VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 31832

Last change on this file since 31832 was 31832, checked in by vboxsync, 15 years ago

PGM: The other w7-64 regression. Trouble is that they're using PTE bits 52:62 for something.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 199.3 KB
Line 
1/* $Id: PGMAllBth.h 31832 2010-08-21 00:04:57Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
122 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
123 return VINF_EM_RAW_GUEST_TRAP;
124}
125# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
126
127
128/**
129 * Deal with a guest page fault.
130 *
131 * The caller has taken the PGM lock.
132 *
133 * @returns Strict VBox status code.
134 *
135 * @param pVCpu The current CPU.
136 * @param uErr The error code.
137 * @param pRegFrame The register frame.
138 * @param pvFault The fault address.
139 * @param pPage The guest page at @a pvFault.
140 * @param pGstWalk The guest page table walk result.
141 * @param pfLockTaken PGM lock taken here or not (out). This is true
142 * when we're called.
143 */
144static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
145 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
146# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 , PGSTPTWALK pGstWalk
148# endif
149 )
150{
151# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
153#endif
154 PVM pVM = pVCpu->CTX_SUFF(pVM);
155 int rc;
156
157 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
158 {
159 /*
160 * Physical page access handler.
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
164# else
165 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
166# endif
167 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
168 if (pCur)
169 {
170# ifdef PGM_SYNC_N_PAGES
171 /*
172 * If the region is write protected and we got a page not present fault, then sync
173 * the pages. If the fault was caused by a read, then restart the instruction.
174 * In case of write access continue to the GC write handler.
175 *
176 * ASSUMES that there is only one handler per page or that they have similar write properties.
177 */
178 if ( !(uErr & X86_TRAP_PF_P)
179 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
180 {
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
183# else
184 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
185# endif
186 if ( RT_FAILURE(rc)
187 || !(uErr & X86_TRAP_PF_RW)
188 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
189 {
190 AssertRC(rc);
191 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
192 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
193 return rc;
194 }
195 }
196# endif
197# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
198 /*
199 * If the access was not thru a #PF(RSVD|...) resync the page.
200 */
201 if ( !(uErr & X86_TRAP_PF_RSVD)
202 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
203# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
204 && pGstWalk->Core.fEffectiveRW
205 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
206# endif
207 )
208 {
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
211# else
212 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
213# endif
214 if ( RT_FAILURE(rc)
215 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
216 {
217 AssertRC(rc);
218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
219 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
220 return rc;
221 }
222 }
223# endif
224
225 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
226 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
227 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
228 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
229 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
231 else
232 {
233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
234 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
235 }
236
237 if (pCur->CTX_SUFF(pfnHandler))
238 {
239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
240 void *pvUser = pCur->CTX_SUFF(pvUser);
241# ifdef IN_RING0
242 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
243# else
244 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
245# endif
246
247 STAM_PROFILE_START(&pCur->Stat, h);
248 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
249 {
250 pgmUnlock(pVM);
251 *pfLockTaken = false;
252 }
253
254 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
255
256# ifdef VBOX_WITH_STATISTICS
257 pgmLock(pVM);
258 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
259 if (pCur)
260 STAM_PROFILE_STOP(&pCur->Stat, h);
261 pgmUnlock(pVM);
262# endif
263 }
264 else
265 rc = VINF_EM_RAW_EMULATE_INSTR;
266
267 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
268 return rc;
269 }
270 }
271# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
272 else
273 {
274# ifdef PGM_SYNC_N_PAGES
275 /*
276 * If the region is write protected and we got a page not present fault, then sync
277 * the pages. If the fault was caused by a read, then restart the instruction.
278 * In case of write access continue to the GC write handler.
279 */
280 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
281 && !(uErr & X86_TRAP_PF_P))
282 {
283 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
284 if ( RT_FAILURE(rc)
285 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
286 || !(uErr & X86_TRAP_PF_RW))
287 {
288 AssertRC(rc);
289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
291 return rc;
292 }
293 }
294# endif
295 /*
296 * Ok, it's an virtual page access handler.
297 *
298 * Since it's faster to search by address, we'll do that first
299 * and then retry by GCPhys if that fails.
300 */
301 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
302 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
303 * out of sync, because the page was changed without us noticing it (not-present -> present
304 * without invlpg or mov cr3, xxx).
305 */
306 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
307 if (pCur)
308 {
309 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
310 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
311 || !(uErr & X86_TRAP_PF_P)
312 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
313 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
314 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
315
316 if ( pvFault - pCur->Core.Key < pCur->cb
317 && ( uErr & X86_TRAP_PF_RW
318 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
319 {
320# ifdef IN_RC
321 STAM_PROFILE_START(&pCur->Stat, h);
322 RTGCPTR GCPtrStart = pCur->Core.Key;
323 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
324 pgmUnlock(pVM);
325 *pfLockTaken = false;
326
327 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
328
329# ifdef VBOX_WITH_STATISTICS
330 pgmLock(pVM);
331 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
332 if (pCur)
333 STAM_PROFILE_STOP(&pCur->Stat, h);
334 pgmUnlock(pVM);
335# endif
336# else
337 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
338# endif
339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
340 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
341 return rc;
342 }
343 /* Unhandled part of a monitored page */
344 }
345 else
346 {
347 /* Check by physical address. */
348 unsigned iPage;
349 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
350 Assert(RT_SUCCESS(rc) || !pCur);
351 if ( pCur
352 && ( uErr & X86_TRAP_PF_RW
353 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
354 {
355 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
356# ifdef IN_RC
357 STAM_PROFILE_START(&pCur->Stat, h);
358 RTGCPTR GCPtrStart = pCur->Core.Key;
359 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
360 pgmUnlock(pVM);
361 *pfLockTaken = false;
362
363 RTGCPTR off = (iPage << PAGE_SHIFT)
364 + (pvFault & PAGE_OFFSET_MASK)
365 - (GCPtrStart & PAGE_OFFSET_MASK);
366 Assert(off < pCur->cb);
367 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
368
369# ifdef VBOX_WITH_STATISTICS
370 pgmLock(pVM);
371 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
372 if (pCur)
373 STAM_PROFILE_STOP(&pCur->Stat, h);
374 pgmUnlock(pVM);
375# endif
376# else
377 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
378# endif
379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
380 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
381 return rc;
382 }
383 }
384 }
385# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
386
387 /*
388 * There is a handled area of the page, but this fault doesn't belong to it.
389 * We must emulate the instruction.
390 *
391 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
392 * we first check if this was a page-not-present fault for a page with only
393 * write access handlers. Restart the instruction if it wasn't a write access.
394 */
395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
396
397 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
398 && !(uErr & X86_TRAP_PF_P))
399 {
400# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
401 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
402# else
403 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
404# endif
405 if ( RT_FAILURE(rc)
406 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
407 || !(uErr & X86_TRAP_PF_RW))
408 {
409 AssertRC(rc);
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
411 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
412 return rc;
413 }
414 }
415
416 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
417 * It's writing to an unhandled part of the LDT page several million times.
418 */
419 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
420 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
421 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
422 return rc;
423} /* if any kind of handler */
424
425
426/**
427 * #PF Handler for raw-mode guest execution.
428 *
429 * @returns VBox status code (appropriate for trap handling and GC return).
430 *
431 * @param pVCpu VMCPU Handle.
432 * @param uErr The trap error code.
433 * @param pRegFrame Trap register frame.
434 * @param pvFault The fault address.
435 * @param pfLockTaken PGM lock taken here or not (out)
436 */
437PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
438{
439 PVM pVM = pVCpu->CTX_SUFF(pVM);
440
441 *pfLockTaken = false;
442
443# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
444 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
445 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
446 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
447 int rc;
448
449# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
450 /*
451 * Walk the guest page translation tables and check if it's a guest fault.
452 */
453 GSTPTWALK GstWalk;
454 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
455 if (RT_FAILURE_NP(rc))
456 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
457
458 /* assert some GstWalk sanity. */
459# if PGM_GST_TYPE == PGM_TYPE_AMD64
460 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
461# endif
462# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
463 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
464# endif
465 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
466 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
467 Assert(GstWalk.Core.fSucceeded);
468
469 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
470 {
471 if ( ( (uErr & X86_TRAP_PF_RW)
472 && !GstWalk.Core.fEffectiveRW
473 && ( (uErr & X86_TRAP_PF_US)
474 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
475 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
476 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
477 )
478 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
479 }
480
481 /*
482 * Set the accessed and dirty flags.
483 */
484# if PGM_GST_TYPE == PGM_TYPE_AMD64
485 GstWalk.Pml4e.u |= X86_PML4E_A;
486 GstWalk.pPml4e->u |= X86_PML4E_A;
487 GstWalk.Pdpe.u |= X86_PDPE_A;
488 GstWalk.pPdpe->u |= X86_PDPE_A;
489# endif
490 if (GstWalk.Core.fBigPage)
491 {
492 Assert(GstWalk.Pde.b.u1Size);
493 if (uErr & X86_TRAP_PF_RW)
494 {
495 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
496 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
497 }
498 else
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A;
501 GstWalk.pPde->u |= X86_PDE4M_A;
502 }
503 }
504 else
505 {
506 Assert(!GstWalk.Pde.b.u1Size);
507 GstWalk.Pde.u |= X86_PDE_A;
508 GstWalk.pPde->u |= X86_PDE_A;
509 if (uErr & X86_TRAP_PF_RW)
510 {
511# ifdef VBOX_WITH_STATISTICS
512 if (!GstWalk.Pte.n.u1Dirty)
513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
514 else
515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
516# endif
517 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
518 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
519 }
520 else
521 {
522 GstWalk.Pte.u |= X86_PTE_A;
523 GstWalk.pPte->u |= X86_PTE_A;
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
528 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
529# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
530 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
531# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
532
533 /* Take the big lock now. */
534 *pfLockTaken = true;
535 pgmLock(pVM);
536
537# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
538 /*
539 * If it is a reserved bit fault we know that it is an MMIO (access
540 * handler) related fault and can skip some 200 lines of code.
541 */
542 if (uErr & X86_TRAP_PF_RSVD)
543 {
544 Assert(uErr & X86_TRAP_PF_P);
545 PPGMPAGE pPage;
546# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
547 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
548 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
549 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
550 pfLockTaken, &GstWalk));
551 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
552# else
553 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
554 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
555 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
556 pfLockTaken));
557 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
558# endif
559 AssertRC(rc);
560 }
561# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
562
563 /*
564 * Fetch the guest PDE, PDPE and PML4E.
565 */
566# if PGM_SHW_TYPE == PGM_TYPE_32BIT
567 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
568 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
569
570# elif PGM_SHW_TYPE == PGM_TYPE_PAE
571 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
572 PX86PDPAE pPDDst;
573# if PGM_GST_TYPE == PGM_TYPE_PAE
574 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
575# else
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
577# endif
578 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
579
580# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
581 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
582 PX86PDPAE pPDDst;
583# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
584 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
585 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
586# else
587 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
588# endif
589 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
590
591# elif PGM_SHW_TYPE == PGM_TYPE_EPT
592 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
593 PEPTPD pPDDst;
594 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
596# endif
597 Assert(pPDDst);
598
599# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
600 /*
601 * Dirty page handling.
602 *
603 * If we successfully correct the write protection fault due to dirty bit
604 * tracking, then return immediately.
605 */
606 if (uErr & X86_TRAP_PF_RW) /* write fault? */
607 {
608 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
609 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
610 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
611 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
612 {
613 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
614 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
615 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
616 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
617 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
618 return VINF_SUCCESS;
619 }
620 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
621 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
622 }
623
624# if 0 /* rarely useful; leave for debugging. */
625 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
626# endif
627# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
628
629 /*
630 * A common case is the not-present error caused by lazy page table syncing.
631 *
632 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
633 * here so we can safely assume that the shadow PT is present when calling
634 * SyncPage later.
635 *
636 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
637 * of mapping conflict and defer to SyncCR3 in R3.
638 * (Again, we do NOT support access handlers for non-present guest pages.)
639 *
640 */
641# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
642 Assert(GstWalk.Pde.n.u1Present);
643# endif
644 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
645 && !pPDDst->a[iPDDst].n.u1Present)
646 {
647 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
648# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
649 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
650 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
651# else
652 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
653 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
654# endif
655 if (RT_SUCCESS(rc))
656 return rc;
657 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
658 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
659 return VINF_PGM_SYNC_CR3;
660 }
661
662# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
663 /*
664 * Check if this address is within any of our mappings.
665 *
666 * This is *very* fast and it's gonna save us a bit of effort below and prevent
667 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
668 * (BTW, it's impossible to have physical access handlers in a mapping.)
669 */
670 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
671 {
672 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
673 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
674 {
675 if (pvFault < pMapping->GCPtr)
676 break;
677 if (pvFault - pMapping->GCPtr < pMapping->cb)
678 {
679 /*
680 * The first thing we check is if we've got an undetected conflict.
681 */
682 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
683 {
684 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
685 while (iPT-- > 0)
686 if (GstWalk.pPde[iPT].n.u1Present)
687 {
688 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
689 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
690 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
691 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
692 return VINF_PGM_SYNC_CR3;
693 }
694 }
695
696 /*
697 * Check if the fault address is in a virtual page access handler range.
698 */
699 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
700 if ( pCur
701 && pvFault - pCur->Core.Key < pCur->cb
702 && uErr & X86_TRAP_PF_RW)
703 {
704# ifdef IN_RC
705 STAM_PROFILE_START(&pCur->Stat, h);
706 pgmUnlock(pVM);
707 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
708 pgmLock(pVM);
709 STAM_PROFILE_STOP(&pCur->Stat, h);
710# else
711 AssertFailed();
712 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
713# endif
714 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
715 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
716 return rc;
717 }
718
719 /*
720 * Pretend we're not here and let the guest handle the trap.
721 */
722 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
723 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
724 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
725 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
726 return VINF_EM_RAW_GUEST_TRAP;
727 }
728 }
729 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
730# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
731
732 /*
733 * Check if this fault address is flagged for special treatment,
734 * which means we'll have to figure out the physical address and
735 * check flags associated with it.
736 *
737 * ASSUME that we can limit any special access handling to pages
738 * in page tables which the guest believes to be present.
739 */
740# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
741 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
742# else
743 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
744# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
745 PPGMPAGE pPage;
746 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
747 if (RT_FAILURE(rc))
748 {
749 /*
750 * When the guest accesses invalid physical memory (e.g. probing
751 * of RAM or accessing a remapped MMIO range), then we'll fall
752 * back to the recompiler to emulate the instruction.
753 */
754 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
755 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
756 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
757 return VINF_EM_RAW_EMULATE_INSTR;
758 }
759
760 /*
761 * Any handlers for this page?
762 */
763 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
764# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
765 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
766 &GstWalk));
767# else
768 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
769# endif
770
771 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
772
773# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
774 if (uErr & X86_TRAP_PF_P)
775 {
776 /*
777 * The page isn't marked, but it might still be monitored by a virtual page access handler.
778 * (ASSUMES no temporary disabling of virtual handlers.)
779 */
780 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
781 * we should correct both the shadow page table and physical memory flags, and not only check for
782 * accesses within the handler region but for access to pages with virtual handlers. */
783 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
784 if (pCur)
785 {
786 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
787 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
788 || !(uErr & X86_TRAP_PF_P)
789 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
790 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
791
792 if ( pvFault - pCur->Core.Key < pCur->cb
793 && ( uErr & X86_TRAP_PF_RW
794 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
795 {
796# ifdef IN_RC
797 STAM_PROFILE_START(&pCur->Stat, h);
798 pgmUnlock(pVM);
799 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
800 pgmLock(pVM);
801 STAM_PROFILE_STOP(&pCur->Stat, h);
802# else
803 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
804# endif
805 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
806 return rc;
807 }
808 }
809 }
810# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
811
812 /*
813 * We are here only if page is present in Guest page tables and
814 * trap is not handled by our handlers.
815 *
816 * Check it for page out-of-sync situation.
817 */
818 if (!(uErr & X86_TRAP_PF_P))
819 {
820 /*
821 * Page is not present in our page tables. Try to sync it!
822 */
823 if (uErr & X86_TRAP_PF_US)
824 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
825 else /* supervisor */
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
827
828 if (PGM_PAGE_IS_BALLOONED(pPage))
829 {
830 /* Emulate reads from ballooned pages as they are not present in
831 our shadow page tables. (Required for e.g. Solaris guests; soft
832 ecc, random nr generator.) */
833 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
834 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
835 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
836 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
837 return rc;
838 }
839
840# if defined(LOG_ENABLED) && !defined(IN_RING0)
841 RTGCPHYS GCPhys2;
842 uint64_t fPageGst2;
843 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
844# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
845 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
846 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
847# else
848 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
849 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
850# endif
851# endif /* LOG_ENABLED */
852
853# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
854 if ( !GstWalk.Core.fEffectiveUS
855 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
856 {
857 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
858 if ( pvFault == (RTGCPTR)pRegFrame->eip
859 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
860# ifdef CSAM_DETECT_NEW_CODE_PAGES
861 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
862 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
863# endif /* CSAM_DETECT_NEW_CODE_PAGES */
864 )
865 {
866 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
867 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
868 if (rc != VINF_SUCCESS)
869 {
870 /*
871 * CSAM needs to perform a job in ring 3.
872 *
873 * Sync the page before going to the host context; otherwise we'll end up in a loop if
874 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
875 */
876 LogFlow(("CSAM ring 3 job\n"));
877 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
878 AssertRC(rc2);
879
880 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
881 return rc;
882 }
883 }
884# ifdef CSAM_DETECT_NEW_CODE_PAGES
885 else if ( uErr == X86_TRAP_PF_RW
886 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
887 && pRegFrame->ecx < 0x10000)
888 {
889 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
890 * to detect loading of new code pages.
891 */
892
893 /*
894 * Decode the instruction.
895 */
896 RTGCPTR PC;
897 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
898 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
899 if (rc == VINF_SUCCESS)
900 {
901 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
902 uint32_t cbOp;
903 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
904
905 /* For now we'll restrict this to rep movsw/d instructions */
906 if ( rc == VINF_SUCCESS
907 && pDis->pCurInstr->opcode == OP_MOVSWD
908 && (pDis->prefix & PREFIX_REP))
909 {
910 CSAMMarkPossibleCodePage(pVM, pvFault);
911 }
912 }
913 }
914# endif /* CSAM_DETECT_NEW_CODE_PAGES */
915
916 /*
917 * Mark this page as safe.
918 */
919 /** @todo not correct for pages that contain both code and data!! */
920 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
921 CSAMMarkPage(pVM, pvFault, true);
922 }
923# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
924# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
925 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
926# else
927 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
928# endif
929 if (RT_SUCCESS(rc))
930 {
931 /* The page was successfully synced, return to the guest. */
932 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
933 return VINF_SUCCESS;
934 }
935 }
936 else /* uErr & X86_TRAP_PF_P: */
937 {
938 /*
939 * Write protected pages are made writable when the guest makes the
940 * first write to it. This happens for pages that are shared, write
941 * monitored or not yet allocated.
942 *
943 * We may also end up here when CR0.WP=0 in the guest.
944 *
945 * Also, a side effect of not flushing global PDEs are out of sync
946 * pages due to physical monitored regions, that are no longer valid.
947 * Assume for now it only applies to the read/write flag.
948 */
949 if (uErr & X86_TRAP_PF_RW)
950 {
951 /*
952 * Check if it is a read-only page.
953 */
954 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
955 {
956 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
957 Assert(!PGM_PAGE_IS_ZERO(pPage));
958 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
959 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
960
961 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
962 if (rc != VINF_SUCCESS)
963 {
964 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
965 return rc;
966 }
967 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
968 return VINF_EM_NO_MEMORY;
969 }
970
971# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
972 /*
973 * Check to see if we need to emulate the instruction if CR0.WP=0.
974 */
975 if ( !GstWalk.Core.fEffectiveRW
976 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
977 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
978 {
979 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
980 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
981 if (RT_SUCCESS(rc))
982 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
983 else
984 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
985 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
986 return rc;
987 }
988# endif
989 /// @todo count the above case; else
990 if (uErr & X86_TRAP_PF_US)
991 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
992 else /* supervisor */
993 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
994
995 /*
996 * Sync the page.
997 *
998 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
999 * page is not present, which is not true in this case.
1000 */
1001# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1002 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1003# else
1004 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1005# endif
1006 if (RT_SUCCESS(rc))
1007 {
1008 /*
1009 * Page was successfully synced, return to guest but invalidate
1010 * the TLB first as the page is very likely to be in it.
1011 */
1012# if PGM_SHW_TYPE == PGM_TYPE_EPT
1013 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1014# else
1015 PGM_INVL_PG(pVCpu, pvFault);
1016# endif
1017# ifdef VBOX_STRICT
1018 RTGCPHYS GCPhys2;
1019 uint64_t fPageGst;
1020 if (!pVM->pgm.s.fNestedPaging)
1021 {
1022 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1023 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1024 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1025 }
1026 uint64_t fPageShw;
1027 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1028 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1029 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1030# endif /* VBOX_STRICT */
1031 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1032 return VINF_SUCCESS;
1033 }
1034 }
1035 /** @todo else: why are we here? */
1036
1037# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1038 /*
1039 * Check for VMM page flags vs. Guest page flags consistency.
1040 * Currently only for debug purposes.
1041 */
1042 if (RT_SUCCESS(rc))
1043 {
1044 /* Get guest page flags. */
1045 uint64_t fPageGst;
1046 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1047 if (RT_SUCCESS(rc))
1048 {
1049 uint64_t fPageShw;
1050 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1051
1052 /*
1053 * Compare page flags.
1054 * Note: we have AVL, A, D bits desynched.
1055 */
1056 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1057 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1058 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1059 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1060 }
1061 else
1062 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1063 }
1064 else
1065 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1066# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1067 }
1068
1069
1070 /*
1071 * If we get here it is because something failed above, i.e. most like guru
1072 * meditiation time.
1073 */
1074 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1075 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1076 return rc;
1077
1078# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1079 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1080 return VERR_INTERNAL_ERROR;
1081# endif
1082}
1083#endif /* !IN_RING3 */
1084
1085
1086/**
1087 * Emulation of the invlpg instruction.
1088 *
1089 *
1090 * @returns VBox status code.
1091 *
1092 * @param pVCpu The VMCPU handle.
1093 * @param GCPtrPage Page to invalidate.
1094 *
1095 * @remark ASSUMES that the guest is updating before invalidating. This order
1096 * isn't required by the CPU, so this is speculative and could cause
1097 * trouble.
1098 * @remark No TLB shootdown is done on any other VCPU as we assume that
1099 * invlpg emulation is the *only* reason for calling this function.
1100 * (The guest has to shoot down TLB entries on other CPUs itself)
1101 * Currently true, but keep in mind!
1102 *
1103 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1104 */
1105PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1106{
1107#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1108 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1109 && PGM_SHW_TYPE != PGM_TYPE_EPT
1110 int rc;
1111 PVM pVM = pVCpu->CTX_SUFF(pVM);
1112 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1113
1114 Assert(PGMIsLockOwner(pVM));
1115
1116 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1117
1118# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1119 if (pPool->cDirtyPages)
1120 pgmPoolResetDirtyPages(pVM);
1121# endif
1122
1123 /*
1124 * Get the shadow PD entry and skip out if this PD isn't present.
1125 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1126 */
1127# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1128 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1129 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1130
1131 /* Fetch the pgm pool shadow descriptor. */
1132 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1133 Assert(pShwPde);
1134
1135# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1136 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1137 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1138
1139 /* If the shadow PDPE isn't present, then skip the invalidate. */
1140 if (!pPdptDst->a[iPdpt].n.u1Present)
1141 {
1142 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1144 return VINF_SUCCESS;
1145 }
1146
1147 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1148 PPGMPOOLPAGE pShwPde = NULL;
1149 PX86PDPAE pPDDst;
1150
1151 /* Fetch the pgm pool shadow descriptor. */
1152 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1153 AssertRCSuccessReturn(rc, rc);
1154 Assert(pShwPde);
1155
1156 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1157 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1158
1159# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1160 /* PML4 */
1161 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1162 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1163 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1164 PX86PDPAE pPDDst;
1165 PX86PDPT pPdptDst;
1166 PX86PML4E pPml4eDst;
1167 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1168 if (rc != VINF_SUCCESS)
1169 {
1170 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1171 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1172 return VINF_SUCCESS;
1173 }
1174 Assert(pPDDst);
1175
1176 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1177 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1178
1179 if (!pPdpeDst->n.u1Present)
1180 {
1181 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1182 return VINF_SUCCESS;
1183 }
1184
1185 /* Fetch the pgm pool shadow descriptor. */
1186 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1187 Assert(pShwPde);
1188
1189# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1190
1191 const SHWPDE PdeDst = *pPdeDst;
1192 if (!PdeDst.n.u1Present)
1193 {
1194 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1195 return VINF_SUCCESS;
1196 }
1197
1198 /*
1199 * Get the guest PD entry and calc big page.
1200 */
1201# if PGM_GST_TYPE == PGM_TYPE_32BIT
1202 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1203 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1204 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1205# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1206 unsigned iPDSrc = 0;
1207# if PGM_GST_TYPE == PGM_TYPE_PAE
1208 X86PDPE PdpeSrcIgn;
1209 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1210# else /* AMD64 */
1211 PX86PML4E pPml4eSrcIgn;
1212 X86PDPE PdpeSrcIgn;
1213 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1214# endif
1215 GSTPDE PdeSrc;
1216
1217 if (pPDSrc)
1218 PdeSrc = pPDSrc->a[iPDSrc];
1219 else
1220 PdeSrc.u = 0;
1221# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1222 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1223
1224# ifdef IN_RING3
1225 /*
1226 * If a CR3 Sync is pending we may ignore the invalidate page operation
1227 * depending on the kind of sync and if it's a global page or not.
1228 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1229 */
1230# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1231 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1232 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1233 && fIsBigPage
1234 && PdeSrc.b.u1Global
1235 )
1236 )
1237# else
1238 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1239# endif
1240 {
1241 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1242 return VINF_SUCCESS;
1243 }
1244# endif /* IN_RING3 */
1245
1246 /*
1247 * Deal with the Guest PDE.
1248 */
1249 rc = VINF_SUCCESS;
1250 if (PdeSrc.n.u1Present)
1251 {
1252 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1253 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1254# ifndef PGM_WITHOUT_MAPPING
1255 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1256 {
1257 /*
1258 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1259 */
1260 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1261 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1263 }
1264 else
1265# endif /* !PGM_WITHOUT_MAPPING */
1266 if (!fIsBigPage)
1267 {
1268 /*
1269 * 4KB - page.
1270 */
1271 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1272 RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1273
1274# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1275 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1276 if (pShwPage->cModifications)
1277 pShwPage->cModifications = 1;
1278# endif
1279
1280# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1281 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1282 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1283# endif
1284 if (pShwPage->GCPhys == GCPhys)
1285 {
1286# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1287 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1288 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1289 if (pPT->a[iPTEDst].n.u1Present)
1290 {
1291 /* This is very unlikely with caching/monitoring enabled. */
1292 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1293 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1294 }
1295# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1296 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1297 if (RT_SUCCESS(rc))
1298 rc = VINF_SUCCESS;
1299# endif
1300 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1301 PGM_INVL_PG(pVCpu, GCPtrPage);
1302 }
1303 else
1304 {
1305 /*
1306 * The page table address changed.
1307 */
1308 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1309 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1310 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1311 ASMAtomicWriteSize(pPdeDst, 0);
1312 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1313 PGM_INVL_VCPU_TLBS(pVCpu);
1314 }
1315 }
1316 else
1317 {
1318 /*
1319 * 2/4MB - page.
1320 */
1321 /* Before freeing the page, check if anything really changed. */
1322 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1323 RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
1324# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1325 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1326 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1327# endif
1328 if ( pShwPage->GCPhys == GCPhys
1329 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1330 {
1331 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1332 /** @todo PAT */
1333 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1334 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD))
1335 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1336 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1337 {
1338 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1340 return VINF_SUCCESS;
1341 }
1342 }
1343
1344 /*
1345 * Ok, the page table is present and it's been changed in the guest.
1346 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1347 * We could do this for some flushes in GC too, but we need an algorithm for
1348 * deciding which 4MB pages containing code likely to be executed very soon.
1349 */
1350 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1351 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1352 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1353 ASMAtomicWriteSize(pPdeDst, 0);
1354 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1355 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1356 }
1357 }
1358 else
1359 {
1360 /*
1361 * Page directory is not present, mark shadow PDE not present.
1362 */
1363 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1364 {
1365 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1366 ASMAtomicWriteSize(pPdeDst, 0);
1367 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1368 PGM_INVL_PG(pVCpu, GCPtrPage);
1369 }
1370 else
1371 {
1372 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1373 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1374 }
1375 }
1376 return rc;
1377
1378#else /* guest real and protected mode */
1379 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1380 return VINF_SUCCESS;
1381#endif
1382}
1383
1384
1385/**
1386 * Update the tracking of shadowed pages.
1387 *
1388 * @param pVCpu The VMCPU handle.
1389 * @param pShwPage The shadow page.
1390 * @param HCPhys The physical page we is being dereferenced.
1391 * @param iPte Shadow PTE index
1392 */
1393DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
1394{
1395 PVM pVM = pVCpu->CTX_SUFF(pVM);
1396
1397 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1398 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1399
1400 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1401 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1402 * 2. write protect all shadowed pages. I.e. implement caching.
1403 */
1404 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1405
1406 /*
1407 * Find the guest address.
1408 */
1409 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1410 pRam;
1411 pRam = pRam->CTX_SUFF(pNext))
1412 {
1413 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1414 while (iPage-- > 0)
1415 {
1416 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1417 {
1418 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1419
1420 Assert(pShwPage->cPresent);
1421 Assert(pPool->cPresent);
1422 pShwPage->cPresent--;
1423 pPool->cPresent--;
1424
1425 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1426 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1427 return;
1428 }
1429 }
1430 }
1431
1432 for (;;)
1433 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1434}
1435
1436
1437/**
1438 * Update the tracking of shadowed pages.
1439 *
1440 * @param pVCpu The VMCPU handle.
1441 * @param pShwPage The shadow page.
1442 * @param u16 The top 16-bit of the pPage->HCPhys.
1443 * @param pPage Pointer to the guest page. this will be modified.
1444 * @param iPTDst The index into the shadow table.
1445 */
1446DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1447{
1448 PVM pVM = pVCpu->CTX_SUFF(pVM);
1449
1450 /*
1451 * Just deal with the simple first time here.
1452 */
1453 if (!u16)
1454 {
1455 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1456 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1457 /* Save the page table index. */
1458 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1459 }
1460 else
1461 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1462
1463 /* write back */
1464 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1465 PGM_PAGE_SET_TRACKING(pPage, u16);
1466
1467 /* update statistics. */
1468 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1469 pShwPage->cPresent++;
1470 if (pShwPage->iFirstPresent > iPTDst)
1471 pShwPage->iFirstPresent = iPTDst;
1472}
1473
1474
1475/**
1476 * Modifies a shadow PTE to account for access handlers.
1477 *
1478 * @param pVM The VM handle.
1479 * @param pPage The page in question.
1480 * @param fPteSrc The flags of the source PTE.
1481 * @param pPteDst The shadow PTE (output). This is temporary storage and
1482 * does not need to be set atomically.
1483 */
1484DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint32_t fPteSrc, PSHWPTE pPteDst)
1485{
1486 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1487 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1488 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1489 {
1490 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1491#if PGM_SHW_TYPE == PGM_TYPE_EPT
1492 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1493 pPteDst->n.u1Present = 1;
1494 pPteDst->n.u1Execute = 1;
1495 pPteDst->n.u1IgnorePAT = 1;
1496 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1497 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1498#else
1499 SHW_PTE_SET(*pPteDst,
1500 (fPteSrc & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1501 | PGM_PAGE_GET_HCPHYS(pPage));
1502#endif
1503 }
1504#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1505# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1506 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1507 && ( BTH_IS_NP_ACTIVE(pVM)
1508 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1509# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1510 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1511# endif
1512 )
1513 {
1514 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1515# if PGM_SHW_TYPE == PGM_TYPE_EPT
1516 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1517 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1518 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1519 pPteDst->n.u1Present = 0;
1520 pPteDst->n.u1Write = 1;
1521 pPteDst->n.u1Execute = 0;
1522 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1523 pPteDst->n.u3EMT = 7;
1524# else
1525 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1526 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1527# endif
1528 }
1529# endif
1530#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1531 else
1532 {
1533 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1534 SHW_PTE_SET(*pPteDst, 0);
1535 }
1536 /** @todo count these kinds of entries. */
1537}
1538
1539
1540/**
1541 * Creates a 4K shadow page for a guest page.
1542 *
1543 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1544 * physical address. The PdeSrc argument only the flags are used. No page
1545 * structured will be mapped in this function.
1546 *
1547 * @param pVCpu The VMCPU handle.
1548 * @param pPteDst Destination page table entry.
1549 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1550 * Can safely assume that only the flags are being used.
1551 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1552 * @param pShwPage Pointer to the shadow page.
1553 * @param iPTDst The index into the shadow table.
1554 *
1555 * @remark Not used for 2/4MB pages!
1556 */
1557DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1558 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1559{
1560 if ( PteSrc.n.u1Present
1561 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1562 {
1563 PVM pVM = pVCpu->CTX_SUFF(pVM);
1564
1565# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1566 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1567 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1568 if (pShwPage->fDirty)
1569 {
1570 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1571 PX86PTPAE pGstPT;
1572
1573 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1574 pGstPT->a[iPTDst].u = PteSrc.u;
1575 }
1576# endif
1577 /*
1578 * Find the ram range.
1579 */
1580 PPGMPAGE pPage;
1581 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1582 if (RT_SUCCESS(rc))
1583 {
1584 /* Ignore ballooned pages.
1585 Don't return errors or use a fatal assert here as part of a
1586 shadow sync range might included ballooned pages. */
1587 if (PGM_PAGE_IS_BALLOONED(pPage))
1588 {
1589 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1590 return;
1591 }
1592
1593#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1594 /* Make the page writable if necessary. */
1595 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1596 && ( PGM_PAGE_IS_ZERO(pPage)
1597 || ( PteSrc.n.u1Write
1598 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1599# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1600 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1601# endif
1602# ifdef VBOX_WITH_PAGE_SHARING
1603 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1604# endif
1605 )
1606 )
1607 )
1608 {
1609 rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1610 AssertRC(rc);
1611 }
1612#endif
1613
1614 /*
1615 * Make page table entry.
1616 */
1617 SHWPTE PteDst;
1618 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1619 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
1620 PteSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK
1621 | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT),
1622 &PteDst);
1623 else
1624 {
1625#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1626 /*
1627 * If the page or page directory entry is not marked accessed,
1628 * we mark the page not present.
1629 */
1630 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1631 {
1632 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1633 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1634 SHW_PTE_SET(PteDst, 0);
1635 }
1636 /*
1637 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1638 * when the page is modified.
1639 */
1640 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1641 {
1642 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1643 SHW_PTE_SET(PteDst,
1644 (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1645 | PGM_PAGE_GET_HCPHYS(pPage)
1646 | PGM_PTFLAGS_TRACK_DIRTY);
1647 }
1648 else
1649#endif
1650 {
1651 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1652#if PGM_SHW_TYPE == PGM_TYPE_EPT
1653 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1654 PteDst.n.u1Present = 1;
1655 PteDst.n.u1Write = 1;
1656 PteDst.n.u1Execute = 1;
1657 PteDst.n.u1IgnorePAT = 1;
1658 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1659 /* PteDst.n.u1Size = 0 */
1660#else
1661 SHW_PTE_SET(PteDst,
1662 (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1663 | PGM_PAGE_GET_HCPHYS(pPage));
1664#endif
1665 }
1666
1667 /*
1668 * Make sure only allocated pages are mapped writable.
1669 */
1670 if ( SHW_PTE_IS_P_RW(PteDst)
1671 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1672 {
1673 /* Still applies to shared pages. */
1674 Assert(!PGM_PAGE_IS_ZERO(pPage));
1675 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1676 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1677 }
1678 }
1679
1680 /*
1681 * Keep user track up to date.
1682 */
1683 if (SHW_PTE_IS_P(PteDst))
1684 {
1685 if (!SHW_PTE_IS_P(*pPteDst))
1686 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1687 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1688 {
1689 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1690 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1691 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1692 }
1693 }
1694 else if (SHW_PTE_IS_P(*pPteDst))
1695 {
1696 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1697 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1698 }
1699
1700 /*
1701 * Update statistics and commit the entry.
1702 */
1703#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1704 if (!PteSrc.n.u1Global)
1705 pShwPage->fSeenNonGlobal = true;
1706#endif
1707 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1708 return;
1709 }
1710
1711/** @todo count these three different kinds. */
1712 Log2(("SyncPageWorker: invalid address in Pte\n"));
1713 }
1714 else if (!PteSrc.n.u1Present)
1715 Log2(("SyncPageWorker: page not present in Pte\n"));
1716 else
1717 Log2(("SyncPageWorker: invalid Pte\n"));
1718
1719 /*
1720 * The page is not present or the PTE is bad. Replace the shadow PTE by
1721 * an empty entry, making sure to keep the user tracking up to date.
1722 */
1723 if (SHW_PTE_IS_P(*pPteDst))
1724 {
1725 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1726 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1727 }
1728 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1729}
1730
1731
1732/**
1733 * Syncs a guest OS page.
1734 *
1735 * There are no conflicts at this point, neither is there any need for
1736 * page table allocations.
1737 *
1738 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1739 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1740 *
1741 * @returns VBox status code.
1742 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1743 * @param pVCpu The VMCPU handle.
1744 * @param PdeSrc Page directory entry of the guest.
1745 * @param GCPtrPage Guest context page address.
1746 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1747 * @param uErr Fault error (X86_TRAP_PF_*).
1748 */
1749static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1750{
1751 PVM pVM = pVCpu->CTX_SUFF(pVM);
1752 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1753 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1754
1755 Assert(PGMIsLockOwner(pVM));
1756
1757#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1758 || PGM_GST_TYPE == PGM_TYPE_PAE \
1759 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1760 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1761 && PGM_SHW_TYPE != PGM_TYPE_EPT
1762
1763 /*
1764 * Assert preconditions.
1765 */
1766 Assert(PdeSrc.n.u1Present);
1767 Assert(cPages);
1768# if 0 /* rarely useful; leave for debugging. */
1769 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1770# endif
1771
1772 /*
1773 * Get the shadow PDE, find the shadow page table in the pool.
1774 */
1775# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1776 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1777 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1778
1779 /* Fetch the pgm pool shadow descriptor. */
1780 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1781 Assert(pShwPde);
1782
1783# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1784 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1785 PPGMPOOLPAGE pShwPde = NULL;
1786 PX86PDPAE pPDDst;
1787
1788 /* Fetch the pgm pool shadow descriptor. */
1789 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1790 AssertRCSuccessReturn(rc2, rc2);
1791 Assert(pShwPde);
1792
1793 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1794 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1795
1796# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1797 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1798 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1799 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1800 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1801
1802 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1803 AssertRCSuccessReturn(rc2, rc2);
1804 Assert(pPDDst && pPdptDst);
1805 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1806# endif
1807 SHWPDE PdeDst = *pPdeDst;
1808
1809 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1810 if (!PdeDst.n.u1Present)
1811 {
1812 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1813 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
1814 return VINF_SUCCESS; /* force the instruction to be executed again. */
1815 }
1816
1817 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1818 Assert(pShwPage);
1819
1820# if PGM_GST_TYPE == PGM_TYPE_AMD64
1821 /* Fetch the pgm pool shadow descriptor. */
1822 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1823 Assert(pShwPde);
1824# endif
1825
1826 /*
1827 * Check that the page is present and that the shadow PDE isn't out of sync.
1828 */
1829 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1830 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1831 RTGCPHYS GCPhys;
1832 if (!fBigPage)
1833 {
1834 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
1835# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1836 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1837 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1838# endif
1839 }
1840 else
1841 {
1842 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
1843# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1844 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1845 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1846# endif
1847 }
1848 if ( fPdeValid
1849 && pShwPage->GCPhys == GCPhys
1850 && PdeSrc.n.u1Present
1851 && PdeSrc.n.u1User == PdeDst.n.u1User
1852 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1853# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1854 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1855# endif
1856 )
1857 {
1858 /*
1859 * Check that the PDE is marked accessed already.
1860 * Since we set the accessed bit *before* getting here on a #PF, this
1861 * check is only meant for dealing with non-#PF'ing paths.
1862 */
1863 if (PdeSrc.n.u1Accessed)
1864 {
1865 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1866 if (!fBigPage)
1867 {
1868 /*
1869 * 4KB Page - Map the guest page table.
1870 */
1871 PGSTPT pPTSrc;
1872 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
1873 if (RT_SUCCESS(rc))
1874 {
1875# ifdef PGM_SYNC_N_PAGES
1876 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1877 if ( cPages > 1
1878 && !(uErr & X86_TRAP_PF_P)
1879 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1880 {
1881 /*
1882 * This code path is currently only taken when the caller is PGMTrap0eHandler
1883 * for non-present pages!
1884 *
1885 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1886 * deal with locality.
1887 */
1888 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1889# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1890 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1891 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1892# else
1893 const unsigned offPTSrc = 0;
1894# endif
1895 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1896 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1897 iPTDst = 0;
1898 else
1899 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1900 for (; iPTDst < iPTDstEnd; iPTDst++)
1901 {
1902 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1903 {
1904 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1905 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1906 NOREF(GCPtrCurPage);
1907#ifndef IN_RING0
1908 /*
1909 * Assuming kernel code will be marked as supervisor - and not as user level
1910 * and executed using a conforming code selector - And marked as readonly.
1911 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1912 */
1913 PPGMPAGE pPage;
1914 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1915 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1916 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1917 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1918 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1919 )
1920#endif /* else: CSAM not active */
1921 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1922 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1923 GCPtrCurPage, PteSrc.n.u1Present,
1924 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1925 PteSrc.n.u1User & PdeSrc.n.u1User,
1926 (uint64_t)PteSrc.u,
1927 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1928 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1929 }
1930 }
1931 }
1932 else
1933# endif /* PGM_SYNC_N_PAGES */
1934 {
1935 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1936 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1937 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1938 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1939 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1940 GCPtrPage, PteSrc.n.u1Present,
1941 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1942 PteSrc.n.u1User & PdeSrc.n.u1User,
1943 (uint64_t)PteSrc.u,
1944 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1945 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1946 }
1947 }
1948 else /* MMIO or invalid page: emulated in #PF handler. */
1949 {
1950 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1951 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1952 }
1953 }
1954 else
1955 {
1956 /*
1957 * 4/2MB page - lazy syncing shadow 4K pages.
1958 * (There are many causes of getting here, it's no longer only CSAM.)
1959 */
1960 /* Calculate the GC physical address of this 4KB shadow page. */
1961 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1962 /* Find ram range. */
1963 PPGMPAGE pPage;
1964 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1965 if (RT_SUCCESS(rc))
1966 {
1967 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1968
1969# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1970 /* Try to make the page writable if necessary. */
1971 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1972 && ( PGM_PAGE_IS_ZERO(pPage)
1973 || ( PdeSrc.n.u1Write
1974 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1975# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1976 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1977# endif
1978# ifdef VBOX_WITH_PAGE_SHARING
1979 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1980# endif
1981 )
1982 )
1983 )
1984 {
1985 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1986 AssertRC(rc);
1987 }
1988# endif
1989
1990 /*
1991 * Make shadow PTE entry.
1992 */
1993 SHWPTE PteDst;
1994 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1995 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
1996 PdeSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK
1997 | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT),
1998 &PteDst);
1999 else
2000 SHW_PTE_SET(PteDst,
2001 (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
2002 | PGM_PAGE_GET_HCPHYS(pPage));
2003
2004 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2005 if ( SHW_PTE_IS_P(PteDst)
2006 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2007 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2008
2009 /* Make sure only allocated pages are mapped writable. */
2010 if ( SHW_PTE_IS_P_RW(PteDst)
2011 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2012 {
2013 /* Still applies to shared pages. */
2014 Assert(!PGM_PAGE_IS_ZERO(pPage));
2015 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2016 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2017 }
2018
2019 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2020
2021 /*
2022 * If the page is not flagged as dirty and is writable, then make it read-only
2023 * at PD level, so we can set the dirty bit when the page is modified.
2024 *
2025 * ASSUMES that page access handlers are implemented on page table entry level.
2026 * Thus we will first catch the dirty access and set PDE.D and restart. If
2027 * there is an access handler, we'll trap again and let it work on the problem.
2028 */
2029 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2030 * As for invlpg, it simply frees the whole shadow PT.
2031 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2032 if ( !PdeSrc.b.u1Dirty
2033 && PdeSrc.b.u1Write)
2034 {
2035 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2036 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2037 PdeDst.n.u1Write = 0;
2038 }
2039 else
2040 {
2041 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2042 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2043 }
2044 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2045 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2046 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2047 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2048 }
2049 else
2050 {
2051 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2052 /** @todo must wipe the shadow page table in this case. */
2053 }
2054 }
2055 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2056 return VINF_SUCCESS;
2057 }
2058
2059 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2060 }
2061 else if (fPdeValid)
2062 {
2063 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2064 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2065 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2066 }
2067 else
2068 {
2069/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2070 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2071 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2072 }
2073
2074 /*
2075 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2076 * Yea, I'm lazy.
2077 */
2078 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2079 ASMAtomicWriteSize(pPdeDst, 0);
2080
2081 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2082 PGM_INVL_VCPU_TLBS(pVCpu);
2083 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2084
2085
2086#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2087 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2088 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2089 && !defined(IN_RC)
2090
2091# ifdef PGM_SYNC_N_PAGES
2092 /*
2093 * Get the shadow PDE, find the shadow page table in the pool.
2094 */
2095# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2096 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2097
2098# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2099 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2100
2101# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2102 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2103 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2104 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2105 X86PDEPAE PdeDst;
2106 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2107
2108 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2109 AssertRCSuccessReturn(rc, rc);
2110 Assert(pPDDst && pPdptDst);
2111 PdeDst = pPDDst->a[iPDDst];
2112# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2113 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2114 PEPTPD pPDDst;
2115 EPTPDE PdeDst;
2116
2117 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2118 if (rc != VINF_SUCCESS)
2119 {
2120 AssertRC(rc);
2121 return rc;
2122 }
2123 Assert(pPDDst);
2124 PdeDst = pPDDst->a[iPDDst];
2125# endif
2126 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2127 if (!PdeDst.n.u1Present)
2128 {
2129 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2130 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2131 return VINF_SUCCESS; /* force the instruction to be executed again. */
2132 }
2133
2134 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2135 if (PdeDst.n.u1Size)
2136 {
2137 Assert(pVM->pgm.s.fNestedPaging);
2138 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2139 return VINF_SUCCESS;
2140 }
2141
2142 /* Mask away the page offset. */
2143 GCPtrPage &= ~((RTGCPTR)0xfff);
2144
2145 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2146 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2147
2148 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2149 if ( cPages > 1
2150 && !(uErr & X86_TRAP_PF_P)
2151 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2152 {
2153 /*
2154 * This code path is currently only taken when the caller is PGMTrap0eHandler
2155 * for non-present pages!
2156 *
2157 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2158 * deal with locality.
2159 */
2160 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2161 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2162 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2163 iPTDst = 0;
2164 else
2165 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2166 for (; iPTDst < iPTDstEnd; iPTDst++)
2167 {
2168 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2169 {
2170 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2171 GSTPTE PteSrc;
2172
2173 /* Fake the page table entry */
2174 PteSrc.u = GCPtrCurPage;
2175 PteSrc.n.u1Present = 1;
2176 PteSrc.n.u1Dirty = 1;
2177 PteSrc.n.u1Accessed = 1;
2178 PteSrc.n.u1Write = 1;
2179 PteSrc.n.u1User = 1;
2180
2181 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2182 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2183 GCPtrCurPage, PteSrc.n.u1Present,
2184 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2185 PteSrc.n.u1User & PdeSrc.n.u1User,
2186 (uint64_t)PteSrc.u,
2187 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2188 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2189
2190 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2191 break;
2192 }
2193 else
2194 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2195 }
2196 }
2197 else
2198# endif /* PGM_SYNC_N_PAGES */
2199 {
2200 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2201 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2202 GSTPTE PteSrc;
2203
2204 /* Fake the page table entry */
2205 PteSrc.u = GCPtrCurPage;
2206 PteSrc.n.u1Present = 1;
2207 PteSrc.n.u1Dirty = 1;
2208 PteSrc.n.u1Accessed = 1;
2209 PteSrc.n.u1Write = 1;
2210 PteSrc.n.u1User = 1;
2211 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2212
2213 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2214 GCPtrPage, PteSrc.n.u1Present,
2215 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2216 PteSrc.n.u1User & PdeSrc.n.u1User,
2217 (uint64_t)PteSrc.u,
2218 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2219 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2220 }
2221 return VINF_SUCCESS;
2222
2223#else
2224 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2225 return VERR_INTERNAL_ERROR;
2226#endif
2227}
2228
2229
2230#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2231
2232/**
2233 * CheckPageFault helper for returning a page fault indicating a non-present
2234 * (NP) entry in the page translation structures.
2235 *
2236 * @returns VINF_EM_RAW_GUEST_TRAP.
2237 * @param pVCpu The virtual CPU to operate on.
2238 * @param uErr The error code of the shadow fault. Corrections to
2239 * TRPM's copy will be made if necessary.
2240 * @param GCPtrPage For logging.
2241 * @param uPageFaultLevel For logging.
2242 */
2243DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2244{
2245 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2246 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2247 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2248 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2249 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2250
2251 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2252 return VINF_EM_RAW_GUEST_TRAP;
2253}
2254
2255
2256/**
2257 * CheckPageFault helper for returning a page fault indicating a reserved bit
2258 * (RSVD) error in the page translation structures.
2259 *
2260 * @returns VINF_EM_RAW_GUEST_TRAP.
2261 * @param pVCpu The virtual CPU to operate on.
2262 * @param uErr The error code of the shadow fault. Corrections to
2263 * TRPM's copy will be made if necessary.
2264 * @param GCPtrPage For logging.
2265 * @param uPageFaultLevel For logging.
2266 */
2267DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2268{
2269 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2270 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2271 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2272
2273 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2274 return VINF_EM_RAW_GUEST_TRAP;
2275}
2276
2277
2278/**
2279 * CheckPageFault helper for returning a page protection fault (P).
2280 *
2281 * @returns VINF_EM_RAW_GUEST_TRAP.
2282 * @param pVCpu The virtual CPU to operate on.
2283 * @param uErr The error code of the shadow fault. Corrections to
2284 * TRPM's copy will be made if necessary.
2285 * @param GCPtrPage For logging.
2286 * @param uPageFaultLevel For logging.
2287 */
2288DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2289{
2290 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2291 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2292 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2293 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2294
2295 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2296 return VINF_EM_RAW_GUEST_TRAP;
2297}
2298
2299
2300/**
2301 * Handle dirty bit tracking faults.
2302 *
2303 * @returns VBox status code.
2304 * @param pVCpu The VMCPU handle.
2305 * @param uErr Page fault error code.
2306 * @param pPdeSrc Guest page directory entry.
2307 * @param pPdeDst Shadow page directory entry.
2308 * @param GCPtrPage Guest context page address.
2309 */
2310static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2311{
2312 PVM pVM = pVCpu->CTX_SUFF(pVM);
2313 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2314
2315 Assert(PGMIsLockOwner(pVM));
2316
2317 /*
2318 * Handle big page.
2319 */
2320 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2321 {
2322 if ( pPdeDst->n.u1Present
2323 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2324 {
2325 SHWPDE PdeDst = *pPdeDst;
2326
2327 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2328 Assert(pPdeSrc->b.u1Write);
2329
2330 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2331 * fault again and take this path to only invalidate the entry (see below).
2332 */
2333 PdeDst.n.u1Write = 1;
2334 PdeDst.n.u1Accessed = 1;
2335 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2336 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2337 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2338 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2339 }
2340
2341# ifdef IN_RING0
2342 /* Check for stale TLB entry; only applies to the SMP guest case. */
2343 if ( pVM->cCpus > 1
2344 && pPdeDst->n.u1Write
2345 && pPdeDst->n.u1Accessed)
2346 {
2347 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2348 if (pShwPage)
2349 {
2350 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2351 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2352 if (SHW_PTE_IS_P_RW(*pPteDst))
2353 {
2354 /* Stale TLB entry. */
2355 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2356 PGM_INVL_PG(pVCpu, GCPtrPage);
2357 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2358 }
2359 }
2360 }
2361# endif /* IN_RING0 */
2362 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2363 }
2364
2365 /*
2366 * Map the guest page table.
2367 */
2368 PGSTPT pPTSrc;
2369 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc);
2370 if (RT_FAILURE(rc))
2371 {
2372 AssertRC(rc);
2373 return rc;
2374 }
2375
2376 if (pPdeDst->n.u1Present)
2377 {
2378 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2379 const GSTPTE PteSrc = *pPteSrc;
2380
2381#ifndef IN_RING0
2382 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2383 * Our individual shadow handlers will provide more information and force a fatal exit.
2384 */
2385 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2386 {
2387 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2388 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2389 }
2390#endif
2391 /*
2392 * Map shadow page table.
2393 */
2394 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2395 if (pShwPage)
2396 {
2397 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2398 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2399 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2400 {
2401 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2402 {
2403 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2404 SHWPTE PteDst = *pPteDst;
2405
2406 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2407 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2408
2409 Assert(pPteSrc->n.u1Write);
2410
2411 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2412 * entry will not harm; write access will simply fault again and
2413 * take this path to only invalidate the entry.
2414 */
2415 if (RT_LIKELY(pPage))
2416 {
2417 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2418 {
2419 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2420 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2421 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2422 SHW_PTE_SET_RO(PteDst);
2423 }
2424 else
2425 {
2426 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2427 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2428 {
2429 rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2430 AssertRC(rc);
2431 }
2432 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2433 SHW_PTE_SET_RW(PteDst);
2434 else
2435 {
2436 /* Still applies to shared pages. */
2437 Assert(!PGM_PAGE_IS_ZERO(pPage));
2438 SHW_PTE_SET_RO(PteDst);
2439 }
2440 }
2441 }
2442 else
2443 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2444
2445 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2446 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2447 PGM_INVL_PG(pVCpu, GCPtrPage);
2448 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2449 }
2450
2451# ifdef IN_RING0
2452 /* Check for stale TLB entry; only applies to the SMP guest case. */
2453 if ( pVM->cCpus > 1
2454 && SHW_PTE_IS_RW(*pPteDst)
2455 && SHW_PTE_IS_A(*pPteDst))
2456 {
2457 /* Stale TLB entry. */
2458 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2459 PGM_INVL_PG(pVCpu, GCPtrPage);
2460 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2461 }
2462# endif
2463 }
2464 }
2465 else
2466 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2467 }
2468
2469 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2470}
2471
2472#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2473
2474
2475/**
2476 * Sync a shadow page table.
2477 *
2478 * The shadow page table is not present. This includes the case where
2479 * there is a conflict with a mapping.
2480 *
2481 * @returns VBox status code.
2482 * @param pVCpu The VMCPU handle.
2483 * @param iPD Page directory index.
2484 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2485 * Assume this is a temporary mapping.
2486 * @param GCPtrPage GC Pointer of the page that caused the fault
2487 */
2488static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2489{
2490 PVM pVM = pVCpu->CTX_SUFF(pVM);
2491 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2492
2493 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2494#if 0 /* rarely useful; leave for debugging. */
2495 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2496#endif
2497 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2498
2499 Assert(PGMIsLocked(pVM));
2500
2501#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2502 || PGM_GST_TYPE == PGM_TYPE_PAE \
2503 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2504 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2505 && PGM_SHW_TYPE != PGM_TYPE_EPT
2506
2507 int rc = VINF_SUCCESS;
2508
2509 /*
2510 * Validate input a little bit.
2511 */
2512 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2513# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2514 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2515 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2516
2517 /* Fetch the pgm pool shadow descriptor. */
2518 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2519 Assert(pShwPde);
2520
2521# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2522 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2523 PPGMPOOLPAGE pShwPde = NULL;
2524 PX86PDPAE pPDDst;
2525 PSHWPDE pPdeDst;
2526
2527 /* Fetch the pgm pool shadow descriptor. */
2528 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2529 AssertRCSuccessReturn(rc, rc);
2530 Assert(pShwPde);
2531
2532 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2533 pPdeDst = &pPDDst->a[iPDDst];
2534
2535# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2536 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2537 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2538 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2539 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2540 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2541 AssertRCSuccessReturn(rc, rc);
2542 Assert(pPDDst);
2543 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2544# endif
2545 SHWPDE PdeDst = *pPdeDst;
2546
2547# if PGM_GST_TYPE == PGM_TYPE_AMD64
2548 /* Fetch the pgm pool shadow descriptor. */
2549 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2550 Assert(pShwPde);
2551# endif
2552
2553# ifndef PGM_WITHOUT_MAPPINGS
2554 /*
2555 * Check for conflicts.
2556 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2557 * R3: Simply resolve the conflict.
2558 */
2559 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2560 {
2561 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2562# ifndef IN_RING3
2563 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2564 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2565 return VERR_ADDRESS_CONFLICT;
2566
2567# else /* IN_RING3 */
2568 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2569 Assert(pMapping);
2570# if PGM_GST_TYPE == PGM_TYPE_32BIT
2571 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2572# elif PGM_GST_TYPE == PGM_TYPE_PAE
2573 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2574# else
2575 AssertFailed(); /* can't happen for amd64 */
2576# endif
2577 if (RT_FAILURE(rc))
2578 {
2579 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2580 return rc;
2581 }
2582 PdeDst = *pPdeDst;
2583# endif /* IN_RING3 */
2584 }
2585# endif /* !PGM_WITHOUT_MAPPINGS */
2586 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2587
2588 /*
2589 * Sync page directory entry.
2590 */
2591 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2592 if (PdeSrc.n.u1Present)
2593 {
2594 /*
2595 * Allocate & map the page table.
2596 */
2597 PSHWPT pPTDst;
2598 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2599 PPGMPOOLPAGE pShwPage;
2600 RTGCPHYS GCPhys;
2601 if (fPageTable)
2602 {
2603 GCPhys = PdeSrc.u & GST_PDE_PG_MASK;
2604# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2605 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2606 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2607# endif
2608 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2609 }
2610 else
2611 {
2612 PGMPOOLACCESS enmAccess;
2613# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2614 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2615# else
2616 const bool fNoExecute = false;
2617# endif
2618
2619 GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
2620# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2621 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2622 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2623# endif
2624 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2625 if (PdeSrc.n.u1User)
2626 {
2627 if (PdeSrc.n.u1Write)
2628 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2629 else
2630 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2631 }
2632 else
2633 {
2634 if (PdeSrc.n.u1Write)
2635 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2636 else
2637 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2638 }
2639 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2640 }
2641 if (rc == VINF_SUCCESS)
2642 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2643 else if (rc == VINF_PGM_CACHED_PAGE)
2644 {
2645 /*
2646 * The PT was cached, just hook it up.
2647 */
2648 if (fPageTable)
2649 PdeDst.u = pShwPage->Core.Key
2650 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2651 else
2652 {
2653 PdeDst.u = pShwPage->Core.Key
2654 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2655 /* (see explanation and assumptions further down.) */
2656 if ( !PdeSrc.b.u1Dirty
2657 && PdeSrc.b.u1Write)
2658 {
2659 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2660 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2661 PdeDst.b.u1Write = 0;
2662 }
2663 }
2664 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2665 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2666 return VINF_SUCCESS;
2667 }
2668 else if (rc == VERR_PGM_POOL_FLUSHED)
2669 {
2670 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2671 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2672 return VINF_PGM_SYNC_CR3;
2673 }
2674 else
2675 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2676 PdeDst.u &= X86_PDE_AVL_MASK;
2677 PdeDst.u |= pShwPage->Core.Key;
2678
2679 /*
2680 * Page directory has been accessed (this is a fault situation, remember).
2681 */
2682 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2683 if (fPageTable)
2684 {
2685 /*
2686 * Page table - 4KB.
2687 *
2688 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2689 */
2690 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2691 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2692 PGSTPT pPTSrc;
2693 rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc);
2694 if (RT_SUCCESS(rc))
2695 {
2696 /*
2697 * Start by syncing the page directory entry so CSAM's TLB trick works.
2698 */
2699 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2700 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2701 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2702 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2703
2704 /*
2705 * Directory/page user or supervisor privilege: (same goes for read/write)
2706 *
2707 * Directory Page Combined
2708 * U/S U/S U/S
2709 * 0 0 0
2710 * 0 1 0
2711 * 1 0 0
2712 * 1 1 1
2713 *
2714 * Simple AND operation. Table listed for completeness.
2715 *
2716 */
2717 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2718# ifdef PGM_SYNC_N_PAGES
2719 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2720 unsigned iPTDst = iPTBase;
2721 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2722 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2723 iPTDst = 0;
2724 else
2725 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2726# else /* !PGM_SYNC_N_PAGES */
2727 unsigned iPTDst = 0;
2728 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2729# endif /* !PGM_SYNC_N_PAGES */
2730# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2731 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2732 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2733# else
2734 const unsigned offPTSrc = 0;
2735# endif
2736 for (; iPTDst < iPTDstEnd; iPTDst++)
2737 {
2738 const unsigned iPTSrc = iPTDst + offPTSrc;
2739 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2740
2741 if (PteSrc.n.u1Present)
2742 {
2743# ifndef IN_RING0
2744 /*
2745 * Assuming kernel code will be marked as supervisor - and not as user level
2746 * and executed using a conforming code selector - And marked as readonly.
2747 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2748 */
2749 PPGMPAGE pPage;
2750 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2751 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2752 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2753 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2754 )
2755# endif
2756 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2757 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2758 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2759 PteSrc.n.u1Present,
2760 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2761 PteSrc.n.u1User & PdeSrc.n.u1User,
2762 (uint64_t)PteSrc.u,
2763 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2764 (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) ));
2765 }
2766 /* else: the page table was cleared by the pool */
2767 } /* for PTEs */
2768 }
2769 }
2770 else
2771 {
2772 /*
2773 * Big page - 2/4MB.
2774 *
2775 * We'll walk the ram range list in parallel and optimize lookups.
2776 * We will only sync on shadow page table at a time.
2777 */
2778 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2779
2780 /**
2781 * @todo It might be more efficient to sync only a part of the 4MB
2782 * page (similar to what we do for 4KB PDs).
2783 */
2784
2785 /*
2786 * Start by syncing the page directory entry.
2787 */
2788 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2789 | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D));
2790
2791 /*
2792 * If the page is not flagged as dirty and is writable, then make it read-only
2793 * at PD level, so we can set the dirty bit when the page is modified.
2794 *
2795 * ASSUMES that page access handlers are implemented on page table entry level.
2796 * Thus we will first catch the dirty access and set PDE.D and restart. If
2797 * there is an access handler, we'll trap again and let it work on the problem.
2798 */
2799 /** @todo move the above stuff to a section in the PGM documentation. */
2800 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2801 if ( !PdeSrc.b.u1Dirty
2802 && PdeSrc.b.u1Write)
2803 {
2804 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2805 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2806 PdeDst.b.u1Write = 0;
2807 }
2808 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2809 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2810
2811 /*
2812 * Fill the shadow page table.
2813 */
2814 /* Get address and flags from the source PDE. */
2815// Assert(GST_IS_PDE_VALID(pVCpu, PdeSrc));
2816 SHWPTE PteDstBase;
2817 SHW_PTE_SET(PteDstBase, PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT));
2818
2819 /* Loop thru the entries in the shadow PT. */
2820 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2821 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2822 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2823 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2824 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2825 unsigned iPTDst = 0;
2826 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2827 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2828 {
2829 /* Advance ram range list. */
2830 while (pRam && GCPhys > pRam->GCPhysLast)
2831 pRam = pRam->CTX_SUFF(pNext);
2832 if (pRam && GCPhys >= pRam->GCPhys)
2833 {
2834 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2835 do
2836 {
2837 /* Make shadow PTE. */
2838 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2839 SHWPTE PteDst;
2840
2841# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2842 /* Try to make the page writable if necessary. */
2843 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2844 && ( PGM_PAGE_IS_ZERO(pPage)
2845 || ( SHW_PTE_IS_RW(PteDstBase)
2846 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2847# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2848 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2849# endif
2850# ifdef VBOX_WITH_PAGE_SHARING
2851 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2852# endif
2853 && !PGM_PAGE_IS_BALLOONED(pPage))
2854 )
2855 )
2856 {
2857 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2858 AssertRCReturn(rc, rc);
2859 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2860 break;
2861 }
2862# endif
2863
2864 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2865 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2866 else if (PGM_PAGE_IS_BALLOONED(pPage))
2867 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2868# ifndef IN_RING0
2869 /*
2870 * Assuming kernel code will be marked as supervisor and not as user level and executed
2871 * using a conforming code selector. Don't check for readonly, as that implies the whole
2872 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2873 */
2874 else if ( !PdeSrc.n.u1User
2875 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2876 SHW_PTE_SET(PteDst, 0);
2877# endif
2878 else
2879 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2880
2881 /* Only map writable pages writable. */
2882 if ( SHW_PTE_IS_P_RW(PteDst)
2883 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2884 {
2885 /* Still applies to shared pages. */
2886 Assert(!PGM_PAGE_IS_ZERO(pPage));
2887 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2888 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2889 }
2890
2891 if (SHW_PTE_IS_P(PteDst))
2892 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2893
2894 /* commit it (not atomic, new table) */
2895 pPTDst->a[iPTDst] = PteDst;
2896 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2897 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2898 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2899
2900 /* advance */
2901 GCPhys += PAGE_SIZE;
2902 iHCPage++;
2903 iPTDst++;
2904 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2905 && GCPhys <= pRam->GCPhysLast);
2906 }
2907 else if (pRam)
2908 {
2909 Log(("Invalid pages at %RGp\n", GCPhys));
2910 do
2911 {
2912 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2913 GCPhys += PAGE_SIZE;
2914 iPTDst++;
2915 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2916 && GCPhys < pRam->GCPhys);
2917 }
2918 else
2919 {
2920 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2921 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2922 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2923 }
2924 } /* while more PTEs */
2925 } /* 4KB / 4MB */
2926 }
2927 else
2928 AssertRelease(!PdeDst.n.u1Present);
2929
2930 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2931 if (RT_FAILURE(rc))
2932 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2933 return rc;
2934
2935#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2936 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2937 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2938 && !defined(IN_RC)
2939
2940 /*
2941 * Validate input a little bit.
2942 */
2943 int rc = VINF_SUCCESS;
2944# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2945 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2946 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2947
2948 /* Fetch the pgm pool shadow descriptor. */
2949 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2950 Assert(pShwPde);
2951
2952# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2953 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2954 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2955 PX86PDPAE pPDDst;
2956 PSHWPDE pPdeDst;
2957
2958 /* Fetch the pgm pool shadow descriptor. */
2959 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2960 AssertRCSuccessReturn(rc, rc);
2961 Assert(pShwPde);
2962
2963 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2964 pPdeDst = &pPDDst->a[iPDDst];
2965
2966# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2967 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2968 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2969 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2970 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2971 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2972 AssertRCSuccessReturn(rc, rc);
2973 Assert(pPDDst);
2974 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2975
2976 /* Fetch the pgm pool shadow descriptor. */
2977 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2978 Assert(pShwPde);
2979
2980# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2981 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
2982 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2983 PEPTPD pPDDst;
2984 PEPTPDPT pPdptDst;
2985
2986 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
2987 if (rc != VINF_SUCCESS)
2988 {
2989 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2990 AssertRC(rc);
2991 return rc;
2992 }
2993 Assert(pPDDst);
2994 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2995
2996 /* Fetch the pgm pool shadow descriptor. */
2997 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
2998 Assert(pShwPde);
2999# endif
3000 SHWPDE PdeDst = *pPdeDst;
3001
3002 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3003 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3004
3005# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3006 if (BTH_IS_NP_ACTIVE(pVM))
3007 {
3008 PPGMPAGE pPage;
3009
3010 /* Check if we allocated a big page before for this 2 MB range. */
3011 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3012 if (RT_SUCCESS(rc))
3013 {
3014 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3015
3016 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3017 {
3018 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3019 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3020 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3021 }
3022 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3023 {
3024 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3025 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3026 if (RT_SUCCESS(rc))
3027 {
3028 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3029 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3030 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3031 }
3032 }
3033 else if (PGMIsUsingLargePages(pVM))
3034 {
3035 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3036 if (RT_SUCCESS(rc))
3037 {
3038 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3039 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3040 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3041 }
3042 else
3043 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3044 }
3045
3046 if (HCPhys != NIL_RTHCPHYS)
3047 {
3048 PdeDst.u &= X86_PDE_AVL_MASK;
3049 PdeDst.u |= HCPhys;
3050 PdeDst.n.u1Present = 1;
3051 PdeDst.n.u1Write = 1;
3052 PdeDst.b.u1Size = 1;
3053# if PGM_SHW_TYPE == PGM_TYPE_EPT
3054 PdeDst.n.u1Execute = 1;
3055 PdeDst.b.u1IgnorePAT = 1;
3056 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3057# else
3058 PdeDst.n.u1User = 1;
3059# endif
3060 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3061
3062 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3063 /* Add a reference to the first page only. */
3064 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3065
3066 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3067 return VINF_SUCCESS;
3068 }
3069 }
3070 }
3071# endif /* HC_ARCH_BITS == 64 */
3072
3073 GSTPDE PdeSrc;
3074 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3075 PdeSrc.n.u1Present = 1;
3076 PdeSrc.n.u1Write = 1;
3077 PdeSrc.n.u1Accessed = 1;
3078 PdeSrc.n.u1User = 1;
3079
3080 /*
3081 * Allocate & map the page table.
3082 */
3083 PSHWPT pPTDst;
3084 PPGMPOOLPAGE pShwPage;
3085 RTGCPHYS GCPhys;
3086
3087 /* Virtual address = physical address */
3088 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3089 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3090
3091 if ( rc == VINF_SUCCESS
3092 || rc == VINF_PGM_CACHED_PAGE)
3093 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3094 else
3095 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3096
3097 PdeDst.u &= X86_PDE_AVL_MASK;
3098 PdeDst.u |= pShwPage->Core.Key;
3099 PdeDst.n.u1Present = 1;
3100 PdeDst.n.u1Write = 1;
3101# if PGM_SHW_TYPE == PGM_TYPE_EPT
3102 PdeDst.n.u1Execute = 1;
3103# else
3104 PdeDst.n.u1User = 1;
3105 PdeDst.n.u1Accessed = 1;
3106# endif
3107 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3108
3109 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3110 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3111 return rc;
3112
3113#else
3114 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3115 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3116 return VERR_INTERNAL_ERROR;
3117#endif
3118}
3119
3120
3121
3122/**
3123 * Prefetch a page/set of pages.
3124 *
3125 * Typically used to sync commonly used pages before entering raw mode
3126 * after a CR3 reload.
3127 *
3128 * @returns VBox status code.
3129 * @param pVCpu The VMCPU handle.
3130 * @param GCPtrPage Page to invalidate.
3131 */
3132PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3133{
3134#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3135 || PGM_GST_TYPE == PGM_TYPE_REAL \
3136 || PGM_GST_TYPE == PGM_TYPE_PROT \
3137 || PGM_GST_TYPE == PGM_TYPE_PAE \
3138 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3139 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3140 && PGM_SHW_TYPE != PGM_TYPE_EPT
3141
3142 /*
3143 * Check that all Guest levels thru the PDE are present, getting the
3144 * PD and PDE in the processes.
3145 */
3146 int rc = VINF_SUCCESS;
3147# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3148# if PGM_GST_TYPE == PGM_TYPE_32BIT
3149 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3150 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3151# elif PGM_GST_TYPE == PGM_TYPE_PAE
3152 unsigned iPDSrc;
3153 X86PDPE PdpeSrc;
3154 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3155 if (!pPDSrc)
3156 return VINF_SUCCESS; /* not present */
3157# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3158 unsigned iPDSrc;
3159 PX86PML4E pPml4eSrc;
3160 X86PDPE PdpeSrc;
3161 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3162 if (!pPDSrc)
3163 return VINF_SUCCESS; /* not present */
3164# endif
3165 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3166# else
3167 PGSTPD pPDSrc = NULL;
3168 const unsigned iPDSrc = 0;
3169 GSTPDE PdeSrc;
3170
3171 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3172 PdeSrc.n.u1Present = 1;
3173 PdeSrc.n.u1Write = 1;
3174 PdeSrc.n.u1Accessed = 1;
3175 PdeSrc.n.u1User = 1;
3176# endif
3177
3178 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3179 {
3180 PVM pVM = pVCpu->CTX_SUFF(pVM);
3181 pgmLock(pVM);
3182
3183# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3184 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3185# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3186 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3187 PX86PDPAE pPDDst;
3188 X86PDEPAE PdeDst;
3189# if PGM_GST_TYPE != PGM_TYPE_PAE
3190 X86PDPE PdpeSrc;
3191
3192 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3193 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3194# endif
3195 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3196 if (rc != VINF_SUCCESS)
3197 {
3198 pgmUnlock(pVM);
3199 AssertRC(rc);
3200 return rc;
3201 }
3202 Assert(pPDDst);
3203 PdeDst = pPDDst->a[iPDDst];
3204
3205# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3206 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3207 PX86PDPAE pPDDst;
3208 X86PDEPAE PdeDst;
3209
3210# if PGM_GST_TYPE == PGM_TYPE_PROT
3211 /* AMD-V nested paging */
3212 X86PML4E Pml4eSrc;
3213 X86PDPE PdpeSrc;
3214 PX86PML4E pPml4eSrc = &Pml4eSrc;
3215
3216 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3217 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3218 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3219# endif
3220
3221 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3222 if (rc != VINF_SUCCESS)
3223 {
3224 pgmUnlock(pVM);
3225 AssertRC(rc);
3226 return rc;
3227 }
3228 Assert(pPDDst);
3229 PdeDst = pPDDst->a[iPDDst];
3230# endif
3231 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3232 {
3233 if (!PdeDst.n.u1Present)
3234 {
3235 /** @todo r=bird: This guy will set the A bit on the PDE,
3236 * probably harmless. */
3237 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3238 }
3239 else
3240 {
3241 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3242 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3243 * makes no sense to prefetch more than one page.
3244 */
3245 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3246 if (RT_SUCCESS(rc))
3247 rc = VINF_SUCCESS;
3248 }
3249 }
3250 pgmUnlock(pVM);
3251 }
3252 return rc;
3253
3254#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3255 return VINF_SUCCESS; /* ignore */
3256#else
3257 AssertCompile(0);
3258#endif
3259}
3260
3261
3262
3263
3264/**
3265 * Syncs a page during a PGMVerifyAccess() call.
3266 *
3267 * @returns VBox status code (informational included).
3268 * @param pVCpu The VMCPU handle.
3269 * @param GCPtrPage The address of the page to sync.
3270 * @param fPage The effective guest page flags.
3271 * @param uErr The trap error code.
3272 * @remarks This will normally never be called on invalid guest page
3273 * translation entries.
3274 */
3275PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3276{
3277 PVM pVM = pVCpu->CTX_SUFF(pVM);
3278
3279 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3280
3281 Assert(!pVM->pgm.s.fNestedPaging);
3282#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3283 || PGM_GST_TYPE == PGM_TYPE_REAL \
3284 || PGM_GST_TYPE == PGM_TYPE_PROT \
3285 || PGM_GST_TYPE == PGM_TYPE_PAE \
3286 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3287 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3288 && PGM_SHW_TYPE != PGM_TYPE_EPT
3289
3290# ifndef IN_RING0
3291 if (!(fPage & X86_PTE_US))
3292 {
3293 /*
3294 * Mark this page as safe.
3295 */
3296 /** @todo not correct for pages that contain both code and data!! */
3297 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3298 CSAMMarkPage(pVM, GCPtrPage, true);
3299 }
3300# endif
3301
3302 /*
3303 * Get guest PD and index.
3304 */
3305 /** @todo Performance: We've done all this a jiffy ago in the
3306 * PGMGstGetPage call. */
3307# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3308# if PGM_GST_TYPE == PGM_TYPE_32BIT
3309 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3310 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3311
3312# elif PGM_GST_TYPE == PGM_TYPE_PAE
3313 unsigned iPDSrc = 0;
3314 X86PDPE PdpeSrc;
3315 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3316 if (RT_UNLIKELY(!pPDSrc))
3317 {
3318 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3319 return VINF_EM_RAW_GUEST_TRAP;
3320 }
3321
3322# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3323 unsigned iPDSrc = 0; /* shut up gcc */
3324 PX86PML4E pPml4eSrc = NULL; /* ditto */
3325 X86PDPE PdpeSrc;
3326 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3327 if (RT_UNLIKELY(!pPDSrc))
3328 {
3329 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3330 return VINF_EM_RAW_GUEST_TRAP;
3331 }
3332# endif
3333
3334# else /* !PGM_WITH_PAGING */
3335 PGSTPD pPDSrc = NULL;
3336 const unsigned iPDSrc = 0;
3337# endif /* !PGM_WITH_PAGING */
3338 int rc = VINF_SUCCESS;
3339
3340 pgmLock(pVM);
3341
3342 /*
3343 * First check if the shadow pd is present.
3344 */
3345# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3346 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3347
3348# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3349 PX86PDEPAE pPdeDst;
3350 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3351 PX86PDPAE pPDDst;
3352# if PGM_GST_TYPE != PGM_TYPE_PAE
3353 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3354 X86PDPE PdpeSrc;
3355 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3356# endif
3357 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3358 if (rc != VINF_SUCCESS)
3359 {
3360 pgmUnlock(pVM);
3361 AssertRC(rc);
3362 return rc;
3363 }
3364 Assert(pPDDst);
3365 pPdeDst = &pPDDst->a[iPDDst];
3366
3367# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3368 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3369 PX86PDPAE pPDDst;
3370 PX86PDEPAE pPdeDst;
3371
3372# if PGM_GST_TYPE == PGM_TYPE_PROT
3373 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3374 X86PML4E Pml4eSrc;
3375 X86PDPE PdpeSrc;
3376 PX86PML4E pPml4eSrc = &Pml4eSrc;
3377 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3378 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3379# endif
3380
3381 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3382 if (rc != VINF_SUCCESS)
3383 {
3384 pgmUnlock(pVM);
3385 AssertRC(rc);
3386 return rc;
3387 }
3388 Assert(pPDDst);
3389 pPdeDst = &pPDDst->a[iPDDst];
3390# endif
3391
3392 if (!pPdeDst->n.u1Present)
3393 {
3394 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3395 if (rc != VINF_SUCCESS)
3396 {
3397 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3398 pgmUnlock(pVM);
3399 AssertRC(rc);
3400 return rc;
3401 }
3402 }
3403
3404# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3405 /* Check for dirty bit fault */
3406 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3407 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3408 Log(("PGMVerifyAccess: success (dirty)\n"));
3409 else
3410# endif
3411 {
3412# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3413 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3414# else
3415 GSTPDE PdeSrc;
3416 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3417 PdeSrc.n.u1Present = 1;
3418 PdeSrc.n.u1Write = 1;
3419 PdeSrc.n.u1Accessed = 1;
3420 PdeSrc.n.u1User = 1;
3421# endif
3422
3423 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3424 if (uErr & X86_TRAP_PF_US)
3425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3426 else /* supervisor */
3427 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3428
3429 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3430 if (RT_SUCCESS(rc))
3431 {
3432 /* Page was successfully synced */
3433 Log2(("PGMVerifyAccess: success (sync)\n"));
3434 rc = VINF_SUCCESS;
3435 }
3436 else
3437 {
3438 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3439 rc = VINF_EM_RAW_GUEST_TRAP;
3440 }
3441 }
3442 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3443 pgmUnlock(pVM);
3444 return rc;
3445
3446#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3447
3448 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3449 return VERR_INTERNAL_ERROR;
3450#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3451}
3452
3453
3454/**
3455 * Syncs the paging hierarchy starting at CR3.
3456 *
3457 * @returns VBox status code, no specials.
3458 * @param pVCpu The VMCPU handle.
3459 * @param cr0 Guest context CR0 register
3460 * @param cr3 Guest context CR3 register
3461 * @param cr4 Guest context CR4 register
3462 * @param fGlobal Including global page directories or not
3463 */
3464PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3465{
3466 PVM pVM = pVCpu->CTX_SUFF(pVM);
3467
3468 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3469
3470#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3471
3472 pgmLock(pVM);
3473
3474# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3475 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3476 if (pPool->cDirtyPages)
3477 pgmPoolResetDirtyPages(pVM);
3478# endif
3479
3480 /*
3481 * Update page access handlers.
3482 * The virtual are always flushed, while the physical are only on demand.
3483 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3484 * have to look into that later because it will have a bad influence on the performance.
3485 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3486 * bird: Yes, but that won't work for aliases.
3487 */
3488 /** @todo this MUST go away. See #1557. */
3489 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3490 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3491 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3492 pgmUnlock(pVM);
3493#endif /* !NESTED && !EPT */
3494
3495#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3496 /*
3497 * Nested / EPT - almost no work.
3498 */
3499 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3500 return VINF_SUCCESS;
3501
3502#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3503 /*
3504 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3505 * out the shadow parts when the guest modifies its tables.
3506 */
3507 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3508 return VINF_SUCCESS;
3509
3510#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3511
3512# ifndef PGM_WITHOUT_MAPPINGS
3513 /*
3514 * Check for and resolve conflicts with our guest mappings if they
3515 * are enabled and not fixed.
3516 */
3517 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3518 {
3519 int rc = pgmMapResolveConflicts(pVM);
3520 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3521 if (rc == VINF_PGM_SYNC_CR3)
3522 {
3523 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3524 return VINF_PGM_SYNC_CR3;
3525 }
3526 }
3527# else
3528 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3529# endif
3530 return VINF_SUCCESS;
3531#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3532}
3533
3534
3535
3536
3537#ifdef VBOX_STRICT
3538#ifdef IN_RC
3539# undef AssertMsgFailed
3540# define AssertMsgFailed Log
3541#endif
3542#ifdef IN_RING3
3543# include <VBox/dbgf.h>
3544
3545/**
3546 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3547 *
3548 * @returns VBox status code (VINF_SUCCESS).
3549 * @param cr3 The root of the hierarchy.
3550 * @param crr The cr4, only PAE and PSE is currently used.
3551 * @param fLongMode Set if long mode, false if not long mode.
3552 * @param cMaxDepth Number of levels to dump.
3553 * @param pHlp Pointer to the output functions.
3554 */
3555RT_C_DECLS_BEGIN
3556VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3557RT_C_DECLS_END
3558
3559#endif
3560
3561/**
3562 * Checks that the shadow page table is in sync with the guest one.
3563 *
3564 * @returns The number of errors.
3565 * @param pVM The virtual machine.
3566 * @param pVCpu The VMCPU handle.
3567 * @param cr3 Guest context CR3 register
3568 * @param cr4 Guest context CR4 register
3569 * @param GCPtr Where to start. Defaults to 0.
3570 * @param cb How much to check. Defaults to everything.
3571 */
3572PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3573{
3574#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3575 return 0;
3576#else
3577 unsigned cErrors = 0;
3578 PVM pVM = pVCpu->CTX_SUFF(pVM);
3579 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3580
3581#if PGM_GST_TYPE == PGM_TYPE_PAE
3582 /** @todo currently broken; crashes below somewhere */
3583 AssertFailed();
3584#endif
3585
3586#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3587 || PGM_GST_TYPE == PGM_TYPE_PAE \
3588 || PGM_GST_TYPE == PGM_TYPE_AMD64
3589
3590 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3591 PPGMCPU pPGM = &pVCpu->pgm.s;
3592 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3593 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3594# ifndef IN_RING0
3595 RTHCPHYS HCPhys; /* general usage. */
3596# endif
3597 int rc;
3598
3599 /*
3600 * Check that the Guest CR3 and all its mappings are correct.
3601 */
3602 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3603 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3604 false);
3605# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3606# if PGM_GST_TYPE == PGM_TYPE_32BIT
3607 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3608# else
3609 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3610# endif
3611 AssertRCReturn(rc, 1);
3612 HCPhys = NIL_RTHCPHYS;
3613 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3614 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3615# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3616 pgmGstGet32bitPDPtr(pVCpu);
3617 RTGCPHYS GCPhys;
3618 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3619 AssertRCReturn(rc, 1);
3620 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3621# endif
3622# endif /* !IN_RING0 */
3623
3624 /*
3625 * Get and check the Shadow CR3.
3626 */
3627# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3628 unsigned cPDEs = X86_PG_ENTRIES;
3629 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3630# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3631# if PGM_GST_TYPE == PGM_TYPE_32BIT
3632 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3633# else
3634 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3635# endif
3636 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3637# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3638 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3639 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3640# endif
3641 if (cb != ~(RTGCPTR)0)
3642 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3643
3644/** @todo call the other two PGMAssert*() functions. */
3645
3646# if PGM_GST_TYPE == PGM_TYPE_AMD64
3647 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3648
3649 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3650 {
3651 PPGMPOOLPAGE pShwPdpt = NULL;
3652 PX86PML4E pPml4eSrc;
3653 PX86PML4E pPml4eDst;
3654 RTGCPHYS GCPhysPdptSrc;
3655
3656 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3657 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3658
3659 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3660 if (!pPml4eDst->n.u1Present)
3661 {
3662 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3663 continue;
3664 }
3665
3666 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3667 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3668
3669 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3670 {
3671 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3672 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3673 cErrors++;
3674 continue;
3675 }
3676
3677 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3678 {
3679 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3680 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3681 cErrors++;
3682 continue;
3683 }
3684
3685 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3686 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3687 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3688 {
3689 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3690 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3691 cErrors++;
3692 continue;
3693 }
3694# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3695 {
3696# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3697
3698# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3699 /*
3700 * Check the PDPTEs too.
3701 */
3702 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3703
3704 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3705 {
3706 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3707 PPGMPOOLPAGE pShwPde = NULL;
3708 PX86PDPE pPdpeDst;
3709 RTGCPHYS GCPhysPdeSrc;
3710# if PGM_GST_TYPE == PGM_TYPE_PAE
3711 X86PDPE PdpeSrc;
3712 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3713 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3714# else
3715 PX86PML4E pPml4eSrcIgn;
3716 X86PDPE PdpeSrc;
3717 PX86PDPT pPdptDst;
3718 PX86PDPAE pPDDst;
3719 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3720
3721 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3722 if (rc != VINF_SUCCESS)
3723 {
3724 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3725 GCPtr += 512 * _2M;
3726 continue; /* next PDPTE */
3727 }
3728 Assert(pPDDst);
3729# endif
3730 Assert(iPDSrc == 0);
3731
3732 pPdpeDst = &pPdptDst->a[iPdpt];
3733
3734 if (!pPdpeDst->n.u1Present)
3735 {
3736 GCPtr += 512 * _2M;
3737 continue; /* next PDPTE */
3738 }
3739
3740 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3741 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3742
3743 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3744 {
3745 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3746 GCPtr += 512 * _2M;
3747 cErrors++;
3748 continue;
3749 }
3750
3751 if (GCPhysPdeSrc != pShwPde->GCPhys)
3752 {
3753# if PGM_GST_TYPE == PGM_TYPE_AMD64
3754 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3755# else
3756 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3757# endif
3758 GCPtr += 512 * _2M;
3759 cErrors++;
3760 continue;
3761 }
3762
3763# if PGM_GST_TYPE == PGM_TYPE_AMD64
3764 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3765 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3766 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3767 {
3768 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3769 GCPtr += 512 * _2M;
3770 cErrors++;
3771 continue;
3772 }
3773# endif
3774
3775# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3776 {
3777# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3778# if PGM_GST_TYPE == PGM_TYPE_32BIT
3779 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3780# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3781 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3782# endif
3783# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3784 /*
3785 * Iterate the shadow page directory.
3786 */
3787 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3788 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3789
3790 for (;
3791 iPDDst < cPDEs;
3792 iPDDst++, GCPtr += cIncrement)
3793 {
3794# if PGM_SHW_TYPE == PGM_TYPE_PAE
3795 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3796# else
3797 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3798# endif
3799 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3800 {
3801 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3802 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3803 {
3804 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3805 cErrors++;
3806 continue;
3807 }
3808 }
3809 else if ( (PdeDst.u & X86_PDE_P)
3810 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3811 )
3812 {
3813 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3814 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3815 if (!pPoolPage)
3816 {
3817 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3818 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3819 cErrors++;
3820 continue;
3821 }
3822 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3823
3824 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3825 {
3826 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3827 GCPtr, (uint64_t)PdeDst.u));
3828 cErrors++;
3829 }
3830
3831 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3832 {
3833 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3834 GCPtr, (uint64_t)PdeDst.u));
3835 cErrors++;
3836 }
3837
3838 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3839 if (!PdeSrc.n.u1Present)
3840 {
3841 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3842 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3843 cErrors++;
3844 continue;
3845 }
3846
3847 if ( !PdeSrc.b.u1Size
3848 || !fBigPagesSupported)
3849 {
3850 GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK;
3851# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3852 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3853# endif
3854 }
3855 else
3856 {
3857# if PGM_GST_TYPE == PGM_TYPE_32BIT
3858 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3859 {
3860 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3861 GCPtr, (uint64_t)PdeSrc.u));
3862 cErrors++;
3863 continue;
3864 }
3865# endif
3866 GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc);
3867# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3868 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3869# endif
3870 }
3871
3872 if ( pPoolPage->enmKind
3873 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3874 {
3875 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3876 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3877 cErrors++;
3878 }
3879
3880 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3881 if (!pPhysPage)
3882 {
3883 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3884 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3885 cErrors++;
3886 continue;
3887 }
3888
3889 if (GCPhysGst != pPoolPage->GCPhys)
3890 {
3891 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3892 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3893 cErrors++;
3894 continue;
3895 }
3896
3897 if ( !PdeSrc.b.u1Size
3898 || !fBigPagesSupported)
3899 {
3900 /*
3901 * Page Table.
3902 */
3903 const GSTPT *pPTSrc;
3904 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3905 if (RT_FAILURE(rc))
3906 {
3907 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3908 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3909 cErrors++;
3910 continue;
3911 }
3912 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3913 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3914 {
3915 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3916 // (This problem will go away when/if we shadow multiple CR3s.)
3917 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3918 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3919 cErrors++;
3920 continue;
3921 }
3922 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3923 {
3924 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3925 GCPtr, (uint64_t)PdeDst.u));
3926 cErrors++;
3927 continue;
3928 }
3929
3930 /* iterate the page table. */
3931# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3932 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3933 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3934# else
3935 const unsigned offPTSrc = 0;
3936# endif
3937 for (unsigned iPT = 0, off = 0;
3938 iPT < RT_ELEMENTS(pPTDst->a);
3939 iPT++, off += PAGE_SIZE)
3940 {
3941 const SHWPTE PteDst = pPTDst->a[iPT];
3942
3943 /* skip not-present and dirty tracked entries. */
3944 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3945 continue;
3946 Assert(SHW_PTE_IS_P(PteDst));
3947
3948 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3949 if (!PteSrc.n.u1Present)
3950 {
3951# ifdef IN_RING3
3952 PGMAssertHandlerAndFlagsInSync(pVM);
3953 PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK));
3954# endif
3955 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3956 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3957 (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc)));
3958 cErrors++;
3959 continue;
3960 }
3961
3962 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3963# if 1 /** @todo sync accessed bit properly... */
3964 fIgnoreFlags |= X86_PTE_A;
3965# endif
3966
3967 /* match the physical addresses */
3968 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3969 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3970
3971# ifdef IN_RING3
3972 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3973 if (RT_FAILURE(rc))
3974 {
3975 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3976 {
3977 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3978 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3979 cErrors++;
3980 continue;
3981 }
3982 }
3983 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3984 {
3985 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3986 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3987 cErrors++;
3988 continue;
3989 }
3990# endif
3991
3992 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3993 if (!pPhysPage)
3994 {
3995# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
3996 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3997 {
3998 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3999 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4000 cErrors++;
4001 continue;
4002 }
4003# endif
4004 if (SHW_PTE_IS_RW(PteDst))
4005 {
4006 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4007 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4008 cErrors++;
4009 }
4010 fIgnoreFlags |= X86_PTE_RW;
4011 }
4012 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4013 {
4014 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4015 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4016 cErrors++;
4017 continue;
4018 }
4019
4020 /* flags */
4021 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4022 {
4023 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4024 {
4025 if (SHW_PTE_IS_RW(PteDst))
4026 {
4027 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4028 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4029 cErrors++;
4030 continue;
4031 }
4032 fIgnoreFlags |= X86_PTE_RW;
4033 }
4034 else
4035 {
4036 if ( SHW_PTE_IS_P(PteDst)
4037# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4038 && !PGM_PAGE_IS_MMIO(pPhysPage)
4039# endif
4040 )
4041 {
4042 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4043 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4044 cErrors++;
4045 continue;
4046 }
4047 fIgnoreFlags |= X86_PTE_P;
4048 }
4049 }
4050 else
4051 {
4052 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4053 {
4054 if (SHW_PTE_IS_RW(PteDst))
4055 {
4056 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4057 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4058 cErrors++;
4059 continue;
4060 }
4061 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4062 {
4063 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4064 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4065 cErrors++;
4066 continue;
4067 }
4068 if (SHW_PTE_IS_D(PteDst))
4069 {
4070 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4071 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4072 cErrors++;
4073 }
4074# if 0 /** @todo sync access bit properly... */
4075 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4076 {
4077 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4078 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4079 cErrors++;
4080 }
4081 fIgnoreFlags |= X86_PTE_RW;
4082# else
4083 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4084# endif
4085 }
4086 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4087 {
4088 /* access bit emulation (not implemented). */
4089 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4090 {
4091 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4092 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4093 cErrors++;
4094 continue;
4095 }
4096 if (!SHW_PTE_IS_A(PteDst))
4097 {
4098 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4099 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4100 cErrors++;
4101 }
4102 fIgnoreFlags |= X86_PTE_P;
4103 }
4104# ifdef DEBUG_sandervl
4105 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4106# endif
4107 }
4108
4109 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4110 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4111 )
4112 {
4113 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4114 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4115 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4116 cErrors++;
4117 continue;
4118 }
4119 } /* foreach PTE */
4120 }
4121 else
4122 {
4123 /*
4124 * Big Page.
4125 */
4126 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4127 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4128 {
4129 if (PdeDst.n.u1Write)
4130 {
4131 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4132 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4133 cErrors++;
4134 continue;
4135 }
4136 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4137 {
4138 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4139 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4140 cErrors++;
4141 continue;
4142 }
4143# if 0 /** @todo sync access bit properly... */
4144 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4145 {
4146 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4147 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4148 cErrors++;
4149 }
4150 fIgnoreFlags |= X86_PTE_RW;
4151# else
4152 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4153# endif
4154 }
4155 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4156 {
4157 /* access bit emulation (not implemented). */
4158 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4159 {
4160 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4161 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4162 cErrors++;
4163 continue;
4164 }
4165 if (!PdeDst.n.u1Accessed)
4166 {
4167 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4168 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4169 cErrors++;
4170 }
4171 fIgnoreFlags |= X86_PTE_P;
4172 }
4173
4174 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4175 {
4176 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4177 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4178 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4179 cErrors++;
4180 }
4181
4182 /* iterate the page table. */
4183 for (unsigned iPT = 0, off = 0;
4184 iPT < RT_ELEMENTS(pPTDst->a);
4185 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4186 {
4187 const SHWPTE PteDst = pPTDst->a[iPT];
4188
4189 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4190 {
4191 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4192 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4193 cErrors++;
4194 }
4195
4196 /* skip not-present entries. */
4197 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4198 continue;
4199
4200 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4201
4202 /* match the physical addresses */
4203 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4204
4205# ifdef IN_RING3
4206 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4207 if (RT_FAILURE(rc))
4208 {
4209 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4210 {
4211 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4212 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4213 cErrors++;
4214 }
4215 }
4216 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4217 {
4218 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4219 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4220 cErrors++;
4221 continue;
4222 }
4223# endif
4224 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4225 if (!pPhysPage)
4226 {
4227# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4228 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4229 {
4230 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4232 cErrors++;
4233 continue;
4234 }
4235# endif
4236 if (SHW_PTE_IS_RW(PteDst))
4237 {
4238 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4239 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4240 cErrors++;
4241 }
4242 fIgnoreFlags |= X86_PTE_RW;
4243 }
4244 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4245 {
4246 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4247 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4248 cErrors++;
4249 continue;
4250 }
4251
4252 /* flags */
4253 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4254 {
4255 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4256 {
4257 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4258 {
4259 if (SHW_PTE_IS_RW(PteDst))
4260 {
4261 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4262 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4263 cErrors++;
4264 continue;
4265 }
4266 fIgnoreFlags |= X86_PTE_RW;
4267 }
4268 }
4269 else
4270 {
4271 if ( SHW_PTE_IS_P(PteDst)
4272# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4273 && !PGM_PAGE_IS_MMIO(pPhysPage)
4274# endif
4275 )
4276 {
4277 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4278 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4279 cErrors++;
4280 continue;
4281 }
4282 fIgnoreFlags |= X86_PTE_P;
4283 }
4284 }
4285
4286 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4287 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4288 )
4289 {
4290 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4291 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4292 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4293 cErrors++;
4294 continue;
4295 }
4296 } /* for each PTE */
4297 }
4298 }
4299 /* not present */
4300
4301 } /* for each PDE */
4302
4303 } /* for each PDPTE */
4304
4305 } /* for each PML4E */
4306
4307# ifdef DEBUG
4308 if (cErrors)
4309 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4310# endif
4311
4312#endif /* GST == 32BIT, PAE or AMD64 */
4313 return cErrors;
4314
4315#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4316}
4317#endif /* VBOX_STRICT */
4318
4319
4320/**
4321 * Sets up the CR3 for shadow paging
4322 *
4323 * @returns Strict VBox status code.
4324 * @retval VINF_SUCCESS.
4325 *
4326 * @param pVCpu The VMCPU handle.
4327 * @param GCPhysCR3 The physical address in the CR3 register.
4328 */
4329PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4330{
4331 PVM pVM = pVCpu->CTX_SUFF(pVM);
4332
4333 /* Update guest paging info. */
4334#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4335 || PGM_GST_TYPE == PGM_TYPE_PAE \
4336 || PGM_GST_TYPE == PGM_TYPE_AMD64
4337
4338 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4339
4340 /*
4341 * Map the page CR3 points at.
4342 */
4343 RTHCPTR HCPtrGuestCR3;
4344 RTHCPHYS HCPhysGuestCR3;
4345 pgmLock(pVM);
4346 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4347 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4348 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4349 /** @todo this needs some reworking wrt. locking? */
4350# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4351 HCPtrGuestCR3 = NIL_RTHCPTR;
4352 int rc = VINF_SUCCESS;
4353# else
4354 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4355# endif
4356 pgmUnlock(pVM);
4357 if (RT_SUCCESS(rc))
4358 {
4359 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4360 if (RT_SUCCESS(rc))
4361 {
4362# ifdef IN_RC
4363 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4364# endif
4365# if PGM_GST_TYPE == PGM_TYPE_32BIT
4366 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4367# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4368 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4369# endif
4370 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4371
4372# elif PGM_GST_TYPE == PGM_TYPE_PAE
4373 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4374 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4375# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4376 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4377# endif
4378 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4379 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4380
4381 /*
4382 * Map the 4 PDs too.
4383 */
4384 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4385 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4386 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4387 {
4388 if (pGuestPDPT->a[i].n.u1Present)
4389 {
4390 RTHCPTR HCPtr;
4391 RTHCPHYS HCPhys;
4392 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4393 pgmLock(pVM);
4394 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4395 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4396 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4397# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4398 HCPtr = NIL_RTHCPTR;
4399 int rc2 = VINF_SUCCESS;
4400# else
4401 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4402# endif
4403 pgmUnlock(pVM);
4404 if (RT_SUCCESS(rc2))
4405 {
4406 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4407 AssertRCReturn(rc, rc);
4408
4409 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4410# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4411 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4412# endif
4413 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4414 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4415# ifdef IN_RC
4416 PGM_INVL_PG(pVCpu, GCPtr);
4417# endif
4418 continue;
4419 }
4420 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4421 }
4422
4423 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4424# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4425 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4426# endif
4427 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4428 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4429# ifdef IN_RC
4430 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4431# endif
4432 }
4433
4434# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4435 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4436# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4437 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4438# endif
4439# endif
4440 }
4441 else
4442 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4443 }
4444 else
4445 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4446
4447#else /* prot/real stub */
4448 int rc = VINF_SUCCESS;
4449#endif
4450
4451 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4452# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4453 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4454 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4455 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4456 && PGM_GST_TYPE != PGM_TYPE_PROT))
4457
4458 Assert(!pVM->pgm.s.fNestedPaging);
4459
4460 /*
4461 * Update the shadow root page as well since that's not fixed.
4462 */
4463 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4464 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4465 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4466 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4467 PPGMPOOLPAGE pNewShwPageCR3;
4468
4469 pgmLock(pVM);
4470
4471# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4472 if (pPool->cDirtyPages)
4473 pgmPoolResetDirtyPages(pVM);
4474# endif
4475
4476 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4477 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4478 AssertFatalRC(rc);
4479 rc = VINF_SUCCESS;
4480
4481# ifdef IN_RC
4482 /*
4483 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4484 * state will be inconsistent! Flush important things now while
4485 * we still can and then make sure there are no ring-3 calls.
4486 */
4487 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4488 VMMRZCallRing3Disable(pVCpu);
4489# endif
4490
4491 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4492 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4493 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4494# ifdef IN_RING0
4495 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4496 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4497# elif defined(IN_RC)
4498 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4499 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4500# else
4501 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4502 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4503# endif
4504
4505# ifndef PGM_WITHOUT_MAPPINGS
4506 /*
4507 * Apply all hypervisor mappings to the new CR3.
4508 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4509 * make sure we check for conflicts in the new CR3 root.
4510 */
4511# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4512 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4513# endif
4514 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4515 AssertRCReturn(rc, rc);
4516# endif
4517
4518 /* Set the current hypervisor CR3. */
4519 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4520 SELMShadowCR3Changed(pVM, pVCpu);
4521
4522# ifdef IN_RC
4523 /* NOTE: The state is consistent again. */
4524 VMMRZCallRing3Enable(pVCpu);
4525# endif
4526
4527 /* Clean up the old CR3 root. */
4528 if ( pOldShwPageCR3
4529 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4530 {
4531 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4532# ifndef PGM_WITHOUT_MAPPINGS
4533 /* Remove the hypervisor mappings from the shadow page table. */
4534 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4535# endif
4536 /* Mark the page as unlocked; allow flushing again. */
4537 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4538
4539 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4540 }
4541 pgmUnlock(pVM);
4542# endif
4543
4544 return rc;
4545}
4546
4547/**
4548 * Unmaps the shadow CR3.
4549 *
4550 * @returns VBox status, no specials.
4551 * @param pVCpu The VMCPU handle.
4552 */
4553PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4554{
4555 LogFlow(("UnmapCR3\n"));
4556
4557 int rc = VINF_SUCCESS;
4558 PVM pVM = pVCpu->CTX_SUFF(pVM);
4559
4560 /*
4561 * Update guest paging info.
4562 */
4563#if PGM_GST_TYPE == PGM_TYPE_32BIT
4564 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4565# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4566 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4567# endif
4568 pVCpu->pgm.s.pGst32BitPdRC = 0;
4569
4570#elif PGM_GST_TYPE == PGM_TYPE_PAE
4571 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4572# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4573 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4574# endif
4575 pVCpu->pgm.s.pGstPaePdptRC = 0;
4576 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4577 {
4578 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4579# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4580 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4581# endif
4582 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4583 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4584 }
4585
4586#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4587 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4588# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4589 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4590# endif
4591
4592#else /* prot/real mode stub */
4593 /* nothing to do */
4594#endif
4595
4596#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4597 /*
4598 * Update shadow paging info.
4599 */
4600# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4601 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4602 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4603
4604# if PGM_GST_TYPE != PGM_TYPE_REAL
4605 Assert(!pVM->pgm.s.fNestedPaging);
4606# endif
4607
4608 pgmLock(pVM);
4609
4610# ifndef PGM_WITHOUT_MAPPINGS
4611 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4612 /* Remove the hypervisor mappings from the shadow page table. */
4613 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4614# endif
4615
4616 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4617 {
4618 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4619
4620 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4621
4622# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4623 if (pPool->cDirtyPages)
4624 pgmPoolResetDirtyPages(pVM);
4625# endif
4626
4627 /* Mark the page as unlocked; allow flushing again. */
4628 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4629
4630 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4631 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4632 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4633 pVCpu->pgm.s.pShwPageCR3RC = 0;
4634 pVCpu->pgm.s.iShwUser = 0;
4635 pVCpu->pgm.s.iShwUserTable = 0;
4636 }
4637 pgmUnlock(pVM);
4638# endif
4639#endif /* !IN_RC*/
4640
4641 return rc;
4642}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette