VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 28112

Last change on this file since 28112 was 28094, checked in by vboxsync, 15 years ago

Compile fix

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 200.5 KB
Line 
1/* $Id: PGMAllBth.h 28094 2010-04-08 14:03:02Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * This file is a big challenge!
6 */
7
8/*
9 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
10 *
11 * This file is part of VirtualBox Open Source Edition (OSE), as
12 * available from http://www.virtualbox.org. This file is free software;
13 * you can redistribute it and/or modify it under the terms of the GNU
14 * General Public License (GPL) as published by the Free Software
15 * Foundation, in version 2 as it comes in the "COPYING" file of the
16 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
17 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
20 * Clara, CA 95054 USA or visit http://www.sun.com if you need
21 * additional information or have any questions.
22 */
23
24/*******************************************************************************
25* Internal Functions *
26*******************************************************************************/
27RT_C_DECLS_BEGIN
28PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
29PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
30PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
31PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
32PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
33PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
34PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
35PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
37#ifdef VBOX_STRICT
38PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
39#endif
40DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys);
41PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
42PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
43RT_C_DECLS_END
44
45
46/* Filter out some illegal combinations of guest and shadow paging, so we can remove redundant checks inside functions. */
47#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
48# error "Invalid combination; PAE guest implies PAE shadow"
49#endif
50
51#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
52 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
53# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
54#endif
55
56#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
57 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
58# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
59#endif
60
61#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
62 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
63# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
64#endif
65
66
67#ifndef IN_RING3
68/**
69 * #PF Handler for raw-mode guest execution.
70 *
71 * @returns VBox status code (appropriate for trap handling and GC return).
72 *
73 * @param pVCpu VMCPU Handle.
74 * @param uErr The trap error code.
75 * @param pRegFrame Trap register frame.
76 * @param pvFault The fault address.
77 * @param pfLockTaken PGM lock taken here or not (out)
78 */
79PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
80{
81 PVM pVM = pVCpu->CTX_SUFF(pVM);
82
83 *pfLockTaken = false;
84
85# if defined(IN_RC) && defined(VBOX_STRICT)
86 PGMDynCheckLocks(pVM);
87# endif
88
89# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
90 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
91 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
92
93# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE
94 /*
95 * Hide the instruction fetch trap indicator for now.
96 */
97 /** @todo NXE will change this and we must fix NXE in the switcher too! */
98 if (uErr & X86_TRAP_PF_ID)
99 {
100 uErr &= ~X86_TRAP_PF_ID;
101 TRPMSetErrorCode(pVCpu, uErr);
102 }
103# endif
104
105 /*
106 * Get PDs.
107 */
108 int rc;
109# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
110# if PGM_GST_TYPE == PGM_TYPE_32BIT
111 const unsigned iPDSrc = pvFault >> GST_PD_SHIFT;
112 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
113
114# elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64
115
116# if PGM_GST_TYPE == PGM_TYPE_PAE
117 unsigned iPDSrc = 0; /* initialized to shut up gcc */
118 X86PDPE PdpeSrc;
119 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, pvFault, &iPDSrc, &PdpeSrc);
120
121# elif PGM_GST_TYPE == PGM_TYPE_AMD64
122 unsigned iPDSrc = 0; /* initialized to shut up gcc */
123 PX86PML4E pPml4eSrc;
124 X86PDPE PdpeSrc;
125 PGSTPD pPDSrc;
126
127 pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc);
128 Assert(pPml4eSrc);
129# endif
130
131 /* Quick check for a valid guest trap. (PAE & AMD64) */
132 if (!pPDSrc)
133 {
134# if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64
135 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
136# else
137 LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK));
138# endif
139 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
140 TRPMSetErrorCode(pVCpu, uErr);
141 return VINF_EM_RAW_GUEST_TRAP;
142 }
143# endif
144
145# else /* !PGM_WITH_PAGING */
146 PGSTPD pPDSrc = NULL;
147 const unsigned iPDSrc = 0;
148# endif /* !PGM_WITH_PAGING */
149
150# if !defined(PGM_WITHOUT_MAPPINGS) && ((PGM_GST_TYPE == PGM_TYPE_32BIT) || (PGM_GST_TYPE == PGM_TYPE_PAE))
151 /*
152 * Check for write conflicts with our hypervisor mapping early on. If the guest happens to access a non-present page,
153 * where our hypervisor is currently mapped, then we'll create a #PF storm in the guest.
154 */
155 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW))
156 {
157 pgmLock(pVM);
158# if PGM_SHW_TYPE == PGM_TYPE_32BIT
159 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
160 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
161# else /* PGM_SHW_TYPE == PGM_TYPE_PAE */
162 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
163
164 PX86PDPAE pPDDst;
165# if PGM_GST_TYPE != PGM_TYPE_PAE
166 X86PDPE PdpeSrc;
167
168 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
169 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
170# endif
171 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst);
172 if (rc != VINF_SUCCESS)
173 {
174 pgmUnlock(pVM);
175 AssertRC(rc);
176 return rc;
177 }
178 Assert(pPDDst);
179# endif
180 if (pPDDst->a[iPDDst].u & PGM_PDFLAGS_MAPPING)
181 {
182 pgmUnlock(pVM);
183 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
184 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
185 return VINF_EM_RAW_EMULATE_INSTR;
186 }
187 pgmUnlock(pVM);
188 }
189# endif
190
191 /* First check for a genuine guest page fault. */
192# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
193 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
194 rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, &pPDSrc->a[iPDSrc], pvFault);
195 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e);
196 if (rc == VINF_EM_RAW_GUEST_TRAP)
197 {
198 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
199 = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
200 return rc;
201 }
202# endif /* PGM_WITH_PAGING */
203
204 /* Take the big lock now. */
205 *pfLockTaken = true;
206 pgmLock(pVM);
207
208 /* Fetch the guest PDE */
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
211# else
212 GSTPDE PdeSrc;
213 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
214 PdeSrc.n.u1Present = 1;
215 PdeSrc.n.u1Write = 1;
216 PdeSrc.n.u1Accessed = 1;
217 PdeSrc.n.u1User = 1;
218# endif
219
220# if PGM_SHW_TYPE == PGM_TYPE_32BIT
221 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
222 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
223
224# elif PGM_SHW_TYPE == PGM_TYPE_PAE
225 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
226
227 PX86PDPAE pPDDst;
228# if PGM_GST_TYPE != PGM_TYPE_PAE
229 X86PDPE PdpeSrc;
230
231 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
232 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
233# endif
234 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst);
235 if (rc != VINF_SUCCESS)
236 {
237 AssertRC(rc);
238 return rc;
239 }
240 Assert(pPDDst);
241
242# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
243 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
244 PX86PDPAE pPDDst;
245# if PGM_GST_TYPE == PGM_TYPE_PROT
246 /* AMD-V nested paging */
247 X86PML4E Pml4eSrc;
248 X86PDPE PdpeSrc;
249 PX86PML4E pPml4eSrc = &Pml4eSrc;
250
251 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
252 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
253 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
254# endif
255
256 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst);
257 if (rc != VINF_SUCCESS)
258 {
259 AssertRC(rc);
260 return rc;
261 }
262 Assert(pPDDst);
263
264# elif PGM_SHW_TYPE == PGM_TYPE_EPT
265 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
266 PEPTPD pPDDst;
267
268 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
269 if (rc != VINF_SUCCESS)
270 {
271 AssertRC(rc);
272 return rc;
273 }
274 Assert(pPDDst);
275# endif
276
277# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
278 /* Dirty page handling. */
279 if (uErr & X86_TRAP_PF_RW) /* write fault? */
280 {
281 /*
282 * If we successfully correct the write protection fault due to dirty bit
283 * tracking, then return immediately.
284 */
285 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
286 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault);
287 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
288 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
289 {
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
291 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
292 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
293 return VINF_SUCCESS;
294 }
295 }
296
297# if 0 /* rarely useful; leave for debugging. */
298 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
299# endif
300# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
301
302 /*
303 * A common case is the not-present error caused by lazy page table syncing.
304 *
305 * It is IMPORTANT that we weed out any access to non-present shadow PDEs here
306 * so we can safely assume that the shadow PT is present when calling SyncPage later.
307 *
308 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
309 * of mapping conflict and defer to SyncCR3 in R3.
310 * (Again, we do NOT support access handlers for non-present guest pages.)
311 *
312 */
313 Assert(PdeSrc.n.u1Present);
314 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
315 && !pPDDst->a[iPDDst].n.u1Present
316 )
317 {
318 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; });
319 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
320 LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0]));
321 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, pvFault);
322 if (RT_SUCCESS(rc))
323 {
324 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
325 return rc;
326 }
327 Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc));
328 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
329 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
330 return VINF_PGM_SYNC_CR3;
331 }
332
333# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
334 /*
335 * Check if this address is within any of our mappings.
336 *
337 * This is *very* fast and it's gonna save us a bit of effort below and prevent
338 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
339 * (BTW, it's impossible to have physical access handlers in a mapping.)
340 */
341 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
342 {
343 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
344 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
345 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
346 {
347 if (pvFault < pMapping->GCPtr)
348 break;
349 if (pvFault - pMapping->GCPtr < pMapping->cb)
350 {
351 /*
352 * The first thing we check is if we've got an undetected conflict.
353 */
354 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
355 {
356 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
357 while (iPT-- > 0)
358 if (pPDSrc->a[iPDSrc + iPT].n.u1Present)
359 {
360 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts);
361 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
362 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
363 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
364 return VINF_PGM_SYNC_CR3;
365 }
366 }
367
368 /*
369 * Check if the fault address is in a virtual page access handler range.
370 */
371 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
372 if ( pCur
373 && pvFault - pCur->Core.Key < pCur->cb
374 && uErr & X86_TRAP_PF_RW)
375 {
376# ifdef IN_RC
377 STAM_PROFILE_START(&pCur->Stat, h);
378 pgmUnlock(pVM);
379 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
380 pgmLock(pVM);
381 STAM_PROFILE_STOP(&pCur->Stat, h);
382# else
383 AssertFailed();
384 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
385# endif
386 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping);
387 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
388 return rc;
389 }
390
391 /*
392 * Pretend we're not here and let the guest handle the trap.
393 */
394 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
395 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping);
396 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
397 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
398 return VINF_EM_RAW_GUEST_TRAP;
399 }
400 }
401 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
402 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
403# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
404
405 /*
406 * Check if this fault address is flagged for special treatment,
407 * which means we'll have to figure out the physical address and
408 * check flags associated with it.
409 *
410 * ASSUME that we can limit any special access handling to pages
411 * in page tables which the guest believes to be present.
412 */
413 Assert(PdeSrc.n.u1Present);
414 {
415 RTGCPHYS GCPhys = NIL_RTGCPHYS;
416
417# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
418 if ( PdeSrc.b.u1Size
419# if PGM_GST_TYPE == PGM_TYPE_32BIT
420 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
421# endif
422 )
423 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc)
424 | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK));
425 else
426 {
427 PGSTPT pPTSrc;
428 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
429 if (RT_SUCCESS(rc))
430 {
431 unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK;
432 if (pPTSrc->a[iPTESrc].n.u1Present)
433 GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK;
434 }
435 }
436# else
437 /* No paging so the fault address is the physical address */
438 GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK);
439# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
440
441 /*
442 * If we have a GC address we'll check if it has any flags set.
443 */
444 if (GCPhys != NIL_RTGCPHYS)
445 {
446 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
447
448 PPGMPAGE pPage;
449 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
450 if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */
451 {
452 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
453 {
454 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
455 {
456 /*
457 * Physical page access handler.
458 */
459 const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK);
460 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
461 if (pCur)
462 {
463# ifdef PGM_SYNC_N_PAGES
464 /*
465 * If the region is write protected and we got a page not present fault, then sync
466 * the pages. If the fault was caused by a read, then restart the instruction.
467 * In case of write access continue to the GC write handler.
468 *
469 * ASSUMES that there is only one handler per page or that they have similar write properties.
470 */
471 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
472 && !(uErr & X86_TRAP_PF_P))
473 {
474 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
475 if ( RT_FAILURE(rc)
476 || !(uErr & X86_TRAP_PF_RW)
477 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
478 {
479 AssertRC(rc);
480 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
481 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
482 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
483 return rc;
484 }
485 }
486# endif
487
488 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
489 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
490 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
491
492# if defined(IN_RC) || defined(IN_RING0)
493 if (pCur->CTX_SUFF(pfnHandler))
494 {
495 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
496# ifdef IN_RING0
497 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
498# else
499 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
500# endif
501 bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
502 void *pvUser = pCur->CTX_SUFF(pvUser);
503
504 STAM_PROFILE_START(&pCur->Stat, h);
505 if (fLeaveLock)
506 pgmUnlock(pVM); /* @todo: Not entirely safe. */
507
508 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
509 if (fLeaveLock)
510 pgmLock(pVM);
511# ifdef VBOX_WITH_STATISTICS
512 pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
513 if (pCur)
514 STAM_PROFILE_STOP(&pCur->Stat, h);
515# else
516 pCur = NULL; /* might be invalid by now. */
517# endif
518
519 }
520 else
521# endif
522 rc = VINF_EM_RAW_EMULATE_INSTR;
523
524 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical);
525 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
526 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; });
527 return rc;
528 }
529 }
530# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
531 else
532 {
533# ifdef PGM_SYNC_N_PAGES
534 /*
535 * If the region is write protected and we got a page not present fault, then sync
536 * the pages. If the fault was caused by a read, then restart the instruction.
537 * In case of write access continue to the GC write handler.
538 */
539 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
540 && !(uErr & X86_TRAP_PF_P))
541 {
542 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
543 if ( RT_FAILURE(rc)
544 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
545 || !(uErr & X86_TRAP_PF_RW))
546 {
547 AssertRC(rc);
548 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
549 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
550 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
551 return rc;
552 }
553 }
554# endif
555 /*
556 * Ok, it's an virtual page access handler.
557 *
558 * Since it's faster to search by address, we'll do that first
559 * and then retry by GCPhys if that fails.
560 */
561 /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */
562 /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the
563 * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx)
564 */
565 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
566 if (pCur)
567 {
568 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
569 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
570 || !(uErr & X86_TRAP_PF_P)
571 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
572 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
573
574 if ( pvFault - pCur->Core.Key < pCur->cb
575 && ( uErr & X86_TRAP_PF_RW
576 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
577 {
578# ifdef IN_RC
579 STAM_PROFILE_START(&pCur->Stat, h);
580 pgmUnlock(pVM);
581 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
582 pgmLock(pVM);
583 STAM_PROFILE_STOP(&pCur->Stat, h);
584# else
585 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
586# endif
587 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual);
588 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
589 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
590 return rc;
591 }
592 /* Unhandled part of a monitored page */
593 }
594 else
595 {
596 /* Check by physical address. */
597 unsigned iPage;
598 rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK),
599 &pCur, &iPage);
600 Assert(RT_SUCCESS(rc) || !pCur);
601 if ( pCur
602 && ( uErr & X86_TRAP_PF_RW
603 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
604 {
605 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys);
606# ifdef IN_RC
607 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
608 Assert(off < pCur->cb);
609 STAM_PROFILE_START(&pCur->Stat, h);
610 pgmUnlock(pVM);
611 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
612 pgmLock(pVM);
613 STAM_PROFILE_STOP(&pCur->Stat, h);
614# else
615 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
616# endif
617 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
618 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
619 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
620 return rc;
621 }
622 }
623 }
624# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
625
626 /*
627 * There is a handled area of the page, but this fault doesn't belong to it.
628 * We must emulate the instruction.
629 *
630 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
631 * we first check if this was a page-not-present fault for a page with only
632 * write access handlers. Restart the instruction if it wasn't a write access.
633 */
634 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled);
635
636 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
637 && !(uErr & X86_TRAP_PF_P))
638 {
639 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
640 if ( RT_FAILURE(rc)
641 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
642 || !(uErr & X86_TRAP_PF_RW))
643 {
644 AssertRC(rc);
645 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
646 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
647 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
648 return rc;
649 }
650 }
651
652 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
653 * It's writing to an unhandled part of the LDT page several million times.
654 */
655 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
656 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
657 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
658 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
659 return rc;
660 } /* if any kind of handler */
661
662# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
663 if (uErr & X86_TRAP_PF_P)
664 {
665 /*
666 * The page isn't marked, but it might still be monitored by a virtual page access handler.
667 * (ASSUMES no temporary disabling of virtual handlers.)
668 */
669 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
670 * we should correct both the shadow page table and physical memory flags, and not only check for
671 * accesses within the handler region but for access to pages with virtual handlers. */
672 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
673 if (pCur)
674 {
675 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
676 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
677 || !(uErr & X86_TRAP_PF_P)
678 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
679 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
680
681 if ( pvFault - pCur->Core.Key < pCur->cb
682 && ( uErr & X86_TRAP_PF_RW
683 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
684 {
685# ifdef IN_RC
686 STAM_PROFILE_START(&pCur->Stat, h);
687 pgmUnlock(pVM);
688 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
689 pgmLock(pVM);
690 STAM_PROFILE_STOP(&pCur->Stat, h);
691# else
692 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
693# endif
694 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
695 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
696 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
697 return rc;
698 }
699 }
700 }
701# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
702 }
703 else
704 {
705 /*
706 * When the guest accesses invalid physical memory (e.g. probing
707 * of RAM or accessing a remapped MMIO range), then we'll fall
708 * back to the recompiler to emulate the instruction.
709 */
710 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
711 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid);
712 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
713 return VINF_EM_RAW_EMULATE_INSTR;
714 }
715
716 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
717
718# ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */
719 /*
720 * We are here only if page is present in Guest page tables and
721 * trap is not handled by our handlers.
722 *
723 * Check it for page out-of-sync situation.
724 */
725 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
726
727 if (!(uErr & X86_TRAP_PF_P))
728 {
729 /*
730 * Page is not present in our page tables.
731 * Try to sync it!
732 * BTW, fPageShw is invalid in this branch!
733 */
734 if (uErr & X86_TRAP_PF_US)
735 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
736 else /* supervisor */
737 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
738
739 if (PGM_PAGE_IS_BALLOONED(pPage))
740 {
741 /* Emulate reads from ballooned pages as they are not present in our shadow page tables. (required for e.g. Solaris guests; soft ecc, random nr generator) */
742 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
743 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
744 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
745 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
746 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
747 return rc;
748 }
749# if defined(LOG_ENABLED) && !defined(IN_RING0)
750 RTGCPHYS GCPhys2;
751 uint64_t fPageGst2;
752 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
753 Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
754 pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
755# endif /* LOG_ENABLED */
756
757# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
758 if (CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
759 {
760 uint64_t fPageGst;
761 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
762 if ( RT_SUCCESS(rc)
763 && !(fPageGst & X86_PTE_US))
764 {
765 /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */
766 if ( pvFault == (RTGCPTR)pRegFrame->eip
767 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
768# ifdef CSAM_DETECT_NEW_CODE_PAGES
769 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
770 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
771# endif /* CSAM_DETECT_NEW_CODE_PAGES */
772 )
773 {
774 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
775 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
776 if (rc != VINF_SUCCESS)
777 {
778 /*
779 * CSAM needs to perform a job in ring 3.
780 *
781 * Sync the page before going to the host context; otherwise we'll end up in a loop if
782 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
783 */
784 LogFlow(("CSAM ring 3 job\n"));
785 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
786 AssertRC(rc2);
787
788 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
789 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; });
790 return rc;
791 }
792 }
793# ifdef CSAM_DETECT_NEW_CODE_PAGES
794 else if ( uErr == X86_TRAP_PF_RW
795 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
796 && pRegFrame->ecx < 0x10000)
797 {
798 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
799 * to detect loading of new code pages.
800 */
801
802 /*
803 * Decode the instruction.
804 */
805 RTGCPTR PC;
806 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
807 if (rc == VINF_SUCCESS)
808 {
809 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
810 uint32_t cbOp;
811 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
812
813 /* For now we'll restrict this to rep movsw/d instructions */
814 if ( rc == VINF_SUCCESS
815 && pDis->pCurInstr->opcode == OP_MOVSWD
816 && (pDis->prefix & PREFIX_REP))
817 {
818 CSAMMarkPossibleCodePage(pVM, pvFault);
819 }
820 }
821 }
822# endif /* CSAM_DETECT_NEW_CODE_PAGES */
823
824 /*
825 * Mark this page as safe.
826 */
827 /** @todo not correct for pages that contain both code and data!! */
828 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
829 CSAMMarkPage(pVM, pvFault, true);
830 }
831 }
832# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
833 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr);
834 if (RT_SUCCESS(rc))
835 {
836 /* The page was successfully synced, return to the guest. */
837 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
838 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; });
839 return VINF_SUCCESS;
840 }
841 }
842 else /* uErr & X86_TRAP_PF_P: */
843 {
844 /*
845 * Write protected pages are make writable when the guest makes the first
846 * write to it. This happens for pages that are shared, write monitored
847 * and not yet allocated.
848 *
849 * Also, a side effect of not flushing global PDEs are out of sync pages due
850 * to physical monitored regions, that are no longer valid.
851 * Assume for now it only applies to the read/write flag.
852 */
853 if ( RT_SUCCESS(rc)
854 && (uErr & X86_TRAP_PF_RW))
855 {
856 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
857 {
858 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
859 Assert(!PGM_PAGE_IS_ZERO(pPage));
860 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
861
862 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
863 if (rc != VINF_SUCCESS)
864 {
865 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
866 return rc;
867 }
868 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
869 return VINF_EM_NO_MEMORY;
870 }
871
872# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
873 /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */
874 if ( CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
875 && ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG))
876 {
877 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
878 uint64_t fPageGst;
879 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
880 if ( RT_SUCCESS(rc)
881 && !(fPageGst & X86_PTE_RW))
882 {
883 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
884 if (RT_SUCCESS(rc))
885 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ);
886 else
887 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3);
888 return rc;
889 }
890 AssertMsg(RT_SUCCESS(rc), ("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc));
891 }
892# endif
893 /// @todo count the above case; else
894 if (uErr & X86_TRAP_PF_US)
895 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
896 else /* supervisor */
897 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
898
899 /*
900 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
901 * page is not present, which is not true in this case.
902 */
903 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr);
904 if (RT_SUCCESS(rc))
905 {
906 /*
907 * Page was successfully synced, return to guest.
908 * First invalidate the page as it might be in the TLB.
909 */
910# if PGM_SHW_TYPE == PGM_TYPE_EPT
911 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
912# else
913 PGM_INVL_PG(pVCpu, pvFault);
914# endif
915# ifdef VBOX_STRICT
916 RTGCPHYS GCPhys2;
917 uint64_t fPageGst;
918 if (!HWACCMIsNestedPagingActive(pVM))
919 {
920 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
921 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%d fPageGst=%RX64\n"));
922 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
923 }
924 uint64_t fPageShw;
925 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
926 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
927# endif /* VBOX_STRICT */
928 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
929 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
930 return VINF_SUCCESS;
931 }
932 }
933
934# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
935# ifdef VBOX_STRICT
936 /*
937 * Check for VMM page flags vs. Guest page flags consistency.
938 * Currently only for debug purposes.
939 */
940 if (RT_SUCCESS(rc))
941 {
942 /* Get guest page flags. */
943 uint64_t fPageGst;
944 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
945 if (RT_SUCCESS(rc))
946 {
947 uint64_t fPageShw;
948 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
949
950 /*
951 * Compare page flags.
952 * Note: we have AVL, A, D bits desynched.
953 */
954 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
955 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
956 }
957 else
958 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
959 }
960 else
961 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
962# endif /* VBOX_STRICT */
963# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
964 }
965 STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
966# endif /* PGM_OUT_OF_SYNC_IN_GC */
967 }
968 else /* GCPhys == NIL_RTGCPHYS */
969 {
970 /*
971 * Page not present in Guest OS or invalid page table address.
972 * This is potential virtual page access handler food.
973 *
974 * For the present we'll say that our access handlers don't
975 * work for this case - we've already discarded the page table
976 * not present case which is identical to this.
977 *
978 * When we perchance find we need this, we will probably have AVL
979 * trees (offset based) to operate on and we can measure their speed
980 * agains mapping a page table and probably rearrange this handling
981 * a bit. (Like, searching virtual ranges before checking the
982 * physical address.)
983 */
984 }
985 }
986
987# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
988 /*
989 * Conclusion, this is a guest trap.
990 */
991 LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
992 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh);
993 return VINF_EM_RAW_GUEST_TRAP;
994# else
995 /* present, but not a monitored page; perhaps the guest is probing physical memory */
996 return VINF_EM_RAW_EMULATE_INSTR;
997# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
998
999
1000# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1001
1002 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1003 return VERR_INTERNAL_ERROR;
1004# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1005}
1006#endif /* !IN_RING3 */
1007
1008
1009/**
1010 * Emulation of the invlpg instruction.
1011 *
1012 *
1013 * @returns VBox status code.
1014 *
1015 * @param pVCpu The VMCPU handle.
1016 * @param GCPtrPage Page to invalidate.
1017 *
1018 * @remark ASSUMES that the guest is updating before invalidating. This order
1019 * isn't required by the CPU, so this is speculative and could cause
1020 * trouble.
1021 * @remark No TLB shootdown is done on any other VCPU as we assume that
1022 * invlpg emulation is the *only* reason for calling this function.
1023 * (The guest has to shoot down TLB entries on other CPUs itself)
1024 * Currently true, but keep in mind!
1025 *
1026 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1027 */
1028PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1029{
1030#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1031 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1032 && PGM_SHW_TYPE != PGM_TYPE_EPT
1033 int rc;
1034 PVM pVM = pVCpu->CTX_SUFF(pVM);
1035 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1036
1037 Assert(PGMIsLockOwner(pVM));
1038
1039 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1040
1041# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1042 if (pPool->cDirtyPages)
1043 pgmPoolResetDirtyPages(pVM);
1044# endif
1045
1046 /*
1047 * Get the shadow PD entry and skip out if this PD isn't present.
1048 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1049 */
1050# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1051 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1052 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1053
1054 /* Fetch the pgm pool shadow descriptor. */
1055 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1056 Assert(pShwPde);
1057
1058# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1059 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1060 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
1061
1062 /* If the shadow PDPE isn't present, then skip the invalidate. */
1063 if (!pPdptDst->a[iPdpt].n.u1Present)
1064 {
1065 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1066 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1067 return VINF_SUCCESS;
1068 }
1069
1070 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1071 PPGMPOOLPAGE pShwPde = NULL;
1072 PX86PDPAE pPDDst;
1073
1074 /* Fetch the pgm pool shadow descriptor. */
1075 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1076 AssertRCSuccessReturn(rc, rc);
1077 Assert(pShwPde);
1078
1079 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1080 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1081
1082# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1083 /* PML4 */
1084 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1085 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1086 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1087 PX86PDPAE pPDDst;
1088 PX86PDPT pPdptDst;
1089 PX86PML4E pPml4eDst;
1090 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1091 if (rc != VINF_SUCCESS)
1092 {
1093 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1094 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1095 return VINF_SUCCESS;
1096 }
1097 Assert(pPDDst);
1098
1099 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1100 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1101
1102 if (!pPdpeDst->n.u1Present)
1103 {
1104 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1105 return VINF_SUCCESS;
1106 }
1107
1108 /* Fetch the pgm pool shadow descriptor. */
1109 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1110 Assert(pShwPde);
1111
1112# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1113
1114 const SHWPDE PdeDst = *pPdeDst;
1115 if (!PdeDst.n.u1Present)
1116 {
1117 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1118 return VINF_SUCCESS;
1119 }
1120
1121# if defined(IN_RC)
1122 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1123 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1124# endif
1125
1126 /*
1127 * Get the guest PD entry and calc big page.
1128 */
1129# if PGM_GST_TYPE == PGM_TYPE_32BIT
1130 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
1131 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1132 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1133# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1134 unsigned iPDSrc = 0;
1135# if PGM_GST_TYPE == PGM_TYPE_PAE
1136 X86PDPE PdpeSrc;
1137 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
1138# else /* AMD64 */
1139 PX86PML4E pPml4eSrc;
1140 X86PDPE PdpeSrc;
1141 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
1142# endif
1143 GSTPDE PdeSrc;
1144
1145 if (pPDSrc)
1146 PdeSrc = pPDSrc->a[iPDSrc];
1147 else
1148 PdeSrc.u = 0;
1149# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1150
1151# if PGM_GST_TYPE == PGM_TYPE_32BIT
1152 const bool fIsBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1153# else
1154 const bool fIsBigPage = PdeSrc.b.u1Size;
1155# endif
1156
1157# ifdef IN_RING3
1158 /*
1159 * If a CR3 Sync is pending we may ignore the invalidate page operation
1160 * depending on the kind of sync and if it's a global page or not.
1161 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1162 */
1163# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1164 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1165 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1166 && fIsBigPage
1167 && PdeSrc.b.u1Global
1168 )
1169 )
1170# else
1171 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1172# endif
1173 {
1174 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
1175 return VINF_SUCCESS;
1176 }
1177# endif /* IN_RING3 */
1178
1179 /*
1180 * Deal with the Guest PDE.
1181 */
1182 rc = VINF_SUCCESS;
1183 if (PdeSrc.n.u1Present)
1184 {
1185 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1186 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1187# ifndef PGM_WITHOUT_MAPPING
1188 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1189 {
1190 /*
1191 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1192 */
1193 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1194 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1195 pgmLock(pVM);
1196 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1197 pgmUnlock(pVM);
1198 }
1199 else
1200# endif /* !PGM_WITHOUT_MAPPING */
1201 if (!fIsBigPage)
1202 {
1203 /*
1204 * 4KB - page.
1205 */
1206 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1207 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1208
1209# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1210 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1211 if (pShwPage->cModifications)
1212 pShwPage->cModifications = 1;
1213# endif
1214
1215# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1216 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1217 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1218# endif
1219 if (pShwPage->GCPhys == GCPhys)
1220 {
1221# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1222 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1223 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1224 if (pPT->a[iPTEDst].n.u1Present)
1225 {
1226 /* This is very unlikely with caching/monitoring enabled. */
1227 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK);
1228 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1229 }
1230# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1231 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1232 if (RT_SUCCESS(rc))
1233 rc = VINF_SUCCESS;
1234# endif
1235 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
1236 PGM_INVL_PG(pVCpu, GCPtrPage);
1237 }
1238 else
1239 {
1240 /*
1241 * The page table address changed.
1242 */
1243 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1244 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1245 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1246 ASMAtomicWriteSize(pPdeDst, 0);
1247 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1248 PGM_INVL_VCPU_TLBS(pVCpu);
1249 }
1250 }
1251 else
1252 {
1253 /*
1254 * 2/4MB - page.
1255 */
1256 /* Before freeing the page, check if anything really changed. */
1257 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1258 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1259# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1260 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1261 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1262# endif
1263 if ( pShwPage->GCPhys == GCPhys
1264 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1265 {
1266 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1267 /** @todo PAT */
1268 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1269 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1270 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1271 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1272 {
1273 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1274 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1275# if defined(IN_RC)
1276 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1277 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1278# endif
1279 return VINF_SUCCESS;
1280 }
1281 }
1282
1283 /*
1284 * Ok, the page table is present and it's been changed in the guest.
1285 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1286 * We could do this for some flushes in GC too, but we need an algorithm for
1287 * deciding which 4MB pages containing code likely to be executed very soon.
1288 */
1289 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1290 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1291 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1292 ASMAtomicWriteSize(pPdeDst, 0);
1293 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
1294 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1295 }
1296 }
1297 else
1298 {
1299 /*
1300 * Page directory is not present, mark shadow PDE not present.
1301 */
1302 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1303 {
1304 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1305 ASMAtomicWriteSize(pPdeDst, 0);
1306 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
1307 PGM_INVL_PG(pVCpu, GCPtrPage);
1308 }
1309 else
1310 {
1311 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1312 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
1313 }
1314 }
1315# if defined(IN_RC)
1316 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1317 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1318# endif
1319 return rc;
1320
1321#else /* guest real and protected mode */
1322 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1323 return VINF_SUCCESS;
1324#endif
1325}
1326
1327
1328/**
1329 * Update the tracking of shadowed pages.
1330 *
1331 * @param pVCpu The VMCPU handle.
1332 * @param pShwPage The shadow page.
1333 * @param HCPhys The physical page we is being dereferenced.
1334 */
1335DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys)
1336{
1337 PVM pVM = pVCpu->CTX_SUFF(pVM);
1338
1339 STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
1340 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1341
1342 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1343 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1344 * 2. write protect all shadowed pages. I.e. implement caching.
1345 */
1346 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1347
1348 /*
1349 * Find the guest address.
1350 */
1351 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1352 pRam;
1353 pRam = pRam->CTX_SUFF(pNext))
1354 {
1355 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1356 while (iPage-- > 0)
1357 {
1358 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1359 {
1360 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1361
1362 Assert(pShwPage->cPresent);
1363 Assert(pPool->cPresent);
1364 pShwPage->cPresent--;
1365 pPool->cPresent--;
1366
1367 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage]);
1368 STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
1369 return;
1370 }
1371 }
1372 }
1373
1374 for (;;)
1375 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1376}
1377
1378
1379/**
1380 * Update the tracking of shadowed pages.
1381 *
1382 * @param pVCpu The VMCPU handle.
1383 * @param pShwPage The shadow page.
1384 * @param u16 The top 16-bit of the pPage->HCPhys.
1385 * @param pPage Pointer to the guest page. this will be modified.
1386 * @param iPTDst The index into the shadow table.
1387 */
1388DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1389{
1390 PVM pVM = pVCpu->CTX_SUFF(pVM);
1391 /*
1392 * Just deal with the simple first time here.
1393 */
1394 if (!u16)
1395 {
1396 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
1397 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1398 }
1399 else
1400 u16 = pgmPoolTrackPhysExtAddref(pVM, u16, pShwPage->idx);
1401
1402 /* write back */
1403 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1404 PGM_PAGE_SET_TRACKING(pPage, u16);
1405
1406 /* update statistics. */
1407 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1408 pShwPage->cPresent++;
1409 if (pShwPage->iFirstPresent > iPTDst)
1410 pShwPage->iFirstPresent = iPTDst;
1411}
1412
1413
1414/**
1415 * Creates a 4K shadow page for a guest page.
1416 *
1417 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1418 * physical address. The PdeSrc argument only the flags are used. No page structured
1419 * will be mapped in this function.
1420 *
1421 * @param pVCpu The VMCPU handle.
1422 * @param pPteDst Destination page table entry.
1423 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1424 * Can safely assume that only the flags are being used.
1425 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1426 * @param pShwPage Pointer to the shadow page.
1427 * @param iPTDst The index into the shadow table.
1428 *
1429 * @remark Not used for 2/4MB pages!
1430 */
1431DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1432{
1433 if (PteSrc.n.u1Present)
1434 {
1435 PVM pVM = pVCpu->CTX_SUFF(pVM);
1436
1437# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1438 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1439 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1440 if (pShwPage->fDirty)
1441 {
1442 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1443 PX86PTPAE pGstPT;
1444
1445 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1446 pGstPT->a[iPTDst].u = PteSrc.u;
1447 }
1448# endif
1449 /*
1450 * Find the ram range.
1451 */
1452 PPGMPAGE pPage;
1453 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1454 if (RT_SUCCESS(rc))
1455 {
1456 /* Ignore ballooned pages. Don't return errors or use a fatal assert here as part of a shadow sync range might included ballooned pages. */
1457 if (PGM_PAGE_IS_BALLOONED(pPage))
1458 return;
1459
1460#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1461 /* Try to make the page writable if necessary. */
1462 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1463 && ( PGM_PAGE_IS_ZERO(pPage)
1464 || ( PteSrc.n.u1Write
1465 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1466# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1467 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1468# endif
1469 )
1470 )
1471 )
1472 {
1473 rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1474 AssertRC(rc);
1475 }
1476#endif
1477
1478 /** @todo investiage PWT, PCD and PAT. */
1479 /*
1480 * Make page table entry.
1481 */
1482 SHWPTE PteDst;
1483 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1484 {
1485 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. */
1486 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1487 {
1488#if PGM_SHW_TYPE == PGM_TYPE_EPT
1489 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1490 PteDst.n.u1Present = 1;
1491 PteDst.n.u1Execute = 1;
1492 PteDst.n.u1IgnorePAT = 1;
1493 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1494 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1495#else
1496 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1497 | PGM_PAGE_GET_HCPHYS(pPage);
1498#endif
1499 }
1500 else
1501 {
1502 LogFlow(("SyncPageWorker: monitored page (%RHp) -> mark not present\n", PGM_PAGE_GET_HCPHYS(pPage)));
1503 PteDst.u = 0;
1504 }
1505 /** @todo count these two kinds. */
1506 }
1507 else
1508 {
1509#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1510 /*
1511 * If the page or page directory entry is not marked accessed,
1512 * we mark the page not present.
1513 */
1514 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1515 {
1516 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1517 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage));
1518 PteDst.u = 0;
1519 }
1520 else
1521 /*
1522 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1523 * when the page is modified.
1524 */
1525 if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1526 {
1527 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage));
1528 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1529 | PGM_PAGE_GET_HCPHYS(pPage)
1530 | PGM_PTFLAGS_TRACK_DIRTY;
1531 }
1532 else
1533#endif
1534 {
1535 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
1536#if PGM_SHW_TYPE == PGM_TYPE_EPT
1537 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1538 PteDst.n.u1Present = 1;
1539 PteDst.n.u1Write = 1;
1540 PteDst.n.u1Execute = 1;
1541 PteDst.n.u1IgnorePAT = 1;
1542 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1543 /* PteDst.n.u1Size = 0 */
1544#else
1545 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1546 | PGM_PAGE_GET_HCPHYS(pPage);
1547#endif
1548 }
1549 }
1550
1551 /*
1552 * Make sure only allocated pages are mapped writable.
1553 */
1554 if ( PteDst.n.u1Write
1555 && PteDst.n.u1Present
1556 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1557 {
1558 /* Still applies to shared pages. */
1559 Assert(!PGM_PAGE_IS_ZERO(pPage));
1560 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. */
1561 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1562 }
1563
1564 /*
1565 * Keep user track up to date.
1566 */
1567 if (PteDst.n.u1Present)
1568 {
1569 if (!pPteDst->n.u1Present)
1570 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1571 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1572 {
1573 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1574 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1575 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1576 }
1577 }
1578 else if (pPteDst->n.u1Present)
1579 {
1580 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1581 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1582 }
1583
1584 /*
1585 * Update statistics and commit the entry.
1586 */
1587#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1588 if (!PteSrc.n.u1Global)
1589 pShwPage->fSeenNonGlobal = true;
1590#endif
1591 ASMAtomicWriteSize(pPteDst, PteDst.u);
1592 }
1593 /* else MMIO or invalid page, we must handle them manually in the #PF handler. */
1594 /** @todo count these. */
1595 }
1596 else
1597 {
1598 /*
1599 * Page not-present.
1600 */
1601 Log2(("SyncPageWorker: page not present in Pte\n"));
1602 /* Keep user track up to date. */
1603 if (pPteDst->n.u1Present)
1604 {
1605 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1606 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK);
1607 }
1608 ASMAtomicWriteSize(pPteDst, 0);
1609 /** @todo count these. */
1610 }
1611}
1612
1613
1614/**
1615 * Syncs a guest OS page.
1616 *
1617 * There are no conflicts at this point, neither is there any need for
1618 * page table allocations.
1619 *
1620 * @returns VBox status code.
1621 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1622 * @param pVCpu The VMCPU handle.
1623 * @param PdeSrc Page directory entry of the guest.
1624 * @param GCPtrPage Guest context page address.
1625 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1626 * @param uErr Fault error (X86_TRAP_PF_*).
1627 */
1628PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1629{
1630 PVM pVM = pVCpu->CTX_SUFF(pVM);
1631 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1632 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1633
1634 Assert(PGMIsLockOwner(pVM));
1635
1636#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1637 || PGM_GST_TYPE == PGM_TYPE_PAE \
1638 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1639 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1640 && PGM_SHW_TYPE != PGM_TYPE_EPT
1641
1642 /*
1643 * Assert preconditions.
1644 */
1645 Assert(PdeSrc.n.u1Present);
1646 Assert(cPages);
1647# if 0 /* rarely useful; leave for debugging. */
1648 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1649# endif
1650
1651 /*
1652 * Get the shadow PDE, find the shadow page table in the pool.
1653 */
1654# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1655 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1656 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1657
1658 /* Fetch the pgm pool shadow descriptor. */
1659 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1660 Assert(pShwPde);
1661
1662# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1663 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1664 PPGMPOOLPAGE pShwPde = NULL;
1665 PX86PDPAE pPDDst;
1666
1667 /* Fetch the pgm pool shadow descriptor. */
1668 int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1669 AssertRCSuccessReturn(rc2, rc2);
1670 Assert(pShwPde);
1671
1672 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1673 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1674
1675# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1676 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1677 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1678 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1679 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1680
1681 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1682 AssertRCSuccessReturn(rc2, rc2);
1683 Assert(pPDDst && pPdptDst);
1684 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1685# endif
1686 SHWPDE PdeDst = *pPdeDst;
1687
1688 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1689 if (!PdeDst.n.u1Present)
1690 {
1691 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1692 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
1693 return VINF_SUCCESS; /* force the instruction to be executed again. */
1694 }
1695
1696 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1697 Assert(pShwPage);
1698
1699# if PGM_GST_TYPE == PGM_TYPE_AMD64
1700 /* Fetch the pgm pool shadow descriptor. */
1701 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1702 Assert(pShwPde);
1703# endif
1704
1705# if defined(IN_RC)
1706 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1707 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1708# endif
1709
1710 /*
1711 * Check that the page is present and that the shadow PDE isn't out of sync.
1712 */
1713# if PGM_GST_TYPE == PGM_TYPE_32BIT
1714 const bool fBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu);
1715# else
1716 const bool fBigPage = PdeSrc.b.u1Size;
1717# endif
1718 RTGCPHYS GCPhys;
1719 if (!fBigPage)
1720 {
1721 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1722# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1723 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1724 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1725# endif
1726 }
1727 else
1728 {
1729 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
1730# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1731 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1732 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1733# endif
1734 }
1735 if ( pShwPage->GCPhys == GCPhys
1736 && PdeSrc.n.u1Present
1737 && (PdeSrc.n.u1User == PdeDst.n.u1User)
1738 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1739# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1740 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !CPUMIsGuestNXEnabled(pVCpu))
1741# endif
1742 )
1743 {
1744 /*
1745 * Check that the PDE is marked accessed already.
1746 * Since we set the accessed bit *before* getting here on a #PF, this
1747 * check is only meant for dealing with non-#PF'ing paths.
1748 */
1749 if (PdeSrc.n.u1Accessed)
1750 {
1751 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1752 if (!fBigPage)
1753 {
1754 /*
1755 * 4KB Page - Map the guest page table.
1756 */
1757 PGSTPT pPTSrc;
1758 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1759 if (RT_SUCCESS(rc))
1760 {
1761# ifdef PGM_SYNC_N_PAGES
1762 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1763 if ( cPages > 1
1764 && !(uErr & X86_TRAP_PF_P)
1765 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1766 {
1767 /*
1768 * This code path is currently only taken when the caller is PGMTrap0eHandler
1769 * for non-present pages!
1770 *
1771 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1772 * deal with locality.
1773 */
1774 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1775# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1776 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1777 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1778# else
1779 const unsigned offPTSrc = 0;
1780# endif
1781 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1782 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1783 iPTDst = 0;
1784 else
1785 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1786 for (; iPTDst < iPTDstEnd; iPTDst++)
1787 {
1788 if (!pPTDst->a[iPTDst].n.u1Present)
1789 {
1790 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1791 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1792 NOREF(GCPtrCurPage);
1793#ifndef IN_RING0
1794 /*
1795 * Assuming kernel code will be marked as supervisor - and not as user level
1796 * and executed using a conforming code selector - And marked as readonly.
1797 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1798 */
1799 PPGMPAGE pPage;
1800 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1801 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1802 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1803 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1804 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1805 )
1806#endif /* else: CSAM not active */
1807 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1808 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1809 GCPtrCurPage, PteSrc.n.u1Present,
1810 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1811 PteSrc.n.u1User & PdeSrc.n.u1User,
1812 (uint64_t)PteSrc.u,
1813 (uint64_t)pPTDst->a[iPTDst].u,
1814 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1815 }
1816 }
1817 }
1818 else
1819# endif /* PGM_SYNC_N_PAGES */
1820 {
1821 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1822 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1823 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1824 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1825 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1826 GCPtrPage, PteSrc.n.u1Present,
1827 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1828 PteSrc.n.u1User & PdeSrc.n.u1User,
1829 (uint64_t)PteSrc.u,
1830 (uint64_t)pPTDst->a[iPTDst].u,
1831 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1832 }
1833 }
1834 else /* MMIO or invalid page: emulated in #PF handler. */
1835 {
1836 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1837 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1838 }
1839 }
1840 else
1841 {
1842 /*
1843 * 4/2MB page - lazy syncing shadow 4K pages.
1844 * (There are many causes of getting here, it's no longer only CSAM.)
1845 */
1846 /* Calculate the GC physical address of this 4KB shadow page. */
1847 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1848 /* Find ram range. */
1849 PPGMPAGE pPage;
1850 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1851 if (RT_SUCCESS(rc))
1852 {
1853 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1854
1855# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1856 /* Try to make the page writable if necessary. */
1857 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1858 && ( PGM_PAGE_IS_ZERO(pPage)
1859 || ( PdeSrc.n.u1Write
1860 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1861# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1862 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1863# endif
1864 )
1865 )
1866 )
1867 {
1868 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1869 AssertRC(rc);
1870 }
1871# endif
1872
1873 /*
1874 * Make shadow PTE entry.
1875 */
1876 SHWPTE PteDst;
1877 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1878 | PGM_PAGE_GET_HCPHYS(pPage);
1879 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1880 {
1881 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1882 PteDst.n.u1Write = 0;
1883 else
1884 PteDst.u = 0;
1885 }
1886
1887 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1888 if ( PteDst.n.u1Present
1889 && !pPTDst->a[iPTDst].n.u1Present)
1890 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1891
1892 /* Make sure only allocated pages are mapped writable. */
1893 if ( PteDst.n.u1Write
1894 && PteDst.n.u1Present
1895 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1896 {
1897 /* Still applies to shared pages. */
1898 Assert(!PGM_PAGE_IS_ZERO(pPage));
1899 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1900 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1901 }
1902
1903 ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
1904
1905 /*
1906 * If the page is not flagged as dirty and is writable, then make it read-only
1907 * at PD level, so we can set the dirty bit when the page is modified.
1908 *
1909 * ASSUMES that page access handlers are implemented on page table entry level.
1910 * Thus we will first catch the dirty access and set PDE.D and restart. If
1911 * there is an access handler, we'll trap again and let it work on the problem.
1912 */
1913 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1914 * As for invlpg, it simply frees the whole shadow PT.
1915 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1916 if ( !PdeSrc.b.u1Dirty
1917 && PdeSrc.b.u1Write)
1918 {
1919 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
1920 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1921 PdeDst.n.u1Write = 0;
1922 }
1923 else
1924 {
1925 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1926 PdeDst.n.u1Write = PdeSrc.n.u1Write;
1927 }
1928 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
1929 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
1930 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
1931 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1932 }
1933 else
1934 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
1935 }
1936# if defined(IN_RC)
1937 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1938 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1939# endif
1940 return VINF_SUCCESS;
1941 }
1942 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
1943 }
1944 else
1945 {
1946 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
1947 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
1948 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
1949 }
1950
1951 /*
1952 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
1953 * Yea, I'm lazy.
1954 */
1955 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
1956 ASMAtomicWriteSize(pPdeDst, 0);
1957
1958# if defined(IN_RC)
1959 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1960 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1961# endif
1962 PGM_INVL_VCPU_TLBS(pVCpu);
1963 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
1964
1965#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
1966 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1967 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
1968 && !defined(IN_RC)
1969
1970# ifdef PGM_SYNC_N_PAGES
1971 /*
1972 * Get the shadow PDE, find the shadow page table in the pool.
1973 */
1974# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1975 X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
1976
1977# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1978 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
1979
1980# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1981 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1982 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
1983 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1984 X86PDEPAE PdeDst;
1985 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1986
1987 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1988 AssertRCSuccessReturn(rc, rc);
1989 Assert(pPDDst && pPdptDst);
1990 PdeDst = pPDDst->a[iPDDst];
1991# elif PGM_SHW_TYPE == PGM_TYPE_EPT
1992 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
1993 PEPTPD pPDDst;
1994 EPTPDE PdeDst;
1995
1996 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
1997 if (rc != VINF_SUCCESS)
1998 {
1999 AssertRC(rc);
2000 return rc;
2001 }
2002 Assert(pPDDst);
2003 PdeDst = pPDDst->a[iPDDst];
2004# endif
2005 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2006 if (!PdeDst.n.u1Present)
2007 {
2008 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2009 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2010 return VINF_SUCCESS; /* force the instruction to be executed again. */
2011 }
2012
2013 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2014 if (PdeDst.n.u1Size)
2015 {
2016 Assert(HWACCMIsNestedPagingActive(pVM));
2017 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2018 return VINF_SUCCESS;
2019 }
2020
2021 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2022 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2023
2024 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2025 if ( cPages > 1
2026 && !(uErr & X86_TRAP_PF_P)
2027 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2028 {
2029 /*
2030 * This code path is currently only taken when the caller is PGMTrap0eHandler
2031 * for non-present pages!
2032 *
2033 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2034 * deal with locality.
2035 */
2036 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2037 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2038 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2039 iPTDst = 0;
2040 else
2041 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2042 for (; iPTDst < iPTDstEnd; iPTDst++)
2043 {
2044 if (!pPTDst->a[iPTDst].n.u1Present)
2045 {
2046 GSTPTE PteSrc;
2047
2048 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2049
2050 /* Fake the page table entry */
2051 PteSrc.u = GCPtrCurPage;
2052 PteSrc.n.u1Present = 1;
2053 PteSrc.n.u1Dirty = 1;
2054 PteSrc.n.u1Accessed = 1;
2055 PteSrc.n.u1Write = 1;
2056 PteSrc.n.u1User = 1;
2057
2058 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2059
2060 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2061 GCPtrCurPage, PteSrc.n.u1Present,
2062 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2063 PteSrc.n.u1User & PdeSrc.n.u1User,
2064 (uint64_t)PteSrc.u,
2065 (uint64_t)pPTDst->a[iPTDst].u,
2066 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2067
2068 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2069 break;
2070 }
2071 else
2072 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
2073 }
2074 }
2075 else
2076# endif /* PGM_SYNC_N_PAGES */
2077 {
2078 GSTPTE PteSrc;
2079 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2080 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2081
2082 /* Fake the page table entry */
2083 PteSrc.u = GCPtrCurPage;
2084 PteSrc.n.u1Present = 1;
2085 PteSrc.n.u1Dirty = 1;
2086 PteSrc.n.u1Accessed = 1;
2087 PteSrc.n.u1Write = 1;
2088 PteSrc.n.u1User = 1;
2089 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2090
2091 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2092 GCPtrPage, PteSrc.n.u1Present,
2093 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2094 PteSrc.n.u1User & PdeSrc.n.u1User,
2095 (uint64_t)PteSrc.u,
2096 (uint64_t)pPTDst->a[iPTDst].u,
2097 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2098 }
2099 return VINF_SUCCESS;
2100
2101#else
2102 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2103 return VERR_INTERNAL_ERROR;
2104#endif
2105}
2106
2107
2108#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2109/**
2110 * Investigate page fault and handle write protection page faults caused by
2111 * dirty bit tracking.
2112 *
2113 * @returns VBox status code.
2114 * @param pVCpu The VMCPU handle.
2115 * @param uErr Page fault error code.
2116 * @param pPdeSrc Guest page directory entry.
2117 * @param GCPtrPage Guest context page address.
2118 */
2119PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2120{
2121 bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
2122 bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
2123 bool fMaybeWriteProtFault = fWriteFault && (fUserLevelFault || CPUMIsGuestR0WriteProtEnabled(pVCpu));
2124# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2125 bool fMaybeNXEFault = (uErr & X86_TRAP_PF_ID) && CPUMIsGuestNXEnabled(pVCpu);
2126# endif
2127 unsigned uPageFaultLevel;
2128 int rc;
2129 PVM pVM = pVCpu->CTX_SUFF(pVM);
2130
2131 LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
2132
2133# if PGM_GST_TYPE == PGM_TYPE_PAE \
2134 || PGM_GST_TYPE == PGM_TYPE_AMD64
2135
2136# if PGM_GST_TYPE == PGM_TYPE_AMD64
2137 PX86PML4E pPml4eSrc;
2138 PX86PDPE pPdpeSrc;
2139
2140 pPdpeSrc = pgmGstGetLongModePDPTPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc);
2141 Assert(pPml4eSrc);
2142
2143 /*
2144 * Real page fault? (PML4E level)
2145 */
2146 if ( (uErr & X86_TRAP_PF_RSVD)
2147 || !pPml4eSrc->n.u1Present
2148 || (fMaybeWriteProtFault && !pPml4eSrc->n.u1Write)
2149 || (fMaybeNXEFault && pPml4eSrc->n.u1NoExecute)
2150 || (fUserLevelFault && !pPml4eSrc->n.u1User)
2151 )
2152 {
2153 uPageFaultLevel = 0;
2154 goto l_UpperLevelPageFault;
2155 }
2156 Assert(pPdpeSrc);
2157
2158# else /* PAE */
2159 PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(&pVCpu->pgm.s, GCPtrPage);
2160# endif /* PAE */
2161
2162 /*
2163 * Real page fault? (PDPE level)
2164 */
2165 if ( (uErr & X86_TRAP_PF_RSVD)
2166 || !pPdpeSrc->n.u1Present
2167# if PGM_GST_TYPE == PGM_TYPE_AMD64 /* NX, r/w, u/s bits in the PDPE are long mode only */
2168 || (fMaybeWriteProtFault && !pPdpeSrc->lm.u1Write)
2169 || (fMaybeNXEFault && pPdpeSrc->lm.u1NoExecute)
2170 || (fUserLevelFault && !pPdpeSrc->lm.u1User)
2171# endif
2172 )
2173 {
2174 uPageFaultLevel = 1;
2175 goto l_UpperLevelPageFault;
2176 }
2177# endif
2178
2179 /*
2180 * Real page fault? (PDE level)
2181 */
2182 if ( (uErr & X86_TRAP_PF_RSVD)
2183 || !pPdeSrc->n.u1Present
2184 || (fMaybeWriteProtFault && !pPdeSrc->n.u1Write)
2185# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2186 || (fMaybeNXEFault && pPdeSrc->n.u1NoExecute)
2187# endif
2188 || (fUserLevelFault && !pPdeSrc->n.u1User) )
2189 {
2190 uPageFaultLevel = 2;
2191 goto l_UpperLevelPageFault;
2192 }
2193
2194 /*
2195 * First check the easy case where the page directory has been marked read-only to track
2196 * the dirty bit of an emulated BIG page
2197 */
2198 if ( pPdeSrc->b.u1Size
2199# if PGM_GST_TYPE == PGM_TYPE_32BIT
2200 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2201# endif
2202 )
2203 {
2204 /* Mark guest page directory as accessed */
2205# if PGM_GST_TYPE == PGM_TYPE_AMD64
2206 pPml4eSrc->n.u1Accessed = 1;
2207 pPdpeSrc->lm.u1Accessed = 1;
2208# endif
2209 pPdeSrc->b.u1Accessed = 1;
2210
2211 /*
2212 * Only write protection page faults are relevant here.
2213 */
2214 if (fWriteFault)
2215 {
2216 /* Mark guest page directory as dirty (BIG page only). */
2217 pPdeSrc->b.u1Dirty = 1;
2218 }
2219 return VINF_SUCCESS;
2220 }
2221 /* else: 4KB page table */
2222
2223 /*
2224 * Map the guest page table.
2225 */
2226 PGSTPT pPTSrc;
2227 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2228 if (RT_SUCCESS(rc))
2229 {
2230 /*
2231 * Real page fault?
2232 */
2233 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2234 const GSTPTE PteSrc = *pPteSrc;
2235 if ( !PteSrc.n.u1Present
2236 || (fMaybeWriteProtFault && !PteSrc.n.u1Write)
2237# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2238 || (fMaybeNXEFault && PteSrc.n.u1NoExecute)
2239# endif
2240 || (fUserLevelFault && !PteSrc.n.u1User)
2241 )
2242 {
2243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2244 LogFlow(("CheckPageFault: real page fault at %RGv PteSrc.u=%08x (2)\n", GCPtrPage, PteSrc.u));
2245
2246 /* Check the present bit as the shadow tables can cause different error codes by being out of sync.
2247 * See the 2nd case above as well.
2248 */
2249 if (pPdeSrc->n.u1Present && pPteSrc->n.u1Present)
2250 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2251
2252 return VINF_EM_RAW_GUEST_TRAP;
2253 }
2254 LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
2255
2256 /*
2257 * Set the accessed bits in the page directory and the page table.
2258 */
2259# if PGM_GST_TYPE == PGM_TYPE_AMD64
2260 pPml4eSrc->n.u1Accessed = 1;
2261 pPdpeSrc->lm.u1Accessed = 1;
2262# endif
2263 pPdeSrc->n.u1Accessed = 1;
2264 pPteSrc->n.u1Accessed = 1;
2265
2266 /*
2267 * Only write protection page faults are relevant here.
2268 */
2269 if (fWriteFault)
2270 {
2271 /* Write access, so mark guest entry as dirty. */
2272# ifdef VBOX_WITH_STATISTICS
2273 if (!pPteSrc->n.u1Dirty)
2274 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
2275 else
2276 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
2277# endif
2278
2279 pPteSrc->n.u1Dirty = 1;
2280 }
2281 return VINF_SUCCESS;
2282 }
2283 AssertRC(rc);
2284 return rc;
2285
2286
2287l_UpperLevelPageFault:
2288 /*
2289 * Pagefault detected while checking the PML4E, PDPE or PDE.
2290 * Single exit handler to get rid of duplicate code paths.
2291 */
2292 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
2293 Log(("CheckPageFault: real page fault at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2294
2295 if ( 1
2296# if PGM_GST_TYPE == PGM_TYPE_AMD64
2297 && pPml4eSrc->n.u1Present
2298# endif
2299# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
2300 && pPdpeSrc->n.u1Present
2301# endif
2302 && pPdeSrc->n.u1Present)
2303 {
2304 /* Check the present bit as the shadow tables can cause different error codes by being out of sync. */
2305 if ( pPdeSrc->b.u1Size
2306# if PGM_GST_TYPE == PGM_TYPE_32BIT
2307 && CPUMIsGuestPageSizeExtEnabled(pVCpu)
2308# endif
2309 )
2310 {
2311 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2312 }
2313 else
2314 {
2315 /*
2316 * Map the guest page table.
2317 */
2318 PGSTPT pPTSrc2;
2319 rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc2);
2320 if (RT_SUCCESS(rc))
2321 {
2322 PGSTPTE pPteSrc = &pPTSrc2->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2323 if (pPteSrc->n.u1Present)
2324 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_P); /* page-level protection violation */
2325 }
2326 AssertRC(rc);
2327 }
2328 }
2329 return VINF_EM_RAW_GUEST_TRAP;
2330}
2331
2332/**
2333 * Handle dirty bit tracking faults.
2334 *
2335 * @returns VBox status code.
2336 * @param pVCpu The VMCPU handle.
2337 * @param uErr Page fault error code.
2338 * @param pPdeSrc Guest page directory entry.
2339 * @param pPdeDst Shadow page directory entry.
2340 * @param GCPtrPage Guest context page address.
2341 */
2342PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
2343{
2344# if PGM_GST_TYPE == PGM_TYPE_32BIT
2345 const bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu);
2346# else
2347 const bool fBigPagesSupported = true;
2348# endif
2349 PVM pVM = pVCpu->CTX_SUFF(pVM);
2350 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2351
2352 Assert(PGMIsLockOwner(pVM));
2353
2354 if (pPdeSrc->b.u1Size && fBigPagesSupported)
2355 {
2356 if ( pPdeDst->n.u1Present
2357 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2358 {
2359 SHWPDE PdeDst = *pPdeDst;
2360
2361 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2362 Assert(pPdeSrc->b.u1Write);
2363
2364 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2365 * fault again and take this path to only invalidate the entry.
2366 */
2367 PdeDst.n.u1Write = 1;
2368 PdeDst.n.u1Accessed = 1;
2369 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2370 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2371 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2372 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2373 }
2374# ifdef IN_RING0
2375 else
2376 /* Check for stale TLB entry; only applies to the SMP guest case. */
2377 if ( pVM->cCpus > 1
2378 && pPdeDst->n.u1Write
2379 && pPdeDst->n.u1Accessed)
2380 {
2381 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2382 if (pShwPage)
2383 {
2384 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2385 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2386 if ( pPteDst->n.u1Present
2387 && pPteDst->n.u1Write)
2388 {
2389 /* Stale TLB entry. */
2390 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2391 PGM_INVL_PG(pVCpu, GCPtrPage);
2392 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2393 }
2394 }
2395 }
2396# endif /* IN_RING0 */
2397 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2398 }
2399
2400 /*
2401 * Map the guest page table.
2402 */
2403 PGSTPT pPTSrc;
2404 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2405 if (RT_SUCCESS(rc))
2406 {
2407 if (pPdeDst->n.u1Present)
2408 {
2409 PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2410 const GSTPTE PteSrc = *pPteSrc;
2411#ifndef IN_RING0
2412 /* Bail out here as pgmPoolGetPageByHCPhys will return NULL and we'll crash below.
2413 * Our individual shadow handlers will provide more information and force a fatal exit.
2414 */
2415 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2416 {
2417 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2418 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2419 }
2420#endif
2421 /*
2422 * Map shadow page table.
2423 */
2424 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2425 if (pShwPage)
2426 {
2427 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2428 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2429 if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
2430 {
2431 if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
2432 {
2433 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2434 SHWPTE PteDst = *pPteDst;
2435
2436 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2437 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
2438
2439 Assert(pPteSrc->n.u1Write);
2440
2441 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2442 * fault again and take this path to only invalidate the entry.
2443 */
2444 if (RT_LIKELY(pPage))
2445 {
2446 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2447 {
2448 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2449 PteDst.n.u1Write = 0;
2450 }
2451 else
2452 {
2453 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2454 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2455 {
2456 rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2457 AssertRC(rc);
2458 }
2459 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2460 {
2461 PteDst.n.u1Write = 1;
2462 }
2463 else
2464 {
2465 /* Still applies to shared pages. */
2466 Assert(!PGM_PAGE_IS_ZERO(pPage));
2467 PteDst.n.u1Write = 0;
2468 }
2469 }
2470 }
2471 else
2472 PteDst.n.u1Write = 1;
2473
2474 PteDst.n.u1Dirty = 1;
2475 PteDst.n.u1Accessed = 1;
2476 PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2477 ASMAtomicWriteSize(pPteDst, PteDst.u);
2478 PGM_INVL_PG(pVCpu, GCPtrPage);
2479 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2480 }
2481# ifdef IN_RING0
2482 else
2483 /* Check for stale TLB entry; only applies to the SMP guest case. */
2484 if ( pVM->cCpus > 1
2485 && pPteDst->n.u1Write == 1
2486 && pPteDst->n.u1Accessed == 1)
2487 {
2488 /* Stale TLB entry. */
2489 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
2490 PGM_INVL_PG(pVCpu, GCPtrPage);
2491 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2492 }
2493# endif
2494 }
2495 }
2496 else
2497 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2498 }
2499 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2500 }
2501 AssertRC(rc);
2502 return rc;
2503}
2504#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2505
2506
2507/**
2508 * Sync a shadow page table.
2509 *
2510 * The shadow page table is not present. This includes the case where
2511 * there is a conflict with a mapping.
2512 *
2513 * @returns VBox status code.
2514 * @param pVCpu The VMCPU handle.
2515 * @param iPD Page directory index.
2516 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2517 * Assume this is a temporary mapping.
2518 * @param GCPtrPage GC Pointer of the page that caused the fault
2519 */
2520PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2521{
2522 PVM pVM = pVCpu->CTX_SUFF(pVM);
2523 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2524
2525 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2526#if 0 /* rarely useful; leave for debugging. */
2527 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2528#endif
2529 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2530
2531 Assert(PGMIsLocked(pVM));
2532
2533#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2534 || PGM_GST_TYPE == PGM_TYPE_PAE \
2535 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2536 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2537 && PGM_SHW_TYPE != PGM_TYPE_EPT
2538
2539 int rc = VINF_SUCCESS;
2540
2541 /*
2542 * Validate input a little bit.
2543 */
2544 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2545# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2546 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2547 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2548
2549 /* Fetch the pgm pool shadow descriptor. */
2550 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2551 Assert(pShwPde);
2552
2553# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2554 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2555 PPGMPOOLPAGE pShwPde = NULL;
2556 PX86PDPAE pPDDst;
2557 PSHWPDE pPdeDst;
2558
2559 /* Fetch the pgm pool shadow descriptor. */
2560 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2561 AssertRCSuccessReturn(rc, rc);
2562 Assert(pShwPde);
2563
2564 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2565 pPdeDst = &pPDDst->a[iPDDst];
2566
2567# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2568 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2569 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2570 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2571 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2572 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2573 AssertRCSuccessReturn(rc, rc);
2574 Assert(pPDDst);
2575 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2576# endif
2577 SHWPDE PdeDst = *pPdeDst;
2578
2579# if PGM_GST_TYPE == PGM_TYPE_AMD64
2580 /* Fetch the pgm pool shadow descriptor. */
2581 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2582 Assert(pShwPde);
2583# endif
2584
2585# ifndef PGM_WITHOUT_MAPPINGS
2586 /*
2587 * Check for conflicts.
2588 * GC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2589 * HC: Simply resolve the conflict.
2590 */
2591 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2592 {
2593 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2594# ifndef IN_RING3
2595 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2596 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2597 return VERR_ADDRESS_CONFLICT;
2598# else
2599 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2600 Assert(pMapping);
2601# if PGM_GST_TYPE == PGM_TYPE_32BIT
2602 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2603# elif PGM_GST_TYPE == PGM_TYPE_PAE
2604 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2605# else
2606 AssertFailed(); /* can't happen for amd64 */
2607# endif
2608 if (RT_FAILURE(rc))
2609 {
2610 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2611 return rc;
2612 }
2613 PdeDst = *pPdeDst;
2614# endif
2615 }
2616# endif /* !PGM_WITHOUT_MAPPINGS */
2617 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2618
2619# if defined(IN_RC)
2620 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2621 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2622# endif
2623
2624 /*
2625 * Sync page directory entry.
2626 */
2627 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2628 if (PdeSrc.n.u1Present)
2629 {
2630 /*
2631 * Allocate & map the page table.
2632 */
2633 PSHWPT pPTDst;
2634# if PGM_GST_TYPE == PGM_TYPE_32BIT
2635 const bool fPageTable = !PdeSrc.b.u1Size || !CPUMIsGuestPageSizeExtEnabled(pVCpu);
2636# else
2637 const bool fPageTable = !PdeSrc.b.u1Size;
2638# endif
2639 PPGMPOOLPAGE pShwPage;
2640 RTGCPHYS GCPhys;
2641 if (fPageTable)
2642 {
2643 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2644# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2645 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2646 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2647# endif
2648 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2649 }
2650 else
2651 {
2652 PGMPOOLACCESS enmAccess;
2653# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2654 const bool fNoExecute = PdeSrc.n.u1NoExecute && CPUMIsGuestNXEnabled(pVCpu);
2655# else
2656 const bool fNoExecute = false;
2657# endif
2658
2659 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
2660# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2661 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2662 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2663# endif
2664 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2665 if (PdeSrc.n.u1User)
2666 {
2667 if (PdeSrc.n.u1Write)
2668 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2669 else
2670 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2671 }
2672 else
2673 {
2674 if (PdeSrc.n.u1Write)
2675 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2676 else
2677 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2678 }
2679 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2680 }
2681 if (rc == VINF_SUCCESS)
2682 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2683 else if (rc == VINF_PGM_CACHED_PAGE)
2684 {
2685 /*
2686 * The PT was cached, just hook it up.
2687 */
2688 if (fPageTable)
2689 PdeDst.u = pShwPage->Core.Key
2690 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2691 else
2692 {
2693 PdeDst.u = pShwPage->Core.Key
2694 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2695 /* (see explanation and assumptions further down.) */
2696 if ( !PdeSrc.b.u1Dirty
2697 && PdeSrc.b.u1Write)
2698 {
2699 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2700 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2701 PdeDst.b.u1Write = 0;
2702 }
2703 }
2704 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2705# if defined(IN_RC)
2706 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2707# endif
2708 return VINF_SUCCESS;
2709 }
2710 else if (rc == VERR_PGM_POOL_FLUSHED)
2711 {
2712 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2713# if defined(IN_RC)
2714 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2715# endif
2716 return VINF_PGM_SYNC_CR3;
2717 }
2718 else
2719 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2720 PdeDst.u &= X86_PDE_AVL_MASK;
2721 PdeDst.u |= pShwPage->Core.Key;
2722
2723 /*
2724 * Page directory has been accessed (this is a fault situation, remember).
2725 */
2726 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2727 if (fPageTable)
2728 {
2729 /*
2730 * Page table - 4KB.
2731 *
2732 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2733 */
2734 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2735 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2736 PGSTPT pPTSrc;
2737 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2738 if (RT_SUCCESS(rc))
2739 {
2740 /*
2741 * Start by syncing the page directory entry so CSAM's TLB trick works.
2742 */
2743 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2744 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2745 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2746# if defined(IN_RC)
2747 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2748# endif
2749
2750 /*
2751 * Directory/page user or supervisor privilege: (same goes for read/write)
2752 *
2753 * Directory Page Combined
2754 * U/S U/S U/S
2755 * 0 0 0
2756 * 0 1 0
2757 * 1 0 0
2758 * 1 1 1
2759 *
2760 * Simple AND operation. Table listed for completeness.
2761 *
2762 */
2763 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
2764# ifdef PGM_SYNC_N_PAGES
2765 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2766 unsigned iPTDst = iPTBase;
2767 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2768 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2769 iPTDst = 0;
2770 else
2771 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2772# else /* !PGM_SYNC_N_PAGES */
2773 unsigned iPTDst = 0;
2774 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2775# endif /* !PGM_SYNC_N_PAGES */
2776# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2777 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2778 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2779# else
2780 const unsigned offPTSrc = 0;
2781# endif
2782 for (; iPTDst < iPTDstEnd; iPTDst++)
2783 {
2784 const unsigned iPTSrc = iPTDst + offPTSrc;
2785 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2786
2787 if (PteSrc.n.u1Present) /* we've already cleared it above */
2788 {
2789# ifndef IN_RING0
2790 /*
2791 * Assuming kernel code will be marked as supervisor - and not as user level
2792 * and executed using a conforming code selector - And marked as readonly.
2793 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2794 */
2795 PPGMPAGE pPage;
2796 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2797 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2798 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2799 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2800 )
2801# endif
2802 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2803 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2804 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2805 PteSrc.n.u1Present,
2806 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2807 PteSrc.n.u1User & PdeSrc.n.u1User,
2808 (uint64_t)PteSrc.u,
2809 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2810 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2811 }
2812 } /* for PTEs */
2813 }
2814 }
2815 else
2816 {
2817 /*
2818 * Big page - 2/4MB.
2819 *
2820 * We'll walk the ram range list in parallel and optimize lookups.
2821 * We will only sync on shadow page table at a time.
2822 */
2823 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
2824
2825 /**
2826 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2827 */
2828
2829 /*
2830 * Start by syncing the page directory entry.
2831 */
2832 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2833 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2834
2835 /*
2836 * If the page is not flagged as dirty and is writable, then make it read-only
2837 * at PD level, so we can set the dirty bit when the page is modified.
2838 *
2839 * ASSUMES that page access handlers are implemented on page table entry level.
2840 * Thus we will first catch the dirty access and set PDE.D and restart. If
2841 * there is an access handler, we'll trap again and let it work on the problem.
2842 */
2843 /** @todo move the above stuff to a section in the PGM documentation. */
2844 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2845 if ( !PdeSrc.b.u1Dirty
2846 && PdeSrc.b.u1Write)
2847 {
2848 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
2849 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2850 PdeDst.b.u1Write = 0;
2851 }
2852 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2853# if defined(IN_RC)
2854 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2855# endif
2856
2857 /*
2858 * Fill the shadow page table.
2859 */
2860 /* Get address and flags from the source PDE. */
2861 SHWPTE PteDstBase;
2862 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2863
2864 /* Loop thru the entries in the shadow PT. */
2865 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2866 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2867 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2868 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2869 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2870 unsigned iPTDst = 0;
2871 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2872 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2873 {
2874 /* Advance ram range list. */
2875 while (pRam && GCPhys > pRam->GCPhysLast)
2876 pRam = pRam->CTX_SUFF(pNext);
2877 if (pRam && GCPhys >= pRam->GCPhys)
2878 {
2879 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2880 do
2881 {
2882 /* Make shadow PTE. */
2883 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2884 SHWPTE PteDst;
2885
2886# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2887 /* Try to make the page writable if necessary. */
2888 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2889 && ( PGM_PAGE_IS_ZERO(pPage)
2890 || ( PteDstBase.n.u1Write
2891 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2892# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2893 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2894# endif
2895 && !PGM_PAGE_IS_BALLOONED(pPage))
2896 )
2897 )
2898 {
2899 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2900 AssertRCReturn(rc, rc);
2901 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2902 break;
2903 }
2904# endif
2905
2906 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2907 {
2908 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2909 {
2910 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2911 PteDst.n.u1Write = 0;
2912 }
2913 else
2914 PteDst.u = 0;
2915 }
2916 else
2917 if (PGM_PAGE_IS_BALLOONED(pPage))
2918 {
2919 /* Skip ballooned pages. */
2920 PteDst.u = 0;
2921 }
2922# ifndef IN_RING0
2923 /*
2924 * Assuming kernel code will be marked as supervisor and not as user level and executed
2925 * using a conforming code selector. Don't check for readonly, as that implies the whole
2926 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2927 */
2928 else if ( !PdeSrc.n.u1User
2929 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2930 PteDst.u = 0;
2931# endif
2932 else
2933 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2934
2935 /* Only map writable pages writable. */
2936 if ( PteDst.n.u1Write
2937 && PteDst.n.u1Present
2938 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2939 {
2940 /* Still applies to shared pages. */
2941 Assert(!PGM_PAGE_IS_ZERO(pPage));
2942 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2943 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2944 }
2945
2946 if (PteDst.n.u1Present)
2947 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2948
2949 /* commit it */
2950 pPTDst->a[iPTDst] = PteDst;
2951 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2952 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2953 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2954
2955 /* advance */
2956 GCPhys += PAGE_SIZE;
2957 iHCPage++;
2958 iPTDst++;
2959 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2960 && GCPhys <= pRam->GCPhysLast);
2961 }
2962 else if (pRam)
2963 {
2964 Log(("Invalid pages at %RGp\n", GCPhys));
2965 do
2966 {
2967 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2968 GCPhys += PAGE_SIZE;
2969 iPTDst++;
2970 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2971 && GCPhys < pRam->GCPhys);
2972 }
2973 else
2974 {
2975 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2976 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2977 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2978 }
2979 } /* while more PTEs */
2980 } /* 4KB / 4MB */
2981 }
2982 else
2983 AssertRelease(!PdeDst.n.u1Present);
2984
2985 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
2986 if (RT_FAILURE(rc))
2987 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
2988 return rc;
2989
2990#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2991 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2992 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2993 && !defined(IN_RC)
2994
2995 /*
2996 * Validate input a little bit.
2997 */
2998 int rc = VINF_SUCCESS;
2999# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3000 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3001 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3002
3003 /* Fetch the pgm pool shadow descriptor. */
3004 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3005 Assert(pShwPde);
3006
3007# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3008 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3009 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3010 PX86PDPAE pPDDst;
3011 PSHWPDE pPdeDst;
3012
3013 /* Fetch the pgm pool shadow descriptor. */
3014 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
3015 AssertRCSuccessReturn(rc, rc);
3016 Assert(pShwPde);
3017
3018 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
3019 pPdeDst = &pPDDst->a[iPDDst];
3020
3021# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3022 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3023 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3024 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3025 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3026 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3027 AssertRCSuccessReturn(rc, rc);
3028 Assert(pPDDst);
3029 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3030
3031 /* Fetch the pgm pool shadow descriptor. */
3032 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3033 Assert(pShwPde);
3034
3035# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3036 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3037 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3038 PEPTPD pPDDst;
3039 PEPTPDPT pPdptDst;
3040
3041 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3042 if (rc != VINF_SUCCESS)
3043 {
3044 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3045 AssertRC(rc);
3046 return rc;
3047 }
3048 Assert(pPDDst);
3049 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3050
3051 /* Fetch the pgm pool shadow descriptor. */
3052 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3053 Assert(pShwPde);
3054# endif
3055 SHWPDE PdeDst = *pPdeDst;
3056
3057 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3058 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3059
3060# if defined(PGM_WITH_LARGE_PAGES) && (PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE)
3061# if (PGM_SHW_TYPE != PGM_TYPE_EPT) /* PGM_TYPE_EPT implies nested paging */
3062 if (HWACCMIsNestedPagingActive(pVM))
3063# endif
3064 {
3065 PPGMPAGE pPage;
3066
3067 /* Check if we allocated a big page before for this 2 MB range. */
3068 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3069 if (RT_SUCCESS(rc))
3070 {
3071 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3072
3073 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3074 {
3075 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3076 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3077 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3078 }
3079 else
3080 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3081 {
3082 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3083 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3084 if (RT_SUCCESS(rc))
3085 {
3086 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3087 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3088 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3089 }
3090 }
3091 else
3092 if (PGMIsUsingLargePages(pVM))
3093 {
3094 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3095 if (RT_SUCCESS(rc))
3096 {
3097 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3098 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3099 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3100 }
3101 else
3102 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3103 }
3104
3105 if (HCPhys != NIL_RTHCPHYS)
3106 {
3107 PdeDst.u &= X86_PDE_AVL_MASK;
3108 PdeDst.u |= HCPhys;
3109 PdeDst.n.u1Present = 1;
3110 PdeDst.n.u1Write = 1;
3111 PdeDst.b.u1Size = 1;
3112# if PGM_SHW_TYPE == PGM_TYPE_EPT
3113 PdeDst.n.u1Execute = 1;
3114 PdeDst.b.u1IgnorePAT = 1;
3115 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3116# else
3117 PdeDst.n.u1User = 1;
3118# endif
3119 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3120
3121 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3122 /* Add a reference to the first page only. */
3123 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3124
3125 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3126 return VINF_SUCCESS;
3127 }
3128 }
3129 }
3130# endif /* HC_ARCH_BITS == 64 */
3131
3132 GSTPDE PdeSrc;
3133 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3134 PdeSrc.n.u1Present = 1;
3135 PdeSrc.n.u1Write = 1;
3136 PdeSrc.n.u1Accessed = 1;
3137 PdeSrc.n.u1User = 1;
3138
3139 /*
3140 * Allocate & map the page table.
3141 */
3142 PSHWPT pPTDst;
3143 PPGMPOOLPAGE pShwPage;
3144 RTGCPHYS GCPhys;
3145
3146 /* Virtual address = physical address */
3147 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3148 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3149
3150 if ( rc == VINF_SUCCESS
3151 || rc == VINF_PGM_CACHED_PAGE)
3152 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
3153 else
3154 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3155
3156 PdeDst.u &= X86_PDE_AVL_MASK;
3157 PdeDst.u |= pShwPage->Core.Key;
3158 PdeDst.n.u1Present = 1;
3159 PdeDst.n.u1Write = 1;
3160# if PGM_SHW_TYPE == PGM_TYPE_EPT
3161 PdeDst.n.u1Execute = 1;
3162# else
3163 PdeDst.n.u1User = 1;
3164 PdeDst.n.u1Accessed = 1;
3165# endif
3166 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3167
3168 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3169 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3170 return rc;
3171
3172#else
3173 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3174 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
3175 return VERR_INTERNAL_ERROR;
3176#endif
3177}
3178
3179
3180
3181/**
3182 * Prefetch a page/set of pages.
3183 *
3184 * Typically used to sync commonly used pages before entering raw mode
3185 * after a CR3 reload.
3186 *
3187 * @returns VBox status code.
3188 * @param pVCpu The VMCPU handle.
3189 * @param GCPtrPage Page to invalidate.
3190 */
3191PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3192{
3193#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
3194 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3195 /*
3196 * Check that all Guest levels thru the PDE are present, getting the
3197 * PD and PDE in the processes.
3198 */
3199 int rc = VINF_SUCCESS;
3200# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3201# if PGM_GST_TYPE == PGM_TYPE_32BIT
3202 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3203 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3204# elif PGM_GST_TYPE == PGM_TYPE_PAE
3205 unsigned iPDSrc;
3206 X86PDPE PdpeSrc;
3207 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3208 if (!pPDSrc)
3209 return VINF_SUCCESS; /* not present */
3210# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3211 unsigned iPDSrc;
3212 PX86PML4E pPml4eSrc;
3213 X86PDPE PdpeSrc;
3214 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3215 if (!pPDSrc)
3216 return VINF_SUCCESS; /* not present */
3217# endif
3218 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3219# else
3220 PGSTPD pPDSrc = NULL;
3221 const unsigned iPDSrc = 0;
3222 GSTPDE PdeSrc;
3223
3224 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3225 PdeSrc.n.u1Present = 1;
3226 PdeSrc.n.u1Write = 1;
3227 PdeSrc.n.u1Accessed = 1;
3228 PdeSrc.n.u1User = 1;
3229# endif
3230
3231 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3232 {
3233 PVM pVM = pVCpu->CTX_SUFF(pVM);
3234 pgmLock(pVM);
3235
3236# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3237 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
3238# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3239 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3240 PX86PDPAE pPDDst;
3241 X86PDEPAE PdeDst;
3242# if PGM_GST_TYPE != PGM_TYPE_PAE
3243 X86PDPE PdpeSrc;
3244
3245 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3246 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3247# endif
3248 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3249 if (rc != VINF_SUCCESS)
3250 {
3251 pgmUnlock(pVM);
3252 AssertRC(rc);
3253 return rc;
3254 }
3255 Assert(pPDDst);
3256 PdeDst = pPDDst->a[iPDDst];
3257
3258# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3259 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3260 PX86PDPAE pPDDst;
3261 X86PDEPAE PdeDst;
3262
3263# if PGM_GST_TYPE == PGM_TYPE_PROT
3264 /* AMD-V nested paging */
3265 X86PML4E Pml4eSrc;
3266 X86PDPE PdpeSrc;
3267 PX86PML4E pPml4eSrc = &Pml4eSrc;
3268
3269 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3270 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3271 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3272# endif
3273
3274 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3275 if (rc != VINF_SUCCESS)
3276 {
3277 pgmUnlock(pVM);
3278 AssertRC(rc);
3279 return rc;
3280 }
3281 Assert(pPDDst);
3282 PdeDst = pPDDst->a[iPDDst];
3283# endif
3284 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3285 {
3286 if (!PdeDst.n.u1Present)
3287 {
3288 /** r=bird: This guy will set the A bit on the PDE, probably harmless. */
3289 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3290 }
3291 else
3292 {
3293 /** @note We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3294 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3295 * makes no sense to prefetch more than one page.
3296 */
3297 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3298 if (RT_SUCCESS(rc))
3299 rc = VINF_SUCCESS;
3300 }
3301 }
3302 pgmUnlock(pVM);
3303 }
3304 return rc;
3305
3306#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3307 return VINF_SUCCESS; /* ignore */
3308#endif
3309}
3310
3311
3312
3313
3314/**
3315 * Syncs a page during a PGMVerifyAccess() call.
3316 *
3317 * @returns VBox status code (informational included).
3318 * @param pVCpu The VMCPU handle.
3319 * @param GCPtrPage The address of the page to sync.
3320 * @param fPage The effective guest page flags.
3321 * @param uErr The trap error code.
3322 */
3323PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3324{
3325 PVM pVM = pVCpu->CTX_SUFF(pVM);
3326
3327 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3328
3329 Assert(!HWACCMIsNestedPagingActive(pVM));
3330#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_TYPE_AMD64) \
3331 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3332
3333# ifndef IN_RING0
3334 if (!(fPage & X86_PTE_US))
3335 {
3336 /*
3337 * Mark this page as safe.
3338 */
3339 /** @todo not correct for pages that contain both code and data!! */
3340 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3341 CSAMMarkPage(pVM, GCPtrPage, true);
3342 }
3343# endif
3344
3345 /*
3346 * Get guest PD and index.
3347 */
3348# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3349# if PGM_GST_TYPE == PGM_TYPE_32BIT
3350 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3351 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3352# elif PGM_GST_TYPE == PGM_TYPE_PAE
3353 unsigned iPDSrc = 0;
3354 X86PDPE PdpeSrc;
3355 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtrPage, &iPDSrc, &PdpeSrc);
3356
3357 if (pPDSrc)
3358 {
3359 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3360 return VINF_EM_RAW_GUEST_TRAP;
3361 }
3362# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3363 unsigned iPDSrc;
3364 PX86PML4E pPml4eSrc;
3365 X86PDPE PdpeSrc;
3366 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3367 if (!pPDSrc)
3368 {
3369 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3370 return VINF_EM_RAW_GUEST_TRAP;
3371 }
3372# endif
3373# else
3374 PGSTPD pPDSrc = NULL;
3375 const unsigned iPDSrc = 0;
3376# endif
3377 int rc = VINF_SUCCESS;
3378
3379 pgmLock(pVM);
3380
3381 /*
3382 * First check if the shadow pd is present.
3383 */
3384# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3385 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3386# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3387 PX86PDEPAE pPdeDst;
3388 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3389 PX86PDPAE pPDDst;
3390# if PGM_GST_TYPE != PGM_TYPE_PAE
3391 X86PDPE PdpeSrc;
3392
3393 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3394 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3395# endif
3396 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst);
3397 if (rc != VINF_SUCCESS)
3398 {
3399 pgmUnlock(pVM);
3400 AssertRC(rc);
3401 return rc;
3402 }
3403 Assert(pPDDst);
3404 pPdeDst = &pPDDst->a[iPDDst];
3405
3406# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3407 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3408 PX86PDPAE pPDDst;
3409 PX86PDEPAE pPdeDst;
3410
3411# if PGM_GST_TYPE == PGM_TYPE_PROT
3412 /* AMD-V nested paging */
3413 X86PML4E Pml4eSrc;
3414 X86PDPE PdpeSrc;
3415 PX86PML4E pPml4eSrc = &Pml4eSrc;
3416
3417 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3418 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_NX | X86_PML4E_A;
3419 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_NX | X86_PDPE_A;
3420# endif
3421
3422 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst);
3423 if (rc != VINF_SUCCESS)
3424 {
3425 pgmUnlock(pVM);
3426 AssertRC(rc);
3427 return rc;
3428 }
3429 Assert(pPDDst);
3430 pPdeDst = &pPDDst->a[iPDDst];
3431# endif
3432
3433# if defined(IN_RC)
3434 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3435 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
3436# endif
3437
3438 if (!pPdeDst->n.u1Present)
3439 {
3440 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3441 if (rc != VINF_SUCCESS)
3442 {
3443# if defined(IN_RC)
3444 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3445 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3446# endif
3447 pgmUnlock(pVM);
3448 AssertRC(rc);
3449 return rc;
3450 }
3451 }
3452
3453# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3454 /* Check for dirty bit fault */
3455 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3456 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3457 Log(("PGMVerifyAccess: success (dirty)\n"));
3458 else
3459 {
3460 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3461# else
3462 {
3463 GSTPDE PdeSrc;
3464 PdeSrc.au32[0] = 0; /* faked so we don't have to #ifdef everything */
3465 PdeSrc.n.u1Present = 1;
3466 PdeSrc.n.u1Write = 1;
3467 PdeSrc.n.u1Accessed = 1;
3468 PdeSrc.n.u1User = 1;
3469
3470# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
3471 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3472 if (uErr & X86_TRAP_PF_US)
3473 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
3474 else /* supervisor */
3475 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3476
3477 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3478 if (RT_SUCCESS(rc))
3479 {
3480 /* Page was successfully synced */
3481 Log2(("PGMVerifyAccess: success (sync)\n"));
3482 rc = VINF_SUCCESS;
3483 }
3484 else
3485 {
3486 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", GCPtrPage, rc));
3487 rc = VINF_EM_RAW_GUEST_TRAP;
3488 }
3489 }
3490# if defined(IN_RC)
3491 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3492 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3493# endif
3494 pgmUnlock(pVM);
3495 return rc;
3496
3497#else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3498
3499 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3500 return VERR_INTERNAL_ERROR;
3501#endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
3502}
3503
3504
3505/**
3506 * Syncs the paging hierarchy starting at CR3.
3507 *
3508 * @returns VBox status code, no specials.
3509 * @param pVCpu The VMCPU handle.
3510 * @param cr0 Guest context CR0 register
3511 * @param cr3 Guest context CR3 register
3512 * @param cr4 Guest context CR4 register
3513 * @param fGlobal Including global page directories or not
3514 */
3515PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3516{
3517 PVM pVM = pVCpu->CTX_SUFF(pVM);
3518
3519 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3520
3521#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3522
3523 pgmLock(pVM);
3524
3525# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3526 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3527 if (pPool->cDirtyPages)
3528 pgmPoolResetDirtyPages(pVM);
3529# endif
3530
3531 /*
3532 * Update page access handlers.
3533 * The virtual are always flushed, while the physical are only on demand.
3534 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3535 * have to look into that later because it will have a bad influence on the performance.
3536 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3537 * bird: Yes, but that won't work for aliases.
3538 */
3539 /** @todo this MUST go away. See #1557. */
3540 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3541 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3542 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
3543 pgmUnlock(pVM);
3544#endif /* !NESTED && !EPT */
3545
3546#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3547 /*
3548 * Nested / EPT - almost no work.
3549 */
3550 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3551 return VINF_SUCCESS;
3552
3553#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3554 /*
3555 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3556 * out the shadow parts when the guest modifies its tables.
3557 */
3558 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3559 return VINF_SUCCESS;
3560
3561#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3562
3563# ifndef PGM_WITHOUT_MAPPINGS
3564 /*
3565 * Check for and resolve conflicts with our guest mappings if they
3566 * are enabled and not fixed.
3567 */
3568 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3569 {
3570 int rc = pgmMapResolveConflicts(pVM);
3571 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3572 if (rc == VINF_PGM_SYNC_CR3)
3573 {
3574 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3575 return VINF_PGM_SYNC_CR3;
3576 }
3577 }
3578# else
3579 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3580# endif
3581 return VINF_SUCCESS;
3582#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3583}
3584
3585
3586
3587
3588#ifdef VBOX_STRICT
3589#ifdef IN_RC
3590# undef AssertMsgFailed
3591# define AssertMsgFailed Log
3592#endif
3593#ifdef IN_RING3
3594# include <VBox/dbgf.h>
3595
3596/**
3597 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3598 *
3599 * @returns VBox status code (VINF_SUCCESS).
3600 * @param cr3 The root of the hierarchy.
3601 * @param crr The cr4, only PAE and PSE is currently used.
3602 * @param fLongMode Set if long mode, false if not long mode.
3603 * @param cMaxDepth Number of levels to dump.
3604 * @param pHlp Pointer to the output functions.
3605 */
3606RT_C_DECLS_BEGIN
3607VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3608RT_C_DECLS_END
3609
3610#endif
3611
3612/**
3613 * Checks that the shadow page table is in sync with the guest one.
3614 *
3615 * @returns The number of errors.
3616 * @param pVM The virtual machine.
3617 * @param pVCpu The VMCPU handle.
3618 * @param cr3 Guest context CR3 register
3619 * @param cr4 Guest context CR4 register
3620 * @param GCPtr Where to start. Defaults to 0.
3621 * @param cb How much to check. Defaults to everything.
3622 */
3623PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3624{
3625#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3626 return 0;
3627#else
3628 unsigned cErrors = 0;
3629 PVM pVM = pVCpu->CTX_SUFF(pVM);
3630 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3631
3632#if PGM_GST_TYPE == PGM_TYPE_PAE
3633 /** @todo currently broken; crashes below somewhere */
3634 AssertFailed();
3635#endif
3636
3637#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3638 || PGM_GST_TYPE == PGM_TYPE_PAE \
3639 || PGM_GST_TYPE == PGM_TYPE_AMD64
3640
3641# if PGM_GST_TYPE == PGM_TYPE_32BIT
3642 bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3643# else
3644 bool fBigPagesSupported = true;
3645# endif
3646 PPGMCPU pPGM = &pVCpu->pgm.s;
3647 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3648 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3649# ifndef IN_RING0
3650 RTHCPHYS HCPhys; /* general usage. */
3651# endif
3652 int rc;
3653
3654 /*
3655 * Check that the Guest CR3 and all its mappings are correct.
3656 */
3657 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3658 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3659 false);
3660# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3661# if PGM_GST_TYPE == PGM_TYPE_32BIT
3662 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3663# else
3664 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3665# endif
3666 AssertRCReturn(rc, 1);
3667 HCPhys = NIL_RTHCPHYS;
3668 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3669 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3670# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3671 pgmGstGet32bitPDPtr(pPGM);
3672 RTGCPHYS GCPhys;
3673 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3674 AssertRCReturn(rc, 1);
3675 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3676# endif
3677# endif /* !IN_RING0 */
3678
3679 /*
3680 * Get and check the Shadow CR3.
3681 */
3682# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3683 unsigned cPDEs = X86_PG_ENTRIES;
3684 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3685# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3686# if PGM_GST_TYPE == PGM_TYPE_32BIT
3687 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3688# else
3689 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3690# endif
3691 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3692# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3693 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3694 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3695# endif
3696 if (cb != ~(RTGCPTR)0)
3697 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3698
3699/** @todo call the other two PGMAssert*() functions. */
3700
3701# if PGM_GST_TYPE == PGM_TYPE_AMD64
3702 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3703
3704 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3705 {
3706 PPGMPOOLPAGE pShwPdpt = NULL;
3707 PX86PML4E pPml4eSrc;
3708 PX86PML4E pPml4eDst;
3709 RTGCPHYS GCPhysPdptSrc;
3710
3711 pPml4eSrc = pgmGstGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3712 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3713
3714 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3715 if (!pPml4eDst->n.u1Present)
3716 {
3717 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3718 continue;
3719 }
3720
3721 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3722 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3723
3724 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3725 {
3726 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3727 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3728 cErrors++;
3729 continue;
3730 }
3731
3732 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3733 {
3734 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3735 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3736 cErrors++;
3737 continue;
3738 }
3739
3740 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3741 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3742 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3743 {
3744 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3745 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3746 cErrors++;
3747 continue;
3748 }
3749# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3750 {
3751# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3752
3753# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3754 /*
3755 * Check the PDPTEs too.
3756 */
3757 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3758
3759 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3760 {
3761 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3762 PPGMPOOLPAGE pShwPde = NULL;
3763 PX86PDPE pPdpeDst;
3764 RTGCPHYS GCPhysPdeSrc;
3765# if PGM_GST_TYPE == PGM_TYPE_PAE
3766 X86PDPE PdpeSrc;
3767 PGSTPD pPDSrc = pgmGstGetPaePDPtr(&pVCpu->pgm.s, GCPtr, &iPDSrc, &PdpeSrc);
3768 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
3769# else
3770 PX86PML4E pPml4eSrcIgn;
3771 X86PDPE PdpeSrc;
3772 PX86PDPT pPdptDst;
3773 PX86PDPAE pPDDst;
3774 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(&pVCpu->pgm.s, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3775
3776 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3777 if (rc != VINF_SUCCESS)
3778 {
3779 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3780 GCPtr += 512 * _2M;
3781 continue; /* next PDPTE */
3782 }
3783 Assert(pPDDst);
3784# endif
3785 Assert(iPDSrc == 0);
3786
3787 pPdpeDst = &pPdptDst->a[iPdpt];
3788
3789 if (!pPdpeDst->n.u1Present)
3790 {
3791 GCPtr += 512 * _2M;
3792 continue; /* next PDPTE */
3793 }
3794
3795 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3796 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3797
3798 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3799 {
3800 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3801 GCPtr += 512 * _2M;
3802 cErrors++;
3803 continue;
3804 }
3805
3806 if (GCPhysPdeSrc != pShwPde->GCPhys)
3807 {
3808# if PGM_GST_TYPE == PGM_TYPE_AMD64
3809 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3810# else
3811 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3812# endif
3813 GCPtr += 512 * _2M;
3814 cErrors++;
3815 continue;
3816 }
3817
3818# if PGM_GST_TYPE == PGM_TYPE_AMD64
3819 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3820 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3821 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3822 {
3823 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3824 GCPtr += 512 * _2M;
3825 cErrors++;
3826 continue;
3827 }
3828# endif
3829
3830# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3831 {
3832# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3833# if PGM_GST_TYPE == PGM_TYPE_32BIT
3834 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3835# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3836 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
3837# endif
3838# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3839 /*
3840 * Iterate the shadow page directory.
3841 */
3842 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3843 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3844
3845 for (;
3846 iPDDst < cPDEs;
3847 iPDDst++, GCPtr += cIncrement)
3848 {
3849# if PGM_SHW_TYPE == PGM_TYPE_PAE
3850 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3851# else
3852 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3853# endif
3854 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3855 {
3856 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3857 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3858 {
3859 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3860 cErrors++;
3861 continue;
3862 }
3863 }
3864 else if ( (PdeDst.u & X86_PDE_P)
3865 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3866 )
3867 {
3868 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3869 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3870 if (!pPoolPage)
3871 {
3872 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3873 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3874 cErrors++;
3875 continue;
3876 }
3877 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3878
3879 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3880 {
3881 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3882 GCPtr, (uint64_t)PdeDst.u));
3883 cErrors++;
3884 }
3885
3886 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3887 {
3888 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3889 GCPtr, (uint64_t)PdeDst.u));
3890 cErrors++;
3891 }
3892
3893 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3894 if (!PdeSrc.n.u1Present)
3895 {
3896 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3897 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3898 cErrors++;
3899 continue;
3900 }
3901
3902 if ( !PdeSrc.b.u1Size
3903 || !fBigPagesSupported)
3904 {
3905 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3906# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3907 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3908# endif
3909 }
3910 else
3911 {
3912# if PGM_GST_TYPE == PGM_TYPE_32BIT
3913 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3914 {
3915 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3916 GCPtr, (uint64_t)PdeSrc.u));
3917 cErrors++;
3918 continue;
3919 }
3920# endif
3921 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(PdeSrc);
3922# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3923 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3924# endif
3925 }
3926
3927 if ( pPoolPage->enmKind
3928 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3929 {
3930 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3931 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3932 cErrors++;
3933 }
3934
3935 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3936 if (!pPhysPage)
3937 {
3938 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3939 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3940 cErrors++;
3941 continue;
3942 }
3943
3944 if (GCPhysGst != pPoolPage->GCPhys)
3945 {
3946 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3947 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3948 cErrors++;
3949 continue;
3950 }
3951
3952 if ( !PdeSrc.b.u1Size
3953 || !fBigPagesSupported)
3954 {
3955 /*
3956 * Page Table.
3957 */
3958 const GSTPT *pPTSrc;
3959 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3960 if (RT_FAILURE(rc))
3961 {
3962 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3963 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3964 cErrors++;
3965 continue;
3966 }
3967 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3968 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3969 {
3970 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3971 // (This problem will go away when/if we shadow multiple CR3s.)
3972 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3973 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3974 cErrors++;
3975 continue;
3976 }
3977 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3978 {
3979 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3980 GCPtr, (uint64_t)PdeDst.u));
3981 cErrors++;
3982 continue;
3983 }
3984
3985 /* iterate the page table. */
3986# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3987 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3988 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3989# else
3990 const unsigned offPTSrc = 0;
3991# endif
3992 for (unsigned iPT = 0, off = 0;
3993 iPT < RT_ELEMENTS(pPTDst->a);
3994 iPT++, off += PAGE_SIZE)
3995 {
3996 const SHWPTE PteDst = pPTDst->a[iPT];
3997
3998 /* skip not-present entries. */
3999 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4000 continue;
4001 Assert(PteDst.n.u1Present);
4002
4003 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4004 if (!PteSrc.n.u1Present)
4005 {
4006# ifdef IN_RING3
4007 PGMAssertHandlerAndFlagsInSync(pVM);
4008 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
4009# endif
4010 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4011 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4012 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
4013 cErrors++;
4014 continue;
4015 }
4016
4017 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4018# if 1 /** @todo sync accessed bit properly... */
4019 fIgnoreFlags |= X86_PTE_A;
4020# endif
4021
4022 /* match the physical addresses */
4023 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
4024 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
4025
4026# ifdef IN_RING3
4027 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4028 if (RT_FAILURE(rc))
4029 {
4030 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4031 {
4032 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4033 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4034 cErrors++;
4035 continue;
4036 }
4037 }
4038 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4039 {
4040 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4041 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4042 cErrors++;
4043 continue;
4044 }
4045# endif
4046
4047 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4048 if (!pPhysPage)
4049 {
4050# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4051 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4052 {
4053 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4054 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4055 cErrors++;
4056 continue;
4057 }
4058# endif
4059 if (PteDst.n.u1Write)
4060 {
4061 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4062 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4063 cErrors++;
4064 }
4065 fIgnoreFlags |= X86_PTE_RW;
4066 }
4067 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4068 {
4069 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4070 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4071 cErrors++;
4072 continue;
4073 }
4074
4075 /* flags */
4076 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4077 {
4078 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4079 {
4080 if (PteDst.n.u1Write)
4081 {
4082 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4083 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4084 cErrors++;
4085 continue;
4086 }
4087 fIgnoreFlags |= X86_PTE_RW;
4088 }
4089 else
4090 {
4091 if (PteDst.n.u1Present)
4092 {
4093 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4094 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4095 cErrors++;
4096 continue;
4097 }
4098 fIgnoreFlags |= X86_PTE_P;
4099 }
4100 }
4101 else
4102 {
4103 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4104 {
4105 if (PteDst.n.u1Write)
4106 {
4107 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4108 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4109 cErrors++;
4110 continue;
4111 }
4112 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4113 {
4114 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4115 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4116 cErrors++;
4117 continue;
4118 }
4119 if (PteDst.n.u1Dirty)
4120 {
4121 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4122 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4123 cErrors++;
4124 }
4125# if 0 /** @todo sync access bit properly... */
4126 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4127 {
4128 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4129 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4130 cErrors++;
4131 }
4132 fIgnoreFlags |= X86_PTE_RW;
4133# else
4134 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4135# endif
4136 }
4137 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4138 {
4139 /* access bit emulation (not implemented). */
4140 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4141 {
4142 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4143 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4144 cErrors++;
4145 continue;
4146 }
4147 if (!PteDst.n.u1Accessed)
4148 {
4149 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4150 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4151 cErrors++;
4152 }
4153 fIgnoreFlags |= X86_PTE_P;
4154 }
4155# ifdef DEBUG_sandervl
4156 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4157# endif
4158 }
4159
4160 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4161 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4162 )
4163 {
4164 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4165 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4166 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4167 cErrors++;
4168 continue;
4169 }
4170 } /* foreach PTE */
4171 }
4172 else
4173 {
4174 /*
4175 * Big Page.
4176 */
4177 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4178 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4179 {
4180 if (PdeDst.n.u1Write)
4181 {
4182 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4183 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4184 cErrors++;
4185 continue;
4186 }
4187 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4188 {
4189 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4190 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4191 cErrors++;
4192 continue;
4193 }
4194# if 0 /** @todo sync access bit properly... */
4195 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4196 {
4197 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4198 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4199 cErrors++;
4200 }
4201 fIgnoreFlags |= X86_PTE_RW;
4202# else
4203 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4204# endif
4205 }
4206 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4207 {
4208 /* access bit emulation (not implemented). */
4209 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4210 {
4211 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4212 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4213 cErrors++;
4214 continue;
4215 }
4216 if (!PdeDst.n.u1Accessed)
4217 {
4218 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4219 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4220 cErrors++;
4221 }
4222 fIgnoreFlags |= X86_PTE_P;
4223 }
4224
4225 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4226 {
4227 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4228 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4229 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4230 cErrors++;
4231 }
4232
4233 /* iterate the page table. */
4234 for (unsigned iPT = 0, off = 0;
4235 iPT < RT_ELEMENTS(pPTDst->a);
4236 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4237 {
4238 const SHWPTE PteDst = pPTDst->a[iPT];
4239
4240 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4241 {
4242 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4243 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4244 cErrors++;
4245 }
4246
4247 /* skip not-present entries. */
4248 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4249 continue;
4250
4251 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4252
4253 /* match the physical addresses */
4254 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4255
4256# ifdef IN_RING3
4257 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4258 if (RT_FAILURE(rc))
4259 {
4260 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4261 {
4262 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4263 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4264 cErrors++;
4265 }
4266 }
4267 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4268 {
4269 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4270 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4271 cErrors++;
4272 continue;
4273 }
4274# endif
4275 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4276 if (!pPhysPage)
4277 {
4278# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4279 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4280 {
4281 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4282 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4283 cErrors++;
4284 continue;
4285 }
4286# endif
4287 if (PteDst.n.u1Write)
4288 {
4289 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4290 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4291 cErrors++;
4292 }
4293 fIgnoreFlags |= X86_PTE_RW;
4294 }
4295 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4296 {
4297 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4298 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4299 cErrors++;
4300 continue;
4301 }
4302
4303 /* flags */
4304 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4305 {
4306 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4307 {
4308 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4309 {
4310 if (PteDst.n.u1Write)
4311 {
4312 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4313 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4314 cErrors++;
4315 continue;
4316 }
4317 fIgnoreFlags |= X86_PTE_RW;
4318 }
4319 }
4320 else
4321 {
4322 if (PteDst.n.u1Present)
4323 {
4324 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4325 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4326 cErrors++;
4327 continue;
4328 }
4329 fIgnoreFlags |= X86_PTE_P;
4330 }
4331 }
4332
4333 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4334 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4335 )
4336 {
4337 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4338 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4339 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4340 cErrors++;
4341 continue;
4342 }
4343 } /* for each PTE */
4344 }
4345 }
4346 /* not present */
4347
4348 } /* for each PDE */
4349
4350 } /* for each PDPTE */
4351
4352 } /* for each PML4E */
4353
4354# ifdef DEBUG
4355 if (cErrors)
4356 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4357# endif
4358
4359#endif /* GST == 32BIT, PAE or AMD64 */
4360 return cErrors;
4361
4362#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4363}
4364#endif /* VBOX_STRICT */
4365
4366
4367/**
4368 * Sets up the CR3 for shadow paging
4369 *
4370 * @returns Strict VBox status code.
4371 * @retval VINF_SUCCESS.
4372 *
4373 * @param pVCpu The VMCPU handle.
4374 * @param GCPhysCR3 The physical address in the CR3 register.
4375 */
4376PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4377{
4378 PVM pVM = pVCpu->CTX_SUFF(pVM);
4379
4380 /* Update guest paging info. */
4381#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4382 || PGM_GST_TYPE == PGM_TYPE_PAE \
4383 || PGM_GST_TYPE == PGM_TYPE_AMD64
4384
4385 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4386
4387 /*
4388 * Map the page CR3 points at.
4389 */
4390 RTHCPTR HCPtrGuestCR3;
4391 RTHCPHYS HCPhysGuestCR3;
4392 pgmLock(pVM);
4393 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4394 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4395 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4396 /** @todo this needs some reworking wrt. locking. */
4397# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4398 HCPtrGuestCR3 = NIL_RTHCPTR;
4399 int rc = VINF_SUCCESS;
4400# else
4401 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4402# endif
4403 pgmUnlock(pVM);
4404 if (RT_SUCCESS(rc))
4405 {
4406 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4407 if (RT_SUCCESS(rc))
4408 {
4409# ifdef IN_RC
4410 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4411# endif
4412# if PGM_GST_TYPE == PGM_TYPE_32BIT
4413 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4414# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4415 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4416# endif
4417 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4418
4419# elif PGM_GST_TYPE == PGM_TYPE_PAE
4420 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4421 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4422# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4423 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4424# endif
4425 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4426 Log(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4427
4428 /*
4429 * Map the 4 PDs too.
4430 */
4431 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(&pVCpu->pgm.s);
4432 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4433 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4434 {
4435 if (pGuestPDPT->a[i].n.u1Present)
4436 {
4437 RTHCPTR HCPtr;
4438 RTHCPHYS HCPhys;
4439 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4440 pgmLock(pVM);
4441 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4442 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4443 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4444# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4445 HCPtr = NIL_RTHCPTR;
4446 int rc2 = VINF_SUCCESS;
4447# else
4448 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4449# endif
4450 pgmUnlock(pVM);
4451 if (RT_SUCCESS(rc2))
4452 {
4453 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4454 AssertRCReturn(rc, rc);
4455
4456 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4457# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4458 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4459# endif
4460 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4461 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4462# ifdef IN_RC
4463 PGM_INVL_PG(pVCpu, GCPtr);
4464# endif
4465 continue;
4466 }
4467 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4468 }
4469
4470 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4471# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4472 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4473# endif
4474 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4475 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4476# ifdef IN_RC
4477 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4478# endif
4479 }
4480
4481# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4482 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4483# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4484 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4485# endif
4486# endif
4487 }
4488 else
4489 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4490 }
4491 else
4492 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4493
4494#else /* prot/real stub */
4495 int rc = VINF_SUCCESS;
4496#endif
4497
4498 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4499# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4500 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4501 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4502 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4503 && PGM_GST_TYPE != PGM_TYPE_PROT))
4504
4505 Assert(!HWACCMIsNestedPagingActive(pVM));
4506
4507 /*
4508 * Update the shadow root page as well since that's not fixed.
4509 */
4510 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4511 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4512 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4513 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4514 PPGMPOOLPAGE pNewShwPageCR3;
4515
4516 pgmLock(pVM);
4517
4518# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4519 if (pPool->cDirtyPages)
4520 pgmPoolResetDirtyPages(pVM);
4521# endif
4522
4523 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4524 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4525 AssertFatalRC(rc);
4526 rc = VINF_SUCCESS;
4527
4528# ifdef IN_RC
4529 /*
4530 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4531 * state will be inconsistent! Flush important things now while
4532 * we still can and then make sure there are no ring-3 calls.
4533 */
4534 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4535 VMMRZCallRing3Disable(pVCpu);
4536# endif
4537
4538 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4539 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4540 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4541# ifdef IN_RING0
4542 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4543 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4544# elif defined(IN_RC)
4545 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4546 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4547# else
4548 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4549 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4550# endif
4551
4552# ifndef PGM_WITHOUT_MAPPINGS
4553 /*
4554 * Apply all hypervisor mappings to the new CR3.
4555 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4556 * make sure we check for conflicts in the new CR3 root.
4557 */
4558# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4559 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4560# endif
4561 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4562 AssertRCReturn(rc, rc);
4563# endif
4564
4565 /* Set the current hypervisor CR3. */
4566 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4567 SELMShadowCR3Changed(pVM, pVCpu);
4568
4569# ifdef IN_RC
4570 /* NOTE: The state is consistent again. */
4571 VMMRZCallRing3Enable(pVCpu);
4572# endif
4573
4574 /* Clean up the old CR3 root. */
4575 if ( pOldShwPageCR3
4576 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4577 {
4578 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4579# ifndef PGM_WITHOUT_MAPPINGS
4580 /* Remove the hypervisor mappings from the shadow page table. */
4581 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4582# endif
4583 /* Mark the page as unlocked; allow flushing again. */
4584 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4585
4586 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4587 }
4588 pgmUnlock(pVM);
4589# endif
4590
4591 return rc;
4592}
4593
4594/**
4595 * Unmaps the shadow CR3.
4596 *
4597 * @returns VBox status, no specials.
4598 * @param pVCpu The VMCPU handle.
4599 */
4600PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4601{
4602 LogFlow(("UnmapCR3\n"));
4603
4604 int rc = VINF_SUCCESS;
4605 PVM pVM = pVCpu->CTX_SUFF(pVM);
4606
4607 /*
4608 * Update guest paging info.
4609 */
4610#if PGM_GST_TYPE == PGM_TYPE_32BIT
4611 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4612# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4613 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4614# endif
4615 pVCpu->pgm.s.pGst32BitPdRC = 0;
4616
4617#elif PGM_GST_TYPE == PGM_TYPE_PAE
4618 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4619# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4620 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4621# endif
4622 pVCpu->pgm.s.pGstPaePdptRC = 0;
4623 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4624 {
4625 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4626# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4627 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4628# endif
4629 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4630 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4631 }
4632
4633#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4634 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4635# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4636 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4637# endif
4638
4639#else /* prot/real mode stub */
4640 /* nothing to do */
4641#endif
4642
4643#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4644 /*
4645 * Update shadow paging info.
4646 */
4647# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4648 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4649 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4650
4651# if PGM_GST_TYPE != PGM_TYPE_REAL
4652 Assert(!HWACCMIsNestedPagingActive(pVM));
4653# endif
4654
4655 pgmLock(pVM);
4656
4657# ifndef PGM_WITHOUT_MAPPINGS
4658 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4659 /* Remove the hypervisor mappings from the shadow page table. */
4660 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4661# endif
4662
4663 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4664 {
4665 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4666
4667 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4668
4669# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4670 if (pPool->cDirtyPages)
4671 pgmPoolResetDirtyPages(pVM);
4672# endif
4673
4674 /* Mark the page as unlocked; allow flushing again. */
4675 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4676
4677 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4678 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4679 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4680 pVCpu->pgm.s.pShwPageCR3RC = 0;
4681 pVCpu->pgm.s.iShwUser = 0;
4682 pVCpu->pgm.s.iShwUserTable = 0;
4683 }
4684 pgmUnlock(pVM);
4685# endif
4686#endif /* !IN_RC*/
4687
4688 return rc;
4689}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette