VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 26701

Last change on this file since 26701 was 26701, checked in by vboxsync, 15 years ago

Paranoia & logging

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 194.0 KB
Line 
1/* $Id: PGMAllBth.h 26701 2010-02-23 13:25:38Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27RT_C_DECLS_BEGIN
28PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
29PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
34PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
35PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
37#ifdef VBOX_STRICT
38PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
39#endif
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
42PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
43RT_C_DECLS_END
44
45
46/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
47#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
48# error "Invalid combination; PAE guest implies PAE shadow"
49#endif
50
51#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
52 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
53# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
54#endif
55
56#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
57 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
58# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
59#endif
60
61#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
62 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
63# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
64#endif
65
66
67#ifndef IN_RING3
68/**
69 * #PF Handler for raw-mode guest execution.
70 *
71 * @returns VBox status code (appropriate for trap handling and GC return).
72 *
73 * @param pVCpu VMCPU Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 * @param pfLockTaken PGM lock taken here or not (out)
78 */
79PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
80{
81 PVM pVM = pVCpu->CTX_SUFF(pVM);
82
83 *pfLockTaken = false;
84
85# if defined(IN_RC) && defined(VBOX_STRICT)
86 PGMDynCheckLocks(pVM);
87# endif
88
89# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
90 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
91 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
92
93# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
94 /*
95 * Hide the instruction fetch trap indicator for now.
96 */
97 /** @todo NXE will change this and we must fix NXE in the switcher too! */
98 if (uErr & X86_TRAP_PF_ID)
99 {
100 uErr &= ~X86_TRAP_PF_ID;
101 TRPMSetErrorCode(pVCpu, uErr);
102 }
103# endif
104
105 /*
106 * Get PDs.
107 */
108 int rc;
109# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
110# if PGM_GST_TYPE == PGM_TYPE_32BIT
111 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
112 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
113
114# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
115
116# if PGM_GST_TYPE == PGM_TYPE_PAE
117 unsigned iPDSrc = 0; /* initialized to shut up gcc */
118 X86PDPE PdpeSrc;
119 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
120
121# elif PGM_GST_TYPE == PGM_TYPE_AMD64
122 unsigned iPDSrc = 0; /* initialized to shut up gcc */
123 PX86PML4E pPml4eSrc;
124 X86PDPE PdpeSrc;
125 PGSTPD pPDSrc;
126
127 pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
128 Assert(pPml4eSrc);
129# endif
130
131 /* Quick check for a valid guest trap. (PAE & AMD64) */
132 if (!pPDSrc)
133 {
134# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
135 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
136# else
137 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
138# endif
139 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
140 TRPMSetErrorCode(pVCpu, uErr);
141 return VINF_EM_RAW_GUEST_TRAP;
142 }
143# endif
144
145# else /* !PGM_WITH_PAGING */
146 PGSTPD pPDSrc = NULL;
147 const unsigned iPDSrc = 0;
148# endif /* !PGM_WITH_PAGING */
149
150 /* First check for a genuine guest page fault. */
151# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
153 rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, &pPDSrc->a[iPDSrc], pvFault);
154 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
155 if (rc == VINF_EM_RAW_GUEST_TRAP)
156 {
157 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
158 = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
159 return rc;
160 }
161# endif /* PGM_WITH_PAGING */
162
163 /* Take the big lock now. */
164 *pfLockTaken = true;
165 pgmLock(pVM);
166
167 /* Fetch the guest PDE */
168# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
169 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
170# else
171 GSTPDE PdeSrc;
172 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
173 PdeSrc.n.u1Present = 1;
174 PdeSrc.n.u1Write = 1;
175 PdeSrc.n.u1Accessed = 1;
176 PdeSrc.n.u1User = 1;
177# endif
178
179# if PGM_SHW_TYPE == PGM_TYPE_32BIT
180 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
181 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
182
183# elif PGM_SHW_TYPE == PGM_TYPE_PAE
184 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
185
186 PX86PDPAE pPDDst;
187# if PGM_GST_TYPE != PGM_TYPE_PAE
188 X86PDPE PdpeSrc;
189
190 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
191 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
192# endif
193 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst);
194 if (rc != VINF_SUCCESS)
195 {
196 AssertRC(rc);
197 return rc;
198 }
199 Assert(pPDDst);
200
201# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
202 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
203 PX86PDPAE pPDDst;
204# if PGM_GST_TYPE == PGM_TYPE_PROT
205 /* AMD-V nested paging */
206 X86PML4E Pml4eSrc;
207 X86PDPE PdpeSrc;
208 PX86PML4E pPml4eSrc = &Pml4eSrc;
209
210 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
211 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
212 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
213# endif
214
215 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
216 if (rc != VINF_SUCCESS)
217 {
218 AssertRC(rc);
219 return rc;
220 }
221 Assert(pPDDst);
222
223# elif PGM_SHW_TYPE == PGM_TYPE_EPT
224 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
225 PEPTPD pPDDst;
226
227 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
228 if (rc != VINF_SUCCESS)
229 {
230 AssertRC(rc);
231 return rc;
232 }
233 Assert(pPDDst);
234# endif
235
236# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
237 /* Dirty page handling. */
238 if (uErr & X86_TRAP_PF_RW) /* write fault? */
239 {
240 /*
241 * If we successfully correct the write protection fault due to dirty bit
242 * tracking, then return immediately.
243 */
244 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
245 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
246 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
247 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
248 {
249 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
250 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
251 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
252 return VINF_SUCCESS;
253 }
254 }
255
256# if 0 /* rarely useful; leave for debugging. */
257 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
258# endif
259# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
260
261 /*
262 * A common case is the not-present error caused by lazy page table syncing.
263 *
264 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
265 * so we can safely assume that the shadow PT is present when calling SyncPage later.
266 *
267 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
268 * of mapping conflict and defer to SyncCR3 in R3.
269 * (Again, we do NOT support access handlers for non-present guest pages.)
270 *
271 */
272 Assert(PdeSrc.n.u1Present);
273 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
274 && !pPDDst->a[iPDDst].n.u1Present
275 )
276 {
277 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; });
278 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
279 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
280 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, pvFault);
281 if (RT_SUCCESS(rc))
282 {
283 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
284 return rc;
285 }
286 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
287 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
288 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
289 return VINF_PGM_SYNC_CR3;
290 }
291
292# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
293 /*
294 * Check if this address is within any of our mappings.
295 *
296 * This is *very* fast and it's gonna save us a bit of effort below and prevent
297 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
298 * (BTW, it's impossible to have physical access handlers in a mapping.)
299 */
300 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
301 {
302 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
303 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
304 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
305 {
306 if (pvFault < pMapping->GCPtr)
307 break;
308 if (pvFault - pMapping->GCPtr < pMapping->cb)
309 {
310 /*
311 * The first thing we check is if we've got an undetected conflict.
312 */
313 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
314 {
315 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
316 while (iPT-- > 0)
317 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
318 {
319 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts);
320 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
321 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
322 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
323 return VINF_PGM_SYNC_CR3;
324 }
325 }
326
327 /*
328 * Check if the fault address is in a virtual page access handler range.
329 */
330 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
331 if ( pCur
332 && pvFault - pCur->Core.Key < pCur->cb
333 && uErr & X86_TRAP_PF_RW)
334 {
335# ifdef IN_RC
336 STAM_PROFILE_START(&pCur->Stat, h);
337 pgmUnlock(pVM);
338 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
339 pgmLock(pVM);
340 STAM_PROFILE_STOP(&pCur->Stat, h);
341# else
342 AssertFailed();
343 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
344# endif
345 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping);
346 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
347 return rc;
348 }
349
350 /*
351 * Pretend we're not here and let the guest handle the trap.
352 */
353 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
354 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping);
355 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
356 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
357 return VINF_EM_RAW_GUEST_TRAP;
358 }
359 }
360 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
361 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
362# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
363
364 /*
365 * Check if this fault address is flagged for special treatment,
366 * which means we'll have to figure out the physical address and
367 * check flags associated with it.
368 *
369 * ASSUME that we can limit any special access handling to pages
370 * in page tables which the guest believes to be present.
371 */
372 Assert(PdeSrc.n.u1Present);
373 {
374 RTGCPHYS GCPhys = NIL_RTGCPHYS;
375
376# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
377 if ( PdeSrc.b.u1Size
378# if PGM_GST_TYPE == PGM_TYPE_32BIT
379 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
380# endif
381 )
382 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
383 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
384 else
385 {
386 PGSTPT pPTSrc;
387 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
388 if (RT_SUCCESS(rc))
389 {
390 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
391 if (pPTSrc->a[iPTESrc].n.u1Present)
392 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
393 }
394 }
395# else
396 /* No paging so the fault address is the physical address */
397 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
398# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
399
400 /*
401 * If we have a GC address we'll check if it has any flags set.
402 */
403 if (GCPhys != NIL_RTGCPHYS)
404 {
405 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
406
407 PPGMPAGE pPage;
408 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
409 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
410 {
411 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
412 {
413 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
414 {
415 /*
416 * Physical page access handler.
417 */
418 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
419 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
420 if (pCur)
421 {
422# ifdef PGM_SYNC_N_PAGES
423 /*
424 * If the region is write protected and we got a page not present fault, then sync
425 * the pages. If the fault was caused by a read, then restart the instruction.
426 * In case of write access continue to the GC write handler.
427 *
428 * ASSUMES that there is only one handler per page or that they have similar write properties.
429 */
430 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
431 && !(uErr & X86_TRAP_PF_P))
432 {
433 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
434 if ( RT_FAILURE(rc)
435 || !(uErr & X86_TRAP_PF_RW)
436 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
437 {
438 AssertRC(rc);
439 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
440 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
441 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
442 return rc;
443 }
444 }
445# endif
446
447 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
448 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
449 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
450
451# if defined(IN_RC) || defined(IN_RING0)
452 if (pCur->CTX_SUFF(pfnHandler))
453 {
454 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
455# ifdef IN_RING0
456 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
457# else
458 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
459# endif
460 bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
461 void *pvUser = pCur->CTX_SUFF(pvUser);
462
463 STAM_PROFILE_START(&pCur->Stat, h);
464 if (fLeaveLock)
465 pgmUnlock(pVM); /* @todo: Not entirely safe. */
466
467 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
468 if (fLeaveLock)
469 pgmLock(pVM);
470# ifdef VBOX_WITH_STATISTICS
471 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
472 if (pCur)
473 STAM_PROFILE_STOP(&pCur->Stat, h);
474# else
475 pCur = NULL; /* might be invalid by now. */
476# endif
477
478 }
479 else
480# endif
481 rc = VINF_EM_RAW_EMULATE_INSTR;
482
483 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical);
484 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
485 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; });
486 return rc;
487 }
488 }
489# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
490 else
491 {
492# ifdef PGM_SYNC_N_PAGES
493 /*
494 * If the region is write protected and we got a page not present fault, then sync
495 * the pages. If the fault was caused by a read, then restart the instruction.
496 * In case of write access continue to the GC write handler.
497 */
498 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
499 && !(uErr & X86_TRAP_PF_P))
500 {
501 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
502 if ( RT_FAILURE(rc)
503 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
504 || !(uErr & X86_TRAP_PF_RW))
505 {
506 AssertRC(rc);
507 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
508 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
509 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
510 return rc;
511 }
512 }
513# endif
514 /*
515 * Ok, it's an virtual page access handler.
516 *
517 * Since it's faster to search by address, we'll do that first
518 * and then retry by GCPhys if that fails.
519 */
520 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
521 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
522 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
523 */
524 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
525 if (pCur)
526 {
527 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
528 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
529 || !(uErr & X86_TRAP_PF_P)
530 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
531 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
532
533 if ( pvFault - pCur->Core.Key < pCur->cb
534 && ( uErr & X86_TRAP_PF_RW
535 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
536 {
537# ifdef IN_RC
538 STAM_PROFILE_START(&pCur->Stat, h);
539 pgmUnlock(pVM);
540 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
541 pgmLock(pVM);
542 STAM_PROFILE_STOP(&pCur->Stat, h);
543# else
544 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
545# endif
546 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual);
547 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
548 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
549 return rc;
550 }
551 /* Unhandled part of a monitored page */
552 }
553 else
554 {
555 /* Check by physical address. */
556 unsigned iPage;
557 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
558 &pCur, &iPage);
559 Assert(RT_SUCCESS(rc) || !pCur);
560 if ( pCur
561 && ( uErr & X86_TRAP_PF_RW
562 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
563 {
564 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
565# ifdef IN_RC
566 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
567 Assert(off < pCur->cb);
568 STAM_PROFILE_START(&pCur->Stat, h);
569 pgmUnlock(pVM);
570 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
571 pgmLock(pVM);
572 STAM_PROFILE_STOP(&pCur->Stat, h);
573# else
574 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
575# endif
576 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
577 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
578 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
579 return rc;
580 }
581 }
582 }
583# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
584
585 /*
586 * There is a handled area of the page, but this fault doesn't belong to it.
587 * We must emulate the instruction.
588 *
589 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
590 * we first check if this was a page-not-present fault for a page with only
591 * write access handlers. Restart the instruction if it wasn't a write access.
592 */
593 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled);
594
595 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
596 && !(uErr & X86_TRAP_PF_P))
597 {
598 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
599 if ( RT_FAILURE(rc)
600 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
601 || !(uErr & X86_TRAP_PF_RW))
602 {
603 AssertRC(rc);
604 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
605 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
606 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
607 return rc;
608 }
609 }
610
611 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
612 * It's writing to an unhandled part of the LDT page several million times.
613 */
614 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
615 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
616 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
617 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
618 return rc;
619 } /* if any kind of handler */
620
621# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
622 if (uErr & X86_TRAP_PF_P)
623 {
624 /*
625 * The page isn't marked, but it might still be monitored by a virtual page access handler.
626 * (ASSUMES no temporary disabling of virtual handlers.)
627 */
628 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
629 * we should correct both the shadow page table and physical memory flags, and not only check for
630 * accesses within the handler region but for access to pages with virtual handlers. */
631 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
632 if (pCur)
633 {
634 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
635 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
636 || !(uErr & X86_TRAP_PF_P)
637 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
638 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
639
640 if ( pvFault - pCur->Core.Key < pCur->cb
641 && ( uErr & X86_TRAP_PF_RW
642 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
643 {
644# ifdef IN_RC
645 STAM_PROFILE_START(&pCur->Stat, h);
646 pgmUnlock(pVM);
647 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
648 pgmLock(pVM);
649 STAM_PROFILE_STOP(&pCur->Stat, h);
650# else
651 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
652# endif
653 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
654 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
655 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
656 return rc;
657 }
658 }
659 }
660# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
661 }
662 else
663 {
664 /*
665 * When the guest accesses invalid physical memory (e.g. probing
666 * of RAM or accessing a remapped MMIO range), then we'll fall
667 * back to the recompiler to emulate the instruction.
668 */
669 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
670 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid);
671 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
672 return VINF_EM_RAW_EMULATE_INSTR;
673 }
674
675 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
676
677# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
678 /*
679 * We are here only if page is present in Guest page tables and
680 * trap is not handled by our handlers.
681 *
682 * Check it for page out-of-sync situation.
683 */
684 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
685
686 if (!(uErr & X86_TRAP_PF_P))
687 {
688 /*
689 * Page is not present in our page tables.
690 * Try to sync it!
691 * BTW, fPageShw is invalid in this branch!
692 */
693 if (uErr & X86_TRAP_PF_US)
694 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
695 else /* supervisor */
696 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
697
698# if defined(LOG_ENABLED) && !defined(IN_RING0)
699 RTGCPHYS GCPhys2;
700 uint64_t fPageGst2;
701 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
702 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
703 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
704# endif /* LOG_ENABLED */
705
706# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
707 if (CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
708 {
709 uint64_t fPageGst;
710 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
711 if ( RT_SUCCESS(rc)
712 && !(fPageGst & X86_PTE_US))
713 {
714 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
715 if ( pvFault == (RTGCPTR)pRegFrame->eip
716 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
717# ifdef CSAM_DETECT_NEW_CODE_PAGES
718 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
719 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
720# endif /* CSAM_DETECT_NEW_CODE_PAGES */
721 )
722 {
723 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
724 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
725 if (rc != VINF_SUCCESS)
726 {
727 /*
728 * CSAM needs to perform a job in ring 3.
729 *
730 * Sync the page before going to the host context; otherwise we'll end up in a loop if
731 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
732 */
733 LogFlow(("CSAM ring 3 job\n"));
734 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
735 AssertRC(rc2);
736
737 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
738 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; });
739 return rc;
740 }
741 }
742# ifdef CSAM_DETECT_NEW_CODE_PAGES
743 else if ( uErr == X86_TRAP_PF_RW
744 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
745 && pRegFrame->ecx < 0x10000)
746 {
747 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
748 * to detect loading of new code pages.
749 */
750
751 /*
752 * Decode the instruction.
753 */
754 RTGCPTR PC;
755 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
756 if (rc == VINF_SUCCESS)
757 {
758 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
759 uint32_t cbOp;
760 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
761
762 /* For now we'll restrict this to rep movsw/d instructions */
763 if ( rc == VINF_SUCCESS
764 && pDis->pCurInstr->opcode == OP_MOVSWD
765 && (pDis->prefix & PREFIX_REP))
766 {
767 CSAMMarkPossibleCodePage(pVM, pvFault);
768 }
769 }
770 }
771# endif /* CSAM_DETECT_NEW_CODE_PAGES */
772
773 /*
774 * Mark this page as safe.
775 */
776 /** @todo not correct for pages that contain both code and data!! */
777 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
778 CSAMMarkPage(pVM, pvFault, true);
779 }
780 }
781# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
782 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
783 if (RT_SUCCESS(rc))
784 {
785 /* The page was successfully synced, return to the guest. */
786 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
787 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; });
788 return VINF_SUCCESS;
789 }
790 }
791 else /* uErr & X86_TRAP_PF_P: */
792 {
793 /*
794 * Write protected pages are make writable when the guest makes the first
795 * write to it. This happens for pages that are shared, write monitored
796 * and not yet allocated.
797 *
798 * Also, a side effect of not flushing global PDEs are out of sync pages due
799 * to physical monitored regions, that are no longer valid.
800 * Assume for now it only applies to the read/write flag.
801 */
802 if (RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW))
803 {
804 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
805 {
806 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n",
807 GCPhys, pPage, pvFault, uErr));
808 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
809 if (rc != VINF_SUCCESS)
810 {
811 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
812 return rc;
813 }
814 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
815 return VINF_EM_NO_MEMORY;
816 }
817
818# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
819 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
820 if ( CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
821 && ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG))
822 {
823 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
824 uint64_t fPageGst;
825 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
826 if ( RT_SUCCESS(rc)
827 && !(fPageGst & X86_PTE_RW))
828 {
829 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
830 if (RT_SUCCESS(rc))
831 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ);
832 else
833 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3);
834 return rc;
835 }
836 AssertMsg(RT_SUCCESS(rc), ("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
837 }
838# endif
839 /// @todo count the above case; else
840 if (uErr & X86_TRAP_PF_US)
841 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
842 else /* supervisor */
843 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
844
845 /*
846 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
847 * page is not present, which is not true in this case.
848 */
849 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
850 if (RT_SUCCESS(rc))
851 {
852 /*
853 * Page was successfully synced, return to guest.
854 * First invalidate the page as it might be in the TLB.
855 */
856# if PGM_SHW_TYPE == PGM_TYPE_EPT
857 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
858# else
859 PGM_INVL_PG(pVCpu, pvFault);
860# endif
861# ifdef VBOX_STRICT
862 RTGCPHYS GCPhys2;
863 uint64_t fPageGst;
864 if (!HWACCMIsNestedPagingActive(pVM))
865 {
866 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
867 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%d fPageGst=%RX64\n"));
868 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
869 }
870 uint64_t fPageShw;
871 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
872 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
873# endif /* VBOX_STRICT */
874 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
875 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
876 return VINF_SUCCESS;
877 }
878 }
879
880# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
881# ifdef VBOX_STRICT
882 /*
883 * Check for VMM page flags vs. Guest page flags consistency.
884 * Currently only for debug purposes.
885 */
886 if (RT_SUCCESS(rc))
887 {
888 /* Get guest page flags. */
889 uint64_t fPageGst;
890 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
891 if (RT_SUCCESS(rc))
892 {
893 uint64_t fPageShw;
894 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
895
896 /*
897 * Compare page flags.
898 * Note: we have AVL, A, D bits desynched.
899 */
900 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
901 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
902 }
903 else
904 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
905 }
906 else
907 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
908# endif /* VBOX_STRICT */
909# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
910 }
911 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
912# endif /* PGM_OUT_OF_SYNC_IN_GC */
913 }
914 else /* GCPhys == NIL_RTGCPHYS */
915 {
916 /*
917 * Page not present in Guest OS or invalid page table address.
918 * This is potential virtual page access handler food.
919 *
920 * For the present we'll say that our access handlers don't
921 * work for this case - we've already discarded the page table
922 * not present case which is identical to this.
923 *
924 * When we perchance find we need this, we will probably have AVL
925 * trees (offset based) to operate on and we can measure their speed
926 * agains mapping a page table and probably rearrange this handling
927 * a bit. (Like, searching virtual ranges before checking the
928 * physical address.)
929 */
930 }
931 }
932
933# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
934 /*
935 * Conclusion, this is a guest trap.
936 */
937 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
938 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh);
939 return VINF_EM_RAW_GUEST_TRAP;
940# else
941 /* present, but not a monitored page; perhaps the guest is probing physical memory */
942 return VINF_EM_RAW_EMULATE_INSTR;
943# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
944
945
946# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
947
948 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
949 return VERR_INTERNAL_ERROR;
950# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
951}
952#endif /* !IN_RING3 */
953
954
955/**
956 * Emulation of the invlpg instruction.
957 *
958 *
959 * @returns VBox status code.
960 *
961 * @param pVCpu The VMCPU handle.
962 * @param GCPtrPage Page to invalidate.
963 *
964 * @remark ASSUMES that the guest is updating before invalidating. This order
965 * isn't required by the CPU, so this is speculative and could cause
966 * trouble.
967 * @remark No TLB shootdown is done on any other VCPU as we assume that
968 * invlpg emulation is the *only* reason for calling this function.
969 * (The guest has to shoot down TLB entries on other CPUs itself)
970 * Currently true, but keep in mind!
971 *
972 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
973 */
974PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
975{
976#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
977 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
978 && PGM_SHW_TYPE != PGM_TYPE_EPT
979 int rc;
980 PVM pVM = pVCpu->CTX_SUFF(pVM);
981 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
982
983 Assert(PGMIsLockOwner(pVM));
984
985 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
986
987# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
988 if (pPool->cDirtyPages)
989 pgmPoolResetDirtyPages(pVM);
990# endif
991
992 /*
993 * Get the shadow PD entry and skip out if this PD isn't present.
994 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
995 */
996# if PGM_SHW_TYPE == PGM_TYPE_32BIT
997 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
998 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
999
1000 /* Fetch the pgm pool shadow descriptor. */
1001 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1002 Assert(pShwPde);
1003
1004# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1005 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1006 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
1007
1008 /* If the shadow PDPE isn't present, then skip the invalidate. */
1009 if (!pPdptDst->a[iPdpt].n.u1Present)
1010 {
1011 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1012 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1013 return VINF_SUCCESS;
1014 }
1015
1016 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1017 PPGMPOOLPAGE pShwPde = NULL;
1018 PX86PDPAE pPDDst;
1019
1020 /* Fetch the pgm pool shadow descriptor. */
1021 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1022 AssertRCSuccessReturn(rc, rc);
1023 Assert(pShwPde);
1024
1025 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1026 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1027
1028# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1029 /* PML4 */
1030 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1031 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1032 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1033 PX86PDPAE pPDDst;
1034 PX86PDPT pPdptDst;
1035 PX86PML4E pPml4eDst;
1036 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1037 if (rc != VINF_SUCCESS)
1038 {
1039 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1040 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1041 return VINF_SUCCESS;
1042 }
1043 Assert(pPDDst);
1044
1045 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1046 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1047
1048 if (!pPdpeDst->n.u1Present)
1049 {
1050 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1051 return VINF_SUCCESS;
1052 }
1053
1054 /* Fetch the pgm pool shadow descriptor. */
1055 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1056 Assert(pShwPde);
1057
1058# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1059
1060 const SHWPDE PdeDst = *pPdeDst;
1061 if (!PdeDst.n.u1Present)
1062 {
1063 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1064 return VINF_SUCCESS;
1065 }
1066
1067# if defined(IN_RC)
1068 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1069 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1070# endif
1071
1072 /*
1073 * Get the guest PD entry and calc big page.
1074 */
1075# if PGM_GST_TYPE == PGM_TYPE_32BIT
1076 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
1077 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1078 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1079# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1080 unsigned iPDSrc = 0;
1081# if PGM_GST_TYPE == PGM_TYPE_PAE
1082 X86PDPE PdpeSrc;
1083 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1084# else /* AMD64 */
1085 PX86PML4E pPml4eSrc;
1086 X86PDPE PdpeSrc;
1087 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1088# endif
1089 GSTPDE PdeSrc;
1090
1091 if (pPDSrc)
1092 PdeSrc = pPDSrc->a[iPDSrc];
1093 else
1094 PdeSrc.u = 0;
1095# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1096
1097# if PGM_GST_TYPE == PGM_TYPE_32BIT
1098 const bool fIsBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1099# else
1100 const bool fIsBigPage = PdeSrc.b.u1Size;
1101# endif
1102
1103# ifdef IN_RING3
1104 /*
1105 * If a CR3 Sync is pending we may ignore the invalidate page operation
1106 * depending on the kind of sync and if it's a global page or not.
1107 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1108 */
1109# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1110 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1111 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1112 && fIsBigPage
1113 && PdeSrc.b.u1Global
1114 )
1115 )
1116# else
1117 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1118# endif
1119 {
1120 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1121 return VINF_SUCCESS;
1122 }
1123# endif /* IN_RING3 */
1124
1125 /*
1126 * Deal with the Guest PDE.
1127 */
1128 rc = VINF_SUCCESS;
1129 if (PdeSrc.n.u1Present)
1130 {
1131 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1132 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1133# ifndef PGM_WITHOUT_MAPPING
1134 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1135 {
1136 /*
1137 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1138 */
1139 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1140 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1141 pgmLock(pVM);
1142 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1143 pgmUnlock(pVM);
1144 }
1145 else
1146# endif /* !PGM_WITHOUT_MAPPING */
1147 if (!fIsBigPage)
1148 {
1149 /*
1150 * 4KB - page.
1151 */
1152 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1153 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1154
1155# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1156 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1157 if (pShwPage->cModifications)
1158 pShwPage->cModifications = 1;
1159# endif
1160
1161# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1162 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1163 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1164# endif
1165 if (pShwPage->GCPhys == GCPhys)
1166 {
1167# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1168 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1169 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1170 if (pPT->a[iPTEDst].n.u1Present)
1171 {
1172 /* This is very unlikely with caching/monitoring enabled. */
1173 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1174 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1175 }
1176# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1177 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1178 if (RT_SUCCESS(rc))
1179 rc = VINF_SUCCESS;
1180# endif
1181 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1182 PGM_INVL_PG(pVCpu, GCPtrPage);
1183 }
1184 else
1185 {
1186 /*
1187 * The page table address changed.
1188 */
1189 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1190 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1191 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1192 ASMAtomicWriteSize(pPdeDst, 0);
1193 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1194 PGM_INVL_VCPU_TLBS(pVCpu);
1195 }
1196 }
1197 else
1198 {
1199 /*
1200 * 2/4MB - page.
1201 */
1202 /* Before freeing the page, check if anything really changed. */
1203 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1204 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1205# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1206 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1207 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1208# endif
1209 if ( pShwPage->GCPhys == GCPhys
1210 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1211 {
1212 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1213 /** @todo PAT */
1214 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1215 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1216 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1217 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1218 {
1219 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1220 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1221# if defined(IN_RC)
1222 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1223 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1224# endif
1225 return VINF_SUCCESS;
1226 }
1227 }
1228
1229 /*
1230 * Ok, the page table is present and it's been changed in the guest.
1231 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1232 * We could do this for some flushes in GC too, but we need an algorithm for
1233 * deciding which 4MB pages containing code likely to be executed very soon.
1234 */
1235 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1236 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1237 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1238 ASMAtomicWriteSize(pPdeDst, 0);
1239 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1240 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1241 }
1242 }
1243 else
1244 {
1245 /*
1246 * Page directory is not present, mark shadow PDE not present.
1247 */
1248 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1249 {
1250 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1251 ASMAtomicWriteSize(pPdeDst, 0);
1252 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1253 PGM_INVL_PG(pVCpu, GCPtrPage);
1254 }
1255 else
1256 {
1257 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1258 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1259 }
1260 }
1261# if defined(IN_RC)
1262 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1263 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1264# endif
1265 return rc;
1266
1267#else /* guest real and protected mode */
1268 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1269 return VINF_SUCCESS;
1270#endif
1271}
1272
1273
1274/**
1275 * Update the tracking of shadowed pages.
1276 *
1277 * @param pVCpu The VMCPU handle.
1278 * @param pShwPage The shadow page.
1279 * @param HCPhys The physical page we is being dereferenced.
1280 */
1281DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1282{
1283 PVM pVM = pVCpu->CTX_SUFF(pVM);
1284
1285 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1286 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1287
1288 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1289 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1290 * 2. write protect all shadowed pages. I.e. implement caching.
1291 */
1292 /*
1293 * Find the guest address.
1294 */
1295 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1296 pRam;
1297 pRam = pRam->CTX_SUFF(pNext))
1298 {
1299 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1300 while (iPage-- > 0)
1301 {
1302 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1303 {
1304 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1305 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1306 pShwPage->cPresent--;
1307 pPool->cPresent--;
1308 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1309 return;
1310 }
1311 }
1312 }
1313
1314 for (;;)
1315 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1316}
1317
1318
1319/**
1320 * Update the tracking of shadowed pages.
1321 *
1322 * @param pVCpu The VMCPU handle.
1323 * @param pShwPage The shadow page.
1324 * @param u16 The top 16-bit of the pPage->HCPhys.
1325 * @param pPage Pointer to the guest page. this will be modified.
1326 * @param iPTDst The index into the shadow table.
1327 */
1328DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1329{
1330 PVM pVM = pVCpu->CTX_SUFF(pVM);
1331 /*
1332 * Just deal with the simple first time here.
1333 */
1334 if (!u16)
1335 {
1336 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1337 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1338 }
1339 else
1340 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1341
1342 /* write back */
1343 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1344 PGM_PAGE_SET_TRACKING(pPage, u16);
1345
1346 /* update statistics. */
1347 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1348 pShwPage->cPresent++;
1349 if (pShwPage->iFirstPresent > iPTDst)
1350 pShwPage->iFirstPresent = iPTDst;
1351}
1352
1353
1354/**
1355 * Creates a 4K shadow page for a guest page.
1356 *
1357 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1358 * physical address. The PdeSrc argument only the flags are used. No page structured
1359 * will be mapped in this function.
1360 *
1361 * @param pVCpu The VMCPU handle.
1362 * @param pPteDst Destination page table entry.
1363 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1364 * Can safely assume that only the flags are being used.
1365 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1366 * @param pShwPage Pointer to the shadow page.
1367 * @param iPTDst The index into the shadow table.
1368 *
1369 * @remark Not used for 2/4MB pages!
1370 */
1371DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1372{
1373 if (PteSrc.n.u1Present)
1374 {
1375 PVM pVM = pVCpu->CTX_SUFF(pVM);
1376
1377# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1378 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1379 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1380 if (pShwPage->fDirty)
1381 {
1382 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1383 PX86PTPAE pGstPT;
1384
1385 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1386 pGstPT->a[iPTDst].u = PteSrc.u;
1387 }
1388# endif
1389 /*
1390 * Find the ram range.
1391 */
1392 PPGMPAGE pPage;
1393 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1394 if (RT_SUCCESS(rc))
1395 {
1396#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1397 /* Try make the page writable if necessary. */
1398 if ( PteSrc.n.u1Write
1399 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1400# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1401 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1402# endif
1403 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1404 {
1405 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1406 AssertRC(rc);
1407 }
1408#endif
1409
1410 /** @todo investiage PWT, PCD and PAT. */
1411 /*
1412 * Make page table entry.
1413 */
1414 SHWPTE PteDst;
1415 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1416 {
1417 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1418 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1419 {
1420#if PGM_SHW_TYPE == PGM_TYPE_EPT
1421 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1422 PteDst.n.u1Present = 1;
1423 PteDst.n.u1Execute = 1;
1424 PteDst.n.u1IgnorePAT = 1;
1425 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1426 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1427#else
1428 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1429 | PGM_PAGE_GET_HCPHYS(pPage);
1430#endif
1431 }
1432 else
1433 {
1434 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1435 PteDst.u = 0;
1436 }
1437 /** @todo count these two kinds. */
1438 }
1439 else
1440 {
1441#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1442 /*
1443 * If the page or page directory entry is not marked accessed,
1444 * we mark the page not present.
1445 */
1446 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1447 {
1448 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1449 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1450 PteDst.u = 0;
1451 }
1452 else
1453 /*
1454 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1455 * when the page is modified.
1456 */
1457 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1458 {
1459 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1460 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1461 | PGM_PAGE_GET_HCPHYS(pPage)
1462 | PGM_PTFLAGS_TRACK_DIRTY;
1463 }
1464 else
1465#endif
1466 {
1467 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1468#if PGM_SHW_TYPE == PGM_TYPE_EPT
1469 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1470 PteDst.n.u1Present = 1;
1471 PteDst.n.u1Write = 1;
1472 PteDst.n.u1Execute = 1;
1473 PteDst.n.u1IgnorePAT = 1;
1474 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1475 /* PteDst.n.u1Size = 0 */
1476#else
1477 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1478 | PGM_PAGE_GET_HCPHYS(pPage);
1479#endif
1480 }
1481 }
1482
1483 /*
1484 * Make sure only allocated pages are mapped writable.
1485 */
1486 if ( PteDst.n.u1Write
1487 && PteDst.n.u1Present
1488 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1489 {
1490 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1491 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1492 }
1493
1494 /*
1495 * Keep user track up to date.
1496 */
1497 if (PteDst.n.u1Present)
1498 {
1499 if (!pPteDst->n.u1Present)
1500 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1501 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1502 {
1503 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1504 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1505 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1506 }
1507 }
1508 else if (pPteDst->n.u1Present)
1509 {
1510 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1511 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1512 }
1513
1514 /*
1515 * Update statistics and commit the entry.
1516 */
1517#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1518 if (!PteSrc.n.u1Global)
1519 pShwPage->fSeenNonGlobal = true;
1520#endif
1521 ASMAtomicWriteSize(pPteDst, PteDst.u);
1522 }
1523 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1524 /** @todo count these. */
1525 }
1526 else
1527 {
1528 /*
1529 * Page not-present.
1530 */
1531 Log2(("SyncPageWorker: page not present in Pte\n"));
1532 /* Keep user track up to date. */
1533 if (pPteDst->n.u1Present)
1534 {
1535 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1536 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1537 }
1538 ASMAtomicWriteSize(pPteDst, 0);
1539 /** @todo count these. */
1540 }
1541}
1542
1543
1544/**
1545 * Syncs a guest OS page.
1546 *
1547 * There are no conflicts at this point, neither is there any need for
1548 * page table allocations.
1549 *
1550 * @returns VBox status code.
1551 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1552 * @param pVCpu The VMCPU handle.
1553 * @param PdeSrc Page directory entry of the guest.
1554 * @param GCPtrPage Guest context page address.
1555 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1556 * @param uErr Fault error (X86_TRAP_PF_*).
1557 */
1558PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1559{
1560 PVM pVM = pVCpu->CTX_SUFF(pVM);
1561 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1562 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1563
1564 Assert(PGMIsLockOwner(pVM));
1565
1566#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1567 || PGM_GST_TYPE == PGM_TYPE_PAE \
1568 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1569 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1570 && PGM_SHW_TYPE != PGM_TYPE_EPT
1571
1572 /*
1573 * Assert preconditions.
1574 */
1575 Assert(PdeSrc.n.u1Present);
1576 Assert(cPages);
1577# if 0 /* rarely useful; leave for debugging. */
1578 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1579# endif
1580
1581 /*
1582 * Get the shadow PDE, find the shadow page table in the pool.
1583 */
1584# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1585 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1586 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1587
1588 /* Fetch the pgm pool shadow descriptor. */
1589 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1590 Assert(pShwPde);
1591
1592# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1593 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1594 PPGMPOOLPAGE pShwPde = NULL;
1595 PX86PDPAE pPDDst;
1596
1597 /* Fetch the pgm pool shadow descriptor. */
1598 int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1599 AssertRCSuccessReturn(rc2, rc2);
1600 Assert(pShwPde);
1601
1602 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1603 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1604
1605# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1606 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1607 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1608 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1609 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1610
1611 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1612 AssertRCSuccessReturn(rc2, rc2);
1613 Assert(pPDDst && pPdptDst);
1614 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1615# endif
1616 SHWPDE PdeDst = *pPdeDst;
1617
1618 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1619 if (!PdeDst.n.u1Present)
1620 {
1621 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1622 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", GCPtrPage));
1623 return VINF_SUCCESS; /* force the instruction to be executed again. */
1624 }
1625
1626 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1627 Assert(pShwPage);
1628
1629# if PGM_GST_TYPE == PGM_TYPE_AMD64
1630 /* Fetch the pgm pool shadow descriptor. */
1631 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1632 Assert(pShwPde);
1633# endif
1634
1635# if defined(IN_RC)
1636 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1637 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1638# endif
1639
1640 /*
1641 * Check that the page is present and that the shadow PDE isn't out of sync.
1642 */
1643# if PGM_GST_TYPE == PGM_TYPE_32BIT
1644 const bool fBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1645# else
1646 const bool fBigPage = PdeSrc.b.u1Size;
1647# endif
1648 RTGCPHYS GCPhys;
1649 if (!fBigPage)
1650 {
1651 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1652# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1653 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1654 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1655# endif
1656 }
1657 else
1658 {
1659 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1660# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1661 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1662 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1663# endif
1664 }
1665 if ( pShwPage->GCPhys == GCPhys
1666 && PdeSrc.n.u1Present
1667 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1668 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1669# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1670 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !CPUMIsGuestNXEnabled(pVCpu))
1671# endif
1672 )
1673 {
1674 /*
1675 * Check that the PDE is marked accessed already.
1676 * Since we set the accessed bit *before* getting here on a #PF, this
1677 * check is only meant for dealing with non-#PF'ing paths.
1678 */
1679 if (PdeSrc.n.u1Accessed)
1680 {
1681 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1682 if (!fBigPage)
1683 {
1684 /*
1685 * 4KB Page - Map the guest page table.
1686 */
1687 PGSTPT pPTSrc;
1688 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1689 if (RT_SUCCESS(rc))
1690 {
1691# ifdef PGM_SYNC_N_PAGES
1692 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1693 if ( cPages > 1
1694 && !(uErr & X86_TRAP_PF_P)
1695 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1696 {
1697 /*
1698 * This code path is currently only taken when the caller is PGMTrap0eHandler
1699 * for non-present pages!
1700 *
1701 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1702 * deal with locality.
1703 */
1704 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1705# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1706 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1707 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1708# else
1709 const unsigned offPTSrc = 0;
1710# endif
1711 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1712 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1713 iPTDst = 0;
1714 else
1715 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1716 for (; iPTDst < iPTDstEnd; iPTDst++)
1717 {
1718 if (!pPTDst->a[iPTDst].n.u1Present)
1719 {
1720 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1721 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1722 NOREF(GCPtrCurPage);
1723#ifndef IN_RING0
1724 /*
1725 * Assuming kernel code will be marked as supervisor - and not as user level
1726 * and executed using a conforming code selector - And marked as readonly.
1727 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1728 */
1729 PPGMPAGE pPage;
1730 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1731 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1732 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1733 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1734 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1735 )
1736#endif /* else: CSAM not active */
1737 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1738 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1739 GCPtrCurPage, PteSrc.n.u1Present,
1740 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1741 PteSrc.n.u1User & PdeSrc.n.u1User,
1742 (uint64_t)PteSrc.u,
1743 (uint64_t)pPTDst->a[iPTDst].u,
1744 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1745 }
1746 }
1747 }
1748 else
1749# endif /* PGM_SYNC_N_PAGES */
1750 {
1751 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1752 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1753 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1754 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1755 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1756 GCPtrPage, PteSrc.n.u1Present,
1757 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1758 PteSrc.n.u1User & PdeSrc.n.u1User,
1759 (uint64_t)PteSrc.u,
1760 (uint64_t)pPTDst->a[iPTDst].u,
1761 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1762 }
1763 }
1764 else /* MMIO or invalid page: emulated in #PF handler. */
1765 {
1766 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1767 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1768 }
1769 }
1770 else
1771 {
1772 /*
1773 * 4/2MB page - lazy syncing shadow 4K pages.
1774 * (There are many causes of getting here, it's no longer only CSAM.)
1775 */
1776 /* Calculate the GC physical address of this 4KB shadow page. */
1777 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1778 /* Find ram range. */
1779 PPGMPAGE pPage;
1780 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1781 if (RT_SUCCESS(rc))
1782 {
1783# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1784 /* Try make the page writable if necessary. */
1785 if ( PdeSrc.n.u1Write
1786 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1787# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1788 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1789# endif
1790 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1791 {
1792 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
1793 AssertRC(rc);
1794 }
1795# endif
1796
1797 /*
1798 * Make shadow PTE entry.
1799 */
1800 SHWPTE PteDst;
1801 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1802 | PGM_PAGE_GET_HCPHYS(pPage);
1803 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1804 {
1805 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1806 PteDst.n.u1Write = 0;
1807 else
1808 PteDst.u = 0;
1809 }
1810 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1811 if (PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present)
1812 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1813
1814 /* Make sure only allocated pages are mapped writable. */
1815 if ( PteDst.n.u1Write
1816 && PteDst.n.u1Present
1817 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1818 {
1819 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1820 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1821 }
1822
1823 ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
1824
1825 /*
1826 * If the page is not flagged as dirty and is writable, then make it read-only
1827 * at PD level, so we can set the dirty bit when the page is modified.
1828 *
1829 * ASSUMES that page access handlers are implemented on page table entry level.
1830 * Thus we will first catch the dirty access and set PDE.D and restart. If
1831 * there is an access handler, we'll trap again and let it work on the problem.
1832 */
1833 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1834 * As for invlpg, it simply frees the whole shadow PT.
1835 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1836 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
1837 {
1838 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1839 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1840 PdeDst.n.u1Write = 0;
1841 }
1842 else
1843 {
1844 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1845 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1846 }
1847 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
1848 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1849 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1850 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1851 }
1852 else
1853 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1854 }
1855# if defined(IN_RC)
1856 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1857 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1858# endif
1859 return VINF_SUCCESS;
1860 }
1861 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1862 }
1863 else
1864 {
1865 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1866 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1867 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1868 }
1869
1870 /*
1871 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1872 * Yea, I'm lazy.
1873 */
1874 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1875 ASMAtomicWriteSize(pPdeDst, 0);
1876
1877# if defined(IN_RC)
1878 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1879 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1880# endif
1881 PGM_INVL_VCPU_TLBS(pVCpu);
1882 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1883
1884#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1885 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1886 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
1887 && !defined(IN_RC)
1888
1889# ifdef PGM_SYNC_N_PAGES
1890 /*
1891 * Get the shadow PDE, find the shadow page table in the pool.
1892 */
1893# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1894 X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
1895
1896# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1897 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
1898
1899# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1900 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1901 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1902 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1903 X86PDEPAE PdeDst;
1904 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1905
1906 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1907 AssertRCSuccessReturn(rc, rc);
1908 Assert(pPDDst && pPdptDst);
1909 PdeDst = pPDDst->a[iPDDst];
1910# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1911 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1912 PEPTPD pPDDst;
1913 EPTPDE PdeDst;
1914
1915 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
1916 if (rc != VINF_SUCCESS)
1917 {
1918 AssertRC(rc);
1919 return rc;
1920 }
1921 Assert(pPDDst);
1922 PdeDst = pPDDst->a[iPDDst];
1923# endif
1924 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1925 if (!PdeDst.n.u1Present)
1926 {
1927 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
1928 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", GCPtrPage));
1929 return VINF_SUCCESS; /* force the instruction to be executed again. */
1930 }
1931
1932 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1933 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1934
1935 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
1936 if (PdeDst.n.u1Size)
1937 {
1938 Assert(HWACCMIsNestedPagingActive(pVM));
1939 Log(("CPU%d: SyncPage: Pde (big) at %RGv changed behind our back!\n", GCPtrPage));
1940 return VINF_SUCCESS;
1941 }
1942
1943 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1944 if ( cPages > 1
1945 && !(uErr & X86_TRAP_PF_P)
1946 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1947 {
1948 /*
1949 * This code path is currently only taken when the caller is PGMTrap0eHandler
1950 * for non-present pages!
1951 *
1952 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1953 * deal with locality.
1954 */
1955 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1956 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1957 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1958 iPTDst = 0;
1959 else
1960 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1961 for (; iPTDst < iPTDstEnd; iPTDst++)
1962 {
1963 if (!pPTDst->a[iPTDst].n.u1Present)
1964 {
1965 GSTPTE PteSrc;
1966
1967 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
1968
1969 /* Fake the page table entry */
1970 PteSrc.u = GCPtrCurPage;
1971 PteSrc.n.u1Present = 1;
1972 PteSrc.n.u1Dirty = 1;
1973 PteSrc.n.u1Accessed = 1;
1974 PteSrc.n.u1Write = 1;
1975 PteSrc.n.u1User = 1;
1976
1977 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1978
1979 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1980 GCPtrCurPage, PteSrc.n.u1Present,
1981 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1982 PteSrc.n.u1User & PdeSrc.n.u1User,
1983 (uint64_t)PteSrc.u,
1984 (uint64_t)pPTDst->a[iPTDst].u,
1985 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1986
1987 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
1988 break;
1989 }
1990 else
1991 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
1992 }
1993 }
1994 else
1995# endif /* PGM_SYNC_N_PAGES */
1996 {
1997 GSTPTE PteSrc;
1998 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1999 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2000
2001 /* Fake the page table entry */
2002 PteSrc.u = GCPtrCurPage;
2003 PteSrc.n.u1Present = 1;
2004 PteSrc.n.u1Dirty = 1;
2005 PteSrc.n.u1Accessed = 1;
2006 PteSrc.n.u1Write = 1;
2007 PteSrc.n.u1User = 1;
2008 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2009
2010 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2011 GCPtrPage, PteSrc.n.u1Present,
2012 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2013 PteSrc.n.u1User & PdeSrc.n.u1User,
2014 (uint64_t)PteSrc.u,
2015 (uint64_t)pPTDst->a[iPTDst].u,
2016 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2017 }
2018 return VINF_SUCCESS;
2019
2020#else
2021 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2022 return VERR_INTERNAL_ERROR;
2023#endif
2024}
2025
2026
2027#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2028/**
2029 * Investigate page fault and handle write protection page faults caused by
2030 * dirty bit tracking.
2031 *
2032 * @returns VBox status code.
2033 * @param pVCpu The VMCPU handle.
2034 * @param uErr Page fault error code.
2035 * @param pPdeSrc Guest page directory entry.
2036 * @param GCPtrPage Guest context page address.
2037 */
2038PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2039{
2040 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2041 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2042 bool fMaybeWriteProtFault = fWriteFault && (fUserLevelFault || CPUMIsGuestR0WriteProtEnabled(pVCpu));
2043# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2044 bool fMaybeNXEFault = (uErr & X86_TRAP_PF_ID) && CPUMIsGuestNXEnabled(pVCpu);
2045# endif
2046 unsigned uPageFaultLevel;
2047 int rc;
2048 PVM pVM = pVCpu->CTX_SUFF(pVM);
2049
2050 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2051
2052# if PGM_GST_TYPE == PGM_TYPE_PAE \
2053 || PGM_GST_TYPE == PGM_TYPE_AMD64
2054
2055# if PGM_GST_TYPE == PGM_TYPE_AMD64
2056 PX86PML4E pPml4eSrc;
2057 PX86PDPE pPdpeSrc;
2058
2059 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc);
2060 Assert(pPml4eSrc);
2061
2062 /*
2063 * Real page fault? (PML4E level)
2064 */
2065 if ( (uErr & X86_TRAP_PF_RSVD)
2066 || !pPml4eSrc->n.u1Present
2067 || (fMaybeWriteProtFault && !pPml4eSrc->n.u1Write)
2068 || (fMaybeNXEFault && pPml4eSrc->n.u1NoExecute)
2069 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2070 )
2071 {
2072 uPageFaultLevel = 0;
2073 goto l_UpperLevelPageFault;
2074 }
2075 Assert(pPdpeSrc);
2076
2077# else /* PAE */
2078 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVCpu->pgm.s, GCPtrPage);
2079# endif /* PAE */
2080
2081 /*
2082 * Real page fault? (PDPE level)
2083 */
2084 if ( (uErr & X86_TRAP_PF_RSVD)
2085 || !pPdpeSrc->n.u1Present
2086# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2087 || (fMaybeWriteProtFault && !pPdpeSrc->lm.u1Write)
2088 || (fMaybeNXEFault && pPdpeSrc->lm.u1NoExecute)
2089 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2090# endif
2091 )
2092 {
2093 uPageFaultLevel = 1;
2094 goto l_UpperLevelPageFault;
2095 }
2096# endif
2097
2098 /*
2099 * Real page fault? (PDE level)
2100 */
2101 if ( (uErr & X86_TRAP_PF_RSVD)
2102 || !pPdeSrc->n.u1Present
2103 || (fMaybeWriteProtFault && !pPdeSrc->n.u1Write)
2104# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2105 || (fMaybeNXEFault && pPdeSrc->n.u1NoExecute)
2106# endif
2107 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2108 {
2109 uPageFaultLevel = 2;
2110 goto l_UpperLevelPageFault;
2111 }
2112
2113 /*
2114 * First check the easy case where the page directory has been marked read-only to track
2115 * the dirty bit of an emulated BIG page
2116 */
2117 if ( pPdeSrc->b.u1Size
2118# if PGM_GST_TYPE == PGM_TYPE_32BIT
2119 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2120# endif
2121 )
2122 {
2123 /* Mark guest page directory as accessed */
2124# if PGM_GST_TYPE == PGM_TYPE_AMD64
2125 pPml4eSrc->n.u1Accessed = 1;
2126 pPdpeSrc->lm.u1Accessed = 1;
2127# endif
2128 pPdeSrc->b.u1Accessed = 1;
2129
2130 /*
2131 * Only write protection page faults are relevant here.
2132 */
2133 if (fWriteFault)
2134 {
2135 /* Mark guest page directory as dirty (BIG page only). */
2136 pPdeSrc->b.u1Dirty = 1;
2137 }
2138 return VINF_SUCCESS;
2139 }
2140 /* else: 4KB page table */
2141
2142 /*
2143 * Map the guest page table.
2144 */
2145 PGSTPT pPTSrc;
2146 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2147 if (RT_SUCCESS(rc))
2148 {
2149 /*
2150 * Real page fault?
2151 */
2152 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2153 const GSTPTE PteSrc = *pPteSrc;
2154 if ( !PteSrc.n.u1Present
2155 || (fMaybeWriteProtFault && !PteSrc.n.u1Write)
2156# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2157 || (fMaybeNXEFault && PteSrc.n.u1NoExecute)
2158# endif
2159 || (fUserLevelFault && !PteSrc.n.u1User)
2160 )
2161 {
2162 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2163 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2164
2165 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2166 * See the 2nd case above as well.
2167 */
2168 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2169 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2170
2171 return VINF_EM_RAW_GUEST_TRAP;
2172 }
2173 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2174
2175 /*
2176 * Set the accessed bits in the page directory and the page table.
2177 */
2178# if PGM_GST_TYPE == PGM_TYPE_AMD64
2179 pPml4eSrc->n.u1Accessed = 1;
2180 pPdpeSrc->lm.u1Accessed = 1;
2181# endif
2182 pPdeSrc->n.u1Accessed = 1;
2183 pPteSrc->n.u1Accessed = 1;
2184
2185 /*
2186 * Only write protection page faults are relevant here.
2187 */
2188 if (fWriteFault)
2189 {
2190 /* Write access, so mark guest entry as dirty. */
2191# ifdef VBOX_WITH_STATISTICS
2192 if (!pPteSrc->n.u1Dirty)
2193 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2194 else
2195 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2196# endif
2197
2198 pPteSrc->n.u1Dirty = 1;
2199 }
2200 return VINF_SUCCESS;
2201 }
2202 AssertRC(rc);
2203 return rc;
2204
2205
2206l_UpperLevelPageFault:
2207 /*
2208 * Pagefault detected while checking the PML4E, PDPE or PDE.
2209 * Single exit handler to get rid of duplicate code paths.
2210 */
2211 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2212 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2213
2214 if ( 1
2215# if PGM_GST_TYPE == PGM_TYPE_AMD64
2216 && pPml4eSrc->n.u1Present
2217# endif
2218# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2219 && pPdpeSrc->n.u1Present
2220# endif
2221 && pPdeSrc->n.u1Present)
2222 {
2223 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2224 if ( pPdeSrc->b.u1Size
2225# if PGM_GST_TYPE == PGM_TYPE_32BIT
2226 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2227# endif
2228 )
2229 {
2230 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2231 }
2232 else
2233 {
2234 /*
2235 * Map the guest page table.
2236 */
2237 PGSTPT pPTSrc2;
2238 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc2);
2239 if (RT_SUCCESS(rc))
2240 {
2241 PGSTPTE pPteSrc = &pPTSrc2->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2242 if (pPteSrc->n.u1Present)
2243 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2244 }
2245 AssertRC(rc);
2246 }
2247 }
2248 return VINF_EM_RAW_GUEST_TRAP;
2249}
2250
2251/**
2252 * Handle dirty bit tracking faults.
2253 *
2254 * @returns VBox status code.
2255 * @param pVCpu The VMCPU handle.
2256 * @param uErr Page fault error code.
2257 * @param pPdeSrc Guest page directory entry.
2258 * @param pPdeDst Shadow page directory entry.
2259 * @param GCPtrPage Guest context page address.
2260 */
2261PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2262{
2263# if PGM_GST_TYPE == PGM_TYPE_32BIT
2264 const bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu);
2265# else
2266 const bool fBigPagesSupported = true;
2267# endif
2268 PVM pVM = pVCpu->CTX_SUFF(pVM);
2269 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2270
2271 Assert(PGMIsLockOwner(pVM));
2272
2273 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2274 {
2275 if ( pPdeDst->n.u1Present
2276 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2277 {
2278 SHWPDE PdeDst = *pPdeDst;
2279
2280 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2281 Assert(pPdeSrc->b.u1Write);
2282
2283 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2284 * fault again and take this path to only invalidate the entry.
2285 */
2286 PdeDst.n.u1Write = 1;
2287 PdeDst.n.u1Accessed = 1;
2288 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2289 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2290 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2291 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2292 }
2293# ifdef IN_RING0
2294 else
2295 /* Check for stale TLB entry; only applies to the SMP guest case. */
2296 if ( pVM->cCpus > 1
2297 && pPdeDst->n.u1Write
2298 && pPdeDst->n.u1Accessed)
2299 {
2300 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2301 if (pShwPage)
2302 {
2303 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2304 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2305 if ( pPteDst->n.u1Present
2306 && pPteDst->n.u1Write)
2307 {
2308 /* Stale TLB entry. */
2309 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2310 PGM_INVL_PG(pVCpu, GCPtrPage);
2311 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2312 }
2313 }
2314 }
2315# endif /* IN_RING0 */
2316 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2317 }
2318
2319 /*
2320 * Map the guest page table.
2321 */
2322 PGSTPT pPTSrc;
2323 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2324 if (RT_SUCCESS(rc))
2325 {
2326 if (pPdeDst->n.u1Present)
2327 {
2328 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2329 const GSTPTE PteSrc = *pPteSrc;
2330#ifndef IN_RING0
2331 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2332 * Our individual shadow handlers will provide more information and force a fatal exit.
2333 */
2334 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2335 {
2336 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2337 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2338 }
2339#endif
2340 /*
2341 * Map shadow page table.
2342 */
2343 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2344 if (pShwPage)
2345 {
2346 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2347 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2348 if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
2349 {
2350 if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
2351 {
2352 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2353 SHWPTE PteDst = *pPteDst;
2354
2355 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2356 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2357
2358 Assert(pPteSrc->n.u1Write);
2359
2360 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2361 * fault again and take this path to only invalidate the entry.
2362 */
2363 if (RT_LIKELY(pPage))
2364 {
2365 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2366 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2367 PteDst.n.u1Write = 0;
2368 else
2369 {
2370 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2371 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2372 {
2373 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2374 AssertRC(rc);
2375 }
2376 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2377 PteDst.n.u1Write = 1;
2378 else
2379 PteDst.n.u1Write = 0;
2380 }
2381 }
2382 else
2383 PteDst.n.u1Write = 1;
2384
2385 PteDst.n.u1Dirty = 1;
2386 PteDst.n.u1Accessed = 1;
2387 PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2388 ASMAtomicWriteSize(pPteDst, PteDst.u);
2389 PGM_INVL_PG(pVCpu, GCPtrPage);
2390 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2391 }
2392# ifdef IN_RING0
2393 else
2394 /* Check for stale TLB entry; only applies to the SMP guest case. */
2395 if ( pVM->cCpus > 1
2396 && pPteDst->n.u1Write == 1
2397 && pPteDst->n.u1Accessed == 1)
2398 {
2399 /* Stale TLB entry. */
2400 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2401 PGM_INVL_PG(pVCpu, GCPtrPage);
2402 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2403 }
2404# endif
2405 }
2406 }
2407 else
2408 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2409 }
2410 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2411 }
2412 AssertRC(rc);
2413 return rc;
2414}
2415#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2416
2417
2418/**
2419 * Sync a shadow page table.
2420 *
2421 * The shadow page table is not present. This includes the case where
2422 * there is a conflict with a mapping.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The VMCPU handle.
2426 * @param iPD Page directory index.
2427 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2428 * Assume this is a temporary mapping.
2429 * @param GCPtrPage GC Pointer of the page that caused the fault
2430 */
2431PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2432{
2433 PVM pVM = pVCpu->CTX_SUFF(pVM);
2434 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2435
2436 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2437#if 0 /* rarely useful; leave for debugging. */
2438 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2439#endif
2440 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2441
2442 Assert(PGMIsLocked(pVM));
2443
2444#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2445 || PGM_GST_TYPE == PGM_TYPE_PAE \
2446 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2447 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2448 && PGM_SHW_TYPE != PGM_TYPE_EPT
2449
2450 int rc = VINF_SUCCESS;
2451
2452 /*
2453 * Validate input a little bit.
2454 */
2455 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2456# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2457 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2458 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2459
2460 /* Fetch the pgm pool shadow descriptor. */
2461 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2462 Assert(pShwPde);
2463
2464# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2465 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2466 PPGMPOOLPAGE pShwPde = NULL;
2467 PX86PDPAE pPDDst;
2468 PSHWPDE pPdeDst;
2469
2470 /* Fetch the pgm pool shadow descriptor. */
2471 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2472 AssertRCSuccessReturn(rc, rc);
2473 Assert(pShwPde);
2474
2475 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2476 pPdeDst = &pPDDst->a[iPDDst];
2477
2478# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2479 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2480 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2481 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2482 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2483 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2484 AssertRCSuccessReturn(rc, rc);
2485 Assert(pPDDst);
2486 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2487# endif
2488 SHWPDE PdeDst = *pPdeDst;
2489
2490# if PGM_GST_TYPE == PGM_TYPE_AMD64
2491 /* Fetch the pgm pool shadow descriptor. */
2492 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2493 Assert(pShwPde);
2494# endif
2495
2496# ifndef PGM_WITHOUT_MAPPINGS
2497 /*
2498 * Check for conflicts.
2499 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2500 * HC: Simply resolve the conflict.
2501 */
2502 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2503 {
2504 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2505# ifndef IN_RING3
2506 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2507 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2508 return VERR_ADDRESS_CONFLICT;
2509# else
2510 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2511 Assert(pMapping);
2512# if PGM_GST_TYPE == PGM_TYPE_32BIT
2513 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2514# elif PGM_GST_TYPE == PGM_TYPE_PAE
2515 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2516# else
2517 AssertFailed(); /* can't happen for amd64 */
2518# endif
2519 if (RT_FAILURE(rc))
2520 {
2521 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2522 return rc;
2523 }
2524 PdeDst = *pPdeDst;
2525# endif
2526 }
2527# endif /* !PGM_WITHOUT_MAPPINGS */
2528 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2529
2530# if defined(IN_RC)
2531 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2532 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2533# endif
2534
2535 /*
2536 * Sync page directory entry.
2537 */
2538 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2539 if (PdeSrc.n.u1Present)
2540 {
2541 /*
2542 * Allocate & map the page table.
2543 */
2544 PSHWPT pPTDst;
2545# if PGM_GST_TYPE == PGM_TYPE_32BIT
2546 const bool fPageTable = !PdeSrc.b.u1Size || !CPUMIsGuestPageSizeExtEnabled(pVCpu);
2547# else
2548 const bool fPageTable = !PdeSrc.b.u1Size;
2549# endif
2550 PPGMPOOLPAGE pShwPage;
2551 RTGCPHYS GCPhys;
2552 if (fPageTable)
2553 {
2554 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2555# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2556 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2557 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2558# endif
2559 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2560 }
2561 else
2562 {
2563 PGMPOOLACCESS enmAccess;
2564# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2565 const bool fNoExecute = PdeSrc.n.u1NoExecute && CPUMIsGuestNXEnabled(pVCpu);
2566# else
2567 const bool fNoExecute = false;
2568# endif
2569
2570 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2571# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2572 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2573 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2574# endif
2575 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2576 if (PdeSrc.n.u1User)
2577 {
2578 if (PdeSrc.n.u1Write)
2579 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2580 else
2581 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2582 }
2583 else
2584 {
2585 if (PdeSrc.n.u1Write)
2586 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2587 else
2588 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2589 }
2590 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2591 }
2592 if (rc == VINF_SUCCESS)
2593 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2594 else if (rc == VINF_PGM_CACHED_PAGE)
2595 {
2596 /*
2597 * The PT was cached, just hook it up.
2598 */
2599 if (fPageTable)
2600 PdeDst.u = pShwPage->Core.Key
2601 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2602 else
2603 {
2604 PdeDst.u = pShwPage->Core.Key
2605 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2606 /* (see explanation and assumptions further down.) */
2607 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2608 {
2609 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2610 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2611 PdeDst.b.u1Write = 0;
2612 }
2613 }
2614 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2615# if defined(IN_RC)
2616 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2617# endif
2618 return VINF_SUCCESS;
2619 }
2620 else if (rc == VERR_PGM_POOL_FLUSHED)
2621 {
2622 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2623# if defined(IN_RC)
2624 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2625# endif
2626 return VINF_PGM_SYNC_CR3;
2627 }
2628 else
2629 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2630 PdeDst.u &= X86_PDE_AVL_MASK;
2631 PdeDst.u |= pShwPage->Core.Key;
2632
2633 /*
2634 * Page directory has been accessed (this is a fault situation, remember).
2635 */
2636 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2637 if (fPageTable)
2638 {
2639 /*
2640 * Page table - 4KB.
2641 *
2642 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2643 */
2644 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2645 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2646 PGSTPT pPTSrc;
2647 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2648 if (RT_SUCCESS(rc))
2649 {
2650 /*
2651 * Start by syncing the page directory entry so CSAM's TLB trick works.
2652 */
2653 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2654 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2655 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2656# if defined(IN_RC)
2657 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2658# endif
2659
2660 /*
2661 * Directory/page user or supervisor privilege: (same goes for read/write)
2662 *
2663 * Directory Page Combined
2664 * U/S U/S U/S
2665 * 0 0 0
2666 * 0 1 0
2667 * 1 0 0
2668 * 1 1 1
2669 *
2670 * Simple AND operation. Table listed for completeness.
2671 *
2672 */
2673 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2674# ifdef PGM_SYNC_N_PAGES
2675 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2676 unsigned iPTDst = iPTBase;
2677 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2678 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2679 iPTDst = 0;
2680 else
2681 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2682# else /* !PGM_SYNC_N_PAGES */
2683 unsigned iPTDst = 0;
2684 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2685# endif /* !PGM_SYNC_N_PAGES */
2686# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2687 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2688 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2689# else
2690 const unsigned offPTSrc = 0;
2691# endif
2692 for (; iPTDst < iPTDstEnd; iPTDst++)
2693 {
2694 const unsigned iPTSrc = iPTDst + offPTSrc;
2695 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2696
2697 if (PteSrc.n.u1Present) /* we've already cleared it above */
2698 {
2699# ifndef IN_RING0
2700 /*
2701 * Assuming kernel code will be marked as supervisor - and not as user level
2702 * and executed using a conforming code selector - And marked as readonly.
2703 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2704 */
2705 PPGMPAGE pPage;
2706 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2707 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2708 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2709 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2710 )
2711# endif
2712 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2713 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2714 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2715 PteSrc.n.u1Present,
2716 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2717 PteSrc.n.u1User & PdeSrc.n.u1User,
2718 (uint64_t)PteSrc.u,
2719 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2720 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2721 }
2722 } /* for PTEs */
2723 }
2724 }
2725 else
2726 {
2727 /*
2728 * Big page - 2/4MB.
2729 *
2730 * We'll walk the ram range list in parallel and optimize lookups.
2731 * We will only sync on shadow page table at a time.
2732 */
2733 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2734
2735 /**
2736 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2737 */
2738
2739 /*
2740 * Start by syncing the page directory entry.
2741 */
2742 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2743 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2744
2745 /*
2746 * If the page is not flagged as dirty and is writable, then make it read-only
2747 * at PD level, so we can set the dirty bit when the page is modified.
2748 *
2749 * ASSUMES that page access handlers are implemented on page table entry level.
2750 * Thus we will first catch the dirty access and set PDE.D and restart. If
2751 * there is an access handler, we'll trap again and let it work on the problem.
2752 */
2753 /** @todo move the above stuff to a section in the PGM documentation. */
2754 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2755 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
2756 {
2757 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2758 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2759 PdeDst.b.u1Write = 0;
2760 }
2761 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2762# if defined(IN_RC)
2763 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2764# endif
2765
2766 /*
2767 * Fill the shadow page table.
2768 */
2769 /* Get address and flags from the source PDE. */
2770 SHWPTE PteDstBase;
2771 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2772
2773 /* Loop thru the entries in the shadow PT. */
2774 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2775 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2776 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2777 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2778 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2779 unsigned iPTDst = 0;
2780 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2781 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2782 {
2783 /* Advance ram range list. */
2784 while (pRam && GCPhys > pRam->GCPhysLast)
2785 pRam = pRam->CTX_SUFF(pNext);
2786 if (pRam && GCPhys >= pRam->GCPhys)
2787 {
2788 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2789 do
2790 {
2791 /* Make shadow PTE. */
2792 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2793 SHWPTE PteDst;
2794
2795# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2796 /* Try make the page writable if necessary. */
2797 if ( PteDstBase.n.u1Write
2798 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2799# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2800 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2801# endif
2802 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2803 {
2804 rc = pgmPhysPageMakeWritableUnlocked(pVM, pPage, GCPhys);
2805 AssertRCReturn(rc, rc);
2806 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2807 break;
2808 }
2809# endif
2810
2811 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2812 {
2813 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2814 {
2815 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2816 PteDst.n.u1Write = 0;
2817 }
2818 else
2819 PteDst.u = 0;
2820 }
2821# ifndef IN_RING0
2822 /*
2823 * Assuming kernel code will be marked as supervisor and not as user level and executed
2824 * using a conforming code selector. Don't check for readonly, as that implies the whole
2825 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2826 */
2827 else if ( !PdeSrc.n.u1User
2828 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2829 PteDst.u = 0;
2830# endif
2831 else
2832 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2833
2834 /* Only map writable pages writable. */
2835 if ( PteDst.n.u1Write
2836 && PteDst.n.u1Present
2837 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2838 {
2839 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2840 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2841 }
2842
2843 if (PteDst.n.u1Present)
2844 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2845
2846 /* commit it */
2847 pPTDst->a[iPTDst] = PteDst;
2848 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2849 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2850 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2851
2852 /* advance */
2853 GCPhys += PAGE_SIZE;
2854 iHCPage++;
2855 iPTDst++;
2856 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2857 && GCPhys <= pRam->GCPhysLast);
2858 }
2859 else if (pRam)
2860 {
2861 Log(("Invalid pages at %RGp\n", GCPhys));
2862 do
2863 {
2864 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2865 GCPhys += PAGE_SIZE;
2866 iPTDst++;
2867 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2868 && GCPhys < pRam->GCPhys);
2869 }
2870 else
2871 {
2872 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2873 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2874 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2875 }
2876 } /* while more PTEs */
2877 } /* 4KB / 4MB */
2878 }
2879 else
2880 AssertRelease(!PdeDst.n.u1Present);
2881
2882 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2883 if (RT_FAILURE(rc))
2884 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2885 return rc;
2886
2887#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2888 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2889 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2890 && !defined(IN_RC)
2891
2892 /*
2893 * Validate input a little bit.
2894 */
2895 int rc = VINF_SUCCESS;
2896# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2897 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2898 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2899
2900 /* Fetch the pgm pool shadow descriptor. */
2901 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2902 Assert(pShwPde);
2903
2904# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2905 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2906 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2907 PX86PDPAE pPDDst;
2908 PSHWPDE pPdeDst;
2909
2910 /* Fetch the pgm pool shadow descriptor. */
2911 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2912 AssertRCSuccessReturn(rc, rc);
2913 Assert(pShwPde);
2914
2915 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2916 pPdeDst = &pPDDst->a[iPDDst];
2917
2918# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2919 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2920 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2921 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2922 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2923 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2924 AssertRCSuccessReturn(rc, rc);
2925 Assert(pPDDst);
2926 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2927
2928 /* Fetch the pgm pool shadow descriptor. */
2929 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2930 Assert(pShwPde);
2931
2932# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2933 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2934 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2935 PEPTPD pPDDst;
2936 PEPTPDPT pPdptDst;
2937
2938 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2939 if (rc != VINF_SUCCESS)
2940 {
2941 AssertRC(rc);
2942 return rc;
2943 }
2944 Assert(pPDDst);
2945 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2946
2947 /* Fetch the pgm pool shadow descriptor. */
2948 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2949 Assert(pShwPde);
2950# endif
2951 SHWPDE PdeDst = *pPdeDst;
2952
2953 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2954 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2955
2956# if (PGM_SHW_TYPE == PGM_TYPE_EPT) && (HC_ARCH_BITS == 64) && defined(RT_OS_WINDOWS)
2957 if (PGMIsUsingLargePages(pVM))
2958 {
2959 RTHCPHYS HCPhys;
2960 rc = pgmPhysAllocLargePage(pVM, GCPtrPage & SHW_PDE_PG_MASK, &HCPhys);
2961 if (RT_SUCCESS(rc))
2962 {
2963 PdeDst.u &= X86_PDE_AVL_MASK;
2964 PdeDst.u |= HCPhys;
2965 PdeDst.n.u1Present = 1;
2966 PdeDst.n.u1Write = 1;
2967 PdeDst.n.u1Execute = 1;
2968 PdeDst.b.u1Size = 1;
2969 PdeDst.b.u1IgnorePAT = 1;
2970 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
2971 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2972
2973 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2974 return VINF_SUCCESS;
2975
2976 }
2977 else
2978 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
2979 }
2980# endif
2981
2982 GSTPDE PdeSrc;
2983 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
2984 PdeSrc.n.u1Present = 1;
2985 PdeSrc.n.u1Write = 1;
2986 PdeSrc.n.u1Accessed = 1;
2987 PdeSrc.n.u1User = 1;
2988
2989 /*
2990 * Allocate & map the page table.
2991 */
2992 PSHWPT pPTDst;
2993 PPGMPOOLPAGE pShwPage;
2994 RTGCPHYS GCPhys;
2995
2996 /* Virtual address = physical address */
2997 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
2998 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2999
3000 if ( rc == VINF_SUCCESS
3001 || rc == VINF_PGM_CACHED_PAGE)
3002 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
3003 else
3004 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3005
3006 PdeDst.u &= X86_PDE_AVL_MASK;
3007 PdeDst.u |= pShwPage->Core.Key;
3008 PdeDst.n.u1Present = 1;
3009 PdeDst.n.u1Write = 1;
3010# if PGM_SHW_TYPE == PGM_TYPE_EPT
3011 PdeDst.n.u1Execute = 1;
3012# else
3013 PdeDst.n.u1User = 1;
3014 PdeDst.n.u1Accessed = 1;
3015# endif
3016 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3017
3018 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3019 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3020 return rc;
3021
3022#else
3023 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3024 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3025 return VERR_INTERNAL_ERROR;
3026#endif
3027}
3028
3029
3030
3031/**
3032 * Prefetch a page/set of pages.
3033 *
3034 * Typically used to sync commonly used pages before entering raw mode
3035 * after a CR3 reload.
3036 *
3037 * @returns VBox status code.
3038 * @param pVCpu The VMCPU handle.
3039 * @param GCPtrPage Page to invalidate.
3040 */
3041PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3042{
3043#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3044 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3045 /*
3046 * Check that all Guest levels thru the PDE are present, getting the
3047 * PD and PDE in the processes.
3048 */
3049 int rc = VINF_SUCCESS;
3050# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3051# if PGM_GST_TYPE == PGM_TYPE_32BIT
3052 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3053 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3054# elif PGM_GST_TYPE == PGM_TYPE_PAE
3055 unsigned iPDSrc;
3056 X86PDPE PdpeSrc;
3057 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3058 if (!pPDSrc)
3059 return VINF_SUCCESS; /* not present */
3060# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3061 unsigned iPDSrc;
3062 PX86PML4E pPml4eSrc;
3063 X86PDPE PdpeSrc;
3064 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3065 if (!pPDSrc)
3066 return VINF_SUCCESS; /* not present */
3067# endif
3068 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3069# else
3070 PGSTPD pPDSrc = NULL;
3071 const unsigned iPDSrc = 0;
3072 GSTPDE PdeSrc;
3073
3074 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3075 PdeSrc.n.u1Present = 1;
3076 PdeSrc.n.u1Write = 1;
3077 PdeSrc.n.u1Accessed = 1;
3078 PdeSrc.n.u1User = 1;
3079# endif
3080
3081 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3082 {
3083 PVM pVM = pVCpu->CTX_SUFF(pVM);
3084 pgmLock(pVM);
3085
3086# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3087 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
3088# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3089 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3090 PX86PDPAE pPDDst;
3091 X86PDEPAE PdeDst;
3092# if PGM_GST_TYPE != PGM_TYPE_PAE
3093 X86PDPE PdpeSrc;
3094
3095 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3096 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3097# endif
3098 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3099 if (rc != VINF_SUCCESS)
3100 {
3101 pgmUnlock(pVM);
3102 AssertRC(rc);
3103 return rc;
3104 }
3105 Assert(pPDDst);
3106 PdeDst = pPDDst->a[iPDDst];
3107
3108# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3109 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3110 PX86PDPAE pPDDst;
3111 X86PDEPAE PdeDst;
3112
3113# if PGM_GST_TYPE == PGM_TYPE_PROT
3114 /* AMD-V nested paging */
3115 X86PML4E Pml4eSrc;
3116 X86PDPE PdpeSrc;
3117 PX86PML4E pPml4eSrc = &Pml4eSrc;
3118
3119 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3120 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3121 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3122# endif
3123
3124 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3125 if (rc != VINF_SUCCESS)
3126 {
3127 pgmUnlock(pVM);
3128 AssertRC(rc);
3129 return rc;
3130 }
3131 Assert(pPDDst);
3132 PdeDst = pPDDst->a[iPDDst];
3133# endif
3134 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3135 {
3136 if (!PdeDst.n.u1Present)
3137 {
3138 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3139 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3140 }
3141 else
3142 {
3143 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3144 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3145 * makes no sense to prefetch more than one page.
3146 */
3147 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3148 if (RT_SUCCESS(rc))
3149 rc = VINF_SUCCESS;
3150 }
3151 }
3152 pgmUnlock(pVM);
3153 }
3154 return rc;
3155
3156#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3157 return VINF_SUCCESS; /* ignore */
3158#endif
3159}
3160
3161
3162
3163
3164/**
3165 * Syncs a page during a PGMVerifyAccess() call.
3166 *
3167 * @returns VBox status code (informational included).
3168 * @param pVCpu The VMCPU handle.
3169 * @param GCPtrPage The address of the page to sync.
3170 * @param fPage The effective guest page flags.
3171 * @param uErr The trap error code.
3172 */
3173PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3174{
3175 PVM pVM = pVCpu->CTX_SUFF(pVM);
3176
3177 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3178
3179 Assert(!HWACCMIsNestedPagingActive(pVM));
3180#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3181 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3182
3183# ifndef IN_RING0
3184 if (!(fPage & X86_PTE_US))
3185 {
3186 /*
3187 * Mark this page as safe.
3188 */
3189 /** @todo not correct for pages that contain both code and data!! */
3190 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3191 CSAMMarkPage(pVM, GCPtrPage, true);
3192 }
3193# endif
3194
3195 /*
3196 * Get guest PD and index.
3197 */
3198# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3199# if PGM_GST_TYPE == PGM_TYPE_32BIT
3200 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3201 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3202# elif PGM_GST_TYPE == PGM_TYPE_PAE
3203 unsigned iPDSrc = 0;
3204 X86PDPE PdpeSrc;
3205 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3206
3207 if (pPDSrc)
3208 {
3209 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3210 return VINF_EM_RAW_GUEST_TRAP;
3211 }
3212# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3213 unsigned iPDSrc;
3214 PX86PML4E pPml4eSrc;
3215 X86PDPE PdpeSrc;
3216 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3217 if (!pPDSrc)
3218 {
3219 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3220 return VINF_EM_RAW_GUEST_TRAP;
3221 }
3222# endif
3223# else
3224 PGSTPD pPDSrc = NULL;
3225 const unsigned iPDSrc = 0;
3226# endif
3227 int rc = VINF_SUCCESS;
3228
3229 pgmLock(pVM);
3230
3231 /*
3232 * First check if the shadow pd is present.
3233 */
3234# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3235 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3236# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3237 PX86PDEPAE pPdeDst;
3238 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3239 PX86PDPAE pPDDst;
3240# if PGM_GST_TYPE != PGM_TYPE_PAE
3241 X86PDPE PdpeSrc;
3242
3243 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3244 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3245# endif
3246 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3247 if (rc != VINF_SUCCESS)
3248 {
3249 pgmUnlock(pVM);
3250 AssertRC(rc);
3251 return rc;
3252 }
3253 Assert(pPDDst);
3254 pPdeDst = &pPDDst->a[iPDDst];
3255
3256# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3257 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3258 PX86PDPAE pPDDst;
3259 PX86PDEPAE pPdeDst;
3260
3261# if PGM_GST_TYPE == PGM_TYPE_PROT
3262 /* AMD-V nested paging */
3263 X86PML4E Pml4eSrc;
3264 X86PDPE PdpeSrc;
3265 PX86PML4E pPml4eSrc = &Pml4eSrc;
3266
3267 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3268 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3269 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3270# endif
3271
3272 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3273 if (rc != VINF_SUCCESS)
3274 {
3275 pgmUnlock(pVM);
3276 AssertRC(rc);
3277 return rc;
3278 }
3279 Assert(pPDDst);
3280 pPdeDst = &pPDDst->a[iPDDst];
3281# endif
3282
3283# if defined(IN_RC)
3284 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3285 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
3286# endif
3287
3288 if (!pPdeDst->n.u1Present)
3289 {
3290 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3291 if (rc != VINF_SUCCESS)
3292 {
3293# if defined(IN_RC)
3294 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3295 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3296# endif
3297 pgmUnlock(pVM);
3298 AssertRC(rc);
3299 return rc;
3300 }
3301 }
3302
3303# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3304 /* Check for dirty bit fault */
3305 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3306 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3307 Log(("PGMVerifyAccess: success (dirty)\n"));
3308 else
3309 {
3310 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3311# else
3312 {
3313 GSTPDE PdeSrc;
3314 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3315 PdeSrc.n.u1Present = 1;
3316 PdeSrc.n.u1Write = 1;
3317 PdeSrc.n.u1Accessed = 1;
3318 PdeSrc.n.u1User = 1;
3319
3320# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3321 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3322 if (uErr & X86_TRAP_PF_US)
3323 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3324 else /* supervisor */
3325 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3326
3327 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3328 if (RT_SUCCESS(rc))
3329 {
3330 /* Page was successfully synced */
3331 Log2(("PGMVerifyAccess: success (sync)\n"));
3332 rc = VINF_SUCCESS;
3333 }
3334 else
3335 {
3336 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3337 rc = VINF_EM_RAW_GUEST_TRAP;
3338 }
3339 }
3340# if defined(IN_RC)
3341 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3342 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3343# endif
3344 pgmUnlock(pVM);
3345 return rc;
3346
3347#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3348
3349 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3350 return VERR_INTERNAL_ERROR;
3351#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3352}
3353
3354#undef MY_STAM_COUNTER_INC
3355#define MY_STAM_COUNTER_INC(a) do { } while (0)
3356
3357
3358/**
3359 * Syncs the paging hierarchy starting at CR3.
3360 *
3361 * @returns VBox status code, no specials.
3362 * @param pVCpu The VMCPU handle.
3363 * @param cr0 Guest context CR0 register
3364 * @param cr3 Guest context CR3 register
3365 * @param cr4 Guest context CR4 register
3366 * @param fGlobal Including global page directories or not
3367 */
3368PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3369{
3370 PVM pVM = pVCpu->CTX_SUFF(pVM);
3371
3372 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
3373 fGlobal = true; /* Change this CR3 reload to be a global one. */
3374
3375 LogFlow(("SyncCR3 %d\n", fGlobal));
3376
3377#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3378
3379 pgmLock(pVM);
3380# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3381 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3382 if (pPool->cDirtyPages)
3383 pgmPoolResetDirtyPages(pVM);
3384# endif
3385
3386 /*
3387 * Update page access handlers.
3388 * The virtual are always flushed, while the physical are only on demand.
3389 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3390 * have to look into that later because it will have a bad influence on the performance.
3391 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3392 * bird: Yes, but that won't work for aliases.
3393 */
3394 /** @todo this MUST go away. See #1557. */
3395 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3396 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3397 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3398 pgmUnlock(pVM);
3399#endif /* !NESTED && !EPT */
3400
3401#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3402 /*
3403 * Nested / EPT - almost no work.
3404 */
3405 /** @todo check if this is really necessary; the call does it as well... */
3406 HWACCMFlushTLB(pVCpu);
3407 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3408 return VINF_SUCCESS;
3409
3410#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3411 /*
3412 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3413 * out the shadow parts when the guest modifies its tables.
3414 */
3415 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3416 return VINF_SUCCESS;
3417
3418#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3419
3420# ifndef PGM_WITHOUT_MAPPINGS
3421 /*
3422 * Check for and resolve conflicts with our guest mappings if they
3423 * are enabled and not fixed.
3424 */
3425 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3426 {
3427 int rc = pgmMapResolveConflicts(pVM);
3428 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3429 if (rc == VINF_PGM_SYNC_CR3)
3430 {
3431 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3432 return VINF_PGM_SYNC_CR3;
3433 }
3434 }
3435# else
3436 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3437# endif
3438 return VINF_SUCCESS;
3439#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3440}
3441
3442
3443
3444
3445#ifdef VBOX_STRICT
3446#ifdef IN_RC
3447# undef AssertMsgFailed
3448# define AssertMsgFailed Log
3449#endif
3450#ifdef IN_RING3
3451# include <VBox/dbgf.h>
3452
3453/**
3454 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3455 *
3456 * @returns VBox status code (VINF_SUCCESS).
3457 * @param cr3 The root of the hierarchy.
3458 * @param crr The cr4, only PAE and PSE is currently used.
3459 * @param fLongMode Set if long mode, false if not long mode.
3460 * @param cMaxDepth Number of levels to dump.
3461 * @param pHlp Pointer to the output functions.
3462 */
3463RT_C_DECLS_BEGIN
3464VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3465RT_C_DECLS_END
3466
3467#endif
3468
3469/**
3470 * Checks that the shadow page table is in sync with the guest one.
3471 *
3472 * @returns The number of errors.
3473 * @param pVM The virtual machine.
3474 * @param pVCpu The VMCPU handle.
3475 * @param cr3 Guest context CR3 register
3476 * @param cr4 Guest context CR4 register
3477 * @param GCPtr Where to start. Defaults to 0.
3478 * @param cb How much to check. Defaults to everything.
3479 */
3480PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3481{
3482#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3483 return 0;
3484#else
3485 unsigned cErrors = 0;
3486 PVM pVM = pVCpu->CTX_SUFF(pVM);
3487 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3488
3489#if PGM_GST_TYPE == PGM_TYPE_PAE
3490 /** @todo currently broken; crashes below somewhere */
3491 AssertFailed();
3492#endif
3493
3494#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3495 || PGM_GST_TYPE == PGM_TYPE_PAE \
3496 || PGM_GST_TYPE == PGM_TYPE_AMD64
3497
3498# if PGM_GST_TYPE == PGM_TYPE_32BIT
3499 bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3500# else
3501 bool fBigPagesSupported = true;
3502# endif
3503 PPGMCPU pPGM = &pVCpu->pgm.s;
3504 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3505 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3506# ifndef IN_RING0
3507 RTHCPHYS HCPhys; /* general usage. */
3508# endif
3509 int rc;
3510
3511 /*
3512 * Check that the Guest CR3 and all its mappings are correct.
3513 */
3514 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3515 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3516 false);
3517# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3518# if PGM_GST_TYPE == PGM_TYPE_32BIT
3519 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3520# else
3521 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3522# endif
3523 AssertRCReturn(rc, 1);
3524 HCPhys = NIL_RTHCPHYS;
3525 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3526 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3527# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3528 pgmGstGet32bitPDPtr(pPGM);
3529 RTGCPHYS GCPhys;
3530 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3531 AssertRCReturn(rc, 1);
3532 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3533# endif
3534# endif /* !IN_RING0 */
3535
3536 /*
3537 * Get and check the Shadow CR3.
3538 */
3539# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3540 unsigned cPDEs = X86_PG_ENTRIES;
3541 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3542# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3543# if PGM_GST_TYPE == PGM_TYPE_32BIT
3544 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3545# else
3546 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3547# endif
3548 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3549# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3550 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3551 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3552# endif
3553 if (cb != ~(RTGCPTR)0)
3554 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3555
3556/** @todo call the other two PGMAssert*() functions. */
3557
3558# if PGM_GST_TYPE == PGM_TYPE_AMD64
3559 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3560
3561 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3562 {
3563 PPGMPOOLPAGE pShwPdpt = NULL;
3564 PX86PML4E pPml4eSrc;
3565 PX86PML4E pPml4eDst;
3566 RTGCPHYS GCPhysPdptSrc;
3567
3568 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3569 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3570
3571 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3572 if (!pPml4eDst->n.u1Present)
3573 {
3574 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3575 continue;
3576 }
3577
3578 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3579 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3580
3581 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3582 {
3583 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3584 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3585 cErrors++;
3586 continue;
3587 }
3588
3589 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3590 {
3591 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3592 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3593 cErrors++;
3594 continue;
3595 }
3596
3597 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3598 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3599 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3600 {
3601 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3602 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3603 cErrors++;
3604 continue;
3605 }
3606# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3607 {
3608# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3609
3610# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3611 /*
3612 * Check the PDPTEs too.
3613 */
3614 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3615
3616 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3617 {
3618 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3619 PPGMPOOLPAGE pShwPde = NULL;
3620 PX86PDPE pPdpeDst;
3621 RTGCPHYS GCPhysPdeSrc;
3622# if PGM_GST_TYPE == PGM_TYPE_PAE
3623 X86PDPE PdpeSrc;
3624 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3625 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
3626# else
3627 PX86PML4E pPml4eSrcIgn;
3628 X86PDPE PdpeSrc;
3629 PX86PDPT pPdptDst;
3630 PX86PDPAE pPDDst;
3631 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3632
3633 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3634 if (rc != VINF_SUCCESS)
3635 {
3636 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3637 GCPtr += 512 * _2M;
3638 continue; /* next PDPTE */
3639 }
3640 Assert(pPDDst);
3641# endif
3642 Assert(iPDSrc == 0);
3643
3644 pPdpeDst = &pPdptDst->a[iPdpt];
3645
3646 if (!pPdpeDst->n.u1Present)
3647 {
3648 GCPtr += 512 * _2M;
3649 continue; /* next PDPTE */
3650 }
3651
3652 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3653 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3654
3655 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3656 {
3657 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3658 GCPtr += 512 * _2M;
3659 cErrors++;
3660 continue;
3661 }
3662
3663 if (GCPhysPdeSrc != pShwPde->GCPhys)
3664 {
3665# if PGM_GST_TYPE == PGM_TYPE_AMD64
3666 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3667# else
3668 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3669# endif
3670 GCPtr += 512 * _2M;
3671 cErrors++;
3672 continue;
3673 }
3674
3675# if PGM_GST_TYPE == PGM_TYPE_AMD64
3676 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3677 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3678 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3679 {
3680 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3681 GCPtr += 512 * _2M;
3682 cErrors++;
3683 continue;
3684 }
3685# endif
3686
3687# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3688 {
3689# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3690# if PGM_GST_TYPE == PGM_TYPE_32BIT
3691 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3692# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3693 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
3694# endif
3695# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3696 /*
3697 * Iterate the shadow page directory.
3698 */
3699 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3700 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3701
3702 for (;
3703 iPDDst < cPDEs;
3704 iPDDst++, GCPtr += cIncrement)
3705 {
3706# if PGM_SHW_TYPE == PGM_TYPE_PAE
3707 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3708# else
3709 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3710# endif
3711 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3712 {
3713 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3714 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3715 {
3716 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3717 cErrors++;
3718 continue;
3719 }
3720 }
3721 else if ( (PdeDst.u & X86_PDE_P)
3722 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3723 )
3724 {
3725 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3726 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3727 if (!pPoolPage)
3728 {
3729 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3730 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3731 cErrors++;
3732 continue;
3733 }
3734 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3735
3736 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3737 {
3738 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3739 GCPtr, (uint64_t)PdeDst.u));
3740 cErrors++;
3741 }
3742
3743 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3744 {
3745 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3746 GCPtr, (uint64_t)PdeDst.u));
3747 cErrors++;
3748 }
3749
3750 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3751 if (!PdeSrc.n.u1Present)
3752 {
3753 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3754 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3755 cErrors++;
3756 continue;
3757 }
3758
3759 if ( !PdeSrc.b.u1Size
3760 || !fBigPagesSupported)
3761 {
3762 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3763# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3764 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3765# endif
3766 }
3767 else
3768 {
3769# if PGM_GST_TYPE == PGM_TYPE_32BIT
3770 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3771 {
3772 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3773 GCPtr, (uint64_t)PdeSrc.u));
3774 cErrors++;
3775 continue;
3776 }
3777# endif
3778 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3779# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3780 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3781# endif
3782 }
3783
3784 if ( pPoolPage->enmKind
3785 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3786 {
3787 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3788 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3789 cErrors++;
3790 }
3791
3792 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3793 if (!pPhysPage)
3794 {
3795 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3796 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3797 cErrors++;
3798 continue;
3799 }
3800
3801 if (GCPhysGst != pPoolPage->GCPhys)
3802 {
3803 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3804 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3805 cErrors++;
3806 continue;
3807 }
3808
3809 if ( !PdeSrc.b.u1Size
3810 || !fBigPagesSupported)
3811 {
3812 /*
3813 * Page Table.
3814 */
3815 const GSTPT *pPTSrc;
3816 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3817 if (RT_FAILURE(rc))
3818 {
3819 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3820 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3821 cErrors++;
3822 continue;
3823 }
3824 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3825 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3826 {
3827 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3828 // (This problem will go away when/if we shadow multiple CR3s.)
3829 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3830 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3831 cErrors++;
3832 continue;
3833 }
3834 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3835 {
3836 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3837 GCPtr, (uint64_t)PdeDst.u));
3838 cErrors++;
3839 continue;
3840 }
3841
3842 /* iterate the page table. */
3843# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3844 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3845 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3846# else
3847 const unsigned offPTSrc = 0;
3848# endif
3849 for (unsigned iPT = 0, off = 0;
3850 iPT < RT_ELEMENTS(pPTDst->a);
3851 iPT++, off += PAGE_SIZE)
3852 {
3853 const SHWPTE PteDst = pPTDst->a[iPT];
3854
3855 /* skip not-present entries. */
3856 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3857 continue;
3858 Assert(PteDst.n.u1Present);
3859
3860 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3861 if (!PteSrc.n.u1Present)
3862 {
3863# ifdef IN_RING3
3864 PGMAssertHandlerAndFlagsInSync(pVM);
3865 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3866# endif
3867 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3868 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3869 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3870 cErrors++;
3871 continue;
3872 }
3873
3874 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3875# if 1 /** @todo sync accessed bit properly... */
3876 fIgnoreFlags |= X86_PTE_A;
3877# endif
3878
3879 /* match the physical addresses */
3880 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3881 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3882
3883# ifdef IN_RING3
3884 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3885 if (RT_FAILURE(rc))
3886 {
3887 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3888 {
3889 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3890 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3891 cErrors++;
3892 continue;
3893 }
3894 }
3895 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3896 {
3897 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3898 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3899 cErrors++;
3900 continue;
3901 }
3902# endif
3903
3904 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3905 if (!pPhysPage)
3906 {
3907# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3908 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3909 {
3910 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3911 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3912 cErrors++;
3913 continue;
3914 }
3915# endif
3916 if (PteDst.n.u1Write)
3917 {
3918 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3919 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3920 cErrors++;
3921 }
3922 fIgnoreFlags |= X86_PTE_RW;
3923 }
3924 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
3925 {
3926 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3927 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3928 cErrors++;
3929 continue;
3930 }
3931
3932 /* flags */
3933 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
3934 {
3935 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
3936 {
3937 if (PteDst.n.u1Write)
3938 {
3939 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3940 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3941 cErrors++;
3942 continue;
3943 }
3944 fIgnoreFlags |= X86_PTE_RW;
3945 }
3946 else
3947 {
3948 if (PteDst.n.u1Present)
3949 {
3950 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
3951 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3952 cErrors++;
3953 continue;
3954 }
3955 fIgnoreFlags |= X86_PTE_P;
3956 }
3957 }
3958 else
3959 {
3960 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
3961 {
3962 if (PteDst.n.u1Write)
3963 {
3964 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
3965 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3966 cErrors++;
3967 continue;
3968 }
3969 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
3970 {
3971 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3972 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3973 cErrors++;
3974 continue;
3975 }
3976 if (PteDst.n.u1Dirty)
3977 {
3978 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
3979 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3980 cErrors++;
3981 }
3982# if 0 /** @todo sync access bit properly... */
3983 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
3984 {
3985 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
3986 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3987 cErrors++;
3988 }
3989 fIgnoreFlags |= X86_PTE_RW;
3990# else
3991 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
3992# endif
3993 }
3994 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
3995 {
3996 /* access bit emulation (not implemented). */
3997 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
3998 {
3999 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4000 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4001 cErrors++;
4002 continue;
4003 }
4004 if (!PteDst.n.u1Accessed)
4005 {
4006 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4007 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4008 cErrors++;
4009 }
4010 fIgnoreFlags |= X86_PTE_P;
4011 }
4012# ifdef DEBUG_sandervl
4013 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4014# endif
4015 }
4016
4017 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4018 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4019 )
4020 {
4021 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4022 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4023 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4024 cErrors++;
4025 continue;
4026 }
4027 } /* foreach PTE */
4028 }
4029 else
4030 {
4031 /*
4032 * Big Page.
4033 */
4034 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4035 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4036 {
4037 if (PdeDst.n.u1Write)
4038 {
4039 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4040 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4041 cErrors++;
4042 continue;
4043 }
4044 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4045 {
4046 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4047 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4048 cErrors++;
4049 continue;
4050 }
4051# if 0 /** @todo sync access bit properly... */
4052 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4053 {
4054 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4055 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4056 cErrors++;
4057 }
4058 fIgnoreFlags |= X86_PTE_RW;
4059# else
4060 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4061# endif
4062 }
4063 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4064 {
4065 /* access bit emulation (not implemented). */
4066 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4067 {
4068 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4069 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4070 cErrors++;
4071 continue;
4072 }
4073 if (!PdeDst.n.u1Accessed)
4074 {
4075 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4076 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4077 cErrors++;
4078 }
4079 fIgnoreFlags |= X86_PTE_P;
4080 }
4081
4082 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4083 {
4084 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4085 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4086 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4087 cErrors++;
4088 }
4089
4090 /* iterate the page table. */
4091 for (unsigned iPT = 0, off = 0;
4092 iPT < RT_ELEMENTS(pPTDst->a);
4093 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4094 {
4095 const SHWPTE PteDst = pPTDst->a[iPT];
4096
4097 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4098 {
4099 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4100 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4101 cErrors++;
4102 }
4103
4104 /* skip not-present entries. */
4105 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4106 continue;
4107
4108 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4109
4110 /* match the physical addresses */
4111 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4112
4113# ifdef IN_RING3
4114 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4115 if (RT_FAILURE(rc))
4116 {
4117 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4118 {
4119 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4120 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4121 cErrors++;
4122 }
4123 }
4124 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4125 {
4126 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4127 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4128 cErrors++;
4129 continue;
4130 }
4131# endif
4132 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4133 if (!pPhysPage)
4134 {
4135# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4136 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4137 {
4138 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4139 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4140 cErrors++;
4141 continue;
4142 }
4143# endif
4144 if (PteDst.n.u1Write)
4145 {
4146 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4147 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4148 cErrors++;
4149 }
4150 fIgnoreFlags |= X86_PTE_RW;
4151 }
4152 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4153 {
4154 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4155 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4156 cErrors++;
4157 continue;
4158 }
4159
4160 /* flags */
4161 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4162 {
4163 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4164 {
4165 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4166 {
4167 if (PteDst.n.u1Write)
4168 {
4169 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4170 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4171 cErrors++;
4172 continue;
4173 }
4174 fIgnoreFlags |= X86_PTE_RW;
4175 }
4176 }
4177 else
4178 {
4179 if (PteDst.n.u1Present)
4180 {
4181 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4182 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4183 cErrors++;
4184 continue;
4185 }
4186 fIgnoreFlags |= X86_PTE_P;
4187 }
4188 }
4189
4190 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4191 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4192 )
4193 {
4194 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4195 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4196 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4197 cErrors++;
4198 continue;
4199 }
4200 } /* for each PTE */
4201 }
4202 }
4203 /* not present */
4204
4205 } /* for each PDE */
4206
4207 } /* for each PDPTE */
4208
4209 } /* for each PML4E */
4210
4211# ifdef DEBUG
4212 if (cErrors)
4213 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4214# endif
4215
4216#endif /* GST == 32BIT, PAE or AMD64 */
4217 return cErrors;
4218
4219#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4220}
4221#endif /* VBOX_STRICT */
4222
4223
4224/**
4225 * Sets up the CR3 for shadow paging
4226 *
4227 * @returns Strict VBox status code.
4228 * @retval VINF_SUCCESS.
4229 *
4230 * @param pVCpu The VMCPU handle.
4231 * @param GCPhysCR3 The physical address in the CR3 register.
4232 */
4233PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4234{
4235 PVM pVM = pVCpu->CTX_SUFF(pVM);
4236
4237 /* Update guest paging info. */
4238#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4239 || PGM_GST_TYPE == PGM_TYPE_PAE \
4240 || PGM_GST_TYPE == PGM_TYPE_AMD64
4241
4242 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4243
4244 /*
4245 * Map the page CR3 points at.
4246 */
4247 RTHCPTR HCPtrGuestCR3;
4248 RTHCPHYS HCPhysGuestCR3;
4249 pgmLock(pVM);
4250 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4251 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4252 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4253 /** @todo this needs some reworking wrt. locking. */
4254# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4255 HCPtrGuestCR3 = NIL_RTHCPTR;
4256 int rc = VINF_SUCCESS;
4257# else
4258 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4259# endif
4260 pgmUnlock(pVM);
4261 if (RT_SUCCESS(rc))
4262 {
4263 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4264 if (RT_SUCCESS(rc))
4265 {
4266# ifdef IN_RC
4267 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4268# endif
4269# if PGM_GST_TYPE == PGM_TYPE_32BIT
4270 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4271# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4272 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4273# endif
4274 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4275
4276# elif PGM_GST_TYPE == PGM_TYPE_PAE
4277 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4278 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4279# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4280 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4281# endif
4282 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4283 Log(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4284
4285 /*
4286 * Map the 4 PDs too.
4287 */
4288 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVCpu->pgm.s);
4289 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4290 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4291 {
4292 if (pGuestPDPT->a[i].n.u1Present)
4293 {
4294 RTHCPTR HCPtr;
4295 RTHCPHYS HCPhys;
4296 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4297 pgmLock(pVM);
4298 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4299 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4300 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4301# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4302 HCPtr = NIL_RTHCPTR;
4303 int rc2 = VINF_SUCCESS;
4304# else
4305 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4306# endif
4307 pgmUnlock(pVM);
4308 if (RT_SUCCESS(rc2))
4309 {
4310 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4311 AssertRCReturn(rc, rc);
4312
4313 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4314# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4315 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4316# endif
4317 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4318 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4319# ifdef IN_RC
4320 PGM_INVL_PG(pVCpu, GCPtr);
4321# endif
4322 continue;
4323 }
4324 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4325 }
4326
4327 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4328# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4329 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4330# endif
4331 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4332 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4333# ifdef IN_RC
4334 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4335# endif
4336 }
4337
4338# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4339 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4340# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4341 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4342# endif
4343# endif
4344 }
4345 else
4346 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4347 }
4348 else
4349 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4350
4351#else /* prot/real stub */
4352 int rc = VINF_SUCCESS;
4353#endif
4354
4355 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4356# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4357 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4358 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4359 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4360 && PGM_GST_TYPE != PGM_TYPE_PROT))
4361
4362 Assert(!HWACCMIsNestedPagingActive(pVM));
4363
4364 /*
4365 * Update the shadow root page as well since that's not fixed.
4366 */
4367 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4368 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4369 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4370 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4371 PPGMPOOLPAGE pNewShwPageCR3;
4372
4373 pgmLock(pVM);
4374
4375# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4376 if (pPool->cDirtyPages)
4377 pgmPoolResetDirtyPages(pVM);
4378# endif
4379
4380 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4381 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4382 AssertFatalRC(rc);
4383 rc = VINF_SUCCESS;
4384
4385# ifdef IN_RC
4386 /*
4387 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4388 * state will be inconsistent! Flush important things now while
4389 * we still can and then make sure there are no ring-3 calls.
4390 */
4391 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4392 VMMRZCallRing3Disable(pVCpu);
4393# endif
4394
4395 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4396 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4397 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4398# ifdef IN_RING0
4399 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4400 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4401# elif defined(IN_RC)
4402 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4403 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4404# else
4405 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4406 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4407# endif
4408
4409# ifndef PGM_WITHOUT_MAPPINGS
4410 /*
4411 * Apply all hypervisor mappings to the new CR3.
4412 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4413 * make sure we check for conflicts in the new CR3 root.
4414 */
4415# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4416 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4417# endif
4418 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4419 AssertRCReturn(rc, rc);
4420# endif
4421
4422 /* Set the current hypervisor CR3. */
4423 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4424 SELMShadowCR3Changed(pVM, pVCpu);
4425
4426# ifdef IN_RC
4427 /* NOTE: The state is consistent again. */
4428 VMMRZCallRing3Enable(pVCpu);
4429# endif
4430
4431 /* Clean up the old CR3 root. */
4432 if ( pOldShwPageCR3
4433 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4434 {
4435 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4436# ifndef PGM_WITHOUT_MAPPINGS
4437 /* Remove the hypervisor mappings from the shadow page table. */
4438 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4439# endif
4440 /* Mark the page as unlocked; allow flushing again. */
4441 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4442
4443 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4444 }
4445 pgmUnlock(pVM);
4446# endif
4447
4448 return rc;
4449}
4450
4451/**
4452 * Unmaps the shadow CR3.
4453 *
4454 * @returns VBox status, no specials.
4455 * @param pVCpu The VMCPU handle.
4456 */
4457PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4458{
4459 LogFlow(("UnmapCR3\n"));
4460
4461 int rc = VINF_SUCCESS;
4462 PVM pVM = pVCpu->CTX_SUFF(pVM);
4463
4464 /*
4465 * Update guest paging info.
4466 */
4467#if PGM_GST_TYPE == PGM_TYPE_32BIT
4468 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4469# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4470 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4471# endif
4472 pVCpu->pgm.s.pGst32BitPdRC = 0;
4473
4474#elif PGM_GST_TYPE == PGM_TYPE_PAE
4475 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4476# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4477 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4478# endif
4479 pVCpu->pgm.s.pGstPaePdptRC = 0;
4480 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4481 {
4482 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4483# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4484 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4485# endif
4486 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4487 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4488 }
4489
4490#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4491 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4492# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4493 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4494# endif
4495
4496#else /* prot/real mode stub */
4497 /* nothing to do */
4498#endif
4499
4500#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4501 /*
4502 * Update shadow paging info.
4503 */
4504# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4505 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4506 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4507
4508# if PGM_GST_TYPE != PGM_TYPE_REAL
4509 Assert(!HWACCMIsNestedPagingActive(pVM));
4510# endif
4511
4512 pgmLock(pVM);
4513
4514# ifndef PGM_WITHOUT_MAPPINGS
4515 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4516 /* Remove the hypervisor mappings from the shadow page table. */
4517 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4518# endif
4519
4520 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4521 {
4522 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4523
4524 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4525
4526# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4527 if (pPool->cDirtyPages)
4528 pgmPoolResetDirtyPages(pVM);
4529# endif
4530
4531 /* Mark the page as unlocked; allow flushing again. */
4532 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4533
4534 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4535 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4536 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4537 pVCpu->pgm.s.pShwPageCR3RC = 0;
4538 pVCpu->pgm.s.iShwUser = 0;
4539 pVCpu->pgm.s.iShwUserTable = 0;
4540 }
4541 pgmUnlock(pVM);
4542# endif
4543#endif /* !IN_RC*/
4544
4545 return rc;
4546}
4547
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette