1 | /* $Id: PGMAllBth.h 31101 2010-07-26 09:33:19Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
|
---|
4 | *
|
---|
5 | * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
|
---|
6 | * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
|
---|
7 | * set to PGM_TYPE_PROT. Half of the code in this file is not
|
---|
8 | * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
|
---|
9 | *
|
---|
10 | * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
|
---|
11 | * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
|
---|
12 | *
|
---|
13 | * @remarks This file is one big \#ifdef-orgy!
|
---|
14 | *
|
---|
15 | */
|
---|
16 |
|
---|
17 | /*
|
---|
18 | * Copyright (C) 2006-2010 Oracle Corporation
|
---|
19 | *
|
---|
20 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
21 | * available from http://www.virtualbox.org. This file is free software;
|
---|
22 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
23 | * General Public License (GPL) as published by the Free Software
|
---|
24 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
25 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
26 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
27 | */
|
---|
28 |
|
---|
29 |
|
---|
30 | /*******************************************************************************
|
---|
31 | * Internal Functions *
|
---|
32 | *******************************************************************************/
|
---|
33 | RT_C_DECLS_BEGIN
|
---|
34 | PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
|
---|
35 | PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
|
---|
36 | PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
|
---|
37 | PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage);
|
---|
38 | PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
|
---|
39 | PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
|
---|
40 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
|
---|
41 | PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
|
---|
42 | PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
|
---|
43 | #ifdef VBOX_STRICT
|
---|
44 | PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
|
---|
45 | #endif
|
---|
46 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte);
|
---|
47 | PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
|
---|
48 | PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
|
---|
49 | RT_C_DECLS_END
|
---|
50 |
|
---|
51 |
|
---|
52 | /*
|
---|
53 | * Filter out some illegal combinations of guest and shadow paging, so we can
|
---|
54 | * remove redundant checks inside functions.
|
---|
55 | */
|
---|
56 | #if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
57 | # error "Invalid combination; PAE guest implies PAE shadow"
|
---|
58 | #endif
|
---|
59 |
|
---|
60 | #if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
61 | && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
|
---|
62 | # error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
|
---|
63 | #endif
|
---|
64 |
|
---|
65 | #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
|
---|
66 | && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
|
---|
67 | # error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | #if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
|
---|
71 | || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
|
---|
72 | # error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
|
---|
73 | #endif
|
---|
74 |
|
---|
75 | #ifndef IN_RING3
|
---|
76 |
|
---|
77 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
78 | /**
|
---|
79 | * Deal with a guest page fault.
|
---|
80 | *
|
---|
81 | * @returns Strict VBox status code.
|
---|
82 | * @retval VINF_EM_RAW_GUEST_TRAP
|
---|
83 | * @retval VINF_EM_RAW_EMULATE_INSTR
|
---|
84 | *
|
---|
85 | * @param pVCpu The current CPU.
|
---|
86 | * @param pGstWalk The guest page table walk result.
|
---|
87 | * @param uErr The error code.
|
---|
88 | */
|
---|
89 | PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
|
---|
90 | {
|
---|
91 | # if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
|
---|
92 | /*
|
---|
93 | * Check for write conflicts with our hypervisor mapping.
|
---|
94 | *
|
---|
95 | * If the guest happens to access a non-present page, where our hypervisor
|
---|
96 | * is currently mapped, then we'll create a #PF storm in the guest.
|
---|
97 | */
|
---|
98 | if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
|
---|
99 | && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
|
---|
100 | {
|
---|
101 | /* Force a CR3 sync to check for conflicts and emulate the instruction. */
|
---|
102 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
103 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
|
---|
104 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
105 | }
|
---|
106 | # endif
|
---|
107 |
|
---|
108 | /*
|
---|
109 | * Calc the error code for the guest trap.
|
---|
110 | */
|
---|
111 | uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
|
---|
112 | ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
|
---|
113 | : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
|
---|
114 | if (pGstWalk->Core.fBadPhysAddr)
|
---|
115 | {
|
---|
116 | uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
|
---|
117 | Assert(!pGstWalk->Core.fNotPresent);
|
---|
118 | }
|
---|
119 | else if (!pGstWalk->Core.fNotPresent)
|
---|
120 | uNewErr |= X86_TRAP_PF_P;
|
---|
121 | TRPMSetErrorCode(pVCpu, uNewErr);
|
---|
122 |
|
---|
123 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
|
---|
124 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
125 | }
|
---|
126 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
127 |
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Deal with a guest page fault.
|
---|
131 | *
|
---|
132 | * @returns Strict VBox status code.
|
---|
133 | * @retval VINF_EM_RAW_GUEST_TRAP
|
---|
134 | * @retval VINF_EM_RAW_EMULATE_INSTR
|
---|
135 | *
|
---|
136 | * @param pVCpu The current CPU.
|
---|
137 | *
|
---|
138 | * @param uErr The error code.
|
---|
139 | *
|
---|
140 | * @param pGstWalk The guest page table walk result.
|
---|
141 | */
|
---|
142 | static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
|
---|
143 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
144 | RTGCPTR pvFault, PPGMPAGE pPage, PGSTPTWALK pGstWalk)
|
---|
145 | # else
|
---|
146 | RTGCPTR pvFault, PPGMPAGE pPage)
|
---|
147 | # endif
|
---|
148 | {
|
---|
149 | STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
150 | # if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
151 | GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A};
|
---|
152 | #endif
|
---|
153 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
154 | int rc;
|
---|
155 |
|
---|
156 | if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
|
---|
157 | {
|
---|
158 | /*
|
---|
159 | * Physical page access handler.
|
---|
160 | */
|
---|
161 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
162 | const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
|
---|
163 | # else
|
---|
164 | const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
|
---|
165 | # endif
|
---|
166 | PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
|
---|
167 | if (pCur)
|
---|
168 | {
|
---|
169 | # ifdef PGM_SYNC_N_PAGES
|
---|
170 | /*
|
---|
171 | * If the region is write protected and we got a page not present fault, then sync
|
---|
172 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
173 | * In case of write access continue to the GC write handler.
|
---|
174 | *
|
---|
175 | * ASSUMES that there is only one handler per page or that they have similar write properties.
|
---|
176 | */
|
---|
177 | if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
178 | && !(uErr & X86_TRAP_PF_P))
|
---|
179 | {
|
---|
180 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
181 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
182 | # else
|
---|
183 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
184 | # endif
|
---|
185 | if ( RT_FAILURE(rc)
|
---|
186 | || !(uErr & X86_TRAP_PF_RW)
|
---|
187 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
|
---|
188 | {
|
---|
189 | AssertRC(rc);
|
---|
190 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
|
---|
191 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
192 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
|
---|
193 | return rc;
|
---|
194 | }
|
---|
195 | }
|
---|
196 | # endif
|
---|
197 |
|
---|
198 | AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
|
---|
199 | || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
|
---|
200 | ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
|
---|
201 | pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
|
---|
202 |
|
---|
203 | # if defined(IN_RC) || defined(IN_RING0) /** @todo remove this */
|
---|
204 | if (pCur->CTX_SUFF(pfnHandler))
|
---|
205 | {
|
---|
206 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
207 | # ifdef IN_RING0
|
---|
208 | PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
209 | # else
|
---|
210 | PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
|
---|
211 | # endif
|
---|
212 | bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
|
---|
213 | void *pvUser = pCur->CTX_SUFF(pvUser);
|
---|
214 |
|
---|
215 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
216 | if (fLeaveLock)
|
---|
217 | pgmUnlock(pVM); /* @todo: Not entirely safe. */
|
---|
218 |
|
---|
219 | rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
|
---|
220 | if (fLeaveLock)
|
---|
221 | pgmLock(pVM);
|
---|
222 | # ifdef VBOX_WITH_STATISTICS
|
---|
223 | pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault);
|
---|
224 | if (pCur)
|
---|
225 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
226 | # else
|
---|
227 | pCur = NULL; /* might be invalid by now. */
|
---|
228 | # endif
|
---|
229 |
|
---|
230 | }
|
---|
231 | else
|
---|
232 | # endif /* IN_RC || IN_RING0 */
|
---|
233 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
234 |
|
---|
235 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical);
|
---|
236 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
237 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; });
|
---|
238 | return rc;
|
---|
239 | }
|
---|
240 | }
|
---|
241 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
242 | else
|
---|
243 | {
|
---|
244 | # ifdef PGM_SYNC_N_PAGES
|
---|
245 | /*
|
---|
246 | * If the region is write protected and we got a page not present fault, then sync
|
---|
247 | * the pages. If the fault was caused by a read, then restart the instruction.
|
---|
248 | * In case of write access continue to the GC write handler.
|
---|
249 | */
|
---|
250 | if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
|
---|
251 | && !(uErr & X86_TRAP_PF_P))
|
---|
252 | {
|
---|
253 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
254 | if ( RT_FAILURE(rc)
|
---|
255 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
256 | || !(uErr & X86_TRAP_PF_RW))
|
---|
257 | {
|
---|
258 | AssertRC(rc);
|
---|
259 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
|
---|
260 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
261 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; });
|
---|
262 | return rc;
|
---|
263 | }
|
---|
264 | }
|
---|
265 | # endif
|
---|
266 | /*
|
---|
267 | * Ok, it's an virtual page access handler.
|
---|
268 | *
|
---|
269 | * Since it's faster to search by address, we'll do that first
|
---|
270 | * and then retry by GCPhys if that fails.
|
---|
271 | */
|
---|
272 | /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
|
---|
273 | * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
|
---|
274 | * out of sync, because the page was changed without us noticing it (not-present -> present
|
---|
275 | * without invlpg or mov cr3, xxx).
|
---|
276 | */
|
---|
277 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
|
---|
278 | if (pCur)
|
---|
279 | {
|
---|
280 | AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
|
---|
281 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
282 | || !(uErr & X86_TRAP_PF_P)
|
---|
283 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
284 | ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
|
---|
285 | pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
|
---|
286 |
|
---|
287 | if ( pvFault - pCur->Core.Key < pCur->cb
|
---|
288 | && ( uErr & X86_TRAP_PF_RW
|
---|
289 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
290 | {
|
---|
291 | # ifdef IN_RC
|
---|
292 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
293 | pgmUnlock(pVM);
|
---|
294 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
|
---|
295 | pgmLock(pVM);
|
---|
296 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
297 | # else
|
---|
298 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
299 | # endif
|
---|
300 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual);
|
---|
301 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
302 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
|
---|
303 | return rc;
|
---|
304 | }
|
---|
305 | /* Unhandled part of a monitored page */
|
---|
306 | }
|
---|
307 | else
|
---|
308 | {
|
---|
309 | /* Check by physical address. */
|
---|
310 | unsigned iPage;
|
---|
311 | rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
|
---|
312 | Assert(RT_SUCCESS(rc) || !pCur);
|
---|
313 | if ( pCur
|
---|
314 | && ( uErr & X86_TRAP_PF_RW
|
---|
315 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
316 | {
|
---|
317 | Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
|
---|
318 | # ifdef IN_RC
|
---|
319 | RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
|
---|
320 | Assert(off < pCur->cb);
|
---|
321 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
322 | pgmUnlock(pVM);
|
---|
323 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
|
---|
324 | pgmLock(pVM);
|
---|
325 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
326 | # else
|
---|
327 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
328 | # endif
|
---|
329 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys);
|
---|
330 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
331 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
|
---|
332 | return rc;
|
---|
333 | }
|
---|
334 | }
|
---|
335 | }
|
---|
336 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
337 |
|
---|
338 | /*
|
---|
339 | * There is a handled area of the page, but this fault doesn't belong to it.
|
---|
340 | * We must emulate the instruction.
|
---|
341 | *
|
---|
342 | * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
|
---|
343 | * we first check if this was a page-not-present fault for a page with only
|
---|
344 | * write access handlers. Restart the instruction if it wasn't a write access.
|
---|
345 | */
|
---|
346 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled);
|
---|
347 |
|
---|
348 | if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
349 | && !(uErr & X86_TRAP_PF_P))
|
---|
350 | {
|
---|
351 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
352 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
353 | # else
|
---|
354 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
355 | # endif
|
---|
356 | if ( RT_FAILURE(rc)
|
---|
357 | || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
|
---|
358 | || !(uErr & X86_TRAP_PF_RW))
|
---|
359 | {
|
---|
360 | AssertRC(rc);
|
---|
361 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync);
|
---|
362 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
363 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; });
|
---|
364 | return rc;
|
---|
365 | }
|
---|
366 | }
|
---|
367 |
|
---|
368 | /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
|
---|
369 | * It's writing to an unhandled part of the LDT page several million times.
|
---|
370 | */
|
---|
371 | rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
|
---|
372 | LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
|
---|
373 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b);
|
---|
374 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
|
---|
375 | return rc;
|
---|
376 | } /* if any kind of handler */
|
---|
377 |
|
---|
378 |
|
---|
379 | /**
|
---|
380 | * #PF Handler for raw-mode guest execution.
|
---|
381 | *
|
---|
382 | * @returns VBox status code (appropriate for trap handling and GC return).
|
---|
383 | *
|
---|
384 | * @param pVCpu VMCPU Handle.
|
---|
385 | * @param uErr The trap error code.
|
---|
386 | * @param pRegFrame Trap register frame.
|
---|
387 | * @param pvFault The fault address.
|
---|
388 | * @param pfLockTaken PGM lock taken here or not (out)
|
---|
389 | */
|
---|
390 | PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
|
---|
391 | {
|
---|
392 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
393 |
|
---|
394 | *pfLockTaken = false;
|
---|
395 |
|
---|
396 | # if defined(IN_RC) && defined(VBOX_STRICT)
|
---|
397 | PGMDynCheckLocks(pVM);
|
---|
398 | # endif
|
---|
399 |
|
---|
400 | # if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
401 | || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
402 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
403 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
|
---|
404 | int rc;
|
---|
405 |
|
---|
406 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
407 | /*
|
---|
408 | * Walk the guest page translation tables and check if it's a guest fault.
|
---|
409 | */
|
---|
410 | GSTPTWALK GstWalk;
|
---|
411 | rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
|
---|
412 | if (RT_FAILURE_NP(rc))
|
---|
413 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
|
---|
414 |
|
---|
415 | /* assert some GstWalk sanity. */
|
---|
416 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
417 | AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
|
---|
418 | # endif
|
---|
419 | # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
420 | AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
|
---|
421 | # endif
|
---|
422 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
|
---|
423 | AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
|
---|
424 | Assert(GstWalk.Core.fSucceeded);
|
---|
425 |
|
---|
426 | if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
|
---|
427 | {
|
---|
428 | if ( ( (uErr & X86_TRAP_PF_RW)
|
---|
429 | && !GstWalk.Core.fEffectiveRW
|
---|
430 | && ( (uErr & X86_TRAP_PF_US)
|
---|
431 | || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
|
---|
432 | || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
|
---|
433 | || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
|
---|
434 | )
|
---|
435 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
|
---|
436 | }
|
---|
437 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
438 |
|
---|
439 | # ifdef PGM_WITH_MMIO_OPTIMIZATIONS
|
---|
440 | /*
|
---|
441 | * If it is a reserved bit fault we know that it is an MMIO or access
|
---|
442 | * handler related fault and can skip the dirty page stuff below.
|
---|
443 | */
|
---|
444 | if (uErr & X86_TRAP_PF_RSVD)
|
---|
445 | {
|
---|
446 | Assert(uErr & X86_TRAP_PF_P);
|
---|
447 | PPGMPAGE pPage;
|
---|
448 | /** @todo Only all physical access handlers here, so optimize further. */
|
---|
449 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
450 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
|
---|
451 | if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
452 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
|
---|
453 | &GstWalk));
|
---|
454 | # else
|
---|
455 | rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
|
---|
456 | if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
457 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage));
|
---|
458 | # endif
|
---|
459 | }
|
---|
460 | # endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
|
---|
461 |
|
---|
462 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
463 | /*
|
---|
464 | * Set the accessed and dirty flags.
|
---|
465 | */
|
---|
466 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
467 | GstWalk.Pml4e.u |= X86_PML4E_A;
|
---|
468 | GstWalk.pPml4e->u |= X86_PML4E_A;
|
---|
469 | GstWalk.Pdpe.u |= X86_PDPE_A;
|
---|
470 | GstWalk.pPdpe->u |= X86_PDPE_A;
|
---|
471 | # endif
|
---|
472 | if (GstWalk.Core.fBigPage)
|
---|
473 | {
|
---|
474 | Assert(GstWalk.Pde.b.u1Size);
|
---|
475 | if (uErr & X86_TRAP_PF_RW)
|
---|
476 | {
|
---|
477 | GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
|
---|
478 | GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
|
---|
479 | }
|
---|
480 | else
|
---|
481 | {
|
---|
482 | GstWalk.Pde.u |= X86_PDE4M_A;
|
---|
483 | GstWalk.pPde->u |= X86_PDE4M_A;
|
---|
484 | }
|
---|
485 | }
|
---|
486 | else
|
---|
487 | {
|
---|
488 | Assert(!GstWalk.Pde.b.u1Size);
|
---|
489 | GstWalk.Pde.u |= X86_PDE_A;
|
---|
490 | GstWalk.pPde->u |= X86_PDE_A;
|
---|
491 | if (uErr & X86_TRAP_PF_RW)
|
---|
492 | {
|
---|
493 | # ifdef VBOX_WITH_STATISTICS
|
---|
494 | if (!GstWalk.Pte.n.u1Dirty)
|
---|
495 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
|
---|
496 | else
|
---|
497 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
|
---|
498 | # endif
|
---|
499 | GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
|
---|
500 | GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
|
---|
501 | }
|
---|
502 | else
|
---|
503 | {
|
---|
504 | GstWalk.Pte.u |= X86_PTE_A;
|
---|
505 | GstWalk.pPte->u |= X86_PTE_A;
|
---|
506 | }
|
---|
507 | Assert(GstWalk.Pte.u == GstWalk.pPte->u);
|
---|
508 | }
|
---|
509 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
|
---|
510 | ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
|
---|
511 | # else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
512 | GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
|
---|
513 | # endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
514 |
|
---|
515 | /* Take the big lock now. */
|
---|
516 | *pfLockTaken = true;
|
---|
517 | pgmLock(pVM);
|
---|
518 |
|
---|
519 | /*
|
---|
520 | * Fetch the guest PDE, PDPE and PML4E.
|
---|
521 | */
|
---|
522 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
523 | const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
|
---|
524 | PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
|
---|
525 |
|
---|
526 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
527 | const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
|
---|
528 | PX86PDPAE pPDDst;
|
---|
529 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
530 | rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
|
---|
531 | # else
|
---|
532 | rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
|
---|
533 | # endif
|
---|
534 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
535 |
|
---|
536 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
537 | const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
538 | PX86PDPAE pPDDst;
|
---|
539 | # if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
|
---|
540 | rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
|
---|
541 | X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
|
---|
542 | # else
|
---|
543 | rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
|
---|
544 | # endif
|
---|
545 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
546 |
|
---|
547 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
548 | const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
549 | PEPTPD pPDDst;
|
---|
550 | rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
|
---|
551 | AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
|
---|
552 | # endif
|
---|
553 | Assert(pPDDst);
|
---|
554 |
|
---|
555 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
556 | /*
|
---|
557 | * Dirty page handling.
|
---|
558 | *
|
---|
559 | * If we successfully correct the write protection fault due to dirty bit
|
---|
560 | * tracking, then return immediately.
|
---|
561 | */
|
---|
562 | if (uErr & X86_TRAP_PF_RW) /* write fault? */
|
---|
563 | {
|
---|
564 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
|
---|
565 | rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
|
---|
566 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a);
|
---|
567 | if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
|
---|
568 | {
|
---|
569 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
|
---|
570 | = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; });
|
---|
571 | LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
|
---|
572 | return VINF_SUCCESS;
|
---|
573 | }
|
---|
574 | AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
|
---|
575 | AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
|
---|
576 | }
|
---|
577 |
|
---|
578 | # if 0 /* rarely useful; leave for debugging. */
|
---|
579 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
|
---|
580 | # endif
|
---|
581 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
582 |
|
---|
583 | /*
|
---|
584 | * A common case is the not-present error caused by lazy page table syncing.
|
---|
585 | *
|
---|
586 | * It is IMPORTANT that we weed out any access to non-present shadow PDEs
|
---|
587 | * here so we can safely assume that the shadow PT is present when calling
|
---|
588 | * SyncPage later.
|
---|
589 | *
|
---|
590 | * On failure, we ASSUME that SyncPT is out of memory or detected some kind
|
---|
591 | * of mapping conflict and defer to SyncCR3 in R3.
|
---|
592 | * (Again, we do NOT support access handlers for non-present guest pages.)
|
---|
593 | *
|
---|
594 | */
|
---|
595 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
596 | Assert(GstWalk.Pde.n.u1Present);
|
---|
597 | # endif
|
---|
598 | if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
|
---|
599 | && !pPDDst->a[iPDDst].n.u1Present)
|
---|
600 | {
|
---|
601 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; });
|
---|
602 | STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
|
---|
603 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
604 | LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
|
---|
605 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
|
---|
606 | # else
|
---|
607 | LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
|
---|
608 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
|
---|
609 | # endif
|
---|
610 | if (RT_SUCCESS(rc))
|
---|
611 | {
|
---|
612 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
|
---|
613 | return rc;
|
---|
614 | }
|
---|
615 | Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
|
---|
616 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
|
---|
617 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f);
|
---|
618 | return VINF_PGM_SYNC_CR3;
|
---|
619 | }
|
---|
620 |
|
---|
621 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
|
---|
622 | /*
|
---|
623 | * Check if this address is within any of our mappings.
|
---|
624 | *
|
---|
625 | * This is *very* fast and it's gonna save us a bit of effort below and prevent
|
---|
626 | * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
|
---|
627 | * (BTW, it's impossible to have physical access handlers in a mapping.)
|
---|
628 | */
|
---|
629 | if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
|
---|
630 | {
|
---|
631 | STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
|
---|
632 | PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
|
---|
633 | for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
|
---|
634 | {
|
---|
635 | if (pvFault < pMapping->GCPtr)
|
---|
636 | break;
|
---|
637 | if (pvFault - pMapping->GCPtr < pMapping->cb)
|
---|
638 | {
|
---|
639 | /*
|
---|
640 | * The first thing we check is if we've got an undetected conflict.
|
---|
641 | */
|
---|
642 | if (pgmMapAreMappingsFloating(&pVM->pgm.s))
|
---|
643 | {
|
---|
644 | unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
|
---|
645 | while (iPT-- > 0)
|
---|
646 | if (GstWalk.pPde[iPT].n.u1Present)
|
---|
647 | {
|
---|
648 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts);
|
---|
649 | Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
|
---|
650 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
|
---|
651 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
|
---|
652 | return VINF_PGM_SYNC_CR3;
|
---|
653 | }
|
---|
654 | }
|
---|
655 |
|
---|
656 | /*
|
---|
657 | * Check if the fault address is in a virtual page access handler range.
|
---|
658 | */
|
---|
659 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
|
---|
660 | if ( pCur
|
---|
661 | && pvFault - pCur->Core.Key < pCur->cb
|
---|
662 | && uErr & X86_TRAP_PF_RW)
|
---|
663 | {
|
---|
664 | # ifdef IN_RC
|
---|
665 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
666 | pgmUnlock(pVM);
|
---|
667 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
|
---|
668 | pgmLock(pVM);
|
---|
669 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
670 | # else
|
---|
671 | AssertFailed();
|
---|
672 | rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
|
---|
673 | # endif
|
---|
674 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping);
|
---|
675 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
|
---|
676 | return rc;
|
---|
677 | }
|
---|
678 |
|
---|
679 | /*
|
---|
680 | * Pretend we're not here and let the guest handle the trap.
|
---|
681 | */
|
---|
682 | TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
|
---|
683 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping);
|
---|
684 | LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
|
---|
685 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
|
---|
686 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
687 | }
|
---|
688 | }
|
---|
689 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a);
|
---|
690 | } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
|
---|
691 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
692 |
|
---|
693 | /*
|
---|
694 | * Check if this fault address is flagged for special treatment,
|
---|
695 | * which means we'll have to figure out the physical address and
|
---|
696 | * check flags associated with it.
|
---|
697 | *
|
---|
698 | * ASSUME that we can limit any special access handling to pages
|
---|
699 | * in page tables which the guest believes to be present.
|
---|
700 | */
|
---|
701 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
702 | RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
703 | # else
|
---|
704 | RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
|
---|
705 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
706 | PPGMPAGE pPage;
|
---|
707 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
708 | if (RT_FAILURE(rc))
|
---|
709 | {
|
---|
710 | /*
|
---|
711 | * When the guest accesses invalid physical memory (e.g. probing
|
---|
712 | * of RAM or accessing a remapped MMIO range), then we'll fall
|
---|
713 | * back to the recompiler to emulate the instruction.
|
---|
714 | */
|
---|
715 | LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
|
---|
716 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid);
|
---|
717 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
718 | }
|
---|
719 |
|
---|
720 | /*
|
---|
721 | * Any handlers for this page?
|
---|
722 | */
|
---|
723 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
724 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
725 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, &GstWalk));
|
---|
726 | # else
|
---|
727 | return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage));
|
---|
728 | # endif
|
---|
729 |
|
---|
730 | STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
731 |
|
---|
732 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
733 | if (uErr & X86_TRAP_PF_P)
|
---|
734 | {
|
---|
735 | /*
|
---|
736 | * The page isn't marked, but it might still be monitored by a virtual page access handler.
|
---|
737 | * (ASSUMES no temporary disabling of virtual handlers.)
|
---|
738 | */
|
---|
739 | /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
|
---|
740 | * we should correct both the shadow page table and physical memory flags, and not only check for
|
---|
741 | * accesses within the handler region but for access to pages with virtual handlers. */
|
---|
742 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
|
---|
743 | if (pCur)
|
---|
744 | {
|
---|
745 | AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
|
---|
746 | || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
|
---|
747 | || !(uErr & X86_TRAP_PF_P)
|
---|
748 | || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
|
---|
749 | ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
|
---|
750 |
|
---|
751 | if ( pvFault - pCur->Core.Key < pCur->cb
|
---|
752 | && ( uErr & X86_TRAP_PF_RW
|
---|
753 | || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
|
---|
754 | {
|
---|
755 | # ifdef IN_RC
|
---|
756 | STAM_PROFILE_START(&pCur->Stat, h);
|
---|
757 | pgmUnlock(pVM);
|
---|
758 | rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
|
---|
759 | pgmLock(pVM);
|
---|
760 | STAM_PROFILE_STOP(&pCur->Stat, h);
|
---|
761 | # else
|
---|
762 | rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
|
---|
763 | # endif
|
---|
764 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked);
|
---|
765 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
766 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; });
|
---|
767 | return rc;
|
---|
768 | }
|
---|
769 | }
|
---|
770 | }
|
---|
771 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
772 |
|
---|
773 | /*
|
---|
774 | * We are here only if page is present in Guest page tables and
|
---|
775 | * trap is not handled by our handlers.
|
---|
776 | *
|
---|
777 | * Check it for page out-of-sync situation.
|
---|
778 | */
|
---|
779 | if (!(uErr & X86_TRAP_PF_P))
|
---|
780 | {
|
---|
781 | /*
|
---|
782 | * Page is not present in our page tables. Try to sync it!
|
---|
783 | */
|
---|
784 | if (uErr & X86_TRAP_PF_US)
|
---|
785 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
|
---|
786 | else /* supervisor */
|
---|
787 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
|
---|
788 |
|
---|
789 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
790 | {
|
---|
791 | /* Emulate reads from ballooned pages as they are not present in
|
---|
792 | our shadow page tables. (Required for e.g. Solaris guests; soft
|
---|
793 | ecc, random nr generator.) */
|
---|
794 | rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
|
---|
795 | LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
|
---|
796 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncBallloon));
|
---|
797 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
798 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; });
|
---|
799 | return rc;
|
---|
800 | }
|
---|
801 |
|
---|
802 | # if defined(LOG_ENABLED) && !defined(IN_RING0)
|
---|
803 | RTGCPHYS GCPhys2;
|
---|
804 | uint64_t fPageGst2;
|
---|
805 | PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
|
---|
806 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
807 | Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
|
---|
808 | pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
|
---|
809 | # else
|
---|
810 | Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
|
---|
811 | pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
|
---|
812 | # endif
|
---|
813 | # endif /* LOG_ENABLED */
|
---|
814 |
|
---|
815 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
|
---|
816 | if ( !GstWalk.Core.fEffectiveUS
|
---|
817 | && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
|
---|
818 | {
|
---|
819 | /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
|
---|
820 | if ( pvFault == (RTGCPTR)pRegFrame->eip
|
---|
821 | || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
|
---|
822 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
823 | || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
|
---|
824 | && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
|
---|
825 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
826 | )
|
---|
827 | {
|
---|
828 | LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
|
---|
829 | rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
|
---|
830 | if (rc != VINF_SUCCESS)
|
---|
831 | {
|
---|
832 | /*
|
---|
833 | * CSAM needs to perform a job in ring 3.
|
---|
834 | *
|
---|
835 | * Sync the page before going to the host context; otherwise we'll end up in a loop if
|
---|
836 | * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
|
---|
837 | */
|
---|
838 | LogFlow(("CSAM ring 3 job\n"));
|
---|
839 | int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
|
---|
840 | AssertRC(rc2);
|
---|
841 |
|
---|
842 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
843 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; });
|
---|
844 | return rc;
|
---|
845 | }
|
---|
846 | }
|
---|
847 | # ifdef CSAM_DETECT_NEW_CODE_PAGES
|
---|
848 | else if ( uErr == X86_TRAP_PF_RW
|
---|
849 | && pRegFrame->ecx >= 0x100 /* early check for movswd count */
|
---|
850 | && pRegFrame->ecx < 0x10000)
|
---|
851 | {
|
---|
852 | /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
|
---|
853 | * to detect loading of new code pages.
|
---|
854 | */
|
---|
855 |
|
---|
856 | /*
|
---|
857 | * Decode the instruction.
|
---|
858 | */
|
---|
859 | RTGCPTR PC;
|
---|
860 | rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
|
---|
861 | &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
|
---|
862 | if (rc == VINF_SUCCESS)
|
---|
863 | {
|
---|
864 | PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
|
---|
865 | uint32_t cbOp;
|
---|
866 | rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
|
---|
867 |
|
---|
868 | /* For now we'll restrict this to rep movsw/d instructions */
|
---|
869 | if ( rc == VINF_SUCCESS
|
---|
870 | && pDis->pCurInstr->opcode == OP_MOVSWD
|
---|
871 | && (pDis->prefix & PREFIX_REP))
|
---|
872 | {
|
---|
873 | CSAMMarkPossibleCodePage(pVM, pvFault);
|
---|
874 | }
|
---|
875 | }
|
---|
876 | }
|
---|
877 | # endif /* CSAM_DETECT_NEW_CODE_PAGES */
|
---|
878 |
|
---|
879 | /*
|
---|
880 | * Mark this page as safe.
|
---|
881 | */
|
---|
882 | /** @todo not correct for pages that contain both code and data!! */
|
---|
883 | Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
|
---|
884 | CSAMMarkPage(pVM, pvFault, true);
|
---|
885 | }
|
---|
886 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
|
---|
887 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
888 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
889 | # else
|
---|
890 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
|
---|
891 | # endif
|
---|
892 | if (RT_SUCCESS(rc))
|
---|
893 | {
|
---|
894 | /* The page was successfully synced, return to the guest. */
|
---|
895 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
896 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; });
|
---|
897 | return VINF_SUCCESS;
|
---|
898 | }
|
---|
899 | }
|
---|
900 | else /* uErr & X86_TRAP_PF_P: */
|
---|
901 | {
|
---|
902 | /*
|
---|
903 | * Write protected pages are made writable when the guest makes the
|
---|
904 | * first write to it. This happens for pages that are shared, write
|
---|
905 | * monitored or not yet allocated.
|
---|
906 | *
|
---|
907 | * We may also end up here when CR0.WP=0 in the guest.
|
---|
908 | *
|
---|
909 | * Also, a side effect of not flushing global PDEs are out of sync
|
---|
910 | * pages due to physical monitored regions, that are no longer valid.
|
---|
911 | * Assume for now it only applies to the read/write flag.
|
---|
912 | */
|
---|
913 | if (uErr & X86_TRAP_PF_RW)
|
---|
914 | {
|
---|
915 | /*
|
---|
916 | * Check if it is a read-only page.
|
---|
917 | */
|
---|
918 | if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
919 | {
|
---|
920 | Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
|
---|
921 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
922 | AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
|
---|
923 |
|
---|
924 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
925 | if (rc != VINF_SUCCESS)
|
---|
926 | {
|
---|
927 | AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
|
---|
928 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
929 | /// @todo STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2MakeWritable; });
|
---|
930 | return rc;
|
---|
931 | }
|
---|
932 | if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
|
---|
933 | return VINF_EM_NO_MEMORY;
|
---|
934 | }
|
---|
935 |
|
---|
936 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
937 | /*
|
---|
938 | * Check to see if we need to emulate the instruction if CR0.WP=0.
|
---|
939 | */
|
---|
940 | if ( !GstWalk.Core.fEffectiveRW
|
---|
941 | && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
|
---|
942 | && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
|
---|
943 | {
|
---|
944 | Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
|
---|
945 | rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
|
---|
946 | if (RT_SUCCESS(rc))
|
---|
947 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ);
|
---|
948 | else
|
---|
949 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3);
|
---|
950 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
951 | /// @todo STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2WPEmulation; });
|
---|
952 | return rc;
|
---|
953 | }
|
---|
954 | # endif
|
---|
955 | /// @todo count the above case; else
|
---|
956 | if (uErr & X86_TRAP_PF_US)
|
---|
957 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
|
---|
958 | else /* supervisor */
|
---|
959 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
|
---|
960 |
|
---|
961 | /*
|
---|
962 | * Sync the page.
|
---|
963 | *
|
---|
964 | * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
|
---|
965 | * page is not present, which is not true in this case.
|
---|
966 | */
|
---|
967 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
968 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
|
---|
969 | # else
|
---|
970 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
|
---|
971 | # endif
|
---|
972 | if (RT_SUCCESS(rc))
|
---|
973 | {
|
---|
974 | /*
|
---|
975 | * Page was successfully synced, return to guest but invalidate
|
---|
976 | * the TLB first as the page is very likely to be in it.
|
---|
977 | */
|
---|
978 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
979 | HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
|
---|
980 | # else
|
---|
981 | PGM_INVL_PG(pVCpu, pvFault);
|
---|
982 | # endif
|
---|
983 | # ifdef VBOX_STRICT
|
---|
984 | RTGCPHYS GCPhys2;
|
---|
985 | uint64_t fPageGst;
|
---|
986 | if (!pVM->pgm.s.fNestedPaging)
|
---|
987 | {
|
---|
988 | rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
|
---|
989 | AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
|
---|
990 | LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
|
---|
991 | }
|
---|
992 | uint64_t fPageShw;
|
---|
993 | rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
|
---|
994 | AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
|
---|
995 | # endif /* VBOX_STRICT */
|
---|
996 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
997 | STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; });
|
---|
998 | return VINF_SUCCESS;
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 | /** @todo else: WTF are we here? */
|
---|
1002 |
|
---|
1003 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
|
---|
1004 | /*
|
---|
1005 | * Check for VMM page flags vs. Guest page flags consistency.
|
---|
1006 | * Currently only for debug purposes.
|
---|
1007 | */
|
---|
1008 | if (RT_SUCCESS(rc))
|
---|
1009 | {
|
---|
1010 | /* Get guest page flags. */
|
---|
1011 | uint64_t fPageGst;
|
---|
1012 | rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
|
---|
1013 | if (RT_SUCCESS(rc))
|
---|
1014 | {
|
---|
1015 | uint64_t fPageShw;
|
---|
1016 | rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
|
---|
1017 |
|
---|
1018 | /*
|
---|
1019 | * Compare page flags.
|
---|
1020 | * Note: we have AVL, A, D bits desynched.
|
---|
1021 | */
|
---|
1022 | AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
|
---|
1023 | ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
|
---|
1024 | }
|
---|
1025 | else
|
---|
1026 | AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
|
---|
1027 | }
|
---|
1028 | else
|
---|
1029 | AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
|
---|
1030 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
|
---|
1031 | }
|
---|
1032 | STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c);
|
---|
1033 |
|
---|
1034 | /** @todo This point is only ever reached when something goes awry. The
|
---|
1035 | * conclusion here is wrong, it is not a guest trap! Will fix in
|
---|
1036 | * a bit... */
|
---|
1037 |
|
---|
1038 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1039 | /*
|
---|
1040 | * Conclusion, this is a guest trap.
|
---|
1041 | */
|
---|
1042 | LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n"));
|
---|
1043 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh);
|
---|
1044 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
1045 | # else
|
---|
1046 | /* present, but not a monitored page; perhaps the guest is probing physical memory */
|
---|
1047 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
1048 | # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
1049 |
|
---|
1050 |
|
---|
1051 | # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1052 |
|
---|
1053 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
1054 | return VERR_INTERNAL_ERROR;
|
---|
1055 | # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1056 | }
|
---|
1057 | #endif /* !IN_RING3 */
|
---|
1058 |
|
---|
1059 |
|
---|
1060 | /**
|
---|
1061 | * Emulation of the invlpg instruction.
|
---|
1062 | *
|
---|
1063 | *
|
---|
1064 | * @returns VBox status code.
|
---|
1065 | *
|
---|
1066 | * @param pVCpu The VMCPU handle.
|
---|
1067 | * @param GCPtrPage Page to invalidate.
|
---|
1068 | *
|
---|
1069 | * @remark ASSUMES that the guest is updating before invalidating. This order
|
---|
1070 | * isn't required by the CPU, so this is speculative and could cause
|
---|
1071 | * trouble.
|
---|
1072 | * @remark No TLB shootdown is done on any other VCPU as we assume that
|
---|
1073 | * invlpg emulation is the *only* reason for calling this function.
|
---|
1074 | * (The guest has to shoot down TLB entries on other CPUs itself)
|
---|
1075 | * Currently true, but keep in mind!
|
---|
1076 | *
|
---|
1077 | * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
|
---|
1078 | */
|
---|
1079 | PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
|
---|
1080 | {
|
---|
1081 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
|
---|
1082 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
1083 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
1084 | int rc;
|
---|
1085 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1086 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1087 |
|
---|
1088 | Assert(PGMIsLockOwner(pVM));
|
---|
1089 |
|
---|
1090 | LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
|
---|
1091 |
|
---|
1092 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
1093 | if (pPool->cDirtyPages)
|
---|
1094 | pgmPoolResetDirtyPages(pVM);
|
---|
1095 | # endif
|
---|
1096 |
|
---|
1097 | /*
|
---|
1098 | * Get the shadow PD entry and skip out if this PD isn't present.
|
---|
1099 | * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
|
---|
1100 | */
|
---|
1101 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1102 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1103 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
|
---|
1104 |
|
---|
1105 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1106 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
1107 | Assert(pShwPde);
|
---|
1108 |
|
---|
1109 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
1110 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
|
---|
1111 | PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
|
---|
1112 |
|
---|
1113 | /* If the shadow PDPE isn't present, then skip the invalidate. */
|
---|
1114 | if (!pPdptDst->a[iPdpt].n.u1Present)
|
---|
1115 | {
|
---|
1116 | Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
|
---|
1117 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1118 | return VINF_SUCCESS;
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1122 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
1123 | PX86PDPAE pPDDst;
|
---|
1124 |
|
---|
1125 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1126 | rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
|
---|
1127 | AssertRCSuccessReturn(rc, rc);
|
---|
1128 | Assert(pShwPde);
|
---|
1129 |
|
---|
1130 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
|
---|
1131 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1132 |
|
---|
1133 | # else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
|
---|
1134 | /* PML4 */
|
---|
1135 | const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
|
---|
1136 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
1137 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1138 | PX86PDPAE pPDDst;
|
---|
1139 | PX86PDPT pPdptDst;
|
---|
1140 | PX86PML4E pPml4eDst;
|
---|
1141 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
|
---|
1142 | if (rc != VINF_SUCCESS)
|
---|
1143 | {
|
---|
1144 | AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
|
---|
1145 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1146 | return VINF_SUCCESS;
|
---|
1147 | }
|
---|
1148 | Assert(pPDDst);
|
---|
1149 |
|
---|
1150 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1151 | PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
|
---|
1152 |
|
---|
1153 | if (!pPdpeDst->n.u1Present)
|
---|
1154 | {
|
---|
1155 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1156 | return VINF_SUCCESS;
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1160 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
|
---|
1161 | Assert(pShwPde);
|
---|
1162 |
|
---|
1163 | # endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
|
---|
1164 |
|
---|
1165 | const SHWPDE PdeDst = *pPdeDst;
|
---|
1166 | if (!PdeDst.n.u1Present)
|
---|
1167 | {
|
---|
1168 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1169 | return VINF_SUCCESS;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | # if defined(IN_RC)
|
---|
1173 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
1174 | PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
1175 | # endif
|
---|
1176 |
|
---|
1177 | /*
|
---|
1178 | * Get the guest PD entry and calc big page.
|
---|
1179 | */
|
---|
1180 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1181 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
1182 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
1183 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
1184 | # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1185 | unsigned iPDSrc = 0;
|
---|
1186 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
1187 | X86PDPE PdpeSrcIgn;
|
---|
1188 | PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
|
---|
1189 | # else /* AMD64 */
|
---|
1190 | PX86PML4E pPml4eSrcIgn;
|
---|
1191 | X86PDPE PdpeSrcIgn;
|
---|
1192 | PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
|
---|
1193 | # endif
|
---|
1194 | GSTPDE PdeSrc;
|
---|
1195 |
|
---|
1196 | if (pPDSrc)
|
---|
1197 | PdeSrc = pPDSrc->a[iPDSrc];
|
---|
1198 | else
|
---|
1199 | PdeSrc.u = 0;
|
---|
1200 | # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
|
---|
1201 | const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
|
---|
1202 |
|
---|
1203 | # ifdef IN_RING3
|
---|
1204 | /*
|
---|
1205 | * If a CR3 Sync is pending we may ignore the invalidate page operation
|
---|
1206 | * depending on the kind of sync and if it's a global page or not.
|
---|
1207 | * This doesn't make sense in GC/R0 so we'll skip it entirely there.
|
---|
1208 | */
|
---|
1209 | # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
|
---|
1210 | if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
|
---|
1211 | || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
|
---|
1212 | && fIsBigPage
|
---|
1213 | && PdeSrc.b.u1Global
|
---|
1214 | )
|
---|
1215 | )
|
---|
1216 | # else
|
---|
1217 | if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
|
---|
1218 | # endif
|
---|
1219 | {
|
---|
1220 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped));
|
---|
1221 | return VINF_SUCCESS;
|
---|
1222 | }
|
---|
1223 | # endif /* IN_RING3 */
|
---|
1224 |
|
---|
1225 | /*
|
---|
1226 | * Deal with the Guest PDE.
|
---|
1227 | */
|
---|
1228 | rc = VINF_SUCCESS;
|
---|
1229 | if (PdeSrc.n.u1Present)
|
---|
1230 | {
|
---|
1231 | Assert( PdeSrc.n.u1User == PdeDst.n.u1User
|
---|
1232 | && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
|
---|
1233 | # ifndef PGM_WITHOUT_MAPPING
|
---|
1234 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
1235 | {
|
---|
1236 | /*
|
---|
1237 | * Conflict - Let SyncPT deal with it to avoid duplicate code.
|
---|
1238 | */
|
---|
1239 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
1240 | Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
|
---|
1241 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
1242 | }
|
---|
1243 | else
|
---|
1244 | # endif /* !PGM_WITHOUT_MAPPING */
|
---|
1245 | if (!fIsBigPage)
|
---|
1246 | {
|
---|
1247 | /*
|
---|
1248 | * 4KB - page.
|
---|
1249 | */
|
---|
1250 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1251 | RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
1252 |
|
---|
1253 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
1254 | /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
|
---|
1255 | if (pShwPage->cModifications)
|
---|
1256 | pShwPage->cModifications = 1;
|
---|
1257 | # endif
|
---|
1258 |
|
---|
1259 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1260 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1261 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
|
---|
1262 | # endif
|
---|
1263 | if (pShwPage->GCPhys == GCPhys)
|
---|
1264 | {
|
---|
1265 | # if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
|
---|
1266 | const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1267 | PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1268 | if (pPT->a[iPTEDst].n.u1Present)
|
---|
1269 | {
|
---|
1270 | /* This is very unlikely with caching/monitoring enabled. */
|
---|
1271 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
|
---|
1272 | ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
|
---|
1273 | }
|
---|
1274 | # else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
|
---|
1275 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
|
---|
1276 | if (RT_SUCCESS(rc))
|
---|
1277 | rc = VINF_SUCCESS;
|
---|
1278 | # endif
|
---|
1279 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages));
|
---|
1280 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
1281 | }
|
---|
1282 | else
|
---|
1283 | {
|
---|
1284 | /*
|
---|
1285 | * The page table address changed.
|
---|
1286 | */
|
---|
1287 | LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
|
---|
1288 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
|
---|
1289 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1290 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1291 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
|
---|
1292 | PGM_INVL_VCPU_TLBS(pVCpu);
|
---|
1293 | }
|
---|
1294 | }
|
---|
1295 | else
|
---|
1296 | {
|
---|
1297 | /*
|
---|
1298 | * 2/4MB - page.
|
---|
1299 | */
|
---|
1300 | /* Before freeing the page, check if anything really changed. */
|
---|
1301 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1302 | RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
|
---|
1303 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1304 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
1305 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
1306 | # endif
|
---|
1307 | if ( pShwPage->GCPhys == GCPhys
|
---|
1308 | && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
|
---|
1309 | {
|
---|
1310 | /* ASSUMES a the given bits are identical for 4M and normal PDEs */
|
---|
1311 | /** @todo PAT */
|
---|
1312 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
|
---|
1313 | == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
|
---|
1314 | && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
|
---|
1315 | || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
1316 | {
|
---|
1317 | LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
|
---|
1318 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
|
---|
1319 | # if defined(IN_RC)
|
---|
1320 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
1321 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
1322 | # endif
|
---|
1323 | return VINF_SUCCESS;
|
---|
1324 | }
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | /*
|
---|
1328 | * Ok, the page table is present and it's been changed in the guest.
|
---|
1329 | * If we're in host context, we'll just mark it as not present taking the lazy approach.
|
---|
1330 | * We could do this for some flushes in GC too, but we need an algorithm for
|
---|
1331 | * deciding which 4MB pages containing code likely to be executed very soon.
|
---|
1332 | */
|
---|
1333 | LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
|
---|
1334 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
1335 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1336 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1337 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages));
|
---|
1338 | PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
|
---|
1339 | }
|
---|
1340 | }
|
---|
1341 | else
|
---|
1342 | {
|
---|
1343 | /*
|
---|
1344 | * Page directory is not present, mark shadow PDE not present.
|
---|
1345 | */
|
---|
1346 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
1347 | {
|
---|
1348 | pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
|
---|
1349 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
1350 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs));
|
---|
1351 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
1352 | }
|
---|
1353 | else
|
---|
1354 | {
|
---|
1355 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
1356 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings));
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 | # if defined(IN_RC)
|
---|
1360 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
1361 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
1362 | # endif
|
---|
1363 | return rc;
|
---|
1364 |
|
---|
1365 | #else /* guest real and protected mode */
|
---|
1366 | /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
|
---|
1367 | return VINF_SUCCESS;
|
---|
1368 | #endif
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 |
|
---|
1372 | /**
|
---|
1373 | * Update the tracking of shadowed pages.
|
---|
1374 | *
|
---|
1375 | * @param pVCpu The VMCPU handle.
|
---|
1376 | * @param pShwPage The shadow page.
|
---|
1377 | * @param HCPhys The physical page we is being dereferenced.
|
---|
1378 | * @param iPte Shadow PTE index
|
---|
1379 | */
|
---|
1380 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
|
---|
1381 | {
|
---|
1382 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1383 |
|
---|
1384 | STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a);
|
---|
1385 | LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
|
---|
1386 |
|
---|
1387 | /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
|
---|
1388 | * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
|
---|
1389 | * 2. write protect all shadowed pages. I.e. implement caching.
|
---|
1390 | */
|
---|
1391 | /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
|
---|
1392 |
|
---|
1393 | /*
|
---|
1394 | * Find the guest address.
|
---|
1395 | */
|
---|
1396 | for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
|
---|
1397 | pRam;
|
---|
1398 | pRam = pRam->CTX_SUFF(pNext))
|
---|
1399 | {
|
---|
1400 | unsigned iPage = pRam->cb >> PAGE_SHIFT;
|
---|
1401 | while (iPage-- > 0)
|
---|
1402 | {
|
---|
1403 | if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
|
---|
1404 | {
|
---|
1405 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1406 |
|
---|
1407 | Assert(pShwPage->cPresent);
|
---|
1408 | Assert(pPool->cPresent);
|
---|
1409 | pShwPage->cPresent--;
|
---|
1410 | pPool->cPresent--;
|
---|
1411 |
|
---|
1412 | pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
|
---|
1413 | STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a);
|
---|
1414 | return;
|
---|
1415 | }
|
---|
1416 | }
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | for (;;)
|
---|
1420 | AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
|
---|
1421 | }
|
---|
1422 |
|
---|
1423 |
|
---|
1424 | /**
|
---|
1425 | * Update the tracking of shadowed pages.
|
---|
1426 | *
|
---|
1427 | * @param pVCpu The VMCPU handle.
|
---|
1428 | * @param pShwPage The shadow page.
|
---|
1429 | * @param u16 The top 16-bit of the pPage->HCPhys.
|
---|
1430 | * @param pPage Pointer to the guest page. this will be modified.
|
---|
1431 | * @param iPTDst The index into the shadow table.
|
---|
1432 | */
|
---|
1433 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
|
---|
1434 | {
|
---|
1435 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1436 | /*
|
---|
1437 | * Just deal with the simple first time here.
|
---|
1438 | */
|
---|
1439 | if (!u16)
|
---|
1440 | {
|
---|
1441 | STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin);
|
---|
1442 | u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
|
---|
1443 | /* Save the page table index. */
|
---|
1444 | PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
|
---|
1445 | }
|
---|
1446 | else
|
---|
1447 | u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
|
---|
1448 |
|
---|
1449 | /* write back */
|
---|
1450 | Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
|
---|
1451 | PGM_PAGE_SET_TRACKING(pPage, u16);
|
---|
1452 |
|
---|
1453 | /* update statistics. */
|
---|
1454 | pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
|
---|
1455 | pShwPage->cPresent++;
|
---|
1456 | if (pShwPage->iFirstPresent > iPTDst)
|
---|
1457 | pShwPage->iFirstPresent = iPTDst;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 |
|
---|
1461 | /**
|
---|
1462 | * Modifies a shadow PTE to account for access handlers.
|
---|
1463 | *
|
---|
1464 | * @param pVM The VM handle.
|
---|
1465 | * @param pPage The page in question.
|
---|
1466 | * @param fPteSrc The flags of the source PTE.
|
---|
1467 | * @param pPteDst The shadow PTE (output).
|
---|
1468 | */
|
---|
1469 | DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint32_t fPteSrc, PSHWPTE pPteDst)
|
---|
1470 | {
|
---|
1471 | /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
|
---|
1472 | * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
|
---|
1473 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
1474 | {
|
---|
1475 | #if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1476 | pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1477 | pPteDst->n.u1Present = 1;
|
---|
1478 | pPteDst->n.u1Execute = 1;
|
---|
1479 | pPteDst->n.u1IgnorePAT = 1;
|
---|
1480 | pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
1481 | /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
|
---|
1482 | #else
|
---|
1483 | pPteDst->u = (fPteSrc & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
|
---|
1484 | | PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1485 | #endif
|
---|
1486 | }
|
---|
1487 | #ifdef PGM_WITH_MMIO_OPTIMIZATIONS
|
---|
1488 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1489 | else if ( PGM_PAGE_IS_MMIO(pPage)
|
---|
1490 | # if PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
1491 | && ( (fPteSrc & (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/ | X86_PTE_US )) /* #PF handles D & A first. */
|
---|
1492 | == (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/)
|
---|
1493 | || BTH_IS_NP_ACTIVE(pVM) )
|
---|
1494 | # endif
|
---|
1495 | # if PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1496 | && pVM->pgm.s.fLessThan52PhysicalAddressBits
|
---|
1497 | # endif
|
---|
1498 | )
|
---|
1499 | {
|
---|
1500 | LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
|
---|
1501 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1502 | /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
|
---|
1503 | pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
|
---|
1504 | /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
|
---|
1505 | pPteDst->n.u1Present = 0;
|
---|
1506 | pPteDst->n.u1Write = 1;
|
---|
1507 | pPteDst->n.u1Execute = 0;
|
---|
1508 | /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
|
---|
1509 | pPteDst->n.u3EMT = 7;
|
---|
1510 | # else
|
---|
1511 | /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
|
---|
1512 | pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P;
|
---|
1513 | # endif
|
---|
1514 | }
|
---|
1515 | # endif
|
---|
1516 | #endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
|
---|
1517 | else
|
---|
1518 | {
|
---|
1519 | LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
|
---|
1520 | pPteDst->u = 0;
|
---|
1521 | }
|
---|
1522 | /** @todo count these kinds of entries. */
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 |
|
---|
1526 | /**
|
---|
1527 | * Creates a 4K shadow page for a guest page.
|
---|
1528 | *
|
---|
1529 | * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
|
---|
1530 | * physical address. The PdeSrc argument only the flags are used. No page
|
---|
1531 | * structured will be mapped in this function.
|
---|
1532 | *
|
---|
1533 | * @param pVCpu The VMCPU handle.
|
---|
1534 | * @param pPteDst Destination page table entry.
|
---|
1535 | * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
|
---|
1536 | * Can safely assume that only the flags are being used.
|
---|
1537 | * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
|
---|
1538 | * @param pShwPage Pointer to the shadow page.
|
---|
1539 | * @param iPTDst The index into the shadow table.
|
---|
1540 | *
|
---|
1541 | * @remark Not used for 2/4MB pages!
|
---|
1542 | */
|
---|
1543 | DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
|
---|
1544 | PPGMPOOLPAGE pShwPage, unsigned iPTDst)
|
---|
1545 | {
|
---|
1546 | if ( PteSrc.n.u1Present
|
---|
1547 | && GST_IS_PTE_VALID(pVCpu, PteSrc))
|
---|
1548 | {
|
---|
1549 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1550 |
|
---|
1551 | # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
|
---|
1552 | && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
|
---|
1553 | && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
|
---|
1554 | if (pShwPage->fDirty)
|
---|
1555 | {
|
---|
1556 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1557 | PX86PTPAE pGstPT;
|
---|
1558 |
|
---|
1559 | pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
|
---|
1560 | pGstPT->a[iPTDst].u = PteSrc.u;
|
---|
1561 | }
|
---|
1562 | # endif
|
---|
1563 | /*
|
---|
1564 | * Find the ram range.
|
---|
1565 | */
|
---|
1566 | PPGMPAGE pPage;
|
---|
1567 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
|
---|
1568 | if (RT_SUCCESS(rc))
|
---|
1569 | {
|
---|
1570 | /* Ignore ballooned pages.
|
---|
1571 | Don't return errors or use a fatal assert here as part of a
|
---|
1572 | shadow sync range might included ballooned pages. */
|
---|
1573 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
1574 | {
|
---|
1575 | Assert(!pPteDst->n.u1Present); /** @todo user tracking needs updating if this triggers. */
|
---|
1576 | return;
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 | #ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
1580 | /* Make the page writable if necessary. */
|
---|
1581 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
1582 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
1583 | || ( PteSrc.n.u1Write
|
---|
1584 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
1585 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
1586 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
1587 | # endif
|
---|
1588 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
1589 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
1590 | # endif
|
---|
1591 | )
|
---|
1592 | )
|
---|
1593 | )
|
---|
1594 | {
|
---|
1595 | rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
|
---|
1596 | AssertRC(rc);
|
---|
1597 | }
|
---|
1598 | #endif
|
---|
1599 |
|
---|
1600 | /*
|
---|
1601 | * Make page table entry.
|
---|
1602 | */
|
---|
1603 | SHWPTE PteDst;
|
---|
1604 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
1605 | PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
|
---|
1606 | PteSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT
|
---|
1607 | | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW),
|
---|
1608 | &PteDst);
|
---|
1609 | else
|
---|
1610 | {
|
---|
1611 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1612 | /*
|
---|
1613 | * If the page or page directory entry is not marked accessed,
|
---|
1614 | * we mark the page not present.
|
---|
1615 | */
|
---|
1616 | if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
|
---|
1617 | {
|
---|
1618 | LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
|
---|
1619 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage));
|
---|
1620 | PteDst.u = 0;
|
---|
1621 | }
|
---|
1622 | /*
|
---|
1623 | * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
|
---|
1624 | * when the page is modified.
|
---|
1625 | */
|
---|
1626 | else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
|
---|
1627 | {
|
---|
1628 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage));
|
---|
1629 | PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
|
---|
1630 | | PGM_PAGE_GET_HCPHYS(pPage)
|
---|
1631 | | PGM_PTFLAGS_TRACK_DIRTY;
|
---|
1632 | }
|
---|
1633 | else
|
---|
1634 | #endif
|
---|
1635 | {
|
---|
1636 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped));
|
---|
1637 | #if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
1638 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1639 | PteDst.n.u1Present = 1;
|
---|
1640 | PteDst.n.u1Write = 1;
|
---|
1641 | PteDst.n.u1Execute = 1;
|
---|
1642 | PteDst.n.u1IgnorePAT = 1;
|
---|
1643 | PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
1644 | /* PteDst.n.u1Size = 0 */
|
---|
1645 | #else
|
---|
1646 | PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
|
---|
1647 | | PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1648 | #endif
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 | /*
|
---|
1652 | * Make sure only allocated pages are mapped writable.
|
---|
1653 | */
|
---|
1654 | if ( PteDst.n.u1Write
|
---|
1655 | && PteDst.n.u1Present
|
---|
1656 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
1657 | {
|
---|
1658 | /* Still applies to shared pages. */
|
---|
1659 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
1660 | PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. Why, isn't it? */
|
---|
1661 | Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
|
---|
1662 | }
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | /*
|
---|
1666 | * Keep user track up to date.
|
---|
1667 | */
|
---|
1668 | if (PteDst.n.u1Present)
|
---|
1669 | {
|
---|
1670 | if (!pPteDst->n.u1Present)
|
---|
1671 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
1672 | else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
|
---|
1673 | {
|
---|
1674 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
|
---|
1675 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
|
---|
1676 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
1677 | }
|
---|
1678 | }
|
---|
1679 | else if (pPteDst->n.u1Present)
|
---|
1680 | {
|
---|
1681 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
|
---|
1682 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | /*
|
---|
1686 | * Update statistics and commit the entry.
|
---|
1687 | */
|
---|
1688 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1689 | if (!PteSrc.n.u1Global)
|
---|
1690 | pShwPage->fSeenNonGlobal = true;
|
---|
1691 | #endif
|
---|
1692 | ASMAtomicWriteSize(pPteDst, PteDst.u);
|
---|
1693 | return;
|
---|
1694 | }
|
---|
1695 |
|
---|
1696 | /** @todo count these three different kinds. */
|
---|
1697 | Log2(("SyncPageWorker: invalid address in Pte\n"));
|
---|
1698 | }
|
---|
1699 | else if (!PteSrc.n.u1Present)
|
---|
1700 | Log2(("SyncPageWorker: page not present in Pte\n"));
|
---|
1701 | else
|
---|
1702 | Log2(("SyncPageWorker: invalid Pte\n"));
|
---|
1703 |
|
---|
1704 | /*
|
---|
1705 | * The page is not present or the PTE is bad. Replace the shadow PTE by
|
---|
1706 | * an empty entry, making sure to keep the user tracking up to date.
|
---|
1707 | */
|
---|
1708 | if (pPteDst->n.u1Present)
|
---|
1709 | {
|
---|
1710 | Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
|
---|
1711 | PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
|
---|
1712 | }
|
---|
1713 | ASMAtomicWriteSize(pPteDst, 0);
|
---|
1714 | }
|
---|
1715 |
|
---|
1716 |
|
---|
1717 | /**
|
---|
1718 | * Syncs a guest OS page.
|
---|
1719 | *
|
---|
1720 | * There are no conflicts at this point, neither is there any need for
|
---|
1721 | * page table allocations.
|
---|
1722 | *
|
---|
1723 | * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
|
---|
1724 | * When called in AMD64 guest mode, the guest PML4E shall be valid.
|
---|
1725 | *
|
---|
1726 | * @returns VBox status code.
|
---|
1727 | * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
|
---|
1728 | * @param pVCpu The VMCPU handle.
|
---|
1729 | * @param PdeSrc Page directory entry of the guest.
|
---|
1730 | * @param GCPtrPage Guest context page address.
|
---|
1731 | * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
|
---|
1732 | * @param uErr Fault error (X86_TRAP_PF_*).
|
---|
1733 | */
|
---|
1734 | PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
|
---|
1735 | {
|
---|
1736 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1737 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
1738 | LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
|
---|
1739 |
|
---|
1740 | Assert(PGMIsLockOwner(pVM));
|
---|
1741 |
|
---|
1742 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
1743 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
1744 | || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
1745 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
1746 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
1747 |
|
---|
1748 | /*
|
---|
1749 | * Assert preconditions.
|
---|
1750 | */
|
---|
1751 | Assert(PdeSrc.n.u1Present);
|
---|
1752 | Assert(cPages);
|
---|
1753 | # if 0 /* rarely useful; leave for debugging. */
|
---|
1754 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
|
---|
1755 | # endif
|
---|
1756 |
|
---|
1757 | /*
|
---|
1758 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
1759 | */
|
---|
1760 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
1761 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1762 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
|
---|
1763 |
|
---|
1764 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1765 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
1766 | Assert(pShwPde);
|
---|
1767 |
|
---|
1768 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
1769 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1770 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
1771 | PX86PDPAE pPDDst;
|
---|
1772 |
|
---|
1773 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1774 | int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
|
---|
1775 | AssertRCSuccessReturn(rc2, rc2);
|
---|
1776 | Assert(pShwPde);
|
---|
1777 |
|
---|
1778 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
|
---|
1779 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1780 |
|
---|
1781 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
1782 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
1783 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
1784 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
1785 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
1786 |
|
---|
1787 | int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
1788 | AssertRCSuccessReturn(rc2, rc2);
|
---|
1789 | Assert(pPDDst && pPdptDst);
|
---|
1790 | PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
|
---|
1791 | # endif
|
---|
1792 | SHWPDE PdeDst = *pPdeDst;
|
---|
1793 |
|
---|
1794 | /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
|
---|
1795 | if (!PdeDst.n.u1Present)
|
---|
1796 | {
|
---|
1797 | AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
|
---|
1798 | Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
|
---|
1799 | return VINF_SUCCESS; /* force the instruction to be executed again. */
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
1803 | Assert(pShwPage);
|
---|
1804 |
|
---|
1805 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
1806 | /* Fetch the pgm pool shadow descriptor. */
|
---|
1807 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
1808 | Assert(pShwPde);
|
---|
1809 | # endif
|
---|
1810 |
|
---|
1811 | # if defined(IN_RC)
|
---|
1812 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
1813 | PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
1814 | # endif
|
---|
1815 |
|
---|
1816 | /*
|
---|
1817 | * Check that the page is present and that the shadow PDE isn't out of sync.
|
---|
1818 | */
|
---|
1819 | const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
|
---|
1820 | const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
|
---|
1821 | RTGCPHYS GCPhys;
|
---|
1822 | if (!fBigPage)
|
---|
1823 | {
|
---|
1824 | GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
1825 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1826 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1827 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
1828 | # endif
|
---|
1829 | }
|
---|
1830 | else
|
---|
1831 | {
|
---|
1832 | GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
|
---|
1833 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1834 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
1835 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
1836 | # endif
|
---|
1837 | }
|
---|
1838 | if ( fPdeValid
|
---|
1839 | && pShwPage->GCPhys == GCPhys
|
---|
1840 | && PdeSrc.n.u1Present
|
---|
1841 | && PdeSrc.n.u1User == PdeDst.n.u1User
|
---|
1842 | && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
|
---|
1843 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
1844 | && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
|
---|
1845 | # endif
|
---|
1846 | )
|
---|
1847 | {
|
---|
1848 | /*
|
---|
1849 | * Check that the PDE is marked accessed already.
|
---|
1850 | * Since we set the accessed bit *before* getting here on a #PF, this
|
---|
1851 | * check is only meant for dealing with non-#PF'ing paths.
|
---|
1852 | */
|
---|
1853 | if (PdeSrc.n.u1Accessed)
|
---|
1854 | {
|
---|
1855 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
1856 | if (!fBigPage)
|
---|
1857 | {
|
---|
1858 | /*
|
---|
1859 | * 4KB Page - Map the guest page table.
|
---|
1860 | */
|
---|
1861 | PGSTPT pPTSrc;
|
---|
1862 | int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
1863 | if (RT_SUCCESS(rc))
|
---|
1864 | {
|
---|
1865 | # ifdef PGM_SYNC_N_PAGES
|
---|
1866 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
1867 | if ( cPages > 1
|
---|
1868 | && !(uErr & X86_TRAP_PF_P)
|
---|
1869 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
1870 | {
|
---|
1871 | /*
|
---|
1872 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
1873 | * for non-present pages!
|
---|
1874 | *
|
---|
1875 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
1876 | * deal with locality.
|
---|
1877 | */
|
---|
1878 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1879 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
1880 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
1881 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
1882 | # else
|
---|
1883 | const unsigned offPTSrc = 0;
|
---|
1884 | # endif
|
---|
1885 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
1886 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
1887 | iPTDst = 0;
|
---|
1888 | else
|
---|
1889 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
1890 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
1891 | {
|
---|
1892 | if (!pPTDst->a[iPTDst].n.u1Present)
|
---|
1893 | {
|
---|
1894 | GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
|
---|
1895 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
|
---|
1896 | NOREF(GCPtrCurPage);
|
---|
1897 | #ifndef IN_RING0
|
---|
1898 | /*
|
---|
1899 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
1900 | * and executed using a conforming code selector - And marked as readonly.
|
---|
1901 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
1902 | */
|
---|
1903 | PPGMPAGE pPage;
|
---|
1904 | if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
|
---|
1905 | || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
|
---|
1906 | || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
|
---|
1907 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
|
---|
1908 | && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
1909 | )
|
---|
1910 | #endif /* else: CSAM not active */
|
---|
1911 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1912 | Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
|
---|
1913 | GCPtrCurPage, PteSrc.n.u1Present,
|
---|
1914 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1915 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1916 | (uint64_t)PteSrc.u,
|
---|
1917 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
1918 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1919 | }
|
---|
1920 | }
|
---|
1921 | }
|
---|
1922 | else
|
---|
1923 | # endif /* PGM_SYNC_N_PAGES */
|
---|
1924 | {
|
---|
1925 | const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
|
---|
1926 | GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
1927 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1928 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
1929 | Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
|
---|
1930 | GCPtrPage, PteSrc.n.u1Present,
|
---|
1931 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
1932 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
1933 | (uint64_t)PteSrc.u,
|
---|
1934 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
1935 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
1936 | }
|
---|
1937 | }
|
---|
1938 | else /* MMIO or invalid page: emulated in #PF handler. */
|
---|
1939 | {
|
---|
1940 | LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
|
---|
1941 | Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
|
---|
1942 | }
|
---|
1943 | }
|
---|
1944 | else
|
---|
1945 | {
|
---|
1946 | /*
|
---|
1947 | * 4/2MB page - lazy syncing shadow 4K pages.
|
---|
1948 | * (There are many causes of getting here, it's no longer only CSAM.)
|
---|
1949 | */
|
---|
1950 | /* Calculate the GC physical address of this 4KB shadow page. */
|
---|
1951 | GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
|
---|
1952 | /* Find ram range. */
|
---|
1953 | PPGMPAGE pPage;
|
---|
1954 | int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
|
---|
1955 | if (RT_SUCCESS(rc))
|
---|
1956 | {
|
---|
1957 | AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
|
---|
1958 |
|
---|
1959 | # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
1960 | /* Try to make the page writable if necessary. */
|
---|
1961 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
1962 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
1963 | || ( PdeSrc.n.u1Write
|
---|
1964 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
1965 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
1966 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
1967 | # endif
|
---|
1968 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
1969 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
1970 | # endif
|
---|
1971 | )
|
---|
1972 | )
|
---|
1973 | )
|
---|
1974 | {
|
---|
1975 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
1976 | AssertRC(rc);
|
---|
1977 | }
|
---|
1978 | # endif
|
---|
1979 |
|
---|
1980 | /*
|
---|
1981 | * Make shadow PTE entry.
|
---|
1982 | */
|
---|
1983 | SHWPTE PteDst;
|
---|
1984 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
1985 | PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
|
---|
1986 | PdeSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK
|
---|
1987 | | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT),
|
---|
1988 | &PteDst);
|
---|
1989 | else
|
---|
1990 | PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
|
---|
1991 | | PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1992 |
|
---|
1993 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
1994 | if ( PteDst.n.u1Present
|
---|
1995 | && !pPTDst->a[iPTDst].n.u1Present)
|
---|
1996 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
1997 |
|
---|
1998 | /* Make sure only allocated pages are mapped writable. */
|
---|
1999 | if ( PteDst.n.u1Write
|
---|
2000 | && PteDst.n.u1Present
|
---|
2001 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
2002 | {
|
---|
2003 | /* Still applies to shared pages. */
|
---|
2004 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
2005 | PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
|
---|
2006 | Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
|
---|
2007 | }
|
---|
2008 |
|
---|
2009 | ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
|
---|
2010 |
|
---|
2011 | /*
|
---|
2012 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
2013 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
2014 | *
|
---|
2015 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
2016 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
2017 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
2018 | */
|
---|
2019 | /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
|
---|
2020 | * As for invlpg, it simply frees the whole shadow PT.
|
---|
2021 | * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
|
---|
2022 | if ( !PdeSrc.b.u1Dirty
|
---|
2023 | && PdeSrc.b.u1Write)
|
---|
2024 | {
|
---|
2025 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
|
---|
2026 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2027 | PdeDst.n.u1Write = 0;
|
---|
2028 | }
|
---|
2029 | else
|
---|
2030 | {
|
---|
2031 | PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2032 | PdeDst.n.u1Write = PdeSrc.n.u1Write;
|
---|
2033 | }
|
---|
2034 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2035 | Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
|
---|
2036 | GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
|
---|
2037 | PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2038 | }
|
---|
2039 | else
|
---|
2040 | {
|
---|
2041 | LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
|
---|
2042 | /** @todo must wipe the shadow page table in this case. */
|
---|
2043 | }
|
---|
2044 | }
|
---|
2045 | # if defined(IN_RC)
|
---|
2046 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
2047 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2048 | # endif
|
---|
2049 | return VINF_SUCCESS;
|
---|
2050 | }
|
---|
2051 |
|
---|
2052 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs));
|
---|
2053 | }
|
---|
2054 | else if (fPdeValid)
|
---|
2055 | {
|
---|
2056 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
|
---|
2057 | Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
|
---|
2058 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
|
---|
2059 | }
|
---|
2060 | else
|
---|
2061 | {
|
---|
2062 | /// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
|
---|
2063 | Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
|
---|
2064 | GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
|
---|
2065 | }
|
---|
2066 |
|
---|
2067 | /*
|
---|
2068 | * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
|
---|
2069 | * Yea, I'm lazy.
|
---|
2070 | */
|
---|
2071 | pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
|
---|
2072 | ASMAtomicWriteSize(pPdeDst, 0);
|
---|
2073 |
|
---|
2074 | # if defined(IN_RC)
|
---|
2075 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
2076 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2077 | # endif
|
---|
2078 | PGM_INVL_VCPU_TLBS(pVCpu);
|
---|
2079 | return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
|
---|
2080 |
|
---|
2081 |
|
---|
2082 | #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
2083 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
2084 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
2085 | && !defined(IN_RC)
|
---|
2086 |
|
---|
2087 | # ifdef PGM_SYNC_N_PAGES
|
---|
2088 | /*
|
---|
2089 | * Get the shadow PDE, find the shadow page table in the pool.
|
---|
2090 | */
|
---|
2091 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2092 | X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
|
---|
2093 |
|
---|
2094 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2095 | X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
|
---|
2096 |
|
---|
2097 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2098 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
2099 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
|
---|
2100 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
2101 | X86PDEPAE PdeDst;
|
---|
2102 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
2103 |
|
---|
2104 | int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
2105 | AssertRCSuccessReturn(rc, rc);
|
---|
2106 | Assert(pPDDst && pPdptDst);
|
---|
2107 | PdeDst = pPDDst->a[iPDDst];
|
---|
2108 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
2109 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
2110 | PEPTPD pPDDst;
|
---|
2111 | EPTPDE PdeDst;
|
---|
2112 |
|
---|
2113 | int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
|
---|
2114 | if (rc != VINF_SUCCESS)
|
---|
2115 | {
|
---|
2116 | AssertRC(rc);
|
---|
2117 | return rc;
|
---|
2118 | }
|
---|
2119 | Assert(pPDDst);
|
---|
2120 | PdeDst = pPDDst->a[iPDDst];
|
---|
2121 | # endif
|
---|
2122 | /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
|
---|
2123 | if (!PdeDst.n.u1Present)
|
---|
2124 | {
|
---|
2125 | AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
|
---|
2126 | Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
|
---|
2127 | return VINF_SUCCESS; /* force the instruction to be executed again. */
|
---|
2128 | }
|
---|
2129 |
|
---|
2130 | /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
|
---|
2131 | if (PdeDst.n.u1Size)
|
---|
2132 | {
|
---|
2133 | Assert(pVM->pgm.s.fNestedPaging);
|
---|
2134 | Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
|
---|
2135 | return VINF_SUCCESS;
|
---|
2136 | }
|
---|
2137 |
|
---|
2138 | /* Mask away the page offset. */
|
---|
2139 | GCPtrPage &= ~((RTGCPTR)0xfff);
|
---|
2140 |
|
---|
2141 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
|
---|
2142 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
2143 |
|
---|
2144 | Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
|
---|
2145 | if ( cPages > 1
|
---|
2146 | && !(uErr & X86_TRAP_PF_P)
|
---|
2147 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
2148 | {
|
---|
2149 | /*
|
---|
2150 | * This code path is currently only taken when the caller is PGMTrap0eHandler
|
---|
2151 | * for non-present pages!
|
---|
2152 | *
|
---|
2153 | * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
|
---|
2154 | * deal with locality.
|
---|
2155 | */
|
---|
2156 | unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2157 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
2158 | if (iPTDst < PGM_SYNC_NR_PAGES / 2)
|
---|
2159 | iPTDst = 0;
|
---|
2160 | else
|
---|
2161 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
2162 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
2163 | {
|
---|
2164 | if (!pPTDst->a[iPTDst].n.u1Present)
|
---|
2165 | {
|
---|
2166 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
|
---|
2167 | GSTPTE PteSrc;
|
---|
2168 |
|
---|
2169 | /* Fake the page table entry */
|
---|
2170 | PteSrc.u = GCPtrCurPage;
|
---|
2171 | PteSrc.n.u1Present = 1;
|
---|
2172 | PteSrc.n.u1Dirty = 1;
|
---|
2173 | PteSrc.n.u1Accessed = 1;
|
---|
2174 | PteSrc.n.u1Write = 1;
|
---|
2175 | PteSrc.n.u1User = 1;
|
---|
2176 |
|
---|
2177 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2178 |
|
---|
2179 | Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
|
---|
2180 | GCPtrCurPage, PteSrc.n.u1Present,
|
---|
2181 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2182 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2183 | (uint64_t)PteSrc.u,
|
---|
2184 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
2185 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2186 |
|
---|
2187 | if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
|
---|
2188 | break;
|
---|
2189 | }
|
---|
2190 | else
|
---|
2191 | Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
|
---|
2192 | }
|
---|
2193 | }
|
---|
2194 | else
|
---|
2195 | # endif /* PGM_SYNC_N_PAGES */
|
---|
2196 | {
|
---|
2197 | const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2198 | RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
|
---|
2199 | GSTPTE PteSrc;
|
---|
2200 |
|
---|
2201 | /* Fake the page table entry */
|
---|
2202 | PteSrc.u = GCPtrCurPage;
|
---|
2203 | PteSrc.n.u1Present = 1;
|
---|
2204 | PteSrc.n.u1Dirty = 1;
|
---|
2205 | PteSrc.n.u1Accessed = 1;
|
---|
2206 | PteSrc.n.u1Write = 1;
|
---|
2207 | PteSrc.n.u1User = 1;
|
---|
2208 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2209 |
|
---|
2210 | Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
|
---|
2211 | GCPtrPage, PteSrc.n.u1Present,
|
---|
2212 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2213 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2214 | (uint64_t)PteSrc.u,
|
---|
2215 | (uint64_t)pPTDst->a[iPTDst].u,
|
---|
2216 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
2217 | }
|
---|
2218 | return VINF_SUCCESS;
|
---|
2219 |
|
---|
2220 | #else
|
---|
2221 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
2222 | return VERR_INTERNAL_ERROR;
|
---|
2223 | #endif
|
---|
2224 | }
|
---|
2225 |
|
---|
2226 |
|
---|
2227 | #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2228 |
|
---|
2229 | /**
|
---|
2230 | * CheckPageFault helper for returning a page fault indicating a non-present
|
---|
2231 | * (NP) entry in the page translation structures.
|
---|
2232 | *
|
---|
2233 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2234 | * @param pVCpu The virtual CPU to operate on.
|
---|
2235 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2236 | * TRPM's copy will be made if necessary.
|
---|
2237 | * @param GCPtrPage For logging.
|
---|
2238 | * @param uPageFaultLevel For logging.
|
---|
2239 | */
|
---|
2240 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2241 | {
|
---|
2242 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2243 | AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
|
---|
2244 | AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
|
---|
2245 | if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
2246 | TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
|
---|
2247 |
|
---|
2248 | Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2249 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 |
|
---|
2253 | /**
|
---|
2254 | * CheckPageFault helper for returning a page fault indicating a reserved bit
|
---|
2255 | * (RSVD) error in the page translation structures.
|
---|
2256 | *
|
---|
2257 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2258 | * @param pVCpu The virtual CPU to operate on.
|
---|
2259 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2260 | * TRPM's copy will be made if necessary.
|
---|
2261 | * @param GCPtrPage For logging.
|
---|
2262 | * @param uPageFaultLevel For logging.
|
---|
2263 | */
|
---|
2264 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2265 | {
|
---|
2266 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2267 | if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
2268 | TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
|
---|
2269 |
|
---|
2270 | Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2271 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2272 | }
|
---|
2273 |
|
---|
2274 |
|
---|
2275 | /**
|
---|
2276 | * CheckPageFault helper for returning a page protection fault (P).
|
---|
2277 | *
|
---|
2278 | * @returns VINF_EM_RAW_GUEST_TRAP.
|
---|
2279 | * @param pVCpu The virtual CPU to operate on.
|
---|
2280 | * @param uErr The error code of the shadow fault. Corrections to
|
---|
2281 | * TRPM's copy will be made if necessary.
|
---|
2282 | * @param GCPtrPage For logging.
|
---|
2283 | * @param uPageFaultLevel For logging.
|
---|
2284 | */
|
---|
2285 | DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
|
---|
2286 | {
|
---|
2287 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF));
|
---|
2288 | AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
|
---|
2289 | if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
|
---|
2290 | TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
|
---|
2291 |
|
---|
2292 | Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
|
---|
2293 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
2294 | }
|
---|
2295 |
|
---|
2296 |
|
---|
2297 | /**
|
---|
2298 | * Investigate a page fault to identify ones targetted at the guest and to
|
---|
2299 | * handle write protection page faults caused by dirty bit tracking.
|
---|
2300 | *
|
---|
2301 | * This will do detect invalid entries and raise X86_TRAP_PF_RSVD.
|
---|
2302 | *
|
---|
2303 | * @returns VBox status code.
|
---|
2304 | * @param pVCpu The VMCPU handle.
|
---|
2305 | * @param uErr Page fault error code. The X86_TRAP_PF_RSVD flag
|
---|
2306 | * cannot be trusted as it is used for MMIO optimizations.
|
---|
2307 | * @param pPdeSrc Guest page directory entry.
|
---|
2308 | * @param GCPtrPage Guest context page address.
|
---|
2309 | */
|
---|
2310 | PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage)
|
---|
2311 | {
|
---|
2312 | bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US);
|
---|
2313 | bool fWriteFault = !!(uErr & X86_TRAP_PF_RW);
|
---|
2314 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2315 | bool fMaybeNXEFault = (uErr & X86_TRAP_PF_ID) && GST_IS_NX_ACTIVE(pVCpu);
|
---|
2316 | # endif
|
---|
2317 | bool fMaybeWriteProtFault = fWriteFault && (fUserLevelFault || CPUMIsGuestR0WriteProtEnabled(pVCpu));
|
---|
2318 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2319 | int rc;
|
---|
2320 |
|
---|
2321 | LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u));
|
---|
2322 |
|
---|
2323 | /*
|
---|
2324 | * Note! For PAE it is safe to assume that bad guest physical addresses
|
---|
2325 | * (which returns all FFs) in the translation tables will cause
|
---|
2326 | * #PF(RSVD). The same will be the case for long mode provided the
|
---|
2327 | * physical address width is less than 52 bits - this we ASSUME.
|
---|
2328 | *
|
---|
2329 | * Note! No convenient shortcuts here, we have to validate everything!
|
---|
2330 | */
|
---|
2331 |
|
---|
2332 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2333 | /*
|
---|
2334 | * Real page fault? (PML4E level)
|
---|
2335 | */
|
---|
2336 | PX86PML4 pPml4Src = pgmGstGetLongModePML4Ptr(pVCpu);
|
---|
2337 | if (RT_UNLIKELY(!pPml4Src))
|
---|
2338 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 0);
|
---|
2339 |
|
---|
2340 | PX86PML4E pPml4eSrc = &pPml4Src->a[(GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK];
|
---|
2341 | if (!pPml4eSrc->n.u1Present)
|
---|
2342 | return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 0);
|
---|
2343 | if (RT_UNLIKELY(!GST_IS_PML4E_VALID(pVCpu, *pPml4eSrc)))
|
---|
2344 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 0);
|
---|
2345 | if ( (fMaybeWriteProtFault && !pPml4eSrc->n.u1Write)
|
---|
2346 | || (fMaybeNXEFault && pPml4eSrc->n.u1NoExecute)
|
---|
2347 | || (fUserLevelFault && !pPml4eSrc->n.u1User) )
|
---|
2348 | return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 0);
|
---|
2349 |
|
---|
2350 | /*
|
---|
2351 | * Real page fault? (PDPE level)
|
---|
2352 | */
|
---|
2353 | PX86PDPT pPdptSrc;
|
---|
2354 | rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK, &pPdptSrc);
|
---|
2355 | if (RT_FAILURE(rc))
|
---|
2356 | {
|
---|
2357 | AssertMsgReturn(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc), rc);
|
---|
2358 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | PX86PDPE pPdpeSrc = &pPdptSrc->a[(GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64];
|
---|
2362 | if (!pPdpeSrc->n.u1Present)
|
---|
2363 | return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2364 | if (!GST_IS_PDPE_VALID(pVCpu, *pPdpeSrc))
|
---|
2365 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2366 | if ( (fMaybeWriteProtFault && !pPdpeSrc->lm.u1Write)
|
---|
2367 | || (fMaybeNXEFault && pPdpeSrc->lm.u1NoExecute)
|
---|
2368 | || (fUserLevelFault && !pPdpeSrc->lm.u1User) )
|
---|
2369 | return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2370 |
|
---|
2371 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
2372 | /*
|
---|
2373 | * Real page fault? (PDPE level)
|
---|
2374 | */
|
---|
2375 | PX86PDPT pPdptSrc = pgmGstGetPaePDPTPtr(pVCpu);
|
---|
2376 | if (RT_UNLIKELY(!pPdptSrc))
|
---|
2377 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2378 | /** @todo Handle bad CR3 address. */
|
---|
2379 | PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(pVCpu, GCPtrPage);
|
---|
2380 | if (!pPdpeSrc->n.u1Present)
|
---|
2381 | return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2382 | if (!GST_IS_PDPE_VALID(pVCpu, *pPdpeSrc))
|
---|
2383 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1);
|
---|
2384 | # endif /* PGM_GST_TYPE == PGM_TYPE_PAE */
|
---|
2385 |
|
---|
2386 | /*
|
---|
2387 | * Real page fault? (PDE level)
|
---|
2388 | */
|
---|
2389 | if (!pPdeSrc->n.u1Present)
|
---|
2390 | return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 2);
|
---|
2391 | bool const fBigPage = pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
|
---|
2392 | if (!fBigPage ? !GST_IS_PDE_VALID(pVCpu, *pPdeSrc) : !GST_IS_BIG_PDE_VALID(pVCpu, *pPdeSrc))
|
---|
2393 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 2);
|
---|
2394 | if ( (fMaybeWriteProtFault && !pPdeSrc->n.u1Write)
|
---|
2395 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2396 | || (fMaybeNXEFault && pPdeSrc->n.u1NoExecute)
|
---|
2397 | # endif
|
---|
2398 | || (fUserLevelFault && !pPdeSrc->n.u1User) )
|
---|
2399 | return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 2);
|
---|
2400 |
|
---|
2401 | /*
|
---|
2402 | * First check the easy case where the page directory has been marked
|
---|
2403 | * read-only to track the dirty bit of an emulated BIG page.
|
---|
2404 | */
|
---|
2405 | if (fBigPage)
|
---|
2406 | {
|
---|
2407 | /* Mark guest page directory as accessed */
|
---|
2408 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2409 | pPml4eSrc->n.u1Accessed = 1;
|
---|
2410 | pPdpeSrc->lm.u1Accessed = 1;
|
---|
2411 | # endif
|
---|
2412 | pPdeSrc->b.u1Accessed = 1;
|
---|
2413 |
|
---|
2414 | /* Mark the entry guest PDE dirty it it's a write access. */
|
---|
2415 | if (fWriteFault)
|
---|
2416 | pPdeSrc->b.u1Dirty = 1;
|
---|
2417 | }
|
---|
2418 | else
|
---|
2419 | {
|
---|
2420 | /*
|
---|
2421 | * Map the guest page table.
|
---|
2422 | */
|
---|
2423 | PGSTPT pPTSrc;
|
---|
2424 | PGSTPTE pPteSrc;
|
---|
2425 | GSTPTE PteSrc;
|
---|
2426 | rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
2427 | if (RT_SUCCESS(rc))
|
---|
2428 | {
|
---|
2429 | pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
|
---|
2430 | PteSrc.u = pPteSrc->u;
|
---|
2431 | }
|
---|
2432 | else if (rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS)
|
---|
2433 | {
|
---|
2434 | /* All bits in the PTE are set. */
|
---|
2435 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2436 | PteSrc.u = UINT32_MAX;
|
---|
2437 | # else
|
---|
2438 | PteSrc.u = UINT64_MAX;
|
---|
2439 | # endif
|
---|
2440 | pPteSrc = &PteSrc;
|
---|
2441 | }
|
---|
2442 | else
|
---|
2443 | {
|
---|
2444 | AssertRC(rc);
|
---|
2445 | return rc;
|
---|
2446 | }
|
---|
2447 |
|
---|
2448 | /*
|
---|
2449 | * Real page fault?
|
---|
2450 | */
|
---|
2451 | if (!PteSrc.n.u1Present)
|
---|
2452 | return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 3);
|
---|
2453 | if (!GST_IS_PTE_VALID(pVCpu, PteSrc))
|
---|
2454 | return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 3);
|
---|
2455 | if ( (fMaybeWriteProtFault && !PteSrc.n.u1Write)
|
---|
2456 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2457 | || (fMaybeNXEFault && PteSrc.n.u1NoExecute)
|
---|
2458 | # endif
|
---|
2459 | || (fUserLevelFault && !PteSrc.n.u1User) )
|
---|
2460 | return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 0);
|
---|
2461 |
|
---|
2462 | LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u));
|
---|
2463 |
|
---|
2464 | /*
|
---|
2465 | * Set the accessed bits in the page directory and the page table.
|
---|
2466 | */
|
---|
2467 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2468 | pPml4eSrc->n.u1Accessed = 1;
|
---|
2469 | pPdpeSrc->lm.u1Accessed = 1;
|
---|
2470 | # endif
|
---|
2471 | pPdeSrc->n.u1Accessed = 1;
|
---|
2472 | pPteSrc->n.u1Accessed = 1;
|
---|
2473 |
|
---|
2474 | /*
|
---|
2475 | * Set the dirty flag in the PTE if it's a write access.
|
---|
2476 | */
|
---|
2477 | if (fWriteFault)
|
---|
2478 | {
|
---|
2479 | # ifdef VBOX_WITH_STATISTICS
|
---|
2480 | if (!pPteSrc->n.u1Dirty)
|
---|
2481 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage));
|
---|
2482 | else
|
---|
2483 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty));
|
---|
2484 | # endif
|
---|
2485 |
|
---|
2486 | pPteSrc->n.u1Dirty = 1;
|
---|
2487 | }
|
---|
2488 | }
|
---|
2489 | return VINF_SUCCESS;
|
---|
2490 | }
|
---|
2491 |
|
---|
2492 |
|
---|
2493 | /**
|
---|
2494 | * Handle dirty bit tracking faults.
|
---|
2495 | *
|
---|
2496 | * @returns VBox status code.
|
---|
2497 | * @param pVCpu The VMCPU handle.
|
---|
2498 | * @param uErr Page fault error code.
|
---|
2499 | * @param pPdeSrc Guest page directory entry.
|
---|
2500 | * @param pPdeDst Shadow page directory entry.
|
---|
2501 | * @param GCPtrPage Guest context page address.
|
---|
2502 | */
|
---|
2503 | PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
|
---|
2504 | {
|
---|
2505 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2506 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
2507 |
|
---|
2508 | Assert(PGMIsLockOwner(pVM));
|
---|
2509 |
|
---|
2510 | /*
|
---|
2511 | * Handle big page.
|
---|
2512 | */
|
---|
2513 | if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
|
---|
2514 | {
|
---|
2515 | if ( pPdeDst->n.u1Present
|
---|
2516 | && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
2517 | {
|
---|
2518 | SHWPDE PdeDst = *pPdeDst;
|
---|
2519 |
|
---|
2520 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
|
---|
2521 | Assert(pPdeSrc->b.u1Write);
|
---|
2522 |
|
---|
2523 | /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
|
---|
2524 | * fault again and take this path to only invalidate the entry (see below).
|
---|
2525 | */
|
---|
2526 | PdeDst.n.u1Write = 1;
|
---|
2527 | PdeDst.n.u1Accessed = 1;
|
---|
2528 | PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2529 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2530 | PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
|
---|
2531 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2532 | }
|
---|
2533 |
|
---|
2534 | # ifdef IN_RING0
|
---|
2535 | /* Check for stale TLB entry; only applies to the SMP guest case. */
|
---|
2536 | if ( pVM->cCpus > 1
|
---|
2537 | && pPdeDst->n.u1Write
|
---|
2538 | && pPdeDst->n.u1Accessed)
|
---|
2539 | {
|
---|
2540 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
2541 | if (pShwPage)
|
---|
2542 | {
|
---|
2543 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
2544 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
2545 | if ( pPteDst->n.u1Present
|
---|
2546 | && pPteDst->n.u1Write)
|
---|
2547 | {
|
---|
2548 | /* Stale TLB entry. */
|
---|
2549 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
|
---|
2550 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2551 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2552 | }
|
---|
2553 | }
|
---|
2554 | }
|
---|
2555 | # endif /* IN_RING0 */
|
---|
2556 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2557 | }
|
---|
2558 |
|
---|
2559 | /*
|
---|
2560 | * Map the guest page table.
|
---|
2561 | */
|
---|
2562 | PGSTPT pPTSrc;
|
---|
2563 | int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
2564 | if (RT_FAILURE(rc))
|
---|
2565 | {
|
---|
2566 | AssertRC(rc);
|
---|
2567 | return rc;
|
---|
2568 | }
|
---|
2569 |
|
---|
2570 | if (pPdeDst->n.u1Present)
|
---|
2571 | {
|
---|
2572 | GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
|
---|
2573 | const GSTPTE PteSrc = *pPteSrc;
|
---|
2574 |
|
---|
2575 | #ifndef IN_RING0
|
---|
2576 | /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
|
---|
2577 | * Our individual shadow handlers will provide more information and force a fatal exit.
|
---|
2578 | */
|
---|
2579 | if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
|
---|
2580 | {
|
---|
2581 | LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
|
---|
2582 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2583 | }
|
---|
2584 | #endif
|
---|
2585 | /*
|
---|
2586 | * Map shadow page table.
|
---|
2587 | */
|
---|
2588 | PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
|
---|
2589 | if (pShwPage)
|
---|
2590 | {
|
---|
2591 | PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
2592 | PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
|
---|
2593 | if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
|
---|
2594 | {
|
---|
2595 | if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
|
---|
2596 | {
|
---|
2597 | PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
|
---|
2598 | SHWPTE PteDst = *pPteDst;
|
---|
2599 |
|
---|
2600 | LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
|
---|
2601 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap));
|
---|
2602 |
|
---|
2603 | Assert(pPteSrc->n.u1Write);
|
---|
2604 |
|
---|
2605 | /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
|
---|
2606 | * entry will not harm; write access will simply fault again and
|
---|
2607 | * take this path to only invalidate the entry.
|
---|
2608 | */
|
---|
2609 | if (RT_LIKELY(pPage))
|
---|
2610 | {
|
---|
2611 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2612 | {
|
---|
2613 | AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
|
---|
2614 | Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
|
---|
2615 | /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
|
---|
2616 | PteDst.n.u1Write = 0;
|
---|
2617 | }
|
---|
2618 | else
|
---|
2619 | {
|
---|
2620 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
2621 | && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
|
---|
2622 | {
|
---|
2623 | rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
|
---|
2624 | AssertRC(rc);
|
---|
2625 | }
|
---|
2626 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
|
---|
2627 | PteDst.n.u1Write = 1;
|
---|
2628 | else
|
---|
2629 | {
|
---|
2630 | /* Still applies to shared pages. */
|
---|
2631 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
2632 | PteDst.n.u1Write = 0;
|
---|
2633 | }
|
---|
2634 | }
|
---|
2635 | }
|
---|
2636 | else
|
---|
2637 | PteDst.n.u1Write = 1; /** @todo r=bird: This doesn't make sense to me. */
|
---|
2638 |
|
---|
2639 | PteDst.n.u1Dirty = 1;
|
---|
2640 | PteDst.n.u1Accessed = 1;
|
---|
2641 | PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
|
---|
2642 | ASMAtomicWriteSize(pPteDst, PteDst.u);
|
---|
2643 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2644 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2645 | }
|
---|
2646 |
|
---|
2647 | # ifdef IN_RING0
|
---|
2648 | /* Check for stale TLB entry; only applies to the SMP guest case. */
|
---|
2649 | if ( pVM->cCpus > 1
|
---|
2650 | && pPteDst->n.u1Write == 1
|
---|
2651 | && pPteDst->n.u1Accessed == 1)
|
---|
2652 | {
|
---|
2653 | /* Stale TLB entry. */
|
---|
2654 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale));
|
---|
2655 | PGM_INVL_PG(pVCpu, GCPtrPage);
|
---|
2656 | return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
|
---|
2657 | }
|
---|
2658 | # endif
|
---|
2659 | }
|
---|
2660 | }
|
---|
2661 | else
|
---|
2662 | AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 | return VINF_PGM_NO_DIRTY_BIT_TRACKING;
|
---|
2666 | }
|
---|
2667 |
|
---|
2668 | #endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
|
---|
2669 |
|
---|
2670 |
|
---|
2671 | /**
|
---|
2672 | * Sync a shadow page table.
|
---|
2673 | *
|
---|
2674 | * The shadow page table is not present. This includes the case where
|
---|
2675 | * there is a conflict with a mapping.
|
---|
2676 | *
|
---|
2677 | * @returns VBox status code.
|
---|
2678 | * @param pVCpu The VMCPU handle.
|
---|
2679 | * @param iPD Page directory index.
|
---|
2680 | * @param pPDSrc Source page directory (i.e. Guest OS page directory).
|
---|
2681 | * Assume this is a temporary mapping.
|
---|
2682 | * @param GCPtrPage GC Pointer of the page that caused the fault
|
---|
2683 | */
|
---|
2684 | PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
|
---|
2685 | {
|
---|
2686 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2687 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
2688 |
|
---|
2689 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
2690 | #if 0 /* rarely useful; leave for debugging. */
|
---|
2691 | STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
|
---|
2692 | #endif
|
---|
2693 | LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
|
---|
2694 |
|
---|
2695 | Assert(PGMIsLocked(pVM));
|
---|
2696 |
|
---|
2697 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
2698 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
2699 | || PGM_GST_TYPE == PGM_TYPE_AMD64) \
|
---|
2700 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
2701 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
2702 |
|
---|
2703 | int rc = VINF_SUCCESS;
|
---|
2704 |
|
---|
2705 | /*
|
---|
2706 | * Validate input a little bit.
|
---|
2707 | */
|
---|
2708 | AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
|
---|
2709 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
2710 | const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
|
---|
2711 | PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
|
---|
2712 |
|
---|
2713 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2714 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
2715 | Assert(pShwPde);
|
---|
2716 |
|
---|
2717 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
2718 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
2719 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
2720 | PX86PDPAE pPDDst;
|
---|
2721 | PSHWPDE pPdeDst;
|
---|
2722 |
|
---|
2723 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2724 | rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
|
---|
2725 | AssertRCSuccessReturn(rc, rc);
|
---|
2726 | Assert(pShwPde);
|
---|
2727 |
|
---|
2728 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
|
---|
2729 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
2730 |
|
---|
2731 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
2732 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
2733 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
2734 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
2735 | PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
|
---|
2736 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
2737 | AssertRCSuccessReturn(rc, rc);
|
---|
2738 | Assert(pPDDst);
|
---|
2739 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
2740 | # endif
|
---|
2741 | SHWPDE PdeDst = *pPdeDst;
|
---|
2742 |
|
---|
2743 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
2744 | /* Fetch the pgm pool shadow descriptor. */
|
---|
2745 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
2746 | Assert(pShwPde);
|
---|
2747 | # endif
|
---|
2748 |
|
---|
2749 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
2750 | /*
|
---|
2751 | * Check for conflicts.
|
---|
2752 | * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
|
---|
2753 | * R3: Simply resolve the conflict.
|
---|
2754 | */
|
---|
2755 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
2756 | {
|
---|
2757 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
2758 | # ifndef IN_RING3
|
---|
2759 | Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
|
---|
2760 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
2761 | return VERR_ADDRESS_CONFLICT;
|
---|
2762 |
|
---|
2763 | # else /* IN_RING3 */
|
---|
2764 | PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
|
---|
2765 | Assert(pMapping);
|
---|
2766 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2767 | rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
|
---|
2768 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
2769 | rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
|
---|
2770 | # else
|
---|
2771 | AssertFailed(); /* can't happen for amd64 */
|
---|
2772 | # endif
|
---|
2773 | if (RT_FAILURE(rc))
|
---|
2774 | {
|
---|
2775 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
2776 | return rc;
|
---|
2777 | }
|
---|
2778 | PdeDst = *pPdeDst;
|
---|
2779 | # endif /* IN_RING3 */
|
---|
2780 | }
|
---|
2781 | # endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
2782 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
2783 |
|
---|
2784 | # if defined(IN_RC)
|
---|
2785 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
2786 | PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2787 | # endif
|
---|
2788 |
|
---|
2789 | /*
|
---|
2790 | * Sync page directory entry.
|
---|
2791 | */
|
---|
2792 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
2793 | if (PdeSrc.n.u1Present)
|
---|
2794 | {
|
---|
2795 | /*
|
---|
2796 | * Allocate & map the page table.
|
---|
2797 | */
|
---|
2798 | PSHWPT pPTDst;
|
---|
2799 | const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
|
---|
2800 | PPGMPOOLPAGE pShwPage;
|
---|
2801 | RTGCPHYS GCPhys;
|
---|
2802 | if (fPageTable)
|
---|
2803 | {
|
---|
2804 | GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
2805 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2806 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
2807 | GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
2808 | # endif
|
---|
2809 | rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
|
---|
2810 | }
|
---|
2811 | else
|
---|
2812 | {
|
---|
2813 | PGMPOOLACCESS enmAccess;
|
---|
2814 | # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
2815 | const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
|
---|
2816 | # else
|
---|
2817 | const bool fNoExecute = false;
|
---|
2818 | # endif
|
---|
2819 |
|
---|
2820 | GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
|
---|
2821 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2822 | /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
|
---|
2823 | GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
|
---|
2824 | # endif
|
---|
2825 | /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
|
---|
2826 | if (PdeSrc.n.u1User)
|
---|
2827 | {
|
---|
2828 | if (PdeSrc.n.u1Write)
|
---|
2829 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
|
---|
2830 | else
|
---|
2831 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
|
---|
2832 | }
|
---|
2833 | else
|
---|
2834 | {
|
---|
2835 | if (PdeSrc.n.u1Write)
|
---|
2836 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
|
---|
2837 | else
|
---|
2838 | enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
|
---|
2839 | }
|
---|
2840 | rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
|
---|
2841 | }
|
---|
2842 | if (rc == VINF_SUCCESS)
|
---|
2843 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
2844 | else if (rc == VINF_PGM_CACHED_PAGE)
|
---|
2845 | {
|
---|
2846 | /*
|
---|
2847 | * The PT was cached, just hook it up.
|
---|
2848 | */
|
---|
2849 | if (fPageTable)
|
---|
2850 | PdeDst.u = pShwPage->Core.Key
|
---|
2851 | | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
2852 | else
|
---|
2853 | {
|
---|
2854 | PdeDst.u = pShwPage->Core.Key
|
---|
2855 | | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
2856 | /* (see explanation and assumptions further down.) */
|
---|
2857 | if ( !PdeSrc.b.u1Dirty
|
---|
2858 | && PdeSrc.b.u1Write)
|
---|
2859 | {
|
---|
2860 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
|
---|
2861 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
2862 | PdeDst.b.u1Write = 0;
|
---|
2863 | }
|
---|
2864 | }
|
---|
2865 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2866 | # if defined(IN_RC)
|
---|
2867 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2868 | # endif
|
---|
2869 | return VINF_SUCCESS;
|
---|
2870 | }
|
---|
2871 | else if (rc == VERR_PGM_POOL_FLUSHED)
|
---|
2872 | {
|
---|
2873 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2874 | # if defined(IN_RC)
|
---|
2875 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2876 | # endif
|
---|
2877 | return VINF_PGM_SYNC_CR3;
|
---|
2878 | }
|
---|
2879 | else
|
---|
2880 | AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
2881 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
2882 | PdeDst.u |= pShwPage->Core.Key;
|
---|
2883 |
|
---|
2884 | /*
|
---|
2885 | * Page directory has been accessed (this is a fault situation, remember).
|
---|
2886 | */
|
---|
2887 | pPDSrc->a[iPDSrc].n.u1Accessed = 1;
|
---|
2888 | if (fPageTable)
|
---|
2889 | {
|
---|
2890 | /*
|
---|
2891 | * Page table - 4KB.
|
---|
2892 | *
|
---|
2893 | * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
|
---|
2894 | */
|
---|
2895 | Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
|
---|
2896 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
|
---|
2897 | PGSTPT pPTSrc;
|
---|
2898 | rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
|
---|
2899 | if (RT_SUCCESS(rc))
|
---|
2900 | {
|
---|
2901 | /*
|
---|
2902 | * Start by syncing the page directory entry so CSAM's TLB trick works.
|
---|
2903 | */
|
---|
2904 | PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
|
---|
2905 | | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
2906 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
2907 | # if defined(IN_RC)
|
---|
2908 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
2909 | # endif
|
---|
2910 |
|
---|
2911 | /*
|
---|
2912 | * Directory/page user or supervisor privilege: (same goes for read/write)
|
---|
2913 | *
|
---|
2914 | * Directory Page Combined
|
---|
2915 | * U/S U/S U/S
|
---|
2916 | * 0 0 0
|
---|
2917 | * 0 1 0
|
---|
2918 | * 1 0 0
|
---|
2919 | * 1 1 1
|
---|
2920 | *
|
---|
2921 | * Simple AND operation. Table listed for completeness.
|
---|
2922 | *
|
---|
2923 | */
|
---|
2924 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K));
|
---|
2925 | # ifdef PGM_SYNC_N_PAGES
|
---|
2926 | unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
|
---|
2927 | unsigned iPTDst = iPTBase;
|
---|
2928 | const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
|
---|
2929 | if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
|
---|
2930 | iPTDst = 0;
|
---|
2931 | else
|
---|
2932 | iPTDst -= PGM_SYNC_NR_PAGES / 2;
|
---|
2933 | # else /* !PGM_SYNC_N_PAGES */
|
---|
2934 | unsigned iPTDst = 0;
|
---|
2935 | const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
|
---|
2936 | # endif /* !PGM_SYNC_N_PAGES */
|
---|
2937 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
2938 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
2939 | const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
|
---|
2940 | # else
|
---|
2941 | const unsigned offPTSrc = 0;
|
---|
2942 | # endif
|
---|
2943 | for (; iPTDst < iPTDstEnd; iPTDst++)
|
---|
2944 | {
|
---|
2945 | const unsigned iPTSrc = iPTDst + offPTSrc;
|
---|
2946 | const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
|
---|
2947 |
|
---|
2948 | if (PteSrc.n.u1Present)
|
---|
2949 | {
|
---|
2950 | # ifndef IN_RING0
|
---|
2951 | /*
|
---|
2952 | * Assuming kernel code will be marked as supervisor - and not as user level
|
---|
2953 | * and executed using a conforming code selector - And marked as readonly.
|
---|
2954 | * Also assume that if we're monitoring a page, it's of no interest to CSAM.
|
---|
2955 | */
|
---|
2956 | PPGMPAGE pPage;
|
---|
2957 | if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
|
---|
2958 | || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
|
---|
2959 | || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
|
---|
2960 | && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
2961 | )
|
---|
2962 | # endif
|
---|
2963 | PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
|
---|
2964 | Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
|
---|
2965 | (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
|
---|
2966 | PteSrc.n.u1Present,
|
---|
2967 | PteSrc.n.u1Write & PdeSrc.n.u1Write,
|
---|
2968 | PteSrc.n.u1User & PdeSrc.n.u1User,
|
---|
2969 | (uint64_t)PteSrc.u,
|
---|
2970 | pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
|
---|
2971 | (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
|
---|
2972 | }
|
---|
2973 | /* else: the page table was cleared by the pool */
|
---|
2974 | } /* for PTEs */
|
---|
2975 | }
|
---|
2976 | }
|
---|
2977 | else
|
---|
2978 | {
|
---|
2979 | /*
|
---|
2980 | * Big page - 2/4MB.
|
---|
2981 | *
|
---|
2982 | * We'll walk the ram range list in parallel and optimize lookups.
|
---|
2983 | * We will only sync on shadow page table at a time.
|
---|
2984 | */
|
---|
2985 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M));
|
---|
2986 |
|
---|
2987 | /**
|
---|
2988 | * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
|
---|
2989 | */
|
---|
2990 |
|
---|
2991 | /*
|
---|
2992 | * Start by syncing the page directory entry.
|
---|
2993 | */
|
---|
2994 | PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
|
---|
2995 | | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
|
---|
2996 |
|
---|
2997 | /*
|
---|
2998 | * If the page is not flagged as dirty and is writable, then make it read-only
|
---|
2999 | * at PD level, so we can set the dirty bit when the page is modified.
|
---|
3000 | *
|
---|
3001 | * ASSUMES that page access handlers are implemented on page table entry level.
|
---|
3002 | * Thus we will first catch the dirty access and set PDE.D and restart. If
|
---|
3003 | * there is an access handler, we'll trap again and let it work on the problem.
|
---|
3004 | */
|
---|
3005 | /** @todo move the above stuff to a section in the PGM documentation. */
|
---|
3006 | Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
|
---|
3007 | if ( !PdeSrc.b.u1Dirty
|
---|
3008 | && PdeSrc.b.u1Write)
|
---|
3009 | {
|
---|
3010 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig));
|
---|
3011 | PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
|
---|
3012 | PdeDst.b.u1Write = 0;
|
---|
3013 | }
|
---|
3014 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
3015 | # if defined(IN_RC)
|
---|
3016 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
3017 | # endif
|
---|
3018 |
|
---|
3019 | /*
|
---|
3020 | * Fill the shadow page table.
|
---|
3021 | */
|
---|
3022 | /* Get address and flags from the source PDE. */
|
---|
3023 | SHWPTE PteDstBase;
|
---|
3024 | PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
|
---|
3025 |
|
---|
3026 | /* Loop thru the entries in the shadow PT. */
|
---|
3027 | const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
|
---|
3028 | Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
|
---|
3029 | GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
|
---|
3030 | GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
3031 | PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
|
---|
3032 | unsigned iPTDst = 0;
|
---|
3033 | while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
3034 | && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
3035 | {
|
---|
3036 | /* Advance ram range list. */
|
---|
3037 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
3038 | pRam = pRam->CTX_SUFF(pNext);
|
---|
3039 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
3040 | {
|
---|
3041 | unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
3042 | do
|
---|
3043 | {
|
---|
3044 | /* Make shadow PTE. */
|
---|
3045 | PPGMPAGE pPage = &pRam->aPages[iHCPage];
|
---|
3046 | SHWPTE PteDst;
|
---|
3047 |
|
---|
3048 | # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
|
---|
3049 | /* Try to make the page writable if necessary. */
|
---|
3050 | if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
3051 | && ( PGM_PAGE_IS_ZERO(pPage)
|
---|
3052 | || ( PteDstBase.n.u1Write
|
---|
3053 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
3054 | # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
|
---|
3055 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
|
---|
3056 | # endif
|
---|
3057 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
3058 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
|
---|
3059 | # endif
|
---|
3060 | && !PGM_PAGE_IS_BALLOONED(pPage))
|
---|
3061 | )
|
---|
3062 | )
|
---|
3063 | {
|
---|
3064 | rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
|
---|
3065 | AssertRCReturn(rc, rc);
|
---|
3066 | if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
|
---|
3067 | break;
|
---|
3068 | }
|
---|
3069 | # endif
|
---|
3070 |
|
---|
3071 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
3072 | {
|
---|
3073 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
3074 | {
|
---|
3075 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
|
---|
3076 | PteDst.n.u1Write = 0;
|
---|
3077 | }
|
---|
3078 | else
|
---|
3079 | PteDst.u = 0;
|
---|
3080 | }
|
---|
3081 | else if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
3082 | {
|
---|
3083 | /* Skip ballooned pages. */
|
---|
3084 | PteDst.u = 0;
|
---|
3085 | }
|
---|
3086 | # ifndef IN_RING0
|
---|
3087 | /*
|
---|
3088 | * Assuming kernel code will be marked as supervisor and not as user level and executed
|
---|
3089 | * using a conforming code selector. Don't check for readonly, as that implies the whole
|
---|
3090 | * 4MB can be code or readonly data. Linux enables write access for its large pages.
|
---|
3091 | */
|
---|
3092 | else if ( !PdeSrc.n.u1User
|
---|
3093 | && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
|
---|
3094 | PteDst.u = 0;
|
---|
3095 | # endif
|
---|
3096 | else
|
---|
3097 | PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
|
---|
3098 |
|
---|
3099 | /* Only map writable pages writable. */
|
---|
3100 | if ( PteDst.n.u1Write
|
---|
3101 | && PteDst.n.u1Present
|
---|
3102 | && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
|
---|
3103 | {
|
---|
3104 | /* Still applies to shared pages. */
|
---|
3105 | Assert(!PGM_PAGE_IS_ZERO(pPage));
|
---|
3106 | PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
|
---|
3107 | Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
|
---|
3108 | }
|
---|
3109 |
|
---|
3110 | if (PteDst.n.u1Present)
|
---|
3111 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
|
---|
3112 |
|
---|
3113 | /* commit it */
|
---|
3114 | pPTDst->a[iPTDst] = PteDst;
|
---|
3115 | Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
|
---|
3116 | (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
|
---|
3117 | PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
|
---|
3118 |
|
---|
3119 | /* advance */
|
---|
3120 | GCPhys += PAGE_SIZE;
|
---|
3121 | iHCPage++;
|
---|
3122 | iPTDst++;
|
---|
3123 | } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
3124 | && GCPhys <= pRam->GCPhysLast);
|
---|
3125 | }
|
---|
3126 | else if (pRam)
|
---|
3127 | {
|
---|
3128 | Log(("Invalid pages at %RGp\n", GCPhys));
|
---|
3129 | do
|
---|
3130 | {
|
---|
3131 | pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
|
---|
3132 | GCPhys += PAGE_SIZE;
|
---|
3133 | iPTDst++;
|
---|
3134 | } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
|
---|
3135 | && GCPhys < pRam->GCPhys);
|
---|
3136 | }
|
---|
3137 | else
|
---|
3138 | {
|
---|
3139 | Log(("Invalid pages at %RGp (2)\n", GCPhys));
|
---|
3140 | for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
|
---|
3141 | pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
|
---|
3142 | }
|
---|
3143 | } /* while more PTEs */
|
---|
3144 | } /* 4KB / 4MB */
|
---|
3145 | }
|
---|
3146 | else
|
---|
3147 | AssertRelease(!PdeDst.n.u1Present);
|
---|
3148 |
|
---|
3149 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
3150 | if (RT_FAILURE(rc))
|
---|
3151 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed));
|
---|
3152 | return rc;
|
---|
3153 |
|
---|
3154 | #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
3155 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3156 | && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
|
---|
3157 | && !defined(IN_RC)
|
---|
3158 |
|
---|
3159 | /*
|
---|
3160 | * Validate input a little bit.
|
---|
3161 | */
|
---|
3162 | int rc = VINF_SUCCESS;
|
---|
3163 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3164 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3165 | PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
|
---|
3166 |
|
---|
3167 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3168 | PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
3169 | Assert(pShwPde);
|
---|
3170 |
|
---|
3171 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3172 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3173 | PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
|
---|
3174 | PX86PDPAE pPDDst;
|
---|
3175 | PSHWPDE pPdeDst;
|
---|
3176 |
|
---|
3177 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3178 | rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
|
---|
3179 | AssertRCSuccessReturn(rc, rc);
|
---|
3180 | Assert(pShwPde);
|
---|
3181 |
|
---|
3182 | pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
|
---|
3183 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3184 |
|
---|
3185 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3186 | const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
|
---|
3187 | const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
3188 | PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
|
---|
3189 | PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
|
---|
3190 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
|
---|
3191 | AssertRCSuccessReturn(rc, rc);
|
---|
3192 | Assert(pPDDst);
|
---|
3193 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
3194 |
|
---|
3195 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3196 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
|
---|
3197 | Assert(pShwPde);
|
---|
3198 |
|
---|
3199 | # elif PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3200 | const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
|
---|
3201 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3202 | PEPTPD pPDDst;
|
---|
3203 | PEPTPDPT pPdptDst;
|
---|
3204 |
|
---|
3205 | rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
|
---|
3206 | if (rc != VINF_SUCCESS)
|
---|
3207 | {
|
---|
3208 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
3209 | AssertRC(rc);
|
---|
3210 | return rc;
|
---|
3211 | }
|
---|
3212 | Assert(pPDDst);
|
---|
3213 | PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
|
---|
3214 |
|
---|
3215 | /* Fetch the pgm pool shadow descriptor. */
|
---|
3216 | PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
|
---|
3217 | Assert(pShwPde);
|
---|
3218 | # endif
|
---|
3219 | SHWPDE PdeDst = *pPdeDst;
|
---|
3220 |
|
---|
3221 | Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
|
---|
3222 | Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
|
---|
3223 |
|
---|
3224 | # if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
|
---|
3225 | if (BTH_IS_NP_ACTIVE(pVM))
|
---|
3226 | {
|
---|
3227 | PPGMPAGE pPage;
|
---|
3228 |
|
---|
3229 | /* Check if we allocated a big page before for this 2 MB range. */
|
---|
3230 | rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
|
---|
3231 | if (RT_SUCCESS(rc))
|
---|
3232 | {
|
---|
3233 | RTHCPHYS HCPhys = NIL_RTHCPHYS;
|
---|
3234 |
|
---|
3235 | if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
|
---|
3236 | {
|
---|
3237 | STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
|
---|
3238 | AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3239 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3240 | }
|
---|
3241 | else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
|
---|
3242 | {
|
---|
3243 | /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
|
---|
3244 | rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
|
---|
3245 | if (RT_SUCCESS(rc))
|
---|
3246 | {
|
---|
3247 | Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3248 | Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
|
---|
3249 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3250 | }
|
---|
3251 | }
|
---|
3252 | else if (PGMIsUsingLargePages(pVM))
|
---|
3253 | {
|
---|
3254 | rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
|
---|
3255 | if (RT_SUCCESS(rc))
|
---|
3256 | {
|
---|
3257 | Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
3258 | Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
|
---|
3259 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3260 | }
|
---|
3261 | else
|
---|
3262 | LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
|
---|
3263 | }
|
---|
3264 |
|
---|
3265 | if (HCPhys != NIL_RTHCPHYS)
|
---|
3266 | {
|
---|
3267 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
3268 | PdeDst.u |= HCPhys;
|
---|
3269 | PdeDst.n.u1Present = 1;
|
---|
3270 | PdeDst.n.u1Write = 1;
|
---|
3271 | PdeDst.b.u1Size = 1;
|
---|
3272 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3273 | PdeDst.n.u1Execute = 1;
|
---|
3274 | PdeDst.b.u1IgnorePAT = 1;
|
---|
3275 | PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
|
---|
3276 | # else
|
---|
3277 | PdeDst.n.u1User = 1;
|
---|
3278 | # endif
|
---|
3279 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
3280 |
|
---|
3281 | Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
|
---|
3282 | /* Add a reference to the first page only. */
|
---|
3283 | PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
|
---|
3284 |
|
---|
3285 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
3286 | return VINF_SUCCESS;
|
---|
3287 | }
|
---|
3288 | }
|
---|
3289 | }
|
---|
3290 | # endif /* HC_ARCH_BITS == 64 */
|
---|
3291 |
|
---|
3292 | GSTPDE PdeSrc;
|
---|
3293 | PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
|
---|
3294 | PdeSrc.n.u1Present = 1;
|
---|
3295 | PdeSrc.n.u1Write = 1;
|
---|
3296 | PdeSrc.n.u1Accessed = 1;
|
---|
3297 | PdeSrc.n.u1User = 1;
|
---|
3298 |
|
---|
3299 | /*
|
---|
3300 | * Allocate & map the page table.
|
---|
3301 | */
|
---|
3302 | PSHWPT pPTDst;
|
---|
3303 | PPGMPOOLPAGE pShwPage;
|
---|
3304 | RTGCPHYS GCPhys;
|
---|
3305 |
|
---|
3306 | /* Virtual address = physical address */
|
---|
3307 | GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
|
---|
3308 | rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
|
---|
3309 |
|
---|
3310 | if ( rc == VINF_SUCCESS
|
---|
3311 | || rc == VINF_PGM_CACHED_PAGE)
|
---|
3312 | pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
|
---|
3313 | else
|
---|
3314 | AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
|
---|
3315 |
|
---|
3316 | PdeDst.u &= X86_PDE_AVL_MASK;
|
---|
3317 | PdeDst.u |= pShwPage->Core.Key;
|
---|
3318 | PdeDst.n.u1Present = 1;
|
---|
3319 | PdeDst.n.u1Write = 1;
|
---|
3320 | # if PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3321 | PdeDst.n.u1Execute = 1;
|
---|
3322 | # else
|
---|
3323 | PdeDst.n.u1User = 1;
|
---|
3324 | PdeDst.n.u1Accessed = 1;
|
---|
3325 | # endif
|
---|
3326 | ASMAtomicWriteSize(pPdeDst, PdeDst.u);
|
---|
3327 |
|
---|
3328 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
|
---|
3329 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
3330 | return rc;
|
---|
3331 |
|
---|
3332 | #else
|
---|
3333 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
|
---|
3334 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a);
|
---|
3335 | return VERR_INTERNAL_ERROR;
|
---|
3336 | #endif
|
---|
3337 | }
|
---|
3338 |
|
---|
3339 |
|
---|
3340 |
|
---|
3341 | /**
|
---|
3342 | * Prefetch a page/set of pages.
|
---|
3343 | *
|
---|
3344 | * Typically used to sync commonly used pages before entering raw mode
|
---|
3345 | * after a CR3 reload.
|
---|
3346 | *
|
---|
3347 | * @returns VBox status code.
|
---|
3348 | * @param pVCpu The VMCPU handle.
|
---|
3349 | * @param GCPtrPage Page to invalidate.
|
---|
3350 | */
|
---|
3351 | PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
|
---|
3352 | {
|
---|
3353 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3354 | || PGM_GST_TYPE == PGM_TYPE_REAL \
|
---|
3355 | || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
3356 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3357 | || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
|
---|
3358 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3359 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3360 |
|
---|
3361 | /*
|
---|
3362 | * Check that all Guest levels thru the PDE are present, getting the
|
---|
3363 | * PD and PDE in the processes.
|
---|
3364 | */
|
---|
3365 | int rc = VINF_SUCCESS;
|
---|
3366 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3367 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3368 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
3369 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
3370 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3371 | unsigned iPDSrc;
|
---|
3372 | X86PDPE PdpeSrc;
|
---|
3373 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
|
---|
3374 | if (!pPDSrc)
|
---|
3375 | return VINF_SUCCESS; /* not present */
|
---|
3376 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3377 | unsigned iPDSrc;
|
---|
3378 | PX86PML4E pPml4eSrc;
|
---|
3379 | X86PDPE PdpeSrc;
|
---|
3380 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
|
---|
3381 | if (!pPDSrc)
|
---|
3382 | return VINF_SUCCESS; /* not present */
|
---|
3383 | # endif
|
---|
3384 | const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
3385 | # else
|
---|
3386 | PGSTPD pPDSrc = NULL;
|
---|
3387 | const unsigned iPDSrc = 0;
|
---|
3388 | GSTPDE PdeSrc;
|
---|
3389 |
|
---|
3390 | PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
|
---|
3391 | PdeSrc.n.u1Present = 1;
|
---|
3392 | PdeSrc.n.u1Write = 1;
|
---|
3393 | PdeSrc.n.u1Accessed = 1;
|
---|
3394 | PdeSrc.n.u1User = 1;
|
---|
3395 | # endif
|
---|
3396 |
|
---|
3397 | if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
|
---|
3398 | {
|
---|
3399 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3400 | pgmLock(pVM);
|
---|
3401 |
|
---|
3402 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3403 | const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
|
---|
3404 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3405 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3406 | PX86PDPAE pPDDst;
|
---|
3407 | X86PDEPAE PdeDst;
|
---|
3408 | # if PGM_GST_TYPE != PGM_TYPE_PAE
|
---|
3409 | X86PDPE PdpeSrc;
|
---|
3410 |
|
---|
3411 | /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3412 | PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
|
---|
3413 | # endif
|
---|
3414 | rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
|
---|
3415 | if (rc != VINF_SUCCESS)
|
---|
3416 | {
|
---|
3417 | pgmUnlock(pVM);
|
---|
3418 | AssertRC(rc);
|
---|
3419 | return rc;
|
---|
3420 | }
|
---|
3421 | Assert(pPDDst);
|
---|
3422 | PdeDst = pPDDst->a[iPDDst];
|
---|
3423 |
|
---|
3424 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3425 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3426 | PX86PDPAE pPDDst;
|
---|
3427 | X86PDEPAE PdeDst;
|
---|
3428 |
|
---|
3429 | # if PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
3430 | /* AMD-V nested paging */
|
---|
3431 | X86PML4E Pml4eSrc;
|
---|
3432 | X86PDPE PdpeSrc;
|
---|
3433 | PX86PML4E pPml4eSrc = &Pml4eSrc;
|
---|
3434 |
|
---|
3435 | /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3436 | Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
|
---|
3437 | PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
|
---|
3438 | # endif
|
---|
3439 |
|
---|
3440 | rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
|
---|
3441 | if (rc != VINF_SUCCESS)
|
---|
3442 | {
|
---|
3443 | pgmUnlock(pVM);
|
---|
3444 | AssertRC(rc);
|
---|
3445 | return rc;
|
---|
3446 | }
|
---|
3447 | Assert(pPDDst);
|
---|
3448 | PdeDst = pPDDst->a[iPDDst];
|
---|
3449 | # endif
|
---|
3450 | if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
|
---|
3451 | {
|
---|
3452 | if (!PdeDst.n.u1Present)
|
---|
3453 | {
|
---|
3454 | /** @todo r=bird: This guy will set the A bit on the PDE,
|
---|
3455 | * probably harmless. */
|
---|
3456 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
3457 | }
|
---|
3458 | else
|
---|
3459 | {
|
---|
3460 | /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
|
---|
3461 | * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
|
---|
3462 | * makes no sense to prefetch more than one page.
|
---|
3463 | */
|
---|
3464 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
|
---|
3465 | if (RT_SUCCESS(rc))
|
---|
3466 | rc = VINF_SUCCESS;
|
---|
3467 | }
|
---|
3468 | }
|
---|
3469 | pgmUnlock(pVM);
|
---|
3470 | }
|
---|
3471 | return rc;
|
---|
3472 |
|
---|
3473 | #elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3474 | return VINF_SUCCESS; /* ignore */
|
---|
3475 | #else
|
---|
3476 | AssertCompile(0);
|
---|
3477 | #endif
|
---|
3478 | }
|
---|
3479 |
|
---|
3480 |
|
---|
3481 |
|
---|
3482 |
|
---|
3483 | /**
|
---|
3484 | * Syncs a page during a PGMVerifyAccess() call.
|
---|
3485 | *
|
---|
3486 | * @returns VBox status code (informational included).
|
---|
3487 | * @param pVCpu The VMCPU handle.
|
---|
3488 | * @param GCPtrPage The address of the page to sync.
|
---|
3489 | * @param fPage The effective guest page flags.
|
---|
3490 | * @param uErr The trap error code.
|
---|
3491 | * @remarks This will normally never be called on invalid guest page
|
---|
3492 | * translation entries.
|
---|
3493 | */
|
---|
3494 | PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
|
---|
3495 | {
|
---|
3496 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3497 |
|
---|
3498 | LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
|
---|
3499 |
|
---|
3500 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
3501 | #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3502 | || PGM_GST_TYPE == PGM_TYPE_REAL \
|
---|
3503 | || PGM_GST_TYPE == PGM_TYPE_PROT \
|
---|
3504 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3505 | || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
|
---|
3506 | && PGM_SHW_TYPE != PGM_TYPE_NESTED \
|
---|
3507 | && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3508 |
|
---|
3509 | # ifndef IN_RING0
|
---|
3510 | if (!(fPage & X86_PTE_US))
|
---|
3511 | {
|
---|
3512 | /*
|
---|
3513 | * Mark this page as safe.
|
---|
3514 | */
|
---|
3515 | /** @todo not correct for pages that contain both code and data!! */
|
---|
3516 | Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
|
---|
3517 | CSAMMarkPage(pVM, GCPtrPage, true);
|
---|
3518 | }
|
---|
3519 | # endif
|
---|
3520 |
|
---|
3521 | /*
|
---|
3522 | * Get guest PD and index.
|
---|
3523 | */
|
---|
3524 | /** @todo Performance: We've done all this a jiffy ago in the
|
---|
3525 | * PGMGstGetPage call. */
|
---|
3526 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3527 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3528 | const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
|
---|
3529 | PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
3530 |
|
---|
3531 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3532 | unsigned iPDSrc = 0;
|
---|
3533 | X86PDPE PdpeSrc;
|
---|
3534 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
|
---|
3535 | if (RT_UNLIKELY(!pPDSrc))
|
---|
3536 | {
|
---|
3537 | Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
|
---|
3538 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
3539 | }
|
---|
3540 |
|
---|
3541 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3542 | unsigned iPDSrc = 0; /* shut up gcc */
|
---|
3543 | PX86PML4E pPml4eSrc = NULL; /* ditto */
|
---|
3544 | X86PDPE PdpeSrc;
|
---|
3545 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
|
---|
3546 | if (RT_UNLIKELY(!pPDSrc))
|
---|
3547 | {
|
---|
3548 | Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
|
---|
3549 | return VINF_EM_RAW_GUEST_TRAP;
|
---|
3550 | }
|
---|
3551 | # endif
|
---|
3552 |
|
---|
3553 | # else /* !PGM_WITH_PAGING */
|
---|
3554 | PGSTPD pPDSrc = NULL;
|
---|
3555 | const unsigned iPDSrc = 0;
|
---|
3556 | # endif /* !PGM_WITH_PAGING */
|
---|
3557 | int rc = VINF_SUCCESS;
|
---|
3558 |
|
---|
3559 | pgmLock(pVM);
|
---|
3560 |
|
---|
3561 | /*
|
---|
3562 | * First check if the shadow pd is present.
|
---|
3563 | */
|
---|
3564 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3565 | PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
|
---|
3566 |
|
---|
3567 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3568 | PX86PDEPAE pPdeDst;
|
---|
3569 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3570 | PX86PDPAE pPDDst;
|
---|
3571 | # if PGM_GST_TYPE != PGM_TYPE_PAE
|
---|
3572 | /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3573 | X86PDPE PdpeSrc;
|
---|
3574 | PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
|
---|
3575 | # endif
|
---|
3576 | rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
|
---|
3577 | if (rc != VINF_SUCCESS)
|
---|
3578 | {
|
---|
3579 | pgmUnlock(pVM);
|
---|
3580 | AssertRC(rc);
|
---|
3581 | return rc;
|
---|
3582 | }
|
---|
3583 | Assert(pPDDst);
|
---|
3584 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3585 |
|
---|
3586 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3587 | const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
|
---|
3588 | PX86PDPAE pPDDst;
|
---|
3589 | PX86PDEPAE pPdeDst;
|
---|
3590 |
|
---|
3591 | # if PGM_GST_TYPE == PGM_TYPE_PROT
|
---|
3592 | /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
|
---|
3593 | X86PML4E Pml4eSrc;
|
---|
3594 | X86PDPE PdpeSrc;
|
---|
3595 | PX86PML4E pPml4eSrc = &Pml4eSrc;
|
---|
3596 | Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
|
---|
3597 | PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
|
---|
3598 | # endif
|
---|
3599 |
|
---|
3600 | rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
|
---|
3601 | if (rc != VINF_SUCCESS)
|
---|
3602 | {
|
---|
3603 | pgmUnlock(pVM);
|
---|
3604 | AssertRC(rc);
|
---|
3605 | return rc;
|
---|
3606 | }
|
---|
3607 | Assert(pPDDst);
|
---|
3608 | pPdeDst = &pPDDst->a[iPDDst];
|
---|
3609 | # endif
|
---|
3610 |
|
---|
3611 | # if defined(IN_RC)
|
---|
3612 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
3613 | PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
3614 | # endif
|
---|
3615 |
|
---|
3616 | if (!pPdeDst->n.u1Present)
|
---|
3617 | {
|
---|
3618 | rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
|
---|
3619 | if (rc != VINF_SUCCESS)
|
---|
3620 | {
|
---|
3621 | # if defined(IN_RC)
|
---|
3622 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
3623 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
3624 | # endif
|
---|
3625 | pgmUnlock(pVM);
|
---|
3626 | AssertRC(rc);
|
---|
3627 | return rc;
|
---|
3628 | }
|
---|
3629 | }
|
---|
3630 |
|
---|
3631 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3632 | /* Check for dirty bit fault */
|
---|
3633 | rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
|
---|
3634 | if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
|
---|
3635 | Log(("PGMVerifyAccess: success (dirty)\n"));
|
---|
3636 | else
|
---|
3637 | # endif
|
---|
3638 | {
|
---|
3639 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
3640 | GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
|
---|
3641 | # else
|
---|
3642 | GSTPDE PdeSrc;
|
---|
3643 | PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
|
---|
3644 | PdeSrc.n.u1Present = 1;
|
---|
3645 | PdeSrc.n.u1Write = 1;
|
---|
3646 | PdeSrc.n.u1Accessed = 1;
|
---|
3647 | PdeSrc.n.u1User = 1;
|
---|
3648 | # endif
|
---|
3649 |
|
---|
3650 | Assert(rc != VINF_EM_RAW_GUEST_TRAP);
|
---|
3651 | if (uErr & X86_TRAP_PF_US)
|
---|
3652 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser));
|
---|
3653 | else /* supervisor */
|
---|
3654 | STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
|
---|
3655 |
|
---|
3656 | rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
|
---|
3657 | if (RT_SUCCESS(rc))
|
---|
3658 | {
|
---|
3659 | /* Page was successfully synced */
|
---|
3660 | Log2(("PGMVerifyAccess: success (sync)\n"));
|
---|
3661 | rc = VINF_SUCCESS;
|
---|
3662 | }
|
---|
3663 | else
|
---|
3664 | {
|
---|
3665 | Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
|
---|
3666 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
3667 | }
|
---|
3668 | }
|
---|
3669 | # if defined(IN_RC)
|
---|
3670 | /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
|
---|
3671 | PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
|
---|
3672 | # endif
|
---|
3673 | pgmUnlock(pVM);
|
---|
3674 | return rc;
|
---|
3675 |
|
---|
3676 | #else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
|
---|
3677 |
|
---|
3678 | AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
|
---|
3679 | return VERR_INTERNAL_ERROR;
|
---|
3680 | #endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
|
---|
3681 | }
|
---|
3682 |
|
---|
3683 |
|
---|
3684 | /**
|
---|
3685 | * Syncs the paging hierarchy starting at CR3.
|
---|
3686 | *
|
---|
3687 | * @returns VBox status code, no specials.
|
---|
3688 | * @param pVCpu The VMCPU handle.
|
---|
3689 | * @param cr0 Guest context CR0 register
|
---|
3690 | * @param cr3 Guest context CR3 register
|
---|
3691 | * @param cr4 Guest context CR4 register
|
---|
3692 | * @param fGlobal Including global page directories or not
|
---|
3693 | */
|
---|
3694 | PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
|
---|
3695 | {
|
---|
3696 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3697 |
|
---|
3698 | LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
|
---|
3699 |
|
---|
3700 | #if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
|
---|
3701 |
|
---|
3702 | pgmLock(pVM);
|
---|
3703 |
|
---|
3704 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
3705 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
3706 | if (pPool->cDirtyPages)
|
---|
3707 | pgmPoolResetDirtyPages(pVM);
|
---|
3708 | # endif
|
---|
3709 |
|
---|
3710 | /*
|
---|
3711 | * Update page access handlers.
|
---|
3712 | * The virtual are always flushed, while the physical are only on demand.
|
---|
3713 | * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
|
---|
3714 | * have to look into that later because it will have a bad influence on the performance.
|
---|
3715 | * @note SvL: There's no need for that. Just invalidate the virtual range(s).
|
---|
3716 | * bird: Yes, but that won't work for aliases.
|
---|
3717 | */
|
---|
3718 | /** @todo this MUST go away. See #1557. */
|
---|
3719 | STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
|
---|
3720 | PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
|
---|
3721 | STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h);
|
---|
3722 | pgmUnlock(pVM);
|
---|
3723 | #endif /* !NESTED && !EPT */
|
---|
3724 |
|
---|
3725 | #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3726 | /*
|
---|
3727 | * Nested / EPT - almost no work.
|
---|
3728 | */
|
---|
3729 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3730 | return VINF_SUCCESS;
|
---|
3731 |
|
---|
3732 | #elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3733 | /*
|
---|
3734 | * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
|
---|
3735 | * out the shadow parts when the guest modifies its tables.
|
---|
3736 | */
|
---|
3737 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3738 | return VINF_SUCCESS;
|
---|
3739 |
|
---|
3740 | #else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
3741 |
|
---|
3742 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
3743 | /*
|
---|
3744 | * Check for and resolve conflicts with our guest mappings if they
|
---|
3745 | * are enabled and not fixed.
|
---|
3746 | */
|
---|
3747 | if (pgmMapAreMappingsFloating(&pVM->pgm.s))
|
---|
3748 | {
|
---|
3749 | int rc = pgmMapResolveConflicts(pVM);
|
---|
3750 | Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
|
---|
3751 | if (rc == VINF_PGM_SYNC_CR3)
|
---|
3752 | {
|
---|
3753 | LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
|
---|
3754 | return VINF_PGM_SYNC_CR3;
|
---|
3755 | }
|
---|
3756 | }
|
---|
3757 | # else
|
---|
3758 | Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
3759 | # endif
|
---|
3760 | return VINF_SUCCESS;
|
---|
3761 | #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
|
---|
3762 | }
|
---|
3763 |
|
---|
3764 |
|
---|
3765 |
|
---|
3766 |
|
---|
3767 | #ifdef VBOX_STRICT
|
---|
3768 | #ifdef IN_RC
|
---|
3769 | # undef AssertMsgFailed
|
---|
3770 | # define AssertMsgFailed Log
|
---|
3771 | #endif
|
---|
3772 | #ifdef IN_RING3
|
---|
3773 | # include <VBox/dbgf.h>
|
---|
3774 |
|
---|
3775 | /**
|
---|
3776 | * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
|
---|
3777 | *
|
---|
3778 | * @returns VBox status code (VINF_SUCCESS).
|
---|
3779 | * @param cr3 The root of the hierarchy.
|
---|
3780 | * @param crr The cr4, only PAE and PSE is currently used.
|
---|
3781 | * @param fLongMode Set if long mode, false if not long mode.
|
---|
3782 | * @param cMaxDepth Number of levels to dump.
|
---|
3783 | * @param pHlp Pointer to the output functions.
|
---|
3784 | */
|
---|
3785 | RT_C_DECLS_BEGIN
|
---|
3786 | VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
|
---|
3787 | RT_C_DECLS_END
|
---|
3788 |
|
---|
3789 | #endif
|
---|
3790 |
|
---|
3791 | /**
|
---|
3792 | * Checks that the shadow page table is in sync with the guest one.
|
---|
3793 | *
|
---|
3794 | * @returns The number of errors.
|
---|
3795 | * @param pVM The virtual machine.
|
---|
3796 | * @param pVCpu The VMCPU handle.
|
---|
3797 | * @param cr3 Guest context CR3 register
|
---|
3798 | * @param cr4 Guest context CR4 register
|
---|
3799 | * @param GCPtr Where to start. Defaults to 0.
|
---|
3800 | * @param cb How much to check. Defaults to everything.
|
---|
3801 | */
|
---|
3802 | PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
|
---|
3803 | {
|
---|
3804 | #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
|
---|
3805 | return 0;
|
---|
3806 | #else
|
---|
3807 | unsigned cErrors = 0;
|
---|
3808 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3809 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
3810 |
|
---|
3811 | #if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3812 | /** @todo currently broken; crashes below somewhere */
|
---|
3813 | AssertFailed();
|
---|
3814 | #endif
|
---|
3815 |
|
---|
3816 | #if PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
3817 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
3818 | || PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3819 |
|
---|
3820 | bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
|
---|
3821 | PPGMCPU pPGM = &pVCpu->pgm.s;
|
---|
3822 | RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
|
---|
3823 | RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
|
---|
3824 | # ifndef IN_RING0
|
---|
3825 | RTHCPHYS HCPhys; /* general usage. */
|
---|
3826 | # endif
|
---|
3827 | int rc;
|
---|
3828 |
|
---|
3829 | /*
|
---|
3830 | * Check that the Guest CR3 and all its mappings are correct.
|
---|
3831 | */
|
---|
3832 | AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
|
---|
3833 | ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
|
---|
3834 | false);
|
---|
3835 | # if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
|
---|
3836 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3837 | rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
|
---|
3838 | # else
|
---|
3839 | rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
|
---|
3840 | # endif
|
---|
3841 | AssertRCReturn(rc, 1);
|
---|
3842 | HCPhys = NIL_RTHCPHYS;
|
---|
3843 | rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
|
---|
3844 | AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
|
---|
3845 | # if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
|
---|
3846 | pgmGstGet32bitPDPtr(pVCpu);
|
---|
3847 | RTGCPHYS GCPhys;
|
---|
3848 | rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
|
---|
3849 | AssertRCReturn(rc, 1);
|
---|
3850 | AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
|
---|
3851 | # endif
|
---|
3852 | # endif /* !IN_RING0 */
|
---|
3853 |
|
---|
3854 | /*
|
---|
3855 | * Get and check the Shadow CR3.
|
---|
3856 | */
|
---|
3857 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
3858 | unsigned cPDEs = X86_PG_ENTRIES;
|
---|
3859 | unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
|
---|
3860 | # elif PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
3861 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
3862 | unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
|
---|
3863 | # else
|
---|
3864 | unsigned cPDEs = X86_PG_PAE_ENTRIES;
|
---|
3865 | # endif
|
---|
3866 | unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
|
---|
3867 | # elif PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
3868 | unsigned cPDEs = X86_PG_PAE_ENTRIES;
|
---|
3869 | unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
|
---|
3870 | # endif
|
---|
3871 | if (cb != ~(RTGCPTR)0)
|
---|
3872 | cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
|
---|
3873 |
|
---|
3874 | /** @todo call the other two PGMAssert*() functions. */
|
---|
3875 |
|
---|
3876 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3877 | unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
|
---|
3878 |
|
---|
3879 | for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
|
---|
3880 | {
|
---|
3881 | PPGMPOOLPAGE pShwPdpt = NULL;
|
---|
3882 | PX86PML4E pPml4eSrc;
|
---|
3883 | PX86PML4E pPml4eDst;
|
---|
3884 | RTGCPHYS GCPhysPdptSrc;
|
---|
3885 |
|
---|
3886 | pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
|
---|
3887 | pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
|
---|
3888 |
|
---|
3889 | /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
|
---|
3890 | if (!pPml4eDst->n.u1Present)
|
---|
3891 | {
|
---|
3892 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3893 | continue;
|
---|
3894 | }
|
---|
3895 |
|
---|
3896 | pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
|
---|
3897 | GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
|
---|
3898 |
|
---|
3899 | if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
|
---|
3900 | {
|
---|
3901 | AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
|
---|
3902 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3903 | cErrors++;
|
---|
3904 | continue;
|
---|
3905 | }
|
---|
3906 |
|
---|
3907 | if (GCPhysPdptSrc != pShwPdpt->GCPhys)
|
---|
3908 | {
|
---|
3909 | AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
|
---|
3910 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3911 | cErrors++;
|
---|
3912 | continue;
|
---|
3913 | }
|
---|
3914 |
|
---|
3915 | if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
|
---|
3916 | || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
|
---|
3917 | || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
|
---|
3918 | {
|
---|
3919 | AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
|
---|
3920 | GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
|
---|
3921 | cErrors++;
|
---|
3922 | continue;
|
---|
3923 | }
|
---|
3924 | # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
|
---|
3925 | {
|
---|
3926 | # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
|
---|
3927 |
|
---|
3928 | # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3929 | /*
|
---|
3930 | * Check the PDPTEs too.
|
---|
3931 | */
|
---|
3932 | unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
|
---|
3933 |
|
---|
3934 | for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
|
---|
3935 | {
|
---|
3936 | unsigned iPDSrc = 0; /* initialized to shut up gcc */
|
---|
3937 | PPGMPOOLPAGE pShwPde = NULL;
|
---|
3938 | PX86PDPE pPdpeDst;
|
---|
3939 | RTGCPHYS GCPhysPdeSrc;
|
---|
3940 | # if PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
3941 | X86PDPE PdpeSrc;
|
---|
3942 | PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
|
---|
3943 | PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
|
---|
3944 | # else
|
---|
3945 | PX86PML4E pPml4eSrcIgn;
|
---|
3946 | X86PDPE PdpeSrc;
|
---|
3947 | PX86PDPT pPdptDst;
|
---|
3948 | PX86PDPAE pPDDst;
|
---|
3949 | PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
|
---|
3950 |
|
---|
3951 | rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
|
---|
3952 | if (rc != VINF_SUCCESS)
|
---|
3953 | {
|
---|
3954 | AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
|
---|
3955 | GCPtr += 512 * _2M;
|
---|
3956 | continue; /* next PDPTE */
|
---|
3957 | }
|
---|
3958 | Assert(pPDDst);
|
---|
3959 | # endif
|
---|
3960 | Assert(iPDSrc == 0);
|
---|
3961 |
|
---|
3962 | pPdpeDst = &pPdptDst->a[iPdpt];
|
---|
3963 |
|
---|
3964 | if (!pPdpeDst->n.u1Present)
|
---|
3965 | {
|
---|
3966 | GCPtr += 512 * _2M;
|
---|
3967 | continue; /* next PDPTE */
|
---|
3968 | }
|
---|
3969 |
|
---|
3970 | pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
|
---|
3971 | GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
|
---|
3972 |
|
---|
3973 | if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
|
---|
3974 | {
|
---|
3975 | AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
|
---|
3976 | GCPtr += 512 * _2M;
|
---|
3977 | cErrors++;
|
---|
3978 | continue;
|
---|
3979 | }
|
---|
3980 |
|
---|
3981 | if (GCPhysPdeSrc != pShwPde->GCPhys)
|
---|
3982 | {
|
---|
3983 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3984 | AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
|
---|
3985 | # else
|
---|
3986 | AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
|
---|
3987 | # endif
|
---|
3988 | GCPtr += 512 * _2M;
|
---|
3989 | cErrors++;
|
---|
3990 | continue;
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 | # if PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
3994 | if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
|
---|
3995 | || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
|
---|
3996 | || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
|
---|
3997 | {
|
---|
3998 | AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
|
---|
3999 | GCPtr += 512 * _2M;
|
---|
4000 | cErrors++;
|
---|
4001 | continue;
|
---|
4002 | }
|
---|
4003 | # endif
|
---|
4004 |
|
---|
4005 | # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
|
---|
4006 | {
|
---|
4007 | # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
|
---|
4008 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4009 | GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
4010 | # if PGM_SHW_TYPE == PGM_TYPE_32BIT
|
---|
4011 | PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
|
---|
4012 | # endif
|
---|
4013 | # endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
|
---|
4014 | /*
|
---|
4015 | * Iterate the shadow page directory.
|
---|
4016 | */
|
---|
4017 | GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
|
---|
4018 | unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
|
---|
4019 |
|
---|
4020 | for (;
|
---|
4021 | iPDDst < cPDEs;
|
---|
4022 | iPDDst++, GCPtr += cIncrement)
|
---|
4023 | {
|
---|
4024 | # if PGM_SHW_TYPE == PGM_TYPE_PAE
|
---|
4025 | const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
|
---|
4026 | # else
|
---|
4027 | const SHWPDE PdeDst = pPDDst->a[iPDDst];
|
---|
4028 | # endif
|
---|
4029 | if (PdeDst.u & PGM_PDFLAGS_MAPPING)
|
---|
4030 | {
|
---|
4031 | Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
|
---|
4032 | if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
|
---|
4033 | {
|
---|
4034 | AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
|
---|
4035 | cErrors++;
|
---|
4036 | continue;
|
---|
4037 | }
|
---|
4038 | }
|
---|
4039 | else if ( (PdeDst.u & X86_PDE_P)
|
---|
4040 | || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
|
---|
4041 | )
|
---|
4042 | {
|
---|
4043 | HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
|
---|
4044 | PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
|
---|
4045 | if (!pPoolPage)
|
---|
4046 | {
|
---|
4047 | AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
|
---|
4048 | HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
|
---|
4049 | cErrors++;
|
---|
4050 | continue;
|
---|
4051 | }
|
---|
4052 | const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
|
---|
4053 |
|
---|
4054 | if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
|
---|
4055 | {
|
---|
4056 | AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
|
---|
4057 | GCPtr, (uint64_t)PdeDst.u));
|
---|
4058 | cErrors++;
|
---|
4059 | }
|
---|
4060 |
|
---|
4061 | if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
|
---|
4062 | {
|
---|
4063 | AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
|
---|
4064 | GCPtr, (uint64_t)PdeDst.u));
|
---|
4065 | cErrors++;
|
---|
4066 | }
|
---|
4067 |
|
---|
4068 | const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
|
---|
4069 | if (!PdeSrc.n.u1Present)
|
---|
4070 | {
|
---|
4071 | AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
|
---|
4072 | GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
|
---|
4073 | cErrors++;
|
---|
4074 | continue;
|
---|
4075 | }
|
---|
4076 |
|
---|
4077 | if ( !PdeSrc.b.u1Size
|
---|
4078 | || !fBigPagesSupported)
|
---|
4079 | {
|
---|
4080 | GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
|
---|
4081 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4082 | GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
|
---|
4083 | # endif
|
---|
4084 | }
|
---|
4085 | else
|
---|
4086 | {
|
---|
4087 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4088 | if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
|
---|
4089 | {
|
---|
4090 | AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
|
---|
4091 | GCPtr, (uint64_t)PdeSrc.u));
|
---|
4092 | cErrors++;
|
---|
4093 | continue;
|
---|
4094 | }
|
---|
4095 | # endif
|
---|
4096 | GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
|
---|
4097 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4098 | GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
|
---|
4099 | # endif
|
---|
4100 | }
|
---|
4101 |
|
---|
4102 | if ( pPoolPage->enmKind
|
---|
4103 | != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
|
---|
4104 | {
|
---|
4105 | AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
|
---|
4106 | pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
|
---|
4107 | cErrors++;
|
---|
4108 | }
|
---|
4109 |
|
---|
4110 | PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
4111 | if (!pPhysPage)
|
---|
4112 | {
|
---|
4113 | AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
|
---|
4114 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
4115 | cErrors++;
|
---|
4116 | continue;
|
---|
4117 | }
|
---|
4118 |
|
---|
4119 | if (GCPhysGst != pPoolPage->GCPhys)
|
---|
4120 | {
|
---|
4121 | AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
|
---|
4122 | GCPhysGst, pPoolPage->GCPhys, GCPtr));
|
---|
4123 | cErrors++;
|
---|
4124 | continue;
|
---|
4125 | }
|
---|
4126 |
|
---|
4127 | if ( !PdeSrc.b.u1Size
|
---|
4128 | || !fBigPagesSupported)
|
---|
4129 | {
|
---|
4130 | /*
|
---|
4131 | * Page Table.
|
---|
4132 | */
|
---|
4133 | const GSTPT *pPTSrc;
|
---|
4134 | rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
|
---|
4135 | if (RT_FAILURE(rc))
|
---|
4136 | {
|
---|
4137 | AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
|
---|
4138 | GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
|
---|
4139 | cErrors++;
|
---|
4140 | continue;
|
---|
4141 | }
|
---|
4142 | if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
|
---|
4143 | != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
|
---|
4144 | {
|
---|
4145 | /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
|
---|
4146 | // (This problem will go away when/if we shadow multiple CR3s.)
|
---|
4147 | AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4148 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4149 | cErrors++;
|
---|
4150 | continue;
|
---|
4151 | }
|
---|
4152 | if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
4153 | {
|
---|
4154 | AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
|
---|
4155 | GCPtr, (uint64_t)PdeDst.u));
|
---|
4156 | cErrors++;
|
---|
4157 | continue;
|
---|
4158 | }
|
---|
4159 |
|
---|
4160 | /* iterate the page table. */
|
---|
4161 | # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4162 | /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
|
---|
4163 | const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
|
---|
4164 | # else
|
---|
4165 | const unsigned offPTSrc = 0;
|
---|
4166 | # endif
|
---|
4167 | for (unsigned iPT = 0, off = 0;
|
---|
4168 | iPT < RT_ELEMENTS(pPTDst->a);
|
---|
4169 | iPT++, off += PAGE_SIZE)
|
---|
4170 | {
|
---|
4171 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
4172 |
|
---|
4173 | /* skip not-present entries. */
|
---|
4174 | if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
4175 | continue;
|
---|
4176 | Assert(PteDst.n.u1Present);
|
---|
4177 |
|
---|
4178 | const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
|
---|
4179 | if (!PteSrc.n.u1Present)
|
---|
4180 | {
|
---|
4181 | # ifdef IN_RING3
|
---|
4182 | PGMAssertHandlerAndFlagsInSync(pVM);
|
---|
4183 | PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
|
---|
4184 | # endif
|
---|
4185 | AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
|
---|
4186 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
|
---|
4187 | (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
|
---|
4188 | cErrors++;
|
---|
4189 | continue;
|
---|
4190 | }
|
---|
4191 |
|
---|
4192 | uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
|
---|
4193 | # if 1 /** @todo sync accessed bit properly... */
|
---|
4194 | fIgnoreFlags |= X86_PTE_A;
|
---|
4195 | # endif
|
---|
4196 |
|
---|
4197 | /* match the physical addresses */
|
---|
4198 | HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
|
---|
4199 | GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
|
---|
4200 |
|
---|
4201 | # ifdef IN_RING3
|
---|
4202 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
4203 | if (RT_FAILURE(rc))
|
---|
4204 | {
|
---|
4205 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4206 | {
|
---|
4207 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4208 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4209 | cErrors++;
|
---|
4210 | continue;
|
---|
4211 | }
|
---|
4212 | }
|
---|
4213 | else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
|
---|
4214 | {
|
---|
4215 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4216 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4217 | cErrors++;
|
---|
4218 | continue;
|
---|
4219 | }
|
---|
4220 | # endif
|
---|
4221 |
|
---|
4222 | pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
4223 | if (!pPhysPage)
|
---|
4224 | {
|
---|
4225 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
4226 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4227 | {
|
---|
4228 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4229 | GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4230 | cErrors++;
|
---|
4231 | continue;
|
---|
4232 | }
|
---|
4233 | # endif
|
---|
4234 | if (PteDst.n.u1Write)
|
---|
4235 | {
|
---|
4236 | AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4237 | GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4238 | cErrors++;
|
---|
4239 | }
|
---|
4240 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4241 | }
|
---|
4242 | else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
|
---|
4243 | {
|
---|
4244 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4245 | GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4246 | cErrors++;
|
---|
4247 | continue;
|
---|
4248 | }
|
---|
4249 |
|
---|
4250 | /* flags */
|
---|
4251 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
|
---|
4252 | {
|
---|
4253 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
4254 | {
|
---|
4255 | if (PteDst.n.u1Write)
|
---|
4256 | {
|
---|
4257 | AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4258 | GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4259 | cErrors++;
|
---|
4260 | continue;
|
---|
4261 | }
|
---|
4262 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4263 | }
|
---|
4264 | else
|
---|
4265 | {
|
---|
4266 | if ( PteDst.n.u1Present
|
---|
4267 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
4268 | && !PGM_PAGE_IS_MMIO(pPhysPage)
|
---|
4269 | # endif
|
---|
4270 | )
|
---|
4271 | {
|
---|
4272 | AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4273 | GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4274 | cErrors++;
|
---|
4275 | continue;
|
---|
4276 | }
|
---|
4277 | fIgnoreFlags |= X86_PTE_P;
|
---|
4278 | }
|
---|
4279 | }
|
---|
4280 | else
|
---|
4281 | {
|
---|
4282 | if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
|
---|
4283 | {
|
---|
4284 | if (PteDst.n.u1Write)
|
---|
4285 | {
|
---|
4286 | AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4287 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4288 | cErrors++;
|
---|
4289 | continue;
|
---|
4290 | }
|
---|
4291 | if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
|
---|
4292 | {
|
---|
4293 | AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4294 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4295 | cErrors++;
|
---|
4296 | continue;
|
---|
4297 | }
|
---|
4298 | if (PteDst.n.u1Dirty)
|
---|
4299 | {
|
---|
4300 | AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4301 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4302 | cErrors++;
|
---|
4303 | }
|
---|
4304 | # if 0 /** @todo sync access bit properly... */
|
---|
4305 | if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
|
---|
4306 | {
|
---|
4307 | AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4308 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4309 | cErrors++;
|
---|
4310 | }
|
---|
4311 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4312 | # else
|
---|
4313 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
4314 | # endif
|
---|
4315 | }
|
---|
4316 | else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
|
---|
4317 | {
|
---|
4318 | /* access bit emulation (not implemented). */
|
---|
4319 | if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
|
---|
4320 | {
|
---|
4321 | AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4322 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4323 | cErrors++;
|
---|
4324 | continue;
|
---|
4325 | }
|
---|
4326 | if (!PteDst.n.u1Accessed)
|
---|
4327 | {
|
---|
4328 | AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4329 | GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4330 | cErrors++;
|
---|
4331 | }
|
---|
4332 | fIgnoreFlags |= X86_PTE_P;
|
---|
4333 | }
|
---|
4334 | # ifdef DEBUG_sandervl
|
---|
4335 | fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
|
---|
4336 | # endif
|
---|
4337 | }
|
---|
4338 |
|
---|
4339 | if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
|
---|
4340 | && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
|
---|
4341 | )
|
---|
4342 | {
|
---|
4343 | AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4344 | GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
|
---|
4345 | fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
|
---|
4346 | cErrors++;
|
---|
4347 | continue;
|
---|
4348 | }
|
---|
4349 | } /* foreach PTE */
|
---|
4350 | }
|
---|
4351 | else
|
---|
4352 | {
|
---|
4353 | /*
|
---|
4354 | * Big Page.
|
---|
4355 | */
|
---|
4356 | uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
|
---|
4357 | if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
|
---|
4358 | {
|
---|
4359 | if (PdeDst.n.u1Write)
|
---|
4360 | {
|
---|
4361 | AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4362 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4363 | cErrors++;
|
---|
4364 | continue;
|
---|
4365 | }
|
---|
4366 | if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
|
---|
4367 | {
|
---|
4368 | AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4369 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4370 | cErrors++;
|
---|
4371 | continue;
|
---|
4372 | }
|
---|
4373 | # if 0 /** @todo sync access bit properly... */
|
---|
4374 | if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
|
---|
4375 | {
|
---|
4376 | AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4377 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4378 | cErrors++;
|
---|
4379 | }
|
---|
4380 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4381 | # else
|
---|
4382 | fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
|
---|
4383 | # endif
|
---|
4384 | }
|
---|
4385 | else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
|
---|
4386 | {
|
---|
4387 | /* access bit emulation (not implemented). */
|
---|
4388 | if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
|
---|
4389 | {
|
---|
4390 | AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4391 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4392 | cErrors++;
|
---|
4393 | continue;
|
---|
4394 | }
|
---|
4395 | if (!PdeDst.n.u1Accessed)
|
---|
4396 | {
|
---|
4397 | AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4398 | GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4399 | cErrors++;
|
---|
4400 | }
|
---|
4401 | fIgnoreFlags |= X86_PTE_P;
|
---|
4402 | }
|
---|
4403 |
|
---|
4404 | if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
|
---|
4405 | {
|
---|
4406 | AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
|
---|
4407 | GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
|
---|
4408 | fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
|
---|
4409 | cErrors++;
|
---|
4410 | }
|
---|
4411 |
|
---|
4412 | /* iterate the page table. */
|
---|
4413 | for (unsigned iPT = 0, off = 0;
|
---|
4414 | iPT < RT_ELEMENTS(pPTDst->a);
|
---|
4415 | iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
|
---|
4416 | {
|
---|
4417 | const SHWPTE PteDst = pPTDst->a[iPT];
|
---|
4418 |
|
---|
4419 | if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
|
---|
4420 | {
|
---|
4421 | AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4422 | GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4423 | cErrors++;
|
---|
4424 | }
|
---|
4425 |
|
---|
4426 | /* skip not-present entries. */
|
---|
4427 | if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
|
---|
4428 | continue;
|
---|
4429 |
|
---|
4430 | fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
|
---|
4431 |
|
---|
4432 | /* match the physical addresses */
|
---|
4433 | HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
|
---|
4434 |
|
---|
4435 | # ifdef IN_RING3
|
---|
4436 | rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
|
---|
4437 | if (RT_FAILURE(rc))
|
---|
4438 | {
|
---|
4439 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4440 | {
|
---|
4441 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4442 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4443 | cErrors++;
|
---|
4444 | }
|
---|
4445 | }
|
---|
4446 | else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
|
---|
4447 | {
|
---|
4448 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4449 | GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4450 | cErrors++;
|
---|
4451 | continue;
|
---|
4452 | }
|
---|
4453 | # endif
|
---|
4454 | pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
|
---|
4455 | if (!pPhysPage)
|
---|
4456 | {
|
---|
4457 | # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
|
---|
4458 | if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
|
---|
4459 | {
|
---|
4460 | AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4461 | GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4462 | cErrors++;
|
---|
4463 | continue;
|
---|
4464 | }
|
---|
4465 | # endif
|
---|
4466 | if (PteDst.n.u1Write)
|
---|
4467 | {
|
---|
4468 | AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4469 | GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4470 | cErrors++;
|
---|
4471 | }
|
---|
4472 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4473 | }
|
---|
4474 | else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
|
---|
4475 | {
|
---|
4476 | AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4477 | GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4478 | cErrors++;
|
---|
4479 | continue;
|
---|
4480 | }
|
---|
4481 |
|
---|
4482 | /* flags */
|
---|
4483 | if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
|
---|
4484 | {
|
---|
4485 | if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
|
---|
4486 | {
|
---|
4487 | if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
|
---|
4488 | {
|
---|
4489 | if (PteDst.n.u1Write)
|
---|
4490 | {
|
---|
4491 | AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4492 | GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4493 | cErrors++;
|
---|
4494 | continue;
|
---|
4495 | }
|
---|
4496 | fIgnoreFlags |= X86_PTE_RW;
|
---|
4497 | }
|
---|
4498 | }
|
---|
4499 | else
|
---|
4500 | {
|
---|
4501 | if ( PteDst.n.u1Present
|
---|
4502 | # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
|
---|
4503 | && !PGM_PAGE_IS_MMIO(pPhysPage)
|
---|
4504 | # endif
|
---|
4505 | )
|
---|
4506 | {
|
---|
4507 | AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4508 | GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4509 | cErrors++;
|
---|
4510 | continue;
|
---|
4511 | }
|
---|
4512 | fIgnoreFlags |= X86_PTE_P;
|
---|
4513 | }
|
---|
4514 | }
|
---|
4515 |
|
---|
4516 | if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
|
---|
4517 | && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
|
---|
4518 | )
|
---|
4519 | {
|
---|
4520 | AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
|
---|
4521 | GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
|
---|
4522 | fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
|
---|
4523 | cErrors++;
|
---|
4524 | continue;
|
---|
4525 | }
|
---|
4526 | } /* for each PTE */
|
---|
4527 | }
|
---|
4528 | }
|
---|
4529 | /* not present */
|
---|
4530 |
|
---|
4531 | } /* for each PDE */
|
---|
4532 |
|
---|
4533 | } /* for each PDPTE */
|
---|
4534 |
|
---|
4535 | } /* for each PML4E */
|
---|
4536 |
|
---|
4537 | # ifdef DEBUG
|
---|
4538 | if (cErrors)
|
---|
4539 | LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
|
---|
4540 | # endif
|
---|
4541 |
|
---|
4542 | #endif /* GST == 32BIT, PAE or AMD64 */
|
---|
4543 | return cErrors;
|
---|
4544 |
|
---|
4545 | #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
|
---|
4546 | }
|
---|
4547 | #endif /* VBOX_STRICT */
|
---|
4548 |
|
---|
4549 |
|
---|
4550 | /**
|
---|
4551 | * Sets up the CR3 for shadow paging
|
---|
4552 | *
|
---|
4553 | * @returns Strict VBox status code.
|
---|
4554 | * @retval VINF_SUCCESS.
|
---|
4555 | *
|
---|
4556 | * @param pVCpu The VMCPU handle.
|
---|
4557 | * @param GCPhysCR3 The physical address in the CR3 register.
|
---|
4558 | */
|
---|
4559 | PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
|
---|
4560 | {
|
---|
4561 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4562 |
|
---|
4563 | /* Update guest paging info. */
|
---|
4564 | #if PGM_GST_TYPE == PGM_TYPE_32BIT \
|
---|
4565 | || PGM_GST_TYPE == PGM_TYPE_PAE \
|
---|
4566 | || PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4567 |
|
---|
4568 | LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
|
---|
4569 |
|
---|
4570 | /*
|
---|
4571 | * Map the page CR3 points at.
|
---|
4572 | */
|
---|
4573 | RTHCPTR HCPtrGuestCR3;
|
---|
4574 | RTHCPHYS HCPhysGuestCR3;
|
---|
4575 | pgmLock(pVM);
|
---|
4576 | PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
|
---|
4577 | AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
|
---|
4578 | HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
|
---|
4579 | /** @todo this needs some reworking wrt. locking. */
|
---|
4580 | # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
|
---|
4581 | HCPtrGuestCR3 = NIL_RTHCPTR;
|
---|
4582 | int rc = VINF_SUCCESS;
|
---|
4583 | # else
|
---|
4584 | int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
|
---|
4585 | # endif
|
---|
4586 | pgmUnlock(pVM);
|
---|
4587 | if (RT_SUCCESS(rc))
|
---|
4588 | {
|
---|
4589 | rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
|
---|
4590 | if (RT_SUCCESS(rc))
|
---|
4591 | {
|
---|
4592 | # ifdef IN_RC
|
---|
4593 | PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
|
---|
4594 | # endif
|
---|
4595 | # if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4596 | pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
|
---|
4597 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4598 | pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
|
---|
4599 | # endif
|
---|
4600 | pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
|
---|
4601 |
|
---|
4602 | # elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
4603 | unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
|
---|
4604 | pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
|
---|
4605 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4606 | pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
|
---|
4607 | # endif
|
---|
4608 | pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
|
---|
4609 | LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
|
---|
4610 |
|
---|
4611 | /*
|
---|
4612 | * Map the 4 PDs too.
|
---|
4613 | */
|
---|
4614 | PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
|
---|
4615 | RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
|
---|
4616 | for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
|
---|
4617 | {
|
---|
4618 | if (pGuestPDPT->a[i].n.u1Present)
|
---|
4619 | {
|
---|
4620 | RTHCPTR HCPtr;
|
---|
4621 | RTHCPHYS HCPhys;
|
---|
4622 | RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
|
---|
4623 | pgmLock(pVM);
|
---|
4624 | PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
|
---|
4625 | AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
|
---|
4626 | HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
4627 | # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
|
---|
4628 | HCPtr = NIL_RTHCPTR;
|
---|
4629 | int rc2 = VINF_SUCCESS;
|
---|
4630 | # else
|
---|
4631 | int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
|
---|
4632 | # endif
|
---|
4633 | pgmUnlock(pVM);
|
---|
4634 | if (RT_SUCCESS(rc2))
|
---|
4635 | {
|
---|
4636 | rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
|
---|
4637 | AssertRCReturn(rc, rc);
|
---|
4638 |
|
---|
4639 | pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
|
---|
4640 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4641 | pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
|
---|
4642 | # endif
|
---|
4643 | pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
|
---|
4644 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
|
---|
4645 | # ifdef IN_RC
|
---|
4646 | PGM_INVL_PG(pVCpu, GCPtr);
|
---|
4647 | # endif
|
---|
4648 | continue;
|
---|
4649 | }
|
---|
4650 | AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
|
---|
4651 | }
|
---|
4652 |
|
---|
4653 | pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
|
---|
4654 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4655 | pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
|
---|
4656 | # endif
|
---|
4657 | pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
|
---|
4658 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
|
---|
4659 | # ifdef IN_RC
|
---|
4660 | PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
|
---|
4661 | # endif
|
---|
4662 | }
|
---|
4663 |
|
---|
4664 | # elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4665 | pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
|
---|
4666 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4667 | pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
|
---|
4668 | # endif
|
---|
4669 | # endif
|
---|
4670 | }
|
---|
4671 | else
|
---|
4672 | AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
|
---|
4673 | }
|
---|
4674 | else
|
---|
4675 | AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
|
---|
4676 |
|
---|
4677 | #else /* prot/real stub */
|
---|
4678 | int rc = VINF_SUCCESS;
|
---|
4679 | #endif
|
---|
4680 |
|
---|
4681 | /* Update shadow paging info for guest modes with paging (32, pae, 64). */
|
---|
4682 | # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|
---|
4683 | || PGM_SHW_TYPE == PGM_TYPE_PAE \
|
---|
4684 | || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
|
---|
4685 | && ( PGM_GST_TYPE != PGM_TYPE_REAL \
|
---|
4686 | && PGM_GST_TYPE != PGM_TYPE_PROT))
|
---|
4687 |
|
---|
4688 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
4689 |
|
---|
4690 | /*
|
---|
4691 | * Update the shadow root page as well since that's not fixed.
|
---|
4692 | */
|
---|
4693 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
4694 | PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
|
---|
4695 | uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
|
---|
4696 | uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
|
---|
4697 | PPGMPOOLPAGE pNewShwPageCR3;
|
---|
4698 |
|
---|
4699 | pgmLock(pVM);
|
---|
4700 |
|
---|
4701 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
4702 | if (pPool->cDirtyPages)
|
---|
4703 | pgmPoolResetDirtyPages(pVM);
|
---|
4704 | # endif
|
---|
4705 |
|
---|
4706 | Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
|
---|
4707 | rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
|
---|
4708 | AssertFatalRC(rc);
|
---|
4709 | rc = VINF_SUCCESS;
|
---|
4710 |
|
---|
4711 | # ifdef IN_RC
|
---|
4712 | /*
|
---|
4713 | * WARNING! We can't deal with jumps to ring 3 in the code below as the
|
---|
4714 | * state will be inconsistent! Flush important things now while
|
---|
4715 | * we still can and then make sure there are no ring-3 calls.
|
---|
4716 | */
|
---|
4717 | REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
|
---|
4718 | VMMRZCallRing3Disable(pVCpu);
|
---|
4719 | # endif
|
---|
4720 |
|
---|
4721 | pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
|
---|
4722 | pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
|
---|
4723 | pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
|
---|
4724 | # ifdef IN_RING0
|
---|
4725 | pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4726 | pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4727 | # elif defined(IN_RC)
|
---|
4728 | pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4729 | pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4730 | # else
|
---|
4731 | pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4732 | pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4733 | # endif
|
---|
4734 |
|
---|
4735 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4736 | /*
|
---|
4737 | * Apply all hypervisor mappings to the new CR3.
|
---|
4738 | * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
|
---|
4739 | * make sure we check for conflicts in the new CR3 root.
|
---|
4740 | */
|
---|
4741 | # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
|
---|
4742 | Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
4743 | # endif
|
---|
4744 | rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
|
---|
4745 | AssertRCReturn(rc, rc);
|
---|
4746 | # endif
|
---|
4747 |
|
---|
4748 | /* Set the current hypervisor CR3. */
|
---|
4749 | CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
|
---|
4750 | SELMShadowCR3Changed(pVM, pVCpu);
|
---|
4751 |
|
---|
4752 | # ifdef IN_RC
|
---|
4753 | /* NOTE: The state is consistent again. */
|
---|
4754 | VMMRZCallRing3Enable(pVCpu);
|
---|
4755 | # endif
|
---|
4756 |
|
---|
4757 | /* Clean up the old CR3 root. */
|
---|
4758 | if ( pOldShwPageCR3
|
---|
4759 | && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
|
---|
4760 | {
|
---|
4761 | Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
|
---|
4762 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4763 | /* Remove the hypervisor mappings from the shadow page table. */
|
---|
4764 | pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
|
---|
4765 | # endif
|
---|
4766 | /* Mark the page as unlocked; allow flushing again. */
|
---|
4767 | pgmPoolUnlockPage(pPool, pOldShwPageCR3);
|
---|
4768 |
|
---|
4769 | pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
|
---|
4770 | }
|
---|
4771 | pgmUnlock(pVM);
|
---|
4772 | # endif
|
---|
4773 |
|
---|
4774 | return rc;
|
---|
4775 | }
|
---|
4776 |
|
---|
4777 | /**
|
---|
4778 | * Unmaps the shadow CR3.
|
---|
4779 | *
|
---|
4780 | * @returns VBox status, no specials.
|
---|
4781 | * @param pVCpu The VMCPU handle.
|
---|
4782 | */
|
---|
4783 | PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
|
---|
4784 | {
|
---|
4785 | LogFlow(("UnmapCR3\n"));
|
---|
4786 |
|
---|
4787 | int rc = VINF_SUCCESS;
|
---|
4788 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4789 |
|
---|
4790 | /*
|
---|
4791 | * Update guest paging info.
|
---|
4792 | */
|
---|
4793 | #if PGM_GST_TYPE == PGM_TYPE_32BIT
|
---|
4794 | pVCpu->pgm.s.pGst32BitPdR3 = 0;
|
---|
4795 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4796 | pVCpu->pgm.s.pGst32BitPdR0 = 0;
|
---|
4797 | # endif
|
---|
4798 | pVCpu->pgm.s.pGst32BitPdRC = 0;
|
---|
4799 |
|
---|
4800 | #elif PGM_GST_TYPE == PGM_TYPE_PAE
|
---|
4801 | pVCpu->pgm.s.pGstPaePdptR3 = 0;
|
---|
4802 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4803 | pVCpu->pgm.s.pGstPaePdptR0 = 0;
|
---|
4804 | # endif
|
---|
4805 | pVCpu->pgm.s.pGstPaePdptRC = 0;
|
---|
4806 | for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
|
---|
4807 | {
|
---|
4808 | pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
|
---|
4809 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4810 | pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
|
---|
4811 | # endif
|
---|
4812 | pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
|
---|
4813 | pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
|
---|
4814 | }
|
---|
4815 |
|
---|
4816 | #elif PGM_GST_TYPE == PGM_TYPE_AMD64
|
---|
4817 | pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
|
---|
4818 | # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4819 | pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
|
---|
4820 | # endif
|
---|
4821 |
|
---|
4822 | #else /* prot/real mode stub */
|
---|
4823 | /* nothing to do */
|
---|
4824 | #endif
|
---|
4825 |
|
---|
4826 | #if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
|
---|
4827 | /*
|
---|
4828 | * Update shadow paging info.
|
---|
4829 | */
|
---|
4830 | # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
|
---|
4831 | || PGM_SHW_TYPE == PGM_TYPE_PAE \
|
---|
4832 | || PGM_SHW_TYPE == PGM_TYPE_AMD64))
|
---|
4833 |
|
---|
4834 | # if PGM_GST_TYPE != PGM_TYPE_REAL
|
---|
4835 | Assert(!pVM->pgm.s.fNestedPaging);
|
---|
4836 | # endif
|
---|
4837 |
|
---|
4838 | pgmLock(pVM);
|
---|
4839 |
|
---|
4840 | # ifndef PGM_WITHOUT_MAPPINGS
|
---|
4841 | if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
|
---|
4842 | /* Remove the hypervisor mappings from the shadow page table. */
|
---|
4843 | pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4844 | # endif
|
---|
4845 |
|
---|
4846 | if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
|
---|
4847 | {
|
---|
4848 | PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
|
---|
4849 |
|
---|
4850 | Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
|
---|
4851 |
|
---|
4852 | # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
4853 | if (pPool->cDirtyPages)
|
---|
4854 | pgmPoolResetDirtyPages(pVM);
|
---|
4855 | # endif
|
---|
4856 |
|
---|
4857 | /* Mark the page as unlocked; allow flushing again. */
|
---|
4858 | pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
|
---|
4859 |
|
---|
4860 | pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
|
---|
4861 | pVCpu->pgm.s.pShwPageCR3R3 = 0;
|
---|
4862 | pVCpu->pgm.s.pShwPageCR3R0 = 0;
|
---|
4863 | pVCpu->pgm.s.pShwPageCR3RC = 0;
|
---|
4864 | pVCpu->pgm.s.iShwUser = 0;
|
---|
4865 | pVCpu->pgm.s.iShwUserTable = 0;
|
---|
4866 | }
|
---|
4867 | pgmUnlock(pVM);
|
---|
4868 | # endif
|
---|
4869 | #endif /* !IN_RC*/
|
---|
4870 |
|
---|
4871 | return rc;
|
---|
4872 | }
|
---|