VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 2121

Last change on this file since 2121 was 2120, checked in by vboxsync, 18 years ago

Real and protected mode without paging changes. Currently not yet used.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 149.2 KB
Line 
1/* $Id: PGMAllBth.h 2120 2007-04-17 08:40:33Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006 InnoTek Systemberatung GmbH
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License as published by the Free Software Foundation,
15 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
16 * distribution. VirtualBox OSE is distributed in the hope that it will
17 * be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * If you received this file as part of a commercial VirtualBox
20 * distribution, then only the terms of your commercial VirtualBox
21 * license agreement apply instead of the previous paragraph.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27__BEGIN_DECLS
28PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault);
29PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PVBOXPDE pPdeSrc, RTGCUINTPTR GCPtrPage);
32PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPD, PVBOXPD pPDSrc, RTGCUINTPTR GCPtrPage);
33PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR Addr, unsigned fPage, unsigned uErr);
34PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage);
35PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal);
36#ifdef VBOX_STRICT
37PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr = 0, RTGCUINTPTR cb = ~(RTGCUINTPTR)0);
38#endif
39#ifdef PGMPOOL_WITH_USER_TRACKING
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41#endif
42__END_DECLS
43
44
45/**
46 * #PF Handler for raw-mode guest execution.
47 *
48 * @returns VBox status code (appropriate for trap handling and GC return).
49 * @param pVM VM Handle.
50 * @param uErr The trap error code.
51 * @param pRegFrame Trap register frame.
52 * @param pvFault The fault address.
53 */
54PGM_BTH_DECL(int, Trap0eHandler)(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
55{
56#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) && PGM_SHW_TYPE != PGM_TYPE_AMD64
57
58# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
59# error "32-bit guest mode is only implemented for 32-bit and PAE shadow modes."
60# endif
61
62# if PGM_SHW_TYPE == PGM_TYPE_PAE
63 /*
64 * Hide the instruction fetch trap indicator for now.
65 */
66 /** @todo NXE will change this and we must fix NXE in the switcher too! */
67 if (uErr & X86_TRAP_PF_ID)
68 {
69 uErr &= ~X86_TRAP_PF_ID;
70 TRPMSetErrorCode(pVM, uErr);
71 }
72# endif
73
74 /*
75 * Get PDs.
76 */
77 int rc;
78# if PGM_WITH_PAGING(PGM_GST_TYPE)
79 PVBOXPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
80 const unsigned iPDSrc = (RTGCUINTPTR)pvFault >> GST_PD_SHIFT;
81# else
82 PVBOXPD pPDSrc = NULL;
83 const unsigned iPDSrc = 0;
84# endif
85
86 const unsigned iPDDst = (RTGCUINTPTR)pvFault >> SHW_PD_SHIFT;
87# if PGM_SHW_TYPE == PGM_TYPE_32BIT
88 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
89# else /* PAE */
90 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]; /* We treat this as a PD with 2048 entries. */
91# endif
92
93 /* Determine current privilege level */
94 uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
95
96# if PGM_WITH_PAGING(PGM_GST_TYPE)
97# ifdef PGM_SYNC_DIRTY_BIT
98 /*
99 * If we successfully correct the write protection fault due to dirty bit
100 * tracking, or this page fault is a genuine one, then return immediately.
101 */
102 STAM_PROFILE_START(&pVM->pgm.s.StatCheckPageFault, e);
103 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], (RTGCUINTPTR)pvFault);
104 STAM_PROFILE_STOP(&pVM->pgm.s.StatCheckPageFault, e);
105 if ( rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
106 || rc == VINF_EM_RAW_GUEST_TRAP)
107 {
108 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution)
109 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVM->pgm.s.StatTrap0eDirtyAndAccessedBits : &pVM->pgm.s.StatTrap0eGuestTrap; });
110 LogBird(("Trap0eHandler: returns %s\n", rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? "VINF_SUCCESS" : "VINF_EM_RAW_GUEST_TRAP"));
111 return rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? VINF_SUCCESS : rc;
112 }
113# endif
114
115 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0ePD[iPDSrc]);
116# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
117
118 /*
119 * A common case is the not-present error caused by lazy page table syncing.
120 *
121 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
122 * so we can safely assume that the shadow PT is present when calling SyncPage later.
123 *
124 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
125 * of mapping conflict and defer to SyncCR3 in R3.
126 * (Again, we do NOT support access handlers for non-present guest pages.)
127 *
128 */
129# if PGM_WITH_PAGING(PGM_GST_TYPE)
130 VBOXPDE PdeSrc = pPDSrc->a[iPDSrc];
131# else
132 VBOXPDE PdeSrc;
133 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
134 PdeSrc.n.u1Present = 1;
135 PdeSrc.n.u1Write = 1;
136 PdeSrc.n.u1Accessed = 1;
137# endif
138 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
139 && !pPDDst->a[iPDDst].n.u1Present
140 && PdeSrc.n.u1Present
141 )
142
143 {
144 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eSyncPT; });
145 STAM_PROFILE_START(&pVM->pgm.s.StatLazySyncPT, f);
146 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
147 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, (RTGCUINTPTR)pvFault);
148 if (VBOX_SUCCESS(rc))
149 {
150 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
151 return rc;
152 }
153 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
154 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
155 STAM_PROFILE_STOP(&pVM->pgm.s.StatLazySyncPT, f);
156 return VINF_PGM_SYNC_CR3;
157 }
158
159# if PGM_WITH_PAGING(PGM_GST_TYPE)
160 /*
161 * Check if this address is within any of our mappings.
162 *
163 * This is *very* fast and it's gonna save us a bit of effort below and prevent
164 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
165 * (BTW, it's impossible to have physical access handlers in a mapping.)
166 */
167 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
168 {
169 STAM_PROFILE_START(&pVM->pgm.s.StatMapping, a);
170 PPGMMAPPING pMapping = CTXSUFF(pVM->pgm.s.pMappings);
171 for ( ; pMapping; pMapping = CTXSUFF(pMapping->pNext))
172 {
173 if ((RTGCUINTPTR)pvFault < (RTGCUINTPTR)pMapping->GCPtr)
174 break;
175 if ((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pMapping->GCPtr < pMapping->cb)
176 {
177 /*
178 * The first thing we check is if we've got an undetected conflict.
179 */
180 if (!pVM->pgm.s.fMappingsFixed)
181 {
182 unsigned iPT = pMapping->cPTs;
183 while (iPT-- > 0)
184 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
185 {
186 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eConflicts);
187 Log(("Trap0e: Detected Conflict %VGv-%VGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
188 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
189 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
190 return VINF_PGM_SYNC_CR3;
191 }
192 }
193
194 /*
195 * Check if the fault address is in a virtual page access handler range.
196 */
197 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
198 if ( pCur
199 && pCur->enmType != PGMVIRTHANDLERTYPE_EIP
200 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
201 && ( uErr & X86_TRAP_PF_RW
202 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
203 && pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR) ) ) /** r=bird: <- this is probably wrong. */
204 {
205# ifdef IN_GC
206 STAM_PROFILE_START(&pCur->Stat, h);
207 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
208 STAM_PROFILE_STOP(&pCur->Stat, h);
209# else
210 AssertFailed();
211 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
212# endif
213 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
214 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
215 return rc;
216 }
217
218 /*
219 * Check if the EIP is in a virtual page access handler range.
220 */
221 if (cpl == 0)
222 {
223 RTGCPTR pvEIP;
224 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &pvEIP);
225 if (VBOX_SUCCESS(rc))
226 {
227 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvEIP);
228 if ( pCur
229 && pCur->enmType == PGMVIRTHANDLERTYPE_EIP
230 && (RTGCUINTPTR)pvEIP - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
231 {
232# ifdef IN_GC
233 STAM_PROFILE_START(&pCur->Stat, h);
234 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvEIP - (RTGCUINTPTR)pCur->GCPtr);
235 STAM_PROFILE_STOP(&pCur->Stat, h);
236# else
237 AssertFailed();
238 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
239# endif
240 STAM_COUNTER_INC(&pVM->pgm.s.StatTrap0eMapHandler);
241 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
242 return rc;
243 }
244 }
245 }
246
247 /*
248 * Pretend we're not here and let the guest handle the trap.
249 */
250 TRPMSetErrorCode(pVM, uErr & ~X86_TRAP_PF_P);
251 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eMap);
252 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
253 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
254 return VINF_EM_RAW_GUEST_TRAP;
255 }
256 }
257 STAM_PROFILE_STOP(&pVM->pgm.s.StatMapping, a);
258 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
259# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
260
261 /*
262 * Check if this fault address is flagged for special treatment,
263 * which means we'll have to figure out the physical address and
264 * check flags associated with it.
265 *
266 * ASSUME that we can limit any special access handling to pages
267 * in page tables which the guest believes to be present.
268 */
269 if (PdeSrc.n.u1Present)
270 {
271 RTGCPHYS GCPhys = ~0U;
272
273# if PGM_WITH_PAGING(PGM_GST_TYPE)
274 uint32_t cr4 = CPUMGetGuestCR4(pVM);
275 if ( PdeSrc.b.u1Size
276 && (cr4 & X86_CR4_PSE))
277 GCPhys = (PdeSrc.u & X86_PDE4M_PG_MASK)
278 | ((RTGCPHYS)pvFault & (PAGE_OFFSET_MASK_BIG ^ PAGE_OFFSET_MASK));
279 else
280 {
281 PVBOXPT pPTSrc;
282# ifdef IN_GC
283 rc = PGMGCDynMapGCPage(pVM, PdeSrc.u & X86_PDE_PG_MASK, (void **)&pPTSrc);
284# else
285 pPTSrc = (PVBOXPT)MMPhysGCPhys2HCVirt(pVM, PdeSrc.u & X86_PDE_PG_MASK, sizeof(*pPTSrc));
286 if (pPTSrc == 0)
287 rc = VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
288# endif
289 if (VBOX_SUCCESS(rc))
290 {
291 unsigned iPTESrc = ((RTGCUINTPTR)pvFault >> PAGE_SHIFT) & PTE_MASK;
292 if (pPTSrc->a[iPTESrc].n.u1Present)
293 GCPhys = pPTSrc->a[iPTESrc].u & X86_PTE_PG_MASK;
294 }
295 }
296# else
297 /* No paging so the fault address is the physical address */
298 GCPhys = (RTGCPHYS)((RTGCUINTPTR)pvFault & ~PAGE_OFFSET_MASK);
299# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
300
301 /*
302 * If we have a GC address we'll check if it has any flags set.
303 */
304 if (GCPhys != ~0U)
305 {
306 STAM_PROFILE_START(&pVM->pgm.s.StatHandlers, b);
307
308 RTHCPHYS HCPhys;
309 rc = PGMRamGCPhys2HCPhysWithFlags(&pVM->pgm.s, GCPhys, &HCPhys);
310 if (VBOX_SUCCESS(rc))
311 {
312 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_HANDLER))
313 {
314 if (HCPhys & MM_RAM_FLAGS_PHYSICAL_HANDLER)
315 {
316 /*
317 * Physical page access handler.
318 */
319 const RTGCPHYS GCPhysFault = GCPhys | ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK);
320 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->PhysHandlers, GCPhysFault);
321 if (pCur)
322 {
323# ifdef PGM_SYNC_N_PAGES
324 /*
325 * If the region is write protected and we got a page not present fault, then sync
326 * the pages. If the fault was caused by a read, then restart the instruction.
327 * In case of write access continue to the GC write handler.
328 *
329 * ASSUMES that there is only one handler per page or that they have similar write properties.
330 */
331 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
332 && !(uErr & X86_TRAP_PF_P))
333 {
334 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
335 if ( VBOX_FAILURE(rc)
336 || !(uErr & X86_TRAP_PF_RW)
337 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
338 {
339 AssertRC(rc);
340 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
341 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
342 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
343 return rc;
344 }
345 }
346# endif
347
348 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
349 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
350 ("Unexpected trap for physical handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, HCPhys, uErr, pCur->enmType));
351
352#ifdef IN_GC
353 Assert(CTXSUFF(pCur->pfnHandler));
354 STAM_PROFILE_START(&pCur->Stat, h);
355 rc = pCur->CTXSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXSUFF(pCur->pvUser));
356 STAM_PROFILE_STOP(&pCur->Stat, h);
357#elif IN_RING0
358 if (CTXALLSUFF(pCur->pfnHandler))
359 {
360 STAM_PROFILE_START(&pCur->Stat, h);
361 rc = pCur->CTXALLSUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, GCPhysFault, CTXALLSUFF(pCur->pvUser));
362 STAM_PROFILE_STOP(&pCur->Stat, h);
363 }
364 else
365 rc = VINF_EM_RAW_EMULATE_INSTR;
366#else
367 rc = VINF_EM_RAW_EMULATE_INSTR;
368#endif
369 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersPhysical);
370 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
371 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndPhys; });
372 return rc;
373 }
374 }
375# if PGM_WITH_PAGING(PGM_GST_TYPE)
376 else
377 {
378# ifdef PGM_SYNC_N_PAGES
379 /*
380 * If the region is write protected and we got a page not present fault, then sync
381 * the pages. If the fault was caused by a read, then restart the instruction.
382 * In case of write access continue to the GC write handler.
383 */
384 if ( (HCPhys & (MM_RAM_FLAGS_VIRTUAL_WRITE | MM_RAM_FLAGS_VIRTUAL_ALL)) == MM_RAM_FLAGS_VIRTUAL_WRITE
385 && !(uErr & X86_TRAP_PF_P))
386 {
387 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
388 if ( VBOX_FAILURE(rc)
389 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
390 || !(uErr & X86_TRAP_PF_RW))
391 {
392 AssertRC(rc);
393 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
394 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
395 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndVirt; });
396 return rc;
397 }
398 }
399# endif
400 /*
401 * Ok, it's an virtual page access handler.
402 *
403 * Since it's faster to search by address, we'll do that first
404 * and then retry by GCPhys if that fails.
405 */
406 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
407 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
408 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
409 */
410 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
411 if (pCur)
412 {
413 AssertMsg(!((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
414 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
415 || !(uErr & X86_TRAP_PF_P)
416 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
417 ("Unexpected trap for virtual handler: %VGv (phys=%VGp) HCPhys=%HGp uErr=%X, enum=%d\n", pvFault, GCPhys, HCPhys, uErr, pCur->enmType));
418
419 if ( pCur->enmType != PGMVIRTHANDLERTYPE_EIP
420 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
421 && ( uErr & X86_TRAP_PF_RW
422 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
423 && pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR) ) ) /** @todo r=bird: _HYPERVISOR is impossible here because of mapping check. */
424 {
425# ifdef IN_GC
426 STAM_PROFILE_START(&pCur->Stat, h);
427 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
428 STAM_PROFILE_STOP(&pCur->Stat, h);
429# else
430 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
431# endif
432 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtual);
433 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
434 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
435 return rc;
436 }
437 /* Unhandled part of a monitored page */
438 }
439 else
440 {
441 /* Check by physical address. */
442 PPGMVIRTHANDLER pCur;
443 unsigned iPage;
444 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK),
445 &pCur, &iPage);
446 Assert(VBOX_SUCCESS(rc) || !pCur);
447 if ( pCur
448 && pCur->enmType != PGMVIRTHANDLERTYPE_EIP
449 && ( uErr & X86_TRAP_PF_RW
450 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
451 && pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR) ) )
452 {
453 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
454# ifdef IN_GC
455 RTGCUINTPTR off = (iPage << PAGE_SHIFT) + ((RTGCUINTPTR)pvFault & PAGE_OFFSET_MASK) - ((RTGCUINTPTR)pCur->GCPtr & PAGE_OFFSET_MASK);
456 Assert(off < pCur->cb);
457 STAM_PROFILE_START(&pCur->Stat, h);
458 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, off);
459 STAM_PROFILE_STOP(&pCur->Stat, h);
460# else
461 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
462# endif
463 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualByPhys);
464 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
465 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
466 return rc;
467 }
468 }
469 }
470# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
471
472 /*
473 * There is a handled area of the page, but this fault doesn't belong to it.
474 * We must emulate the instruction.
475 *
476 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
477 * we first check if this was a page-not-present fault for a page with only
478 * write access handlers. Restart the instruction if it wasn't a write access.
479 */
480 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersUnhandled);
481
482 if ( !(HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL))
483 && !(uErr & X86_TRAP_PF_P))
484 {
485 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
486 if ( VBOX_FAILURE(rc)
487 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
488 || !(uErr & X86_TRAP_PF_RW))
489 {
490 AssertRC(rc);
491 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersOutOfSync);
492 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
493 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncHndPhys; });
494 return rc;
495 }
496 }
497
498 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
499 * It's writing to an unhandled part of the LDT page several million times.
500 */
501 rc = PGMInterpretInstruction(pVM, pRegFrame, pvFault);
502 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d HCPhys=%VHp%s%s\n",
503 rc, HCPhys, HCPhys & MM_RAM_FLAGS_PHYSICAL_HANDLER ? " phys" : "",
504 HCPhys & MM_RAM_FLAGS_VIRTUAL_HANDLER ? " virt" : ""));
505 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
506 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndUnhandled; });
507 return rc;
508 } /* if any kind of handler */
509
510# if PGM_WITH_PAGING(PGM_GST_TYPE)
511 if (uErr & X86_TRAP_PF_P)
512 {
513 /*
514 * The page isn't marked, but it might still be monitored by a virtual page access handler.
515 * (ASSUMES no temporary disabling of virtual handlers.)
516 */
517 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
518 * we should correct both the shadow page table and physical memory flags, and not only check for
519 * accesses within the handler region but for access to pages with virtual handlers. */
520 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvFault);
521 if (pCur)
522 {
523 AssertMsg( !((RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
524 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
525 || !(uErr & X86_TRAP_PF_P)
526 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
527 ("Unexpected trap for virtual handler: %08X (phys=%08x) HCPhys=%X uErr=%X, enum=%d\n", pvFault, GCPhys, HCPhys, uErr, pCur->enmType));
528
529 if ( pCur->enmType != PGMVIRTHANDLERTYPE_EIP
530 && (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr < pCur->cb
531 && ( uErr & X86_TRAP_PF_RW
532 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
533 && pCur->enmType != PGMVIRTHANDLERTYPE_HYPERVISOR) ) ) /** @todo r=bird: _HYPERVISOR is impossible here because of mapping check. */
534 {
535# ifdef IN_GC
536 STAM_PROFILE_START(&pCur->Stat, h);
537 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvFault - (RTGCUINTPTR)pCur->GCPtr);
538 STAM_PROFILE_STOP(&pCur->Stat, h);
539# else
540 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
541# endif
542 STAM_COUNTER_INC(&pVM->pgm.s.StatHandlersVirtualUnmarked);
543 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
544 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eHndVirt; });
545 return rc;
546 }
547 }
548 }
549# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
550 }
551 STAM_PROFILE_STOP(&pVM->pgm.s.StatHandlers, b);
552
553# ifdef PGM_OUT_OF_SYNC_IN_GC
554 /*
555 * We are here only if page is present in Guest page tables and trap is not handled
556 * by our handlers.
557 * Check it for page out-of-sync situation.
558 */
559 STAM_PROFILE_START(&pVM->pgm.s.StatOutOfSync, c);
560
561 if (!(uErr & X86_TRAP_PF_P))
562 {
563 /*
564 * Page is not present in our page tables.
565 * Try to sync it!
566 * BTW, fPageShw is invalid in this branch!
567 */
568 if (uErr & X86_TRAP_PF_US)
569 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
570 else /* supervisor */
571 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
572
573# if defined(LOG_ENABLED) && !defined(IN_RING0)
574 RTGCPHYS GCPhys;
575 uint64_t fPageGst;
576 PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
577 Log(("Page out of sync: %p eip=%08x PdeSrc.n.u1User=%d fPageGst=%08llx GCPhys=%VGp scan=%d\n",
578 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst, GCPhys, CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)));
579# endif /* LOG_ENABLED */
580
581# if PGM_WITH_PAGING(PGM_GST_TYPE) && !defined(IN_RING0)
582 if (cpl == 0)
583 {
584 uint64_t fPageGst;
585 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
586 if ( VBOX_SUCCESS(rc)
587 && !(fPageGst & X86_PTE_US))
588 {
589 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
590 if ( pvFault == (RTGCPTR)pRegFrame->eip
591 || (RTGCUINTPTR)pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
592# ifdef CSAM_DETECT_NEW_CODE_PAGES
593 || ( !PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)
594 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)pRegFrame->eip)) /* any new code we encounter here */
595# endif /* CSAM_DETECT_NEW_CODE_PAGES */
596 )
597 {
598 LogFlow(("CSAMExecFault %VGv\n", pRegFrame->eip));
599 rc = CSAMExecFault(pVM, (RTGCPTR)pRegFrame->eip);
600 if (rc != VINF_SUCCESS)
601 {
602 /*
603 * CSAM needs to perform a job in ring 3.
604 *
605 * Sync the page before going to the host context; otherwise we'll end up in a loop if
606 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
607 */
608 LogFlow(("CSAM ring 3 job\n"));
609 int rc2 = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
610 AssertRC(rc2);
611
612 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
613 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eCSAM; });
614 return rc;
615 }
616 }
617# ifdef CSAM_DETECT_NEW_CODE_PAGES
618 else
619 if ( uErr == X86_TRAP_PF_RW
620 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
621 && pRegFrame->ecx < 0x10000
622 )
623 {
624 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
625 * to detect loading of new code pages.
626 */
627
628 /*
629 * Decode the instruction.
630 */
631 RTGCPTR PC;
632 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
633 if (rc == VINF_SUCCESS)
634 {
635 DISCPUSTATE Cpu;
636 uint32_t cbOp;
637 rc = EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)PC, pRegFrame, &Cpu, &cbOp);
638
639 /* For now we'll restrict this to rep movsw/d instructions */
640 if ( rc == VINF_SUCCESS
641 && Cpu.pCurInstr->opcode == OP_MOVSWD
642 && (Cpu.prefix & PREFIX_REP))
643 {
644 CSAMMarkPossibleCodePage(pVM, pvFault);
645 }
646 }
647 }
648# endif /* CSAM_DETECT_NEW_CODE_PAGES */
649
650 /*
651 * Mark this page as safe.
652 */
653 /** @todo not correct for pages that contain both code and data!! */
654 Log2(("CSAMMarkPage %p; scanned=%d\n", pvFault, true));
655 CSAMMarkPage(pVM, pvFault, true);
656 }
657 }
658# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
659 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, PGM_SYNC_NR_PAGES, uErr);
660 if (VBOX_SUCCESS(rc))
661 {
662 /* The page was successfully synced, return to the guest. */
663 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
664 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSync; });
665 return VINF_SUCCESS;
666 }
667 }
668 else
669 {
670 /*
671 * A side effect of not flushing global PDEs are out of sync pages due
672 * to physical monitored regions, that are no longer valid.
673 * Assume for now it only applies to the read/write flag
674 */
675 if (VBOX_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
676 {
677 if (uErr & X86_TRAP_PF_US)
678 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
679 else /* supervisor */
680 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
681
682
683 /*
684 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the page is not present, which is not true in this case.
685 */
686 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)pvFault, 1, uErr);
687 if (VBOX_SUCCESS(rc))
688 {
689 /*
690 * Page was successfully synced, return to guest.
691 */
692# ifdef VBOX_STRICT
693 RTGCPHYS GCPhys;
694 uint64_t fPageGst;
695 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, &GCPhys);
696 Assert(VBOX_SUCCESS(rc) && fPageGst & X86_PTE_RW);
697 LogFlow(("Obsolete physical monitor page out of sync %VGv - phys %VGp flags=%08llx\n", pvFault, GCPhys, (uint64_t)fPageGst));
698
699 uint64_t fPageShw;
700 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
701 Assert(VBOX_SUCCESS(rc) && fPageShw & X86_PTE_RW);
702# endif /* VBOX_STRICT */
703 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
704 STAM_STATS({ pVM->pgm.s.CTXSUFF(pStatTrap0eAttribution) = &pVM->pgm.s.StatTrap0eOutOfSyncObsHnd; });
705 return VINF_SUCCESS;
706 }
707 }
708
709# ifdef VBOX_STRICT
710 /*
711 * Check for VMM page flags vs. Guest page flags consistency.
712 * Currently only for debug purposes.
713 */
714 if (VBOX_SUCCESS(rc))
715 {
716 /* Get guest page flags. */
717 uint64_t fPageGst;
718 rc = PGMGstGetPage(pVM, pvFault, &fPageGst, NULL);
719 if (VBOX_SUCCESS(rc))
720 {
721 uint64_t fPageShw;
722 rc = PGMShwGetPage(pVM, pvFault, &fPageShw, NULL);
723
724 /*
725 * Compare page flags.
726 * Note: we have AVL, A, D bits desynched.
727 */
728 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
729 ("Page flags mismatch! pvFault=%p GCPhys=%VGp fPageShw=%08llx fPageGst=%08llx\n", pvFault, GCPhys, fPageShw, fPageGst));
730 }
731 else
732 AssertMsgFailed(("PGMGstGetPage rc=%Vrc\n", rc));
733 }
734 else
735 AssertMsgFailed(("PGMGCGetPage rc=%Vrc\n", rc));
736# endif /* VBOX_STRICT */
737 }
738 STAM_PROFILE_STOP(&pVM->pgm.s.StatOutOfSync, c);
739# endif /* PGM_OUT_OF_SYNC_IN_GC */
740 }
741 else
742 {
743 /*
744 * Page not present in Guest OS or invalid page table address.
745 * This is potential virtual page access handler food.
746 *
747 * For the present we'll say that our access handlers don't
748 * work for this case - we've already discarded the page table
749 * not present case which is identical to this.
750 *
751 * When we perchance find we need this, we will probably have AVL
752 * trees (offset based) to operate on and we can measure their speed
753 * agains mapping a page table and probably rearrange this handling
754 * a bit. (Like, searching virtual ranges before checking the
755 * physical address.)
756 */
757 }
758 }
759
760
761# if PGM_WITH_PAGING(PGM_GST_TYPE)
762 /*
763 * Check if it's in a EIP based virtual page access handler range.
764 * This is only used for supervisor pages in flat mode.
765 */
766 /** @todo this stuff is completely broken by the out-of-sync stuff. since we don't use this stuff, that's not really a problem yet. */
767 STAM_PROFILE_START(&pVM->pgm.s.StatEIPHandlers, d);
768 if (cpl == 0)
769 {
770 RTGCPTR pvEIP;
771 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &pvEIP);
772 if ( VBOX_SUCCESS(rc)
773 && pvEIP == (RTGCPTR)pRegFrame->eip)
774 {
775 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&CTXSUFF(pVM->pgm.s.pTrees)->VirtHandlers, pvEIP);
776 if ( pCur
777 && pCur->enmType == PGMVIRTHANDLERTYPE_EIP
778 && (RTGCUINTPTR)pvEIP - (RTGCUINTPTR)pCur->GCPtr < pCur->cb)
779 {
780 LogFlow(("EIP handler\n"));
781# ifdef IN_GC
782 STAM_PROFILE_START(&pCur->Stat, h);
783 rc = CTXSUFF(pCur->pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->GCPtr, (RTGCUINTPTR)pvEIP - (RTGCUINTPTR)pCur->GCPtr);
784 STAM_PROFILE_STOP(&pCur->Stat, h);
785# else
786 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
787# endif
788 STAM_PROFILE_STOP(&pVM->pgm.s.StatEIPHandlers, d);
789 return rc;
790 }
791 }
792 }
793 STAM_PROFILE_STOP(&pVM->pgm.s.StatEIPHandlers, d);
794
795 /*
796 * Conclusion, this is a guest trap.
797 */
798 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
799 STAM_COUNTER_INC(&pVM->pgm.s.StatGCTrap0eUnhandled);
800 return VINF_EM_RAW_GUEST_TRAP;
801# else
802 /* present, but not a monitored page; perhaps the guest is probing physical memory */
803 return VINF_EM_RAW_EMULATE_INSTR;
804# endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
805
806
807#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
808
809 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
810 return VERR_INTERNAL_ERROR;
811#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
812}
813
814
815/**
816 * Emulation of the invlpg instruction.
817 *
818 *
819 * @returns VBox status code.
820 *
821 * @param pVM VM handle.
822 * @param GCPtrPage Page to invalidate.
823 *
824 * @remark ASSUMES that the guest is updating before invalidating. This order
825 * isn't required by the CPU, so this is speculative and could cause
826 * trouble.
827 *
828 * @todo Flush page or page directory only if necessary!
829 * @todo Add a #define for simply invalidating the page.
830 */
831PGM_BTH_DECL(int, InvalidatePage)(PVM pVM, RTGCUINTPTR GCPtrPage)
832{
833#if PGM_GST_TYPE == PGM_TYPE_32BIT
834
835 LogFlow(("InvalidatePage %x\n", GCPtrPage));
836# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
837 /*
838 * Get the shadow PD entry and skip out if this PD isn't present.
839 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
840 */
841 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
842# if PGM_SHW_TYPE == PGM_TYPE_32BIT
843 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
844# else
845 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs[0])->a[iPDDst];
846# endif
847 const SHWPDE PdeDst = *pPdeDst;
848 if (!PdeDst.n.u1Present)
849 {
850 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePageSkipped));
851 return VINF_SUCCESS;
852 }
853
854 /*
855 * Get the guest PD entry and calc big page.
856 */
857 PVBOXPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
858 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
859 VBOXPDE PdeSrc = pPDSrc->a[iPDSrc];
860 const uint32_t cr4 = CPUMGetGuestCR4(pVM);
861 const bool fIsBigPage = PdeSrc.b.u1Size && (cr4 & X86_CR4_PSE);
862
863# ifdef IN_RING3
864 /*
865 * If a CR3 Sync is pending we may ignore the invalidate page operation
866 * depending on the kind of sync and if it's a global page or not.
867 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
868 */
869# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
870 if ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3)
871 || ( VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL)
872 && fIsBigPage
873 && PdeSrc.b.u1Global
874 && (cr4 & X86_CR4_PGE)
875 )
876 )
877# else
878 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
879# endif
880 {
881 STAM_COUNTER_INC(&pVM->pgm.s.StatHCInvalidatePageSkipped);
882 return VINF_SUCCESS;
883 }
884# endif /* IN_RING3 */
885
886
887 /*
888 * Deal with the Guest PDE.
889 */
890 int rc = VINF_SUCCESS;
891 if (PdeSrc.n.u1Present)
892 {
893 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
894 {
895 /*
896 * Conflict - Let SyncPT deal with it to avoid duplicate code.
897 */
898 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
899 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
900 }
901 else if ( PdeSrc.n.u1User != PdeDst.n.u1User
902 || (!PdeSrc.n.u1Write && PdeDst.n.u1Write))
903 {
904 /*
905 * Mark not present so we can resync the PDE when it's used.
906 */
907 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
908 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
909 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
910 pPdeDst->u = 0;
911 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
912 PGM_INVL_GUEST_TLBS();
913 }
914# ifdef PGM_SYNC_ACCESSED_BIT
915 else if (!PdeSrc.n.u1Accessed)
916 {
917 /*
918 * Mark not present so we can set the accessed bit.
919 */
920 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
921 pPdeDst->u = 0;
922 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNAs));
923 PGM_INVL_GUEST_TLBS();
924 }
925# endif
926 else if (!fIsBigPage)
927 {
928 /*
929 * 4KB - page.
930 */
931 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
932 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
933# if PGM_SHW_TYPE != PGM_TYPE_32BIT
934 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
935# endif
936 if (pShwPage->GCPhys == GCPhys)
937 {
938#if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
939 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
940 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
941 if (pPT->a[iPTEDst].n.u1Present)
942 {
943# ifdef PGMPOOL_WITH_USER_TRACKING
944 /* This is very unlikely with caching/monitoring enabled. */
945 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
946# endif
947 pPT->a[iPTEDst].u = 0;
948 }
949#else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
950 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
951 if (VBOX_SUCCESS(rc))
952 rc = VINF_SUCCESS;
953#endif
954 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4KBPages));
955 PGM_INVL_PG(GCPtrPage);
956 }
957 else
958 {
959 /*
960 * The page table address changed.
961 */
962 LogFlow(("InvalidatePage: Out-of-sync at %VGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%VGp iPDDst=%#x\n",
963 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
964 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
965 pPdeDst->u = 0;
966 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDOutOfSync));
967 PGM_INVL_GUEST_TLBS();
968 }
969 }
970 else
971 {
972 /*
973 * 4MB - page.
974 */
975 /* Before freeing the page, check if anything really changed. */
976 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
977 RTGCPHYS GCPhys = PdeSrc.u & X86_PDE4M_PG_MASK;
978# if PGM_SHW_TYPE != PGM_TYPE_32BIT
979 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
980# endif
981 if ( pShwPage->GCPhys == GCPhys
982 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
983 {
984 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
985 /** @todo PAT */
986# ifdef PGM_SYNC_DIRTY_BIT
987 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
988 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
989 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
990 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
991# else
992 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
993 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)))
994# endif
995 {
996 LogFlow(("Skipping flush for big page containing %VGv (PD=%X)-> nothing has changed!\n", GCPtrPage, iPDSrc));
997 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPagesSkip));
998 return VINF_SUCCESS;
999 }
1000 }
1001
1002 /*
1003 * Ok, the page table is present and it's been changed in the guest.
1004 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1005 * We could do this for some flushes in GC too, but we need an algorithm for
1006 * deciding which 4MB pages containing code likely to be executed very soon.
1007 */
1008 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1009 pPdeDst->u = 0;
1010 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePage4MBPages));
1011 DUMP_PDE_BIG("PGMInvalidatePage", iPDSrc, PdeSrc);
1012 PGM_INVL_BIG_PG(GCPtrPage);
1013 }
1014 }
1015 else
1016 {
1017 /*
1018 * Page directory is not present, mark shadow PDE not present.
1019 */
1020 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1021 {
1022 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1023 pPdeDst->u = 0;
1024 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDNPs));
1025 PGM_INVL_PG(GCPtrPage);
1026 }
1027 else
1028 {
1029 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1030 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,InvalidatePagePDMappings));
1031 }
1032 }
1033
1034 return rc;
1035
1036# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1037# error "Guest 32-bit mode and shadow AMD64 mode doesn't add up!"
1038# endif
1039 return VINF_SUCCESS;
1040
1041#elif PGM_GST_TYPE == PGM_TYPE_PAE
1042# if PGM_SHW_TYPE == PGM_TYPE_PAE
1043//# error not implemented
1044 return VERR_INTERNAL_ERROR;
1045
1046# else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
1047# error "Guest PAE mode, but not the shadow mode ; 32bit - maybe, but amd64 no."
1048# endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
1049
1050#elif PGM_GST_TYPE == PGM_TYPE_AMD64
1051# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1052//# error not implemented
1053 return VERR_INTERNAL_ERROR;
1054
1055# else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
1056# error "Guest AMD64 mode, but not the shadow mode - that can't be right!"
1057# endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
1058
1059#else /* guest real and protected mode */
1060 /* There's no such thing when paging is disabled. */
1061 return VINF_SUCCESS;
1062#endif
1063}
1064
1065
1066#ifdef PGMPOOL_WITH_USER_TRACKING
1067/**
1068 * Update the tracking of shadowed pages.
1069 *
1070 * @param pVM The VM handle.
1071 * @param pShwPage The shadow page.
1072 * @param HCPhys The physical page we is being dereferenced.
1073 */
1074DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVM pVM, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1075{
1076# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1077 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1078 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%VHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1079
1080 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1081 * 1. have a medium sized HCPhys -> GCPhys cache (hash?)
1082 * 2. write protect all shadowed pages. I.e. implement caching.
1083 */
1084 /*
1085 * Find the guest address.
1086 */
1087 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTXSUFF(pRamRanges);
1088 pRam;
1089 pRam = pRam->CTXSUFF(pNext))
1090 {
1091 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1092 while (iPage-- > 0)
1093 {
1094 if ((pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK) == HCPhys)
1095 {
1096 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
1097 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aHCPhys[iPage]);
1098 pShwPage->cPresent--;
1099 pPool->cPresent--;
1100 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1101 return;
1102 }
1103 }
1104 }
1105
1106 for (;;)
1107 AssertReleaseMsgFailed(("HCPhys=%VHp wasn't found!\n", HCPhys));
1108# else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1109 pShwPage->cPresent--;
1110 pVM->pgm.s.CTXSUFF(pPool)->cPresent--;
1111# endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
1112}
1113
1114
1115/**
1116 * Update the tracking of shadowed pages.
1117 *
1118 * @param pVM The VM handle.
1119 * @param pShwPage The shadow page.
1120 * @param u16 The top 16-bit of the *pHCPhys.
1121 * @param pHCPhys Pointer to the ram range physical page entry.
1122 * @param iPTDst The index into the shadow table.
1123 */
1124DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVM pVM, PPGMPOOLPAGE pShwPage, uint16_t u16, PRTHCPHYS pHCPhys, const unsigned iPTDst)
1125{
1126# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1127 /*
1128 * We're making certain assumptions about the placement of cRef and idx.
1129 */
1130 Assert(MM_RAM_FLAGS_IDX_SHIFT == 48);
1131 Assert(MM_RAM_FLAGS_CREFS_SHIFT > MM_RAM_FLAGS_IDX_SHIFT);
1132
1133 /*
1134 * Just deal with the simple first time here.
1135 */
1136 if (!u16)
1137 {
1138 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1139 u16 = (1 << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) | pShwPage->idx;
1140 }
1141 else
1142 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1143
1144 /* write back, trying to be clever... */
1145 Log2(("SyncPageWorkerTrackAddRef: u16=%#x *pHCPhys=%VHp->%VHp iPTDst=%#x\n",
1146 u16, *pHCPhys, (*pHCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)u16 << MM_RAM_FLAGS_CREFS_SHIFT), iPTDst));
1147 *((uint16_t *)pHCPhys + 3) = u16;
1148# endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1149
1150 /* update statistics. */
1151 pVM->pgm.s.CTXSUFF(pPool)->cPresent++;
1152 pShwPage->cPresent++;
1153 if (pShwPage->iFirstPresent > iPTDst)
1154 pShwPage->iFirstPresent = iPTDst;
1155}
1156#endif /* PGMPOOL_WITH_USER_TRACKING */
1157
1158
1159/**
1160 * Creates a 4K shadow page for a guest page.
1161 *
1162 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1163 * physical address. The PdeSrc argument only the flags are used. No page structured
1164 * will be mapped in this function.
1165 *
1166 * @param pVM VM handle.
1167 * @param pPteDst Destination page table entry.
1168 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1169 * Can safely assume that only the flags are being used.
1170 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1171 * @param pShwPage Pointer to the shadow page.
1172 * @param iPTDst The index into the shadow table.
1173 *
1174 * @remark Not used for 2/4MB pages!
1175 */
1176DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVM pVM, PSHWPTE pPteDst, VBOXPDE PdeSrc, VBOXPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1177{
1178 if (PteSrc.n.u1Present)
1179 {
1180 /*
1181 * Find the ram range.
1182 */
1183 PRTHCPHYS pHCPhys;
1184 int rc = PGMRamGCPhys2PagePtr(&pVM->pgm.s, PteSrc.u & X86_PTE_PG_MASK, &pHCPhys);
1185 if (VBOX_SUCCESS(rc))
1186 {
1187 /** @todo investiage PWT, PCD and PAT. */
1188 /*
1189 * Make page table entry.
1190 */
1191 const RTHCPHYS HCPhys = *pHCPhys;
1192 SHWPTE PteDst;
1193 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
1194 {
1195 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1196 if (!(HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL)))
1197 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1198 | (HCPhys & X86_PTE_PAE_PG_MASK);
1199 else
1200 PteDst.u = 0;
1201 /** @todo count these two kinds. */
1202 }
1203 else
1204 {
1205#ifdef PGM_SYNC_DIRTY_BIT
1206# ifdef PGM_SYNC_ACCESSED_BIT
1207 /*
1208 * If the page or page directory entry is not marked accessed,
1209 * we mark the page not present.
1210 */
1211 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1212 {
1213 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,AccessedPage));
1214 PteDst.u = 0;
1215 }
1216 else
1217# endif
1218 /*
1219 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1220 * when the page is modified.
1221 */
1222 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1223 {
1224 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPage));
1225 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1226 | (HCPhys & X86_PTE_PAE_PG_MASK)
1227 | PGM_PTFLAGS_TRACK_DIRTY;
1228 }
1229 else
1230 {
1231 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageSkipped));
1232 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1233 | (HCPhys & X86_PTE_PAE_PG_MASK);
1234 }
1235#endif
1236 }
1237
1238#ifdef PGMPOOL_WITH_USER_TRACKING
1239 /*
1240 * Keep user track up to date.
1241 */
1242 if (PteDst.n.u1Present)
1243 {
1244 if (!pPteDst->n.u1Present)
1245 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pHCPhys, iPTDst);
1246 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1247 {
1248 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1249 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1250 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pHCPhys, iPTDst);
1251 }
1252 }
1253 else if (pPteDst->n.u1Present)
1254 {
1255 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1256 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1257 }
1258#endif /* PGMPOOL_WITH_USER_TRACKING */
1259
1260 /*
1261 * Update statistics and commit the entry.
1262 */
1263 if (!PteSrc.n.u1Global)
1264 pShwPage->fSeenNonGlobal = true;
1265 *pPteDst = PteDst;
1266 }
1267 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1268 /** @todo count these. */
1269 }
1270 else
1271 {
1272 /*
1273 * Page not-present.
1274 */
1275#ifdef PGMPOOL_WITH_USER_TRACKING
1276 /* Keep user track up to date. */
1277 if (pPteDst->n.u1Present)
1278 {
1279 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1280 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVM, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1281 }
1282#endif /* PGMPOOL_WITH_USER_TRACKING */
1283 pPteDst->u = 0;
1284 /** @todo count these. */
1285 }
1286}
1287
1288
1289/**
1290 * Syncs a guest OS page.
1291 *
1292 * There are no conflicts at this point, neither is there any need for
1293 * page table allocations.
1294 *
1295 * @returns VBox status code.
1296 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1297 * @param pVM VM handle.
1298 * @param PdeSrc Page directory entry of the guest.
1299 * @param GCPtrPage Guest context page address.
1300 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1301 * @param uErr Fault error (X86_TRAP_PF_*).
1302 */
1303PGM_BTH_DECL(int, SyncPage)(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uErr)
1304{
1305 LogFlow(("SyncPage: GCPtrPage=%VGv cPages=%d uErr=%#x\n", GCPtrPage, cPages, uErr));
1306
1307#if PGM_GST_TYPE == PGM_TYPE_32BIT
1308
1309# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
1310# error "Invalid shadow mode for 32-bit guest mode!"
1311# endif
1312
1313 /*
1314 * Assert preconditions.
1315 */
1316# if GC_ARCH_BITS != 32
1317 Assert(GCPtrPage < _4G); //???
1318# endif
1319 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPagePD[(GCPtrPage >> X86_PD_SHIFT) & X86_PD_MASK]);
1320 Assert(PdeSrc.n.u1Present);
1321 Assert(cPages);
1322
1323 /*
1324 * Get the shadow PDE, find the shadow page table in the pool.
1325 */
1326 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1327# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1328 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1329# else /* PAE */
1330 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1331# endif
1332 Assert(PdeDst.n.u1Present);
1333 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1334
1335 /*
1336 * Check that the page is present and that the shadow PDE isn't out of sync.
1337 */
1338 const bool fBigPage = PdeSrc.b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1339 RTGCPHYS GCPhys;
1340 if (!fBigPage)
1341 {
1342 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1343# if PGM_SHW_TYPE != PGM_TYPE_32BIT
1344 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1345# endif
1346 }
1347 else
1348 {
1349 GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
1350# if PGM_SHW_TYPE != PGM_TYPE_32BIT
1351 GCPhys |= GCPtrPage & X86_PAGE_2M_SIZE;
1352# endif
1353 }
1354 if ( pShwPage->GCPhys == GCPhys
1355 && PdeSrc.n.u1Present
1356 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1357 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1358 )
1359 {
1360# ifdef PGM_SYNC_ACCESSED_BIT
1361 /*
1362 * Check that the PDE is marked accessed already.
1363 * Since we set the accessed bit *before* getting here on a #PF, this
1364 * check is only meant for dealing with non-#PF'ing paths.
1365 */
1366 if (PdeSrc.n.u1Accessed)
1367# endif
1368 {
1369 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1370 if (!fBigPage)
1371 {
1372 /*
1373 * 4KB Page - Map the guest page table.
1374 */
1375 PVBOXPT pPTSrc;
1376 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & X86_PDE_PG_MASK, &pPTSrc);
1377 if (VBOX_SUCCESS(rc))
1378 {
1379# ifdef PGM_SYNC_N_PAGES
1380 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1381 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1382 {
1383 /*
1384 * This code path is currently only taken when the caller is PGMTrap0eHandler
1385 * for non-present pages!
1386 *
1387 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1388 * deal with locality.
1389 */
1390 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1391# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1392 const unsigned offPTSrc = 0;
1393# else
1394 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1395# endif
1396 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1397 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1398 iPTDst = 0;
1399 else
1400 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1401 for (; iPTDst < iPTDstEnd; iPTDst++)
1402 {
1403 if (!pPTDst->a[iPTDst].n.u1Present)
1404 {
1405 VBOXPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1406 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(X86_PT_MASK << X86_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1407 NOREF(GCPtrCurPage);
1408#ifndef IN_RING0
1409 /*
1410 * Assuming kernel code will be marked as supervisor - and not as user level
1411 * and executed using a conforming code selector - And marked as readonly.
1412 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1413 */
1414 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1415 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1416 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)GCPtrCurPage)
1417 || PGMRamTestFlags(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK,
1418 MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE)
1419 )
1420#endif
1421 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1422 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1423 GCPtrCurPage, PteSrc.n.u1Present,
1424 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1425 PteSrc.n.u1User & PdeSrc.n.u1User,
1426 (uint64_t)PteSrc.u,
1427 (uint64_t)pPTDst->a[iPTDst].u,
1428 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1429 }
1430 }
1431 }
1432 else
1433# endif /* PGM_SYNC_N_PAGES */
1434 {
1435 const unsigned iPTSrc = (GCPtrPage >> X86_PT_SHIFT) & X86_PT_MASK;
1436 VBOXPTE PteSrc = pPTSrc->a[iPTSrc];
1437 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1438 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1439 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1440 GCPtrPage, PteSrc.n.u1Present,
1441 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1442 PteSrc.n.u1User & PdeSrc.n.u1User,
1443 (uint64_t)PteSrc.u,
1444 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1445 }
1446 }
1447 else /* MMIO or invalid page: emulated in #PF handler. */
1448 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1449 }
1450 else
1451 {
1452 /*
1453 * 4/2MB page - lazy syncing shadow 4K pages.
1454 * (There are many causes of getting here, it's no longer only CSAM.)
1455 */
1456 /* Calculate the GC physical address of this 4KB shadow page. */
1457 RTGCPHYS GCPhys = (PdeSrc.u & X86_PDE4M_PAE_PG_MASK) | ((RTGCUINTPTR)GCPtrPage & PAGE_OFFSET_MASK_BIG);
1458 /* Find ram range. */
1459 PRTHCPHYS pHCPhys;
1460 int rc = PGMRamGCPhys2PagePtr(&pVM->pgm.s, GCPhys, &pHCPhys);
1461 if (VBOX_SUCCESS(rc))
1462 {
1463 /*
1464 * Make shadow PTE entry.
1465 */
1466 RTHCPHYS HCPhys = *pHCPhys;
1467 SHWPTE PteDst;
1468 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1469 | (HCPhys & X86_PTE_PAE_PG_MASK);
1470 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
1471 {
1472 if (!(HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL)))
1473 PteDst.n.u1Write = 0;
1474 else
1475 PteDst.u = 0;
1476 }
1477 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1478# ifdef PGMPOOL_WITH_USER_TRACKING
1479 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1480 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, pHCPhys, iPTDst);
1481# endif
1482 pPTDst->a[iPTDst] = PteDst;
1483
1484
1485# ifdef PGM_SYNC_DIRTY_BIT
1486 /*
1487 * If the page is not flagged as dirty and is writable, then make it read-only
1488 * at PD level, so we can set the dirty bit when the page is modified.
1489 *
1490 * ASSUMES that page access handlers are implemented on page table entry level.
1491 * Thus we will first catch the dirty access and set PDE.D and restart. If
1492 * there is an access handler, we'll trap again and let it work on the problem.
1493 */
1494 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1495 * As for invlpg, it simply frees the whole shadow PT.
1496 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1497 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1498 {
1499 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1500 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1501 PdeDst.n.u1Write = 0;
1502 }
1503 else
1504 {
1505 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1506 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1507 }
1508# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1509 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst] = PdeDst;
1510# else /* PAE */
1511 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst] = PdeDst;
1512# endif
1513# endif /* PGM_SYNC_DIRTY_BIT */
1514 Log2(("SyncPage: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%VGp%s\n",
1515 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1516 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1517 }
1518 }
1519 return VINF_SUCCESS;
1520 }
1521# ifdef PGM_SYNC_ACCESSED_BIT
1522 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDNAs));
1523#endif
1524 }
1525 else
1526 {
1527 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPagePDOutOfSync));
1528 Log2(("SyncPage: Out-Of-Sync PDE at %VGp PdeSrc=%RX64 PdeDst=%RX64\n",
1529 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1530 }
1531
1532 /*
1533 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1534 * Yea, I'm lazy.
1535 */
1536 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, SHW_POOL_ROOT_IDX, iPDDst);
1537# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1538 pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst].u = 0;
1539# else /* PAE */
1540 pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst].u = 0;
1541# endif
1542 PGM_INVL_GUEST_TLBS();
1543 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1544
1545#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
1546
1547# ifdef PGM_SYNC_N_PAGES
1548 /*
1549 * Get the shadow PDE, find the shadow page table in the pool.
1550 */
1551 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1552# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1553 X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[iPDDst];
1554# else /* PAE */
1555 X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[iPDDst];
1556# endif
1557 Assert(PdeDst.n.u1Present);
1558 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, PdeDst.u & SHW_PDE_PG_MASK);
1559 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1560
1561# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1562 const unsigned offPTSrc = 0;
1563# else
1564 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1565# endif
1566
1567 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1568 if (cPages > 1 && !(uErr & X86_TRAP_PF_P))
1569 {
1570 /*
1571 * This code path is currently only taken when the caller is PGMTrap0eHandler
1572 * for non-present pages!
1573 *
1574 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1575 * deal with locality.
1576 */
1577 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1578 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
1579 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1580 iPTDst = 0;
1581 else
1582 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1583 for (; iPTDst < iPTDstEnd; iPTDst++)
1584 {
1585 if (!pPTDst->a[iPTDst].n.u1Present)
1586 {
1587 VBOXPTE PteSrc;
1588
1589 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(X86_PT_MASK << X86_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1590
1591 /* Fake the page table entry */
1592 PteSrc.u = GCPtrCurPage;
1593 PteSrc.n.u1Present = 1;
1594 PteSrc.n.u1Dirty = 1;
1595 PteSrc.n.u1Accessed = 1;
1596 PteSrc.n.u1Write = 1;
1597
1598 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1599
1600 Log2(("SyncPage: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1601 GCPtrCurPage, PteSrc.n.u1Present,
1602 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1603 PteSrc.n.u1User & PdeSrc.n.u1User,
1604 (uint64_t)PteSrc.u,
1605 (uint64_t)pPTDst->a[iPTDst].u,
1606 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1607 }
1608 }
1609 }
1610 else
1611# endif /* PGM_SYNC_N_PAGES */
1612 {
1613 VBOXPTE PteSrc;
1614 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1615 RTGCUINTPTR GCPtrCurPage = ((RTGCUINTPTR)GCPtrPage & ~(RTGCUINTPTR)(X86_PT_MASK << X86_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1616
1617 /* Fake the page table entry */
1618 PteSrc.u = GCPtrCurPage;
1619 PteSrc.n.u1Present = 1;
1620 PteSrc.n.u1Dirty = 1;
1621 PteSrc.n.u1Accessed = 1;
1622 PteSrc.n.u1Write = 1;
1623 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1624
1625 Log2(("SyncPage: 4K %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s\n",
1626 GCPtrPage, PteSrc.n.u1Present,
1627 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1628 PteSrc.n.u1User & PdeSrc.n.u1User,
1629 (uint64_t)PteSrc.u,
1630 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1631 }
1632 return VINF_SUCCESS;
1633
1634#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1635 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1636 return VERR_INTERNAL_ERROR;
1637#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1638}
1639
1640
1641
1642#if PGM_WITH_PAGING(PGM_GST_TYPE)
1643
1644# ifdef PGM_SYNC_DIRTY_BIT
1645
1646/**
1647 * Investigate page fault and handle write protection page faults caused by
1648 * dirty bit tracking.
1649 *
1650 * @returns VBox status code.
1651 * @param pVM VM handle.
1652 * @param uErr Page fault error code.
1653 * @param pPdeDst Shadow page directory entry.
1654 * @param pPdeSrc Guest page directory entry.
1655 * @param GCPtrPage Guest context page address.
1656 */
1657PGM_BTH_DECL(int, CheckPageFault)(PVM pVM, uint32_t uErr, PSHWPDE pPdeDst, PVBOXPDE pPdeSrc, RTGCUINTPTR GCPtrPage)
1658{
1659 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1660 LogFlow(("CheckPageFault: GCPtrPage=%VGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
1661
1662 /*
1663 * Real page fault?
1664 */
1665 if ( (uErr & X86_TRAP_PF_RSVD)
1666 || !pPdeSrc->n.u1Present
1667 || ((uErr & X86_TRAP_PF_RW) && !pPdeSrc->n.u1Write)
1668 || ((uErr & X86_TRAP_PF_US) && !pPdeSrc->n.u1User) )
1669 {
1670# ifdef IN_GC
1671 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1672# endif
1673 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat, DirtyBitTracking), a);
1674 LogFlow(("CheckPageFault: real page fault at %VGv (1)\n", GCPtrPage));
1675
1676 if (pPdeSrc->n.u1Present)
1677 {
1678 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1679 * See the 2nd case below as well.
1680 */
1681 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1682 {
1683 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1684 }
1685 else
1686 {
1687 /*
1688 * Map the guest page table.
1689 */
1690 PVBOXPT pPTSrc;
1691 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & X86_PDE_PG_MASK, &pPTSrc);
1692 if (VBOX_SUCCESS(rc))
1693 {
1694 PVBOXPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & PTE_MASK];
1695 const VBOXPTE PteSrc = *pPteSrc;
1696 if (pPteSrc->n.u1Present)
1697 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1698 }
1699 AssertRC(rc);
1700 }
1701 }
1702 return VINF_EM_RAW_GUEST_TRAP;
1703 }
1704
1705 /*
1706 * First check the easy case where the page directory has been marked read-only to track
1707 * the dirty bit of an emulated BIG page
1708 */
1709 if (pPdeSrc->b.u1Size && (CPUMGetGuestCR4(pVM) & X86_CR4_PSE))
1710 {
1711 /* Mark guest page directory as accessed */
1712 pPdeSrc->b.u1Accessed = 1;
1713
1714 /*
1715 * Only write protection page faults are relevant here.
1716 */
1717 if (uErr & X86_TRAP_PF_RW)
1718 {
1719 /* Mark guest page directory as dirty (BIG page only). */
1720 pPdeSrc->b.u1Dirty = 1;
1721
1722 if (pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
1723 {
1724 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1725
1726 Assert(pPdeSrc->b.u1Write);
1727
1728 pPdeDst->n.u1Write = 1;
1729 pPdeDst->n.u1Accessed = 1;
1730 pPdeDst->au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1731 PGM_INVL_BIG_PG(GCPtrPage);
1732 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1733 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1734 }
1735 }
1736 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1737 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1738 }
1739 /* else: 4KB page table */
1740
1741 /*
1742 * Map the guest page table.
1743 */
1744 PVBOXPT pPTSrc;
1745 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & X86_PDE_PG_MASK, &pPTSrc);
1746 if (VBOX_SUCCESS(rc))
1747 {
1748 /*
1749 * Real page fault?
1750 */
1751 PVBOXPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> PAGE_SHIFT) & PTE_MASK];
1752 const VBOXPTE PteSrc = *pPteSrc;
1753 if ( !PteSrc.n.u1Present
1754 || ((uErr & X86_TRAP_PF_RW) && !PteSrc.n.u1Write)
1755 || ((uErr & X86_TRAP_PF_US) && !PteSrc.n.u1User)
1756 )
1757 {
1758# ifdef IN_GC
1759 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtyTrackRealPF);
1760# endif
1761 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1762 LogFlow(("CheckPageFault: real page fault at %VGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
1763
1764 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
1765 * See the 2nd case above as well.
1766 */
1767 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
1768 TRPMSetErrorCode(pVM, uErr | X86_TRAP_PF_P); /* page-level protection violation */
1769
1770 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1771 return VINF_EM_RAW_GUEST_TRAP;
1772 }
1773 LogFlow(("CheckPageFault: page fault at %VGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
1774
1775 /*
1776 * Set the accessed bits in the page directory and the page table.
1777 */
1778 pPdeSrc->n.u1Accessed = 1;
1779 pPteSrc->n.u1Accessed = 1;
1780
1781 /*
1782 * Only write protection page faults are relevant here.
1783 */
1784 if (uErr & X86_TRAP_PF_RW)
1785 {
1786 /* Write access, so mark guest entry as dirty. */
1787# if defined(IN_GC) && defined(VBOX_WITH_STATISTICS)
1788 if (!pPteSrc->n.u1Dirty)
1789 STAM_COUNTER_INC(&pVM->pgm.s.StatGCDirtiedPage);
1790 else
1791 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageAlreadyDirty);
1792# endif
1793 pPteSrc->n.u1Dirty = 1;
1794
1795 if (pPdeDst->n.u1Present)
1796 {
1797 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
1798 * Our individual shadow handlers will provide more information and force a fatal exit.
1799 */
1800 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
1801 {
1802 LogRel(("CheckPageFault: write to hypervisor region %VGv\n", GCPtrPage));
1803 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1804 return VINF_SUCCESS;
1805 }
1806
1807 /*
1808 * Map shadow page table.
1809 */
1810 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1811 if (pShwPage)
1812 {
1813 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1814 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1815 if ( pPteDst->n.u1Present /** @todo Optimize accessed bit emulation? */
1816 && (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY))
1817 {
1818 LogFlow(("DIRTY page trap addr=%VGv\n", GCPtrPage));
1819# ifdef VBOX_STRICT
1820 RTHCPHYS HCPhys;
1821 rc = PGMRamGCPhys2HCPhysWithFlags(&pVM->pgm.s, pPteSrc->u & X86_PTE_PG_MASK, &HCPhys);
1822 if (VBOX_SUCCESS(rc))
1823 AssertMsg(!(HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE)),
1824 ("Unexpected dirty bit tracking on monitored page %VGv (phys %VGp)!!!!!!\n", GCPtrPage, pPteSrc->u & X86_PTE_PAE_PG_MASK));
1825# endif
1826 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageTrap));
1827
1828 Assert(pPteSrc->n.u1Write);
1829
1830 pPteDst->n.u1Write = 1;
1831 pPteDst->n.u1Dirty = 1;
1832 pPteDst->n.u1Accessed = 1;
1833 pPteDst->au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
1834 PGM_INVL_PG(GCPtrPage);
1835
1836 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1837 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT;
1838 }
1839 }
1840 else
1841 AssertMsgFailed(("pgmPoolGetPageByHCPhys %VGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
1842 }
1843 }
1844/** @todo Optimize accessed bit emulation? */
1845# ifdef VBOX_STRICT
1846 /*
1847 * Sanity check.
1848 */
1849 else if ( !pPteSrc->n.u1Dirty
1850 && (pPdeSrc->n.u1Write & pPteSrc->n.u1Write)
1851 && pPdeDst->n.u1Present)
1852 {
1853 PPGMPOOLPAGE pShwPage = pgmPoolGetPageByHCPhys(pVM, pPdeDst->u & SHW_PDE_PG_MASK);
1854 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1855 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
1856 if ( pPteDst->n.u1Present
1857 && pPteDst->n.u1Write)
1858 LogFlow(("Writable present page %VGv not marked for dirty bit tracking!!!\n", GCPtrPage));
1859 }
1860# endif /* VBOX_STRICT */
1861 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1862 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
1863 }
1864 AssertRC(rc);
1865 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,DirtyBitTracking), a);
1866 return rc;
1867}
1868
1869# endif
1870
1871#endif /* PGM_WITH_PAGING(PGM_GST_TYPE) */
1872
1873
1874/**
1875 * Sync a shadow page table.
1876 *
1877 * The shadow page table is not present. This includes the case where
1878 * there is a conflict with a mapping.
1879 *
1880 * @returns VBox status code.
1881 * @param pVM VM handle.
1882 * @param iPD Page directory index.
1883 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
1884 * Assume this is a temporary mapping.
1885 * @param GCPtrPage GC Pointer of the page that caused the fault
1886 */
1887PGM_BTH_DECL(int, SyncPT)(PVM pVM, unsigned iPDSrc, PVBOXPD pPDSrc, RTGCUINTPTR GCPtrPage)
1888{
1889 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1890 STAM_COUNTER_INC(&pVM->pgm.s.StatGCSyncPtPD[iPDSrc]);
1891 LogFlow(("SyncPT: GCPtrPage=%VGv\n", GCPtrPage));
1892
1893#if PGM_GST_TYPE == PGM_TYPE_32BIT
1894
1895# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
1896# error "Invalid shadow mode for 32-bit guest mode!"
1897# endif
1898
1899 /*
1900 * Validate input a little bit.
1901 */
1902 Assert(iPDSrc == (GCPtrPage >> GST_PD_SHIFT));
1903# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1904 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
1905# else
1906 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
1907# endif
1908 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
1909 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
1910 SHWPDE PdeDst = *pPdeDst;
1911
1912 /*
1913 * Check for conflicts.
1914 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
1915 * HC: Simply resolve the conflict.
1916 */
1917 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1918 {
1919 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1920# ifndef IN_RING3
1921 Log(("SyncPT: Conflict at %VGv\n", GCPtrPage));
1922 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1923 return VERR_ADDRESS_CONFLICT;
1924# else
1925 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
1926 Assert(pMapping);
1927 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPDSrc);
1928 if (VBOX_FAILURE(rc))
1929 {
1930 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
1931 return rc;
1932 }
1933 PdeDst = *pPdeDst;
1934# endif
1935 }
1936 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
1937
1938 /*
1939 * Sync page directory entry.
1940 */
1941 int rc = VINF_SUCCESS;
1942 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1943 if (PdeSrc.n.u1Present)
1944 {
1945 /*
1946 * Allocate & map the page table.
1947 */
1948 PSHWPT pPTDst;
1949 const bool fPageTable = !PdeSrc.b.u1Size || !(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
1950 PPGMPOOLPAGE pShwPage;
1951 RTGCPHYS GCPhys;
1952 if (fPageTable)
1953 {
1954 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1955# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1956 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1957# endif
1958 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
1959 }
1960 else
1961 {
1962 GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
1963# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1964 GCPhys |= GCPtrPage & BIT(X86_PAGE_2M_SHIFT);
1965# endif
1966 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
1967 }
1968 if (rc == VINF_SUCCESS)
1969 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1970 else if (rc == VINF_PGM_CACHED_PAGE)
1971 {
1972 /*
1973 * The PT was cached, just hook it up.
1974 */
1975 if (fPageTable)
1976 PdeDst.u = pShwPage->Core.Key
1977 | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
1978 else
1979 {
1980 PdeDst.u = pShwPage->Core.Key
1981 | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
1982# ifdef PGM_SYNC_DIRTY_BIT /* (see explanation and assumtions further down.) */
1983 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1984 {
1985 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
1986 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1987 PdeDst.b.u1Write = 0;
1988 }
1989# endif
1990 }
1991 *pPdeDst = PdeDst;
1992 return VINF_SUCCESS;
1993 }
1994 else if (rc == VERR_PGM_POOL_FLUSHED)
1995 return VINF_PGM_SYNC_CR3;
1996 else
1997 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
1998 PdeDst.u &= X86_PDE_AVL_MASK;
1999 PdeDst.u |= pShwPage->Core.Key;
2000
2001# ifdef PGM_SYNC_DIRTY_BIT
2002 /*
2003 * Page directory has been accessed (this is a fault situation, remember).
2004 */
2005 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2006# endif
2007 if (fPageTable)
2008 {
2009 /*
2010 * Page table - 4KB.
2011 *
2012 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2013 */
2014 Log2(("SyncPT: 4K %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2015 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2016 PGSTPT pPTSrc;
2017 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2018 if (VBOX_SUCCESS(rc))
2019 {
2020 /*
2021 * Start by syncing the page directory entry so CSAM's TLB trick works.
2022 */
2023 PdeDst.u = (PdeDst.u & (X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK))
2024 | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2025 *pPdeDst = PdeDst;
2026
2027 /*
2028 * Directory/page user or supervisor privilege: (same goes for read/write)
2029 *
2030 * Directory Page Combined
2031 * U/S U/S U/S
2032 * 0 0 0
2033 * 0 1 0
2034 * 1 0 0
2035 * 1 1 1
2036 *
2037 * Simple AND operation. Table listed for completeness.
2038 *
2039 */
2040 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4k));
2041# ifdef PGM_SYNC_N_PAGES
2042 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2043 unsigned iPTDst = iPTBase;
2044 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, ELEMENTS(pPTDst->a));
2045 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2046 iPTDst = 0;
2047 else
2048 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2049# else /* !PGM_SYNC_N_PAGES */
2050 unsigned iPTDst = 0;
2051 const unsigned iPTDstEnd = ELEMENTS(pPTDst->a);
2052# endif /* !PGM_SYNC_N_PAGES */
2053# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2054 const unsigned offPTSrc = 0;
2055# else
2056 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2057# endif
2058 for (; iPTDst < iPTDstEnd; iPTDst++)
2059 {
2060 const unsigned iPTSrc = iPTDst + offPTSrc;
2061 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2062
2063 if (PteSrc.n.u1Present) /* we've already cleared it above */
2064 {
2065#ifndef IN_RING0
2066 /*
2067 * Assuming kernel code will be marked as supervisor - and not as user level
2068 * and executed using a conforming code selector - And marked as readonly.
2069 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2070 */
2071 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2072 || !CSAMDoesPageNeedScanning(pVM, (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)))
2073 || PGMRamTestFlags(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK,
2074 MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE)
2075 )
2076#endif
2077 PGM_BTH_NAME(SyncPageWorker)(pVM, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2078 Log2(("SyncPT: 4K+ %VGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%VGp\n",
2079 (RTGCPTR)((iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)),
2080 PteSrc.n.u1Present,
2081 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2082 PteSrc.n.u1User & PdeSrc.n.u1User,
2083 (uint64_t)PteSrc.u,
2084 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2085 (PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)));
2086 }
2087 } /* for PTEs */
2088 }
2089 }
2090 else
2091 {
2092 /*
2093 * Big page - 2/4MB.
2094 *
2095 * We'll walk the ram range list in parallel and optimize lookups.
2096 * We will only sync on shadow page table at a time.
2097 */
2098 STAM_COUNTER_INC(CTXSUFF(&pVM->pgm.s.StatSynPT4M));
2099
2100 /**
2101 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2102 */
2103
2104 /*
2105 * Start by syncing the page directory entry.
2106 */
2107 PdeDst.u = (PdeDst.u & (X86_PDE_PAE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2108 | (PdeSrc.u & ~(X86_PDE_PAE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2109
2110# ifdef PGM_SYNC_DIRTY_BIT
2111 /*
2112 * If the page is not flagged as dirty and is writable, then make it read-only
2113 * at PD level, so we can set the dirty bit when the page is modified.
2114 *
2115 * ASSUMES that page access handlers are implemented on page table entry level.
2116 * Thus we will first catch the dirty access and set PDE.D and restart. If
2117 * there is an access handler, we'll trap again and let it work on the problem.
2118 */
2119 /** @todo move the above stuff to a section in the PGM documentation. */
2120 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2121 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2122 {
2123 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,DirtyPageBig));
2124 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2125 PdeDst.b.u1Write = 0;
2126 }
2127# endif /* PGM_SYNC_DIRTY_BIT */
2128 *pPdeDst = PdeDst;
2129
2130 /*
2131 * Fill the shadow page table.
2132 */
2133 /* Get address and flags from the source PDE. */
2134 SHWPTE PteDstBase;
2135 PteDstBase.u = PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2136
2137 /* Loop thru the entries in the shadow PT. */
2138 const RTGCUINTPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2139 Log2(("SyncPT: BIG %VGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%VGv GCPhys=%VGp %s\n",
2140 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2141 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2142 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
2143 unsigned iPTDst = 0;
2144 while (iPTDst < ELEMENTS(pPTDst->a))
2145 {
2146 /* Advance ram range list. */
2147 while (pRam && GCPhys > pRam->GCPhysLast)
2148 pRam = CTXSUFF(pRam->pNext);
2149 if (pRam && GCPhys >= pRam->GCPhys)
2150 {
2151 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2152 do
2153 {
2154 /* Make shadow PTE. */
2155 RTHCPHYS HCPhys = pRam->aHCPhys[iHCPage];
2156 SHWPTE PteDst;
2157
2158 /* Make sure the RAM has already been allocated. */
2159 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2160 {
2161 if (RT_UNLIKELY(!(pRam->aHCPhys[iHCPage] & X86_PTE_PAE_PG_MASK)))
2162 {
2163# ifdef IN_RING3
2164 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
2165# else
2166 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2167# endif
2168 if (rc != VINF_SUCCESS)
2169 return rc;
2170
2171 HCPhys = pRam->aHCPhys[iHCPage];
2172 }
2173 }
2174
2175 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
2176 {
2177 if (!(HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL)))
2178 {
2179 PteDst.u = (HCPhys & X86_PTE_PAE_PG_MASK) | PteDstBase.u;
2180 PteDst.n.u1Write = 0;
2181 }
2182 else
2183 PteDst.u = 0;
2184 }
2185# ifndef IN_RING0
2186 /*
2187 * Assuming kernel code will be marked as supervisor and not as user level and executed
2188 * using a conforming code selector. Don't check for readonly, as that implies the whole
2189 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2190 */
2191 else if ( !PdeSrc.n.u1User
2192 && CSAMDoesPageNeedScanning(pVM, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))))
2193 PteDst.u = 0;
2194# endif
2195 else
2196 PteDst.u = (HCPhys & X86_PTE_PAE_PG_MASK) | PteDstBase.u;
2197# ifdef PGMPOOL_WITH_USER_TRACKING
2198 if (PteDst.n.u1Present)
2199 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVM, pShwPage, HCPhys >> MM_RAM_FLAGS_IDX_SHIFT, &pRam->aHCPhys[iHCPage], iPTDst);
2200# endif
2201 /* commit it */
2202 pPTDst->a[iPTDst] = PteDst;
2203 Log4(("SyncPT: BIG %VGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2204 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2205 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2206
2207 /* advance */
2208 GCPhys += PAGE_SIZE;
2209 iHCPage++;
2210 iPTDst++;
2211 } while ( iPTDst < ELEMENTS(pPTDst->a)
2212 && GCPhys <= pRam->GCPhysLast);
2213 }
2214 else if (pRam)
2215 {
2216 Log(("Invalid pages at %VGp\n", GCPhys));
2217 do
2218 {
2219 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2220 GCPhys += PAGE_SIZE;
2221 iPTDst++;
2222 } while ( iPTDst < ELEMENTS(pPTDst->a)
2223 && GCPhys < pRam->GCPhys);
2224 }
2225 else
2226 {
2227 Log(("Invalid pages at %VGp (2)\n", GCPhys));
2228 for ( ; iPTDst < ELEMENTS(pPTDst->a); iPTDst++)
2229 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2230 }
2231 } /* while more PTEs */
2232 } /* 4KB / 4MB */
2233 }
2234 else
2235 AssertRelease(!PdeDst.n.u1Present);
2236
2237 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2238# ifdef IN_GC
2239 if (VBOX_FAILURE(rc))
2240 STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncPTFailed));
2241# endif
2242 return rc;
2243
2244#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
2245
2246 int rc = VINF_SUCCESS;
2247
2248 /*
2249 * Validate input a little bit.
2250 */
2251# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2252 PX86PD pPDDst = pVM->pgm.s.CTXMID(p,32BitPD);
2253# else
2254 PX86PDPAE pPDDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0];
2255# endif
2256 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2257 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2258 SHWPDE PdeDst = *pPdeDst;
2259
2260 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2261 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2262
2263 VBOXPDE PdeSrc;
2264 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2265 PdeSrc.n.u1Present = 1;
2266 PdeSrc.n.u1Write = 1;
2267 PdeSrc.n.u1Accessed = 1;
2268
2269 /*
2270 * Allocate & map the page table.
2271 */
2272 PSHWPT pPTDst;
2273 PPGMPOOLPAGE pShwPage;
2274 RTGCPHYS GCPhys;
2275
2276 /* Virtual address = physical address */
2277 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK_32;
2278 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, SHW_POOL_ROOT_IDX, iPDDst, &pShwPage);
2279
2280 if ( rc == VINF_SUCCESS
2281 || rc == VINF_PGM_CACHED_PAGE)
2282 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2283 else
2284 AssertMsgFailedReturn(("rc=%Vrc\n", rc), VERR_INTERNAL_ERROR);
2285
2286 PdeDst.u &= X86_PDE_AVL_MASK;
2287 PdeDst.u |= pShwPage->Core.Key;
2288 PdeDst.n.u1Present = 1;
2289 *pPdeDst = PdeDst;
2290
2291 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, (RTGCUINTPTR)GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
2292 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2293 return rc;
2294
2295#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2296
2297 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2298 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncPT), a);
2299 return VERR_INTERNAL_ERROR;
2300#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2301}
2302
2303
2304
2305/**
2306 * Prefetch a page/set of pages.
2307 *
2308 * Typically used to sync commonly used pages before entering raw mode
2309 * after a CR3 reload.
2310 *
2311 * @returns VBox status code.
2312 * @param pVM VM handle.
2313 * @param GCPtrPage Page to invalidate.
2314 */
2315PGM_BTH_DECL(int, PrefetchPage)(PVM pVM, RTGCUINTPTR GCPtrPage)
2316{
2317#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) && PGM_SHW_TYPE != PGM_TYPE_AMD64
2318
2319# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2320# error "Invalid shadow mode for 32-bit guest mode!"
2321# endif
2322
2323 /*
2324 * Check that all Guest levels thru the PDE are present, getting the
2325 * PD and PDE in the processes.
2326 */
2327 int rc = VINF_SUCCESS;
2328# if PGM_WITH_PAGING(PGM_GST_TYPE)
2329 PVBOXPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2330 const unsigned iPDSrc = (RTGCUINTPTR)GCPtrPage >> GST_PD_SHIFT;
2331# else
2332 PVBOXPD pPDSrc = NULL;
2333 const unsigned iPDSrc = 0;
2334# endif
2335
2336# if PGM_WITH_PAGING(PGM_GST_TYPE)
2337 const VBOXPDE PdeSrc = pPDSrc->a[iPDSrc];
2338# else
2339 VBOXPDE PdeSrc;
2340 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2341 PdeSrc.n.u1Present = 1;
2342 PdeSrc.n.u1Write = 1;
2343 PdeSrc.n.u1Accessed = 1;
2344# endif
2345
2346# ifdef PGM_SYNC_ACCESSED_BIT
2347 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
2348# else
2349 if (PdeSrc.n.u1Present)
2350# endif
2351 {
2352# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2353 const X86PDE PdeDst = pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> X86_PD_SHIFT];
2354# else
2355 const X86PDEPAE PdeDst = pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> X86_PD_PAE_SHIFT];
2356# endif
2357 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
2358 {
2359 if (!PdeDst.n.u1Present)
2360 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
2361 rc = PGM_BTH_NAME(SyncPT)(pVM, iPDSrc, pPDSrc, GCPtrPage);
2362 else
2363 {
2364 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
2365 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
2366 * makes no sense to prefetch more than one page.
2367 */
2368 rc = PGM_BTH_NAME(SyncPage)(pVM, PdeSrc, GCPtrPage, 1, 0);
2369 if (VBOX_SUCCESS(rc))
2370 rc = VINF_SUCCESS;
2371 }
2372 }
2373 }
2374 return rc;
2375
2376#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2377
2378 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
2379 return VERR_INTERNAL_ERROR;
2380#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2381}
2382
2383
2384
2385
2386/**
2387 * Syncs a page during a PGMVerifyAccess() call.
2388 *
2389 * @returns VBox status code (informational included).
2390 * @param GCPtrPage The address of the page to sync.
2391 * @param fPage The effective guest page flags.
2392 * @param uErr The trap error code.
2393 */
2394PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fPage, unsigned uErr)
2395{
2396 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%VGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
2397
2398#if PGM_GST_TYPE == PGM_TYPE_32BIT
2399
2400# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2401# error "Invalid shadow mode for 32-bit guest mode!"
2402# endif
2403
2404#ifndef IN_RING0
2405 if (!(fPage & X86_PTE_US))
2406 {
2407 /*
2408 * Mark this page as safe.
2409 */
2410 /** @todo not correct for pages that contain both code and data!! */
2411 Log(("CSAMMarkPage %VGv; scanned=%d\n", GCPtrPage, true));
2412 CSAMMarkPage(pVM, (RTGCPTR)GCPtrPage, true);
2413 }
2414#endif
2415 /*
2416 * Get guest PD and index.
2417 */
2418 unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
2419 PVBOXPD pPDSrc = CTXSUFF(pVM->pgm.s.pGuestPD);
2420 int rc = VINF_SUCCESS;
2421
2422# ifdef PGM_SYNC_DIRTY_BIT
2423 /*
2424 * First check if the page fault was caused by dirty bit tracking
2425 */
2426# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2427 PX86PDE pPdeDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[GCPtrPage >> X86_PD_SHIFT];
2428# else
2429 PX86PDEPAE pPdeDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[GCPtrPage >> X86_PD_PAE_SHIFT];
2430# endif
2431 rc = PGM_BTH_NAME(CheckPageFault)(pVM, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
2432 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
2433 Log(("PGMVerifyAccess: success (dirty)\n"));
2434 else
2435# endif /* PGM_SYNC_DIRTY_BIT */
2436 {
2437 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
2438 if (uErr & X86_TRAP_PF_US)
2439 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncUser);
2440 else /* supervisor */
2441 STAM_COUNTER_INC(&pVM->pgm.s.StatGCPageOutOfSyncSupervisor);
2442
2443 rc = PGM_BTH_NAME(SyncPage)(pVM, pPDSrc->a[iPDSrc], GCPtrPage, 1, 0);
2444 if (VBOX_SUCCESS(rc))
2445 {
2446 /* Page was successfully synced */
2447 Log(("PGMVerifyAccess: success (sync)\n"));
2448 rc = VINF_SUCCESS;
2449 }
2450 else
2451 {
2452 Log(("PGMVerifyAccess: access violation for %VGv rc=%d\n", GCPtrPage, rc));
2453 return VINF_EM_RAW_GUEST_TRAP;
2454 }
2455 }
2456 return rc;
2457
2458#elif PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT
2459 /* Everything is allowed */
2460 return VINF_SUCCESS;
2461
2462#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2463
2464 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2465 return VERR_INTERNAL_ERROR;
2466#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
2467}
2468
2469
2470#if PGM_GST_TYPE == PGM_TYPE_32BIT
2471# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
2472/**
2473 * Figures out which kind of shadow page this guest PDE warrants.
2474 *
2475 * @returns Shadow page kind.
2476 * @param pPdeSrc The guest PDE in question.
2477 * @param cr4 The current guest cr4 value.
2478 */
2479DECLINLINE(PGMPOOLKIND) PGM_BTH_NAME(CalcPageKind)(const VBOXPDE *pPdeSrc, uint32_t cr4)
2480{
2481 if (!pPdeSrc->n.u1Size || !(cr4 & X86_CR4_PSE))
2482 return BTH_PGMPOOLKIND_PT_FOR_PT;
2483 //switch (pPdeSrc->u & (X86_PDE4M_RW | X86_PDE4M_US /*| X86_PDE4M_PAE_NX*/))
2484 //{
2485 // case 0:
2486 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RO;
2487 // case X86_PDE4M_RW:
2488 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW;
2489 // case X86_PDE4M_US:
2490 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US;
2491 // case X86_PDE4M_RW | X86_PDE4M_US:
2492 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US;
2493# if 0
2494 // case X86_PDE4M_PAE_NX:
2495 // return BTH_PGMPOOLKIND_PT_FOR_BIG_NX;
2496 // case X86_PDE4M_RW | X86_PDE4M_PAE_NX:
2497 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_NX;
2498 // case X86_PDE4M_US | X86_PDE4M_PAE_NX:
2499 // return BTH_PGMPOOLKIND_PT_FOR_BIG_US_NX;
2500 // case X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PAE_NX:
2501 // return BTH_PGMPOOLKIND_PT_FOR_BIG_RW_US_NX;
2502# endif
2503 return BTH_PGMPOOLKIND_PT_FOR_BIG;
2504 //}
2505}
2506# endif
2507#endif
2508
2509#undef MY_STAM_COUNTER_INC
2510#define MY_STAM_COUNTER_INC(a) do { } while (0)
2511
2512
2513/**
2514 * Syncs the paging hierarchy starting at CR3.
2515 *
2516 * @returns VBox status code, no specials.
2517 * @param pVM The virtual machine.
2518 * @param cr0 Guest context CR0 register
2519 * @param cr3 Guest context CR3 register
2520 * @param cr4 Guest context CR4 register
2521 * @param fGlobal Including global page directories or not
2522 */
2523PGM_BTH_DECL(int, SyncCR3)(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)
2524{
2525#if PGM_GST_TYPE == PGM_TYPE_32BIT
2526# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
2527 /*
2528 * Inform the PGM PD Cache Manager about the pending sync.
2529 */
2530 if (fGlobal || VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3))
2531 {
2532# if 0 /** @todo what the heck is this about? */
2533 /* Don't cause an additional global CR3 reload the next time (the flag is cleared in PGMSyncCR3). */
2534 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2535# endif
2536
2537 /* Change this CR3 reload to be a global one. */
2538 fGlobal = true;
2539 }
2540# endif
2541#endif
2542
2543 /*
2544 * Update page access handlers.
2545 * The virtual are always flushed, while the physical are only on demand.
2546 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
2547 * have to look into that later because it will have a bad influence on the performance.
2548 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
2549 * bird: Yes, but that won't work for aliases.
2550 */
2551 /** @todo this MUST go away. See #1557. */
2552 STAM_PROFILE_START(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2553 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
2554 STAM_PROFILE_STOP(&pVM->pgm.s.CTXMID(Stat,SyncCR3Handlers), h);
2555
2556#ifdef PGMPOOL_WITH_MONITORING
2557 /*
2558 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2559 * Occationally we will have to clear all the shadow page tables because we wanted
2560 * to monitor a page which was mapped by too many shadowed page tables. This operation
2561 * sometimes refered to as a 'lightweight flush'.
2562 */
2563 if (!(pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL))
2564 pgmPoolMonitorModifiedClearAll(pVM);
2565 else
2566 {
2567# ifdef IN_RING3
2568 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2569 pgmPoolClearAll(pVM);
2570# else
2571 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2572 return VINF_PGM_SYNC_CR3;
2573# endif
2574 }
2575#endif
2576
2577 Assert(fGlobal || (cr4 & X86_CR4_PGE));
2578 MY_STAM_COUNTER_INC(fGlobal ? &pVM->pgm.s.CTXMID(Stat,SyncCR3Global) : &pVM->pgm.s.CTXMID(Stat,SyncCR3NotGlobal));
2579
2580#if PGM_GST_TYPE == PGM_TYPE_32BIT
2581# if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE
2582 /*
2583 * Get page directory addresses.
2584 */
2585# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2586 PX86PDE pPDEDst = &pVM->pgm.s.CTXMID(p,32BitPD)->a[0];
2587# else
2588 PX86PDEPAE pPDEDst = &pVM->pgm.s.CTXMID(ap,PaePDs)[0]->a[0];
2589# endif
2590 PVBOXPD pPDSrc = pVM->pgm.s.CTXSUFF(pGuestPD);
2591
2592 Assert(pPDSrc);
2593#ifndef IN_GC
2594 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2595#endif
2596
2597 /*
2598 * Iterate the page directory.
2599 */
2600 PPGMMAPPING pMapping;
2601 unsigned iPdNoMapping;
2602 const bool fRawR0Enabled = EMIsRawRing0Enabled(pVM);
2603 PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool);
2604
2605 /* Only check mappings if they are supposed to be put into the shadow page table. */
2606 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
2607 {
2608 pMapping = pVM->pgm.s.CTXSUFF(pMappings);
2609 iPdNoMapping = (pMapping) ? pMapping->GCPtr >> PGDIR_SHIFT : ~0U;
2610 }
2611 else
2612 {
2613 pMapping = 0;
2614 iPdNoMapping = ~0U;
2615 }
2616
2617 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2618 {
2619# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2620 Assert(&pVM->pgm.s.CTXMID(p,32BitPD)->a[iPD] == pPDEDst);
2621# else
2622 Assert(&pVM->pgm.s.CTXMID(ap,PaePDs)[iPD * 2 / 512]->a[iPD * 2 % 512] == pPDEDst);
2623# endif
2624 register VBOXPDE PdeSrc = pPDSrc->a[iPD];
2625 if ( PdeSrc.n.u1Present
2626 && (PdeSrc.n.u1User || fRawR0Enabled))
2627 {
2628 /*
2629 * Check for conflicts with GC mappings.
2630 */
2631 if (iPD == iPdNoMapping)
2632 {
2633 if (pVM->pgm.s.fMappingsFixed)
2634 {
2635 /* It's fixed, just skip the mapping. */
2636 const unsigned cPTs = pMapping->cPTs;
2637 iPD += cPTs - 1;
2638 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2639 pMapping = pMapping->CTXSUFF(pNext);
2640 iPdNoMapping = pMapping ? pMapping->GCPtr >> PGDIR_SHIFT : ~0U;
2641 continue;
2642 }
2643
2644#ifdef IN_RING3
2645 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2646 if (VBOX_FAILURE(rc))
2647 return rc;
2648
2649 /*
2650 * Update iPdNoMapping and pMapping.
2651 */
2652 pMapping = pVM->pgm.s.pMappingsHC;
2653 while (pMapping && pMapping->GCPtr < (iPD << PGDIR_SHIFT))
2654 pMapping = pMapping->pNextHC;
2655 iPdNoMapping = pMapping ? pMapping->GCPtr >> PGDIR_SHIFT : ~0U;
2656#else
2657 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2658 return VINF_PGM_SYNC_CR3;
2659#endif
2660 }
2661
2662 /*
2663 * Sync page directory entry.
2664 *
2665 * The current approach is to allocated the page table but to set
2666 * the entry to not-present and postpone the page table synching till
2667 * it's actually used.
2668 */
2669# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2670 const unsigned iPdShw = iPD; NOREF(iPdShw);
2671# else
2672 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2673# endif
2674 {
2675 SHWPDE PdeDst = *pPDEDst;
2676 if (PdeDst.n.u1Present)
2677 {
2678 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2679 RTGCPHYS GCPhys;
2680 if ( !PdeSrc.b.u1Size
2681 || !(cr4 & X86_CR4_PSE))
2682 {
2683 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2684# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2685 GCPhys |= i * (PAGE_SIZE / 2);
2686# endif
2687 }
2688 else
2689 {
2690 GCPhys = PdeSrc.u & GST_PDE4M_PG_MASK;
2691# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2692 GCPhys |= i * X86_PAGE_2M_SIZE;
2693# endif
2694 }
2695
2696 if ( pShwPage->GCPhys == GCPhys
2697 && pShwPage->enmKind == PGM_BTH_NAME(CalcPageKind)(&PdeSrc, cr4)
2698 && ( pShwPage->fCached
2699 || ( !fGlobal
2700 && ( false
2701# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
2702 || ( (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2703 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE)) /* global 2/4MB page. */
2704 || ( !pShwPage->fSeenNonGlobal
2705 && (cr4 & X86_CR4_PGE))
2706# endif
2707 )
2708 )
2709 )
2710 && ( (PdeSrc.u & (X86_PDE_US | X86_PDE_RW)) == (PdeDst.u & (X86_PDE_US | X86_PDE_RW))
2711 || ( (cr4 & X86_CR4_PSE)
2712 && ((PdeSrc.u & (X86_PDE_US | X86_PDE4M_PS | X86_PDE4M_D)) | PGM_PDFLAGS_TRACK_DIRTY)
2713 == ((PdeDst.u & (X86_PDE_US | X86_PDE_RW | PGM_PDFLAGS_TRACK_DIRTY)) | X86_PDE4M_PS))
2714 )
2715 )
2716 {
2717# ifdef VBOX_WITH_STATISTICS
2718 if ( !fGlobal
2719 && (PdeSrc.u & (X86_PDE4M_PS | X86_PDE4M_G)) == (X86_PDE4M_PS | X86_PDE4M_G)
2720 && (cr4 & (X86_CR4_PGE | X86_CR4_PSE)) == (X86_CR4_PGE | X86_CR4_PSE))
2721 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPD));
2722 else if (!fGlobal && !pShwPage->fSeenNonGlobal && (cr4 & X86_CR4_PGE))
2723 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstSkippedGlobalPT));
2724 else
2725 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstCacheHit));
2726# endif /* VBOX_WITH_STATISTICS */
2727/** @todo a replacement strategy isn't really needed unless we're using a very small pool < 512 pages.
2728 * The whole ageing stuff should be put in yet another set of #ifdefs. For now, let's just skip it. */
2729//# ifdef PGMPOOL_WITH_CACHE
2730// pgmPoolCacheUsed(pPool, pShwPage);
2731//# endif
2732 }
2733 else
2734 {
2735 pgmPoolFreeByPage(pPool, pShwPage, SHW_POOL_ROOT_IDX, iPdShw);
2736 pPDEDst->u = 0;
2737 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreed));
2738 }
2739 }
2740 else
2741 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstNotPresent));
2742 pPDEDst++;
2743 }
2744 }
2745 else if (iPD != iPdNoMapping)
2746 {
2747 /*
2748 * Check if there is any page directory to mark not present here.
2749 */
2750# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2751 const unsigned iPdShw = iPD; NOREF(iPdShw);
2752# else
2753 for (unsigned i = 0, iPdShw = iPD * 2; i < 2; i++, iPdShw++) /* pray that the compiler unrolls this */
2754# endif
2755 {
2756 if (pPDEDst->n.u1Present)
2757 {
2758 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, pPDEDst->u & SHW_PDE_PG_MASK), SHW_POOL_ROOT_IDX, iPdShw);
2759 pPDEDst->u = 0;
2760 MY_STAM_COUNTER_INC(&pVM->pgm.s.CTXMID(Stat,SyncCR3DstFreedSrcNP));
2761 }
2762 pPDEDst++;
2763 }
2764 }
2765 else
2766 {
2767 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2768 const unsigned cPTs = pMapping->cPTs;
2769 if (pVM->pgm.s.fMappingsFixed)
2770 {
2771 /* It's fixed, just skip the mapping. */
2772 pMapping = pMapping->CTXSUFF(pNext);
2773 iPdNoMapping = pMapping ? pMapping->GCPtr >> PGDIR_SHIFT : ~0U;
2774 }
2775 else
2776 {
2777 /*
2778 * Check for conflicts for subsequent pagetables
2779 * and advance to the next mapping.
2780 */
2781 iPdNoMapping = ~0U;
2782 unsigned iPT = cPTs;
2783 while (iPT-- > 1)
2784 {
2785 if ( pPDSrc->a[iPD + iPT].n.u1Present
2786 && (pPDSrc->a[iPD + iPT].n.u1User || fRawR0Enabled))
2787 {
2788# ifdef IN_RING3
2789 int rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, iPD);
2790 if (VBOX_FAILURE(rc))
2791 return rc;
2792
2793 /*
2794 * Update iPdNoMapping and pMapping.
2795 */
2796 pMapping = pVM->pgm.s.CTXSUFF(pMappings);
2797 while (pMapping && pMapping->GCPtr < (iPD << PGDIR_SHIFT))
2798 pMapping = pMapping->CTXSUFF(pNext);
2799 iPdNoMapping = pMapping ? pMapping->GCPtr >> PGDIR_SHIFT : ~0U;
2800 break;
2801# else
2802 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
2803 return VINF_PGM_SYNC_CR3;
2804# endif
2805 }
2806 }
2807 if (iPdNoMapping == ~0U && pMapping)
2808 {
2809 pMapping = pMapping->CTXSUFF(pNext);
2810 if (pMapping)
2811 iPdNoMapping = pMapping->GCPtr >> PGDIR_SHIFT;
2812 }
2813 }
2814 /* advance. */
2815 iPD += cPTs - 1;
2816 pPDEDst += cPTs + (PGM_SHW_TYPE != PGM_TYPE_32BIT) * cPTs;
2817 }
2818
2819 } /* for iPD */
2820# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2821# error "Guest 32-bit mode and shadow AMD64 mode doesn't add up!"
2822# endif
2823
2824 return VINF_SUCCESS;
2825
2826#elif PGM_GST_TYPE == PGM_TYPE_PAE
2827# if PGM_SHW_TYPE == PGM_TYPE_PAE
2828//# error not implemented
2829 return VERR_INTERNAL_ERROR;
2830
2831# else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
2832# error "Guest PAE mode, but not the shadow mode ; 32bit - maybe, but amd64 no."
2833# endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
2834
2835#elif PGM_GST_TYPE == PGM_TYPE_AMD64
2836# if PGM_SHW_TYPE == PGM_TYPE_AMD64
2837//# error not implemented
2838 return VERR_INTERNAL_ERROR;
2839
2840# else /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
2841# error "Guest AMD64 mode, but not the shadow mode - that can't be right!"
2842# endif /* PGM_SHW_TYPE != PGM_TYPE_AMD64 */
2843
2844#else /* guest real and protected mode */
2845
2846 return VINF_SUCCESS;
2847#endif
2848}
2849
2850
2851
2852
2853#ifdef VBOX_STRICT
2854#ifdef IN_GC
2855# undef AssertMsgFailed
2856# define AssertMsgFailed Log
2857#endif
2858#ifdef IN_RING3
2859# include <VBox/dbgf.h>
2860
2861/**
2862 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
2863 *
2864 * @returns VBox status code (VINF_SUCCESS).
2865 * @param pVM The VM handle.
2866 * @param cr3 The root of the hierarchy.
2867 * @param crr The cr4, only PAE and PSE is currently used.
2868 * @param fLongMode Set if long mode, false if not long mode.
2869 * @param cMaxDepth Number of levels to dump.
2870 * @param pHlp Pointer to the output functions.
2871 */
2872__BEGIN_DECLS
2873PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
2874__END_DECLS
2875
2876#endif
2877
2878/**
2879 * Checks that the shadow page table is in sync with the guest one.
2880 *
2881 * @returns The number of errors.
2882 * @param pVM The virtual machine.
2883 * @param cr3 Guest context CR3 register
2884 * @param cr4 Guest context CR4 register
2885 * @param GCPtr Where to start. Defaults to 0.
2886 * @param cb How much to check. Defaults to everything.
2887 */
2888PGM_BTH_DECL(unsigned, AssertCR3)(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)
2889{
2890 unsigned cErrors = 0;
2891
2892#if PGM_GST_TYPE == PGM_TYPE_32BIT
2893
2894# if PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2895# error "Invalid shadow mode for 32-bit guest paging."
2896# endif
2897
2898 PPGM pPGM = &pVM->pgm.s;
2899 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
2900 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
2901 RTHCPHYS HCPhys; /* general usage. */
2902 int rc;
2903
2904 /*
2905 * Check that the Guest CR3 and all it's mappings are correct.
2906 */
2907 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & X86_CR3_PAGE_MASK),
2908 ("Invalid GCPhysCR3=%VGp cr3=%VGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
2909 false);
2910 rc = PGMShwGetPage(pVM, pPGM->pGuestPDGC, NULL, &HCPhysShw);
2911 AssertRCReturn(rc, 1);
2912 rc = PGMRamGCPhys2HCPhys(pPGM, cr3 & X86_CR3_PAGE_MASK, &HCPhys);
2913 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%VHp HCPhyswShw=%VHp (cr3)\n", HCPhys, HCPhysShw), false);
2914# ifndef IN_GC
2915 RTGCPHYS GCPhys;
2916 rc = PGMPhysHCPtr2GCPhys(pVM, pPGM->pGuestPDHC, &GCPhys);
2917 AssertRCReturn(rc, 1);
2918 AssertMsgReturn((cr3 & X86_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%VGp cr3=%VGp\n", GCPhys, (RTGCPHYS)cr3), false);
2919# endif
2920 const X86PD *pPDSrc = CTXSUFF(pPGM->pGuestPD);
2921
2922 /*
2923 * Get and check the Shadow CR3.
2924 */
2925# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2926 const X86PD *pPDDst = pPGM->CTXMID(p,32BitPD);
2927 unsigned cPDEs = ELEMENTS(pPDDst->a);
2928# else
2929 const X86PDPAE *pPDDst = pPGM->CTXMID(ap,PaePDs[0]); /* use it as a 2048 entry PD */
2930 unsigned cPDEs = ELEMENTS(pPDDst->a) * ELEMENTS(pPGM->apHCPaePDs);
2931# endif
2932 if (cb != ~(RTGCUINTPTR)0)
2933 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
2934
2935/** @todo call the other two PGMAssert*() functions. */
2936
2937 /*
2938 * Iterate the shadow page directory.
2939 */
2940 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
2941 unsigned iPDDst = GCPtr >> SHW_PD_SHIFT;
2942 cPDEs += iPDDst;
2943 for (;
2944 iPDDst < cPDEs;
2945 iPDDst++, GCPtr += _4G / cPDEs)
2946 {
2947 const SHWPDE PdeDst = pPDDst->a[iPDDst];
2948 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2949 {
2950 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2951 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
2952 {
2953 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
2954 cErrors++;
2955 continue;
2956 }
2957 }
2958 else if ( (PdeDst.u & X86_PDE_P)
2959 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
2960 )
2961 {
2962 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
2963 PPGMPOOLPAGE pPage = pgmPoolGetPageByHCPhys(pVM, HCPhysShw);
2964 if (!pPage)
2965 {
2966 AssertMsgFailed(("Invalid page table address %VGp at %VGv! PdeDst=%#RX64\n",
2967 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
2968 cErrors++;
2969 continue;
2970 }
2971 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2972
2973 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
2974 {
2975 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %VGv! These flags are not virtualized! PdeDst=%#RX64\n",
2976 GCPtr, (uint64_t)PdeDst.u));
2977 cErrors++;
2978 }
2979
2980 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
2981 {
2982 AssertMsgFailed(("4K PDE reserved flags at %VGv! PdeDst=%#RX64\n",
2983 GCPtr, (uint64_t)PdeDst.u));
2984 cErrors++;
2985 }
2986
2987 const X86PDE PdeSrc = pPDSrc->a[iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)];
2988 if (!PdeSrc.n.u1Present)
2989 {
2990 AssertMsgFailed(("Guest PDE at %VGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
2991 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
2992 cErrors++;
2993 continue;
2994 }
2995
2996 if ( !PdeSrc.b.u1Size
2997 || !(cr4 & X86_CR4_PSE))
2998 {
2999 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3000# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3001 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3002# endif
3003 }
3004 else
3005 {
3006 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3007 {
3008 AssertMsgFailed(("Guest PDE at %VGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3009 GCPtr, (uint64_t)PdeSrc.u));
3010 cErrors++;
3011 continue;
3012 }
3013 GCPhysGst = PdeSrc.u & GST_PDE4M_PG_MASK;
3014# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3015 GCPhysGst |= GCPtr & BIT(X86_PAGE_2M_SHIFT);
3016# endif
3017 }
3018
3019 if ( pPage->enmKind
3020 != (!PdeSrc.b.u1Size || !(cr4 & X86_CR4_PSE) ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3021 {
3022 AssertMsgFailed(("Invalid shadow page table kind %d at %VGv! PdeSrc=%#RX64\n",
3023 pPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3024 cErrors++;
3025 }
3026
3027 rc = PGMRamGCPhys2HCPhysWithFlags(pPGM, GCPhysGst, &HCPhys);
3028 if (VBOX_FAILURE(rc))
3029 {
3030 AssertMsgFailed(("Cannot find guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3031 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3032 cErrors++;
3033 continue;
3034 }
3035
3036 if (GCPhysGst != pPage->GCPhys)
3037 {
3038 AssertMsgFailed(("GCPhysGst=%VGp != pPage->GCPhys=%VGp at %VGv\n",
3039 GCPhysGst, pPage->GCPhys, GCPtr));
3040 cErrors++;
3041 continue;
3042 }
3043
3044 if ( !PdeSrc.b.u1Size
3045 || !(cr4 & X86_CR4_PSE))
3046 {
3047 /*
3048 * Page Table.
3049 */
3050 const GSTPT *pPTSrc;
3051 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3052 if (VBOX_FAILURE(rc))
3053 {
3054 AssertMsgFailed(("Cannot map/convert guest physical address %VGp in the PDE at %VGv! PdeSrc=%#RX64\n",
3055 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3056 cErrors++;
3057 continue;
3058 }
3059 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3060 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3061 {
3062 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3063 // (This problem will go away when/if we shadow multiple CR3s.)
3064 AssertMsgFailed(("4K PDE flags mismatch at %VGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3065 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3066 cErrors++;
3067 continue;
3068 }
3069 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3070 {
3071 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%VGv PdeDst=%#RX64\n",
3072 GCPtr, (uint64_t)PdeDst.u));
3073 cErrors++;
3074 continue;
3075 }
3076
3077 /* iterate the page table. */
3078# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3079 const unsigned offPTSrc = 0;
3080# else
3081 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3082# endif
3083 for (unsigned iPT = 0, off = 0;
3084 iPT < ELEMENTS(pPTDst->a);
3085 iPT++, off += PAGE_SIZE)
3086 {
3087 const SHWPTE PteDst = pPTDst->a[iPT];
3088
3089 /* skip not-present entries. */
3090 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3091 continue;
3092 Assert(PteDst.n.u1Present);
3093
3094 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3095 if (!PteSrc.n.u1Present)
3096 {
3097#ifdef IN_RING3
3098 PGMAssertHandlerAndFlagsInSync(pVM);
3099 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3100#endif
3101 AssertMsgFailed(("Out of sync (!P) PTE at %VGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%VGv iPTSrc=%x PdeSrc=%x physpte=%VGp\n",
3102 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3103 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3104 cErrors++;
3105 continue;
3106 }
3107
3108 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3109# if 1 /** @todo sync accessed bit properly... */
3110 fIgnoreFlags |= X86_PTE_A;
3111# endif
3112
3113 /* match the physical addresses */
3114 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3115 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3116
3117# ifdef IN_RING3
3118 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3119 if (VBOX_FAILURE(rc))
3120 {
3121 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3122 {
3123 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3124 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3125 cErrors++;
3126 continue;
3127 }
3128 }
3129 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3130 {
3131 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3132 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3133 cErrors++;
3134 continue;
3135 }
3136# endif
3137
3138 rc = PGMRamGCPhys2HCPhysWithFlags(pPGM, GCPhysGst, &HCPhys);
3139 if (VBOX_FAILURE(rc))
3140 {
3141# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3142 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3143 {
3144 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3145 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3146 cErrors++;
3147 continue;
3148 }
3149# endif
3150 if (PteDst.n.u1Write)
3151 {
3152 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3153 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3154 cErrors++;
3155 }
3156 fIgnoreFlags |= X86_PTE_RW;
3157 }
3158 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3159 {
3160 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PteSrc=%#RX64 PteDst=%#RX64\n",
3161 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3162 cErrors++;
3163 continue;
3164 }
3165
3166 /* flags */
3167 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
3168 {
3169 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
3170 {
3171 if (PteDst.n.u1Write)
3172 {
3173 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PteSrc=%#RX64 PteDst=%#RX64\n",
3174 GCPtr + off, HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3175 cErrors++;
3176 continue;
3177 }
3178 fIgnoreFlags |= X86_PTE_RW;
3179 }
3180 else
3181 {
3182 if (PteDst.n.u1Present)
3183 {
3184 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VHp PteSrc=%#RX64 PteDst=%#RX64\n",
3185 GCPtr + off, HCPhys, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3186 cErrors++;
3187 continue;
3188 }
3189 fIgnoreFlags |= X86_PTE_P;
3190 }
3191 }
3192 else
3193 {
3194 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3195 {
3196 if (PteDst.n.u1Write)
3197 {
3198 AssertMsgFailed(("!DIRTY page at %VGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3199 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3200 cErrors++;
3201 continue;
3202 }
3203 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3204 {
3205 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3206 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3207 cErrors++;
3208 continue;
3209 }
3210 if (PteDst.n.u1Dirty)
3211 {
3212 AssertMsgFailed(("!DIRTY page at %VGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3213 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3214 cErrors++;
3215 }
3216# if 0 /** @todo sync access bit properly... */
3217 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3218 {
3219 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3220 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3221 cErrors++;
3222 }
3223 fIgnoreFlags |= X86_PTE_RW;
3224# else
3225 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3226# endif
3227 }
3228 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3229 {
3230 /* access bit emulation (not implemented). */
3231 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3232 {
3233 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
3234 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3235 cErrors++;
3236 continue;
3237 }
3238 if (!PteDst.n.u1Accessed)
3239 {
3240 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
3241 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3242 cErrors++;
3243 }
3244 fIgnoreFlags |= X86_PTE_P;
3245 }
3246# ifdef DEBUG_sandervl
3247 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
3248# endif
3249 }
3250
3251 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3252 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
3253 )
3254 {
3255 AssertMsgFailed(("Flags mismatch at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
3256 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3257 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3258 cErrors++;
3259 continue;
3260 }
3261 } /* foreach PTE */
3262 }
3263 else
3264 {
3265 /*
3266 * Big Page.
3267 */
3268 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | X86_PDE_PAE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
3269 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
3270 {
3271 if (PdeDst.n.u1Write)
3272 {
3273 AssertMsgFailed(("!DIRTY page at %VGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3274 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3275 cErrors++;
3276 continue;
3277 }
3278 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
3279 {
3280 AssertMsgFailed(("!DIRTY page at %VGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3281 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3282 cErrors++;
3283 continue;
3284 }
3285# if 0 /** @todo sync access bit properly... */
3286 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
3287 {
3288 AssertMsgFailed(("!DIRTY page at %VGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3289 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3290 cErrors++;
3291 }
3292 fIgnoreFlags |= X86_PTE_RW;
3293# else
3294 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3295# endif
3296 }
3297 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3298 {
3299 /* access bit emulation (not implemented). */
3300 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
3301 {
3302 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %VGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3303 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3304 cErrors++;
3305 continue;
3306 }
3307 if (!PdeDst.n.u1Accessed)
3308 {
3309 AssertMsgFailed(("!ACCESSED page at %VGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3310 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3311 cErrors++;
3312 }
3313 fIgnoreFlags |= X86_PTE_P;
3314 }
3315
3316 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
3317 {
3318 AssertMsgFailed(("Flags mismatch (B) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
3319 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
3320 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3321 cErrors++;
3322 }
3323
3324 /* iterate the page table. */
3325 for (unsigned iPT = 0, off = 0;
3326 iPT < ELEMENTS(pPTDst->a);
3327 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
3328 {
3329 const SHWPTE PteDst = pPTDst->a[iPT];
3330
3331 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3332 {
3333 AssertMsgFailed(("The PTE at %VGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
3334 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3335 cErrors++;
3336 }
3337
3338 /* skip not-present entries. */
3339 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
3340 continue;
3341
3342 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3343
3344 /* match the physical addresses */
3345 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
3346
3347# ifdef IN_RING3
3348 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3349 if (VBOX_FAILURE(rc))
3350 {
3351 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3352 {
3353 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3354 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3355 cErrors++;
3356 }
3357 }
3358 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3359 {
3360 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3361 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3362 cErrors++;
3363 continue;
3364 }
3365# endif
3366
3367 rc = PGMRamGCPhys2HCPhysWithFlags(pPGM, GCPhysGst, &HCPhys);
3368 if (VBOX_FAILURE(rc))
3369 {
3370# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3371 if (HCPhysShw != MMR3PageDummyHCPhys(pVM))
3372 {
3373 AssertMsgFailed(("Cannot find guest physical address %VGp at %VGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
3374 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3375 cErrors++;
3376 continue;
3377 }
3378# endif
3379 if (PteDst.n.u1Write)
3380 {
3381 AssertMsgFailed(("Invalid guest page at %VGv is writable! GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3382 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3383 cErrors++;
3384 }
3385 fIgnoreFlags |= X86_PTE_RW;
3386 }
3387 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
3388 {
3389 AssertMsgFailed(("Out of sync (phys) at %VGv! HCPhysShw=%VHp HCPhys=%VHp GCPhysGst=%VGp PdeSrc=%#RX64 PteDst=%#RX64\n",
3390 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3391 cErrors++;
3392 continue;
3393 }
3394
3395 /* flags */
3396 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_ALL | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
3397 {
3398 if (HCPhys & (MM_RAM_FLAGS_PHYSICAL_WRITE | MM_RAM_FLAGS_VIRTUAL_WRITE))
3399 {
3400 if (!(HCPhys & MM_RAM_FLAGS_PHYSICAL_TEMP_OFF))
3401 {
3402 if (PteDst.n.u1Write)
3403 {
3404 AssertMsgFailed(("WRITE access flagged at %VGv but the page is writable! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3405 GCPtr + off, HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3406 cErrors++;
3407 continue;
3408 }
3409 fIgnoreFlags |= X86_PTE_RW;
3410 }
3411 }
3412 else
3413 {
3414 if (PteDst.n.u1Present)
3415 {
3416 AssertMsgFailed(("ALL access flagged at %VGv but the page is present! HCPhys=%VGv PdeSrc=%#RX64 PteDst=%#RX64\n",
3417 GCPtr + off, HCPhys, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3418 cErrors++;
3419 continue;
3420 }
3421 fIgnoreFlags |= X86_PTE_P;
3422 }
3423 }
3424
3425 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
3426 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
3427 )
3428 {
3429 AssertMsgFailed(("Flags mismatch (BT) at %VGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
3430 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
3431 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
3432 cErrors++;
3433 continue;
3434 }
3435 } /* foreach PTE */
3436 }
3437 }
3438 /* not present */
3439
3440 } /* forearch PDE */
3441
3442# ifdef DEBUG
3443 if (cErrors)
3444 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
3445# endif
3446
3447#elif PGM_GST_TYPE == PGM_TYPE_PAE
3448//# error not implemented
3449
3450
3451#elif PGM_GST_TYPE == PGM_TYPE_AMD64
3452//# error not implemented
3453
3454/*#else: guest real and protected mode */
3455#endif
3456 return cErrors;
3457}
3458#endif /* VBOX_STRICT */
3459
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette