VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 31141

Last change on this file since 31141 was 31141, checked in by vboxsync, 14 years ago

PGM: If we get to the end of Trap0eHandler it doesn't mean it is a guest fault, but that RT_FAILURE(rc). ASSUMING this always means that it is time for a guru meditation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 197.9 KB
Line 
1/* $Id: PGMAllBth.h 31141 2010-07-27 13:39:34Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
122 return VINF_EM_RAW_GUEST_TRAP;
123}
124# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
125
126
127/**
128 * Deal with a guest page fault.
129 *
130 * @returns Strict VBox status code.
131 *
132 * @param pVCpu The current CPU.
133 * @param uErr The error code.
134 * @param pRegFrame The register frame.
135 * @param pvFault The fault address.
136 * @param pPage The guest page at @a pvFault.
137 * @param pGstWalk The guest page table walk result.
138 */
139static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
140# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
141 RTGCPTR pvFault, PPGMPAGE pPage, PGSTPTWALK pGstWalk)
142# else
143 RTGCPTR pvFault, PPGMPAGE pPage)
144# endif
145{
146# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A};
148#endif
149 PVM pVM = pVCpu->CTX_SUFF(pVM);
150 int rc;
151
152 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
153 {
154 /*
155 * Physical page access handler.
156 */
157# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
158 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
159# else
160 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
161# endif
162 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
163 if (pCur)
164 {
165# ifdef PGM_SYNC_N_PAGES
166 /*
167 * If the region is write protected and we got a page not present fault, then sync
168 * the pages. If the fault was caused by a read, then restart the instruction.
169 * In case of write access continue to the GC write handler.
170 *
171 * ASSUMES that there is only one handler per page or that they have similar write properties.
172 */
173 if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
174 && !(uErr & X86_TRAP_PF_P))
175 {
176# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
177 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
178# else
179 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
180# endif
181 if ( RT_FAILURE(rc)
182 || !(uErr & X86_TRAP_PF_RW)
183 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
184 {
185 AssertRC(rc);
186 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
187 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
188 return rc;
189 }
190 }
191# endif
192
193 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
194 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
195 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
196 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
197
198# if defined(IN_RC) || defined(IN_RING0) /** @todo remove this */
199 if (pCur->CTX_SUFF(pfnHandler))
200 {
201 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
202# ifdef IN_RING0
203 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
204# else
205 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
206# endif
207 bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler));
208 void *pvUser = pCur->CTX_SUFF(pvUser);
209
210 STAM_PROFILE_START(&pCur->Stat, h);
211 if (fLeaveLock)
212 pgmUnlock(pVM); /** @todo: Not entirely safe. */
213
214 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
215 if (fLeaveLock)
216 pgmLock(pVM);
217# ifdef VBOX_WITH_STATISTICS
218 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
219 if (pCur)
220 STAM_PROFILE_STOP(&pCur->Stat, h);
221# else
222 pCur = NULL; /* might be invalid by now. */
223# endif
224
225 }
226 else
227# endif /* IN_RC || IN_RING0 */
228 rc = VINF_EM_RAW_EMULATE_INSTR;
229
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysical);
231 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
232 return rc;
233 }
234 }
235# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
236 else
237 {
238# ifdef PGM_SYNC_N_PAGES
239 /*
240 * If the region is write protected and we got a page not present fault, then sync
241 * the pages. If the fault was caused by a read, then restart the instruction.
242 * In case of write access continue to the GC write handler.
243 */
244 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
245 && !(uErr & X86_TRAP_PF_P))
246 {
247 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
248 if ( RT_FAILURE(rc)
249 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
250 || !(uErr & X86_TRAP_PF_RW))
251 {
252 AssertRC(rc);
253 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
254 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
255 return rc;
256 }
257 }
258# endif
259 /*
260 * Ok, it's an virtual page access handler.
261 *
262 * Since it's faster to search by address, we'll do that first
263 * and then retry by GCPhys if that fails.
264 */
265 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
266 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
267 * out of sync, because the page was changed without us noticing it (not-present -> present
268 * without invlpg or mov cr3, xxx).
269 */
270 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
271 if (pCur)
272 {
273 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
274 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
275 || !(uErr & X86_TRAP_PF_P)
276 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
277 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
278 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
279
280 if ( pvFault - pCur->Core.Key < pCur->cb
281 && ( uErr & X86_TRAP_PF_RW
282 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
283 {
284# ifdef IN_RC
285 STAM_PROFILE_START(&pCur->Stat, h);
286 pgmUnlock(pVM);
287 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
288 pgmLock(pVM);
289 STAM_PROFILE_STOP(&pCur->Stat, h);
290# else
291 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
292# endif
293 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
294 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
295 return rc;
296 }
297 /* Unhandled part of a monitored page */
298 }
299 else
300 {
301 /* Check by physical address. */
302 unsigned iPage;
303 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
304 Assert(RT_SUCCESS(rc) || !pCur);
305 if ( pCur
306 && ( uErr & X86_TRAP_PF_RW
307 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
308 {
309 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
310# ifdef IN_RC
311 RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK);
312 Assert(off < pCur->cb);
313 STAM_PROFILE_START(&pCur->Stat, h);
314 pgmUnlock(pVM);
315 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off);
316 pgmLock(pVM);
317 STAM_PROFILE_STOP(&pCur->Stat, h);
318# else
319 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
320# endif
321 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
322 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
323 return rc;
324 }
325 }
326 }
327# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
328
329 /*
330 * There is a handled area of the page, but this fault doesn't belong to it.
331 * We must emulate the instruction.
332 *
333 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
334 * we first check if this was a page-not-present fault for a page with only
335 * write access handlers. Restart the instruction if it wasn't a write access.
336 */
337 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
338
339 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
340 && !(uErr & X86_TRAP_PF_P))
341 {
342# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
343 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
344# else
345 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
346# endif
347 if ( RT_FAILURE(rc)
348 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
349 || !(uErr & X86_TRAP_PF_RW))
350 {
351 AssertRC(rc);
352 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
353 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
354 return rc;
355 }
356 }
357
358 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
359 * It's writing to an unhandled part of the LDT page several million times.
360 */
361 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
362 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
363 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
364 return rc;
365} /* if any kind of handler */
366
367
368/**
369 * #PF Handler for raw-mode guest execution.
370 *
371 * @returns VBox status code (appropriate for trap handling and GC return).
372 *
373 * @param pVCpu VMCPU Handle.
374 * @param uErr The trap error code.
375 * @param pRegFrame Trap register frame.
376 * @param pvFault The fault address.
377 * @param pfLockTaken PGM lock taken here or not (out)
378 */
379PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
380{
381 PVM pVM = pVCpu->CTX_SUFF(pVM);
382
383 *pfLockTaken = false;
384
385# if defined(IN_RC) && defined(VBOX_STRICT)
386 PGMDynCheckLocks(pVM);
387# endif
388
389# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
390 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
391 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
392 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
393 int rc;
394
395# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
396 /*
397 * Walk the guest page translation tables and check if it's a guest fault.
398 */
399 GSTPTWALK GstWalk;
400 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
401 if (RT_FAILURE_NP(rc))
402 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
403
404 /* assert some GstWalk sanity. */
405# if PGM_GST_TYPE == PGM_TYPE_AMD64
406 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
407# endif
408# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
409 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
410# endif
411 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
412 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
413 Assert(GstWalk.Core.fSucceeded);
414
415 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
416 {
417 if ( ( (uErr & X86_TRAP_PF_RW)
418 && !GstWalk.Core.fEffectiveRW
419 && ( (uErr & X86_TRAP_PF_US)
420 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
421 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
422 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
423 )
424 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
425 }
426# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
427
428# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
429 /*
430 * If it is a reserved bit fault we know that it is an MMIO or access
431 * handler related fault and can skip the dirty page stuff below.
432 */
433 if (uErr & X86_TRAP_PF_RSVD)
434 {
435 Assert(uErr & X86_TRAP_PF_P);
436 PPGMPAGE pPage;
437/** @todo Only all physical access handlers here, so optimize further. */
438# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
439 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
440 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
441 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
442 &GstWalk));
443# else
444 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
445 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
446 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage));
447# endif
448 }
449# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
450
451# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
452 /*
453 * Set the accessed and dirty flags.
454 */
455# if PGM_GST_TYPE == PGM_TYPE_AMD64
456 GstWalk.Pml4e.u |= X86_PML4E_A;
457 GstWalk.pPml4e->u |= X86_PML4E_A;
458 GstWalk.Pdpe.u |= X86_PDPE_A;
459 GstWalk.pPdpe->u |= X86_PDPE_A;
460# endif
461 if (GstWalk.Core.fBigPage)
462 {
463 Assert(GstWalk.Pde.b.u1Size);
464 if (uErr & X86_TRAP_PF_RW)
465 {
466 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
467 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
468 }
469 else
470 {
471 GstWalk.Pde.u |= X86_PDE4M_A;
472 GstWalk.pPde->u |= X86_PDE4M_A;
473 }
474 }
475 else
476 {
477 Assert(!GstWalk.Pde.b.u1Size);
478 GstWalk.Pde.u |= X86_PDE_A;
479 GstWalk.pPde->u |= X86_PDE_A;
480 if (uErr & X86_TRAP_PF_RW)
481 {
482# ifdef VBOX_WITH_STATISTICS
483 if (!GstWalk.Pte.n.u1Dirty)
484 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
485 else
486 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
487# endif
488 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
489 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
490 }
491 else
492 {
493 GstWalk.Pte.u |= X86_PTE_A;
494 GstWalk.pPte->u |= X86_PTE_A;
495 }
496 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
497 }
498 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
499 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
500# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
501 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
502# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
503
504 /* Take the big lock now. */
505 *pfLockTaken = true;
506 pgmLock(pVM);
507
508 /*
509 * Fetch the guest PDE, PDPE and PML4E.
510 */
511# if PGM_SHW_TYPE == PGM_TYPE_32BIT
512 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
513 PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
514
515# elif PGM_SHW_TYPE == PGM_TYPE_PAE
516 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
517 PX86PDPAE pPDDst;
518# if PGM_GST_TYPE == PGM_TYPE_PAE
519 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
520# else
521 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
522# endif
523 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
524
525# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
526 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
527 PX86PDPAE pPDDst;
528# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
529 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
530 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
531# else
532 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
533# endif
534 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
535
536# elif PGM_SHW_TYPE == PGM_TYPE_EPT
537 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
538 PEPTPD pPDDst;
539 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
540 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
541# endif
542 Assert(pPDDst);
543
544# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
545 /*
546 * Dirty page handling.
547 *
548 * If we successfully correct the write protection fault due to dirty bit
549 * tracking, then return immediately.
550 */
551 if (uErr & X86_TRAP_PF_RW) /* write fault? */
552 {
553 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
554 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
555 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
556 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
557 {
558 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
559 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
560 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
561 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
562 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
563 return VINF_SUCCESS;
564 }
565 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
566 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
567 }
568
569# if 0 /* rarely useful; leave for debugging. */
570 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
571# endif
572# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
573
574 /*
575 * A common case is the not-present error caused by lazy page table syncing.
576 *
577 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
578 * here so we can safely assume that the shadow PT is present when calling
579 * SyncPage later.
580 *
581 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
582 * of mapping conflict and defer to SyncCR3 in R3.
583 * (Again, we do NOT support access handlers for non-present guest pages.)
584 *
585 */
586# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
587 Assert(GstWalk.Pde.n.u1Present);
588# endif
589 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
590 && !pPDDst->a[iPDDst].n.u1Present)
591 {
592 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
593# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
594 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
595 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
596# else
597 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
598 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
599# endif
600 if (RT_SUCCESS(rc))
601 return rc;
602 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
603 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
604 return VINF_PGM_SYNC_CR3;
605 }
606
607# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
608 /*
609 * Check if this address is within any of our mappings.
610 *
611 * This is *very* fast and it's gonna save us a bit of effort below and prevent
612 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
613 * (BTW, it's impossible to have physical access handlers in a mapping.)
614 */
615 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
616 {
617 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
618 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
619 {
620 if (pvFault < pMapping->GCPtr)
621 break;
622 if (pvFault - pMapping->GCPtr < pMapping->cb)
623 {
624 /*
625 * The first thing we check is if we've got an undetected conflict.
626 */
627 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
628 {
629 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
630 while (iPT-- > 0)
631 if (GstWalk.pPde[iPT].n.u1Present)
632 {
633 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
634 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
635 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
636 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
637 return VINF_PGM_SYNC_CR3;
638 }
639 }
640
641 /*
642 * Check if the fault address is in a virtual page access handler range.
643 */
644 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
645 if ( pCur
646 && pvFault - pCur->Core.Key < pCur->cb
647 && uErr & X86_TRAP_PF_RW)
648 {
649# ifdef IN_RC
650 STAM_PROFILE_START(&pCur->Stat, h);
651 pgmUnlock(pVM);
652 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
653 pgmLock(pVM);
654 STAM_PROFILE_STOP(&pCur->Stat, h);
655# else
656 AssertFailed();
657 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
658# endif
659 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
660 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
661 return rc;
662 }
663
664 /*
665 * Pretend we're not here and let the guest handle the trap.
666 */
667 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
668 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
669 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
670 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
671 return VINF_EM_RAW_GUEST_TRAP;
672 }
673 }
674 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
675# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
676
677 /*
678 * Check if this fault address is flagged for special treatment,
679 * which means we'll have to figure out the physical address and
680 * check flags associated with it.
681 *
682 * ASSUME that we can limit any special access handling to pages
683 * in page tables which the guest believes to be present.
684 */
685# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
686 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
687# else
688 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
689# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
690 PPGMPAGE pPage;
691 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
692 if (RT_FAILURE(rc))
693 {
694 /*
695 * When the guest accesses invalid physical memory (e.g. probing
696 * of RAM or accessing a remapped MMIO range), then we'll fall
697 * back to the recompiler to emulate the instruction.
698 */
699 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
700 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
701 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
702 return VINF_EM_RAW_EMULATE_INSTR;
703 }
704
705 /*
706 * Any handlers for this page?
707 */
708 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
709# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
710 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, &GstWalk));
711# else
712 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage));
713# endif
714
715 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
716
717# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
718 if (uErr & X86_TRAP_PF_P)
719 {
720 /*
721 * The page isn't marked, but it might still be monitored by a virtual page access handler.
722 * (ASSUMES no temporary disabling of virtual handlers.)
723 */
724 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
725 * we should correct both the shadow page table and physical memory flags, and not only check for
726 * accesses within the handler region but for access to pages with virtual handlers. */
727 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
728 if (pCur)
729 {
730 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
731 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
732 || !(uErr & X86_TRAP_PF_P)
733 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
734 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
735
736 if ( pvFault - pCur->Core.Key < pCur->cb
737 && ( uErr & X86_TRAP_PF_RW
738 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
739 {
740# ifdef IN_RC
741 STAM_PROFILE_START(&pCur->Stat, h);
742 pgmUnlock(pVM);
743 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
744 pgmLock(pVM);
745 STAM_PROFILE_STOP(&pCur->Stat, h);
746# else
747 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
748# endif
749 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
750 return rc;
751 }
752 }
753 }
754# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
755
756 /*
757 * We are here only if page is present in Guest page tables and
758 * trap is not handled by our handlers.
759 *
760 * Check it for page out-of-sync situation.
761 */
762 if (!(uErr & X86_TRAP_PF_P))
763 {
764 /*
765 * Page is not present in our page tables. Try to sync it!
766 */
767 if (uErr & X86_TRAP_PF_US)
768 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
769 else /* supervisor */
770 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
771
772 if (PGM_PAGE_IS_BALLOONED(pPage))
773 {
774 /* Emulate reads from ballooned pages as they are not present in
775 our shadow page tables. (Required for e.g. Solaris guests; soft
776 ecc, random nr generator.) */
777 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
778 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
779 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
780 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
781 return rc;
782 }
783
784# if defined(LOG_ENABLED) && !defined(IN_RING0)
785 RTGCPHYS GCPhys2;
786 uint64_t fPageGst2;
787 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
788# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
789 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
790 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
791# else
792 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
793 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
794# endif
795# endif /* LOG_ENABLED */
796
797# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
798 if ( !GstWalk.Core.fEffectiveUS
799 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
800 {
801 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
802 if ( pvFault == (RTGCPTR)pRegFrame->eip
803 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
804# ifdef CSAM_DETECT_NEW_CODE_PAGES
805 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
806 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
807# endif /* CSAM_DETECT_NEW_CODE_PAGES */
808 )
809 {
810 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
811 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
812 if (rc != VINF_SUCCESS)
813 {
814 /*
815 * CSAM needs to perform a job in ring 3.
816 *
817 * Sync the page before going to the host context; otherwise we'll end up in a loop if
818 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
819 */
820 LogFlow(("CSAM ring 3 job\n"));
821 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
822 AssertRC(rc2);
823
824 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
825 return rc;
826 }
827 }
828# ifdef CSAM_DETECT_NEW_CODE_PAGES
829 else if ( uErr == X86_TRAP_PF_RW
830 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
831 && pRegFrame->ecx < 0x10000)
832 {
833 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
834 * to detect loading of new code pages.
835 */
836
837 /*
838 * Decode the instruction.
839 */
840 RTGCPTR PC;
841 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
842 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
843 if (rc == VINF_SUCCESS)
844 {
845 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
846 uint32_t cbOp;
847 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
848
849 /* For now we'll restrict this to rep movsw/d instructions */
850 if ( rc == VINF_SUCCESS
851 && pDis->pCurInstr->opcode == OP_MOVSWD
852 && (pDis->prefix & PREFIX_REP))
853 {
854 CSAMMarkPossibleCodePage(pVM, pvFault);
855 }
856 }
857 }
858# endif /* CSAM_DETECT_NEW_CODE_PAGES */
859
860 /*
861 * Mark this page as safe.
862 */
863 /** @todo not correct for pages that contain both code and data!! */
864 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
865 CSAMMarkPage(pVM, pvFault, true);
866 }
867# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
868# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
869 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
870# else
871 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
872# endif
873 if (RT_SUCCESS(rc))
874 {
875 /* The page was successfully synced, return to the guest. */
876 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
877 return VINF_SUCCESS;
878 }
879 }
880 else /* uErr & X86_TRAP_PF_P: */
881 {
882 /*
883 * Write protected pages are made writable when the guest makes the
884 * first write to it. This happens for pages that are shared, write
885 * monitored or not yet allocated.
886 *
887 * We may also end up here when CR0.WP=0 in the guest.
888 *
889 * Also, a side effect of not flushing global PDEs are out of sync
890 * pages due to physical monitored regions, that are no longer valid.
891 * Assume for now it only applies to the read/write flag.
892 */
893 if (uErr & X86_TRAP_PF_RW)
894 {
895 /*
896 * Check if it is a read-only page.
897 */
898 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
899 {
900 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
901 Assert(!PGM_PAGE_IS_ZERO(pPage));
902 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
903 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
904
905 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
906 if (rc != VINF_SUCCESS)
907 {
908 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
909 return rc;
910 }
911 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
912 return VINF_EM_NO_MEMORY;
913 }
914
915# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
916 /*
917 * Check to see if we need to emulate the instruction if CR0.WP=0.
918 */
919 if ( !GstWalk.Core.fEffectiveRW
920 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
921 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
922 {
923 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
924 rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
925 if (RT_SUCCESS(rc))
926 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
927 else
928 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
929 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
930 return rc;
931 }
932# endif
933 /// @todo count the above case; else
934 if (uErr & X86_TRAP_PF_US)
935 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
936 else /* supervisor */
937 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
938
939 /*
940 * Sync the page.
941 *
942 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
943 * page is not present, which is not true in this case.
944 */
945# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
946 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
947# else
948 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
949# endif
950 if (RT_SUCCESS(rc))
951 {
952 /*
953 * Page was successfully synced, return to guest but invalidate
954 * the TLB first as the page is very likely to be in it.
955 */
956# if PGM_SHW_TYPE == PGM_TYPE_EPT
957 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
958# else
959 PGM_INVL_PG(pVCpu, pvFault);
960# endif
961# ifdef VBOX_STRICT
962 RTGCPHYS GCPhys2;
963 uint64_t fPageGst;
964 if (!pVM->pgm.s.fNestedPaging)
965 {
966 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
967 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
968 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
969 }
970 uint64_t fPageShw;
971 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
972 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
973# endif /* VBOX_STRICT */
974 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
975 return VINF_SUCCESS;
976 }
977 }
978 /** @todo else: WTF are we here? */
979
980# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
981 /*
982 * Check for VMM page flags vs. Guest page flags consistency.
983 * Currently only for debug purposes.
984 */
985 if (RT_SUCCESS(rc))
986 {
987 /* Get guest page flags. */
988 uint64_t fPageGst;
989 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
990 if (RT_SUCCESS(rc))
991 {
992 uint64_t fPageShw;
993 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
994
995 /*
996 * Compare page flags.
997 * Note: we have AVL, A, D bits desynched.
998 */
999 AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1000 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1001 }
1002 else
1003 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1004 }
1005 else
1006 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1007# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1008 }
1009
1010
1011 /*
1012 * If we get here it is because something failed above, i.e. most like guru
1013 * meditiation time.
1014 */
1015 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1016 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1017 return rc;
1018
1019# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1020 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1021 return VERR_INTERNAL_ERROR;
1022# endif
1023}
1024#endif /* !IN_RING3 */
1025
1026
1027/**
1028 * Emulation of the invlpg instruction.
1029 *
1030 *
1031 * @returns VBox status code.
1032 *
1033 * @param pVCpu The VMCPU handle.
1034 * @param GCPtrPage Page to invalidate.
1035 *
1036 * @remark ASSUMES that the guest is updating before invalidating. This order
1037 * isn't required by the CPU, so this is speculative and could cause
1038 * trouble.
1039 * @remark No TLB shootdown is done on any other VCPU as we assume that
1040 * invlpg emulation is the *only* reason for calling this function.
1041 * (The guest has to shoot down TLB entries on other CPUs itself)
1042 * Currently true, but keep in mind!
1043 *
1044 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1045 */
1046PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1047{
1048#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1049 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1050 && PGM_SHW_TYPE != PGM_TYPE_EPT
1051 int rc;
1052 PVM pVM = pVCpu->CTX_SUFF(pVM);
1053 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1054
1055 Assert(PGMIsLockOwner(pVM));
1056
1057 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1058
1059# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1060 if (pPool->cDirtyPages)
1061 pgmPoolResetDirtyPages(pVM);
1062# endif
1063
1064 /*
1065 * Get the shadow PD entry and skip out if this PD isn't present.
1066 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1067 */
1068# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1069 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1070 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1071
1072 /* Fetch the pgm pool shadow descriptor. */
1073 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1074 Assert(pShwPde);
1075
1076# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1077 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1078 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
1079
1080 /* If the shadow PDPE isn't present, then skip the invalidate. */
1081 if (!pPdptDst->a[iPdpt].n.u1Present)
1082 {
1083 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1084 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1085 return VINF_SUCCESS;
1086 }
1087
1088 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1089 PPGMPOOLPAGE pShwPde = NULL;
1090 PX86PDPAE pPDDst;
1091
1092 /* Fetch the pgm pool shadow descriptor. */
1093 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1094 AssertRCSuccessReturn(rc, rc);
1095 Assert(pShwPde);
1096
1097 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1098 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1099
1100# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1101 /* PML4 */
1102 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1103 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1104 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1105 PX86PDPAE pPDDst;
1106 PX86PDPT pPdptDst;
1107 PX86PML4E pPml4eDst;
1108 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1109 if (rc != VINF_SUCCESS)
1110 {
1111 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1112 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1113 return VINF_SUCCESS;
1114 }
1115 Assert(pPDDst);
1116
1117 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1118 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1119
1120 if (!pPdpeDst->n.u1Present)
1121 {
1122 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1123 return VINF_SUCCESS;
1124 }
1125
1126 /* Fetch the pgm pool shadow descriptor. */
1127 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1128 Assert(pShwPde);
1129
1130# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1131
1132 const SHWPDE PdeDst = *pPdeDst;
1133 if (!PdeDst.n.u1Present)
1134 {
1135 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1136 return VINF_SUCCESS;
1137 }
1138
1139# if defined(IN_RC)
1140 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1141 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1142# endif
1143
1144 /*
1145 * Get the guest PD entry and calc big page.
1146 */
1147# if PGM_GST_TYPE == PGM_TYPE_32BIT
1148 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1149 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1150 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1151# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1152 unsigned iPDSrc = 0;
1153# if PGM_GST_TYPE == PGM_TYPE_PAE
1154 X86PDPE PdpeSrcIgn;
1155 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1156# else /* AMD64 */
1157 PX86PML4E pPml4eSrcIgn;
1158 X86PDPE PdpeSrcIgn;
1159 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1160# endif
1161 GSTPDE PdeSrc;
1162
1163 if (pPDSrc)
1164 PdeSrc = pPDSrc->a[iPDSrc];
1165 else
1166 PdeSrc.u = 0;
1167# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1168 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1169
1170# ifdef IN_RING3
1171 /*
1172 * If a CR3 Sync is pending we may ignore the invalidate page operation
1173 * depending on the kind of sync and if it's a global page or not.
1174 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1175 */
1176# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1177 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1178 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1179 && fIsBigPage
1180 && PdeSrc.b.u1Global
1181 )
1182 )
1183# else
1184 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1185# endif
1186 {
1187 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1188 return VINF_SUCCESS;
1189 }
1190# endif /* IN_RING3 */
1191
1192 /*
1193 * Deal with the Guest PDE.
1194 */
1195 rc = VINF_SUCCESS;
1196 if (PdeSrc.n.u1Present)
1197 {
1198 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1199 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1200# ifndef PGM_WITHOUT_MAPPING
1201 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1202 {
1203 /*
1204 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1205 */
1206 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1207 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1208 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1209 }
1210 else
1211# endif /* !PGM_WITHOUT_MAPPING */
1212 if (!fIsBigPage)
1213 {
1214 /*
1215 * 4KB - page.
1216 */
1217 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1218 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1219
1220# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1221 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1222 if (pShwPage->cModifications)
1223 pShwPage->cModifications = 1;
1224# endif
1225
1226# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1227 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1228 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1229# endif
1230 if (pShwPage->GCPhys == GCPhys)
1231 {
1232# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1233 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1234 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1235 if (pPT->a[iPTEDst].n.u1Present)
1236 {
1237 /* This is very unlikely with caching/monitoring enabled. */
1238 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1239 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1240 }
1241# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1242 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1243 if (RT_SUCCESS(rc))
1244 rc = VINF_SUCCESS;
1245# endif
1246 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1247 PGM_INVL_PG(pVCpu, GCPtrPage);
1248 }
1249 else
1250 {
1251 /*
1252 * The page table address changed.
1253 */
1254 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1255 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1256 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1257 ASMAtomicWriteSize(pPdeDst, 0);
1258 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1259 PGM_INVL_VCPU_TLBS(pVCpu);
1260 }
1261 }
1262 else
1263 {
1264 /*
1265 * 2/4MB - page.
1266 */
1267 /* Before freeing the page, check if anything really changed. */
1268 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1269 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
1270# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1271 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1272 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1273# endif
1274 if ( pShwPage->GCPhys == GCPhys
1275 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1276 {
1277 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1278 /** @todo PAT */
1279 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1280 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1281 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1282 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1283 {
1284 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1285 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1286# if defined(IN_RC)
1287 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1288 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1289# endif
1290 return VINF_SUCCESS;
1291 }
1292 }
1293
1294 /*
1295 * Ok, the page table is present and it's been changed in the guest.
1296 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1297 * We could do this for some flushes in GC too, but we need an algorithm for
1298 * deciding which 4MB pages containing code likely to be executed very soon.
1299 */
1300 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1301 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1302 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1303 ASMAtomicWriteSize(pPdeDst, 0);
1304 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1305 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1306 }
1307 }
1308 else
1309 {
1310 /*
1311 * Page directory is not present, mark shadow PDE not present.
1312 */
1313 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1314 {
1315 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1316 ASMAtomicWriteSize(pPdeDst, 0);
1317 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1318 PGM_INVL_PG(pVCpu, GCPtrPage);
1319 }
1320 else
1321 {
1322 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1323 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1324 }
1325 }
1326# if defined(IN_RC)
1327 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1328 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
1329# endif
1330 return rc;
1331
1332#else /* guest real and protected mode */
1333 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1334 return VINF_SUCCESS;
1335#endif
1336}
1337
1338
1339/**
1340 * Update the tracking of shadowed pages.
1341 *
1342 * @param pVCpu The VMCPU handle.
1343 * @param pShwPage The shadow page.
1344 * @param HCPhys The physical page we is being dereferenced.
1345 * @param iPte Shadow PTE index
1346 */
1347DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
1348{
1349 PVM pVM = pVCpu->CTX_SUFF(pVM);
1350
1351 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1352 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1353
1354 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1355 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1356 * 2. write protect all shadowed pages. I.e. implement caching.
1357 */
1358 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1359
1360 /*
1361 * Find the guest address.
1362 */
1363 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1364 pRam;
1365 pRam = pRam->CTX_SUFF(pNext))
1366 {
1367 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1368 while (iPage-- > 0)
1369 {
1370 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1371 {
1372 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1373
1374 Assert(pShwPage->cPresent);
1375 Assert(pPool->cPresent);
1376 pShwPage->cPresent--;
1377 pPool->cPresent--;
1378
1379 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1380 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1381 return;
1382 }
1383 }
1384 }
1385
1386 for (;;)
1387 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1388}
1389
1390
1391/**
1392 * Update the tracking of shadowed pages.
1393 *
1394 * @param pVCpu The VMCPU handle.
1395 * @param pShwPage The shadow page.
1396 * @param u16 The top 16-bit of the pPage->HCPhys.
1397 * @param pPage Pointer to the guest page. this will be modified.
1398 * @param iPTDst The index into the shadow table.
1399 */
1400DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1401{
1402 PVM pVM = pVCpu->CTX_SUFF(pVM);
1403 /*
1404 * Just deal with the simple first time here.
1405 */
1406 if (!u16)
1407 {
1408 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1409 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1410 /* Save the page table index. */
1411 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1412 }
1413 else
1414 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1415
1416 /* write back */
1417 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1418 PGM_PAGE_SET_TRACKING(pPage, u16);
1419
1420 /* update statistics. */
1421 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1422 pShwPage->cPresent++;
1423 if (pShwPage->iFirstPresent > iPTDst)
1424 pShwPage->iFirstPresent = iPTDst;
1425}
1426
1427
1428/**
1429 * Modifies a shadow PTE to account for access handlers.
1430 *
1431 * @param pVM The VM handle.
1432 * @param pPage The page in question.
1433 * @param fPteSrc The flags of the source PTE.
1434 * @param pPteDst The shadow PTE (output).
1435 */
1436DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint32_t fPteSrc, PSHWPTE pPteDst)
1437{
1438 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1439 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1440 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1441 {
1442#if PGM_SHW_TYPE == PGM_TYPE_EPT
1443 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1444 pPteDst->n.u1Present = 1;
1445 pPteDst->n.u1Execute = 1;
1446 pPteDst->n.u1IgnorePAT = 1;
1447 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1448 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1449#else
1450 pPteDst->u = (fPteSrc & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1451 | PGM_PAGE_GET_HCPHYS(pPage);
1452#endif
1453 }
1454#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1455# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1456 else if ( PGM_PAGE_IS_MMIO(pPage)
1457# if PGM_SHW_TYPE != PGM_TYPE_EPT
1458 && ( (fPteSrc & (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/ | X86_PTE_US )) /* #PF handles D & A first. */
1459 == (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/)
1460 || BTH_IS_NP_ACTIVE(pVM) )
1461# endif
1462# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1463 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1464# endif
1465 )
1466 {
1467 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1468# if PGM_SHW_TYPE == PGM_TYPE_EPT
1469 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1470 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1471 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1472 pPteDst->n.u1Present = 0;
1473 pPteDst->n.u1Write = 1;
1474 pPteDst->n.u1Execute = 0;
1475 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1476 pPteDst->n.u3EMT = 7;
1477# else
1478 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1479 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P;
1480# endif
1481 }
1482# endif
1483#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1484 else
1485 {
1486 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1487 pPteDst->u = 0;
1488 }
1489 /** @todo count these kinds of entries. */
1490}
1491
1492
1493/**
1494 * Creates a 4K shadow page for a guest page.
1495 *
1496 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1497 * physical address. The PdeSrc argument only the flags are used. No page
1498 * structured will be mapped in this function.
1499 *
1500 * @param pVCpu The VMCPU handle.
1501 * @param pPteDst Destination page table entry.
1502 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1503 * Can safely assume that only the flags are being used.
1504 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1505 * @param pShwPage Pointer to the shadow page.
1506 * @param iPTDst The index into the shadow table.
1507 *
1508 * @remark Not used for 2/4MB pages!
1509 */
1510DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1511 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1512{
1513 if ( PteSrc.n.u1Present
1514 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1515 {
1516 PVM pVM = pVCpu->CTX_SUFF(pVM);
1517
1518# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1519 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1520 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1521 if (pShwPage->fDirty)
1522 {
1523 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1524 PX86PTPAE pGstPT;
1525
1526 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1527 pGstPT->a[iPTDst].u = PteSrc.u;
1528 }
1529# endif
1530 /*
1531 * Find the ram range.
1532 */
1533 PPGMPAGE pPage;
1534 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1535 if (RT_SUCCESS(rc))
1536 {
1537 /* Ignore ballooned pages.
1538 Don't return errors or use a fatal assert here as part of a
1539 shadow sync range might included ballooned pages. */
1540 if (PGM_PAGE_IS_BALLOONED(pPage))
1541 {
1542 Assert(!pPteDst->n.u1Present); /** @todo user tracking needs updating if this triggers. */
1543 return;
1544 }
1545
1546#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1547 /* Make the page writable if necessary. */
1548 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1549 && ( PGM_PAGE_IS_ZERO(pPage)
1550 || ( PteSrc.n.u1Write
1551 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1552# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1553 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1554# endif
1555# ifdef VBOX_WITH_PAGE_SHARING
1556 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1557# endif
1558 )
1559 )
1560 )
1561 {
1562 rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1563 AssertRC(rc);
1564 }
1565#endif
1566
1567 /*
1568 * Make page table entry.
1569 */
1570 SHWPTE PteDst;
1571 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1572 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
1573 PteSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT
1574 | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW),
1575 &PteDst);
1576 else
1577 {
1578#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1579 /*
1580 * If the page or page directory entry is not marked accessed,
1581 * we mark the page not present.
1582 */
1583 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1584 {
1585 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1586 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1587 PteDst.u = 0;
1588 }
1589 /*
1590 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1591 * when the page is modified.
1592 */
1593 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1594 {
1595 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1596 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1597 | PGM_PAGE_GET_HCPHYS(pPage)
1598 | PGM_PTFLAGS_TRACK_DIRTY;
1599 }
1600 else
1601#endif
1602 {
1603 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1604#if PGM_SHW_TYPE == PGM_TYPE_EPT
1605 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1606 PteDst.n.u1Present = 1;
1607 PteDst.n.u1Write = 1;
1608 PteDst.n.u1Execute = 1;
1609 PteDst.n.u1IgnorePAT = 1;
1610 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1611 /* PteDst.n.u1Size = 0 */
1612#else
1613 PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1614 | PGM_PAGE_GET_HCPHYS(pPage);
1615#endif
1616 }
1617
1618 /*
1619 * Make sure only allocated pages are mapped writable.
1620 */
1621 if ( PteDst.n.u1Write
1622 && PteDst.n.u1Present
1623 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1624 {
1625 /* Still applies to shared pages. */
1626 Assert(!PGM_PAGE_IS_ZERO(pPage));
1627 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. Why, isn't it? */
1628 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1629 }
1630 }
1631
1632 /*
1633 * Keep user track up to date.
1634 */
1635 if (PteDst.n.u1Present)
1636 {
1637 if (!pPteDst->n.u1Present)
1638 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1639 else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK))
1640 {
1641 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u));
1642 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
1643 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1644 }
1645 }
1646 else if (pPteDst->n.u1Present)
1647 {
1648 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1649 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
1650 }
1651
1652 /*
1653 * Update statistics and commit the entry.
1654 */
1655#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1656 if (!PteSrc.n.u1Global)
1657 pShwPage->fSeenNonGlobal = true;
1658#endif
1659 ASMAtomicWriteSize(pPteDst, PteDst.u);
1660 return;
1661 }
1662
1663/** @todo count these three different kinds. */
1664 Log2(("SyncPageWorker: invalid address in Pte\n"));
1665 }
1666 else if (!PteSrc.n.u1Present)
1667 Log2(("SyncPageWorker: page not present in Pte\n"));
1668 else
1669 Log2(("SyncPageWorker: invalid Pte\n"));
1670
1671 /*
1672 * The page is not present or the PTE is bad. Replace the shadow PTE by
1673 * an empty entry, making sure to keep the user tracking up to date.
1674 */
1675 if (pPteDst->n.u1Present)
1676 {
1677 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u));
1678 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst);
1679 }
1680 ASMAtomicWriteSize(pPteDst, 0);
1681}
1682
1683
1684/**
1685 * Syncs a guest OS page.
1686 *
1687 * There are no conflicts at this point, neither is there any need for
1688 * page table allocations.
1689 *
1690 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1691 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1692 *
1693 * @returns VBox status code.
1694 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1695 * @param pVCpu The VMCPU handle.
1696 * @param PdeSrc Page directory entry of the guest.
1697 * @param GCPtrPage Guest context page address.
1698 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1699 * @param uErr Fault error (X86_TRAP_PF_*).
1700 */
1701static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1702{
1703 PVM pVM = pVCpu->CTX_SUFF(pVM);
1704 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1705 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1706
1707 Assert(PGMIsLockOwner(pVM));
1708
1709#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1710 || PGM_GST_TYPE == PGM_TYPE_PAE \
1711 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1712 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1713 && PGM_SHW_TYPE != PGM_TYPE_EPT
1714
1715 /*
1716 * Assert preconditions.
1717 */
1718 Assert(PdeSrc.n.u1Present);
1719 Assert(cPages);
1720# if 0 /* rarely useful; leave for debugging. */
1721 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1722# endif
1723
1724 /*
1725 * Get the shadow PDE, find the shadow page table in the pool.
1726 */
1727# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1728 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1729 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
1730
1731 /* Fetch the pgm pool shadow descriptor. */
1732 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1733 Assert(pShwPde);
1734
1735# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1736 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1737 PPGMPOOLPAGE pShwPde = NULL;
1738 PX86PDPAE pPDDst;
1739
1740 /* Fetch the pgm pool shadow descriptor. */
1741 int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
1742 AssertRCSuccessReturn(rc2, rc2);
1743 Assert(pShwPde);
1744
1745 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
1746 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1747
1748# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1749 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1750 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1751 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1752 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1753
1754 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1755 AssertRCSuccessReturn(rc2, rc2);
1756 Assert(pPDDst && pPdptDst);
1757 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1758# endif
1759 SHWPDE PdeDst = *pPdeDst;
1760
1761 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1762 if (!PdeDst.n.u1Present)
1763 {
1764 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1765 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
1766 return VINF_SUCCESS; /* force the instruction to be executed again. */
1767 }
1768
1769 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1770 Assert(pShwPage);
1771
1772# if PGM_GST_TYPE == PGM_TYPE_AMD64
1773 /* Fetch the pgm pool shadow descriptor. */
1774 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1775 Assert(pShwPde);
1776# endif
1777
1778# if defined(IN_RC)
1779 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
1780 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
1781# endif
1782
1783 /*
1784 * Check that the page is present and that the shadow PDE isn't out of sync.
1785 */
1786 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1787 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1788 RTGCPHYS GCPhys;
1789 if (!fBigPage)
1790 {
1791 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1792# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1793 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1794 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1795# endif
1796 }
1797 else
1798 {
1799 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
1800# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1801 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1802 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1803# endif
1804 }
1805 if ( fPdeValid
1806 && pShwPage->GCPhys == GCPhys
1807 && PdeSrc.n.u1Present
1808 && PdeSrc.n.u1User == PdeDst.n.u1User
1809 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1810# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1811 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1812# endif
1813 )
1814 {
1815 /*
1816 * Check that the PDE is marked accessed already.
1817 * Since we set the accessed bit *before* getting here on a #PF, this
1818 * check is only meant for dealing with non-#PF'ing paths.
1819 */
1820 if (PdeSrc.n.u1Accessed)
1821 {
1822 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1823 if (!fBigPage)
1824 {
1825 /*
1826 * 4KB Page - Map the guest page table.
1827 */
1828 PGSTPT pPTSrc;
1829 int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1830 if (RT_SUCCESS(rc))
1831 {
1832# ifdef PGM_SYNC_N_PAGES
1833 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1834 if ( cPages > 1
1835 && !(uErr & X86_TRAP_PF_P)
1836 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1837 {
1838 /*
1839 * This code path is currently only taken when the caller is PGMTrap0eHandler
1840 * for non-present pages!
1841 *
1842 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1843 * deal with locality.
1844 */
1845 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1846# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1847 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1848 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1849# else
1850 const unsigned offPTSrc = 0;
1851# endif
1852 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1853 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1854 iPTDst = 0;
1855 else
1856 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1857 for (; iPTDst < iPTDstEnd; iPTDst++)
1858 {
1859 if (!pPTDst->a[iPTDst].n.u1Present)
1860 {
1861 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1862 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1863 NOREF(GCPtrCurPage);
1864#ifndef IN_RING0
1865 /*
1866 * Assuming kernel code will be marked as supervisor - and not as user level
1867 * and executed using a conforming code selector - And marked as readonly.
1868 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1869 */
1870 PPGMPAGE pPage;
1871 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1872 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1873 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1874 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1875 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1876 )
1877#endif /* else: CSAM not active */
1878 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1879 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1880 GCPtrCurPage, PteSrc.n.u1Present,
1881 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1882 PteSrc.n.u1User & PdeSrc.n.u1User,
1883 (uint64_t)PteSrc.u,
1884 (uint64_t)pPTDst->a[iPTDst].u,
1885 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1886 }
1887 }
1888 }
1889 else
1890# endif /* PGM_SYNC_N_PAGES */
1891 {
1892 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1893 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1894 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1895 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1896 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1897 GCPtrPage, PteSrc.n.u1Present,
1898 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1899 PteSrc.n.u1User & PdeSrc.n.u1User,
1900 (uint64_t)PteSrc.u,
1901 (uint64_t)pPTDst->a[iPTDst].u,
1902 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
1903 }
1904 }
1905 else /* MMIO or invalid page: emulated in #PF handler. */
1906 {
1907 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1908 Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present);
1909 }
1910 }
1911 else
1912 {
1913 /*
1914 * 4/2MB page - lazy syncing shadow 4K pages.
1915 * (There are many causes of getting here, it's no longer only CSAM.)
1916 */
1917 /* Calculate the GC physical address of this 4KB shadow page. */
1918 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1919 /* Find ram range. */
1920 PPGMPAGE pPage;
1921 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1922 if (RT_SUCCESS(rc))
1923 {
1924 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1925
1926# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1927 /* Try to make the page writable if necessary. */
1928 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1929 && ( PGM_PAGE_IS_ZERO(pPage)
1930 || ( PdeSrc.n.u1Write
1931 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1932# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1933 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1934# endif
1935# ifdef VBOX_WITH_PAGE_SHARING
1936 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1937# endif
1938 )
1939 )
1940 )
1941 {
1942 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1943 AssertRC(rc);
1944 }
1945# endif
1946
1947 /*
1948 * Make shadow PTE entry.
1949 */
1950 SHWPTE PteDst;
1951 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1952 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
1953 PdeSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK
1954 | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT),
1955 &PteDst);
1956 else
1957 PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1958 | PGM_PAGE_GET_HCPHYS(pPage);
1959
1960 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1961 if ( PteDst.n.u1Present
1962 && !pPTDst->a[iPTDst].n.u1Present)
1963 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1964
1965 /* Make sure only allocated pages are mapped writable. */
1966 if ( PteDst.n.u1Write
1967 && PteDst.n.u1Present
1968 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1969 {
1970 /* Still applies to shared pages. */
1971 Assert(!PGM_PAGE_IS_ZERO(pPage));
1972 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
1973 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
1974 }
1975
1976 ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u);
1977
1978 /*
1979 * If the page is not flagged as dirty and is writable, then make it read-only
1980 * at PD level, so we can set the dirty bit when the page is modified.
1981 *
1982 * ASSUMES that page access handlers are implemented on page table entry level.
1983 * Thus we will first catch the dirty access and set PDE.D and restart. If
1984 * there is an access handler, we'll trap again and let it work on the problem.
1985 */
1986 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
1987 * As for invlpg, it simply frees the whole shadow PT.
1988 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
1989 if ( !PdeSrc.b.u1Dirty
1990 && PdeSrc.b.u1Write)
1991 {
1992 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
1993 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
1994 PdeDst.n.u1Write = 0;
1995 }
1996 else
1997 {
1998 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
1999 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2000 }
2001 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2002 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2003 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2004 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2005 }
2006 else
2007 {
2008 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2009 /** @todo must wipe the shadow page table in this case. */
2010 }
2011 }
2012# if defined(IN_RC)
2013 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2014 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2015# endif
2016 return VINF_SUCCESS;
2017 }
2018
2019 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2020 }
2021 else if (fPdeValid)
2022 {
2023 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2024 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2025 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2026 }
2027 else
2028 {
2029/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2030 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2031 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2032 }
2033
2034 /*
2035 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2036 * Yea, I'm lazy.
2037 */
2038 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2039 ASMAtomicWriteSize(pPdeDst, 0);
2040
2041# if defined(IN_RC)
2042 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2043 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2044# endif
2045 PGM_INVL_VCPU_TLBS(pVCpu);
2046 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2047
2048
2049#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2050 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2051 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2052 && !defined(IN_RC)
2053
2054# ifdef PGM_SYNC_N_PAGES
2055 /*
2056 * Get the shadow PDE, find the shadow page table in the pool.
2057 */
2058# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2059 X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
2060
2061# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2062 X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage);
2063
2064# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2065 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2066 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2067 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2068 X86PDEPAE PdeDst;
2069 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2070
2071 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2072 AssertRCSuccessReturn(rc, rc);
2073 Assert(pPDDst && pPdptDst);
2074 PdeDst = pPDDst->a[iPDDst];
2075# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2076 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2077 PEPTPD pPDDst;
2078 EPTPDE PdeDst;
2079
2080 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2081 if (rc != VINF_SUCCESS)
2082 {
2083 AssertRC(rc);
2084 return rc;
2085 }
2086 Assert(pPDDst);
2087 PdeDst = pPDDst->a[iPDDst];
2088# endif
2089 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2090 if (!PdeDst.n.u1Present)
2091 {
2092 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2093 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2094 return VINF_SUCCESS; /* force the instruction to be executed again. */
2095 }
2096
2097 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2098 if (PdeDst.n.u1Size)
2099 {
2100 Assert(pVM->pgm.s.fNestedPaging);
2101 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2102 return VINF_SUCCESS;
2103 }
2104
2105 /* Mask away the page offset. */
2106 GCPtrPage &= ~((RTGCPTR)0xfff);
2107
2108 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2109 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2110
2111 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2112 if ( cPages > 1
2113 && !(uErr & X86_TRAP_PF_P)
2114 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2115 {
2116 /*
2117 * This code path is currently only taken when the caller is PGMTrap0eHandler
2118 * for non-present pages!
2119 *
2120 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2121 * deal with locality.
2122 */
2123 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2124 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2125 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2126 iPTDst = 0;
2127 else
2128 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2129 for (; iPTDst < iPTDstEnd; iPTDst++)
2130 {
2131 if (!pPTDst->a[iPTDst].n.u1Present)
2132 {
2133 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2134 GSTPTE PteSrc;
2135
2136 /* Fake the page table entry */
2137 PteSrc.u = GCPtrCurPage;
2138 PteSrc.n.u1Present = 1;
2139 PteSrc.n.u1Dirty = 1;
2140 PteSrc.n.u1Accessed = 1;
2141 PteSrc.n.u1Write = 1;
2142 PteSrc.n.u1User = 1;
2143
2144 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2145
2146 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2147 GCPtrCurPage, PteSrc.n.u1Present,
2148 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2149 PteSrc.n.u1User & PdeSrc.n.u1User,
2150 (uint64_t)PteSrc.u,
2151 (uint64_t)pPTDst->a[iPTDst].u,
2152 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2153
2154 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2155 break;
2156 }
2157 else
2158 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u));
2159 }
2160 }
2161 else
2162# endif /* PGM_SYNC_N_PAGES */
2163 {
2164 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2165 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2166 GSTPTE PteSrc;
2167
2168 /* Fake the page table entry */
2169 PteSrc.u = GCPtrCurPage;
2170 PteSrc.n.u1Present = 1;
2171 PteSrc.n.u1Dirty = 1;
2172 PteSrc.n.u1Accessed = 1;
2173 PteSrc.n.u1Write = 1;
2174 PteSrc.n.u1User = 1;
2175 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2176
2177 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2178 GCPtrPage, PteSrc.n.u1Present,
2179 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2180 PteSrc.n.u1User & PdeSrc.n.u1User,
2181 (uint64_t)PteSrc.u,
2182 (uint64_t)pPTDst->a[iPTDst].u,
2183 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2184 }
2185 return VINF_SUCCESS;
2186
2187#else
2188 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2189 return VERR_INTERNAL_ERROR;
2190#endif
2191}
2192
2193
2194#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2195
2196/**
2197 * CheckPageFault helper for returning a page fault indicating a non-present
2198 * (NP) entry in the page translation structures.
2199 *
2200 * @returns VINF_EM_RAW_GUEST_TRAP.
2201 * @param pVCpu The virtual CPU to operate on.
2202 * @param uErr The error code of the shadow fault. Corrections to
2203 * TRPM's copy will be made if necessary.
2204 * @param GCPtrPage For logging.
2205 * @param uPageFaultLevel For logging.
2206 */
2207DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2208{
2209 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2210 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2211 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2212 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2213 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2214
2215 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2216 return VINF_EM_RAW_GUEST_TRAP;
2217}
2218
2219
2220/**
2221 * CheckPageFault helper for returning a page fault indicating a reserved bit
2222 * (RSVD) error in the page translation structures.
2223 *
2224 * @returns VINF_EM_RAW_GUEST_TRAP.
2225 * @param pVCpu The virtual CPU to operate on.
2226 * @param uErr The error code of the shadow fault. Corrections to
2227 * TRPM's copy will be made if necessary.
2228 * @param GCPtrPage For logging.
2229 * @param uPageFaultLevel For logging.
2230 */
2231DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2232{
2233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2234 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2235 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2236
2237 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2238 return VINF_EM_RAW_GUEST_TRAP;
2239}
2240
2241
2242/**
2243 * CheckPageFault helper for returning a page protection fault (P).
2244 *
2245 * @returns VINF_EM_RAW_GUEST_TRAP.
2246 * @param pVCpu The virtual CPU to operate on.
2247 * @param uErr The error code of the shadow fault. Corrections to
2248 * TRPM's copy will be made if necessary.
2249 * @param GCPtrPage For logging.
2250 * @param uPageFaultLevel For logging.
2251 */
2252DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2253{
2254 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2255 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2256 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2257 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2258
2259 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2260 return VINF_EM_RAW_GUEST_TRAP;
2261}
2262
2263
2264/**
2265 * Handle dirty bit tracking faults.
2266 *
2267 * @returns VBox status code.
2268 * @param pVCpu The VMCPU handle.
2269 * @param uErr Page fault error code.
2270 * @param pPdeSrc Guest page directory entry.
2271 * @param pPdeDst Shadow page directory entry.
2272 * @param GCPtrPage Guest context page address.
2273 */
2274static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2275{
2276 PVM pVM = pVCpu->CTX_SUFF(pVM);
2277 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2278
2279 Assert(PGMIsLockOwner(pVM));
2280
2281 /*
2282 * Handle big page.
2283 */
2284 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2285 {
2286 if ( pPdeDst->n.u1Present
2287 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2288 {
2289 SHWPDE PdeDst = *pPdeDst;
2290
2291 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2292 Assert(pPdeSrc->b.u1Write);
2293
2294 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2295 * fault again and take this path to only invalidate the entry (see below).
2296 */
2297 PdeDst.n.u1Write = 1;
2298 PdeDst.n.u1Accessed = 1;
2299 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2300 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2301 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2302 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2303 }
2304
2305# ifdef IN_RING0
2306 /* Check for stale TLB entry; only applies to the SMP guest case. */
2307 if ( pVM->cCpus > 1
2308 && pPdeDst->n.u1Write
2309 && pPdeDst->n.u1Accessed)
2310 {
2311 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2312 if (pShwPage)
2313 {
2314 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2315 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2316 if ( pPteDst->n.u1Present
2317 && pPteDst->n.u1Write)
2318 {
2319 /* Stale TLB entry. */
2320 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2321 PGM_INVL_PG(pVCpu, GCPtrPage);
2322 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2323 }
2324 }
2325 }
2326# endif /* IN_RING0 */
2327 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2328 }
2329
2330 /*
2331 * Map the guest page table.
2332 */
2333 PGSTPT pPTSrc;
2334 int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2335 if (RT_FAILURE(rc))
2336 {
2337 AssertRC(rc);
2338 return rc;
2339 }
2340
2341 if (pPdeDst->n.u1Present)
2342 {
2343 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2344 const GSTPTE PteSrc = *pPteSrc;
2345
2346#ifndef IN_RING0
2347 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2348 * Our individual shadow handlers will provide more information and force a fatal exit.
2349 */
2350 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2351 {
2352 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2353 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2354 }
2355#endif
2356 /*
2357 * Map shadow page table.
2358 */
2359 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2360 if (pShwPage)
2361 {
2362 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2363 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2364 if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */
2365 {
2366 if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY)
2367 {
2368 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2369 SHWPTE PteDst = *pPteDst;
2370
2371 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2372 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2373
2374 Assert(pPteSrc->n.u1Write);
2375
2376 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2377 * entry will not harm; write access will simply fault again and
2378 * take this path to only invalidate the entry.
2379 */
2380 if (RT_LIKELY(pPage))
2381 {
2382 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2383 {
2384 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2385 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2386 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2387 PteDst.n.u1Write = 0;
2388 }
2389 else
2390 {
2391 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2392 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2393 {
2394 rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2395 AssertRC(rc);
2396 }
2397 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2398 PteDst.n.u1Write = 1;
2399 else
2400 {
2401 /* Still applies to shared pages. */
2402 Assert(!PGM_PAGE_IS_ZERO(pPage));
2403 PteDst.n.u1Write = 0;
2404 }
2405 }
2406 }
2407 else
2408 PteDst.n.u1Write = 1; /** @todo r=bird: This doesn't make sense to me. */
2409
2410 PteDst.n.u1Dirty = 1;
2411 PteDst.n.u1Accessed = 1;
2412 PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY;
2413 ASMAtomicWriteSize(pPteDst, PteDst.u);
2414 PGM_INVL_PG(pVCpu, GCPtrPage);
2415 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2416 }
2417
2418# ifdef IN_RING0
2419 /* Check for stale TLB entry; only applies to the SMP guest case. */
2420 if ( pVM->cCpus > 1
2421 && pPteDst->n.u1Write == 1
2422 && pPteDst->n.u1Accessed == 1)
2423 {
2424 /* Stale TLB entry. */
2425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2426 PGM_INVL_PG(pVCpu, GCPtrPage);
2427 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2428 }
2429# endif
2430 }
2431 }
2432 else
2433 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2434 }
2435
2436 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2437}
2438
2439#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2440
2441
2442/**
2443 * Sync a shadow page table.
2444 *
2445 * The shadow page table is not present. This includes the case where
2446 * there is a conflict with a mapping.
2447 *
2448 * @returns VBox status code.
2449 * @param pVCpu The VMCPU handle.
2450 * @param iPD Page directory index.
2451 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2452 * Assume this is a temporary mapping.
2453 * @param GCPtrPage GC Pointer of the page that caused the fault
2454 */
2455static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2456{
2457 PVM pVM = pVCpu->CTX_SUFF(pVM);
2458 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2459
2460 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2461#if 0 /* rarely useful; leave for debugging. */
2462 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2463#endif
2464 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2465
2466 Assert(PGMIsLocked(pVM));
2467
2468#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2469 || PGM_GST_TYPE == PGM_TYPE_PAE \
2470 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2471 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2472 && PGM_SHW_TYPE != PGM_TYPE_EPT
2473
2474 int rc = VINF_SUCCESS;
2475
2476 /*
2477 * Validate input a little bit.
2478 */
2479 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2480# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2481 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2482 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2483
2484 /* Fetch the pgm pool shadow descriptor. */
2485 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2486 Assert(pShwPde);
2487
2488# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2489 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2490 PPGMPOOLPAGE pShwPde = NULL;
2491 PX86PDPAE pPDDst;
2492 PSHWPDE pPdeDst;
2493
2494 /* Fetch the pgm pool shadow descriptor. */
2495 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2496 AssertRCSuccessReturn(rc, rc);
2497 Assert(pShwPde);
2498
2499 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2500 pPdeDst = &pPDDst->a[iPDDst];
2501
2502# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2503 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2504 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2505 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2506 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2507 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2508 AssertRCSuccessReturn(rc, rc);
2509 Assert(pPDDst);
2510 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2511# endif
2512 SHWPDE PdeDst = *pPdeDst;
2513
2514# if PGM_GST_TYPE == PGM_TYPE_AMD64
2515 /* Fetch the pgm pool shadow descriptor. */
2516 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2517 Assert(pShwPde);
2518# endif
2519
2520# ifndef PGM_WITHOUT_MAPPINGS
2521 /*
2522 * Check for conflicts.
2523 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2524 * R3: Simply resolve the conflict.
2525 */
2526 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2527 {
2528 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2529# ifndef IN_RING3
2530 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2531 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2532 return VERR_ADDRESS_CONFLICT;
2533
2534# else /* IN_RING3 */
2535 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2536 Assert(pMapping);
2537# if PGM_GST_TYPE == PGM_TYPE_32BIT
2538 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2539# elif PGM_GST_TYPE == PGM_TYPE_PAE
2540 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2541# else
2542 AssertFailed(); /* can't happen for amd64 */
2543# endif
2544 if (RT_FAILURE(rc))
2545 {
2546 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2547 return rc;
2548 }
2549 PdeDst = *pPdeDst;
2550# endif /* IN_RING3 */
2551 }
2552# endif /* !PGM_WITHOUT_MAPPINGS */
2553 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2554
2555# if defined(IN_RC)
2556 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
2557 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
2558# endif
2559
2560 /*
2561 * Sync page directory entry.
2562 */
2563 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2564 if (PdeSrc.n.u1Present)
2565 {
2566 /*
2567 * Allocate & map the page table.
2568 */
2569 PSHWPT pPTDst;
2570 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2571 PPGMPOOLPAGE pShwPage;
2572 RTGCPHYS GCPhys;
2573 if (fPageTable)
2574 {
2575 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2576# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2577 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2578 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2579# endif
2580 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2581 }
2582 else
2583 {
2584 PGMPOOLACCESS enmAccess;
2585# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2586 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2587# else
2588 const bool fNoExecute = false;
2589# endif
2590
2591 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
2592# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2593 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2594 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2595# endif
2596 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2597 if (PdeSrc.n.u1User)
2598 {
2599 if (PdeSrc.n.u1Write)
2600 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2601 else
2602 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2603 }
2604 else
2605 {
2606 if (PdeSrc.n.u1Write)
2607 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2608 else
2609 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2610 }
2611 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2612 }
2613 if (rc == VINF_SUCCESS)
2614 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
2615 else if (rc == VINF_PGM_CACHED_PAGE)
2616 {
2617 /*
2618 * The PT was cached, just hook it up.
2619 */
2620 if (fPageTable)
2621 PdeDst.u = pShwPage->Core.Key
2622 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2623 else
2624 {
2625 PdeDst.u = pShwPage->Core.Key
2626 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2627 /* (see explanation and assumptions further down.) */
2628 if ( !PdeSrc.b.u1Dirty
2629 && PdeSrc.b.u1Write)
2630 {
2631 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2632 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2633 PdeDst.b.u1Write = 0;
2634 }
2635 }
2636 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2637# if defined(IN_RC)
2638 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2639# endif
2640 return VINF_SUCCESS;
2641 }
2642 else if (rc == VERR_PGM_POOL_FLUSHED)
2643 {
2644 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2645# if defined(IN_RC)
2646 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2647# endif
2648 return VINF_PGM_SYNC_CR3;
2649 }
2650 else
2651 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2652 PdeDst.u &= X86_PDE_AVL_MASK;
2653 PdeDst.u |= pShwPage->Core.Key;
2654
2655 /*
2656 * Page directory has been accessed (this is a fault situation, remember).
2657 */
2658 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2659 if (fPageTable)
2660 {
2661 /*
2662 * Page table - 4KB.
2663 *
2664 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2665 */
2666 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2667 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2668 PGSTPT pPTSrc;
2669 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2670 if (RT_SUCCESS(rc))
2671 {
2672 /*
2673 * Start by syncing the page directory entry so CSAM's TLB trick works.
2674 */
2675 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2676 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2677 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2678# if defined(IN_RC)
2679 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2680# endif
2681
2682 /*
2683 * Directory/page user or supervisor privilege: (same goes for read/write)
2684 *
2685 * Directory Page Combined
2686 * U/S U/S U/S
2687 * 0 0 0
2688 * 0 1 0
2689 * 1 0 0
2690 * 1 1 1
2691 *
2692 * Simple AND operation. Table listed for completeness.
2693 *
2694 */
2695 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2696# ifdef PGM_SYNC_N_PAGES
2697 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2698 unsigned iPTDst = iPTBase;
2699 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2700 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2701 iPTDst = 0;
2702 else
2703 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2704# else /* !PGM_SYNC_N_PAGES */
2705 unsigned iPTDst = 0;
2706 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2707# endif /* !PGM_SYNC_N_PAGES */
2708# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2709 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2710 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2711# else
2712 const unsigned offPTSrc = 0;
2713# endif
2714 for (; iPTDst < iPTDstEnd; iPTDst++)
2715 {
2716 const unsigned iPTSrc = iPTDst + offPTSrc;
2717 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2718
2719 if (PteSrc.n.u1Present)
2720 {
2721# ifndef IN_RING0
2722 /*
2723 * Assuming kernel code will be marked as supervisor - and not as user level
2724 * and executed using a conforming code selector - And marked as readonly.
2725 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2726 */
2727 PPGMPAGE pPage;
2728 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2729 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2730 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2731 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2732 )
2733# endif
2734 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2735 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2736 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2737 PteSrc.n.u1Present,
2738 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2739 PteSrc.n.u1User & PdeSrc.n.u1User,
2740 (uint64_t)PteSrc.u,
2741 pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0],
2742 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2743 }
2744 /* else: the page table was cleared by the pool */
2745 } /* for PTEs */
2746 }
2747 }
2748 else
2749 {
2750 /*
2751 * Big page - 2/4MB.
2752 *
2753 * We'll walk the ram range list in parallel and optimize lookups.
2754 * We will only sync on shadow page table at a time.
2755 */
2756 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2757
2758 /**
2759 * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs).
2760 */
2761
2762 /*
2763 * Start by syncing the page directory entry.
2764 */
2765 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2766 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2767
2768 /*
2769 * If the page is not flagged as dirty and is writable, then make it read-only
2770 * at PD level, so we can set the dirty bit when the page is modified.
2771 *
2772 * ASSUMES that page access handlers are implemented on page table entry level.
2773 * Thus we will first catch the dirty access and set PDE.D and restart. If
2774 * there is an access handler, we'll trap again and let it work on the problem.
2775 */
2776 /** @todo move the above stuff to a section in the PGM documentation. */
2777 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2778 if ( !PdeSrc.b.u1Dirty
2779 && PdeSrc.b.u1Write)
2780 {
2781 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2782 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2783 PdeDst.b.u1Write = 0;
2784 }
2785 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2786# if defined(IN_RC)
2787 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
2788# endif
2789
2790 /*
2791 * Fill the shadow page table.
2792 */
2793 /* Get address and flags from the source PDE. */
2794 SHWPTE PteDstBase;
2795 PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT);
2796
2797 /* Loop thru the entries in the shadow PT. */
2798 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2799 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2800 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2801 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2802 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2803 unsigned iPTDst = 0;
2804 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2805 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2806 {
2807 /* Advance ram range list. */
2808 while (pRam && GCPhys > pRam->GCPhysLast)
2809 pRam = pRam->CTX_SUFF(pNext);
2810 if (pRam && GCPhys >= pRam->GCPhys)
2811 {
2812 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2813 do
2814 {
2815 /* Make shadow PTE. */
2816 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2817 SHWPTE PteDst;
2818
2819# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2820 /* Try to make the page writable if necessary. */
2821 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2822 && ( PGM_PAGE_IS_ZERO(pPage)
2823 || ( PteDstBase.n.u1Write
2824 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2825# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2826 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2827# endif
2828# ifdef VBOX_WITH_PAGE_SHARING
2829 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2830# endif
2831 && !PGM_PAGE_IS_BALLOONED(pPage))
2832 )
2833 )
2834 {
2835 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2836 AssertRCReturn(rc, rc);
2837 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2838 break;
2839 }
2840# endif
2841
2842 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2843 {
2844 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
2845 {
2846 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2847 PteDst.n.u1Write = 0;
2848 }
2849 else
2850 PteDst.u = 0;
2851 }
2852 else if (PGM_PAGE_IS_BALLOONED(pPage))
2853 {
2854 /* Skip ballooned pages. */
2855 PteDst.u = 0;
2856 }
2857# ifndef IN_RING0
2858 /*
2859 * Assuming kernel code will be marked as supervisor and not as user level and executed
2860 * using a conforming code selector. Don't check for readonly, as that implies the whole
2861 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2862 */
2863 else if ( !PdeSrc.n.u1User
2864 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2865 PteDst.u = 0;
2866# endif
2867 else
2868 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u;
2869
2870 /* Only map writable pages writable. */
2871 if ( PteDst.n.u1Write
2872 && PteDst.n.u1Present
2873 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2874 {
2875 /* Still applies to shared pages. */
2876 Assert(!PGM_PAGE_IS_ZERO(pPage));
2877 PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */
2878 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2879 }
2880
2881 if (PteDst.n.u1Present)
2882 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2883
2884 /* commit it */
2885 pPTDst->a[iPTDst] = PteDst;
2886 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2887 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u,
2888 PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2889
2890 /* advance */
2891 GCPhys += PAGE_SIZE;
2892 iHCPage++;
2893 iPTDst++;
2894 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2895 && GCPhys <= pRam->GCPhysLast);
2896 }
2897 else if (pRam)
2898 {
2899 Log(("Invalid pages at %RGp\n", GCPhys));
2900 do
2901 {
2902 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2903 GCPhys += PAGE_SIZE;
2904 iPTDst++;
2905 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2906 && GCPhys < pRam->GCPhys);
2907 }
2908 else
2909 {
2910 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2911 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2912 pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */
2913 }
2914 } /* while more PTEs */
2915 } /* 4KB / 4MB */
2916 }
2917 else
2918 AssertRelease(!PdeDst.n.u1Present);
2919
2920 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2921 if (RT_FAILURE(rc))
2922 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2923 return rc;
2924
2925#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2926 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2927 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2928 && !defined(IN_RC)
2929
2930 /*
2931 * Validate input a little bit.
2932 */
2933 int rc = VINF_SUCCESS;
2934# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2935 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2936 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
2937
2938 /* Fetch the pgm pool shadow descriptor. */
2939 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2940 Assert(pShwPde);
2941
2942# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2943 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2944 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2945 PX86PDPAE pPDDst;
2946 PSHWPDE pPdeDst;
2947
2948 /* Fetch the pgm pool shadow descriptor. */
2949 rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde);
2950 AssertRCSuccessReturn(rc, rc);
2951 Assert(pShwPde);
2952
2953 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde);
2954 pPdeDst = &pPDDst->a[iPDDst];
2955
2956# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2957 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2958 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2959 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2960 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2961 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2962 AssertRCSuccessReturn(rc, rc);
2963 Assert(pPDDst);
2964 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2965
2966 /* Fetch the pgm pool shadow descriptor. */
2967 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2968 Assert(pShwPde);
2969
2970# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2971 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2972 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2973 PEPTPD pPDDst;
2974 PEPTPDPT pPdptDst;
2975
2976 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2977 if (rc != VINF_SUCCESS)
2978 {
2979 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2980 AssertRC(rc);
2981 return rc;
2982 }
2983 Assert(pPDDst);
2984 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2985
2986 /* Fetch the pgm pool shadow descriptor. */
2987 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2988 Assert(pShwPde);
2989# endif
2990 SHWPDE PdeDst = *pPdeDst;
2991
2992 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
2993 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2994
2995# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
2996 if (BTH_IS_NP_ACTIVE(pVM))
2997 {
2998 PPGMPAGE pPage;
2999
3000 /* Check if we allocated a big page before for this 2 MB range. */
3001 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3002 if (RT_SUCCESS(rc))
3003 {
3004 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3005
3006 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3007 {
3008 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3009 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3010 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3011 }
3012 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3013 {
3014 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3015 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3016 if (RT_SUCCESS(rc))
3017 {
3018 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3019 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3020 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3021 }
3022 }
3023 else if (PGMIsUsingLargePages(pVM))
3024 {
3025 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3026 if (RT_SUCCESS(rc))
3027 {
3028 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3029 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3030 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3031 }
3032 else
3033 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3034 }
3035
3036 if (HCPhys != NIL_RTHCPHYS)
3037 {
3038 PdeDst.u &= X86_PDE_AVL_MASK;
3039 PdeDst.u |= HCPhys;
3040 PdeDst.n.u1Present = 1;
3041 PdeDst.n.u1Write = 1;
3042 PdeDst.b.u1Size = 1;
3043# if PGM_SHW_TYPE == PGM_TYPE_EPT
3044 PdeDst.n.u1Execute = 1;
3045 PdeDst.b.u1IgnorePAT = 1;
3046 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3047# else
3048 PdeDst.n.u1User = 1;
3049# endif
3050 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3051
3052 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3053 /* Add a reference to the first page only. */
3054 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3055
3056 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3057 return VINF_SUCCESS;
3058 }
3059 }
3060 }
3061# endif /* HC_ARCH_BITS == 64 */
3062
3063 GSTPDE PdeSrc;
3064 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3065 PdeSrc.n.u1Present = 1;
3066 PdeSrc.n.u1Write = 1;
3067 PdeSrc.n.u1Accessed = 1;
3068 PdeSrc.n.u1User = 1;
3069
3070 /*
3071 * Allocate & map the page table.
3072 */
3073 PSHWPT pPTDst;
3074 PPGMPOOLPAGE pShwPage;
3075 RTGCPHYS GCPhys;
3076
3077 /* Virtual address = physical address */
3078 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3079 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3080
3081 if ( rc == VINF_SUCCESS
3082 || rc == VINF_PGM_CACHED_PAGE)
3083 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
3084 else
3085 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3086
3087 PdeDst.u &= X86_PDE_AVL_MASK;
3088 PdeDst.u |= pShwPage->Core.Key;
3089 PdeDst.n.u1Present = 1;
3090 PdeDst.n.u1Write = 1;
3091# if PGM_SHW_TYPE == PGM_TYPE_EPT
3092 PdeDst.n.u1Execute = 1;
3093# else
3094 PdeDst.n.u1User = 1;
3095 PdeDst.n.u1Accessed = 1;
3096# endif
3097 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3098
3099 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3100 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3101 return rc;
3102
3103#else
3104 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3105 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3106 return VERR_INTERNAL_ERROR;
3107#endif
3108}
3109
3110
3111
3112/**
3113 * Prefetch a page/set of pages.
3114 *
3115 * Typically used to sync commonly used pages before entering raw mode
3116 * after a CR3 reload.
3117 *
3118 * @returns VBox status code.
3119 * @param pVCpu The VMCPU handle.
3120 * @param GCPtrPage Page to invalidate.
3121 */
3122PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3123{
3124#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3125 || PGM_GST_TYPE == PGM_TYPE_REAL \
3126 || PGM_GST_TYPE == PGM_TYPE_PROT \
3127 || PGM_GST_TYPE == PGM_TYPE_PAE \
3128 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3129 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3130 && PGM_SHW_TYPE != PGM_TYPE_EPT
3131
3132 /*
3133 * Check that all Guest levels thru the PDE are present, getting the
3134 * PD and PDE in the processes.
3135 */
3136 int rc = VINF_SUCCESS;
3137# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3138# if PGM_GST_TYPE == PGM_TYPE_32BIT
3139 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3140 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3141# elif PGM_GST_TYPE == PGM_TYPE_PAE
3142 unsigned iPDSrc;
3143 X86PDPE PdpeSrc;
3144 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3145 if (!pPDSrc)
3146 return VINF_SUCCESS; /* not present */
3147# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3148 unsigned iPDSrc;
3149 PX86PML4E pPml4eSrc;
3150 X86PDPE PdpeSrc;
3151 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3152 if (!pPDSrc)
3153 return VINF_SUCCESS; /* not present */
3154# endif
3155 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3156# else
3157 PGSTPD pPDSrc = NULL;
3158 const unsigned iPDSrc = 0;
3159 GSTPDE PdeSrc;
3160
3161 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3162 PdeSrc.n.u1Present = 1;
3163 PdeSrc.n.u1Write = 1;
3164 PdeSrc.n.u1Accessed = 1;
3165 PdeSrc.n.u1User = 1;
3166# endif
3167
3168 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3169 {
3170 PVM pVM = pVCpu->CTX_SUFF(pVM);
3171 pgmLock(pVM);
3172
3173# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3174 const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage);
3175# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3176 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3177 PX86PDPAE pPDDst;
3178 X86PDEPAE PdeDst;
3179# if PGM_GST_TYPE != PGM_TYPE_PAE
3180 X86PDPE PdpeSrc;
3181
3182 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3183 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3184# endif
3185 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3186 if (rc != VINF_SUCCESS)
3187 {
3188 pgmUnlock(pVM);
3189 AssertRC(rc);
3190 return rc;
3191 }
3192 Assert(pPDDst);
3193 PdeDst = pPDDst->a[iPDDst];
3194
3195# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3196 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3197 PX86PDPAE pPDDst;
3198 X86PDEPAE PdeDst;
3199
3200# if PGM_GST_TYPE == PGM_TYPE_PROT
3201 /* AMD-V nested paging */
3202 X86PML4E Pml4eSrc;
3203 X86PDPE PdpeSrc;
3204 PX86PML4E pPml4eSrc = &Pml4eSrc;
3205
3206 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3207 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3208 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3209# endif
3210
3211 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3212 if (rc != VINF_SUCCESS)
3213 {
3214 pgmUnlock(pVM);
3215 AssertRC(rc);
3216 return rc;
3217 }
3218 Assert(pPDDst);
3219 PdeDst = pPDDst->a[iPDDst];
3220# endif
3221 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3222 {
3223 if (!PdeDst.n.u1Present)
3224 {
3225 /** @todo r=bird: This guy will set the A bit on the PDE,
3226 * probably harmless. */
3227 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3228 }
3229 else
3230 {
3231 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3232 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3233 * makes no sense to prefetch more than one page.
3234 */
3235 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3236 if (RT_SUCCESS(rc))
3237 rc = VINF_SUCCESS;
3238 }
3239 }
3240 pgmUnlock(pVM);
3241 }
3242 return rc;
3243
3244#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3245 return VINF_SUCCESS; /* ignore */
3246#else
3247 AssertCompile(0);
3248#endif
3249}
3250
3251
3252
3253
3254/**
3255 * Syncs a page during a PGMVerifyAccess() call.
3256 *
3257 * @returns VBox status code (informational included).
3258 * @param pVCpu The VMCPU handle.
3259 * @param GCPtrPage The address of the page to sync.
3260 * @param fPage The effective guest page flags.
3261 * @param uErr The trap error code.
3262 * @remarks This will normally never be called on invalid guest page
3263 * translation entries.
3264 */
3265PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3266{
3267 PVM pVM = pVCpu->CTX_SUFF(pVM);
3268
3269 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3270
3271 Assert(!pVM->pgm.s.fNestedPaging);
3272#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3273 || PGM_GST_TYPE == PGM_TYPE_REAL \
3274 || PGM_GST_TYPE == PGM_TYPE_PROT \
3275 || PGM_GST_TYPE == PGM_TYPE_PAE \
3276 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3277 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3278 && PGM_SHW_TYPE != PGM_TYPE_EPT
3279
3280# ifndef IN_RING0
3281 if (!(fPage & X86_PTE_US))
3282 {
3283 /*
3284 * Mark this page as safe.
3285 */
3286 /** @todo not correct for pages that contain both code and data!! */
3287 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3288 CSAMMarkPage(pVM, GCPtrPage, true);
3289 }
3290# endif
3291
3292 /*
3293 * Get guest PD and index.
3294 */
3295 /** @todo Performance: We've done all this a jiffy ago in the
3296 * PGMGstGetPage call. */
3297# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3298# if PGM_GST_TYPE == PGM_TYPE_32BIT
3299 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3300 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3301
3302# elif PGM_GST_TYPE == PGM_TYPE_PAE
3303 unsigned iPDSrc = 0;
3304 X86PDPE PdpeSrc;
3305 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3306 if (RT_UNLIKELY(!pPDSrc))
3307 {
3308 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3309 return VINF_EM_RAW_GUEST_TRAP;
3310 }
3311
3312# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3313 unsigned iPDSrc = 0; /* shut up gcc */
3314 PX86PML4E pPml4eSrc = NULL; /* ditto */
3315 X86PDPE PdpeSrc;
3316 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3317 if (RT_UNLIKELY(!pPDSrc))
3318 {
3319 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3320 return VINF_EM_RAW_GUEST_TRAP;
3321 }
3322# endif
3323
3324# else /* !PGM_WITH_PAGING */
3325 PGSTPD pPDSrc = NULL;
3326 const unsigned iPDSrc = 0;
3327# endif /* !PGM_WITH_PAGING */
3328 int rc = VINF_SUCCESS;
3329
3330 pgmLock(pVM);
3331
3332 /*
3333 * First check if the shadow pd is present.
3334 */
3335# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3336 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage);
3337
3338# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3339 PX86PDEPAE pPdeDst;
3340 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3341 PX86PDPAE pPDDst;
3342# if PGM_GST_TYPE != PGM_TYPE_PAE
3343 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3344 X86PDPE PdpeSrc;
3345 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3346# endif
3347 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3348 if (rc != VINF_SUCCESS)
3349 {
3350 pgmUnlock(pVM);
3351 AssertRC(rc);
3352 return rc;
3353 }
3354 Assert(pPDDst);
3355 pPdeDst = &pPDDst->a[iPDDst];
3356
3357# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3358 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3359 PX86PDPAE pPDDst;
3360 PX86PDEPAE pPdeDst;
3361
3362# if PGM_GST_TYPE == PGM_TYPE_PROT
3363 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3364 X86PML4E Pml4eSrc;
3365 X86PDPE PdpeSrc;
3366 PX86PML4E pPml4eSrc = &Pml4eSrc;
3367 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3368 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3369# endif
3370
3371 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3372 if (rc != VINF_SUCCESS)
3373 {
3374 pgmUnlock(pVM);
3375 AssertRC(rc);
3376 return rc;
3377 }
3378 Assert(pPDDst);
3379 pPdeDst = &pPDDst->a[iPDDst];
3380# endif
3381
3382# if defined(IN_RC)
3383 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3384 PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst);
3385# endif
3386
3387 if (!pPdeDst->n.u1Present)
3388 {
3389 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3390 if (rc != VINF_SUCCESS)
3391 {
3392# if defined(IN_RC)
3393 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3394 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3395# endif
3396 pgmUnlock(pVM);
3397 AssertRC(rc);
3398 return rc;
3399 }
3400 }
3401
3402# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3403 /* Check for dirty bit fault */
3404 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3405 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3406 Log(("PGMVerifyAccess: success (dirty)\n"));
3407 else
3408# endif
3409 {
3410# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3411 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3412# else
3413 GSTPDE PdeSrc;
3414 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3415 PdeSrc.n.u1Present = 1;
3416 PdeSrc.n.u1Write = 1;
3417 PdeSrc.n.u1Accessed = 1;
3418 PdeSrc.n.u1User = 1;
3419# endif
3420
3421 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3422 if (uErr & X86_TRAP_PF_US)
3423 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3424 else /* supervisor */
3425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3426
3427 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3428 if (RT_SUCCESS(rc))
3429 {
3430 /* Page was successfully synced */
3431 Log2(("PGMVerifyAccess: success (sync)\n"));
3432 rc = VINF_SUCCESS;
3433 }
3434 else
3435 {
3436 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3437 rc = VINF_EM_RAW_GUEST_TRAP;
3438 }
3439 }
3440# if defined(IN_RC)
3441 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
3442 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst);
3443# endif
3444 pgmUnlock(pVM);
3445 return rc;
3446
3447#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3448
3449 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3450 return VERR_INTERNAL_ERROR;
3451#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3452}
3453
3454
3455/**
3456 * Syncs the paging hierarchy starting at CR3.
3457 *
3458 * @returns VBox status code, no specials.
3459 * @param pVCpu The VMCPU handle.
3460 * @param cr0 Guest context CR0 register
3461 * @param cr3 Guest context CR3 register
3462 * @param cr4 Guest context CR4 register
3463 * @param fGlobal Including global page directories or not
3464 */
3465PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3466{
3467 PVM pVM = pVCpu->CTX_SUFF(pVM);
3468
3469 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3470
3471#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3472
3473 pgmLock(pVM);
3474
3475# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3476 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3477 if (pPool->cDirtyPages)
3478 pgmPoolResetDirtyPages(pVM);
3479# endif
3480
3481 /*
3482 * Update page access handlers.
3483 * The virtual are always flushed, while the physical are only on demand.
3484 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3485 * have to look into that later because it will have a bad influence on the performance.
3486 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3487 * bird: Yes, but that won't work for aliases.
3488 */
3489 /** @todo this MUST go away. See #1557. */
3490 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3491 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3492 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3493 pgmUnlock(pVM);
3494#endif /* !NESTED && !EPT */
3495
3496#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3497 /*
3498 * Nested / EPT - almost no work.
3499 */
3500 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3501 return VINF_SUCCESS;
3502
3503#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3504 /*
3505 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3506 * out the shadow parts when the guest modifies its tables.
3507 */
3508 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3509 return VINF_SUCCESS;
3510
3511#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3512
3513# ifndef PGM_WITHOUT_MAPPINGS
3514 /*
3515 * Check for and resolve conflicts with our guest mappings if they
3516 * are enabled and not fixed.
3517 */
3518 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3519 {
3520 int rc = pgmMapResolveConflicts(pVM);
3521 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3522 if (rc == VINF_PGM_SYNC_CR3)
3523 {
3524 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3525 return VINF_PGM_SYNC_CR3;
3526 }
3527 }
3528# else
3529 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3530# endif
3531 return VINF_SUCCESS;
3532#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3533}
3534
3535
3536
3537
3538#ifdef VBOX_STRICT
3539#ifdef IN_RC
3540# undef AssertMsgFailed
3541# define AssertMsgFailed Log
3542#endif
3543#ifdef IN_RING3
3544# include <VBox/dbgf.h>
3545
3546/**
3547 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3548 *
3549 * @returns VBox status code (VINF_SUCCESS).
3550 * @param cr3 The root of the hierarchy.
3551 * @param crr The cr4, only PAE and PSE is currently used.
3552 * @param fLongMode Set if long mode, false if not long mode.
3553 * @param cMaxDepth Number of levels to dump.
3554 * @param pHlp Pointer to the output functions.
3555 */
3556RT_C_DECLS_BEGIN
3557VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3558RT_C_DECLS_END
3559
3560#endif
3561
3562/**
3563 * Checks that the shadow page table is in sync with the guest one.
3564 *
3565 * @returns The number of errors.
3566 * @param pVM The virtual machine.
3567 * @param pVCpu The VMCPU handle.
3568 * @param cr3 Guest context CR3 register
3569 * @param cr4 Guest context CR4 register
3570 * @param GCPtr Where to start. Defaults to 0.
3571 * @param cb How much to check. Defaults to everything.
3572 */
3573PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3574{
3575#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3576 return 0;
3577#else
3578 unsigned cErrors = 0;
3579 PVM pVM = pVCpu->CTX_SUFF(pVM);
3580 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3581
3582#if PGM_GST_TYPE == PGM_TYPE_PAE
3583 /** @todo currently broken; crashes below somewhere */
3584 AssertFailed();
3585#endif
3586
3587#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3588 || PGM_GST_TYPE == PGM_TYPE_PAE \
3589 || PGM_GST_TYPE == PGM_TYPE_AMD64
3590
3591 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3592 PPGMCPU pPGM = &pVCpu->pgm.s;
3593 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3594 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3595# ifndef IN_RING0
3596 RTHCPHYS HCPhys; /* general usage. */
3597# endif
3598 int rc;
3599
3600 /*
3601 * Check that the Guest CR3 and all its mappings are correct.
3602 */
3603 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3604 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3605 false);
3606# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3607# if PGM_GST_TYPE == PGM_TYPE_32BIT
3608 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3609# else
3610 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3611# endif
3612 AssertRCReturn(rc, 1);
3613 HCPhys = NIL_RTHCPHYS;
3614 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3615 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3616# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3617 pgmGstGet32bitPDPtr(pVCpu);
3618 RTGCPHYS GCPhys;
3619 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3620 AssertRCReturn(rc, 1);
3621 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3622# endif
3623# endif /* !IN_RING0 */
3624
3625 /*
3626 * Get and check the Shadow CR3.
3627 */
3628# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3629 unsigned cPDEs = X86_PG_ENTRIES;
3630 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3631# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3632# if PGM_GST_TYPE == PGM_TYPE_32BIT
3633 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3634# else
3635 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3636# endif
3637 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3638# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3639 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3640 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3641# endif
3642 if (cb != ~(RTGCPTR)0)
3643 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3644
3645/** @todo call the other two PGMAssert*() functions. */
3646
3647# if PGM_GST_TYPE == PGM_TYPE_AMD64
3648 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3649
3650 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3651 {
3652 PPGMPOOLPAGE pShwPdpt = NULL;
3653 PX86PML4E pPml4eSrc;
3654 PX86PML4E pPml4eDst;
3655 RTGCPHYS GCPhysPdptSrc;
3656
3657 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3658 pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4);
3659
3660 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3661 if (!pPml4eDst->n.u1Present)
3662 {
3663 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3664 continue;
3665 }
3666
3667 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3668 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3669
3670 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3671 {
3672 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3673 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3674 cErrors++;
3675 continue;
3676 }
3677
3678 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3679 {
3680 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3681 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3682 cErrors++;
3683 continue;
3684 }
3685
3686 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3687 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3688 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3689 {
3690 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3691 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3692 cErrors++;
3693 continue;
3694 }
3695# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3696 {
3697# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3698
3699# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3700 /*
3701 * Check the PDPTEs too.
3702 */
3703 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3704
3705 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3706 {
3707 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3708 PPGMPOOLPAGE pShwPde = NULL;
3709 PX86PDPE pPdpeDst;
3710 RTGCPHYS GCPhysPdeSrc;
3711# if PGM_GST_TYPE == PGM_TYPE_PAE
3712 X86PDPE PdpeSrc;
3713 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3714 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
3715# else
3716 PX86PML4E pPml4eSrcIgn;
3717 X86PDPE PdpeSrc;
3718 PX86PDPT pPdptDst;
3719 PX86PDPAE pPDDst;
3720 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3721
3722 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3723 if (rc != VINF_SUCCESS)
3724 {
3725 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3726 GCPtr += 512 * _2M;
3727 continue; /* next PDPTE */
3728 }
3729 Assert(pPDDst);
3730# endif
3731 Assert(iPDSrc == 0);
3732
3733 pPdpeDst = &pPdptDst->a[iPdpt];
3734
3735 if (!pPdpeDst->n.u1Present)
3736 {
3737 GCPtr += 512 * _2M;
3738 continue; /* next PDPTE */
3739 }
3740
3741 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3742 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3743
3744 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3745 {
3746 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3747 GCPtr += 512 * _2M;
3748 cErrors++;
3749 continue;
3750 }
3751
3752 if (GCPhysPdeSrc != pShwPde->GCPhys)
3753 {
3754# if PGM_GST_TYPE == PGM_TYPE_AMD64
3755 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3756# else
3757 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3758# endif
3759 GCPtr += 512 * _2M;
3760 cErrors++;
3761 continue;
3762 }
3763
3764# if PGM_GST_TYPE == PGM_TYPE_AMD64
3765 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3766 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3767 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3768 {
3769 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3770 GCPtr += 512 * _2M;
3771 cErrors++;
3772 continue;
3773 }
3774# endif
3775
3776# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3777 {
3778# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3779# if PGM_GST_TYPE == PGM_TYPE_32BIT
3780 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3781# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3782 PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s);
3783# endif
3784# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3785 /*
3786 * Iterate the shadow page directory.
3787 */
3788 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3789 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3790
3791 for (;
3792 iPDDst < cPDEs;
3793 iPDDst++, GCPtr += cIncrement)
3794 {
3795# if PGM_SHW_TYPE == PGM_TYPE_PAE
3796 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr);
3797# else
3798 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3799# endif
3800 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3801 {
3802 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3803 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3804 {
3805 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3806 cErrors++;
3807 continue;
3808 }
3809 }
3810 else if ( (PdeDst.u & X86_PDE_P)
3811 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3812 )
3813 {
3814 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3815 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3816 if (!pPoolPage)
3817 {
3818 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3819 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3820 cErrors++;
3821 continue;
3822 }
3823 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage);
3824
3825 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3826 {
3827 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3828 GCPtr, (uint64_t)PdeDst.u));
3829 cErrors++;
3830 }
3831
3832 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3833 {
3834 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3835 GCPtr, (uint64_t)PdeDst.u));
3836 cErrors++;
3837 }
3838
3839 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3840 if (!PdeSrc.n.u1Present)
3841 {
3842 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3843 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3844 cErrors++;
3845 continue;
3846 }
3847
3848 if ( !PdeSrc.b.u1Size
3849 || !fBigPagesSupported)
3850 {
3851 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3852# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3853 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3854# endif
3855 }
3856 else
3857 {
3858# if PGM_GST_TYPE == PGM_TYPE_32BIT
3859 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3860 {
3861 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3862 GCPtr, (uint64_t)PdeSrc.u));
3863 cErrors++;
3864 continue;
3865 }
3866# endif
3867 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
3868# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3869 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3870# endif
3871 }
3872
3873 if ( pPoolPage->enmKind
3874 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3875 {
3876 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3877 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3878 cErrors++;
3879 }
3880
3881 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3882 if (!pPhysPage)
3883 {
3884 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3885 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3886 cErrors++;
3887 continue;
3888 }
3889
3890 if (GCPhysGst != pPoolPage->GCPhys)
3891 {
3892 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3893 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3894 cErrors++;
3895 continue;
3896 }
3897
3898 if ( !PdeSrc.b.u1Size
3899 || !fBigPagesSupported)
3900 {
3901 /*
3902 * Page Table.
3903 */
3904 const GSTPT *pPTSrc;
3905 rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3906 if (RT_FAILURE(rc))
3907 {
3908 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3909 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3910 cErrors++;
3911 continue;
3912 }
3913 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3914 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3915 {
3916 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3917 // (This problem will go away when/if we shadow multiple CR3s.)
3918 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3919 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3920 cErrors++;
3921 continue;
3922 }
3923 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3924 {
3925 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3926 GCPtr, (uint64_t)PdeDst.u));
3927 cErrors++;
3928 continue;
3929 }
3930
3931 /* iterate the page table. */
3932# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3933 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3934 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3935# else
3936 const unsigned offPTSrc = 0;
3937# endif
3938 for (unsigned iPT = 0, off = 0;
3939 iPT < RT_ELEMENTS(pPTDst->a);
3940 iPT++, off += PAGE_SIZE)
3941 {
3942 const SHWPTE PteDst = pPTDst->a[iPT];
3943
3944 /* skip not-present entries. */
3945 if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3946 continue;
3947 Assert(PteDst.n.u1Present);
3948
3949 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3950 if (!PteSrc.n.u1Present)
3951 {
3952# ifdef IN_RING3
3953 PGMAssertHandlerAndFlagsInSync(pVM);
3954 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3955# endif
3956 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3957 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3958 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3959 cErrors++;
3960 continue;
3961 }
3962
3963 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3964# if 1 /** @todo sync accessed bit properly... */
3965 fIgnoreFlags |= X86_PTE_A;
3966# endif
3967
3968 /* match the physical addresses */
3969 HCPhysShw = PteDst.u & SHW_PTE_PG_MASK;
3970 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3971
3972# ifdef IN_RING3
3973 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3974 if (RT_FAILURE(rc))
3975 {
3976 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3977 {
3978 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3979 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3980 cErrors++;
3981 continue;
3982 }
3983 }
3984 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3985 {
3986 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3987 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
3988 cErrors++;
3989 continue;
3990 }
3991# endif
3992
3993 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3994 if (!pPhysPage)
3995 {
3996# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3997 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3998 {
3999 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4000 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4001 cErrors++;
4002 continue;
4003 }
4004# endif
4005 if (PteDst.n.u1Write)
4006 {
4007 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4008 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4009 cErrors++;
4010 }
4011 fIgnoreFlags |= X86_PTE_RW;
4012 }
4013 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4014 {
4015 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4016 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4017 cErrors++;
4018 continue;
4019 }
4020
4021 /* flags */
4022 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4023 {
4024 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4025 {
4026 if (PteDst.n.u1Write)
4027 {
4028 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4029 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4030 cErrors++;
4031 continue;
4032 }
4033 fIgnoreFlags |= X86_PTE_RW;
4034 }
4035 else
4036 {
4037 if ( PteDst.n.u1Present
4038# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4039 && !PGM_PAGE_IS_MMIO(pPhysPage)
4040# endif
4041 )
4042 {
4043 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4044 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4045 cErrors++;
4046 continue;
4047 }
4048 fIgnoreFlags |= X86_PTE_P;
4049 }
4050 }
4051 else
4052 {
4053 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4054 {
4055 if (PteDst.n.u1Write)
4056 {
4057 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4058 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4059 cErrors++;
4060 continue;
4061 }
4062 if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY))
4063 {
4064 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4065 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4066 cErrors++;
4067 continue;
4068 }
4069 if (PteDst.n.u1Dirty)
4070 {
4071 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4072 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4073 cErrors++;
4074 }
4075# if 0 /** @todo sync access bit properly... */
4076 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4077 {
4078 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4079 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4080 cErrors++;
4081 }
4082 fIgnoreFlags |= X86_PTE_RW;
4083# else
4084 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4085# endif
4086 }
4087 else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4088 {
4089 /* access bit emulation (not implemented). */
4090 if (PteSrc.n.u1Accessed || PteDst.n.u1Present)
4091 {
4092 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4093 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4094 cErrors++;
4095 continue;
4096 }
4097 if (!PteDst.n.u1Accessed)
4098 {
4099 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4100 GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4101 cErrors++;
4102 }
4103 fIgnoreFlags |= X86_PTE_P;
4104 }
4105# ifdef DEBUG_sandervl
4106 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4107# endif
4108 }
4109
4110 if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4111 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags)
4112 )
4113 {
4114 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4115 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4116 fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u));
4117 cErrors++;
4118 continue;
4119 }
4120 } /* foreach PTE */
4121 }
4122 else
4123 {
4124 /*
4125 * Big Page.
4126 */
4127 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4128 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4129 {
4130 if (PdeDst.n.u1Write)
4131 {
4132 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4133 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4134 cErrors++;
4135 continue;
4136 }
4137 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4138 {
4139 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4140 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4141 cErrors++;
4142 continue;
4143 }
4144# if 0 /** @todo sync access bit properly... */
4145 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4146 {
4147 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4148 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4149 cErrors++;
4150 }
4151 fIgnoreFlags |= X86_PTE_RW;
4152# else
4153 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4154# endif
4155 }
4156 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4157 {
4158 /* access bit emulation (not implemented). */
4159 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4160 {
4161 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4162 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4163 cErrors++;
4164 continue;
4165 }
4166 if (!PdeDst.n.u1Accessed)
4167 {
4168 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4169 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4170 cErrors++;
4171 }
4172 fIgnoreFlags |= X86_PTE_P;
4173 }
4174
4175 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4176 {
4177 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4178 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4179 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4180 cErrors++;
4181 }
4182
4183 /* iterate the page table. */
4184 for (unsigned iPT = 0, off = 0;
4185 iPT < RT_ELEMENTS(pPTDst->a);
4186 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4187 {
4188 const SHWPTE PteDst = pPTDst->a[iPT];
4189
4190 if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)
4191 {
4192 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4193 GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4194 cErrors++;
4195 }
4196
4197 /* skip not-present entries. */
4198 if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */
4199 continue;
4200
4201 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4202
4203 /* match the physical addresses */
4204 HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK;
4205
4206# ifdef IN_RING3
4207 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4208 if (RT_FAILURE(rc))
4209 {
4210 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4211 {
4212 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4213 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4214 cErrors++;
4215 }
4216 }
4217 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4218 {
4219 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4220 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4221 cErrors++;
4222 continue;
4223 }
4224# endif
4225 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4226 if (!pPhysPage)
4227 {
4228# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4229 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4230 {
4231 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4232 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4233 cErrors++;
4234 continue;
4235 }
4236# endif
4237 if (PteDst.n.u1Write)
4238 {
4239 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4240 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4241 cErrors++;
4242 }
4243 fIgnoreFlags |= X86_PTE_RW;
4244 }
4245 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4246 {
4247 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4248 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4249 cErrors++;
4250 continue;
4251 }
4252
4253 /* flags */
4254 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4255 {
4256 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4257 {
4258 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4259 {
4260 if (PteDst.n.u1Write)
4261 {
4262 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4263 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4264 cErrors++;
4265 continue;
4266 }
4267 fIgnoreFlags |= X86_PTE_RW;
4268 }
4269 }
4270 else
4271 {
4272 if ( PteDst.n.u1Present
4273# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4274 && !PGM_PAGE_IS_MMIO(pPhysPage)
4275# endif
4276 )
4277 {
4278 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4279 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4280 cErrors++;
4281 continue;
4282 }
4283 fIgnoreFlags |= X86_PTE_P;
4284 }
4285 }
4286
4287 if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags)
4288 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */
4289 )
4290 {
4291 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4292 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags,
4293 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u));
4294 cErrors++;
4295 continue;
4296 }
4297 } /* for each PTE */
4298 }
4299 }
4300 /* not present */
4301
4302 } /* for each PDE */
4303
4304 } /* for each PDPTE */
4305
4306 } /* for each PML4E */
4307
4308# ifdef DEBUG
4309 if (cErrors)
4310 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4311# endif
4312
4313#endif /* GST == 32BIT, PAE or AMD64 */
4314 return cErrors;
4315
4316#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4317}
4318#endif /* VBOX_STRICT */
4319
4320
4321/**
4322 * Sets up the CR3 for shadow paging
4323 *
4324 * @returns Strict VBox status code.
4325 * @retval VINF_SUCCESS.
4326 *
4327 * @param pVCpu The VMCPU handle.
4328 * @param GCPhysCR3 The physical address in the CR3 register.
4329 */
4330PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4331{
4332 PVM pVM = pVCpu->CTX_SUFF(pVM);
4333
4334 /* Update guest paging info. */
4335#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4336 || PGM_GST_TYPE == PGM_TYPE_PAE \
4337 || PGM_GST_TYPE == PGM_TYPE_AMD64
4338
4339 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4340
4341 /*
4342 * Map the page CR3 points at.
4343 */
4344 RTHCPTR HCPtrGuestCR3;
4345 RTHCPHYS HCPhysGuestCR3;
4346 pgmLock(pVM);
4347 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4348 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4349 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4350 /** @todo this needs some reworking wrt. locking. */
4351# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4352 HCPtrGuestCR3 = NIL_RTHCPTR;
4353 int rc = VINF_SUCCESS;
4354# else
4355 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4356# endif
4357 pgmUnlock(pVM);
4358 if (RT_SUCCESS(rc))
4359 {
4360 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4361 if (RT_SUCCESS(rc))
4362 {
4363# ifdef IN_RC
4364 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4365# endif
4366# if PGM_GST_TYPE == PGM_TYPE_32BIT
4367 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4368# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4369 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4370# endif
4371 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4372
4373# elif PGM_GST_TYPE == PGM_TYPE_PAE
4374 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4375 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4376# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4377 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4378# endif
4379 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4380 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4381
4382 /*
4383 * Map the 4 PDs too.
4384 */
4385 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4386 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4387 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4388 {
4389 if (pGuestPDPT->a[i].n.u1Present)
4390 {
4391 RTHCPTR HCPtr;
4392 RTHCPHYS HCPhys;
4393 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4394 pgmLock(pVM);
4395 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4396 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4397 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4398# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4399 HCPtr = NIL_RTHCPTR;
4400 int rc2 = VINF_SUCCESS;
4401# else
4402 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4403# endif
4404 pgmUnlock(pVM);
4405 if (RT_SUCCESS(rc2))
4406 {
4407 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4408 AssertRCReturn(rc, rc);
4409
4410 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4411# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4412 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4413# endif
4414 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4415 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4416# ifdef IN_RC
4417 PGM_INVL_PG(pVCpu, GCPtr);
4418# endif
4419 continue;
4420 }
4421 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4422 }
4423
4424 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4425# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4426 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4427# endif
4428 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4429 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4430# ifdef IN_RC
4431 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4432# endif
4433 }
4434
4435# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4436 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4437# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4438 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4439# endif
4440# endif
4441 }
4442 else
4443 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4444 }
4445 else
4446 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4447
4448#else /* prot/real stub */
4449 int rc = VINF_SUCCESS;
4450#endif
4451
4452 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4453# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4454 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4455 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4456 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4457 && PGM_GST_TYPE != PGM_TYPE_PROT))
4458
4459 Assert(!pVM->pgm.s.fNestedPaging);
4460
4461 /*
4462 * Update the shadow root page as well since that's not fixed.
4463 */
4464 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4465 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4466 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4467 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4468 PPGMPOOLPAGE pNewShwPageCR3;
4469
4470 pgmLock(pVM);
4471
4472# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4473 if (pPool->cDirtyPages)
4474 pgmPoolResetDirtyPages(pVM);
4475# endif
4476
4477 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4478 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4479 AssertFatalRC(rc);
4480 rc = VINF_SUCCESS;
4481
4482# ifdef IN_RC
4483 /*
4484 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4485 * state will be inconsistent! Flush important things now while
4486 * we still can and then make sure there are no ring-3 calls.
4487 */
4488 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4489 VMMRZCallRing3Disable(pVCpu);
4490# endif
4491
4492 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4493 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4494 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4495# ifdef IN_RING0
4496 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4497 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4498# elif defined(IN_RC)
4499 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4500 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4501# else
4502 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4503 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4504# endif
4505
4506# ifndef PGM_WITHOUT_MAPPINGS
4507 /*
4508 * Apply all hypervisor mappings to the new CR3.
4509 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4510 * make sure we check for conflicts in the new CR3 root.
4511 */
4512# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4513 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4514# endif
4515 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4516 AssertRCReturn(rc, rc);
4517# endif
4518
4519 /* Set the current hypervisor CR3. */
4520 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4521 SELMShadowCR3Changed(pVM, pVCpu);
4522
4523# ifdef IN_RC
4524 /* NOTE: The state is consistent again. */
4525 VMMRZCallRing3Enable(pVCpu);
4526# endif
4527
4528 /* Clean up the old CR3 root. */
4529 if ( pOldShwPageCR3
4530 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4531 {
4532 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4533# ifndef PGM_WITHOUT_MAPPINGS
4534 /* Remove the hypervisor mappings from the shadow page table. */
4535 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4536# endif
4537 /* Mark the page as unlocked; allow flushing again. */
4538 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4539
4540 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4541 }
4542 pgmUnlock(pVM);
4543# endif
4544
4545 return rc;
4546}
4547
4548/**
4549 * Unmaps the shadow CR3.
4550 *
4551 * @returns VBox status, no specials.
4552 * @param pVCpu The VMCPU handle.
4553 */
4554PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4555{
4556 LogFlow(("UnmapCR3\n"));
4557
4558 int rc = VINF_SUCCESS;
4559 PVM pVM = pVCpu->CTX_SUFF(pVM);
4560
4561 /*
4562 * Update guest paging info.
4563 */
4564#if PGM_GST_TYPE == PGM_TYPE_32BIT
4565 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4566# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4567 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4568# endif
4569 pVCpu->pgm.s.pGst32BitPdRC = 0;
4570
4571#elif PGM_GST_TYPE == PGM_TYPE_PAE
4572 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4573# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4574 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4575# endif
4576 pVCpu->pgm.s.pGstPaePdptRC = 0;
4577 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4578 {
4579 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4580# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4581 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4582# endif
4583 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4584 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4585 }
4586
4587#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4588 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4589# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4590 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4591# endif
4592
4593#else /* prot/real mode stub */
4594 /* nothing to do */
4595#endif
4596
4597#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4598 /*
4599 * Update shadow paging info.
4600 */
4601# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4602 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4603 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4604
4605# if PGM_GST_TYPE != PGM_TYPE_REAL
4606 Assert(!pVM->pgm.s.fNestedPaging);
4607# endif
4608
4609 pgmLock(pVM);
4610
4611# ifndef PGM_WITHOUT_MAPPINGS
4612 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4613 /* Remove the hypervisor mappings from the shadow page table. */
4614 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4615# endif
4616
4617 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4618 {
4619 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4620
4621 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4622
4623# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4624 if (pPool->cDirtyPages)
4625 pgmPoolResetDirtyPages(pVM);
4626# endif
4627
4628 /* Mark the page as unlocked; allow flushing again. */
4629 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4630
4631 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4632 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4633 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4634 pVCpu->pgm.s.pShwPageCR3RC = 0;
4635 pVCpu->pgm.s.iShwUser = 0;
4636 pVCpu->pgm.s.iShwUserTable = 0;
4637 }
4638 pgmUnlock(pVM);
4639# endif
4640#endif /* !IN_RC*/
4641
4642 return rc;
4643}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette