PGM_TYPE_PAE
3565 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3566# endif
3567 if (RT_FAILURE(rc))
3568 return rc;
3569
3570 /*
3571 * Update iPdNoMapping and pMapping.
3572 */
3573 pMapping = pVM->pgm.s.pMappingsR3;
3574 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3575 pMapping = pMapping->pNextR3;
3576 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3577# else /* !IN_RING3 */
3578 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3579 return VINF_PGM_SYNC_CR3;
3580# endif /* !IN_RING3 */
3581 }
3582# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3583 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3584# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3585
3586 /*
3587 * Sync page directory entry.
3588 *
3589 * The current approach is to allocated the page table but to set
3590 * the entry to not-present and postpone the page table synching till
3591 * it's actually used.
3592 */
3593# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3594 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3595# elif PGM_GST_TYPE == PGM_TYPE_PAE
3596 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES; NOREF(iPdShw);
3597# else
3598 const unsigned iPdShw = iPD; NOREF(iPdShw);
3599# endif
3600 {
3601 SHWPDE PdeDst = *pPDEDst;
3602 if (PdeDst.n.u1Present)
3603 {
3604 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
3605 RTGCPHYS GCPhys;
3606 if ( !PdeSrc.b.u1Size
3607 || !fBigPagesSupported)
3608 {
3609 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
3610# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3611 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3612 GCPhys |= i * (PAGE_SIZE / 2);
3613# endif
3614 }
3615 else
3616 {
3617 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3618# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3619 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
3620 GCPhys |= i * X86_PAGE_2M_SIZE;
3621# endif
3622 }
3623
3624 if ( pShwPage->GCPhys == GCPhys
3625 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
3626 && ( pShwPage->fCached
3627 || ( !fGlobal
3628 && ( false
3629# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
3630 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3631 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
3632 || ( !pShwPage->fSeenNonGlobal
3633 && (cr4 & X86_CR4_PGE))
3634# endif
3635 )
3636 )
3637 )
3638 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
3639 || ( fBigPagesSupported
3640 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
3641 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
3642 )
3643 )
3644 {
3645# ifdef VBOX_WITH_STATISTICS
3646 if ( !fGlobal
3647 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
3648 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
3649 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPD));
3650 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
3651 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstSkippedGlobalPT));
3652 else
3653 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstCacheHit));
3654# endif /* VBOX_WITH_STATISTICS */
3655 /** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
3656 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
3657 //# ifdef PGMPOOL_WITH_CACHE
3658 // pgmPoolCacheUsed(pPool, pShwPage);
3659 //# endif
3660 }
3661 else
3662 {
3663 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
3664 pPDEDst->u = 0;
3665 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreed));
3666 }
3667 }
3668 else
3669 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstNotPresent));
3670
3671 /* advance */
3672 pPDEDst++;
3673 } /* foreach 2MB PAE PDE in 4MB guest PDE */
3674 }
3675# if PGM_GST_TYPE == PGM_TYPE_PAE
3676 else if (iPD + iPdpt * X86_PG_PAE_ENTRIES != iPdNoMapping)
3677# else
3678 else if (iPD != iPdNoMapping)
3679# endif
3680 {
3681 /*
3682 * Check if there is any page directory to mark not present here.
3683 */
3684# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3685 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
3686# elif PGM_GST_TYPE == PGM_TYPE_PAE
3687 const unsigned iPdShw = iPD + iPdpt * X86_PG_PAE_ENTRIES;
3688# else
3689 const unsigned iPdShw = iPD;
3690# endif
3691 {
3692 if (pPDEDst->n.u1Present)
3693 {
3694 pgmPoolFree(pVM, pPDEDst->u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPdShw);
3695 pPDEDst->u = 0;
3696 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3DstFreedSrcNP));
3697 }
3698 pPDEDst++;
3699 }
3700 }
3701 else
3702 {
3703# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3704 || PGM_GST_TYPE == PGM_TYPE_PAE) \
3705 && !defined(PGM_WITHOUT_MAPPINGS)
3706
3707 const unsigned cPTs = pMapping->cb >> GST_PD_SHIFT;
3708
3709 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3710 if (pVM->pgm.s.fMappingsFixed)
3711 {
3712 /* It's fixed, just skip the mapping. */
3713 pMapping = pMapping->CTX_SUFF(pNext);
3714 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3715 }
3716 else
3717 {
3718 /*
3719 * Check for conflicts for subsequent pagetables
3720 * and advance to the next mapping.
3721 */
3722 iPdNoMapping = ~0U;
3723 unsigned iPT = cPTs;
3724 while (iPT-- > 1)
3725 {
3726 if ( pPDSrc->a[iPD + iPT].n.u1Present
3727 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
3728 {
3729# ifdef IN_RING3
3730# if PGM_GST_TYPE == PGM_TYPE_32BIT
3731 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD << GST_PD_SHIFT);
3732# elif PGM_GST_TYPE == PGM_TYPE_PAE
3733 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, (iPdpt << GST_PDPT_SHIFT) + (iPD << GST_PD_SHIFT));
3734# endif
3735 if (RT_FAILURE(rc))
3736 return rc;
3737
3738 /*
3739 * Update iPdNoMapping and pMapping.
3740 */
3741 pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
3742 while (pMapping && pMapping->GCPtr < (iPD << GST_PD_SHIFT))
3743 pMapping = pMapping->CTX_SUFF(pNext);
3744 iPdNoMapping = pMapping ? pMapping->GCPtr >> GST_PD_SHIFT : ~0U;
3745 break;
3746# else
3747 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3748 return VINF_PGM_SYNC_CR3;
3749# endif
3750 }
3751 }
3752 if (iPdNoMapping == ~0U && pMapping)
3753 {
3754 pMapping = pMapping->CTX_SUFF(pNext);
3755 if (pMapping)
3756 iPdNoMapping = pMapping->GCPtr >> GST_PD_SHIFT;
3757 }
3758 }
3759
3760 /* advance. */
3761 Assert(PGM_GST_TYPE == PGM_TYPE_32BIT || (iPD + cPTs - 1) / X86_PG_PAE_ENTRIES == iPD / X86_PG_PAE_ENTRIES);
3762 iPD += cPTs - 1;
3763# if PGM_SHW_TYPE != PGM_GST_TYPE /* SHW==PAE && GST==32BIT */
3764 pPDEDst = pgmShwGetPaePDEPtr(&pVM->pgm.s, (uint32_t)(iPD + 1) << GST_PD_SHIFT);
3765# else
3766 pPDEDst += cPTs;
3767# endif
3768# if PGM_GST_TYPE != PGM_SHW_TYPE
3769 AssertCompile(PGM_GST_TYPE == PGM_TYPE_32BIT && PGM_SHW_TYPE == PGM_TYPE_PAE);
3770# endif
3771# else /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3772 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3773# endif /* (PGM_GST_TYPE != PGM_TYPE_32BIT && PGM_GST_TYPE != PGM_TYPE_PAE) || PGM_WITHOUT_MAPPINGS */
3774 }
3775
3776 } /* for iPD */
3777 } /* for each PDPTE (PAE) */
3778 return VINF_SUCCESS;
3779
3780# else /* guest real and protected mode */
3781 return VINF_SUCCESS;
3782# endif
3783#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
3784#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3785}
3786
3787
3788
3789
3790#ifdef VBOX_STRICT
3791#ifdef IN_RC
3792# undef AssertMsgFailed
3793# define AssertMsgFailed Log
3794#endif
3795#ifdef IN_RING3
3796# include <VBox/dbgf.h>
3797
3798/**
3799 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3800 *
3801 * @returns VBox status code (VINF_SUCCESS).
3802 * @param pVM The VM handle.
3803 * @param cr3 The root of the hierarchy.
3804 * @param crr The cr4, only PAE and PSE is currently used.
3805 * @param fLongMode Set if long mode, false if not long mode.
3806 * @param cMaxDepth Number of levels to dump.
3807 * @param pHlp Pointer to the output functions.
3808 */
3809__BEGIN_DECLS
3810VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3811__END_DECLS
3812
3813#endif
3814
3815/**
3816 * Checks that the shadow page table is in sync with the guest one.
3817 *
3818 * @returns The number of errors.
3819 * @param pVM The virtual machine.
3820 * @param cr3 Guest context CR3 register
3821 * @param cr4 Guest context CR4 register
3822 * @param GCPtr Where to start. Defaults to 0.
3823 * @param cb How much to check. Defaults to everything.
3824 */
3825PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3826{
3827#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3828 return 0;
3829#else
3830 unsigned cErrors = 0;
3831
3832#if PGM_GST_TYPE == PGM_TYPE_PAE
3833 /** @todo currently broken; crashes below somewhere */
3834 AssertFailed();
3835#endif
3836
3837#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3838 || PGM_GST_TYPE == PGM_TYPE_PAE \
3839 || PGM_GST_TYPE == PGM_TYPE_AMD64
3840
3841# if PGM_GST_TYPE == PGM_TYPE_AMD64
3842 bool fBigPagesSupported = true;
3843# else
3844 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3845# endif
3846 PPGM pPGM = &pVM->pgm.s;
3847 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3848 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3849# ifndef IN_RING0
3850 RTHCPHYS HCPhys; /* general usage. */
3851# endif
3852 int rc;
3853
3854 /*
3855 * Check that the Guest CR3 and all its mappings are correct.
3856 */
3857 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3858 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3859 false);
3860# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3861# if PGM_GST_TYPE == PGM_TYPE_32BIT
3862 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3863# else
3864 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3865# endif
3866 AssertRCReturn(rc, 1);
3867 HCPhys = NIL_RTHCPHYS;
3868 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3869 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3870# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3871 RTGCPHYS GCPhys;
3872 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3873 AssertRCReturn(rc, 1);
3874 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3875# endif
3876# endif /* !IN_RING0 */
3877
3878 /*
3879 * Get and check the Shadow CR3.
3880 */
3881# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3882 unsigned cPDEs = X86_PG_ENTRIES;
3883 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3884# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3885# if PGM_GST_TYPE == PGM_TYPE_32BIT
3886 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3887# else
3888 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3889# endif
3890 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3891# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3892 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3893 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3894# endif
3895 if (cb != ~(RTGCPTR)0)
3896 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3897
3898/** @todo call the other two PGMAssert*() functions. */
3899
3900# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3901 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3902# endif
3903
3904# if PGM_GST_TYPE == PGM_TYPE_AMD64
3905 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3906
3907 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3908 {
3909 PPGMPOOLPAGE pShwPdpt = NULL;
3910 PX86PML4E pPml4eSrc;
3911 PX86PML4E pPml4eDst;
3912 RTGCPHYS GCPhysPdptSrc;
3913
3914 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3915 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3916
3917 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3918 if (!pPml4eDst->n.u1Present)
3919 {
3920 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3921 continue;
3922 }
3923
3924 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3925 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3926
3927 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3928 {
3929 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3930 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3931 cErrors++;
3932 continue;
3933 }
3934
3935 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3936 {
3937 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3938 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3939 cErrors++;
3940 continue;
3941 }
3942
3943 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3944 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3945 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3946 {
3947 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3948 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3949 cErrors++;
3950 continue;
3951 }
3952# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3953 {
3954# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3955
3956# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3957 /*
3958 * Check the PDPTEs too.
3959 */
3960 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3961
3962 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3963 {
3964 unsigned iPDSrc;
3965 PPGMPOOLPAGE pShwPde = NULL;
3966 PX86PDPE pPdpeDst;
3967 RTGCPHYS GCPhysPdeSrc;
3968# if PGM_GST_TYPE == PGM_TYPE_PAE
3969 X86PDPE PdpeSrc;
3970 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3971 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3972# else
3973 PX86PML4E pPml4eSrc;
3974 X86PDPE PdpeSrc;
3975 PX86PDPT pPdptDst;
3976 PX86PDPAE pPDDst;
3977 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3978
3979 rc = pgmShwGetLongModePDPtr(pVM, GCPtr, NULL, &pPdptDst, &pPDDst);
3980 if (rc != VINF_SUCCESS)
3981 {
3982 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3983 GCPtr += 512 * _2M;
3984 continue; /* next PDPTE */
3985 }
3986 Assert(pPDDst);
3987# endif
3988 Assert(iPDSrc == 0);
3989
3990 pPdpeDst = &pPdptDst->a[iPdpt];
3991
3992 if (!pPdpeDst->n.u1Present)
3993 {
3994 GCPtr += 512 * _2M;
3995 continue; /* next PDPTE */
3996 }
3997
3998 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3999 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
4000
4001 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
4002 {
4003 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4004 GCPtr += 512 * _2M;
4005 cErrors++;
4006 continue;
4007 }
4008
4009 if (GCPhysPdeSrc != pShwPde->GCPhys)
4010 {
4011# if PGM_GST_TYPE == PGM_TYPE_AMD64
4012 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4013# else
4014 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
4015# endif
4016 GCPtr += 512 * _2M;
4017 cErrors++;
4018 continue;
4019 }
4020
4021# if PGM_GST_TYPE == PGM_TYPE_AMD64
4022 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
4023 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
4024 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
4025 {
4026 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
4027 GCPtr += 512 * _2M;
4028 cErrors++;
4029 continue;
4030 }
4031# endif
4032
4033# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4034 {
4035# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
4036# if PGM_GST_TYPE == PGM_TYPE_32BIT
4037 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
4038# if PGM_SHW_TYPE == PGM_TYPE_32BIT
4039 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
4040# endif
4041# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
4042 /*
4043 * Iterate the shadow page directory.
4044 */
4045 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
4046 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
4047
4048 for (;
4049 iPDDst < cPDEs;
4050 iPDDst++, GCPtr += cIncrement)
4051 {
4052# if PGM_SHW_TYPE == PGM_TYPE_PAE
4053 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
4054# else
4055 const SHWPDE PdeDst = pPDDst->a[iPDDst];
4056# endif
4057 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4058 {
4059 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
4060 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4061 {
4062 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4063 cErrors++;
4064 continue;
4065 }
4066 }
4067 else if ( (PdeDst.u & X86_PDE_P)
4068 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4069 )
4070 {
4071 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4072 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
4073 if (!pPoolPage)
4074 {
4075 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4076 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4077 cErrors++;
4078 continue;
4079 }
4080 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
4081
4082 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4083 {
4084 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4085 GCPtr, (uint64_t)PdeDst.u));
4086 cErrors++;
4087 }
4088
4089 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4090 {
4091 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4092 GCPtr, (uint64_t)PdeDst.u));
4093 cErrors++;
4094 }
4095
4096 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4097 if (!PdeSrc.n.u1Present)
4098 {
4099 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4100 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4101 cErrors++;
4102 continue;
4103 }
4104
4105 if ( !PdeSrc.b.u1Size
4106 || !fBigPagesSupported)
4107 {
4108 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
4109# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4110 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
4111# endif
4112 }
4113 else
4114 {
4115# if PGM_GST_TYPE == PGM_TYPE_32BIT
4116 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4117 {
4118 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4119 GCPtr, (uint64_t)PdeSrc.u));
4120 cErrors++;
4121 continue;
4122 }
4123# endif
4124 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
4125# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4126 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
4127# endif
4128 }
4129
4130 if ( pPoolPage->enmKind
4131 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4132 {
4133 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4134 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4135 cErrors++;
4136 }
4137
4138 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4139 if (!pPhysPage)
4140 {
4141 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4142 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4143 cErrors++;
4144 continue;
4145 }
4146
4147 if (GCPhysGst != pPoolPage->GCPhys)
4148 {
4149 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4150 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4151 cErrors++;
4152 continue;
4153 }
4154
4155 if ( !PdeSrc.b.u1Size
4156 || !fBigPagesSupported)
4157 {
4158 /*
4159 * Page Table.
4160 */
4161 const GSTPT *pPTSrc;
4162 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
4163 if (RT_FAILURE(rc))
4164 {
4165 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4166 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4167 cErrors++;
4168 continue;
4169 }
4170 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4171 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4172 {
4173 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4174 // (This problem will go away when/if we shadow multiple CR3s.)
4175 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4176 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4177 cErrors++;
4178 continue;
4179 }
4180 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4181 {
4182 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4183 GCPtr, (uint64_t)PdeDst.u));
4184 cErrors++;
4185 continue;
4186 }
4187
4188 /* iterate the page table. */
4189# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4190 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4191 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4192# else
4193 const unsigned offPTSrc = 0;
4194# endif
4195 for (unsigned iPT = 0, off = 0;
4196 iPT < RT_ELEMENTS(pPTDst->a);
4197 iPT++, off += PAGE_SIZE)
4198 {
4199 const SHWPTE PteDst = pPTDst->a[iPT];
4200
4201 /* skip not-present entries. */
4202 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4203 continue;
4204 Assert(PteDst.n.u1Present);
4205
4206 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4207 if (!PteSrc.n.u1Present)
4208 {
4209# ifdef IN_RING3
4210 PGMAssertHandlerAndFlagsInSync(pVM);
4211 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
4212# endif
4213 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4214 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4215 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
4216 cErrors++;
4217 continue;
4218 }
4219
4220 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4221# if 1 /** @todo sync accessed bit properly... */
4222 fIgnoreFlags |= X86_PTE_A;
4223# endif
4224
4225 /* match the physical addresses */
4226 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
4227 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
4228
4229# ifdef IN_RING3
4230 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4231 if (RT_FAILURE(rc))
4232 {
4233 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4234 {
4235 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4236 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4237 cErrors++;
4238 continue;
4239 }
4240 }
4241 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4242 {
4243 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4244 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4245 cErrors++;
4246 continue;
4247 }
4248# endif
4249
4250 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4251 if (!pPhysPage)
4252 {
4253# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4254 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4255 {
4256 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4257 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4258 cErrors++;
4259 continue;
4260 }
4261# endif
4262 if (PteDst.n.u1Write)
4263 {
4264 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4265 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4266 cErrors++;
4267 }
4268 fIgnoreFlags |= X86_PTE_RW;
4269 }
4270 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4271 {
4272 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4273 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4274 cErrors++;
4275 continue;
4276 }
4277
4278 /* flags */
4279 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4280 {
4281 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4282 {
4283 if (PteDst.n.u1Write)
4284 {
4285 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4286 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4287 cErrors++;
4288 continue;
4289 }
4290 fIgnoreFlags |= X86_PTE_RW;
4291 }
4292 else
4293 {
4294 if (PteDst.n.u1Present)
4295 {
4296 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4297 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4298 cErrors++;
4299 continue;
4300 }
4301 fIgnoreFlags |= X86_PTE_P;
4302 }
4303 }
4304 else
4305 {
4306 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4307 {
4308 if (PteDst.n.u1Write)
4309 {
4310 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4311 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4312 cErrors++;
4313 continue;
4314 }
4315 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4316 {
4317 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4318 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4319 cErrors++;
4320 continue;
4321 }
4322 if (PteDst.n.u1Dirty)
4323 {
4324 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4325 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4326 cErrors++;
4327 }
4328# if 0 /** @todo sync access bit properly... */
4329 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4330 {
4331 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4332 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4333 cErrors++;
4334 }
4335 fIgnoreFlags |= X86_PTE_RW;
4336# else
4337 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4338# endif
4339 }
4340 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4341 {
4342 /* access bit emulation (not implemented). */
4343 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4344 {
4345 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4346 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4347 cErrors++;
4348 continue;
4349 }
4350 if (!PteDst.n.u1Accessed)
4351 {
4352 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4353 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4354 cErrors++;
4355 }
4356 fIgnoreFlags |= X86_PTE_P;
4357 }
4358# ifdef DEBUG_sandervl
4359 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4360# endif
4361 }
4362
4363 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4364 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4365 )
4366 {
4367 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4368 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4369 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4370 cErrors++;
4371 continue;
4372 }
4373 } /* foreach PTE */
4374 }
4375 else
4376 {
4377 /*
4378 * Big Page.
4379 */
4380 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4381 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4382 {
4383 if (PdeDst.n.u1Write)
4384 {
4385 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4386 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4387 cErrors++;
4388 continue;
4389 }
4390 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4391 {
4392 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4393 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4394 cErrors++;
4395 continue;
4396 }
4397# if 0 /** @todo sync access bit properly... */
4398 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4399 {
4400 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4401 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4402 cErrors++;
4403 }
4404 fIgnoreFlags |= X86_PTE_RW;
4405# else
4406 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4407# endif
4408 }
4409 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4410 {
4411 /* access bit emulation (not implemented). */
4412 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4413 {
4414 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4415 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4416 cErrors++;
4417 continue;
4418 }
4419 if (!PdeDst.n.u1Accessed)
4420 {
4421 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4422 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4423 cErrors++;
4424 }
4425 fIgnoreFlags |= X86_PTE_P;
4426 }
4427
4428 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4429 {
4430 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4431 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4432 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4433 cErrors++;
4434 }
4435
4436 /* iterate the page table. */
4437 for (unsigned iPT = 0, off = 0;
4438 iPT < RT_ELEMENTS(pPTDst->a);
4439 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4440 {
4441 const SHWPTE PteDst = pPTDst->a[iPT];
4442
4443 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4444 {
4445 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4446 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4447 cErrors++;
4448 }
4449
4450 /* skip not-present entries. */
4451 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4452 continue;
4453
4454 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4455
4456 /* match the physical addresses */
4457 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4458
4459# ifdef IN_RING3
4460 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4461 if (RT_FAILURE(rc))
4462 {
4463 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4464 {
4465 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4466 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4467 cErrors++;
4468 }
4469 }
4470 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4471 {
4472 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4473 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4474 cErrors++;
4475 continue;
4476 }
4477# endif
4478 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
4479 if (!pPhysPage)
4480 {
4481# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4482 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
4483 {
4484 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4485 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4486 cErrors++;
4487 continue;
4488 }
4489# endif
4490 if (PteDst.n.u1Write)
4491 {
4492 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4493 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4494 cErrors++;
4495 }
4496 fIgnoreFlags |= X86_PTE_RW;
4497 }
4498 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4499 {
4500 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4501 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4502 cErrors++;
4503 continue;
4504 }
4505
4506 /* flags */
4507 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4508 {
4509 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4510 {
4511 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4512 {
4513 if (PteDst.n.u1Write)
4514 {
4515 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4516 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4517 cErrors++;
4518 continue;
4519 }
4520 fIgnoreFlags |= X86_PTE_RW;
4521 }
4522 }
4523 else
4524 {
4525 if (PteDst.n.u1Present)
4526 {
4527 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4528 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4529 cErrors++;
4530 continue;
4531 }
4532 fIgnoreFlags |= X86_PTE_P;
4533 }
4534 }
4535
4536 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4537 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4538 )
4539 {
4540 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4541 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4542 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4543 cErrors++;
4544 continue;
4545 }
4546 } /* for each PTE */
4547 }
4548 }
4549 /* not present */
4550
4551 } /* for each PDE */
4552
4553 } /* for each PDPTE */
4554
4555 } /* for each PML4E */
4556
4557# ifdef DEBUG
4558 if (cErrors)
4559 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4560# endif
4561
4562#endif /* GST == 32BIT, PAE or AMD64 */
4563 return cErrors;
4564
4565#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4566}
4567#endif /* VBOX_STRICT */
4568
4569
4570/**
4571 * Sets up the CR3 for shadow paging
4572 *
4573 * @returns Strict VBox status code.
4574 * @retval VINF_SUCCESS.
4575 *
4576 * @param pVM VM handle.
4577 * @param GCPhysCR3 The physical address in the CR3 register.
4578 */
4579PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3)
4580{
4581 /* Update guest paging info. */
4582#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4583 || PGM_GST_TYPE == PGM_TYPE_PAE \
4584 || PGM_GST_TYPE == PGM_TYPE_AMD64
4585
4586 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4587
4588 /*
4589 * Map the page CR3 points at.
4590 */
4591 RTHCPTR HCPtrGuestCR3;
4592 RTHCPHYS HCPhysGuestCR3;
4593# ifdef VBOX_WITH_NEW_PHYS_CODE
4594 /** @todo this needs some reworking. current code is just a big hack. */
4595# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4596# if 1 /* temp hack */
4597 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4598 return VINF_PGM_SYNC_CR3;
4599# else
4600 AssertFailedReturn(VERR_INTERNAL_ERROR);
4601# endif
4602 int rc = VERR_INTERNAL_ERROR;
4603# else
4604 pgmLock(pVM);
4605 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4606 AssertReturn(pPage, VERR_INTERNAL_ERROR);
4607 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
4608 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPage);
4609 pgmUnlock(pVM);
4610# endif
4611# else /* !VBOX_WITH_NEW_PHYS_CODE */
4612 int rc = pgmRamGCPhys2HCPtrAndHCPhys(&pVM->pgm.s, GCPhysCR3 & GST_CR3_PAGE_MASK, &HCPtrGuestCR3, &HCPhysGuestCR3);
4613# endif /* !VBOX_WITH_NEW_PHYS_CODE */
4614 if (RT_SUCCESS(rc))
4615 {
4616 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4617 if (RT_SUCCESS(rc))
4618 {
4619# ifdef IN_RC
4620 PGM_INVL_PG(pVM->pgm.s.GCPtrCR3Mapping);
4621# endif
4622# if PGM_GST_TYPE == PGM_TYPE_32BIT
4623 pVM->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4624# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4625 pVM->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4626# endif
4627 pVM->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))pVM->pgm.s.GCPtrCR3Mapping;
4628
4629# elif PGM_GST_TYPE == PGM_TYPE_PAE
4630 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4631 pVM->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4632# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4633 pVM->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4634# endif
4635 pVM->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RCPTRTYPE(uint8_t *))pVM->pgm.s.GCPtrCR3Mapping + off);
4636 Log(("Cached mapping %RRv\n", pVM->pgm.s.pGstPaePdptRC));
4637
4638 /*
4639 * Map the 4 PDs too.
4640 */
4641 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVM->pgm.s);
4642 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4643 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4644 {
4645 if (pGuestPDPT->a[i].n.u1Present)
4646 {
4647 RTHCPTR HCPtr;
4648 RTHCPHYS HCPhys;
4649 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4650# ifdef VBOX_WITH_NEW_PHYS_CODE
4651# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4652 AssertFailedReturn(VERR_INTERNAL_ERROR);
4653 int rc2 = VERR_INTERNAL_ERROR;
4654# else
4655 pgmLock(pVM);
4656 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4657 AssertReturn(pPage, VERR_INTERNAL_ERROR);
4658 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4659 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4660 pgmUnlock(pVM);
4661# endif
4662# else /* !VBOX_WITH_NEW_PHYS_CODE */
4663 int rc2 = pgmRamGCPhys2HCPtrAndHCPhys(&pVM->pgm.s, GCPhys, &HCPtr, &HCPhys);
4664# endif /* !VBOX_WITH_NEW_PHYS_CODE */
4665 if (RT_SUCCESS(rc2))
4666 {
4667 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4668 AssertRCReturn(rc, rc);
4669
4670 pVM->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4671# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4672 pVM->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4673# endif
4674 pVM->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))GCPtr;
4675 pVM->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4676 PGM_INVL_PG(GCPtr); /** @todo This ends up calling HWACCMInvalidatePage, is that correct? */
4677 continue;
4678 }
4679 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4680 }
4681
4682 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4683# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4684 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4685# endif
4686 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4687 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4688 PGM_INVL_PG(GCPtr); /** @todo this shouldn't be necessary? */
4689 }
4690
4691# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4692 pVM->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4693# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4694 pVM->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4695# endif
4696# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
4697 if (!HWACCMIsNestedPagingActive(pVM))
4698 {
4699 /*
4700 * Update the shadow root page as well since that's not fixed.
4701 */
4702 /** @todo Move this into PGMAllBth.h. */
4703 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4704 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4705 {
4706 /* It might have been freed already by a pool flush (see e.g. PGMR3MappingsUnfix). */
4707 /** @todo Coordinate this better with the pool. */
4708 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3)->enmKind != PGMPOOLKIND_FREE)
4709 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), PGMPOOL_IDX_AMD64_CR3, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->GCPhys >> PAGE_SHIFT);
4710 pVM->pgm.s.pShwPageCR3R3 = 0;
4711 pVM->pgm.s.pShwPageCR3R0 = 0;
4712 pVM->pgm.s.pShwRootR3 = 0;
4713# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4714 pVM->pgm.s.pShwRootR0 = 0;
4715# endif
4716 pVM->pgm.s.HCPhysShwCR3 = 0;
4717 }
4718
4719 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4720 rc = pgmPoolAlloc(pVM, GCPhysCR3, PGMPOOLKIND_64BIT_PML4, PGMPOOL_IDX_AMD64_CR3, GCPhysCR3 >> PAGE_SHIFT, &pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4721 if (rc == VERR_PGM_POOL_FLUSHED)
4722 {
4723 Log(("MapCR3: PGM pool flushed -> signal sync cr3\n"));
4724 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4725 return VINF_PGM_SYNC_CR3;
4726 }
4727 AssertRCReturn(rc, rc);
4728# ifdef IN_RING0
4729 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4730# else
4731 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4732# endif
4733 pVM->pgm.s.pShwRootR3 = (R3PTRTYPE(void *))pVM->pgm.s.CTX_SUFF(pShwPageCR3)->pvPageR3;
4734 Assert(pVM->pgm.s.pShwRootR3);
4735# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4736 pVM->pgm.s.pShwRootR0 = (R0PTRTYPE(void *))PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4737# endif
4738 pVM->pgm.s.HCPhysShwCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
4739 rc = VINF_SUCCESS; /* clear it - pgmPoolAlloc returns hints. */
4740 }
4741# endif /* !VBOX_WITH_PGMPOOL_PAGING_ONLY */
4742# endif
4743 }
4744 else
4745 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4746 }
4747 else
4748 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4749
4750#else /* prot/real stub */
4751 int rc = VINF_SUCCESS;
4752#endif
4753
4754#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4755 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4756# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4757 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4758 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4759 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4760 && PGM_GST_TYPE != PGM_TYPE_PROT))
4761
4762 Assert(!HWACCMIsNestedPagingActive(pVM));
4763
4764 /*
4765 * Update the shadow root page as well since that's not fixed.
4766 */
4767 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4768 PPGMPOOLPAGE pOldShwPageCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
4769 uint32_t iOldShwUserTable = pVM->pgm.s.iShwUserTable;
4770 uint32_t iOldShwUser = pVM->pgm.s.iShwUser;
4771 PPGMPOOLPAGE pNewShwPageCR3;
4772
4773 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4774 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3);
4775 if (rc == VERR_PGM_POOL_FLUSHED)
4776 {
4777 Log(("MapCR3: PGM pool flushed -> signal sync cr3\n"));
4778 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4779 return VINF_PGM_SYNC_CR3;
4780 }
4781 AssertRCReturn(rc, rc);
4782 rc = VINF_SUCCESS;
4783
4784 /* Mark the page as locked; disallow flushing. */
4785 pgmPoolLockPage(pPool, pNewShwPageCR3);
4786
4787# ifdef IN_RC
4788 /** NOTE: We can't deal with jumps to ring 3 here as we're now in an inconsistent state! */
4789 bool fLog = VMMGCLogDisable(pVM);
4790# endif
4791
4792 pVM->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4793 pVM->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4794 pVM->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4795# ifdef IN_RING0
4796 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4797 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4798# elif defined(IN_RC)
4799 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4800 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4801# else
4802 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4803 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4804# endif
4805
4806# ifndef PGM_WITHOUT_MAPPINGS
4807 /* Apply all hypervisor mappings to the new CR3.
4808 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4809 * make sure we check for conflicts in the new CR3 root.
4810 */
4811# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4812 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL) || VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4813# endif
4814 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4815 AssertRCReturn(rc, rc);
4816# endif
4817
4818 /* Set the current hypervisor CR3. */
4819 CPUMSetHyperCR3(pVM, PGMGetHyperCR3(pVM));
4820
4821# ifdef IN_RC
4822 VMMGCLogRestore(pVM, fLog);
4823# endif
4824
4825 /* Clean up the old CR3 root. */
4826 if (pOldShwPageCR3)
4827 {
4828 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4829# ifndef PGM_WITHOUT_MAPPINGS
4830 /* Remove the hypervisor mappings from the shadow page table. */
4831 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4832# endif
4833 /* Mark the page as unlocked; allow flushing again. */
4834 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4835
4836 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4837 }
4838
4839# endif
4840#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
4841
4842 return rc;
4843}
4844
4845/**
4846 * Unmaps the shadow CR3.
4847 *
4848 * @returns VBox status, no specials.
4849 * @param pVM VM handle.
4850 */
4851PGM_BTH_DECL(int, UnmapCR3)(PVM pVM)
4852{
4853 LogFlow(("UnmapCR3\n"));
4854
4855 int rc = VINF_SUCCESS;
4856
4857 /* Update guest paging info. */
4858#if PGM_GST_TYPE == PGM_TYPE_32BIT
4859 pVM->pgm.s.pGst32BitPdR3 = 0;
4860#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4861 pVM->pgm.s.pGst32BitPdR0 = 0;
4862#endif
4863 pVM->pgm.s.pGst32BitPdRC = 0;
4864
4865#elif PGM_GST_TYPE == PGM_TYPE_PAE
4866 pVM->pgm.s.pGstPaePdptR3 = 0;
4867# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4868 pVM->pgm.s.pGstPaePdptR0 = 0;
4869# endif
4870 pVM->pgm.s.pGstPaePdptRC = 0;
4871 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4872 {
4873 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4874# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4875 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4876# endif
4877 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4878 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4879 }
4880
4881#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4882 pVM->pgm.s.pGstAmd64Pml4R3 = 0;
4883# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4884 pVM->pgm.s.pGstAmd64Pml4R0 = 0;
4885# endif
4886# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
4887 if (!HWACCMIsNestedPagingActive(pVM))
4888 {
4889 pVM->pgm.s.pShwRootR3 = 0;
4890# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4891 pVM->pgm.s.pShwRootR0 = 0;
4892# endif
4893 pVM->pgm.s.HCPhysShwCR3 = 0;
4894 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4895 {
4896 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4897 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), PGMPOOL_IDX_AMD64_CR3, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->GCPhys >> PAGE_SHIFT);
4898 pVM->pgm.s.pShwPageCR3R3 = 0;
4899 pVM->pgm.s.pShwPageCR3R0 = 0;
4900 }
4901 }
4902# endif /* !VBOX_WITH_PGMPOOL_PAGING_ONLY */
4903
4904#else /* prot/real mode stub */
4905 /* nothing to do */
4906#endif
4907
4908#if defined(VBOX_WITH_PGMPOOL_PAGING_ONLY) && !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4909 /* Update shadow paging info. */
4910# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4911 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4912 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4913
4914# if PGM_GST_TYPE != PGM_TYPE_REAL
4915 Assert(!HWACCMIsNestedPagingActive(pVM));
4916# endif
4917
4918# ifndef PGM_WITHOUT_MAPPINGS
4919 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4920 /* Remove the hypervisor mappings from the shadow page table. */
4921 pgmMapDeactivateCR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4922# endif
4923
4924 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4925 {
4926 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4927
4928 Assert(pVM->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4929
4930 /* Mark the page as unlocked; allow flushing again. */
4931 pgmPoolUnlockPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4932
4933 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), pVM->pgm.s.iShwUser, pVM->pgm.s.iShwUserTable);
4934 pVM->pgm.s.pShwPageCR3R3 = 0;
4935 pVM->pgm.s.pShwPageCR3R0 = 0;
4936 pVM->pgm.s.pShwPageCR3RC = 0;
4937 pVM->pgm.s.iShwUser = 0;
4938 pVM->pgm.s.iShwUserTable = 0;
4939 }
4940# endif
4941#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY && !IN_RC*/
4942
4943 return rc;
4944}
4945
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette