VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 17616

Last change on this file since 17616 was 17616, checked in by vboxsync, 16 years ago

Inform SELM about shadow CR3 changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 187.7 KB
Line 
1/* $Id: PGMAllBth.h 17616 2009-03-10 11:08:39Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3);
43PGM_BTH_DECL(int, UnmapCR3)(PVM pVM);
44__END_DECLS
45
46
47/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
48#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
49# error "Invalid combination; PAE guest implies PAE shadow"
50#endif
51
52#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
53 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
54# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
55#endif
56
57#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
58 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
59# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
60#endif
61
62#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
63 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
64# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
65#endif
66
67#ifdef IN_RING0 /* no mappings in VT-x and AMD-V mode */
68# define PGM_WITHOUT_MAPPINGS
69#endif
70
71
72#ifndef IN_RING3
73/**
74 * #PF Handler for raw-mode guest execution.
75 *
76 * @returns VBox status code (appropriate for trap handling and GC return).
77 * @param pVM VM Handle.
78 * @param uErr The trap error code.
79 * @param pRegFrame Trap register frame.
80 * @param pvFault The fault address.
81 */
82PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
83{
84# if defined(IN_RC) && defined(VBOX_STRICT)
85 PGMDynCheckLocks(pVM);
86# endif
87
88# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
89 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
90 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
91
92# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
93 /*
94 * Hide the instruction fetch trap indicator for now.
95 */
96 /** @todo NXE will change this and we must fix NXE in the switcher too! */
97 if (uErr & X86_TRAP_PF_ID)
98 {
99 uErr &= ~X86_TRAP_PF_ID;
100 TRPMSetErrorCode(pVM, uErr);
101 }
102# endif
103
104 /*
105 * Get PDs.
106 */
107 int rc;
108# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
109# if PGM_GST_TYPE == PGM_TYPE_32BIT
110 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
111 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
112
113# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
114
115# if PGM_GST_TYPE == PGM_TYPE_PAE
116 unsigned iPDSrc;
117 X86PDPE PdpeSrc;
118 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
119
120# elif PGM_GST_TYPE == PGM_TYPE_AMD64
121 unsigned iPDSrc;
122 PX86PML4E pPml4eSrc;
123 X86PDPE PdpeSrc;
124 PGSTPD pPDSrc;
125
126 pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
127 Assert(pPml4eSrc);
128# endif
129
130 /* Quick check for a valid guest trap. (PAE & AMD64) */
131 if (!pPDSrc)
132 {
133# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
134 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
135# else
136 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK));
137# endif
138 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
139 TRPMSetErrorCode(pVM, uErr);
140 return VINF_EM_RAW_GUEST_TRAP;
141 }
142# endif
143
144# else /* !PGM_WITH_PAGING */
145 PGSTPD pPDSrc = NULL;
146 const unsigned iPDSrc = 0;
147# endif /* !PGM_WITH_PAGING */
148
149
150# if PGM_SHW_TYPE == PGM_TYPE_32BIT
151 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
152 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
153
154# elif PGM_SHW_TYPE == PGM_TYPE_PAE
155 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
156
157 PX86PDPAE pPDDst;
158# if PGM_GST_TYPE != PGM_TYPE_PAE
159 X86PDPE PdpeSrc;
160
161 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
162 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
163# endif
164 rc = pgmShwSyncPaePDPtr(pVM, pvFault, &PdpeSrc, &pPDDst);
165 if (rc != VINF_SUCCESS)
166 {
167 AssertRC(rc);
168 return rc;
169 }
170 Assert(pPDDst);
171
172# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
173 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
174 PX86PDPAE pPDDst;
175# if PGM_GST_TYPE == PGM_TYPE_PROT
176 /* AMD-V nested paging */
177 X86PML4E Pml4eSrc;
178 X86PDPE PdpeSrc;
179 PX86PML4E pPml4eSrc = &Pml4eSrc;
180
181 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
182 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
183 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
184# endif
185
186 rc = pgmShwSyncLongModePDPtr(pVM, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
187 if (rc != VINF_SUCCESS)
188 {
189 AssertRC(rc);
190 return rc;
191 }
192 Assert(pPDDst);
193
194# elif PGM_SHW_TYPE == PGM_TYPE_EPT
195 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
196 PEPTPD pPDDst;
197
198 rc = pgmShwGetEPTPDPtr(pVM, pvFault, NULL, &pPDDst);
199 if (rc != VINF_SUCCESS)
200 {
201 AssertRC(rc);
202 return rc;
203 }
204 Assert(pPDDst);
205# endif
206
207# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
208 /*
209 * If we successfully correct the write protection fault due to dirty bit
210 * tracking, or this page fault is a genuine one, then return immediately.
211 */
212 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
213 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
214 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
215 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
216 || rc == VINF_EM_RAW_GUEST_TRAP)
217 {
218 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
219 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVM->pgm.s.StatRZTrap0eTime2GuestTrap; });
220 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
221 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
222 }
223
224 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0ePD[iPDSrc]);
225# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
226
227 /*
228 * A common case is the not-present error caused by lazy page table syncing.
229 *
230 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
231 * so we can safely assume that the shadow PT is present when calling SyncPage later.
232 *
233 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
234 * of mapping conflict and defer to SyncCR3 in R3.
235 * (Again, we do NOT support access handlers for non-present guest pages.)
236 *
237 */
238# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
239 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
240# else
241 GSTPDE PdeSrc;
242 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
243 PdeSrc.n.u1Present = 1;
244 PdeSrc.n.u1Write = 1;
245 PdeSrc.n.u1Accessed = 1;
246 PdeSrc.n.u1User = 1;
247# endif
248 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
249 && !pPDDst->a[iPDDst].n.u1Present
250 && PdeSrc.n.u1Present
251 )
252
253 {
254 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2SyncPT; });
255 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
256 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
257 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, pvFault);
258 if (RT_SUCCESS(rc))
259 {
260 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
261 return rc;
262 }
263 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
264 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
265 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeSyncPT, f);
266 return VINF_PGM_SYNC_CR3;
267 }
268
269# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
270 /*
271 * Check if this address is within any of our mappings.
272 *
273 * This is *very* fast and it's gonna save us a bit of effort below and prevent
274 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
275 * (BTW, it's impossible to have physical access handlers in a mapping.)
276 */
277 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
278 {
279 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
280 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
281 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
282 {
283 if (pvFault < pMapping->GCPtr)
284 break;
285 if (pvFault - pMapping->GCPtr < pMapping->cb)
286 {
287 /*
288 * The first thing we check is if we've got an undetected conflict.
289 */
290 if (!pVM->pgm.s.fMappingsFixed)
291 {
292 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
293 while (iPT-- > 0)
294 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
295 {
296 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eConflicts);
297 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
298 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
299 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
300 return VINF_PGM_SYNC_CR3;
301 }
302 }
303
304 /*
305 * Check if the fault address is in a virtual page access handler range.
306 */
307 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
308 if ( pCur
309 && pvFault - pCur->Core.Key < pCur->cb
310 && uErr & X86_TRAP_PF_RW)
311 {
312# ifdef IN_RC
313 STAM_PROFILE_START(&pCur->Stat, h);
314 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
315 STAM_PROFILE_STOP(&pCur->Stat, h);
316# else
317 AssertFailed();
318 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
319# endif
320 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersMapping);
321 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
322 return rc;
323 }
324
325 /*
326 * Pretend we're not here and let the guest handle the trap.
327 */
328 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
329 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFMapping);
330 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
331 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
332 return VINF_EM_RAW_GUEST_TRAP;
333 }
334 }
335 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeMapping, a);
336 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
337# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
338
339 /*
340 * Check if this fault address is flagged for special treatment,
341 * which means we'll have to figure out the physical address and
342 * check flags associated with it.
343 *
344 * ASSUME that we can limit any special access handling to pages
345 * in page tables which the guest believes to be present.
346 */
347 if (PdeSrc.n.u1Present)
348 {
349 RTGCPHYS GCPhys = NIL_RTGCPHYS;
350
351# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
352# if PGM_GST_TYPE == PGM_TYPE_AMD64
353 bool fBigPagesSupported = true;
354# else
355 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
356# endif
357 if ( PdeSrc.b.u1Size
358 && fBigPagesSupported)
359 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
360 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
361 else
362 {
363 PGSTPT pPTSrc;
364 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
365 if (RT_SUCCESS(rc))
366 {
367 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
368 if (pPTSrc->a[iPTESrc].n.u1Present)
369 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
370 }
371 }
372# else
373 /* No paging so the fault address is the physical address */
374 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
375# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
376
377 /*
378 * If we have a GC address we'll check if it has any flags set.
379 */
380 if (GCPhys != NIL_RTGCPHYS)
381 {
382 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
383
384 PPGMPAGE pPage;
385 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
386 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
387 {
388 if ( PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage)
389 || PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage))
390 {
391 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
392 {
393 /*
394 * Physical page access handler.
395 */
396 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
397 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
398 if (pCur)
399 {
400# ifdef PGM_SYNC_N_PAGES
401 /*
402 * If the region is write protected and we got a page not present fault, then sync
403 * the pages. If the fault was caused by a read, then restart the instruction.
404 * In case of write access continue to the GC write handler.
405 *
406 * ASSUMES that there is only one handler per page or that they have similar write properties.
407 */
408 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
409 && !(uErr & X86_TRAP_PF_P))
410 {
411 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
412 if ( RT_FAILURE(rc)
413 || !(uErr & X86_TRAP_PF_RW)
414 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
415 {
416 AssertRC(rc);
417 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
418 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
419 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
420 return rc;
421 }
422 }
423# endif
424
425 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
426 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
427 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
428
429# if defined(IN_RC) || defined(IN_RING0)
430 if (pCur->CTX_SUFF(pfnHandler))
431 {
432 STAM_PROFILE_START(&pCur->Stat, h);
433 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pCur->CTX_SUFF(pvUser));
434 STAM_PROFILE_STOP(&pCur->Stat, h);
435 }
436 else
437# endif
438 rc = VINF_EM_RAW_EMULATE_INSTR;
439 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersPhysical);
440 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
441 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndPhys; });
442 return rc;
443 }
444 }
445# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
446 else
447 {
448# ifdef PGM_SYNC_N_PAGES
449 /*
450 * If the region is write protected and we got a page not present fault, then sync
451 * the pages. If the fault was caused by a read, then restart the instruction.
452 * In case of write access continue to the GC write handler.
453 */
454 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
455 && !(uErr & X86_TRAP_PF_P))
456 {
457 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
458 if ( RT_FAILURE(rc)
459 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
460 || !(uErr & X86_TRAP_PF_RW))
461 {
462 AssertRC(rc);
463 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
466 return rc;
467 }
468 }
469# endif
470 /*
471 * Ok, it's an virtual page access handler.
472 *
473 * Since it's faster to search by address, we'll do that first
474 * and then retry by GCPhys if that fails.
475 */
476 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
477 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
478 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
479 */
480 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
481 if (pCur)
482 {
483 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
484 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
485 || !(uErr & X86_TRAP_PF_P)
486 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
487 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
488
489 if ( pvFault - pCur->Core.Key < pCur->cb
490 && ( uErr & X86_TRAP_PF_RW
491 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
492 {
493# ifdef IN_RC
494 STAM_PROFILE_START(&pCur->Stat, h);
495 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
496 STAM_PROFILE_STOP(&pCur->Stat, h);
497# else
498 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
499# endif
500 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtual);
501 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
502 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
503 return rc;
504 }
505 /* Unhandled part of a monitored page */
506 }
507 else
508 {
509 /* Check by physical address. */
510 PPGMVIRTHANDLER pCur;
511 unsigned iPage;
512 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
513 &pCur, &iPage);
514 Assert(RT_SUCCESS(rc) || !pCur);
515 if ( pCur
516 && ( uErr & X86_TRAP_PF_RW
517 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
518 {
519 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
520# ifdef IN_RC
521 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
522 Assert(off < pCur->cb);
523 STAM_PROFILE_START(&pCur->Stat, h);
524 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
525 STAM_PROFILE_STOP(&pCur->Stat, h);
526# else
527 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
528# endif
529 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
530 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
531 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
532 return rc;
533 }
534 }
535 }
536# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
537
538 /*
539 * There is a handled area of the page, but this fault doesn't belong to it.
540 * We must emulate the instruction.
541 *
542 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
543 * we first check if this was a page-not-present fault for a page with only
544 * write access handlers. Restart the instruction if it wasn't a write access.
545 */
546 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersUnhandled);
547
548 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
549 && !(uErr & X86_TRAP_PF_P))
550 {
551 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
552 if ( RT_FAILURE(rc)
553 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
554 || !(uErr & X86_TRAP_PF_RW))
555 {
556 AssertRC(rc);
557 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersOutOfSync);
558 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
559 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
560 return rc;
561 }
562 }
563
564 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
565 * It's writing to an unhandled part of the LDT page several million times.
566 */
567 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
568 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
569 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
570 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndUnhandled; });
571 return rc;
572 } /* if any kind of handler */
573
574# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
575 if (uErr & X86_TRAP_PF_P)
576 {
577 /*
578 * The page isn't marked, but it might still be monitored by a virtual page access handler.
579 * (ASSUMES no temporary disabling of virtual handlers.)
580 */
581 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
582 * we should correct both the shadow page table and physical memory flags, and not only check for
583 * accesses within the handler region but for access to pages with virtual handlers. */
584 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
585 if (pCur)
586 {
587 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
588 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
589 || !(uErr & X86_TRAP_PF_P)
590 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
591 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
592
593 if ( pvFault - pCur->Core.Key < pCur->cb
594 && ( uErr & X86_TRAP_PF_RW
595 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
596 {
597# ifdef IN_RC
598 STAM_PROFILE_START(&pCur->Stat, h);
599 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
600 STAM_PROFILE_STOP(&pCur->Stat, h);
601# else
602 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
603# endif
604 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
605 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
606 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2HndVirt; });
607 return rc;
608 }
609 }
610 }
611# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
612 }
613 else
614 {
615 /*
616 * When the guest accesses invalid physical memory (e.g. probing
617 * of RAM or accessing a remapped MMIO range), then we'll fall
618 * back to the recompiler to emulate the instruction.
619 */
620 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
621 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eHandlersInvalid);
622 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
623 return VINF_EM_RAW_EMULATE_INSTR;
624 }
625
626 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeHandlers, b);
627
628# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
629 /*
630 * We are here only if page is present in Guest page tables and
631 * trap is not handled by our handlers.
632 *
633 * Check it for page out-of-sync situation.
634 */
635 STAM_PROFILE_START(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
636
637 if (!(uErr & X86_TRAP_PF_P))
638 {
639 /*
640 * Page is not present in our page tables.
641 * Try to sync it!
642 * BTW, fPageShw is invalid in this branch!
643 */
644 if (uErr & X86_TRAP_PF_US)
645 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
646 else /* supervisor */
647 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
648
649# if defined(LOG_ENABLED) && !defined(IN_RING0)
650 RTGCPHYS GCPhys;
651 uint64_t fPageGst;
652 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
653 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%RGp scan=%d\n",
654 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)));
655# endif /* LOG_ENABLED */
656
657# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
658 if (CPUMGetGuestCPL(pVM, pRegFrame) == 0)
659 {
660 uint64_t fPageGst;
661 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
662 if ( RT_SUCCESS(rc)
663 && !(fPageGst & X86_PTE_US))
664 {
665 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
666 if ( pvFault == (RTGCPTR)pRegFrame->eip
667 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
668# ifdef CSAM_DETECT_NEW_CODE_PAGES
669 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
670 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)pRegFrame->eip)) /* any new code we encounter here */
671# endif /* CSAM_DETECT_NEW_CODE_PAGES */
672 )
673 {
674 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
675 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
676 if (rc != VINF_SUCCESS)
677 {
678 /*
679 * CSAM needs to perform a job in ring 3.
680 *
681 * Sync the page before going to the host context; otherwise we'll end up in a loop if
682 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
683 */
684 LogFlow(("CSAM ring 3 job\n"));
685 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
686 AssertRC(rc2);
687
688 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
689 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2CSAM; });
690 return rc;
691 }
692 }
693# ifdef CSAM_DETECT_NEW_CODE_PAGES
694 else if ( uErr == X86_TRAP_PF_RW
695 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
696 && pRegFrame->ecx < 0x10000)
697 {
698 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
699 * to detect loading of new code pages.
700 */
701
702 /*
703 * Decode the instruction.
704 */
705 RTGCPTR PC;
706 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
707 if (rc == VINF_SUCCESS)
708 {
709 DISCPUSTATE Cpu;
710 uint32_t cbOp;
711 rc = EMInterpretDisasOneEx(pVM, PC, pRegFrame, &Cpu, &cbOp);
712
713 /* For now we'll restrict this to rep movsw/d instructions */
714 if ( rc == VINF_SUCCESS
715 && Cpu.pCurInstr->opcode == OP_MOVSWD
716 && (Cpu.prefix & PREFIX_REP))
717 {
718 CSAMMarkPossibleCodePage(pVM, pvFault);
719 }
720 }
721 }
722# endif /* CSAM_DETECT_NEW_CODE_PAGES */
723
724 /*
725 * Mark this page as safe.
726 */
727 /** @todo not correct for pages that contain both code and data!! */
728 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
729 CSAMMarkPage(pVM, (RTRCPTR)pvFault, true);
730 }
731 }
732# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
733 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
734 if (RT_SUCCESS(rc))
735 {
736 /* The page was successfully synced, return to the guest. */
737 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
738 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSync; });
739 return VINF_SUCCESS;
740 }
741 }
742 else /* uErr & X86_TRAP_PF_P: */
743 {
744 /*
745 * Write protected pages is make writable when the guest makes the first
746 * write to it. This happens for pages that are shared, write monitored
747 * and not yet allocated.
748 *
749 * Also, a side effect of not flushing global PDEs are out of sync pages due
750 * to physical monitored regions, that are no longer valid.
751 * Assume for now it only applies to the read/write flag.
752 */
753 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
754 {
755# ifdef VBOX_WITH_NEW_PHYS_CODE
756 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
757 {
758 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n",
759 GCPhys, pPage, pvFault, uErr));
760 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
761 if (rc != VINF_SUCCESS)
762 {
763 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
764 return rc;
765 }
766 }
767 /// @todo count the above case; else
768# endif /* VBOX_WITH_NEW_PHYS_CODE */
769 if (uErr & X86_TRAP_PF_US)
770 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
771 else /* supervisor */
772 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
773
774 /*
775 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
776 * page is not present, which is not true in this case.
777 */
778 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, pvFault, 1, uErr);
779 if (RT_SUCCESS(rc))
780 {
781 /*
782 * Page was successfully synced, return to guest.
783 */
784# ifdef VBOX_STRICT
785 RTGCPHYS GCPhys;
786 uint64_t fPageGst;
787 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
788 Assert(RT_SUCCESS(rc) && fPageGst & X86_PTE_RW);
789 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
790
791 uint64_t fPageShw;
792 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
793 AssertMsg(RT_SUCCESS(rc) && fPageShw & X86_PTE_RW, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
794# endif /* VBOX_STRICT */
795 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
796 STAM_STATS({ pVM->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
797 return VINF_SUCCESS;
798 }
799
800 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
801 if ( CPUMGetGuestCPL(pVM, pRegFrame) == 0
802 && ((CPUMGetGuestCR0(pVM) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)
803 && (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P))
804 {
805 uint64_t fPageGst;
806 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
807 if ( RT_SUCCESS(rc)
808 && !(fPageGst & X86_PTE_RW))
809 {
810 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
811 if (RT_SUCCESS(rc))
812 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulInRZ);
813 else
814 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eWPEmulToR3);
815 return rc;
816 }
817 AssertMsgFailed(("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
818 }
819 }
820
821# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
822# ifdef VBOX_STRICT
823 /*
824 * Check for VMM page flags vs. Guest page flags consistency.
825 * Currently only for debug purposes.
826 */
827 if (RT_SUCCESS(rc))
828 {
829 /* Get guest page flags. */
830 uint64_t fPageGst;
831 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
832 if (RT_SUCCESS(rc))
833 {
834 uint64_t fPageShw;
835 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
836
837 /*
838 * Compare page flags.
839 * Note: we have AVL, A, D bits desynched.
840 */
841 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
842 ("Page flags mismatch! pvFault=%RGv GCPhys=%RGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
843 }
844 else
845 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
846 }
847 else
848 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
849# endif /* VBOX_STRICT */
850# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
851 }
852 STAM_PROFILE_STOP(&pVM->pgm.s.StatRZTrap0eTimeOutOfSync, c);
853# endif /* PGM_OUT_OF_SYNC_IN_GC */
854 }
855 else /* GCPhys == NIL_RTGCPHYS */
856 {
857 /*
858 * Page not present in Guest OS or invalid page table address.
859 * This is potential virtual page access handler food.
860 *
861 * For the present we'll say that our access handlers don't
862 * work for this case - we've already discarded the page table
863 * not present case which is identical to this.
864 *
865 * When we perchance find we need this, we will probably have AVL
866 * trees (offset based) to operate on and we can measure their speed
867 * agains mapping a page table and probably rearrange this handling
868 * a bit. (Like, searching virtual ranges before checking the
869 * physical address.)
870 */
871 }
872 }
873 /* else: !present (guest) */
874
875
876# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
877 /*
878 * Conclusion, this is a guest trap.
879 */
880 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
881 STAM_COUNTER_INC(&pVM->pgm.s.StatRZTrap0eGuestPFUnh);
882 return VINF_EM_RAW_GUEST_TRAP;
883# else
884 /* present, but not a monitored page; perhaps the guest is probing physical memory */
885 return VINF_EM_RAW_EMULATE_INSTR;
886# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
887
888
889# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
890
891 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
892 return VERR_INTERNAL_ERROR;
893# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
894}
895#endif /* !IN_RING3 */
896
897
898/**
899 * Emulation of the invlpg instruction.
900 *
901 *
902 * @returns VBox status code.
903 *
904 * @param pVM VM handle.
905 * @param GCPtrPage Page to invalidate.
906 *
907 * @remark ASSUMES that the guest is updating before invalidating. This order
908 * isn't required by the CPU, so this is speculative and could cause
909 * trouble.
910 *
911 * @todo Flush page or page directory only if necessary!
912 * @todo Add a #define for simply invalidating the page.
913 */
914PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCPTR GCPtrPage)
915{
916#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
917 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
918 && PGM_SHW_TYPE != PGM_TYPE_EPT
919 int rc;
920
921 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
922 /*
923 * Get the shadow PD entry and skip out if this PD isn't present.
924 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
925 */
926# if PGM_SHW_TYPE == PGM_TYPE_32BIT
927 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
928 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
929
930 /* Fetch the pgm pool shadow descriptor. */
931 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
932 Assert(pShwPde);
933
934# elif PGM_SHW_TYPE == PGM_TYPE_PAE
935 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
936 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
937
938 /* If the shadow PDPE isn't present, then skip the invalidate. */
939 if (!pPdptDst->a[iPdpt].n.u1Present)
940 {
941 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
942 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
943 return VINF_SUCCESS;
944 }
945
946 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
947 PPGMPOOLPAGE pShwPde;
948 PX86PDPAE pPDDst;
949
950 /* Fetch the pgm pool shadow descriptor. */
951 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
952 AssertRCSuccessReturn(rc, rc);
953 Assert(pShwPde);
954
955 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
956 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
957
958# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
959 /* PML4 */
960 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
961 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
962 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
963 PX86PDPAE pPDDst;
964 PX86PDPT pPdptDst;
965 PX86PML4E pPml4eDst;
966 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
967 if (rc != VINF_SUCCESS)
968 {
969 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
970 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
971 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
972 PGM_INVL_GUEST_TLBS();
973 return VINF_SUCCESS;
974 }
975 Assert(pPDDst);
976
977 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
978 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
979
980 if (!pPdpeDst->n.u1Present)
981 {
982 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
983 if (!VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
984 PGM_INVL_GUEST_TLBS();
985 return VINF_SUCCESS;
986 }
987
988# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
989
990 const SHWPDE PdeDst = *pPdeDst;
991 if (!PdeDst.n.u1Present)
992 {
993 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
994 return VINF_SUCCESS;
995 }
996
997 /*
998 * Get the guest PD entry and calc big page.
999 */
1000# if PGM_GST_TYPE == PGM_TYPE_32BIT
1001 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
1002 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1003 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1004# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1005 unsigned iPDSrc;
1006# if PGM_GST_TYPE == PGM_TYPE_PAE
1007 X86PDPE PdpeSrc;
1008 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1009# else /* AMD64 */
1010 PX86PML4E pPml4eSrc;
1011 X86PDPE PdpeSrc;
1012 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1013# endif
1014 GSTPDE PdeSrc;
1015
1016 if (pPDSrc)
1017 PdeSrc = pPDSrc->a[iPDSrc];
1018 else
1019 PdeSrc.u = 0;
1020# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1021
1022# if PGM_GST_TYPE == PGM_TYPE_AMD64
1023 const bool fIsBigPage = PdeSrc.b.u1Size;
1024# else
1025 const bool fIsBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1026# endif
1027
1028# ifdef IN_RING3
1029 /*
1030 * If a CR3 Sync is pending we may ignore the invalidate page operation
1031 * depending on the kind of sync and if it's a global page or not.
1032 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1033 */
1034# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1035 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
1036 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
1037 && fIsBigPage
1038 && PdeSrc.b.u1Global
1039 )
1040 )
1041# else
1042 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1043# endif
1044 {
1045 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1046 return VINF_SUCCESS;
1047 }
1048# endif /* IN_RING3 */
1049
1050# if PGM_GST_TYPE == PGM_TYPE_AMD64
1051 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1052
1053 /* Fetch the pgm pool shadow descriptor. */
1054 PPGMPOOLPAGE pShwPdpt = pgmPoolGetPageByHCPhys(pVM, pPml4eDst->u & X86_PML4E_PG_MASK);
1055 Assert(pShwPdpt);
1056
1057 /* Fetch the pgm pool shadow descriptor. */
1058 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1059 Assert(pShwPde);
1060
1061 Assert(pPml4eDst->n.u1Present && (pPml4eDst->u & SHW_PDPT_MASK));
1062 RTGCPHYS GCPhysPdpt = pPml4eSrc->u & X86_PML4E_PG_MASK;
1063
1064 if ( !pPml4eSrc->n.u1Present
1065 || pShwPdpt->GCPhys != GCPhysPdpt)
1066 {
1067 LogFlow(("InvalidatePage: Out-of-sync PML4E (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1068 GCPtrPage, pShwPdpt->GCPhys, GCPhysPdpt, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1069 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1070 pPml4eDst->u = 0;
1071 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1072 PGM_INVL_GUEST_TLBS();
1073 return VINF_SUCCESS;
1074 }
1075 if ( pPml4eSrc->n.u1User != pPml4eDst->n.u1User
1076 || (!pPml4eSrc->n.u1Write && pPml4eDst->n.u1Write))
1077 {
1078 /*
1079 * Mark not present so we can resync the PML4E when it's used.
1080 */
1081 LogFlow(("InvalidatePage: Out-of-sync PML4E at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1082 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1083 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1084 pPml4eDst->u = 0;
1085 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1086 PGM_INVL_GUEST_TLBS();
1087 }
1088 else if (!pPml4eSrc->n.u1Accessed)
1089 {
1090 /*
1091 * Mark not present so we can set the accessed bit.
1092 */
1093 LogFlow(("InvalidatePage: Out-of-sync PML4E (A) at %RGv Pml4eSrc=%RX64 Pml4eDst=%RX64\n",
1094 GCPtrPage, (uint64_t)pPml4eSrc->u, (uint64_t)pPml4eDst->u));
1095 pgmPoolFreeByPage(pPool, pShwPdpt, pVM->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4);
1096 pPml4eDst->u = 0;
1097 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1098 PGM_INVL_GUEST_TLBS();
1099 }
1100
1101 /* Check if the PDPT entry has changed. */
1102 Assert(pPdpeDst->n.u1Present && pPdpeDst->u & SHW_PDPT_MASK);
1103 RTGCPHYS GCPhysPd = PdpeSrc.u & GST_PDPE_PG_MASK;
1104 if ( !PdpeSrc.n.u1Present
1105 || pShwPde->GCPhys != GCPhysPd)
1106 {
1107 LogFlow(("InvalidatePage: Out-of-sync PDPE (P/GCPhys) at %RGv GCPhys=%RGp vs %RGp PdpeSrc=%RX64 PdpeDst=%RX64\n",
1108 GCPtrPage, pShwPde->GCPhys, GCPhysPd, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1109 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1110 pPdpeDst->u = 0;
1111 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1112 PGM_INVL_GUEST_TLBS();
1113 return VINF_SUCCESS;
1114 }
1115 if ( PdpeSrc.lm.u1User != pPdpeDst->lm.u1User
1116 || (!PdpeSrc.lm.u1Write && pPdpeDst->lm.u1Write))
1117 {
1118 /*
1119 * Mark not present so we can resync the PDPTE when it's used.
1120 */
1121 LogFlow(("InvalidatePage: Out-of-sync PDPE at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1122 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1123 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1124 pPdpeDst->u = 0;
1125 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1126 PGM_INVL_GUEST_TLBS();
1127 }
1128 else if (!PdpeSrc.lm.u1Accessed)
1129 {
1130 /*
1131 * Mark not present so we can set the accessed bit.
1132 */
1133 LogFlow(("InvalidatePage: Out-of-sync PDPE (A) at %RGv PdpeSrc=%RX64 PdpeDst=%RX64\n",
1134 GCPtrPage, (uint64_t)PdpeSrc.u, (uint64_t)pPdpeDst->u));
1135 pgmPoolFreeByPage(pPool, pShwPde, pShwPdpt->idx, iPdpt);
1136 pPdpeDst->u = 0;
1137 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1138 PGM_INVL_GUEST_TLBS();
1139 }
1140# endif /* PGM_GST_TYPE == PGM_TYPE_AMD64 */
1141
1142
1143 /*
1144 * Deal with the Guest PDE.
1145 */
1146 rc = VINF_SUCCESS;
1147 if (PdeSrc.n.u1Present)
1148 {
1149 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1150 {
1151 /*
1152 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1153 */
1154 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1155 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1156 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
1157 }
1158 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
1159 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
1160 {
1161 /*
1162 * Mark not present so we can resync the PDE when it's used.
1163 */
1164 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1165 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1166 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1167 pPdeDst->u = 0;
1168 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1169 PGM_INVL_GUEST_TLBS();
1170 }
1171 else if (!PdeSrc.n.u1Accessed)
1172 {
1173 /*
1174 * Mark not present so we can set the accessed bit.
1175 */
1176 LogFlow(("InvalidatePage: Out-of-sync (A) at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1177 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1178 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1179 pPdeDst->u = 0;
1180 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNAs));
1181 PGM_INVL_GUEST_TLBS();
1182 }
1183 else if (!fIsBigPage)
1184 {
1185 /*
1186 * 4KB - page.
1187 */
1188 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1189 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1190# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1191 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1192 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1193# endif
1194 if (pShwPage->GCPhys == GCPhys)
1195 {
1196# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1197 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1198 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1199 if (pPT->a[iPTEDst].n.u1Present)
1200 {
1201# ifdef PGMPOOL_WITH_USER_TRACKING
1202 /* This is very unlikely with caching/monitoring enabled. */
1203 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1204# endif
1205 pPT->a[iPTEDst].u = 0;
1206 }
1207# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1208 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
1209 if (RT_SUCCESS(rc))
1210 rc = VINF_SUCCESS;
1211# endif
1212 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1213 PGM_INVL_PG(GCPtrPage);
1214 }
1215 else
1216 {
1217 /*
1218 * The page table address changed.
1219 */
1220 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1221 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1222 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1223 pPdeDst->u = 0;
1224 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1225 PGM_INVL_GUEST_TLBS();
1226 }
1227 }
1228 else
1229 {
1230 /*
1231 * 2/4MB - page.
1232 */
1233 /* Before freeing the page, check if anything really changed. */
1234 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1235 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1236# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1237 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1238 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1239# endif
1240 if ( pShwPage->GCPhys == GCPhys
1241 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1242 {
1243 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1244 /** @todo PAT */
1245 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1246 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1247 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1248 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1249 {
1250 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1251 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1252 return VINF_SUCCESS;
1253 }
1254 }
1255
1256 /*
1257 * Ok, the page table is present and it's been changed in the guest.
1258 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1259 * We could do this for some flushes in GC too, but we need an algorithm for
1260 * deciding which 4MB pages containing code likely to be executed very soon.
1261 */
1262 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1263 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1264 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1265 pPdeDst->u = 0;
1266 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1267 PGM_INVL_BIG_PG(GCPtrPage);
1268 }
1269 }
1270 else
1271 {
1272 /*
1273 * Page directory is not present, mark shadow PDE not present.
1274 */
1275 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1276 {
1277 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1278 pPdeDst->u = 0;
1279 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1280 PGM_INVL_PG(GCPtrPage);
1281 }
1282 else
1283 {
1284 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1285 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1286 }
1287 }
1288
1289 return rc;
1290
1291#else /* guest real and protected mode */
1292 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1293 return VINF_SUCCESS;
1294#endif
1295}
1296
1297
1298#ifdef PGMPOOL_WITH_USER_TRACKING
1299/**
1300 * Update the tracking of shadowed pages.
1301 *
1302 * @param pVM The VM handle.
1303 * @param pShwPage The shadow page.
1304 * @param HCPhys The physical page we is being dereferenced.
1305 */
1306DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1307{
1308# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1309 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1310 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1311
1312 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1313 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1314 * 2. write protect all shadowed pages. I.e. implement caching.
1315 */
1316 /*
1317 * Find the guest address.
1318 */
1319 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1320 pRam;
1321 pRam = pRam->CTX_SUFF(pNext))
1322 {
1323 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1324 while (iPage-- > 0)
1325 {
1326 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1327 {
1328 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1329 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1330 pShwPage->cPresent--;
1331 pPool->cPresent--;
1332 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1333 return;
1334 }
1335 }
1336 }
1337
1338 for (;;)
1339 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1340# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1341 pShwPage->cPresent--;
1342 pVM->pgm.s.CTX_SUFF(pPool)->cPresent--;
1343# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1344}
1345
1346
1347/**
1348 * Update the tracking of shadowed pages.
1349 *
1350 * @param pVM The VM handle.
1351 * @param pShwPage The shadow page.
1352 * @param u16 The top 16-bit of the pPage->HCPhys.
1353 * @param pPage Pointer to the guest page. this will be modified.
1354 * @param iPTDst The index into the shadow table.
1355 */
1356DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1357{
1358# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1359 /*
1360 * Just deal with the simple first time here.
1361 */
1362 if (!u16)
1363 {
1364 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1365 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1366 }
1367 else
1368 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1369
1370 /* write back */
1371 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1372 PGM_PAGE_SET_TRACKING(pPage, u16);
1373
1374# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1375
1376 /* update statistics. */
1377 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1378 pShwPage->cPresent++;
1379 if (pShwPage->iFirstPresent > iPTDst)
1380 pShwPage->iFirstPresent = iPTDst;
1381}
1382#endif /* PGMPOOL_WITH_USER_TRACKING */
1383
1384
1385/**
1386 * Creates a 4K shadow page for a guest page.
1387 *
1388 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1389 * physical address. The PdeSrc argument only the flags are used. No page structured
1390 * will be mapped in this function.
1391 *
1392 * @param pVM VM handle.
1393 * @param pPteDst Destination page table entry.
1394 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1395 * Can safely assume that only the flags are being used.
1396 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1397 * @param pShwPage Pointer to the shadow page.
1398 * @param iPTDst The index into the shadow table.
1399 *
1400 * @remark Not used for 2/4MB pages!
1401 */
1402DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1403{
1404 if (PteSrc.n.u1Present)
1405 {
1406 /*
1407 * Find the ram range.
1408 */
1409 PPGMPAGE pPage;
1410 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1411 if (RT_SUCCESS(rc))
1412 {
1413#ifdef VBOX_WITH_NEW_PHYS_CODE
1414# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1415 /* Try make the page writable if necessary. */
1416 if ( PteSrc.n.u1Write
1417 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1418 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1419 {
1420 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1421 AssertRC(rc);
1422 }
1423# endif
1424#endif
1425
1426 /** @todo investiage PWT, PCD and PAT. */
1427 /*
1428 * Make page table entry.
1429 */
1430 SHWPTE PteDst;
1431 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1432 {
1433 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1434 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1435 {
1436#if PGM_SHW_TYPE == PGM_TYPE_EPT
1437 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1438 PteDst.n.u1Present = 1;
1439 PteDst.n.u1Execute = 1;
1440 PteDst.n.u1IgnorePAT = 1;
1441 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1442 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1443#else
1444 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1445 | PGM_PAGE_GET_HCPHYS(pPage);
1446#endif
1447 }
1448 else
1449 {
1450 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1451 PteDst.u = 0;
1452 }
1453 /** @todo count these two kinds. */
1454 }
1455 else
1456 {
1457#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1458 /*
1459 * If the page or page directory entry is not marked accessed,
1460 * we mark the page not present.
1461 */
1462 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1463 {
1464 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1465 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1466 PteDst.u = 0;
1467 }
1468 else
1469 /*
1470 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1471 * when the page is modified.
1472 */
1473 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1474 {
1475 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1476 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1477 | PGM_PAGE_GET_HCPHYS(pPage)
1478 | PGM_PTFLAGS_TRACK_DIRTY;
1479 }
1480 else
1481#endif
1482 {
1483 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1484#if PGM_SHW_TYPE == PGM_TYPE_EPT
1485 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1486 PteDst.n.u1Present = 1;
1487 PteDst.n.u1Write = 1;
1488 PteDst.n.u1Execute = 1;
1489 PteDst.n.u1IgnorePAT = 1;
1490 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1491 /* PteDst.n.u1Size = 0 */
1492#else
1493 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1494 | PGM_PAGE_GET_HCPHYS(pPage);
1495#endif
1496 }
1497 }
1498
1499#ifdef VBOX_WITH_NEW_PHYS_CODE
1500 /*
1501 * Make sure only allocated pages are mapped writable.
1502 */
1503 if ( PteDst.n.u1Write
1504 && PteDst.n.u1Present
1505 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1506 {
1507 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1508 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1509 }
1510#endif
1511
1512#ifdef PGMPOOL_WITH_USER_TRACKING
1513 /*
1514 * Keep user track up to date.
1515 */
1516 if (PteDst.n.u1Present)
1517 {
1518 if (!pPteDst->n.u1Present)
1519 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1520 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1521 {
1522 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1523 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1524 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1525 }
1526 }
1527 else if (pPteDst->n.u1Present)
1528 {
1529 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1530 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1531 }
1532#endif /* PGMPOOL_WITH_USER_TRACKING */
1533
1534 /*
1535 * Update statistics and commit the entry.
1536 */
1537#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1538 if (!PteSrc.n.u1Global)
1539 pShwPage->fSeenNonGlobal = true;
1540#endif
1541 *pPteDst = PteDst;
1542 }
1543 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1544 /** @todo count these. */
1545 }
1546 else
1547 {
1548 /*
1549 * Page not-present.
1550 */
1551 LogFlow(("SyncPageWorker: page not present in Pte\n"));
1552#ifdef PGMPOOL_WITH_USER_TRACKING
1553 /* Keep user track up to date. */
1554 if (pPteDst->n.u1Present)
1555 {
1556 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1557 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1558 }
1559#endif /* PGMPOOL_WITH_USER_TRACKING */
1560 pPteDst->u = 0;
1561 /** @todo count these. */
1562 }
1563}
1564
1565
1566/**
1567 * Syncs a guest OS page.
1568 *
1569 * There are no conflicts at this point, neither is there any need for
1570 * page table allocations.
1571 *
1572 * @returns VBox status code.
1573 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1574 * @param pVM VM handle.
1575 * @param PdeSrc Page directory entry of the guest.
1576 * @param GCPtrPage Guest context page address.
1577 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1578 * @param uErr Fault error (X86_TRAP_PF_*).
1579 */
1580PGM_BTH_DECL(int, SyncPage)(PVM pVM, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1581{
1582 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1583
1584#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1585 || PGM_GST_TYPE == PGM_TYPE_PAE \
1586 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1587 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1588 && PGM_SHW_TYPE != PGM_TYPE_EPT
1589
1590# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1591 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
1592# endif
1593
1594 /*
1595 * Assert preconditions.
1596 */
1597 Assert(PdeSrc.n.u1Present);
1598 Assert(cPages);
1599 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1600
1601 /*
1602 * Get the shadow PDE, find the shadow page table in the pool.
1603 */
1604# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1605 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1606 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
1607
1608 /* Fetch the pgm pool shadow descriptor. */
1609 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
1610 Assert(pShwPde);
1611
1612# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1613 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1614 PPGMPOOLPAGE pShwPde;
1615 PX86PDPAE pPDDst;
1616
1617 /* Fetch the pgm pool shadow descriptor. */
1618 int rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
1619 AssertRCSuccessReturn(rc, rc);
1620 Assert(pShwPde);
1621
1622 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1623 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1624
1625# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1626 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1627 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1628 PX86PDPAE pPDDst;
1629 PX86PDPT pPdptDst;
1630
1631 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1632 AssertRCSuccessReturn(rc, rc);
1633 Assert(pPDDst && pPdptDst);
1634 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1635# endif
1636
1637 SHWPDE PdeDst = *pPdeDst;
1638 AssertMsg(PdeDst.n.u1Present, ("%p=%llx\n", pPdeDst, (uint64_t)PdeDst.u));
1639 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1640
1641# if PGM_GST_TYPE == PGM_TYPE_AMD64
1642 /* Fetch the pgm pool shadow descriptor. */
1643 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1644 Assert(pShwPde);
1645# endif
1646
1647 /*
1648 * Check that the page is present and that the shadow PDE isn't out of sync.
1649 */
1650# if PGM_GST_TYPE == PGM_TYPE_AMD64
1651 const bool fBigPage = PdeSrc.b.u1Size;
1652# else
1653 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1654# endif
1655 RTGCPHYS GCPhys;
1656 if (!fBigPage)
1657 {
1658 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1659# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1660 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1661 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1662# endif
1663 }
1664 else
1665 {
1666 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1667# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1668 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1669 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1670# endif
1671 }
1672 if ( pShwPage->GCPhys == GCPhys
1673 && PdeSrc.n.u1Present
1674 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1675 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1676# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1677 && (!fNoExecuteBitValid || PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute)
1678# endif
1679 )
1680 {
1681 /*
1682 * Check that the PDE is marked accessed already.
1683 * Since we set the accessed bit *before* getting here on a #PF, this
1684 * check is only meant for dealing with non-#PF'ing paths.
1685 */
1686 if (PdeSrc.n.u1Accessed)
1687 {
1688 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1689 if (!fBigPage)
1690 {
1691 /*
1692 * 4KB Page - Map the guest page table.
1693 */
1694 PGSTPT pPTSrc;
1695 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1696 if (RT_SUCCESS(rc))
1697 {
1698# ifdef PGM_SYNC_N_PAGES
1699 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1700 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1701 {
1702 /*
1703 * This code path is currently only taken when the caller is PGMTrap0eHandler
1704 * for non-present pages!
1705 *
1706 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1707 * deal with locality.
1708 */
1709 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1710# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1711 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1712 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1713# else
1714 const unsigned offPTSrc = 0;
1715# endif
1716 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1717 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1718 iPTDst = 0;
1719 else
1720 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1721 for (; iPTDst < iPTDstEnd; iPTDst++)
1722 {
1723 if (!pPTDst->a[iPTDst].n.u1Present)
1724 {
1725 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1726 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1727 NOREF(GCPtrCurPage);
1728#ifndef IN_RING0
1729 /*
1730 * Assuming kernel code will be marked as supervisor - and not as user level
1731 * and executed using a conforming code selector - And marked as readonly.
1732 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1733 */
1734 PPGMPAGE pPage;
1735 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1736 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1737 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)GCPtrCurPage)
1738 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1739 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1740 )
1741#endif /* else: CSAM not active */
1742 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1743 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1744 GCPtrCurPage, PteSrc.n.u1Present,
1745 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1746 PteSrc.n.u1User & PdeSrc.n.u1User,
1747 (uint64_t)PteSrc.u,
1748 (uint64_t)pPTDst->a[iPTDst].u,
1749 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1750 }
1751 }
1752 }
1753 else
1754# endif /* PGM_SYNC_N_PAGES */
1755 {
1756 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1757 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1758 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1759 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1760 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1761 GCPtrPage, PteSrc.n.u1Present,
1762 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1763 PteSrc.n.u1User & PdeSrc.n.u1User,
1764 (uint64_t)PteSrc.u,
1765 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1766 }
1767 }
1768 else /* MMIO or invalid page: emulated in #PF handler. */
1769 {
1770 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1771 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1772 }
1773 }
1774 else
1775 {
1776 /*
1777 * 4/2MB page - lazy syncing shadow 4K pages.
1778 * (There are many causes of getting here, it's no longer only CSAM.)
1779 */
1780 /* Calculate the GC physical address of this 4KB shadow page. */
1781 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1782 /* Find ram range. */
1783 PPGMPAGE pPage;
1784 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1785 if (RT_SUCCESS(rc))
1786 {
1787# ifdef VBOX_WITH_NEW_PHYS_CODE
1788# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1789 /* Try make the page writable if necessary. */
1790 if ( PdeSrc.n.u1Write
1791 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1792 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1793 {
1794 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
1795 AssertRC(rc);
1796 }
1797# endif
1798# endif
1799
1800 /*
1801 * Make shadow PTE entry.
1802 */
1803 SHWPTE PteDst;
1804 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1805 | PGM_PAGE_GET_HCPHYS(pPage);
1806 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1807 {
1808 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1809 PteDst.n.u1Write = 0;
1810 else
1811 PteDst.u = 0;
1812 }
1813 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1814# ifdef PGMPOOL_WITH_USER_TRACKING
1815 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1816 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1817# endif
1818# ifdef VBOX_WITH_NEW_PHYS_CODE
1819 /* Make sure only allocated pages are mapped writable. */
1820 if ( PteDst.n.u1Write
1821 && PteDst.n.u1Present
1822 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1823 {
1824 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1825 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1826 }
1827# endif
1828
1829 pPTDst->a[iPTDst] = PteDst;
1830
1831
1832 /*
1833 * If the page is not flagged as dirty and is writable, then make it read-only
1834 * at PD level, so we can set the dirty bit when the page is modified.
1835 *
1836 * ASSUMES that page access handlers are implemented on page table entry level.
1837 * Thus we will first catch the dirty access and set PDE.D and restart. If
1838 * there is an access handler, we'll trap again and let it work on the problem.
1839 */
1840 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1841 * As for invlpg, it simply frees the whole shadow PT.
1842 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1843 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1844 {
1845 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1846 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1847 PdeDst.n.u1Write = 0;
1848 }
1849 else
1850 {
1851 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1852 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1853 }
1854 *pPdeDst = PdeDst;
1855 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1856 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1857 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1858 }
1859 else
1860 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1861 }
1862 return VINF_SUCCESS;
1863 }
1864 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1865 }
1866 else
1867 {
1868 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1869 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1870 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1871 }
1872
1873 /*
1874 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1875 * Yea, I'm lazy.
1876 */
1877 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1878 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1879
1880 pPdeDst->u = 0;
1881 PGM_INVL_GUEST_TLBS();
1882 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1883
1884#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1885 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1886 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
1887
1888# ifdef PGM_SYNC_N_PAGES
1889 /*
1890 * Get the shadow PDE, find the shadow page table in the pool.
1891 */
1892# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1893 X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
1894
1895# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1896 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVM->pgm.s, GCPtrPage);
1897
1898# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1899 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1900 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1901 PX86PDPAE pPDDst;
1902 X86PDEPAE PdeDst;
1903 PX86PDPT pPdptDst;
1904
1905 int rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1906 AssertRCSuccessReturn(rc, rc);
1907 Assert(pPDDst && pPdptDst);
1908 PdeDst = pPDDst->a[iPDDst];
1909# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1910 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1911 PEPTPD pPDDst;
1912 EPTPDE PdeDst;
1913
1914 int rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, NULL, &pPDDst);
1915 if (rc != VINF_SUCCESS)
1916 {
1917 AssertRC(rc);
1918 return rc;
1919 }
1920 Assert(pPDDst);
1921 PdeDst = pPDDst->a[iPDDst];
1922# endif
1923 AssertMsg(PdeDst.n.u1Present, ("%#llx\n", (uint64_t)PdeDst.u));
1924 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1925 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1926
1927 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1928 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1929 {
1930 /*
1931 * This code path is currently only taken when the caller is PGMTrap0eHandler
1932 * for non-present pages!
1933 *
1934 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1935 * deal with locality.
1936 */
1937 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1938 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1939 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1940 iPTDst = 0;
1941 else
1942 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1943 for (; iPTDst < iPTDstEnd; iPTDst++)
1944 {
1945 if (!pPTDst->a[iPTDst].n.u1Present)
1946 {
1947 GSTPTE PteSrc;
1948
1949 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1950
1951 /* Fake the page table entry */
1952 PteSrc.u = GCPtrCurPage;
1953 PteSrc.n.u1Present = 1;
1954 PteSrc.n.u1Dirty = 1;
1955 PteSrc.n.u1Accessed = 1;
1956 PteSrc.n.u1Write = 1;
1957 PteSrc.n.u1User = 1;
1958
1959 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1960
1961 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1962 GCPtrCurPage, PteSrc.n.u1Present,
1963 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1964 PteSrc.n.u1User & PdeSrc.n.u1User,
1965 (uint64_t)PteSrc.u,
1966 (uint64_t)pPTDst->a[iPTDst].u,
1967 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1968 }
1969 else
1970 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1971 }
1972 }
1973 else
1974# endif /* PGM_SYNC_N_PAGES */
1975 {
1976 GSTPTE PteSrc;
1977 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1978 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1979
1980 /* Fake the page table entry */
1981 PteSrc.u = GCPtrCurPage;
1982 PteSrc.n.u1Present = 1;
1983 PteSrc.n.u1Dirty = 1;
1984 PteSrc.n.u1Accessed = 1;
1985 PteSrc.n.u1Write = 1;
1986 PteSrc.n.u1User = 1;
1987 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1988
1989 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1990 GCPtrPage, PteSrc.n.u1Present,
1991 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1992 PteSrc.n.u1User & PdeSrc.n.u1User,
1993 (uint64_t)PteSrc.u,
1994 (uint64_t)pPTDst->a[iPTDst].u,
1995 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1996 }
1997 return VINF_SUCCESS;
1998
1999#else
2000 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2001 return VERR_INTERNAL_ERROR;
2002#endif
2003}
2004
2005
2006#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2007/**
2008 * Investigate page fault and handle write protection page faults caused by
2009 * dirty bit tracking.
2010 *
2011 * @returns VBox status code.
2012 * @param pVM VM handle.
2013 * @param uErr Page fault error code.
2014 * @param pPdeDst Shadow page directory entry.
2015 * @param pPdeSrc Guest page directory entry.
2016 * @param GCPtrPage Guest context page address.
2017 */
2018PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2019{
2020 bool fWriteProtect = !!(CPUMGetGuestCR0(pVM) & X86_CR0_WP);
2021 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2022 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2023# if PGM_GST_TYPE == PGM_TYPE_AMD64
2024 bool fBigPagesSupported = true;
2025# else
2026 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2027# endif
2028# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2029 bool fNoExecuteBitValid = !!(CPUMGetGuestEFER(pVM) & MSR_K6_EFER_NXE);
2030# endif
2031 unsigned uPageFaultLevel;
2032 int rc;
2033
2034 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2035 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2036
2037# if PGM_GST_TYPE == PGM_TYPE_PAE \
2038 || PGM_GST_TYPE == PGM_TYPE_AMD64
2039
2040# if PGM_GST_TYPE == PGM_TYPE_AMD64
2041 PX86PML4E pPml4eSrc;
2042 PX86PDPE pPdpeSrc;
2043
2044 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc);
2045 Assert(pPml4eSrc);
2046
2047 /*
2048 * Real page fault? (PML4E level)
2049 */
2050 if ( (uErr & X86_TRAP_PF_RSVD)
2051 || !pPml4eSrc->n.u1Present
2052 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPml4eSrc->n.u1NoExecute)
2053 || (fWriteFault && !pPml4eSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2054 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2055 )
2056 {
2057 uPageFaultLevel = 0;
2058 goto l_UpperLevelPageFault;
2059 }
2060 Assert(pPdpeSrc);
2061
2062# else /* PAE */
2063 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVM->pgm.s, GCPtrPage);
2064# endif /* PAE */
2065
2066 /*
2067 * Real page fault? (PDPE level)
2068 */
2069 if ( (uErr & X86_TRAP_PF_RSVD)
2070 || !pPdpeSrc->n.u1Present
2071# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2072 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdpeSrc->lm.u1NoExecute)
2073 || (fWriteFault && !pPdpeSrc->lm.u1Write && (fUserLevelFault || fWriteProtect))
2074 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2075# endif
2076 )
2077 {
2078 uPageFaultLevel = 1;
2079 goto l_UpperLevelPageFault;
2080 }
2081# endif
2082
2083 /*
2084 * Real page fault? (PDE level)
2085 */
2086 if ( (uErr & X86_TRAP_PF_RSVD)
2087 || !pPdeSrc->n.u1Present
2088# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2089 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && pPdeSrc->n.u1NoExecute)
2090# endif
2091 || (fWriteFault && !pPdeSrc->n.u1Write && (fUserLevelFault || fWriteProtect))
2092 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2093 {
2094 uPageFaultLevel = 2;
2095 goto l_UpperLevelPageFault;
2096 }
2097
2098 /*
2099 * First check the easy case where the page directory has been marked read-only to track
2100 * the dirty bit of an emulated BIG page
2101 */
2102 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2103 {
2104 /* Mark guest page directory as accessed */
2105# if PGM_GST_TYPE == PGM_TYPE_AMD64
2106 pPml4eSrc->n.u1Accessed = 1;
2107 pPdpeSrc->lm.u1Accessed = 1;
2108# endif
2109 pPdeSrc->b.u1Accessed = 1;
2110
2111 /*
2112 * Only write protection page faults are relevant here.
2113 */
2114 if (fWriteFault)
2115 {
2116 /* Mark guest page directory as dirty (BIG page only). */
2117 pPdeSrc->b.u1Dirty = 1;
2118
2119 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2120 {
2121 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2122
2123 Assert(pPdeSrc->b.u1Write);
2124
2125 pPdeDst->n.u1Write = 1;
2126 pPdeDst->n.u1Accessed = 1;
2127 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2128 PGM_INVL_BIG_PG(GCPtrPage);
2129 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2130 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2131 }
2132 }
2133 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2134 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2135 }
2136 /* else: 4KB page table */
2137
2138 /*
2139 * Map the guest page table.
2140 */
2141 PGSTPT pPTSrc;
2142 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2143 if (RT_SUCCESS(rc))
2144 {
2145 /*
2146 * Real page fault?
2147 */
2148 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2149 const GSTPTE PteSrc = *pPteSrc;
2150 if ( !PteSrc.n.u1Present
2151# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2152 || (fNoExecuteBitValid && (uErr & X86_TRAP_PF_ID) && PteSrc.n.u1NoExecute)
2153# endif
2154 || (fWriteFault && !PteSrc.n.u1Write && (fUserLevelFault || fWriteProtect))
2155 || (fUserLevelFault && !PteSrc.n.u1User)
2156 )
2157 {
2158 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2159 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2160 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2161
2162 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2163 * See the 2nd case above as well.
2164 */
2165 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2166 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2167
2168 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2169 return VINF_EM_RAW_GUEST_TRAP;
2170 }
2171 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2172
2173 /*
2174 * Set the accessed bits in the page directory and the page table.
2175 */
2176# if PGM_GST_TYPE == PGM_TYPE_AMD64
2177 pPml4eSrc->n.u1Accessed = 1;
2178 pPdpeSrc->lm.u1Accessed = 1;
2179# endif
2180 pPdeSrc->n.u1Accessed = 1;
2181 pPteSrc->n.u1Accessed = 1;
2182
2183 /*
2184 * Only write protection page faults are relevant here.
2185 */
2186 if (fWriteFault)
2187 {
2188 /* Write access, so mark guest entry as dirty. */
2189# ifdef VBOX_WITH_STATISTICS
2190 if (!pPteSrc->n.u1Dirty)
2191 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2192 else
2193 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2194# endif
2195
2196 pPteSrc->n.u1Dirty = 1;
2197
2198 if (pPdeDst->n.u1Present)
2199 {
2200#ifndef IN_RING0
2201 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2202 * Our individual shadow handlers will provide more information and force a fatal exit.
2203 */
2204 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2205 {
2206 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2207 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2208 return VINF_SUCCESS;
2209 }
2210#endif
2211 /*
2212 * Map shadow page table.
2213 */
2214 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2215 if (pShwPage)
2216 {
2217 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2218 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2219 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
2220 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
2221 {
2222 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2223# ifdef VBOX_STRICT
2224 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2225 if (pPage)
2226 AssertMsg(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage),
2227 ("Unexpected dirty bit tracking on monitored page %RGv (phys %RGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
2228# endif
2229 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2230
2231 Assert(pPteSrc->n.u1Write);
2232
2233 pPteDst->n.u1Write = 1;
2234 pPteDst->n.u1Dirty = 1;
2235 pPteDst->n.u1Accessed = 1;
2236 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2237 PGM_INVL_PG(GCPtrPage);
2238
2239 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2240 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
2241 }
2242 }
2243 else
2244 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2245 }
2246 }
2247/** @todo Optimize accessed bit emulation? */
2248# ifdef VBOX_STRICT
2249 /*
2250 * Sanity check.
2251 */
2252 else if ( !pPteSrc->n.u1Dirty
2253 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
2254 && pPdeDst->n.u1Present)
2255 {
2256 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
2257 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2258 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2259 if ( pPteDst->n.u1Present
2260 && pPteDst->n.u1Write)
2261 LogFlow(("Writable present page %RGv not marked for dirty bit tracking!!!\n", GCPtrPage));
2262 }
2263# endif /* VBOX_STRICT */
2264 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2265 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2266 }
2267 AssertRC(rc);
2268 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2269 return rc;
2270
2271
2272l_UpperLevelPageFault:
2273 /*
2274 * Pagefault detected while checking the PML4E, PDPE or PDE.
2275 * Single exit handler to get rid of duplicate code paths.
2276 */
2277 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2278 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
2279 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2280
2281 if (
2282# if PGM_GST_TYPE == PGM_TYPE_AMD64
2283 pPml4eSrc->n.u1Present &&
2284# endif
2285# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2286 pPdpeSrc->n.u1Present &&
2287# endif
2288 pPdeSrc->n.u1Present)
2289 {
2290 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2291 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2292 {
2293 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2294 }
2295 else
2296 {
2297 /*
2298 * Map the guest page table.
2299 */
2300 PGSTPT pPTSrc;
2301 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2302 if (RT_SUCCESS(rc))
2303 {
2304 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2305 const GSTPTE PteSrc = *pPteSrc;
2306 if (pPteSrc->n.u1Present)
2307 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2308 }
2309 AssertRC(rc);
2310 }
2311 }
2312 return VINF_EM_RAW_GUEST_TRAP;
2313}
2314#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2315
2316
2317/**
2318 * Sync a shadow page table.
2319 *
2320 * The shadow page table is not present. This includes the case where
2321 * there is a conflict with a mapping.
2322 *
2323 * @returns VBox status code.
2324 * @param pVM VM handle.
2325 * @param iPD Page directory index.
2326 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2327 * Assume this is a temporary mapping.
2328 * @param GCPtrPage GC Pointer of the page that caused the fault
2329 */
2330PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2331{
2332 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2333 STAM_COUNTER_INC(&pVM->pgm.s.StatSyncPtPD[iPDSrc]);
2334 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2335
2336#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2337 || PGM_GST_TYPE == PGM_TYPE_PAE \
2338 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2339 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2340 && PGM_SHW_TYPE != PGM_TYPE_EPT
2341
2342 int rc = VINF_SUCCESS;
2343
2344 /*
2345 * Validate input a little bit.
2346 */
2347 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2348# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2349 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2350 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2351
2352 /* Fetch the pgm pool shadow descriptor. */
2353 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2354 Assert(pShwPde);
2355
2356# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2357 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2358 PPGMPOOLPAGE pShwPde;
2359 PX86PDPAE pPDDst;
2360 PSHWPDE pPdeDst;
2361
2362 /* Fetch the pgm pool shadow descriptor. */
2363 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2364 AssertRCSuccessReturn(rc, rc);
2365 Assert(pShwPde);
2366
2367 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2368 pPdeDst = &pPDDst->a[iPDDst];
2369
2370# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2371 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2372 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2373 PX86PDPAE pPDDst;
2374 PX86PDPT pPdptDst;
2375 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2376 AssertRCSuccessReturn(rc, rc);
2377 Assert(pPDDst);
2378 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2379# endif
2380 SHWPDE PdeDst = *pPdeDst;
2381
2382# if PGM_GST_TYPE == PGM_TYPE_AMD64
2383 /* Fetch the pgm pool shadow descriptor. */
2384 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2385 Assert(pShwPde);
2386# endif
2387
2388# ifndef PGM_WITHOUT_MAPPINGS
2389 /*
2390 * Check for conflicts.
2391 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2392 * HC: Simply resolve the conflict.
2393 */
2394 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2395 {
2396 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2397# ifndef IN_RING3
2398 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2399 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2400 return VERR_ADDRESS_CONFLICT;
2401# else
2402 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2403 Assert(pMapping);
2404# if PGM_GST_TYPE == PGM_TYPE_32BIT
2405 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2406# elif PGM_GST_TYPE == PGM_TYPE_PAE
2407 int rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2408# else
2409 AssertFailed(); /* can't happen for amd64 */
2410# endif
2411 if (RT_FAILURE(rc))
2412 {
2413 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2414 return rc;
2415 }
2416 PdeDst = *pPdeDst;
2417# endif
2418 }
2419# else /* PGM_WITHOUT_MAPPINGS */
2420 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
2421# endif /* PGM_WITHOUT_MAPPINGS */
2422 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2423
2424# if defined(IN_RC)
2425 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2426 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2427# endif
2428
2429 /*
2430 * Sync page directory entry.
2431 */
2432 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2433 if (PdeSrc.n.u1Present)
2434 {
2435 /*
2436 * Allocate & map the page table.
2437 */
2438 PSHWPT pPTDst;
2439# if PGM_GST_TYPE == PGM_TYPE_AMD64
2440 const bool fPageTable = !PdeSrc.b.u1Size;
2441# else
2442 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2443# endif
2444 PPGMPOOLPAGE pShwPage;
2445 RTGCPHYS GCPhys;
2446 if (fPageTable)
2447 {
2448 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2449# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2450 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2451 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2452# endif
2453 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2454 }
2455 else
2456 {
2457 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2458# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2459 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2460 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2461# endif
2462 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, pShwPde->idx, iPDDst, &pShwPage);
2463 }
2464 if (rc == VINF_SUCCESS)
2465 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2466 else if (rc == VINF_PGM_CACHED_PAGE)
2467 {
2468 /*
2469 * The PT was cached, just hook it up.
2470 */
2471 if (fPageTable)
2472 PdeDst.u = pShwPage->Core.Key
2473 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2474 else
2475 {
2476 PdeDst.u = pShwPage->Core.Key
2477 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2478 /* (see explanation and assumptions further down.) */
2479 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2480 {
2481 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2482 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2483 PdeDst.b.u1Write = 0;
2484 }
2485 }
2486 *pPdeDst = PdeDst;
2487# if defined(IN_RC)
2488 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2489# endif
2490 return VINF_SUCCESS;
2491 }
2492 else if (rc == VERR_PGM_POOL_FLUSHED)
2493 {
2494 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2495# if defined(IN_RC)
2496 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2497# endif
2498 return VINF_PGM_SYNC_CR3;
2499 }
2500 else
2501 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2502 PdeDst.u &= X86_PDE_AVL_MASK;
2503 PdeDst.u |= pShwPage->Core.Key;
2504
2505 /*
2506 * Page directory has been accessed (this is a fault situation, remember).
2507 */
2508 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2509 if (fPageTable)
2510 {
2511 /*
2512 * Page table - 4KB.
2513 *
2514 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2515 */
2516 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2517 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2518 PGSTPT pPTSrc;
2519 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2520 if (RT_SUCCESS(rc))
2521 {
2522 /*
2523 * Start by syncing the page directory entry so CSAM's TLB trick works.
2524 */
2525 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2526 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2527 *pPdeDst = PdeDst;
2528# if defined(IN_RC)
2529 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2530# endif
2531
2532 /*
2533 * Directory/page user or supervisor privilege: (same goes for read/write)
2534 *
2535 * Directory Page Combined
2536 * U/S U/S U/S
2537 * 0 0 0
2538 * 0 1 0
2539 * 1 0 0
2540 * 1 1 1
2541 *
2542 * Simple AND operation. Table listed for completeness.
2543 *
2544 */
2545 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2546# ifdef PGM_SYNC_N_PAGES
2547 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2548 unsigned iPTDst = iPTBase;
2549 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2550 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2551 iPTDst = 0;
2552 else
2553 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2554# else /* !PGM_SYNC_N_PAGES */
2555 unsigned iPTDst = 0;
2556 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2557# endif /* !PGM_SYNC_N_PAGES */
2558# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2559 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2560 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2561# else
2562 const unsigned offPTSrc = 0;
2563# endif
2564 for (; iPTDst < iPTDstEnd; iPTDst++)
2565 {
2566 const unsigned iPTSrc = iPTDst + offPTSrc;
2567 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2568
2569 if (PteSrc.n.u1Present) /* we've already cleared it above */
2570 {
2571# ifndef IN_RING0
2572 /*
2573 * Assuming kernel code will be marked as supervisor - and not as user level
2574 * and executed using a conforming code selector - And marked as readonly.
2575 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2576 */
2577 PPGMPAGE pPage;
2578 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2579 || !CSAMDoesPageNeedScanning(pVM, (RTRCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2580 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2581 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2582 )
2583# endif
2584 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2585 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2586 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2587 PteSrc.n.u1Present,
2588 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2589 PteSrc.n.u1User & PdeSrc.n.u1User,
2590 (uint64_t)PteSrc.u,
2591 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2592 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2593 }
2594 } /* for PTEs */
2595 }
2596 }
2597 else
2598 {
2599 /*
2600 * Big page - 2/4MB.
2601 *
2602 * We'll walk the ram range list in parallel and optimize lookups.
2603 * We will only sync on shadow page table at a time.
2604 */
2605 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2606
2607 /**
2608 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2609 */
2610
2611 /*
2612 * Start by syncing the page directory entry.
2613 */
2614 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2615 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2616
2617 /*
2618 * If the page is not flagged as dirty and is writable, then make it read-only
2619 * at PD level, so we can set the dirty bit when the page is modified.
2620 *
2621 * ASSUMES that page access handlers are implemented on page table entry level.
2622 * Thus we will first catch the dirty access and set PDE.D and restart. If
2623 * there is an access handler, we'll trap again and let it work on the problem.
2624 */
2625 /** @todo move the above stuff to a section in the PGM documentation. */
2626 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2627 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2628 {
2629 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2630 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2631 PdeDst.b.u1Write = 0;
2632 }
2633 *pPdeDst = PdeDst;
2634# if defined(IN_RC)
2635 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2636# endif
2637
2638 /*
2639 * Fill the shadow page table.
2640 */
2641 /* Get address and flags from the source PDE. */
2642 SHWPTE PteDstBase;
2643 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2644
2645 /* Loop thru the entries in the shadow PT. */
2646 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2647 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2648 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2649 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2650 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2651 unsigned iPTDst = 0;
2652 while (iPTDst < RT_ELEMENTS(pPTDst->a))
2653 {
2654 /* Advance ram range list. */
2655 while (pRam && GCPhys > pRam->GCPhysLast)
2656 pRam = pRam->CTX_SUFF(pNext);
2657 if (pRam && GCPhys >= pRam->GCPhys)
2658 {
2659 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2660 do
2661 {
2662 /* Make shadow PTE. */
2663 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2664 SHWPTE PteDst;
2665
2666# ifdef VBOX_WITH_NEW_PHYS_CODE
2667# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2668 /* Try make the page writable if necessary. */
2669 if ( PteDstBase.n.u1Write
2670 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2671 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2672 {
2673 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
2674 AssertRCReturn(rc, rc);
2675 }
2676# endif
2677# else /* !VBOX_WITH_NEW_PHYS_CODE */
2678 /* Make sure the RAM has already been allocated. */
2679 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) /** @todo PAGE FLAGS */
2680 {
2681 if (RT_UNLIKELY(!PGM_PAGE_GET_HCPHYS(pPage)))
2682 {
2683# ifdef IN_RING3
2684 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2685# else
2686 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2687# endif
2688 if (rc != VINF_SUCCESS)
2689 return rc;
2690 }
2691 }
2692# endif /* !VBOX_WITH_NEW_PHYS_CODE */
2693
2694 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2695 {
2696 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2697 {
2698 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2699 PteDst.n.u1Write = 0;
2700 }
2701 else
2702 PteDst.u = 0;
2703 }
2704# ifndef IN_RING0
2705 /*
2706 * Assuming kernel code will be marked as supervisor and not as user level and executed
2707 * using a conforming code selector. Don't check for readonly, as that implies the whole
2708 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2709 */
2710 else if ( !PdeSrc.n.u1User
2711 && CSAMDoesPageNeedScanning(pVM, (RTRCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2712 PteDst.u = 0;
2713# endif
2714 else
2715 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2716
2717# ifdef VBOX_WITH_NEW_PHYS_CODE
2718 /* Only map writable pages writable. */
2719 if ( PteDst.n.u1Write
2720 && PteDst.n.u1Present
2721 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2722 {
2723 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2724 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2725 }
2726# endif
2727
2728# ifdef PGMPOOL_WITH_USER_TRACKING
2729 if (PteDst.n.u1Present)
2730 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2731# endif
2732 /* commit it */
2733 pPTDst->a[iPTDst] = PteDst;
2734 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2735 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2736 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2737
2738 /* advance */
2739 GCPhys += PAGE_SIZE;
2740 iHCPage++;
2741 iPTDst++;
2742 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2743 && GCPhys <= pRam->GCPhysLast);
2744 }
2745 else if (pRam)
2746 {
2747 Log(("Invalid pages at %RGp\n", GCPhys));
2748 do
2749 {
2750 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2751 GCPhys += PAGE_SIZE;
2752 iPTDst++;
2753 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2754 && GCPhys < pRam->GCPhys);
2755 }
2756 else
2757 {
2758 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2759 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2760 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2761 }
2762 } /* while more PTEs */
2763 } /* 4KB / 4MB */
2764 }
2765 else
2766 AssertRelease(!PdeDst.n.u1Present);
2767
2768 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2769 if (RT_FAILURE(rc))
2770 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2771 return rc;
2772
2773#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2774 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2775 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
2776
2777
2778 /*
2779 * Validate input a little bit.
2780 */
2781 int rc = VINF_SUCCESS;
2782# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2783 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2784 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
2785
2786 /* Fetch the pgm pool shadow descriptor. */
2787 PPGMPOOLPAGE pShwPde = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
2788 Assert(pShwPde);
2789
2790# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2791 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2792 PPGMPOOLPAGE pShwPde;
2793 PX86PDPAE pPDDst;
2794 PSHWPDE pPdeDst;
2795
2796 /* Fetch the pgm pool shadow descriptor. */
2797 rc = pgmShwGetPaePoolPagePD(&pVM->pgm.s, GCPtrPage, &pShwPde);
2798 AssertRCSuccessReturn(rc, rc);
2799 Assert(pShwPde);
2800
2801 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2802 pPdeDst = &pPDDst->a[iPDDst];
2803
2804# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2805 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2806 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2807 PX86PDPAE pPDDst;
2808 PX86PDPT pPdptDst;
2809 rc = pgmShwGetLongModePDPtr(pVM, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2810 AssertRCSuccessReturn(rc, rc);
2811 Assert(pPDDst);
2812 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2813
2814 /* Fetch the pgm pool shadow descriptor. */
2815 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2816 Assert(pShwPde);
2817
2818# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2819 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2820 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2821 PEPTPD pPDDst;
2822 PEPTPDPT pPdptDst;
2823
2824 rc = pgmShwGetEPTPDPtr(pVM, GCPtrPage, &pPdptDst, &pPDDst);
2825 if (rc != VINF_SUCCESS)
2826 {
2827 AssertRC(rc);
2828 return rc;
2829 }
2830 Assert(pPDDst);
2831 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2832
2833 /* Fetch the pgm pool shadow descriptor. */
2834 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(pVM, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2835 Assert(pShwPde);
2836# endif
2837 SHWPDE PdeDst = *pPdeDst;
2838
2839 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2840 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2841
2842 GSTPDE PdeSrc;
2843 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2844 PdeSrc.n.u1Present = 1;
2845 PdeSrc.n.u1Write = 1;
2846 PdeSrc.n.u1Accessed = 1;
2847 PdeSrc.n.u1User = 1;
2848
2849 /*
2850 * Allocate & map the page table.
2851 */
2852 PSHWPT pPTDst;
2853 PPGMPOOLPAGE pShwPage;
2854 RTGCPHYS GCPhys;
2855
2856 /* Virtual address = physical address */
2857 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2858 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2859
2860 if ( rc == VINF_SUCCESS
2861 || rc == VINF_PGM_CACHED_PAGE)
2862 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2863 else
2864 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2865
2866 PdeDst.u &= X86_PDE_AVL_MASK;
2867 PdeDst.u |= pShwPage->Core.Key;
2868 PdeDst.n.u1Present = 1;
2869 PdeDst.n.u1Write = 1;
2870# if PGM_SHW_TYPE == PGM_TYPE_EPT
2871 PdeDst.n.u1Execute = 1;
2872# else
2873 PdeDst.n.u1User = 1;
2874 PdeDst.n.u1Accessed = 1;
2875# endif
2876 *pPdeDst = PdeDst;
2877
2878 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2879 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2880 return rc;
2881
2882#else
2883 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2884 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2885 return VERR_INTERNAL_ERROR;
2886#endif
2887}
2888
2889
2890
2891/**
2892 * Prefetch a page/set of pages.
2893 *
2894 * Typically used to sync commonly used pages before entering raw mode
2895 * after a CR3 reload.
2896 *
2897 * @returns VBox status code.
2898 * @param pVM VM handle.
2899 * @param GCPtrPage Page to invalidate.
2900 */
2901PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCPTR GCPtrPage)
2902{
2903#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2904 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
2905 /*
2906 * Check that all Guest levels thru the PDE are present, getting the
2907 * PD and PDE in the processes.
2908 */
2909 int rc = VINF_SUCCESS;
2910# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2911# if PGM_GST_TYPE == PGM_TYPE_32BIT
2912 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
2913 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
2914# elif PGM_GST_TYPE == PGM_TYPE_PAE
2915 unsigned iPDSrc;
2916 X86PDPE PdpeSrc;
2917 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
2918 if (!pPDSrc)
2919 return VINF_SUCCESS; /* not present */
2920# elif PGM_GST_TYPE == PGM_TYPE_AMD64
2921 unsigned iPDSrc;
2922 PX86PML4E pPml4eSrc;
2923 X86PDPE PdpeSrc;
2924 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
2925 if (!pPDSrc)
2926 return VINF_SUCCESS; /* not present */
2927# endif
2928 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2929# else
2930 PGSTPD pPDSrc = NULL;
2931 const unsigned iPDSrc = 0;
2932 GSTPDE PdeSrc;
2933
2934 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2935 PdeSrc.n.u1Present = 1;
2936 PdeSrc.n.u1Write = 1;
2937 PdeSrc.n.u1Accessed = 1;
2938 PdeSrc.n.u1User = 1;
2939# endif
2940
2941 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2942 {
2943# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2944 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVM->pgm.s, GCPtrPage);
2945# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2946 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2947 PX86PDPAE pPDDst;
2948 X86PDEPAE PdeDst;
2949# if PGM_GST_TYPE != PGM_TYPE_PAE
2950 X86PDPE PdpeSrc;
2951
2952 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
2953 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
2954# endif
2955 int rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
2956 if (rc != VINF_SUCCESS)
2957 {
2958 AssertRC(rc);
2959 return rc;
2960 }
2961 Assert(pPDDst);
2962 PdeDst = pPDDst->a[iPDDst];
2963
2964# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2965 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2966 PX86PDPAE pPDDst;
2967 X86PDEPAE PdeDst;
2968
2969# if PGM_GST_TYPE == PGM_TYPE_PROT
2970 /* AMD-V nested paging */
2971 X86PML4E Pml4eSrc;
2972 X86PDPE PdpeSrc;
2973 PX86PML4E pPml4eSrc = &Pml4eSrc;
2974
2975 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
2976 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
2977 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
2978# endif
2979
2980 int rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
2981 if (rc != VINF_SUCCESS)
2982 {
2983 AssertRC(rc);
2984 return rc;
2985 }
2986 Assert(pPDDst);
2987 PdeDst = pPDDst->a[iPDDst];
2988# endif
2989 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2990 {
2991 if (!PdeDst.n.u1Present)
2992 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2993 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2994 else
2995 {
2996 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2997 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2998 * makes no sense to prefetch more than one page.
2999 */
3000 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3001 if (RT_SUCCESS(rc))
3002 rc = VINF_SUCCESS;
3003 }
3004 }
3005 }
3006 return rc;
3007
3008#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3009 return VINF_SUCCESS; /* ignore */
3010#endif
3011}
3012
3013
3014
3015
3016/**
3017 * Syncs a page during a PGMVerifyAccess() call.
3018 *
3019 * @returns VBox status code (informational included).
3020 * @param GCPtrPage The address of the page to sync.
3021 * @param fPage The effective guest page flags.
3022 * @param uErr The trap error code.
3023 */
3024PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3025{
3026 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3027
3028 Assert(!HWACCMIsNestedPagingActive(pVM));
3029#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3030 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3031
3032# ifndef IN_RING0
3033 if (!(fPage & X86_PTE_US))
3034 {
3035 /*
3036 * Mark this page as safe.
3037 */
3038 /** @todo not correct for pages that contain both code and data!! */
3039 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3040 CSAMMarkPage(pVM, (RTRCPTR)GCPtrPage, true);
3041 }
3042# endif
3043
3044 /*
3045 * Get guest PD and index.
3046 */
3047# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3048# if PGM_GST_TYPE == PGM_TYPE_32BIT
3049 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3050 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3051# elif PGM_GST_TYPE == PGM_TYPE_PAE
3052 unsigned iPDSrc;
3053 X86PDPE PdpeSrc;
3054 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3055
3056 if (pPDSrc)
3057 {
3058 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3059 return VINF_EM_RAW_GUEST_TRAP;
3060 }
3061# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3062 unsigned iPDSrc;
3063 PX86PML4E pPml4eSrc;
3064 X86PDPE PdpeSrc;
3065 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3066 if (!pPDSrc)
3067 {
3068 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3069 return VINF_EM_RAW_GUEST_TRAP;
3070 }
3071# endif
3072# else
3073 PGSTPD pPDSrc = NULL;
3074 const unsigned iPDSrc = 0;
3075# endif
3076 int rc = VINF_SUCCESS;
3077
3078 /*
3079 * First check if the shadow pd is present.
3080 */
3081# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3082 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVM->pgm.s, GCPtrPage);
3083# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3084 PX86PDEPAE pPdeDst;
3085 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3086 PX86PDPAE pPDDst;
3087# if PGM_GST_TYPE != PGM_TYPE_PAE
3088 X86PDPE PdpeSrc;
3089
3090 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3091 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3092# endif
3093 rc = pgmShwSyncPaePDPtr(pVM, GCPtrPage, &PdpeSrc, &pPDDst);
3094 if (rc != VINF_SUCCESS)
3095 {
3096 AssertRC(rc);
3097 return rc;
3098 }
3099 Assert(pPDDst);
3100 pPdeDst = &pPDDst->a[iPDDst];
3101
3102# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3103 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3104 PX86PDPAE pPDDst;
3105 PX86PDEPAE pPdeDst;
3106
3107# if PGM_GST_TYPE == PGM_TYPE_PROT
3108 /* AMD-V nested paging */
3109 X86PML4E Pml4eSrc;
3110 X86PDPE PdpeSrc;
3111 PX86PML4E pPml4eSrc = &Pml4eSrc;
3112
3113 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3114 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3115 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3116# endif
3117
3118 rc = pgmShwSyncLongModePDPtr(pVM, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3119 if (rc != VINF_SUCCESS)
3120 {
3121 AssertRC(rc);
3122 return rc;
3123 }
3124 Assert(pPDDst);
3125 pPdeDst = &pPDDst->a[iPDDst];
3126# endif
3127 if (!pPdeDst->n.u1Present)
3128 {
3129 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
3130 AssertRC(rc);
3131 if (rc != VINF_SUCCESS)
3132 return rc;
3133 }
3134
3135# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3136 /* Check for dirty bit fault */
3137 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3138 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3139 Log(("PGMVerifyAccess: success (dirty)\n"));
3140 else
3141 {
3142 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3143#else
3144 {
3145 GSTPDE PdeSrc;
3146 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3147 PdeSrc.n.u1Present = 1;
3148 PdeSrc.n.u1Write = 1;
3149 PdeSrc.n.u1Accessed = 1;
3150 PdeSrc.n.u1User = 1;
3151
3152#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3153 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3154 if (uErr & X86_TRAP_PF_US)
3155 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3156 else /* supervisor */
3157 STAM_COUNTER_INC(&pVM->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3158
3159 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
3160 if (RT_SUCCESS(rc))
3161 {
3162 /* Page was successfully synced */
3163 Log2(("PGMVerifyAccess: success (sync)\n"));
3164 rc = VINF_SUCCESS;
3165 }
3166 else
3167 {
3168 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3169 return VINF_EM_RAW_GUEST_TRAP;
3170 }
3171 }
3172 return rc;
3173
3174#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3175
3176 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3177 return VERR_INTERNAL_ERROR;
3178#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3179}
3180
3181
3182#if PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
3183# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
3184/**
3185 * Figures out which kind of shadow page this guest PDE warrants.
3186 *
3187 * @returns Shadow page kind.
3188 * @param pPdeSrc The guest PDE in question.
3189 * @param cr4 The current guest cr4 value.
3190 */
3191DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const GSTPDE *pPdeSrc, uint32_t cr4)
3192{
3193# if PMG_GST_TYPE == PGM_TYPE_AMD64
3194 if (!pPdeSrc->n.u1Size)
3195# else
3196 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
3197# endif
3198 return BTH_PGMPOOLKIND_PT_FOR_PT;
3199 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
3200 //{
3201 // case 0:
3202 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
3203 // case X86_PDE4M_RW:
3204 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
3205 // case X86_PDE4M_US:
3206 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
3207 // case X86_PDE4M_RW | X86_PDE4M_US:
3208 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
3209# if 0
3210 // case X86_PDE4M_PAE_NX:
3211 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
3212 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
3213 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
3214 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
3215 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
3216 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
3217 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
3218# endif
3219 return BTH_PGMPOOLKIND_PT_FOR_BIG;
3220 //}
3221}
3222# endif
3223#endif
3224
3225#undef MY_STAM_COUNTER_INC
3226#define MY_STAM_COUNTER_INC(a) do { } while (0)
3227
3228
3229/**
3230 * Syncs the paging hierarchy starting at CR3.
3231 *
3232 * @returns VBox status code, no specials.
3233 * @param pVM The virtual machine.
3234 * @param cr0 Guest context CR0 register
3235 * @param cr3 Guest context CR3 register
3236 * @param cr4 Guest context CR4 register
3237 * @param fGlobal Including global page directories or not
3238 */
3239PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3240{
3241 if (VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
3242 fGlobal = true; /* Change this CR3 reload to be a global one. */
3243
3244 LogFlow(("SyncCR3 %d\n", fGlobal));
3245
3246#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3247 /*
3248 * Update page access handlers.
3249 * The virtual are always flushed, while the physical are only on demand.
3250 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3251 * have to look into that later because it will have a bad influence on the performance.
3252 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3253 * bird: Yes, but that won't work for aliases.
3254 */
3255 /** @todo this MUST go away. See #1557. */
3256 STAM_PROFILE_START(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3257 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3258 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3259#endif
3260
3261#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3262 /*
3263 * Nested / EPT - almost no work.
3264 */
3265 /** @todo check if this is really necessary; the call does it as well... */
3266 HWACCMFlushTLB(pVM);
3267 return VINF_SUCCESS;
3268
3269#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3270 /*
3271 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3272 * out the shadow parts when the guest modifies its tables.
3273 */
3274 return VINF_SUCCESS;
3275
3276#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3277
3278# ifdef PGM_WITHOUT_MAPPINGS
3279 Assert(pVM->pgm.s.fMappingsFixed);
3280 return VINF_SUCCESS;
3281# else
3282 /* Nothing to do when mappings are fixed. */
3283 if (pVM->pgm.s.fMappingsFixed)
3284 return VINF_SUCCESS;
3285
3286 int rc = PGMMapResolveConflicts(pVM);
3287 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3288 if (rc == VINF_PGM_SYNC_CR3)
3289 {
3290 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3291 return VINF_PGM_SYNC_CR3;
3292 }
3293# endif
3294 return VINF_SUCCESS;
3295#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3296}
3297
3298
3299
3300
3301#ifdef VBOX_STRICT
3302#ifdef IN_RC
3303# undef AssertMsgFailed
3304# define AssertMsgFailed Log
3305#endif
3306#ifdef IN_RING3
3307# include <VBox/dbgf.h>
3308
3309/**
3310 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3311 *
3312 * @returns VBox status code (VINF_SUCCESS).
3313 * @param pVM The VM handle.
3314 * @param cr3 The root of the hierarchy.
3315 * @param crr The cr4, only PAE and PSE is currently used.
3316 * @param fLongMode Set if long mode, false if not long mode.
3317 * @param cMaxDepth Number of levels to dump.
3318 * @param pHlp Pointer to the output functions.
3319 */
3320__BEGIN_DECLS
3321VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3322__END_DECLS
3323
3324#endif
3325
3326/**
3327 * Checks that the shadow page table is in sync with the guest one.
3328 *
3329 * @returns The number of errors.
3330 * @param pVM The virtual machine.
3331 * @param cr3 Guest context CR3 register
3332 * @param cr4 Guest context CR4 register
3333 * @param GCPtr Where to start. Defaults to 0.
3334 * @param cb How much to check. Defaults to everything.
3335 */
3336PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3337{
3338#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3339 return 0;
3340#else
3341 unsigned cErrors = 0;
3342
3343#if PGM_GST_TYPE == PGM_TYPE_PAE
3344 /** @todo currently broken; crashes below somewhere */
3345 AssertFailed();
3346#endif
3347
3348#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3349 || PGM_GST_TYPE == PGM_TYPE_PAE \
3350 || PGM_GST_TYPE == PGM_TYPE_AMD64
3351
3352# if PGM_GST_TYPE == PGM_TYPE_AMD64
3353 bool fBigPagesSupported = true;
3354# else
3355 bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3356# endif
3357 PPGM pPGM = &pVM->pgm.s;
3358 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3359 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3360# ifndef IN_RING0
3361 RTHCPHYS HCPhys; /* general usage. */
3362# endif
3363 int rc;
3364
3365 /*
3366 * Check that the Guest CR3 and all its mappings are correct.
3367 */
3368 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3369 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3370 false);
3371# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3372# if PGM_GST_TYPE == PGM_TYPE_32BIT
3373 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3374# else
3375 rc = PGMShwGetPage(pVM, (RTGCPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3376# endif
3377 AssertRCReturn(rc, 1);
3378 HCPhys = NIL_RTHCPHYS;
3379 rc = pgmRamGCPhys2HCPhys(pPGM, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3380 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3381# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3382 RTGCPHYS GCPhys;
3383 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3384 AssertRCReturn(rc, 1);
3385 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3386# endif
3387# endif /* !IN_RING0 */
3388
3389 /*
3390 * Get and check the Shadow CR3.
3391 */
3392# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3393 unsigned cPDEs = X86_PG_ENTRIES;
3394 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3395# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3396# if PGM_GST_TYPE == PGM_TYPE_32BIT
3397 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3398# else
3399 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3400# endif
3401 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3402# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3403 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3404 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3405# endif
3406 if (cb != ~(RTGCPTR)0)
3407 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3408
3409/** @todo call the other two PGMAssert*() functions. */
3410
3411# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3412 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3413# endif
3414
3415# if PGM_GST_TYPE == PGM_TYPE_AMD64
3416 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3417
3418 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3419 {
3420 PPGMPOOLPAGE pShwPdpt = NULL;
3421 PX86PML4E pPml4eSrc;
3422 PX86PML4E pPml4eDst;
3423 RTGCPHYS GCPhysPdptSrc;
3424
3425 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3426 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVM->pgm.s, iPml4);
3427
3428 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3429 if (!pPml4eDst->n.u1Present)
3430 {
3431 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3432 continue;
3433 }
3434
3435 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3436 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3437
3438 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3439 {
3440 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3441 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3442 cErrors++;
3443 continue;
3444 }
3445
3446 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3447 {
3448 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3449 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3450 cErrors++;
3451 continue;
3452 }
3453
3454 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3455 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3456 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3457 {
3458 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3459 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3460 cErrors++;
3461 continue;
3462 }
3463# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3464 {
3465# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3466
3467# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3468 /*
3469 * Check the PDPTEs too.
3470 */
3471 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3472
3473 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3474 {
3475 unsigned iPDSrc;
3476 PPGMPOOLPAGE pShwPde = NULL;
3477 PX86PDPE pPdpeDst;
3478 RTGCPHYS GCPhysPdeSrc;
3479# if PGM_GST_TYPE == PGM_TYPE_PAE
3480 X86PDPE PdpeSrc;
3481 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3482 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVM->pgm.s);
3483# else
3484 PX86PML4E pPml4eSrc;
3485 X86PDPE PdpeSrc;
3486 PX86PDPT pPdptDst;
3487 PX86PDPAE pPDDst;
3488 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVM->pgm.s, GCPtr, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3489
3490 rc = pgmShwGetLongModePDPtr(pVM, GCPtr, NULL, &pPdptDst, &pPDDst);
3491 if (rc != VINF_SUCCESS)
3492 {
3493 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3494 GCPtr += 512 * _2M;
3495 continue; /* next PDPTE */
3496 }
3497 Assert(pPDDst);
3498# endif
3499 Assert(iPDSrc == 0);
3500
3501 pPdpeDst = &pPdptDst->a[iPdpt];
3502
3503 if (!pPdpeDst->n.u1Present)
3504 {
3505 GCPtr += 512 * _2M;
3506 continue; /* next PDPTE */
3507 }
3508
3509 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3510 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3511
3512 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3513 {
3514 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3515 GCPtr += 512 * _2M;
3516 cErrors++;
3517 continue;
3518 }
3519
3520 if (GCPhysPdeSrc != pShwPde->GCPhys)
3521 {
3522# if PGM_GST_TYPE == PGM_TYPE_AMD64
3523 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3524# else
3525 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3526# endif
3527 GCPtr += 512 * _2M;
3528 cErrors++;
3529 continue;
3530 }
3531
3532# if PGM_GST_TYPE == PGM_TYPE_AMD64
3533 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3534 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3535 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3536 {
3537 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3538 GCPtr += 512 * _2M;
3539 cErrors++;
3540 continue;
3541 }
3542# endif
3543
3544# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3545 {
3546# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3547# if PGM_GST_TYPE == PGM_TYPE_32BIT
3548 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3549# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3550 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVM->pgm.s);
3551# endif
3552# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3553 /*
3554 * Iterate the shadow page directory.
3555 */
3556 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3557 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3558
3559 for (;
3560 iPDDst < cPDEs;
3561 iPDDst++, GCPtr += cIncrement)
3562 {
3563# if PGM_SHW_TYPE == PGM_TYPE_PAE
3564 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3565# else
3566 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3567# endif
3568 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3569 {
3570 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3571 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3572 {
3573 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3574 cErrors++;
3575 continue;
3576 }
3577 }
3578 else if ( (PdeDst.u & X86_PDE_P)
3579 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3580 )
3581 {
3582 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3583 PPGMPOOLPAGE pPoolPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
3584 if (!pPoolPage)
3585 {
3586 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3587 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3588 cErrors++;
3589 continue;
3590 }
3591 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3592
3593 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3594 {
3595 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3596 GCPtr, (uint64_t)PdeDst.u));
3597 cErrors++;
3598 }
3599
3600 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3601 {
3602 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3603 GCPtr, (uint64_t)PdeDst.u));
3604 cErrors++;
3605 }
3606
3607 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3608 if (!PdeSrc.n.u1Present)
3609 {
3610 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3611 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3612 cErrors++;
3613 continue;
3614 }
3615
3616 if ( !PdeSrc.b.u1Size
3617 || !fBigPagesSupported)
3618 {
3619 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3620# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3621 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3622# endif
3623 }
3624 else
3625 {
3626# if PGM_GST_TYPE == PGM_TYPE_32BIT
3627 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3628 {
3629 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3630 GCPtr, (uint64_t)PdeSrc.u));
3631 cErrors++;
3632 continue;
3633 }
3634# endif
3635 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3636# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3637 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3638# endif
3639 }
3640
3641 if ( pPoolPage->enmKind
3642 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3643 {
3644 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3645 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3646 cErrors++;
3647 }
3648
3649 PPGMPAGE pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3650 if (!pPhysPage)
3651 {
3652 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3653 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3654 cErrors++;
3655 continue;
3656 }
3657
3658 if (GCPhysGst != pPoolPage->GCPhys)
3659 {
3660 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3661 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3662 cErrors++;
3663 continue;
3664 }
3665
3666 if ( !PdeSrc.b.u1Size
3667 || !fBigPagesSupported)
3668 {
3669 /*
3670 * Page Table.
3671 */
3672 const GSTPT *pPTSrc;
3673 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3674 if (RT_FAILURE(rc))
3675 {
3676 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3677 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3678 cErrors++;
3679 continue;
3680 }
3681 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3682 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3683 {
3684 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3685 // (This problem will go away when/if we shadow multiple CR3s.)
3686 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3687 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3688 cErrors++;
3689 continue;
3690 }
3691 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3692 {
3693 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3694 GCPtr, (uint64_t)PdeDst.u));
3695 cErrors++;
3696 continue;
3697 }
3698
3699 /* iterate the page table. */
3700# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3701 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3702 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3703# else
3704 const unsigned offPTSrc = 0;
3705# endif
3706 for (unsigned iPT = 0, off = 0;
3707 iPT < RT_ELEMENTS(pPTDst->a);
3708 iPT++, off += PAGE_SIZE)
3709 {
3710 const SHWPTE PteDst = pPTDst->a[iPT];
3711
3712 /* skip not-present entries. */
3713 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3714 continue;
3715 Assert(PteDst.n.u1Present);
3716
3717 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3718 if (!PteSrc.n.u1Present)
3719 {
3720# ifdef IN_RING3
3721 PGMAssertHandlerAndFlagsInSync(pVM);
3722 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3723# endif
3724 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3725 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3726 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3727 cErrors++;
3728 continue;
3729 }
3730
3731 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3732# if 1 /** @todo sync accessed bit properly... */
3733 fIgnoreFlags |= X86_PTE_A;
3734# endif
3735
3736 /* match the physical addresses */
3737 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3738 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3739
3740# ifdef IN_RING3
3741 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3742 if (RT_FAILURE(rc))
3743 {
3744 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3745 {
3746 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3747 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3748 cErrors++;
3749 continue;
3750 }
3751 }
3752 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3753 {
3754 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3755 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3756 cErrors++;
3757 continue;
3758 }
3759# endif
3760
3761 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3762 if (!pPhysPage)
3763 {
3764# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3765 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3766 {
3767 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3768 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3769 cErrors++;
3770 continue;
3771 }
3772# endif
3773 if (PteDst.n.u1Write)
3774 {
3775 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3776 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3777 cErrors++;
3778 }
3779 fIgnoreFlags |= X86_PTE_RW;
3780 }
3781 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3782 {
3783 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3784 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3785 cErrors++;
3786 continue;
3787 }
3788
3789 /* flags */
3790 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3791 {
3792 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3793 {
3794 if (PteDst.n.u1Write)
3795 {
3796 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3797 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3798 cErrors++;
3799 continue;
3800 }
3801 fIgnoreFlags |= X86_PTE_RW;
3802 }
3803 else
3804 {
3805 if (PteDst.n.u1Present)
3806 {
3807 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3808 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3809 cErrors++;
3810 continue;
3811 }
3812 fIgnoreFlags |= X86_PTE_P;
3813 }
3814 }
3815 else
3816 {
3817 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3818 {
3819 if (PteDst.n.u1Write)
3820 {
3821 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3822 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3823 cErrors++;
3824 continue;
3825 }
3826 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3827 {
3828 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3829 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3830 cErrors++;
3831 continue;
3832 }
3833 if (PteDst.n.u1Dirty)
3834 {
3835 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3836 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3837 cErrors++;
3838 }
3839# if 0 /** @todo sync access bit properly... */
3840 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3841 {
3842 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3843 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3844 cErrors++;
3845 }
3846 fIgnoreFlags |= X86_PTE_RW;
3847# else
3848 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3849# endif
3850 }
3851 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3852 {
3853 /* access bit emulation (not implemented). */
3854 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3855 {
3856 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3857 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3858 cErrors++;
3859 continue;
3860 }
3861 if (!PteDst.n.u1Accessed)
3862 {
3863 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3864 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3865 cErrors++;
3866 }
3867 fIgnoreFlags |= X86_PTE_P;
3868 }
3869# ifdef DEBUG_sandervl
3870 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3871# endif
3872 }
3873
3874 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3875 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
3876 )
3877 {
3878 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3879 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3880 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3881 cErrors++;
3882 continue;
3883 }
3884 } /* foreach PTE */
3885 }
3886 else
3887 {
3888 /*
3889 * Big Page.
3890 */
3891 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3892 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
3893 {
3894 if (PdeDst.n.u1Write)
3895 {
3896 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3897 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3898 cErrors++;
3899 continue;
3900 }
3901 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3902 {
3903 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3904 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3905 cErrors++;
3906 continue;
3907 }
3908# if 0 /** @todo sync access bit properly... */
3909 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3910 {
3911 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3912 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3913 cErrors++;
3914 }
3915 fIgnoreFlags |= X86_PTE_RW;
3916# else
3917 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3918# endif
3919 }
3920 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3921 {
3922 /* access bit emulation (not implemented). */
3923 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
3924 {
3925 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3926 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3927 cErrors++;
3928 continue;
3929 }
3930 if (!PdeDst.n.u1Accessed)
3931 {
3932 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3933 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3934 cErrors++;
3935 }
3936 fIgnoreFlags |= X86_PTE_P;
3937 }
3938
3939 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3940 {
3941 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3942 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3943 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3944 cErrors++;
3945 }
3946
3947 /* iterate the page table. */
3948 for (unsigned iPT = 0, off = 0;
3949 iPT < RT_ELEMENTS(pPTDst->a);
3950 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
3951 {
3952 const SHWPTE PteDst = pPTDst->a[iPT];
3953
3954 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3955 {
3956 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3957 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3958 cErrors++;
3959 }
3960
3961 /* skip not-present entries. */
3962 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
3963 continue;
3964
3965 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
3966
3967 /* match the physical addresses */
3968 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
3969
3970# ifdef IN_RING3
3971 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3972 if (RT_FAILURE(rc))
3973 {
3974 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3975 {
3976 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3977 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3978 cErrors++;
3979 }
3980 }
3981 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3982 {
3983 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3984 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3985 cErrors++;
3986 continue;
3987 }
3988# endif
3989 pPhysPage = pgmPhysGetPage(pPGM, GCPhysGst);
3990 if (!pPhysPage)
3991 {
3992# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3993 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3994 {
3995 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3996 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3997 cErrors++;
3998 continue;
3999 }
4000# endif
4001 if (PteDst.n.u1Write)
4002 {
4003 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4004 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4005 cErrors++;
4006 }
4007 fIgnoreFlags |= X86_PTE_RW;
4008 }
4009 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4010 {
4011 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4012 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4013 cErrors++;
4014 continue;
4015 }
4016
4017 /* flags */
4018 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4019 {
4020 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4021 {
4022 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4023 {
4024 if (PteDst.n.u1Write)
4025 {
4026 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4027 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4028 cErrors++;
4029 continue;
4030 }
4031 fIgnoreFlags |= X86_PTE_RW;
4032 }
4033 }
4034 else
4035 {
4036 if (PteDst.n.u1Present)
4037 {
4038 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4039 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4040 cErrors++;
4041 continue;
4042 }
4043 fIgnoreFlags |= X86_PTE_P;
4044 }
4045 }
4046
4047 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4048 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4049 )
4050 {
4051 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4052 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4053 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4054 cErrors++;
4055 continue;
4056 }
4057 } /* for each PTE */
4058 }
4059 }
4060 /* not present */
4061
4062 } /* for each PDE */
4063
4064 } /* for each PDPTE */
4065
4066 } /* for each PML4E */
4067
4068# ifdef DEBUG
4069 if (cErrors)
4070 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4071# endif
4072
4073#endif /* GST == 32BIT, PAE or AMD64 */
4074 return cErrors;
4075
4076#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4077}
4078#endif /* VBOX_STRICT */
4079
4080
4081/**
4082 * Sets up the CR3 for shadow paging
4083 *
4084 * @returns Strict VBox status code.
4085 * @retval VINF_SUCCESS.
4086 *
4087 * @param pVM VM handle.
4088 * @param GCPhysCR3 The physical address in the CR3 register.
4089 */
4090PGM_BTH_DECL(int, MapCR3)(PVM pVM, RTGCPHYS GCPhysCR3)
4091{
4092 /* Update guest paging info. */
4093#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4094 || PGM_GST_TYPE == PGM_TYPE_PAE \
4095 || PGM_GST_TYPE == PGM_TYPE_AMD64
4096
4097 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4098
4099 /*
4100 * Map the page CR3 points at.
4101 */
4102 RTHCPTR HCPtrGuestCR3;
4103 RTHCPHYS HCPhysGuestCR3;
4104# ifdef VBOX_WITH_NEW_PHYS_CODE
4105 /** @todo this needs some reworking. current code is just a big hack. */
4106# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4107# if 1 /* temp hack */
4108 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4109 return VINF_PGM_SYNC_CR3;
4110# else
4111 AssertFailedReturn(VERR_INTERNAL_ERROR);
4112# endif
4113 int rc = VERR_INTERNAL_ERROR;
4114# else
4115 pgmLock(pVM);
4116 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4117 AssertReturn(pPage, VERR_INTERNAL_ERROR);
4118 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
4119 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPage);
4120 pgmUnlock(pVM);
4121# endif
4122# else /* !VBOX_WITH_NEW_PHYS_CODE */
4123 int rc = pgmRamGCPhys2HCPtrAndHCPhys(&pVM->pgm.s, GCPhysCR3 & GST_CR3_PAGE_MASK, &HCPtrGuestCR3, &HCPhysGuestCR3);
4124# endif /* !VBOX_WITH_NEW_PHYS_CODE */
4125 if (RT_SUCCESS(rc))
4126 {
4127 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4128 if (RT_SUCCESS(rc))
4129 {
4130# ifdef IN_RC
4131 PGM_INVL_PG(pVM->pgm.s.GCPtrCR3Mapping);
4132# endif
4133# if PGM_GST_TYPE == PGM_TYPE_32BIT
4134 pVM->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4135# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4136 pVM->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4137# endif
4138 pVM->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))pVM->pgm.s.GCPtrCR3Mapping;
4139
4140# elif PGM_GST_TYPE == PGM_TYPE_PAE
4141 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4142 pVM->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4143# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4144 pVM->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4145# endif
4146 pVM->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RCPTRTYPE(uint8_t *))pVM->pgm.s.GCPtrCR3Mapping + off);
4147 Log(("Cached mapping %RRv\n", pVM->pgm.s.pGstPaePdptRC));
4148
4149 /*
4150 * Map the 4 PDs too.
4151 */
4152 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVM->pgm.s);
4153 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4154 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4155 {
4156 if (pGuestPDPT->a[i].n.u1Present)
4157 {
4158 RTHCPTR HCPtr;
4159 RTHCPHYS HCPhys;
4160 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4161# ifdef VBOX_WITH_NEW_PHYS_CODE
4162# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4163 AssertFailedReturn(VERR_INTERNAL_ERROR);
4164 int rc2 = VERR_INTERNAL_ERROR;
4165# else
4166 pgmLock(pVM);
4167 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4168 AssertReturn(pPage, VERR_INTERNAL_ERROR);
4169 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4170 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4171 pgmUnlock(pVM);
4172# endif
4173# else /* !VBOX_WITH_NEW_PHYS_CODE */
4174 int rc2 = pgmRamGCPhys2HCPtrAndHCPhys(&pVM->pgm.s, GCPhys, &HCPtr, &HCPhys);
4175# endif /* !VBOX_WITH_NEW_PHYS_CODE */
4176 if (RT_SUCCESS(rc2))
4177 {
4178 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4179 AssertRCReturn(rc, rc);
4180
4181 pVM->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4182# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4183 pVM->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4184# endif
4185 pVM->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))GCPtr;
4186 pVM->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4187 PGM_INVL_PG(GCPtr); /** @todo This ends up calling HWACCMInvalidatePage, is that correct? */
4188 continue;
4189 }
4190 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4191 }
4192
4193 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4194# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4195 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4196# endif
4197 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4198 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4199 PGM_INVL_PG(GCPtr); /** @todo this shouldn't be necessary? */
4200 }
4201
4202# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4203 pVM->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4204# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4205 pVM->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4206# endif
4207# endif
4208 }
4209 else
4210 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4211 }
4212 else
4213 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4214
4215#else /* prot/real stub */
4216 int rc = VINF_SUCCESS;
4217#endif
4218
4219 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4220# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4221 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4222 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4223 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4224 && PGM_GST_TYPE != PGM_TYPE_PROT))
4225
4226 Assert(!HWACCMIsNestedPagingActive(pVM));
4227
4228 /*
4229 * Update the shadow root page as well since that's not fixed.
4230 */
4231 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4232 PPGMPOOLPAGE pOldShwPageCR3 = pVM->pgm.s.CTX_SUFF(pShwPageCR3);
4233 uint32_t iOldShwUserTable = pVM->pgm.s.iShwUserTable;
4234 uint32_t iOldShwUser = pVM->pgm.s.iShwUser;
4235 PPGMPOOLPAGE pNewShwPageCR3;
4236
4237 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4238 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3);
4239 if (rc == VERR_PGM_POOL_FLUSHED)
4240 {
4241 Log(("MapCR3: PGM pool flushed -> signal sync cr3\n"));
4242 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4243 return VINF_PGM_SYNC_CR3;
4244 }
4245 AssertRCReturn(rc, rc);
4246 rc = VINF_SUCCESS;
4247
4248 /* Mark the page as locked; disallow flushing. */
4249 pgmPoolLockPage(pPool, pNewShwPageCR3);
4250
4251# ifdef IN_RC
4252 /** NOTE: We can't deal with jumps to ring 3 here as we're now in an inconsistent state! */
4253 bool fLog = VMMGCLogDisable(pVM);
4254# endif
4255
4256 pVM->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4257 pVM->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4258 pVM->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4259# ifdef IN_RING0
4260 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4261 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4262# elif defined(IN_RC)
4263 pVM->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4264 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4265# else
4266 pVM->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4267 pVM->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4268# endif
4269
4270# ifndef PGM_WITHOUT_MAPPINGS
4271 /* Apply all hypervisor mappings to the new CR3.
4272 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4273 * make sure we check for conflicts in the new CR3 root.
4274 */
4275# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4276 Assert(VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL) || VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
4277# endif
4278 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4279 AssertRCReturn(rc, rc);
4280# endif
4281
4282 /* Set the current hypervisor CR3. */
4283 CPUMSetHyperCR3(pVM, PGMGetHyperCR3(pVM));
4284 SELMShadowCR3Changed(pVM);
4285
4286# ifdef IN_RC
4287 VMMGCLogRestore(pVM, fLog);
4288# endif
4289
4290 /* Clean up the old CR3 root. */
4291 if (pOldShwPageCR3)
4292 {
4293 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4294# ifndef PGM_WITHOUT_MAPPINGS
4295 /* Remove the hypervisor mappings from the shadow page table. */
4296 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4297# endif
4298 /* Mark the page as unlocked; allow flushing again. */
4299 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4300
4301 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4302 }
4303
4304# endif
4305
4306 return rc;
4307}
4308
4309/**
4310 * Unmaps the shadow CR3.
4311 *
4312 * @returns VBox status, no specials.
4313 * @param pVM VM handle.
4314 */
4315PGM_BTH_DECL(int, UnmapCR3)(PVM pVM)
4316{
4317 LogFlow(("UnmapCR3\n"));
4318
4319 int rc = VINF_SUCCESS;
4320
4321 /* Update guest paging info. */
4322#if PGM_GST_TYPE == PGM_TYPE_32BIT
4323 pVM->pgm.s.pGst32BitPdR3 = 0;
4324#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4325 pVM->pgm.s.pGst32BitPdR0 = 0;
4326#endif
4327 pVM->pgm.s.pGst32BitPdRC = 0;
4328
4329#elif PGM_GST_TYPE == PGM_TYPE_PAE
4330 pVM->pgm.s.pGstPaePdptR3 = 0;
4331# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4332 pVM->pgm.s.pGstPaePdptR0 = 0;
4333# endif
4334 pVM->pgm.s.pGstPaePdptRC = 0;
4335 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4336 {
4337 pVM->pgm.s.apGstPaePDsR3[i] = 0;
4338# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4339 pVM->pgm.s.apGstPaePDsR0[i] = 0;
4340# endif
4341 pVM->pgm.s.apGstPaePDsRC[i] = 0;
4342 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4343 }
4344
4345#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4346 pVM->pgm.s.pGstAmd64Pml4R3 = 0;
4347# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4348 pVM->pgm.s.pGstAmd64Pml4R0 = 0;
4349# endif
4350
4351#else /* prot/real mode stub */
4352 /* nothing to do */
4353#endif
4354
4355#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4356 /* Update shadow paging info. */
4357# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4358 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4359 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4360
4361# if PGM_GST_TYPE != PGM_TYPE_REAL
4362 Assert(!HWACCMIsNestedPagingActive(pVM));
4363# endif
4364
4365# ifndef PGM_WITHOUT_MAPPINGS
4366 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4367 /* Remove the hypervisor mappings from the shadow page table. */
4368 pgmMapDeactivateCR3(pVM, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4369# endif
4370
4371 if (pVM->pgm.s.CTX_SUFF(pShwPageCR3))
4372 {
4373 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4374
4375 Assert(pVM->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4376
4377 /* Mark the page as unlocked; allow flushing again. */
4378 pgmPoolUnlockPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3));
4379
4380 pgmPoolFreeByPage(pPool, pVM->pgm.s.CTX_SUFF(pShwPageCR3), pVM->pgm.s.iShwUser, pVM->pgm.s.iShwUserTable);
4381 pVM->pgm.s.pShwPageCR3R3 = 0;
4382 pVM->pgm.s.pShwPageCR3R0 = 0;
4383 pVM->pgm.s.pShwPageCR3RC = 0;
4384 pVM->pgm.s.iShwUser = 0;
4385 pVM->pgm.s.iShwUserTable = 0;
4386 }
4387# endif
4388#endif /* !IN_RC*/
4389
4390 return rc;
4391}
4392
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette