VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 26619

Last change on this file since 26619 was 26619, checked in by vboxsync, 15 years ago

Logging

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 195.4 KB
Line 
1/* $Id: PGMAllBth.h 26619 2010-02-17 16:14:42Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27RT_C_DECLS_BEGIN
28PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
29PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
34PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
35PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
37#ifdef VBOX_STRICT
38PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
39#endif
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
42PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
43RT_C_DECLS_END
44
45
46/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
47#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
48# error "Invalid combination; PAE guest implies PAE shadow"
49#endif
50
51#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
52 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
53# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
54#endif
55
56#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
57 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
58# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
59#endif
60
61#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
62 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
63# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
64#endif
65
66
67#ifndef IN_RING3
68/**
69 * #PF Handler for raw-mode guest execution.
70 *
71 * @returns VBox status code (appropriate for trap handling and GC return).
72 *
73 * @param pVCpu VMCPU Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 * @param pfLockTaken PGM lock taken here or not (out)
78 */
79PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
80{
81 PVM pVM = pVCpu->CTX_SUFF(pVM);
82
83 *pfLockTaken = false;
84
85# if defined(IN_RC) && defined(VBOX_STRICT)
86 PGMDynCheckLocks(pVM);
87# endif
88
89# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
90 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
91 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
92
93# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
94 /*
95 * Hide the instruction fetch trap indicator for now.
96 */
97 /** @todo NXE will change this and we must fix NXE in the switcher too! */
98 if (uErr & X86_TRAP_PF_ID)
99 {
100 uErr &= ~X86_TRAP_PF_ID;
101 TRPMSetErrorCode(pVCpu, uErr);
102 }
103# endif
104
105 /*
106 * Get PDs.
107 */
108 int rc;
109# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
110# if PGM_GST_TYPE == PGM_TYPE_32BIT
111 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
112 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
113
114# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
115
116# if PGM_GST_TYPE == PGM_TYPE_PAE
117 unsigned iPDSrc = 0; /* initialized to shut up gcc */
118 X86PDPE PdpeSrc;
119 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
120
121# elif PGM_GST_TYPE == PGM_TYPE_AMD64
122 unsigned iPDSrc = 0; /* initialized to shut up gcc */
123 PX86PML4E pPml4eSrc;
124 X86PDPE PdpeSrc;
125 PGSTPD pPDSrc;
126
127 pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
128 Assert(pPml4eSrc);
129# endif
130
131 /* Quick check for a valid guest trap. (PAE & AMD64) */
132 if (!pPDSrc)
133 {
134# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
135 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
136# else
137 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
138# endif
139 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
140 TRPMSetErrorCode(pVCpu, uErr);
141 return VINF_EM_RAW_GUEST_TRAP;
142 }
143# endif
144
145# else /* !PGM_WITH_PAGING */
146 PGSTPD pPDSrc = NULL;
147 const unsigned iPDSrc = 0;
148# endif /* !PGM_WITH_PAGING */
149
150 /* First check for a genuine guest page fault. */
151# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
153 rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, &pPDSrc->a[iPDSrc], pvFault);
154 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
155 if (rc == VINF_EM_RAW_GUEST_TRAP)
156 {
157 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
158 = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
159 return rc;
160 }
161# endif /* PGM_WITH_PAGING */
162
163 /* Take the big lock now. */
164 *pfLockTaken = true;
165 pgmLock(pVM);
166
167 /* Fetch the guest PDE */
168# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
169 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
170# else
171 GSTPDE PdeSrc;
172 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
173 PdeSrc.n.u1Present = 1;
174 PdeSrc.n.u1Write = 1;
175 PdeSrc.n.u1Accessed = 1;
176 PdeSrc.n.u1User = 1;
177# endif
178
179# if PGM_SHW_TYPE == PGM_TYPE_32BIT
180 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
181 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
182
183# elif PGM_SHW_TYPE == PGM_TYPE_PAE
184 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
185
186 PX86PDPAE pPDDst;
187# if PGM_GST_TYPE != PGM_TYPE_PAE
188 X86PDPE PdpeSrc;
189
190 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
191 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
192# endif
193 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst);
194 if (rc != VINF_SUCCESS)
195 {
196 AssertRC(rc);
197 return rc;
198 }
199 Assert(pPDDst);
200
201# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
202 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
203 PX86PDPAE pPDDst;
204# if PGM_GST_TYPE == PGM_TYPE_PROT
205 /* AMD-V nested paging */
206 X86PML4E Pml4eSrc;
207 X86PDPE PdpeSrc;
208 PX86PML4E pPml4eSrc = &Pml4eSrc;
209
210 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
211 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
212 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
213# endif
214
215 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
216 if (rc != VINF_SUCCESS)
217 {
218 AssertRC(rc);
219 return rc;
220 }
221 Assert(pPDDst);
222
223# elif PGM_SHW_TYPE == PGM_TYPE_EPT
224 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
225 PEPTPD pPDDst;
226
227 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
228 if (rc != VINF_SUCCESS)
229 {
230 AssertRC(rc);
231 return rc;
232 }
233 Assert(pPDDst);
234# endif
235
236# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
237 /* Dirty page handling. */
238 if (uErr & X86_TRAP_PF_RW) /* write fault? */
239 {
240 /*
241 * If we successfully correct the write protection fault due to dirty bit
242 * tracking, then return immediately.
243 */
244 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
245 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
246 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
247 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
248 {
249 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
250 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
251 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
252 return VINF_SUCCESS;
253 }
254 }
255
256# if 0 /* rarely useful; leave for debugging. */
257 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
258# endif
259# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
260
261 /*
262 * A common case is the not-present error caused by lazy page table syncing.
263 *
264 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
265 * so we can safely assume that the shadow PT is present when calling SyncPage later.
266 *
267 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
268 * of mapping conflict and defer to SyncCR3 in R3.
269 * (Again, we do NOT support access handlers for non-present guest pages.)
270 *
271 */
272 Assert(PdeSrc.n.u1Present);
273 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
274 && !pPDDst->a[iPDDst].n.u1Present
275 )
276 {
277 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; });
278 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
279 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
280 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, pvFault);
281 if (RT_SUCCESS(rc))
282 {
283 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
284 return rc;
285 }
286 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
287 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
288 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
289 return VINF_PGM_SYNC_CR3;
290 }
291
292# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
293 /*
294 * Check if this address is within any of our mappings.
295 *
296 * This is *very* fast and it's gonna save us a bit of effort below and prevent
297 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
298 * (BTW, it's impossible to have physical access handlers in a mapping.)
299 */
300 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
301 {
302 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
303 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
304 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
305 {
306 if (pvFault < pMapping->GCPtr)
307 break;
308 if (pvFault - pMapping->GCPtr < pMapping->cb)
309 {
310 /*
311 * The first thing we check is if we've got an undetected conflict.
312 */
313 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
314 {
315 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
316 while (iPT-- > 0)
317 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
318 {
319 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts);
320 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
321 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
322 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
323 return VINF_PGM_SYNC_CR3;
324 }
325 }
326
327 /*
328 * Check if the fault address is in a virtual page access handler range.
329 */
330 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
331 if ( pCur
332 && pvFault - pCur->Core.Key < pCur->cb
333 && uErr & X86_TRAP_PF_RW)
334 {
335# ifdef IN_RC
336 STAM_PROFILE_START(&pCur->Stat, h);
337 pgmUnlock(pVM);
338 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
339 pgmLock(pVM);
340 STAM_PROFILE_STOP(&pCur->Stat, h);
341# else
342 AssertFailed();
343 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
344# endif
345 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping);
346 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
347 return rc;
348 }
349
350 /*
351 * Pretend we're not here and let the guest handle the trap.
352 */
353 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
354 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping);
355 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
356 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
357 return VINF_EM_RAW_GUEST_TRAP;
358 }
359 }
360 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
361 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
362# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
363
364 /*
365 * Check if this fault address is flagged for special treatment,
366 * which means we'll have to figure out the physical address and
367 * check flags associated with it.
368 *
369 * ASSUME that we can limit any special access handling to pages
370 * in page tables which the guest believes to be present.
371 */
372 Assert(PdeSrc.n.u1Present);
373 {
374 RTGCPHYS GCPhys = NIL_RTGCPHYS;
375
376# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
377 if ( PdeSrc.b.u1Size
378# if PGM_GST_TYPE != PGM_TYPE_AMD64
379 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
380# endif
381 )
382 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
383 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
384 else
385 {
386 PGSTPT pPTSrc;
387 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
388 if (RT_SUCCESS(rc))
389 {
390 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
391 if (pPTSrc->a[iPTESrc].n.u1Present)
392 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
393 }
394 }
395# else
396 /* No paging so the fault address is the physical address */
397 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
398# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
399
400 /*
401 * If we have a GC address we'll check if it has any flags set.
402 */
403 if (GCPhys != NIL_RTGCPHYS)
404 {
405 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
406
407 PPGMPAGE pPage;
408 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
409 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
410 {
411 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
412 {
413 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
414 {
415 /*
416 * Physical page access handler.
417 */
418 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
419 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
420 if (pCur)
421 {
422# ifdef PGM_SYNC_N_PAGES
423 /*
424 * If the region is write protected and we got a page not present fault, then sync
425 * the pages. If the fault was caused by a read, then restart the instruction.
426 * In case of write access continue to the GC write handler.
427 *
428 * ASSUMES that there is only one handler per page or that they have similar write properties.
429 */
430 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
431 && !(uErr & X86_TRAP_PF_P))
432 {
433 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
434 if ( RT_FAILURE(rc)
435 || !(uErr & X86_TRAP_PF_RW)
436 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
437 {
438 AssertRC(rc);
439 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
440 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
441 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
442 return rc;
443 }
444 }
445# endif
446
447 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
448 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
449 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
450
451# if defined(IN_RC) || defined(IN_RING0)
452 if (pCur->CTX_SUFF(pfnHandler))
453 {
454 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
455# ifdef IN_RING0
456 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
457# else
458 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
459# endif
460 bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
461 void *pvUser = pCur->CTX_SUFF(pvUser);
462
463 STAM_PROFILE_START(&pCur->Stat, h);
464 if (fLeaveLock)
465 pgmUnlock(pVM); /* @todo: Not entirely safe. */
466
467 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
468 if (fLeaveLock)
469 pgmLock(pVM);
470# ifdef VBOX_WITH_STATISTICS
471 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
472 if (pCur)
473 STAM_PROFILE_STOP(&pCur->Stat, h);
474# else
475 pCur = NULL; /* might be invalid by now. */
476# endif
477
478 }
479 else
480# endif
481 rc = VINF_EM_RAW_EMULATE_INSTR;
482
483 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical);
484 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
485 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; });
486 return rc;
487 }
488 }
489# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
490 else
491 {
492# ifdef PGM_SYNC_N_PAGES
493 /*
494 * If the region is write protected and we got a page not present fault, then sync
495 * the pages. If the fault was caused by a read, then restart the instruction.
496 * In case of write access continue to the GC write handler.
497 */
498 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
499 && !(uErr & X86_TRAP_PF_P))
500 {
501 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
502 if ( RT_FAILURE(rc)
503 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
504 || !(uErr & X86_TRAP_PF_RW))
505 {
506 AssertRC(rc);
507 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
508 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
509 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
510 return rc;
511 }
512 }
513# endif
514 /*
515 * Ok, it's an virtual page access handler.
516 *
517 * Since it's faster to search by address, we'll do that first
518 * and then retry by GCPhys if that fails.
519 */
520 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
521 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
522 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
523 */
524 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
525 if (pCur)
526 {
527 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
528 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
529 || !(uErr & X86_TRAP_PF_P)
530 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
531 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
532
533 if ( pvFault - pCur->Core.Key < pCur->cb
534 && ( uErr & X86_TRAP_PF_RW
535 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
536 {
537# ifdef IN_RC
538 STAM_PROFILE_START(&pCur->Stat, h);
539 pgmUnlock(pVM);
540 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
541 pgmLock(pVM);
542 STAM_PROFILE_STOP(&pCur->Stat, h);
543# else
544 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
545# endif
546 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual);
547 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
548 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
549 return rc;
550 }
551 /* Unhandled part of a monitored page */
552 }
553 else
554 {
555 /* Check by physical address. */
556 unsigned iPage;
557 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
558 &pCur, &iPage);
559 Assert(RT_SUCCESS(rc) || !pCur);
560 if ( pCur
561 && ( uErr & X86_TRAP_PF_RW
562 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
563 {
564 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
565# ifdef IN_RC
566 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
567 Assert(off < pCur->cb);
568 STAM_PROFILE_START(&pCur->Stat, h);
569 pgmUnlock(pVM);
570 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
571 pgmLock(pVM);
572 STAM_PROFILE_STOP(&pCur->Stat, h);
573# else
574 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
575# endif
576 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
577 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
578 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
579 return rc;
580 }
581 }
582 }
583# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
584
585 /*
586 * There is a handled area of the page, but this fault doesn't belong to it.
587 * We must emulate the instruction.
588 *
589 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
590 * we first check if this was a page-not-present fault for a page with only
591 * write access handlers. Restart the instruction if it wasn't a write access.
592 */
593 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled);
594
595 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
596 && !(uErr & X86_TRAP_PF_P))
597 {
598 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
599 if ( RT_FAILURE(rc)
600 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
601 || !(uErr & X86_TRAP_PF_RW))
602 {
603 AssertRC(rc);
604 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
605 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
606 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
607 return rc;
608 }
609 }
610
611 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
612 * It's writing to an unhandled part of the LDT page several million times.
613 */
614 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
615 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
616 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
617 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
618 return rc;
619 } /* if any kind of handler */
620
621# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
622 if (uErr & X86_TRAP_PF_P)
623 {
624 /*
625 * The page isn't marked, but it might still be monitored by a virtual page access handler.
626 * (ASSUMES no temporary disabling of virtual handlers.)
627 */
628 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
629 * we should correct both the shadow page table and physical memory flags, and not only check for
630 * accesses within the handler region but for access to pages with virtual handlers. */
631 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
632 if (pCur)
633 {
634 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
635 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
636 || !(uErr & X86_TRAP_PF_P)
637 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
638 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
639
640 if ( pvFault - pCur->Core.Key < pCur->cb
641 && ( uErr & X86_TRAP_PF_RW
642 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
643 {
644# ifdef IN_RC
645 STAM_PROFILE_START(&pCur->Stat, h);
646 pgmUnlock(pVM);
647 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
648 pgmLock(pVM);
649 STAM_PROFILE_STOP(&pCur->Stat, h);
650# else
651 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
652# endif
653 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
654 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
655 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
656 return rc;
657 }
658 }
659 }
660# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
661 }
662 else
663 {
664 /*
665 * When the guest accesses invalid physical memory (e.g. probing
666 * of RAM or accessing a remapped MMIO range), then we'll fall
667 * back to the recompiler to emulate the instruction.
668 */
669 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
670 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid);
671 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
672 return VINF_EM_RAW_EMULATE_INSTR;
673 }
674
675 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
676
677# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
678 /*
679 * We are here only if page is present in Guest page tables and
680 * trap is not handled by our handlers.
681 *
682 * Check it for page out-of-sync situation.
683 */
684 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
685
686 if (!(uErr & X86_TRAP_PF_P))
687 {
688 /*
689 * Page is not present in our page tables.
690 * Try to sync it!
691 * BTW, fPageShw is invalid in this branch!
692 */
693 if (uErr & X86_TRAP_PF_US)
694 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
695 else /* supervisor */
696 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
697
698# if defined(LOG_ENABLED) && !defined(IN_RING0)
699 RTGCPHYS GCPhys2;
700 uint64_t fPageGst2;
701 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
702 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
703 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
704# endif /* LOG_ENABLED */
705
706# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
707 if (CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
708 {
709 uint64_t fPageGst;
710 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
711 if ( RT_SUCCESS(rc)
712 && !(fPageGst & X86_PTE_US))
713 {
714 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
715 if ( pvFault == (RTGCPTR)pRegFrame->eip
716 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
717# ifdef CSAM_DETECT_NEW_CODE_PAGES
718 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
719 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
720# endif /* CSAM_DETECT_NEW_CODE_PAGES */
721 )
722 {
723 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
724 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
725 if (rc != VINF_SUCCESS)
726 {
727 /*
728 * CSAM needs to perform a job in ring 3.
729 *
730 * Sync the page before going to the host context; otherwise we'll end up in a loop if
731 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
732 */
733 LogFlow(("CSAM ring 3 job\n"));
734 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
735 AssertRC(rc2);
736
737 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
738 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; });
739 return rc;
740 }
741 }
742# ifdef CSAM_DETECT_NEW_CODE_PAGES
743 else if ( uErr == X86_TRAP_PF_RW
744 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
745 && pRegFrame->ecx < 0x10000)
746 {
747 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
748 * to detect loading of new code pages.
749 */
750
751 /*
752 * Decode the instruction.
753 */
754 RTGCPTR PC;
755 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
756 if (rc == VINF_SUCCESS)
757 {
758 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
759 uint32_t cbOp;
760 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
761
762 /* For now we'll restrict this to rep movsw/d instructions */
763 if ( rc == VINF_SUCCESS
764 && pDis->pCurInstr->opcode == OP_MOVSWD
765 && (pDis->prefix & PREFIX_REP))
766 {
767 CSAMMarkPossibleCodePage(pVM, pvFault);
768 }
769 }
770 }
771# endif /* CSAM_DETECT_NEW_CODE_PAGES */
772
773 /*
774 * Mark this page as safe.
775 */
776 /** @todo not correct for pages that contain both code and data!! */
777 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
778 CSAMMarkPage(pVM, pvFault, true);
779 }
780 }
781# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
782 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
783 if (RT_SUCCESS(rc))
784 {
785 /* The page was successfully synced, return to the guest. */
786 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
787 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; });
788 return VINF_SUCCESS;
789 }
790 }
791 else /* uErr & X86_TRAP_PF_P: */
792 {
793 /*
794 * Write protected pages are make writable when the guest makes the first
795 * write to it. This happens for pages that are shared, write monitored
796 * and not yet allocated.
797 *
798 * Also, a side effect of not flushing global PDEs are out of sync pages due
799 * to physical monitored regions, that are no longer valid.
800 * Assume for now it only applies to the read/write flag.
801 */
802 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
803 {
804 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
805 {
806 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n",
807 GCPhys, pPage, pvFault, uErr));
808 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
809 if (rc != VINF_SUCCESS)
810 {
811 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
812 return rc;
813 }
814 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
815 return VINF_EM_NO_MEMORY;
816 }
817
818# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
819 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
820 if ( CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
821 && ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG))
822 {
823 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
824 uint64_t fPageGst;
825 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
826 if ( RT_SUCCESS(rc)
827 && !(fPageGst & X86_PTE_RW))
828 {
829 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
830 if (RT_SUCCESS(rc))
831 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ);
832 else
833 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3);
834 return rc;
835 }
836 AssertMsg(RT_SUCCESS(rc), ("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
837 }
838# endif
839 /// @todo count the above case; else
840 if (uErr & X86_TRAP_PF_US)
841 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
842 else /* supervisor */
843 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
844
845 /*
846 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
847 * page is not present, which is not true in this case.
848 */
849 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
850 if (RT_SUCCESS(rc))
851 {
852 /*
853 * Page was successfully synced, return to guest.
854 * First invalidate the page as it might be in the TLB.
855 */
856# if PGM_SHW_TYPE == PGM_TYPE_EPT
857 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
858# else
859 PGM_INVL_PG(pVCpu, pvFault);
860# endif
861# ifdef VBOX_STRICT
862 RTGCPHYS GCPhys2;
863 uint64_t fPageGst;
864 if (!HWACCMIsNestedPagingActive(pVM))
865 {
866 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
867 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%d fPageGst=%RX64\n"));
868 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
869 }
870 uint64_t fPageShw;
871 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
872 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
873# endif /* VBOX_STRICT */
874 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
875 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
876 return VINF_SUCCESS;
877 }
878 }
879
880# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
881# ifdef VBOX_STRICT
882 /*
883 * Check for VMM page flags vs. Guest page flags consistency.
884 * Currently only for debug purposes.
885 */
886 if (RT_SUCCESS(rc))
887 {
888 /* Get guest page flags. */
889 uint64_t fPageGst;
890 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
891 if (RT_SUCCESS(rc))
892 {
893 uint64_t fPageShw;
894 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
895
896 /*
897 * Compare page flags.
898 * Note: we have AVL, A, D bits desynched.
899 */
900 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
901 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
902 }
903 else
904 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
905 }
906 else
907 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
908# endif /* VBOX_STRICT */
909# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
910 }
911 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
912# endif /* PGM_OUT_OF_SYNC_IN_GC */
913 }
914 else /* GCPhys == NIL_RTGCPHYS */
915 {
916 /*
917 * Page not present in Guest OS or invalid page table address.
918 * This is potential virtual page access handler food.
919 *
920 * For the present we'll say that our access handlers don't
921 * work for this case - we've already discarded the page table
922 * not present case which is identical to this.
923 *
924 * When we perchance find we need this, we will probably have AVL
925 * trees (offset based) to operate on and we can measure their speed
926 * agains mapping a page table and probably rearrange this handling
927 * a bit. (Like, searching virtual ranges before checking the
928 * physical address.)
929 */
930 }
931 }
932
933# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
934 /*
935 * Conclusion, this is a guest trap.
936 */
937 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
938 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh);
939 return VINF_EM_RAW_GUEST_TRAP;
940# else
941 /* present, but not a monitored page; perhaps the guest is probing physical memory */
942 return VINF_EM_RAW_EMULATE_INSTR;
943# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
944
945
946# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
947
948 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
949 return VERR_INTERNAL_ERROR;
950# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
951}
952#endif /* !IN_RING3 */
953
954
955/**
956 * Emulation of the invlpg instruction.
957 *
958 *
959 * @returns VBox status code.
960 *
961 * @param pVCpu The VMCPU handle.
962 * @param GCPtrPage Page to invalidate.
963 *
964 * @remark ASSUMES that the guest is updating before invalidating. This order
965 * isn't required by the CPU, so this is speculative and could cause
966 * trouble.
967 * @remark No TLB shootdown is done on any other VCPU as we assume that
968 * invlpg emulation is the *only* reason for calling this function.
969 * (The guest has to shoot down TLB entries on other CPUs itself)
970 * Currently true, but keep in mind!
971 *
972 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
973 */
974PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
975{
976#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
977 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
978 && PGM_SHW_TYPE != PGM_TYPE_EPT
979 int rc;
980 PVM pVM = pVCpu->CTX_SUFF(pVM);
981 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
982
983 Assert(PGMIsLockOwner(pVM));
984
985 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
986
987# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
988 if (pPool->cDirtyPages)
989 pgmPoolResetDirtyPages(pVM);
990# endif
991
992 /*
993 * Get the shadow PD entry and skip out if this PD isn't present.
994 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
995 */
996# if PGM_SHW_TYPE == PGM_TYPE_32BIT
997 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
998 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
999
1000 /* Fetch the pgm pool shadow descriptor. */
1001 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1002 Assert(pShwPde);
1003
1004# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1005 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1006 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
1007
1008 /* If the shadow PDPE isn't present, then skip the invalidate. */
1009 if (!pPdptDst->a[iPdpt].n.u1Present)
1010 {
1011 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1012 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1013 return VINF_SUCCESS;
1014 }
1015
1016 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1017 PPGMPOOLPAGE pShwPde = NULL;
1018 PX86PDPAE pPDDst;
1019
1020 /* Fetch the pgm pool shadow descriptor. */
1021 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1022 AssertRCSuccessReturn(rc, rc);
1023 Assert(pShwPde);
1024
1025 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1026 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1027
1028# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1029 /* PML4 */
1030 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1031 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1032 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1033 PX86PDPAE pPDDst;
1034 PX86PDPT pPdptDst;
1035 PX86PML4E pPml4eDst;
1036 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1037 if (rc != VINF_SUCCESS)
1038 {
1039 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1040 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1041 return VINF_SUCCESS;
1042 }
1043 Assert(pPDDst);
1044
1045 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1046 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1047
1048 if (!pPdpeDst->n.u1Present)
1049 {
1050 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1051 return VINF_SUCCESS;
1052 }
1053
1054 /* Fetch the pgm pool shadow descriptor. */
1055 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1056 Assert(pShwPde);
1057
1058# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1059
1060 const SHWPDE PdeDst = *pPdeDst;
1061 if (!PdeDst.n.u1Present)
1062 {
1063 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1064 return VINF_SUCCESS;
1065 }
1066
1067# if defined(IN_RC)
1068 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1069 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1070# endif
1071
1072 /*
1073 * Get the guest PD entry and calc big page.
1074 */
1075# if PGM_GST_TYPE == PGM_TYPE_32BIT
1076 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
1077 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1078 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1079# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1080 unsigned iPDSrc = 0;
1081# if PGM_GST_TYPE == PGM_TYPE_PAE
1082 X86PDPE PdpeSrc;
1083 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1084# else /* AMD64 */
1085 PX86PML4E pPml4eSrc;
1086 X86PDPE PdpeSrc;
1087 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1088# endif
1089 GSTPDE PdeSrc;
1090
1091 if (pPDSrc)
1092 PdeSrc = pPDSrc->a[iPDSrc];
1093 else
1094 PdeSrc.u = 0;
1095# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1096
1097# if PGM_GST_TYPE == PGM_TYPE_AMD64
1098 const bool fIsBigPage = PdeSrc.b.u1Size;
1099# else
1100 const bool fIsBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1101# endif
1102
1103# ifdef IN_RING3
1104 /*
1105 * If a CR3 Sync is pending we may ignore the invalidate page operation
1106 * depending on the kind of sync and if it's a global page or not.
1107 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1108 */
1109# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1110 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1111 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1112 && fIsBigPage
1113 && PdeSrc.b.u1Global
1114 )
1115 )
1116# else
1117 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1118# endif
1119 {
1120 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1121 return VINF_SUCCESS;
1122 }
1123# endif /* IN_RING3 */
1124
1125 /*
1126 * Deal with the Guest PDE.
1127 */
1128 rc = VINF_SUCCESS;
1129 if (PdeSrc.n.u1Present)
1130 {
1131 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1132 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1133# ifndef PGM_WITHOUT_MAPPING
1134 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1135 {
1136 /*
1137 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1138 */
1139 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1140 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1141 pgmLock(pVM);
1142 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1143 pgmUnlock(pVM);
1144 }
1145 else
1146# endif /* !PGM_WITHOUT_MAPPING */
1147 if (!fIsBigPage)
1148 {
1149 /*
1150 * 4KB - page.
1151 */
1152 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1153 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1154
1155# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1156 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1157 if (pShwPage->cModifications)
1158 pShwPage->cModifications = 1;
1159# endif
1160
1161# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1162 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1163 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1164# endif
1165 if (pShwPage->GCPhys == GCPhys)
1166 {
1167# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1168 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1169 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1170 if (pPT->a[iPTEDst].n.u1Present)
1171 {
1172 /* This is very unlikely with caching/monitoring enabled. */
1173 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1174 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1175 }
1176# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1177 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1178 if (RT_SUCCESS(rc))
1179 rc = VINF_SUCCESS;
1180# endif
1181 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1182 PGM_INVL_PG(pVCpu, GCPtrPage);
1183 }
1184 else
1185 {
1186 /*
1187 * The page table address changed.
1188 */
1189 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1190 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1191 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1192 ASMAtomicWriteSize(pPdeDst, 0);
1193 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1194 PGM_INVL_VCPU_TLBS(pVCpu);
1195 }
1196 }
1197 else
1198 {
1199 /*
1200 * 2/4MB - page.
1201 */
1202 /* Before freeing the page, check if anything really changed. */
1203 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1204 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1205# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1206 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1207 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1208# endif
1209 if ( pShwPage->GCPhys == GCPhys
1210 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1211 {
1212 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1213 /** @todo PAT */
1214 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1215 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1216 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1217 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1218 {
1219 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1220 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1221# if defined(IN_RC)
1222 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1223 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1224# endif
1225 return VINF_SUCCESS;
1226 }
1227 }
1228
1229 /*
1230 * Ok, the page table is present and it's been changed in the guest.
1231 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1232 * We could do this for some flushes in GC too, but we need an algorithm for
1233 * deciding which 4MB pages containing code likely to be executed very soon.
1234 */
1235 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1236 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1237 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1238 ASMAtomicWriteSize(pPdeDst, 0);
1239 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1240 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1241 }
1242 }
1243 else
1244 {
1245 /*
1246 * Page directory is not present, mark shadow PDE not present.
1247 */
1248 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1249 {
1250 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1251 ASMAtomicWriteSize(pPdeDst, 0);
1252 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1253 PGM_INVL_PG(pVCpu, GCPtrPage);
1254 }
1255 else
1256 {
1257 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1258 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1259 }
1260 }
1261# if defined(IN_RC)
1262 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1263 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1264# endif
1265 return rc;
1266
1267#else /* guest real and protected mode */
1268 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1269 return VINF_SUCCESS;
1270#endif
1271}
1272
1273
1274/**
1275 * Update the tracking of shadowed pages.
1276 *
1277 * @param pVCpu The VMCPU handle.
1278 * @param pShwPage The shadow page.
1279 * @param HCPhys The physical page we is being dereferenced.
1280 */
1281DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1282{
1283 PVM pVM = pVCpu->CTX_SUFF(pVM);
1284
1285 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1286 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1287
1288 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1289 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1290 * 2. write protect all shadowed pages. I.e. implement caching.
1291 */
1292 /*
1293 * Find the guest address.
1294 */
1295 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1296 pRam;
1297 pRam = pRam->CTX_SUFF(pNext))
1298 {
1299 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1300 while (iPage-- > 0)
1301 {
1302 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1303 {
1304 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1305 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1306 pShwPage->cPresent--;
1307 pPool->cPresent--;
1308 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1309 return;
1310 }
1311 }
1312 }
1313
1314 for (;;)
1315 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1316}
1317
1318
1319/**
1320 * Update the tracking of shadowed pages.
1321 *
1322 * @param pVCpu The VMCPU handle.
1323 * @param pShwPage The shadow page.
1324 * @param u16 The top 16-bit of the pPage->HCPhys.
1325 * @param pPage Pointer to the guest page. this will be modified.
1326 * @param iPTDst The index into the shadow table.
1327 */
1328DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1329{
1330 PVM pVM = pVCpu->CTX_SUFF(pVM);
1331 /*
1332 * Just deal with the simple first time here.
1333 */
1334 if (!u16)
1335 {
1336 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1337 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1338 }
1339 else
1340 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1341
1342 /* write back */
1343 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1344 PGM_PAGE_SET_TRACKING(pPage, u16);
1345
1346 /* update statistics. */
1347 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1348 pShwPage->cPresent++;
1349 if (pShwPage->iFirstPresent > iPTDst)
1350 pShwPage->iFirstPresent = iPTDst;
1351}
1352
1353
1354/**
1355 * Creates a 4K shadow page for a guest page.
1356 *
1357 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1358 * physical address. The PdeSrc argument only the flags are used. No page structured
1359 * will be mapped in this function.
1360 *
1361 * @param pVCpu The VMCPU handle.
1362 * @param pPteDst Destination page table entry.
1363 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1364 * Can safely assume that only the flags are being used.
1365 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1366 * @param pShwPage Pointer to the shadow page.
1367 * @param iPTDst The index into the shadow table.
1368 *
1369 * @remark Not used for 2/4MB pages!
1370 */
1371DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1372{
1373 if (PteSrc.n.u1Present)
1374 {
1375 PVM pVM = pVCpu->CTX_SUFF(pVM);
1376
1377# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1378 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1379 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1380 if (pShwPage->fDirty)
1381 {
1382 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1383 PX86PTPAE pGstPT;
1384
1385 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1386 pGstPT->a[iPTDst].u = PteSrc.u;
1387 }
1388# endif
1389 /*
1390 * Find the ram range.
1391 */
1392 PPGMPAGE pPage;
1393 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1394 if (RT_SUCCESS(rc))
1395 {
1396#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1397 /* Try make the page writable if necessary. */
1398 if ( PteSrc.n.u1Write
1399 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1400# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1401 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1402# endif
1403 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1404 {
1405 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1406 AssertRC(rc);
1407 }
1408#endif
1409
1410 /** @todo investiage PWT, PCD and PAT. */
1411 /*
1412 * Make page table entry.
1413 */
1414 SHWPTE PteDst;
1415 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1416 {
1417 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1418 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1419 {
1420#if PGM_SHW_TYPE == PGM_TYPE_EPT
1421 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1422 PteDst.n.u1Present = 1;
1423 PteDst.n.u1Execute = 1;
1424 PteDst.n.u1IgnorePAT = 1;
1425 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1426 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1427#else
1428 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1429 | PGM_PAGE_GET_HCPHYS(pPage);
1430#endif
1431 }
1432 else
1433 {
1434 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1435 PteDst.u = 0;
1436 }
1437 /** @todo count these two kinds. */
1438 }
1439 else
1440 {
1441#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1442 /*
1443 * If the page or page directory entry is not marked accessed,
1444 * we mark the page not present.
1445 */
1446 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1447 {
1448 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1449 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1450 PteDst.u = 0;
1451 }
1452 else
1453 /*
1454 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1455 * when the page is modified.
1456 */
1457 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1458 {
1459 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1460 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1461 | PGM_PAGE_GET_HCPHYS(pPage)
1462 | PGM_PTFLAGS_TRACK_DIRTY;
1463 }
1464 else
1465#endif
1466 {
1467 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1468#if PGM_SHW_TYPE == PGM_TYPE_EPT
1469 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1470 PteDst.n.u1Present = 1;
1471 PteDst.n.u1Write = 1;
1472 PteDst.n.u1Execute = 1;
1473 PteDst.n.u1IgnorePAT = 1;
1474 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1475 /* PteDst.n.u1Size = 0 */
1476#else
1477 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1478 | PGM_PAGE_GET_HCPHYS(pPage);
1479#endif
1480 }
1481 }
1482
1483 /*
1484 * Make sure only allocated pages are mapped writable.
1485 */
1486 if ( PteDst.n.u1Write
1487 && PteDst.n.u1Present
1488 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1489 {
1490 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1491 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1492 }
1493
1494 /*
1495 * Keep user track up to date.
1496 */
1497 if (PteDst.n.u1Present)
1498 {
1499 if (!pPteDst->n.u1Present)
1500 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1501 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1502 {
1503 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1504 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1505 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1506 }
1507 }
1508 else if (pPteDst->n.u1Present)
1509 {
1510 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1511 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1512 }
1513
1514 /*
1515 * Update statistics and commit the entry.
1516 */
1517#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1518 if (!PteSrc.n.u1Global)
1519 pShwPage->fSeenNonGlobal = true;
1520#endif
1521 ASMAtomicWriteSize(pPteDst, PteDst.u);
1522 }
1523 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1524 /** @todo count these. */
1525 }
1526 else
1527 {
1528 /*
1529 * Page not-present.
1530 */
1531 Log2(("SyncPageWorker: page not present in Pte\n"));
1532 /* Keep user track up to date. */
1533 if (pPteDst->n.u1Present)
1534 {
1535 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1536 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1537 }
1538 ASMAtomicWriteSize(pPteDst, 0);
1539 /** @todo count these. */
1540 }
1541}
1542
1543
1544/**
1545 * Syncs a guest OS page.
1546 *
1547 * There are no conflicts at this point, neither is there any need for
1548 * page table allocations.
1549 *
1550 * @returns VBox status code.
1551 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1552 * @param pVCpu The VMCPU handle.
1553 * @param PdeSrc Page directory entry of the guest.
1554 * @param GCPtrPage Guest context page address.
1555 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1556 * @param uErr Fault error (X86_TRAP_PF_*).
1557 */
1558PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1559{
1560 PVM pVM = pVCpu->CTX_SUFF(pVM);
1561 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1562 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1563
1564 Assert(PGMIsLockOwner(pVM));
1565
1566#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1567 || PGM_GST_TYPE == PGM_TYPE_PAE \
1568 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1569 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1570 && PGM_SHW_TYPE != PGM_TYPE_EPT
1571
1572 /*
1573 * Assert preconditions.
1574 */
1575 Assert(PdeSrc.n.u1Present);
1576 Assert(cPages);
1577# if 0 /* rarely useful; leave for debugging. */
1578 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1579# endif
1580
1581 /*
1582 * Get the shadow PDE, find the shadow page table in the pool.
1583 */
1584# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1585 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1586 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1587
1588 /* Fetch the pgm pool shadow descriptor. */
1589 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1590 Assert(pShwPde);
1591
1592# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1593 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1594 PPGMPOOLPAGE pShwPde = NULL;
1595 PX86PDPAE pPDDst;
1596
1597 /* Fetch the pgm pool shadow descriptor. */
1598 int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1599 AssertRCSuccessReturn(rc2, rc2);
1600 Assert(pShwPde);
1601
1602 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1603 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1604
1605# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1606 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1607 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1608 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1609 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1610
1611 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1612 AssertRCSuccessReturn(rc2, rc2);
1613 Assert(pPDDst && pPdptDst);
1614 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1615# endif
1616 SHWPDE PdeDst = *pPdeDst;
1617 if (!PdeDst.n.u1Present)
1618 {
1619 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1620 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", GCPtrPage));
1621 return VINF_SUCCESS; /* force the instruction to be executed again. */
1622 }
1623
1624 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1625 Assert(pShwPage);
1626
1627# if PGM_GST_TYPE == PGM_TYPE_AMD64
1628 /* Fetch the pgm pool shadow descriptor. */
1629 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1630 Assert(pShwPde);
1631# endif
1632
1633# if defined(IN_RC)
1634 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1635 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1636# endif
1637
1638 /*
1639 * Check that the page is present and that the shadow PDE isn't out of sync.
1640 */
1641# if PGM_GST_TYPE == PGM_TYPE_AMD64
1642 const bool fBigPage = PdeSrc.b.u1Size;
1643# else
1644 const bool fBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1645# endif
1646 RTGCPHYS GCPhys;
1647 if (!fBigPage)
1648 {
1649 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1650# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1651 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1652 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1653# endif
1654 }
1655 else
1656 {
1657 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1658# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1659 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1660 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1661# endif
1662 }
1663 if ( pShwPage->GCPhys == GCPhys
1664 && PdeSrc.n.u1Present
1665 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1666 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1667# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1668 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !CPUMIsGuestNXEnabled(pVCpu))
1669# endif
1670 )
1671 {
1672 /*
1673 * Check that the PDE is marked accessed already.
1674 * Since we set the accessed bit *before* getting here on a #PF, this
1675 * check is only meant for dealing with non-#PF'ing paths.
1676 */
1677 if (PdeSrc.n.u1Accessed)
1678 {
1679 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1680 if (!fBigPage)
1681 {
1682 /*
1683 * 4KB Page - Map the guest page table.
1684 */
1685 PGSTPT pPTSrc;
1686 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1687 if (RT_SUCCESS(rc))
1688 {
1689# ifdef PGM_SYNC_N_PAGES
1690 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1691 if ( cPages > 1
1692 && !(uErr & X86_TRAP_PF_P)
1693 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1694 {
1695 /*
1696 * This code path is currently only taken when the caller is PGMTrap0eHandler
1697 * for non-present pages!
1698 *
1699 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1700 * deal with locality.
1701 */
1702 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1703# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1704 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1705 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1706# else
1707 const unsigned offPTSrc = 0;
1708# endif
1709 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1710 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1711 iPTDst = 0;
1712 else
1713 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1714 for (; iPTDst < iPTDstEnd; iPTDst++)
1715 {
1716 if (!pPTDst->a[iPTDst].n.u1Present)
1717 {
1718 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1719 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1720 NOREF(GCPtrCurPage);
1721#ifndef IN_RING0
1722 /*
1723 * Assuming kernel code will be marked as supervisor - and not as user level
1724 * and executed using a conforming code selector - And marked as readonly.
1725 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1726 */
1727 PPGMPAGE pPage;
1728 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1729 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1730 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1731 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1732 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1733 )
1734#endif /* else: CSAM not active */
1735 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1736 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1737 GCPtrCurPage, PteSrc.n.u1Present,
1738 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1739 PteSrc.n.u1User & PdeSrc.n.u1User,
1740 (uint64_t)PteSrc.u,
1741 (uint64_t)pPTDst->a[iPTDst].u,
1742 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1743 }
1744 }
1745 }
1746 else
1747# endif /* PGM_SYNC_N_PAGES */
1748 {
1749 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1750 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1751 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1752 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1753 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1754 GCPtrPage, PteSrc.n.u1Present,
1755 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1756 PteSrc.n.u1User & PdeSrc.n.u1User,
1757 (uint64_t)PteSrc.u,
1758 (uint64_t)pPTDst->a[iPTDst].u,
1759 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1760 }
1761 }
1762 else /* MMIO or invalid page: emulated in #PF handler. */
1763 {
1764 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1765 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1766 }
1767 }
1768 else
1769 {
1770 /*
1771 * 4/2MB page - lazy syncing shadow 4K pages.
1772 * (There are many causes of getting here, it's no longer only CSAM.)
1773 */
1774 /* Calculate the GC physical address of this 4KB shadow page. */
1775 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1776 /* Find ram range. */
1777 PPGMPAGE pPage;
1778 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1779 if (RT_SUCCESS(rc))
1780 {
1781# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1782 /* Try make the page writable if necessary. */
1783 if ( PdeSrc.n.u1Write
1784 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1785# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1786 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1787# endif
1788 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1789 {
1790 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
1791 AssertRC(rc);
1792 }
1793# endif
1794
1795 /*
1796 * Make shadow PTE entry.
1797 */
1798 SHWPTE PteDst;
1799 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1800 | PGM_PAGE_GET_HCPHYS(pPage);
1801 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1802 {
1803 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1804 PteDst.n.u1Write = 0;
1805 else
1806 PteDst.u = 0;
1807 }
1808 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1809 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1810 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1811
1812 /* Make sure only allocated pages are mapped writable. */
1813 if ( PteDst.n.u1Write
1814 && PteDst.n.u1Present
1815 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1816 {
1817 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1818 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1819 }
1820
1821 ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
1822
1823 /*
1824 * If the page is not flagged as dirty and is writable, then make it read-only
1825 * at PD level, so we can set the dirty bit when the page is modified.
1826 *
1827 * ASSUMES that page access handlers are implemented on page table entry level.
1828 * Thus we will first catch the dirty access and set PDE.D and restart. If
1829 * there is an access handler, we'll trap again and let it work on the problem.
1830 */
1831 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1832 * As for invlpg, it simply frees the whole shadow PT.
1833 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1834 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1835 {
1836 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1837 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1838 PdeDst.n.u1Write = 0;
1839 }
1840 else
1841 {
1842 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1843 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1844 }
1845 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
1846 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1847 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1848 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1849 }
1850 else
1851 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1852 }
1853# if defined(IN_RC)
1854 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1855 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1856# endif
1857 return VINF_SUCCESS;
1858 }
1859 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1860 }
1861 else
1862 {
1863 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1864 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1865 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1866 }
1867
1868 /*
1869 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1870 * Yea, I'm lazy.
1871 */
1872 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1873 ASMAtomicWriteSize(pPdeDst, 0);
1874
1875# if defined(IN_RC)
1876 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1877 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1878# endif
1879 PGM_INVL_VCPU_TLBS(pVCpu);
1880 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1881
1882#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1883 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1884 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
1885 && !defined(IN_RC)
1886
1887# ifdef PGM_SYNC_N_PAGES
1888 /*
1889 * Get the shadow PDE, find the shadow page table in the pool.
1890 */
1891# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1892 X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
1893
1894# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1895 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
1896
1897# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1898 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1899 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1900 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1901 X86PDEPAE PdeDst;
1902 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1903
1904 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1905 AssertRCSuccessReturn(rc, rc);
1906 Assert(pPDDst && pPdptDst);
1907 PdeDst = pPDDst->a[iPDDst];
1908# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1909 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1910 PEPTPD pPDDst;
1911 EPTPDE PdeDst;
1912
1913 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
1914 if (rc != VINF_SUCCESS)
1915 {
1916 AssertRC(rc);
1917 return rc;
1918 }
1919 Assert(pPDDst);
1920 PdeDst = pPDDst->a[iPDDst];
1921# endif
1922 AssertMsg(PdeDst.n.u1Present, ("%#llx\n", (uint64_t)PdeDst.u));
1923 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1924 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1925
1926 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1927 if ( cPages > 1
1928 && !(uErr & X86_TRAP_PF_P)
1929 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1930 {
1931 /*
1932 * This code path is currently only taken when the caller is PGMTrap0eHandler
1933 * for non-present pages!
1934 *
1935 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1936 * deal with locality.
1937 */
1938 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1939 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1940 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1941 iPTDst = 0;
1942 else
1943 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1944 for (; iPTDst < iPTDstEnd; iPTDst++)
1945 {
1946 if (!pPTDst->a[iPTDst].n.u1Present)
1947 {
1948 GSTPTE PteSrc;
1949
1950 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1951
1952 /* Fake the page table entry */
1953 PteSrc.u = GCPtrCurPage;
1954 PteSrc.n.u1Present = 1;
1955 PteSrc.n.u1Dirty = 1;
1956 PteSrc.n.u1Accessed = 1;
1957 PteSrc.n.u1Write = 1;
1958 PteSrc.n.u1User = 1;
1959
1960 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1961
1962 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1963 GCPtrCurPage, PteSrc.n.u1Present,
1964 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1965 PteSrc.n.u1User & PdeSrc.n.u1User,
1966 (uint64_t)PteSrc.u,
1967 (uint64_t)pPTDst->a[iPTDst].u,
1968 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1969
1970 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
1971 break;
1972 }
1973 else
1974 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1975 }
1976 }
1977 else
1978# endif /* PGM_SYNC_N_PAGES */
1979 {
1980 GSTPTE PteSrc;
1981 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1982 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1983
1984 /* Fake the page table entry */
1985 PteSrc.u = GCPtrCurPage;
1986 PteSrc.n.u1Present = 1;
1987 PteSrc.n.u1Dirty = 1;
1988 PteSrc.n.u1Accessed = 1;
1989 PteSrc.n.u1Write = 1;
1990 PteSrc.n.u1User = 1;
1991 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1992
1993 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
1994 GCPtrPage, PteSrc.n.u1Present,
1995 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1996 PteSrc.n.u1User & PdeSrc.n.u1User,
1997 (uint64_t)PteSrc.u,
1998 (uint64_t)pPTDst->a[iPTDst].u,
1999 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2000 }
2001 return VINF_SUCCESS;
2002
2003#else
2004 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2005 return VERR_INTERNAL_ERROR;
2006#endif
2007}
2008
2009
2010#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2011/**
2012 * Investigate page fault and handle write protection page faults caused by
2013 * dirty bit tracking.
2014 *
2015 * @returns VBox status code.
2016 * @param pVCpu The VMCPU handle.
2017 * @param uErr Page fault error code.
2018 * @param pPdeSrc Guest page directory entry.
2019 * @param GCPtrPage Guest context page address.
2020 */
2021PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2022{
2023 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2024 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2025 bool fMaybeWriteProtFault = fWriteFault && (fUserLevelFault || CPUMIsGuestR0WriteProtEnabled(pVCpu));
2026# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2027 bool fMaybeNXEFault = (uErr & X86_TRAP_PF_ID) && CPUMIsGuestNXEnabled(pVCpu);
2028# endif
2029 unsigned uPageFaultLevel;
2030 int rc;
2031 PVM pVM = pVCpu->CTX_SUFF(pVM);
2032
2033 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2034
2035# if PGM_GST_TYPE == PGM_TYPE_PAE \
2036 || PGM_GST_TYPE == PGM_TYPE_AMD64
2037
2038# if PGM_GST_TYPE == PGM_TYPE_AMD64
2039 PX86PML4E pPml4eSrc;
2040 PX86PDPE pPdpeSrc;
2041
2042 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc);
2043 Assert(pPml4eSrc);
2044
2045 /*
2046 * Real page fault? (PML4E level)
2047 */
2048 if ( (uErr & X86_TRAP_PF_RSVD)
2049 || !pPml4eSrc->n.u1Present
2050 || (fMaybeWriteProtFault && !pPml4eSrc->n.u1Write)
2051 || (fMaybeNXEFault && pPml4eSrc->n.u1NoExecute)
2052 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2053 )
2054 {
2055 uPageFaultLevel = 0;
2056 goto l_UpperLevelPageFault;
2057 }
2058 Assert(pPdpeSrc);
2059
2060# else /* PAE */
2061 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVCpu->pgm.s, GCPtrPage);
2062# endif /* PAE */
2063
2064 /*
2065 * Real page fault? (PDPE level)
2066 */
2067 if ( (uErr & X86_TRAP_PF_RSVD)
2068 || !pPdpeSrc->n.u1Present
2069# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2070 || (fMaybeWriteProtFault && !pPdpeSrc->lm.u1Write)
2071 || (fMaybeNXEFault && pPdpeSrc->lm.u1NoExecute)
2072 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2073# endif
2074 )
2075 {
2076 uPageFaultLevel = 1;
2077 goto l_UpperLevelPageFault;
2078 }
2079# endif
2080
2081 /*
2082 * Real page fault? (PDE level)
2083 */
2084 if ( (uErr & X86_TRAP_PF_RSVD)
2085 || !pPdeSrc->n.u1Present
2086 || (fMaybeWriteProtFault && !pPdeSrc->n.u1Write)
2087# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2088 || (fMaybeNXEFault && pPdeSrc->n.u1NoExecute)
2089# endif
2090 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2091 {
2092 uPageFaultLevel = 2;
2093 goto l_UpperLevelPageFault;
2094 }
2095
2096 /*
2097 * First check the easy case where the page directory has been marked read-only to track
2098 * the dirty bit of an emulated BIG page
2099 */
2100 if ( pPdeSrc->b.u1Size
2101# if PGM_GST_TYPE != PGM_TYPE_AMD64
2102 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2103# endif
2104 )
2105 {
2106 /* Mark guest page directory as accessed */
2107# if PGM_GST_TYPE == PGM_TYPE_AMD64
2108 pPml4eSrc->n.u1Accessed = 1;
2109 pPdpeSrc->lm.u1Accessed = 1;
2110# endif
2111 pPdeSrc->b.u1Accessed = 1;
2112
2113 /*
2114 * Only write protection page faults are relevant here.
2115 */
2116 if (fWriteFault)
2117 {
2118 /* Mark guest page directory as dirty (BIG page only). */
2119 pPdeSrc->b.u1Dirty = 1;
2120 }
2121 return VINF_SUCCESS;
2122 }
2123 /* else: 4KB page table */
2124
2125 /*
2126 * Map the guest page table.
2127 */
2128 PGSTPT pPTSrc;
2129 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2130 if (RT_SUCCESS(rc))
2131 {
2132 /*
2133 * Real page fault?
2134 */
2135 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2136 const GSTPTE PteSrc = *pPteSrc;
2137 if ( !PteSrc.n.u1Present
2138 || (fMaybeWriteProtFault && !PteSrc.n.u1Write)
2139# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2140 || (fMaybeNXEFault && PteSrc.n.u1NoExecute)
2141# endif
2142 || (fUserLevelFault && !PteSrc.n.u1User)
2143 )
2144 {
2145 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2146 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2147
2148 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2149 * See the 2nd case above as well.
2150 */
2151 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2152 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2153
2154 return VINF_EM_RAW_GUEST_TRAP;
2155 }
2156 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2157
2158 /*
2159 * Set the accessed bits in the page directory and the page table.
2160 */
2161# if PGM_GST_TYPE == PGM_TYPE_AMD64
2162 pPml4eSrc->n.u1Accessed = 1;
2163 pPdpeSrc->lm.u1Accessed = 1;
2164# endif
2165 pPdeSrc->n.u1Accessed = 1;
2166 pPteSrc->n.u1Accessed = 1;
2167
2168 /*
2169 * Only write protection page faults are relevant here.
2170 */
2171 if (fWriteFault)
2172 {
2173 /* Write access, so mark guest entry as dirty. */
2174# ifdef VBOX_WITH_STATISTICS
2175 if (!pPteSrc->n.u1Dirty)
2176 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2177 else
2178 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2179# endif
2180
2181 pPteSrc->n.u1Dirty = 1;
2182 }
2183 return VINF_SUCCESS;
2184 }
2185 AssertRC(rc);
2186 return rc;
2187
2188
2189l_UpperLevelPageFault:
2190 /*
2191 * Pagefault detected while checking the PML4E, PDPE or PDE.
2192 * Single exit handler to get rid of duplicate code paths.
2193 */
2194 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2195 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2196
2197 if ( 1
2198# if PGM_GST_TYPE == PGM_TYPE_AMD64
2199 && pPml4eSrc->n.u1Present
2200# endif
2201# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2202 && pPdpeSrc->n.u1Present
2203# endif
2204 && pPdeSrc->n.u1Present)
2205 {
2206 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2207 if ( pPdeSrc->b.u1Size
2208# if PGM_GST_TYPE != PGM_TYPE_AMD64
2209 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2210# endif
2211 )
2212 {
2213 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2214 }
2215 else
2216 {
2217 /*
2218 * Map the guest page table.
2219 */
2220 PGSTPT pPTSrc2;
2221 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc2);
2222 if (RT_SUCCESS(rc))
2223 {
2224 PGSTPTE pPteSrc = &pPTSrc2->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2225 if (pPteSrc->n.u1Present)
2226 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2227 }
2228 AssertRC(rc);
2229 }
2230 }
2231 return VINF_EM_RAW_GUEST_TRAP;
2232}
2233
2234/**
2235 * Handle dirty bit tracking faults.
2236 *
2237 * @returns VBox status code.
2238 * @param pVCpu The VMCPU handle.
2239 * @param uErr Page fault error code.
2240 * @param pPdeSrc Guest page directory entry.
2241 * @param pPdeDst Shadow page directory entry.
2242 * @param GCPtrPage Guest context page address.
2243 */
2244PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2245{
2246# if PGM_GST_TYPE == PGM_TYPE_AMD64
2247 const bool fBigPagesSupported = true;
2248# else
2249 const bool fBigPagesSupported = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2250# endif
2251 PVM pVM = pVCpu->CTX_SUFF(pVM);
2252 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2253
2254 Assert(PGMIsLockOwner(pVM));
2255
2256 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2257 {
2258 if ( pPdeDst->n.u1Present
2259 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2260 {
2261 SHWPDE PdeDst = *pPdeDst;
2262
2263 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2264 Assert(pPdeSrc->b.u1Write);
2265
2266 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2267 * fault again and take this path to only invalidate the entry.
2268 */
2269 PdeDst.n.u1Write = 1;
2270 PdeDst.n.u1Accessed = 1;
2271 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2272 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2273 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2274 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2275 }
2276# ifdef IN_RING0
2277 else
2278 /* Check for stale TLB entry; only applies to the SMP guest case. */
2279 if ( pVM->cCpus > 1
2280 && pPdeDst->n.u1Write
2281 && pPdeDst->n.u1Accessed)
2282 {
2283 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2284 if (pShwPage)
2285 {
2286 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2287 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2288 if ( pPteDst->n.u1Present
2289 && pPteDst->n.u1Write)
2290 {
2291 /* Stale TLB entry. */
2292 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2293 PGM_INVL_PG(pVCpu, GCPtrPage);
2294 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2295 }
2296 }
2297 }
2298# endif /* IN_RING0 */
2299 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2300 }
2301
2302 /*
2303 * Map the guest page table.
2304 */
2305 PGSTPT pPTSrc;
2306 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2307 if (RT_SUCCESS(rc))
2308 {
2309 if (pPdeDst->n.u1Present)
2310 {
2311 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2312 const GSTPTE PteSrc = *pPteSrc;
2313#ifndef IN_RING0
2314 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2315 * Our individual shadow handlers will provide more information and force a fatal exit.
2316 */
2317 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2318 {
2319 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2320 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2321 }
2322#endif
2323 /*
2324 * Map shadow page table.
2325 */
2326 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2327 if (pShwPage)
2328 {
2329 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2330 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2331 if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
2332 {
2333 if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
2334 {
2335 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2336 SHWPTE PteDst = *pPteDst;
2337
2338 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2340
2341 Assert(pPteSrc->n.u1Write);
2342
2343 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2344 * fault again and take this path to only invalidate the entry.
2345 */
2346 if (RT_LIKELY(pPage))
2347 {
2348 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2349 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2350 PteDst.n.u1Write = 0;
2351 else
2352 {
2353 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2354 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2355 {
2356 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2357 AssertRC(rc);
2358 }
2359 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2360 PteDst.n.u1Write = 1;
2361 else
2362 PteDst.n.u1Write = 0;
2363 }
2364 }
2365 else
2366 PteDst.n.u1Write = 1;
2367
2368 PteDst.n.u1Dirty = 1;
2369 PteDst.n.u1Accessed = 1;
2370 PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2371 ASMAtomicWriteSize(pPteDst, PteDst.u);
2372 PGM_INVL_PG(pVCpu, GCPtrPage);
2373 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2374 }
2375# ifdef IN_RING0
2376 else
2377 /* Check for stale TLB entry; only applies to the SMP guest case. */
2378 if ( pVM->cCpus > 1
2379 && pPteDst->n.u1Write == 1
2380 && pPteDst->n.u1Accessed == 1)
2381 {
2382 /* Stale TLB entry. */
2383 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2384 PGM_INVL_PG(pVCpu, GCPtrPage);
2385 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2386 }
2387# endif
2388 }
2389 }
2390 else
2391 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2392 }
2393 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2394 }
2395 AssertRC(rc);
2396 return rc;
2397}
2398#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2399
2400
2401/**
2402 * Sync a shadow page table.
2403 *
2404 * The shadow page table is not present. This includes the case where
2405 * there is a conflict with a mapping.
2406 *
2407 * @returns VBox status code.
2408 * @param pVCpu The VMCPU handle.
2409 * @param iPD Page directory index.
2410 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2411 * Assume this is a temporary mapping.
2412 * @param GCPtrPage GC Pointer of the page that caused the fault
2413 */
2414PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2415{
2416 PVM pVM = pVCpu->CTX_SUFF(pVM);
2417 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2418
2419 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2420#if 0 /* rarely useful; leave for debugging. */
2421 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2422#endif
2423 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2424
2425 Assert(PGMIsLocked(pVM));
2426
2427#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2428 || PGM_GST_TYPE == PGM_TYPE_PAE \
2429 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2430 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2431 && PGM_SHW_TYPE != PGM_TYPE_EPT
2432
2433 int rc = VINF_SUCCESS;
2434
2435 /*
2436 * Validate input a little bit.
2437 */
2438 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2439# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2440 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2441 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2442
2443 /* Fetch the pgm pool shadow descriptor. */
2444 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2445 Assert(pShwPde);
2446
2447# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2448 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2449 PPGMPOOLPAGE pShwPde = NULL;
2450 PX86PDPAE pPDDst;
2451 PSHWPDE pPdeDst;
2452
2453 /* Fetch the pgm pool shadow descriptor. */
2454 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2455 AssertRCSuccessReturn(rc, rc);
2456 Assert(pShwPde);
2457
2458 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2459 pPdeDst = &pPDDst->a[iPDDst];
2460
2461# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2462 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2463 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2464 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2465 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2466 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2467 AssertRCSuccessReturn(rc, rc);
2468 Assert(pPDDst);
2469 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2470# endif
2471 SHWPDE PdeDst = *pPdeDst;
2472
2473# if PGM_GST_TYPE == PGM_TYPE_AMD64
2474 /* Fetch the pgm pool shadow descriptor. */
2475 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2476 Assert(pShwPde);
2477# endif
2478
2479# ifndef PGM_WITHOUT_MAPPINGS
2480 /*
2481 * Check for conflicts.
2482 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2483 * HC: Simply resolve the conflict.
2484 */
2485 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2486 {
2487 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2488# ifndef IN_RING3
2489 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2490 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2491 return VERR_ADDRESS_CONFLICT;
2492# else
2493 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2494 Assert(pMapping);
2495# if PGM_GST_TYPE == PGM_TYPE_32BIT
2496 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2497# elif PGM_GST_TYPE == PGM_TYPE_PAE
2498 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2499# else
2500 AssertFailed(); /* can't happen for amd64 */
2501# endif
2502 if (RT_FAILURE(rc))
2503 {
2504 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2505 return rc;
2506 }
2507 PdeDst = *pPdeDst;
2508# endif
2509 }
2510# endif /* !PGM_WITHOUT_MAPPINGS */
2511 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2512
2513# if defined(IN_RC)
2514 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2515 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2516# endif
2517
2518 /*
2519 * Sync page directory entry.
2520 */
2521 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2522 if (PdeSrc.n.u1Present)
2523 {
2524 /*
2525 * Allocate & map the page table.
2526 */
2527 PSHWPT pPTDst;
2528# if PGM_GST_TYPE == PGM_TYPE_AMD64
2529 const bool fPageTable = !PdeSrc.b.u1Size;
2530# else
2531 const bool fPageTable = !PdeSrc.b.u1Size || !CPUMIsGuestPageSizeExtEnabled(pVCpu);
2532# endif
2533 PPGMPOOLPAGE pShwPage;
2534 RTGCPHYS GCPhys;
2535 if (fPageTable)
2536 {
2537 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2538# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2539 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2540 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2541# endif
2542 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2543 }
2544 else
2545 {
2546 PGMPOOLACCESS enmAccess;
2547# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2548 const bool fNoExecute = PdeSrc.n.u1NoExecute && CPUMIsGuestNXEnabled(pVCpu);
2549# else
2550 const bool fNoExecute = false;
2551# endif
2552
2553 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2554# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2555 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2556 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2557# endif
2558 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2559 if (PdeSrc.n.u1User)
2560 {
2561 if (PdeSrc.n.u1Write)
2562 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2563 else
2564 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2565 }
2566 else
2567 {
2568 if (PdeSrc.n.u1Write)
2569 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2570 else
2571 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2572 }
2573 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2574 }
2575 if (rc == VINF_SUCCESS)
2576 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2577 else if (rc == VINF_PGM_CACHED_PAGE)
2578 {
2579 /*
2580 * The PT was cached, just hook it up.
2581 */
2582 if (fPageTable)
2583 PdeDst.u = pShwPage->Core.Key
2584 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2585 else
2586 {
2587 PdeDst.u = pShwPage->Core.Key
2588 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2589 /* (see explanation and assumptions further down.) */
2590 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2591 {
2592 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2593 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2594 PdeDst.b.u1Write = 0;
2595 }
2596 }
2597 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2598# if defined(IN_RC)
2599 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2600# endif
2601 return VINF_SUCCESS;
2602 }
2603 else if (rc == VERR_PGM_POOL_FLUSHED)
2604 {
2605 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2606# if defined(IN_RC)
2607 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2608# endif
2609 return VINF_PGM_SYNC_CR3;
2610 }
2611 else
2612 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2613 PdeDst.u &= X86_PDE_AVL_MASK;
2614 PdeDst.u |= pShwPage->Core.Key;
2615
2616 /*
2617 * Page directory has been accessed (this is a fault situation, remember).
2618 */
2619 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2620 if (fPageTable)
2621 {
2622 /*
2623 * Page table - 4KB.
2624 *
2625 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2626 */
2627 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2628 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2629 PGSTPT pPTSrc;
2630 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2631 if (RT_SUCCESS(rc))
2632 {
2633 /*
2634 * Start by syncing the page directory entry so CSAM's TLB trick works.
2635 */
2636 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2637 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2638 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2639# if defined(IN_RC)
2640 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2641# endif
2642
2643 /*
2644 * Directory/page user or supervisor privilege: (same goes for read/write)
2645 *
2646 * Directory Page Combined
2647 * U/S U/S U/S
2648 * 0 0 0
2649 * 0 1 0
2650 * 1 0 0
2651 * 1 1 1
2652 *
2653 * Simple AND operation. Table listed for completeness.
2654 *
2655 */
2656 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2657# ifdef PGM_SYNC_N_PAGES
2658 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2659 unsigned iPTDst = iPTBase;
2660 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2661 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2662 iPTDst = 0;
2663 else
2664 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2665# else /* !PGM_SYNC_N_PAGES */
2666 unsigned iPTDst = 0;
2667 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2668# endif /* !PGM_SYNC_N_PAGES */
2669# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2670 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2671 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2672# else
2673 const unsigned offPTSrc = 0;
2674# endif
2675 for (; iPTDst < iPTDstEnd; iPTDst++)
2676 {
2677 const unsigned iPTSrc = iPTDst + offPTSrc;
2678 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2679
2680 if (PteSrc.n.u1Present) /* we've already cleared it above */
2681 {
2682# ifndef IN_RING0
2683 /*
2684 * Assuming kernel code will be marked as supervisor - and not as user level
2685 * and executed using a conforming code selector - And marked as readonly.
2686 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2687 */
2688 PPGMPAGE pPage;
2689 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2690 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2691 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2692 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2693 )
2694# endif
2695 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2696 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2697 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2698 PteSrc.n.u1Present,
2699 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2700 PteSrc.n.u1User & PdeSrc.n.u1User,
2701 (uint64_t)PteSrc.u,
2702 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2703 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2704 }
2705 } /* for PTEs */
2706 }
2707 }
2708 else
2709 {
2710 /*
2711 * Big page - 2/4MB.
2712 *
2713 * We'll walk the ram range list in parallel and optimize lookups.
2714 * We will only sync on shadow page table at a time.
2715 */
2716 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2717
2718 /**
2719 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2720 */
2721
2722 /*
2723 * Start by syncing the page directory entry.
2724 */
2725 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2726 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2727
2728 /*
2729 * If the page is not flagged as dirty and is writable, then make it read-only
2730 * at PD level, so we can set the dirty bit when the page is modified.
2731 *
2732 * ASSUMES that page access handlers are implemented on page table entry level.
2733 * Thus we will first catch the dirty access and set PDE.D and restart. If
2734 * there is an access handler, we'll trap again and let it work on the problem.
2735 */
2736 /** @todo move the above stuff to a section in the PGM documentation. */
2737 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2738 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2739 {
2740 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2741 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2742 PdeDst.b.u1Write = 0;
2743 }
2744 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2745# if defined(IN_RC)
2746 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2747# endif
2748
2749 /*
2750 * Fill the shadow page table.
2751 */
2752 /* Get address and flags from the source PDE. */
2753 SHWPTE PteDstBase;
2754 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2755
2756 /* Loop thru the entries in the shadow PT. */
2757 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2758 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2759 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2760 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2761 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2762 unsigned iPTDst = 0;
2763 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2764 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2765 {
2766 /* Advance ram range list. */
2767 while (pRam && GCPhys > pRam->GCPhysLast)
2768 pRam = pRam->CTX_SUFF(pNext);
2769 if (pRam && GCPhys >= pRam->GCPhys)
2770 {
2771 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2772 do
2773 {
2774 /* Make shadow PTE. */
2775 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2776 SHWPTE PteDst;
2777
2778# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2779 /* Try make the page writable if necessary. */
2780 if ( PteDstBase.n.u1Write
2781 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2782# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2783 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2784# endif
2785 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2786 {
2787 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
2788 AssertRCReturn(rc, rc);
2789 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2790 break;
2791 }
2792# endif
2793
2794 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2795 {
2796 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2797 {
2798 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2799 PteDst.n.u1Write = 0;
2800 }
2801 else
2802 PteDst.u = 0;
2803 }
2804# ifndef IN_RING0
2805 /*
2806 * Assuming kernel code will be marked as supervisor and not as user level and executed
2807 * using a conforming code selector. Don't check for readonly, as that implies the whole
2808 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2809 */
2810 else if ( !PdeSrc.n.u1User
2811 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2812 PteDst.u = 0;
2813# endif
2814 else
2815 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2816
2817 /* Only map writable pages writable. */
2818 if ( PteDst.n.u1Write
2819 && PteDst.n.u1Present
2820 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2821 {
2822 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2823 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2824 }
2825
2826 if (PteDst.n.u1Present)
2827 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2828
2829 /* commit it */
2830 pPTDst->a[iPTDst] = PteDst;
2831 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2832 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2833 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2834
2835 /* advance */
2836 GCPhys += PAGE_SIZE;
2837 iHCPage++;
2838 iPTDst++;
2839 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2840 && GCPhys <= pRam->GCPhysLast);
2841 }
2842 else if (pRam)
2843 {
2844 Log(("Invalid pages at %RGp\n", GCPhys));
2845 do
2846 {
2847 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2848 GCPhys += PAGE_SIZE;
2849 iPTDst++;
2850 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2851 && GCPhys < pRam->GCPhys);
2852 }
2853 else
2854 {
2855 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2856 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2857 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2858 }
2859 } /* while more PTEs */
2860 } /* 4KB / 4MB */
2861 }
2862 else
2863 AssertRelease(!PdeDst.n.u1Present);
2864
2865 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2866 if (RT_FAILURE(rc))
2867 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2868 return rc;
2869
2870#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2871 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2872 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2873 && !defined(IN_RC)
2874
2875 /*
2876 * Validate input a little bit.
2877 */
2878 int rc = VINF_SUCCESS;
2879# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2880 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2881 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2882
2883 /* Fetch the pgm pool shadow descriptor. */
2884 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2885 Assert(pShwPde);
2886
2887# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2888 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2889 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2890 PX86PDPAE pPDDst;
2891 PSHWPDE pPdeDst;
2892
2893 /* Fetch the pgm pool shadow descriptor. */
2894 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2895 AssertRCSuccessReturn(rc, rc);
2896 Assert(pShwPde);
2897
2898 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2899 pPdeDst = &pPDDst->a[iPDDst];
2900
2901# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2902 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2903 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2904 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2905 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2906 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2907 AssertRCSuccessReturn(rc, rc);
2908 Assert(pPDDst);
2909 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2910
2911 /* Fetch the pgm pool shadow descriptor. */
2912 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2913 Assert(pShwPde);
2914
2915# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2916 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2917 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2918 PEPTPD pPDDst;
2919 PEPTPDPT pPdptDst;
2920
2921 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2922 if (rc != VINF_SUCCESS)
2923 {
2924 AssertRC(rc);
2925 return rc;
2926 }
2927 Assert(pPDDst);
2928 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2929
2930 /* Fetch the pgm pool shadow descriptor. */
2931 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2932 Assert(pShwPde);
2933# endif
2934 SHWPDE PdeDst = *pPdeDst;
2935
2936 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2937 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2938
2939# if (PGM_SHW_TYPE == PGM_TYPE_EPT) && (HC_ARCH_BITS == 64) && defined(RT_OS_WINDOWS) && defined(DEBUG_sandervl)
2940 PPGMPAGE pPage;
2941 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & SHW_PD_MASK, &pPage);
2942 if ( RT_SUCCESS(rc)
2943 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2944 {
2945 RTHCPHYS HCPhys = NIL_RTHCPHYS;
2946 unsigned uPDEType = PGM_PAGE_GET_PDE_TYPE(pPage);
2947
2948 if (uPDEType == PGM_PAGE_PDE_TYPE_PDE)
2949 {
2950 /* Previously allocated 2 MB range can be reused. */
2951 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2952 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2953 }
2954 else
2955 if ( uPDEType == PGM_PAGE_PDE_TYPE_DONTCARE
2956 && PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
2957 {
2958 RTGCPHYS GCPhysBase = GCPtrPage & SHW_PD_MASK;
2959 RTGCPHYS GCPhys = GCPhysBase;
2960 unsigned iPage;
2961
2962 /* Lazy approach: check all pages in the 2 MB range.
2963 * The whole range must be ram and unallocated
2964 */
2965 for (iPage = 0; iPage < _2M/PAGE_SIZE; iPage++)
2966 {
2967 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
2968 if ( RT_FAILURE(rc)
2969 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
2970 || PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2971 {
2972 LogFlow(("Found page with wrong attributes; cancel check. rc=%d\n", rc));
2973 break;
2974 }
2975 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_DONTCARE);
2976 GCPhys += PAGE_SIZE;
2977 }
2978 /* Fetch the start page of the 2 MB range again. */
2979 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysBase, &pPage);
2980 AssertRC(rc); /* can't fail */
2981
2982 if (iPage != _2M/PAGE_SIZE)
2983 {
2984 /* Failed. Mark as requiring a PT so we don't check the whole thing again in the future. */
2985 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PT);
2986 }
2987 else
2988 {
2989 rc = pgmPhysAllocLargePage(pVM, GCPhysBase);
2990 if (RT_SUCCESS(rc))
2991 {
2992 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
2993 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2994 }
2995 else
2996 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
2997 }
2998 }
2999
3000 if (HCPhys != NIL_RTHCPHYS)
3001 {
3002 PdeDst.u &= X86_PDE_AVL_MASK;
3003 PdeDst.u |= HCPhys;
3004 PdeDst.n.u1Present = 1;
3005 PdeDst.n.u1Write = 1;
3006 PdeDst.n.u1Execute = 1;
3007 PdeDst.b.u1Size = 1;
3008 PdeDst.b.u1IgnorePAT = 1;
3009 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3010 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3011
3012 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3013 return VINF_SUCCESS;
3014 }
3015 }
3016# endif
3017
3018 GSTPDE PdeSrc;
3019 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3020 PdeSrc.n.u1Present = 1;
3021 PdeSrc.n.u1Write = 1;
3022 PdeSrc.n.u1Accessed = 1;
3023 PdeSrc.n.u1User = 1;
3024
3025 /*
3026 * Allocate & map the page table.
3027 */
3028 PSHWPT pPTDst;
3029 PPGMPOOLPAGE pShwPage;
3030 RTGCPHYS GCPhys;
3031
3032 /* Virtual address = physical address */
3033 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3034 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3035
3036 if ( rc == VINF_SUCCESS
3037 || rc == VINF_PGM_CACHED_PAGE)
3038 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
3039 else
3040 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3041
3042 PdeDst.u &= X86_PDE_AVL_MASK;
3043 PdeDst.u |= pShwPage->Core.Key;
3044 PdeDst.n.u1Present = 1;
3045 PdeDst.n.u1Write = 1;
3046# if PGM_SHW_TYPE == PGM_TYPE_EPT
3047 PdeDst.n.u1Execute = 1;
3048# else
3049 PdeDst.n.u1User = 1;
3050 PdeDst.n.u1Accessed = 1;
3051# endif
3052 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3053
3054 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3055 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3056 return rc;
3057
3058#else
3059 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3060 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3061 return VERR_INTERNAL_ERROR;
3062#endif
3063}
3064
3065
3066
3067/**
3068 * Prefetch a page/set of pages.
3069 *
3070 * Typically used to sync commonly used pages before entering raw mode
3071 * after a CR3 reload.
3072 *
3073 * @returns VBox status code.
3074 * @param pVCpu The VMCPU handle.
3075 * @param GCPtrPage Page to invalidate.
3076 */
3077PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3078{
3079#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3080 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3081 /*
3082 * Check that all Guest levels thru the PDE are present, getting the
3083 * PD and PDE in the processes.
3084 */
3085 int rc = VINF_SUCCESS;
3086# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3087# if PGM_GST_TYPE == PGM_TYPE_32BIT
3088 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3089 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3090# elif PGM_GST_TYPE == PGM_TYPE_PAE
3091 unsigned iPDSrc;
3092 X86PDPE PdpeSrc;
3093 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3094 if (!pPDSrc)
3095 return VINF_SUCCESS; /* not present */
3096# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3097 unsigned iPDSrc;
3098 PX86PML4E pPml4eSrc;
3099 X86PDPE PdpeSrc;
3100 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3101 if (!pPDSrc)
3102 return VINF_SUCCESS; /* not present */
3103# endif
3104 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3105# else
3106 PGSTPD pPDSrc = NULL;
3107 const unsigned iPDSrc = 0;
3108 GSTPDE PdeSrc;
3109
3110 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3111 PdeSrc.n.u1Present = 1;
3112 PdeSrc.n.u1Write = 1;
3113 PdeSrc.n.u1Accessed = 1;
3114 PdeSrc.n.u1User = 1;
3115# endif
3116
3117 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3118 {
3119 PVM pVM = pVCpu->CTX_SUFF(pVM);
3120 pgmLock(pVM);
3121
3122# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3123 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
3124# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3125 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3126 PX86PDPAE pPDDst;
3127 X86PDEPAE PdeDst;
3128# if PGM_GST_TYPE != PGM_TYPE_PAE
3129 X86PDPE PdpeSrc;
3130
3131 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3132 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3133# endif
3134 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3135 if (rc != VINF_SUCCESS)
3136 {
3137 pgmUnlock(pVM);
3138 AssertRC(rc);
3139 return rc;
3140 }
3141 Assert(pPDDst);
3142 PdeDst = pPDDst->a[iPDDst];
3143
3144# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3145 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3146 PX86PDPAE pPDDst;
3147 X86PDEPAE PdeDst;
3148
3149# if PGM_GST_TYPE == PGM_TYPE_PROT
3150 /* AMD-V nested paging */
3151 X86PML4E Pml4eSrc;
3152 X86PDPE PdpeSrc;
3153 PX86PML4E pPml4eSrc = &Pml4eSrc;
3154
3155 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3156 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3157 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3158# endif
3159
3160 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3161 if (rc != VINF_SUCCESS)
3162 {
3163 pgmUnlock(pVM);
3164 AssertRC(rc);
3165 return rc;
3166 }
3167 Assert(pPDDst);
3168 PdeDst = pPDDst->a[iPDDst];
3169# endif
3170 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3171 {
3172 if (!PdeDst.n.u1Present)
3173 {
3174 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3175 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3176 }
3177 else
3178 {
3179 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3180 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3181 * makes no sense to prefetch more than one page.
3182 */
3183 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3184 if (RT_SUCCESS(rc))
3185 rc = VINF_SUCCESS;
3186 }
3187 }
3188 pgmUnlock(pVM);
3189 }
3190 return rc;
3191
3192#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3193 return VINF_SUCCESS; /* ignore */
3194#endif
3195}
3196
3197
3198
3199
3200/**
3201 * Syncs a page during a PGMVerifyAccess() call.
3202 *
3203 * @returns VBox status code (informational included).
3204 * @param pVCpu The VMCPU handle.
3205 * @param GCPtrPage The address of the page to sync.
3206 * @param fPage The effective guest page flags.
3207 * @param uErr The trap error code.
3208 */
3209PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3210{
3211 PVM pVM = pVCpu->CTX_SUFF(pVM);
3212
3213 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3214
3215 Assert(!HWACCMIsNestedPagingActive(pVM));
3216#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3217 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3218
3219# ifndef IN_RING0
3220 if (!(fPage & X86_PTE_US))
3221 {
3222 /*
3223 * Mark this page as safe.
3224 */
3225 /** @todo not correct for pages that contain both code and data!! */
3226 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3227 CSAMMarkPage(pVM, GCPtrPage, true);
3228 }
3229# endif
3230
3231 /*
3232 * Get guest PD and index.
3233 */
3234# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3235# if PGM_GST_TYPE == PGM_TYPE_32BIT
3236 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3237 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3238# elif PGM_GST_TYPE == PGM_TYPE_PAE
3239 unsigned iPDSrc = 0;
3240 X86PDPE PdpeSrc;
3241 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3242
3243 if (pPDSrc)
3244 {
3245 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3246 return VINF_EM_RAW_GUEST_TRAP;
3247 }
3248# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3249 unsigned iPDSrc;
3250 PX86PML4E pPml4eSrc;
3251 X86PDPE PdpeSrc;
3252 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3253 if (!pPDSrc)
3254 {
3255 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3256 return VINF_EM_RAW_GUEST_TRAP;
3257 }
3258# endif
3259# else
3260 PGSTPD pPDSrc = NULL;
3261 const unsigned iPDSrc = 0;
3262# endif
3263 int rc = VINF_SUCCESS;
3264
3265 pgmLock(pVM);
3266
3267 /*
3268 * First check if the shadow pd is present.
3269 */
3270# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3271 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3272# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3273 PX86PDEPAE pPdeDst;
3274 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3275 PX86PDPAE pPDDst;
3276# if PGM_GST_TYPE != PGM_TYPE_PAE
3277 X86PDPE PdpeSrc;
3278
3279 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3280 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3281# endif
3282 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3283 if (rc != VINF_SUCCESS)
3284 {
3285 pgmUnlock(pVM);
3286 AssertRC(rc);
3287 return rc;
3288 }
3289 Assert(pPDDst);
3290 pPdeDst = &pPDDst->a[iPDDst];
3291
3292# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3293 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3294 PX86PDPAE pPDDst;
3295 PX86PDEPAE pPdeDst;
3296
3297# if PGM_GST_TYPE == PGM_TYPE_PROT
3298 /* AMD-V nested paging */
3299 X86PML4E Pml4eSrc;
3300 X86PDPE PdpeSrc;
3301 PX86PML4E pPml4eSrc = &Pml4eSrc;
3302
3303 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3304 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3305 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3306# endif
3307
3308 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3309 if (rc != VINF_SUCCESS)
3310 {
3311 pgmUnlock(pVM);
3312 AssertRC(rc);
3313 return rc;
3314 }
3315 Assert(pPDDst);
3316 pPdeDst = &pPDDst->a[iPDDst];
3317# endif
3318
3319# if defined(IN_RC)
3320 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3321 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
3322# endif
3323
3324 if (!pPdeDst->n.u1Present)
3325 {
3326 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3327 if (rc != VINF_SUCCESS)
3328 {
3329# if defined(IN_RC)
3330 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3331 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3332# endif
3333 pgmUnlock(pVM);
3334 AssertRC(rc);
3335 return rc;
3336 }
3337 }
3338
3339# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3340 /* Check for dirty bit fault */
3341 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3342 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3343 Log(("PGMVerifyAccess: success (dirty)\n"));
3344 else
3345 {
3346 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3347# else
3348 {
3349 GSTPDE PdeSrc;
3350 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3351 PdeSrc.n.u1Present = 1;
3352 PdeSrc.n.u1Write = 1;
3353 PdeSrc.n.u1Accessed = 1;
3354 PdeSrc.n.u1User = 1;
3355
3356# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3357 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3358 if (uErr & X86_TRAP_PF_US)
3359 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3360 else /* supervisor */
3361 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3362
3363 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3364 if (RT_SUCCESS(rc))
3365 {
3366 /* Page was successfully synced */
3367 Log2(("PGMVerifyAccess: success (sync)\n"));
3368 rc = VINF_SUCCESS;
3369 }
3370 else
3371 {
3372 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3373 rc = VINF_EM_RAW_GUEST_TRAP;
3374 }
3375 }
3376# if defined(IN_RC)
3377 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3378 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3379# endif
3380 pgmUnlock(pVM);
3381 return rc;
3382
3383#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3384
3385 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3386 return VERR_INTERNAL_ERROR;
3387#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3388}
3389
3390#undef MY_STAM_COUNTER_INC
3391#define MY_STAM_COUNTER_INC(a) do { } while (0)
3392
3393
3394/**
3395 * Syncs the paging hierarchy starting at CR3.
3396 *
3397 * @returns VBox status code, no specials.
3398 * @param pVCpu The VMCPU handle.
3399 * @param cr0 Guest context CR0 register
3400 * @param cr3 Guest context CR3 register
3401 * @param cr4 Guest context CR4 register
3402 * @param fGlobal Including global page directories or not
3403 */
3404PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3405{
3406 PVM pVM = pVCpu->CTX_SUFF(pVM);
3407
3408 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
3409 fGlobal = true; /* Change this CR3 reload to be a global one. */
3410
3411 LogFlow(("SyncCR3 %d\n", fGlobal));
3412
3413#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3414
3415 pgmLock(pVM);
3416# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3417 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3418 if (pPool->cDirtyPages)
3419 pgmPoolResetDirtyPages(pVM);
3420# endif
3421
3422 /*
3423 * Update page access handlers.
3424 * The virtual are always flushed, while the physical are only on demand.
3425 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3426 * have to look into that later because it will have a bad influence on the performance.
3427 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3428 * bird: Yes, but that won't work for aliases.
3429 */
3430 /** @todo this MUST go away. See #1557. */
3431 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3432 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3433 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3434 pgmUnlock(pVM);
3435#endif /* !NESTED && !EPT */
3436
3437#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3438 /*
3439 * Nested / EPT - almost no work.
3440 */
3441 /** @todo check if this is really necessary; the call does it as well... */
3442 HWACCMFlushTLB(pVCpu);
3443 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3444 return VINF_SUCCESS;
3445
3446#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3447 /*
3448 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3449 * out the shadow parts when the guest modifies its tables.
3450 */
3451 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3452 return VINF_SUCCESS;
3453
3454#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3455
3456# ifndef PGM_WITHOUT_MAPPINGS
3457 /*
3458 * Check for and resolve conflicts with our guest mappings if they
3459 * are enabled and not fixed.
3460 */
3461 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3462 {
3463 int rc = pgmMapResolveConflicts(pVM);
3464 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3465 if (rc == VINF_PGM_SYNC_CR3)
3466 {
3467 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3468 return VINF_PGM_SYNC_CR3;
3469 }
3470 }
3471# else
3472 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3473# endif
3474 return VINF_SUCCESS;
3475#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3476}
3477
3478
3479
3480
3481#ifdef VBOX_STRICT
3482#ifdef IN_RC
3483# undef AssertMsgFailed
3484# define AssertMsgFailed Log
3485#endif
3486#ifdef IN_RING3
3487# include <VBox/dbgf.h>
3488
3489/**
3490 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3491 *
3492 * @returns VBox status code (VINF_SUCCESS).
3493 * @param cr3 The root of the hierarchy.
3494 * @param crr The cr4, only PAE and PSE is currently used.
3495 * @param fLongMode Set if long mode, false if not long mode.
3496 * @param cMaxDepth Number of levels to dump.
3497 * @param pHlp Pointer to the output functions.
3498 */
3499RT_C_DECLS_BEGIN
3500VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3501RT_C_DECLS_END
3502
3503#endif
3504
3505/**
3506 * Checks that the shadow page table is in sync with the guest one.
3507 *
3508 * @returns The number of errors.
3509 * @param pVM The virtual machine.
3510 * @param pVCpu The VMCPU handle.
3511 * @param cr3 Guest context CR3 register
3512 * @param cr4 Guest context CR4 register
3513 * @param GCPtr Where to start. Defaults to 0.
3514 * @param cb How much to check. Defaults to everything.
3515 */
3516PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3517{
3518#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3519 return 0;
3520#else
3521 unsigned cErrors = 0;
3522 PVM pVM = pVCpu->CTX_SUFF(pVM);
3523 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3524
3525#if PGM_GST_TYPE == PGM_TYPE_PAE
3526 /** @todo currently broken; crashes below somewhere */
3527 AssertFailed();
3528#endif
3529
3530#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3531 || PGM_GST_TYPE == PGM_TYPE_PAE \
3532 || PGM_GST_TYPE == PGM_TYPE_AMD64
3533
3534# if PGM_GST_TYPE == PGM_TYPE_AMD64
3535 bool fBigPagesSupported = true;
3536# else
3537 bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3538# endif
3539 PPGMCPU pPGM = &pVCpu->pgm.s;
3540 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3541 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3542# ifndef IN_RING0
3543 RTHCPHYS HCPhys; /* general usage. */
3544# endif
3545 int rc;
3546
3547 /*
3548 * Check that the Guest CR3 and all its mappings are correct.
3549 */
3550 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3551 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3552 false);
3553# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3554# if PGM_GST_TYPE == PGM_TYPE_32BIT
3555 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3556# else
3557 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3558# endif
3559 AssertRCReturn(rc, 1);
3560 HCPhys = NIL_RTHCPHYS;
3561 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3562 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3563# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3564 pgmGstGet32bitPDPtr(pPGM);
3565 RTGCPHYS GCPhys;
3566 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3567 AssertRCReturn(rc, 1);
3568 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3569# endif
3570# endif /* !IN_RING0 */
3571
3572 /*
3573 * Get and check the Shadow CR3.
3574 */
3575# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3576 unsigned cPDEs = X86_PG_ENTRIES;
3577 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3578# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3579# if PGM_GST_TYPE == PGM_TYPE_32BIT
3580 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3581# else
3582 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3583# endif
3584 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3585# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3586 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3587 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3588# endif
3589 if (cb != ~(RTGCPTR)0)
3590 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3591
3592/** @todo call the other two PGMAssert*() functions. */
3593
3594# if PGM_GST_TYPE == PGM_TYPE_AMD64
3595 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3596
3597 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3598 {
3599 PPGMPOOLPAGE pShwPdpt = NULL;
3600 PX86PML4E pPml4eSrc;
3601 PX86PML4E pPml4eDst;
3602 RTGCPHYS GCPhysPdptSrc;
3603
3604 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3605 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3606
3607 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3608 if (!pPml4eDst->n.u1Present)
3609 {
3610 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3611 continue;
3612 }
3613
3614 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3615 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3616
3617 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3618 {
3619 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3620 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3621 cErrors++;
3622 continue;
3623 }
3624
3625 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3626 {
3627 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3628 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3629 cErrors++;
3630 continue;
3631 }
3632
3633 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3634 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3635 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3636 {
3637 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3638 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3639 cErrors++;
3640 continue;
3641 }
3642# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3643 {
3644# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3645
3646# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3647 /*
3648 * Check the PDPTEs too.
3649 */
3650 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3651
3652 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3653 {
3654 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3655 PPGMPOOLPAGE pShwPde = NULL;
3656 PX86PDPE pPdpeDst;
3657 RTGCPHYS GCPhysPdeSrc;
3658# if PGM_GST_TYPE == PGM_TYPE_PAE
3659 X86PDPE PdpeSrc;
3660 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3661 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
3662# else
3663 PX86PML4E pPml4eSrcIgn;
3664 X86PDPE PdpeSrc;
3665 PX86PDPT pPdptDst;
3666 PX86PDPAE pPDDst;
3667 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3668
3669 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3670 if (rc != VINF_SUCCESS)
3671 {
3672 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3673 GCPtr += 512 * _2M;
3674 continue; /* next PDPTE */
3675 }
3676 Assert(pPDDst);
3677# endif
3678 Assert(iPDSrc == 0);
3679
3680 pPdpeDst = &pPdptDst->a[iPdpt];
3681
3682 if (!pPdpeDst->n.u1Present)
3683 {
3684 GCPtr += 512 * _2M;
3685 continue; /* next PDPTE */
3686 }
3687
3688 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3689 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3690
3691 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3692 {
3693 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3694 GCPtr += 512 * _2M;
3695 cErrors++;
3696 continue;
3697 }
3698
3699 if (GCPhysPdeSrc != pShwPde->GCPhys)
3700 {
3701# if PGM_GST_TYPE == PGM_TYPE_AMD64
3702 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3703# else
3704 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3705# endif
3706 GCPtr += 512 * _2M;
3707 cErrors++;
3708 continue;
3709 }
3710
3711# if PGM_GST_TYPE == PGM_TYPE_AMD64
3712 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3713 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3714 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3715 {
3716 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3717 GCPtr += 512 * _2M;
3718 cErrors++;
3719 continue;
3720 }
3721# endif
3722
3723# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3724 {
3725# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3726# if PGM_GST_TYPE == PGM_TYPE_32BIT
3727 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3728# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3729 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
3730# endif
3731# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3732 /*
3733 * Iterate the shadow page directory.
3734 */
3735 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3736 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3737
3738 for (;
3739 iPDDst < cPDEs;
3740 iPDDst++, GCPtr += cIncrement)
3741 {
3742# if PGM_SHW_TYPE == PGM_TYPE_PAE
3743 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3744# else
3745 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3746# endif
3747 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3748 {
3749 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3750 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3751 {
3752 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3753 cErrors++;
3754 continue;
3755 }
3756 }
3757 else if ( (PdeDst.u & X86_PDE_P)
3758 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3759 )
3760 {
3761 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3762 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3763 if (!pPoolPage)
3764 {
3765 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3766 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3767 cErrors++;
3768 continue;
3769 }
3770 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3771
3772 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3773 {
3774 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3775 GCPtr, (uint64_t)PdeDst.u));
3776 cErrors++;
3777 }
3778
3779 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3780 {
3781 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3782 GCPtr, (uint64_t)PdeDst.u));
3783 cErrors++;
3784 }
3785
3786 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3787 if (!PdeSrc.n.u1Present)
3788 {
3789 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3790 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3791 cErrors++;
3792 continue;
3793 }
3794
3795 if ( !PdeSrc.b.u1Size
3796 || !fBigPagesSupported)
3797 {
3798 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3799# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3800 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3801# endif
3802 }
3803 else
3804 {
3805# if PGM_GST_TYPE == PGM_TYPE_32BIT
3806 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3807 {
3808 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3809 GCPtr, (uint64_t)PdeSrc.u));
3810 cErrors++;
3811 continue;
3812 }
3813# endif
3814 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3815# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3816 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3817# endif
3818 }
3819
3820 if ( pPoolPage->enmKind
3821 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3822 {
3823 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3824 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3825 cErrors++;
3826 }
3827
3828 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3829 if (!pPhysPage)
3830 {
3831 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3832 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3833 cErrors++;
3834 continue;
3835 }
3836
3837 if (GCPhysGst != pPoolPage->GCPhys)
3838 {
3839 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3840 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3841 cErrors++;
3842 continue;
3843 }
3844
3845 if ( !PdeSrc.b.u1Size
3846 || !fBigPagesSupported)
3847 {
3848 /*
3849 * Page Table.
3850 */
3851 const GSTPT *pPTSrc;
3852 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3853 if (RT_FAILURE(rc))
3854 {
3855 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3856 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3857 cErrors++;
3858 continue;
3859 }
3860 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3861 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3862 {
3863 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3864 // (This problem will go away when/if we shadow multiple CR3s.)
3865 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3866 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3867 cErrors++;
3868 continue;
3869 }
3870 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3871 {
3872 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3873 GCPtr, (uint64_t)PdeDst.u));
3874 cErrors++;
3875 continue;
3876 }
3877
3878 /* iterate the page table. */
3879# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3880 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3881 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3882# else
3883 const unsigned offPTSrc = 0;
3884# endif
3885 for (unsigned iPT = 0, off = 0;
3886 iPT < RT_ELEMENTS(pPTDst->a);
3887 iPT++, off += PAGE_SIZE)
3888 {
3889 const SHWPTE PteDst = pPTDst->a[iPT];
3890
3891 /* skip not-present entries. */
3892 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3893 continue;
3894 Assert(PteDst.n.u1Present);
3895
3896 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3897 if (!PteSrc.n.u1Present)
3898 {
3899# ifdef IN_RING3
3900 PGMAssertHandlerAndFlagsInSync(pVM);
3901 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3902# endif
3903 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3904 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3905 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3906 cErrors++;
3907 continue;
3908 }
3909
3910 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3911# if 1 /** @todo sync accessed bit properly... */
3912 fIgnoreFlags |= X86_PTE_A;
3913# endif
3914
3915 /* match the physical addresses */
3916 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3917 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3918
3919# ifdef IN_RING3
3920 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3921 if (RT_FAILURE(rc))
3922 {
3923 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3924 {
3925 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3926 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3927 cErrors++;
3928 continue;
3929 }
3930 }
3931 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3932 {
3933 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3934 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3935 cErrors++;
3936 continue;
3937 }
3938# endif
3939
3940 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3941 if (!pPhysPage)
3942 {
3943# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3944 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3945 {
3946 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3947 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3948 cErrors++;
3949 continue;
3950 }
3951# endif
3952 if (PteDst.n.u1Write)
3953 {
3954 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3955 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3956 cErrors++;
3957 }
3958 fIgnoreFlags |= X86_PTE_RW;
3959 }
3960 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3961 {
3962 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3963 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3964 cErrors++;
3965 continue;
3966 }
3967
3968 /* flags */
3969 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3970 {
3971 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3972 {
3973 if (PteDst.n.u1Write)
3974 {
3975 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3976 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3977 cErrors++;
3978 continue;
3979 }
3980 fIgnoreFlags |= X86_PTE_RW;
3981 }
3982 else
3983 {
3984 if (PteDst.n.u1Present)
3985 {
3986 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3987 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3988 cErrors++;
3989 continue;
3990 }
3991 fIgnoreFlags |= X86_PTE_P;
3992 }
3993 }
3994 else
3995 {
3996 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3997 {
3998 if (PteDst.n.u1Write)
3999 {
4000 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4001 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4002 cErrors++;
4003 continue;
4004 }
4005 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4006 {
4007 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4008 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4009 cErrors++;
4010 continue;
4011 }
4012 if (PteDst.n.u1Dirty)
4013 {
4014 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4015 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4016 cErrors++;
4017 }
4018# if 0 /** @todo sync access bit properly... */
4019 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4020 {
4021 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4022 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4023 cErrors++;
4024 }
4025 fIgnoreFlags |= X86_PTE_RW;
4026# else
4027 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4028# endif
4029 }
4030 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4031 {
4032 /* access bit emulation (not implemented). */
4033 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4034 {
4035 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4036 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4037 cErrors++;
4038 continue;
4039 }
4040 if (!PteDst.n.u1Accessed)
4041 {
4042 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4043 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4044 cErrors++;
4045 }
4046 fIgnoreFlags |= X86_PTE_P;
4047 }
4048# ifdef DEBUG_sandervl
4049 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4050# endif
4051 }
4052
4053 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4054 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4055 )
4056 {
4057 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4058 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4059 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4060 cErrors++;
4061 continue;
4062 }
4063 } /* foreach PTE */
4064 }
4065 else
4066 {
4067 /*
4068 * Big Page.
4069 */
4070 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4071 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4072 {
4073 if (PdeDst.n.u1Write)
4074 {
4075 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4076 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4077 cErrors++;
4078 continue;
4079 }
4080 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4081 {
4082 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4083 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4084 cErrors++;
4085 continue;
4086 }
4087# if 0 /** @todo sync access bit properly... */
4088 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4089 {
4090 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4091 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4092 cErrors++;
4093 }
4094 fIgnoreFlags |= X86_PTE_RW;
4095# else
4096 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4097# endif
4098 }
4099 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4100 {
4101 /* access bit emulation (not implemented). */
4102 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4103 {
4104 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4105 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4106 cErrors++;
4107 continue;
4108 }
4109 if (!PdeDst.n.u1Accessed)
4110 {
4111 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4112 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4113 cErrors++;
4114 }
4115 fIgnoreFlags |= X86_PTE_P;
4116 }
4117
4118 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4119 {
4120 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4121 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4122 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4123 cErrors++;
4124 }
4125
4126 /* iterate the page table. */
4127 for (unsigned iPT = 0, off = 0;
4128 iPT < RT_ELEMENTS(pPTDst->a);
4129 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4130 {
4131 const SHWPTE PteDst = pPTDst->a[iPT];
4132
4133 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4134 {
4135 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4136 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4137 cErrors++;
4138 }
4139
4140 /* skip not-present entries. */
4141 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4142 continue;
4143
4144 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4145
4146 /* match the physical addresses */
4147 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4148
4149# ifdef IN_RING3
4150 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4151 if (RT_FAILURE(rc))
4152 {
4153 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4154 {
4155 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4156 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4157 cErrors++;
4158 }
4159 }
4160 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4161 {
4162 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4163 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4164 cErrors++;
4165 continue;
4166 }
4167# endif
4168 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4169 if (!pPhysPage)
4170 {
4171# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4172 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4173 {
4174 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4175 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4176 cErrors++;
4177 continue;
4178 }
4179# endif
4180 if (PteDst.n.u1Write)
4181 {
4182 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4183 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4184 cErrors++;
4185 }
4186 fIgnoreFlags |= X86_PTE_RW;
4187 }
4188 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4189 {
4190 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4191 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4192 cErrors++;
4193 continue;
4194 }
4195
4196 /* flags */
4197 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4198 {
4199 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4200 {
4201 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4202 {
4203 if (PteDst.n.u1Write)
4204 {
4205 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4206 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4207 cErrors++;
4208 continue;
4209 }
4210 fIgnoreFlags |= X86_PTE_RW;
4211 }
4212 }
4213 else
4214 {
4215 if (PteDst.n.u1Present)
4216 {
4217 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4218 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4219 cErrors++;
4220 continue;
4221 }
4222 fIgnoreFlags |= X86_PTE_P;
4223 }
4224 }
4225
4226 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4227 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4228 )
4229 {
4230 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4232 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4233 cErrors++;
4234 continue;
4235 }
4236 } /* for each PTE */
4237 }
4238 }
4239 /* not present */
4240
4241 } /* for each PDE */
4242
4243 } /* for each PDPTE */
4244
4245 } /* for each PML4E */
4246
4247# ifdef DEBUG
4248 if (cErrors)
4249 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4250# endif
4251
4252#endif /* GST == 32BIT, PAE or AMD64 */
4253 return cErrors;
4254
4255#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4256}
4257#endif /* VBOX_STRICT */
4258
4259
4260/**
4261 * Sets up the CR3 for shadow paging
4262 *
4263 * @returns Strict VBox status code.
4264 * @retval VINF_SUCCESS.
4265 *
4266 * @param pVCpu The VMCPU handle.
4267 * @param GCPhysCR3 The physical address in the CR3 register.
4268 */
4269PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4270{
4271 PVM pVM = pVCpu->CTX_SUFF(pVM);
4272
4273 /* Update guest paging info. */
4274#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4275 || PGM_GST_TYPE == PGM_TYPE_PAE \
4276 || PGM_GST_TYPE == PGM_TYPE_AMD64
4277
4278 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4279
4280 /*
4281 * Map the page CR3 points at.
4282 */
4283 RTHCPTR HCPtrGuestCR3;
4284 RTHCPHYS HCPhysGuestCR3;
4285 pgmLock(pVM);
4286 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4287 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4288 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4289 /** @todo this needs some reworking wrt. locking. */
4290# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4291 HCPtrGuestCR3 = NIL_RTHCPTR;
4292 int rc = VINF_SUCCESS;
4293# else
4294 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4295# endif
4296 pgmUnlock(pVM);
4297 if (RT_SUCCESS(rc))
4298 {
4299 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4300 if (RT_SUCCESS(rc))
4301 {
4302# ifdef IN_RC
4303 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4304# endif
4305# if PGM_GST_TYPE == PGM_TYPE_32BIT
4306 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4307# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4308 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4309# endif
4310 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4311
4312# elif PGM_GST_TYPE == PGM_TYPE_PAE
4313 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4314 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4315# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4316 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4317# endif
4318 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4319 Log(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4320
4321 /*
4322 * Map the 4 PDs too.
4323 */
4324 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVCpu->pgm.s);
4325 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4326 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4327 {
4328 if (pGuestPDPT->a[i].n.u1Present)
4329 {
4330 RTHCPTR HCPtr;
4331 RTHCPHYS HCPhys;
4332 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4333 pgmLock(pVM);
4334 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4335 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4336 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4337# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4338 HCPtr = NIL_RTHCPTR;
4339 int rc2 = VINF_SUCCESS;
4340# else
4341 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4342# endif
4343 pgmUnlock(pVM);
4344 if (RT_SUCCESS(rc2))
4345 {
4346 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4347 AssertRCReturn(rc, rc);
4348
4349 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4350# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4351 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4352# endif
4353 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4354 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4355# ifdef IN_RC
4356 PGM_INVL_PG(pVCpu, GCPtr);
4357# endif
4358 continue;
4359 }
4360 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4361 }
4362
4363 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4364# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4365 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4366# endif
4367 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4368 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4369# ifdef IN_RC
4370 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4371# endif
4372 }
4373
4374# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4375 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4376# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4377 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4378# endif
4379# endif
4380 }
4381 else
4382 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4383 }
4384 else
4385 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4386
4387#else /* prot/real stub */
4388 int rc = VINF_SUCCESS;
4389#endif
4390
4391 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4392# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4393 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4394 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4395 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4396 && PGM_GST_TYPE != PGM_TYPE_PROT))
4397
4398 Assert(!HWACCMIsNestedPagingActive(pVM));
4399
4400 /*
4401 * Update the shadow root page as well since that's not fixed.
4402 */
4403 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4404 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4405 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4406 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4407 PPGMPOOLPAGE pNewShwPageCR3;
4408
4409 pgmLock(pVM);
4410
4411# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4412 if (pPool->cDirtyPages)
4413 pgmPoolResetDirtyPages(pVM);
4414# endif
4415
4416 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4417 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4418 AssertFatalRC(rc);
4419 rc = VINF_SUCCESS;
4420
4421# ifdef IN_RC
4422 /*
4423 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4424 * state will be inconsistent! Flush important things now while
4425 * we still can and then make sure there are no ring-3 calls.
4426 */
4427 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4428 VMMRZCallRing3Disable(pVCpu);
4429# endif
4430
4431 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4432 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4433 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4434# ifdef IN_RING0
4435 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4436 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4437# elif defined(IN_RC)
4438 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4439 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4440# else
4441 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4442 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4443# endif
4444
4445# ifndef PGM_WITHOUT_MAPPINGS
4446 /*
4447 * Apply all hypervisor mappings to the new CR3.
4448 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4449 * make sure we check for conflicts in the new CR3 root.
4450 */
4451# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4452 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4453# endif
4454 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4455 AssertRCReturn(rc, rc);
4456# endif
4457
4458 /* Set the current hypervisor CR3. */
4459 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4460 SELMShadowCR3Changed(pVM, pVCpu);
4461
4462# ifdef IN_RC
4463 /* NOTE: The state is consistent again. */
4464 VMMRZCallRing3Enable(pVCpu);
4465# endif
4466
4467 /* Clean up the old CR3 root. */
4468 if ( pOldShwPageCR3
4469 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4470 {
4471 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4472# ifndef PGM_WITHOUT_MAPPINGS
4473 /* Remove the hypervisor mappings from the shadow page table. */
4474 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4475# endif
4476 /* Mark the page as unlocked; allow flushing again. */
4477 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4478
4479 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4480 }
4481 pgmUnlock(pVM);
4482# endif
4483
4484 return rc;
4485}
4486
4487/**
4488 * Unmaps the shadow CR3.
4489 *
4490 * @returns VBox status, no specials.
4491 * @param pVCpu The VMCPU handle.
4492 */
4493PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4494{
4495 LogFlow(("UnmapCR3\n"));
4496
4497 int rc = VINF_SUCCESS;
4498 PVM pVM = pVCpu->CTX_SUFF(pVM);
4499
4500 /*
4501 * Update guest paging info.
4502 */
4503#if PGM_GST_TYPE == PGM_TYPE_32BIT
4504 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4505# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4506 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4507# endif
4508 pVCpu->pgm.s.pGst32BitPdRC = 0;
4509
4510#elif PGM_GST_TYPE == PGM_TYPE_PAE
4511 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4512# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4513 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4514# endif
4515 pVCpu->pgm.s.pGstPaePdptRC = 0;
4516 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4517 {
4518 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4519# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4520 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4521# endif
4522 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4523 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4524 }
4525
4526#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4527 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4528# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4529 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4530# endif
4531
4532#else /* prot/real mode stub */
4533 /* nothing to do */
4534#endif
4535
4536#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4537 /*
4538 * Update shadow paging info.
4539 */
4540# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4541 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4542 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4543
4544# if PGM_GST_TYPE != PGM_TYPE_REAL
4545 Assert(!HWACCMIsNestedPagingActive(pVM));
4546# endif
4547
4548 pgmLock(pVM);
4549
4550# ifndef PGM_WITHOUT_MAPPINGS
4551 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4552 /* Remove the hypervisor mappings from the shadow page table. */
4553 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4554# endif
4555
4556 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4557 {
4558 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4559
4560 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4561
4562# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4563 if (pPool->cDirtyPages)
4564 pgmPoolResetDirtyPages(pVM);
4565# endif
4566
4567 /* Mark the page as unlocked; allow flushing again. */
4568 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4569
4570 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4571 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4572 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4573 pVCpu->pgm.s.pShwPageCR3RC = 0;
4574 pVCpu->pgm.s.iShwUser = 0;
4575 pVCpu->pgm.s.iShwUserTable = 0;
4576 }
4577 pgmUnlock(pVM);
4578# endif
4579#endif /* !IN_RC*/
4580
4581 return rc;
4582}
4583
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette