VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 31849

Last change on this file since 31849 was 31849, checked in by vboxsync, 15 years ago

PGM: Don't shadow PDE bits 62/3:52 (NXE=1/0), only shadow the bits we need to (exception G, A and D).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 199.7 KB
Line 
1/* $Id: PGMAllBth.h 31849 2010-08-22 16:15:03Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
122 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
123 return VINF_EM_RAW_GUEST_TRAP;
124}
125# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
126
127
128/**
129 * Deal with a guest page fault.
130 *
131 * The caller has taken the PGM lock.
132 *
133 * @returns Strict VBox status code.
134 *
135 * @param pVCpu The current CPU.
136 * @param uErr The error code.
137 * @param pRegFrame The register frame.
138 * @param pvFault The fault address.
139 * @param pPage The guest page at @a pvFault.
140 * @param pGstWalk The guest page table walk result.
141 * @param pfLockTaken PGM lock taken here or not (out). This is true
142 * when we're called.
143 */
144static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
145 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
146# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 , PGSTPTWALK pGstWalk
148# endif
149 )
150{
151# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
153#endif
154 PVM pVM = pVCpu->CTX_SUFF(pVM);
155 int rc;
156
157 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
158 {
159 /*
160 * Physical page access handler.
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
164# else
165 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
166# endif
167 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
168 if (pCur)
169 {
170# ifdef PGM_SYNC_N_PAGES
171 /*
172 * If the region is write protected and we got a page not present fault, then sync
173 * the pages. If the fault was caused by a read, then restart the instruction.
174 * In case of write access continue to the GC write handler.
175 *
176 * ASSUMES that there is only one handler per page or that they have similar write properties.
177 */
178 if ( !(uErr & X86_TRAP_PF_P)
179 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
180 {
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
183# else
184 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
185# endif
186 if ( RT_FAILURE(rc)
187 || !(uErr & X86_TRAP_PF_RW)
188 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
189 {
190 AssertRC(rc);
191 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
192 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
193 return rc;
194 }
195 }
196# endif
197# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
198 /*
199 * If the access was not thru a #PF(RSVD|...) resync the page.
200 */
201 if ( !(uErr & X86_TRAP_PF_RSVD)
202 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
203# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
204 && pGstWalk->Core.fEffectiveRW
205 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
206# endif
207 )
208 {
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
211# else
212 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
213# endif
214 if ( RT_FAILURE(rc)
215 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
216 {
217 AssertRC(rc);
218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
219 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
220 return rc;
221 }
222 }
223# endif
224
225 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
226 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
227 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
228 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
229 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
231 else
232 {
233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
234 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
235 }
236
237 if (pCur->CTX_SUFF(pfnHandler))
238 {
239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
240 void *pvUser = pCur->CTX_SUFF(pvUser);
241# ifdef IN_RING0
242 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
243# else
244 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
245# endif
246
247 STAM_PROFILE_START(&pCur->Stat, h);
248 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
249 {
250 pgmUnlock(pVM);
251 *pfLockTaken = false;
252 }
253
254 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
255
256# ifdef VBOX_WITH_STATISTICS
257 pgmLock(pVM);
258 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
259 if (pCur)
260 STAM_PROFILE_STOP(&pCur->Stat, h);
261 pgmUnlock(pVM);
262# endif
263 }
264 else
265 rc = VINF_EM_RAW_EMULATE_INSTR;
266
267 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
268 return rc;
269 }
270 }
271# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
272 else
273 {
274# ifdef PGM_SYNC_N_PAGES
275 /*
276 * If the region is write protected and we got a page not present fault, then sync
277 * the pages. If the fault was caused by a read, then restart the instruction.
278 * In case of write access continue to the GC write handler.
279 */
280 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
281 && !(uErr & X86_TRAP_PF_P))
282 {
283 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
284 if ( RT_FAILURE(rc)
285 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
286 || !(uErr & X86_TRAP_PF_RW))
287 {
288 AssertRC(rc);
289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
291 return rc;
292 }
293 }
294# endif
295 /*
296 * Ok, it's an virtual page access handler.
297 *
298 * Since it's faster to search by address, we'll do that first
299 * and then retry by GCPhys if that fails.
300 */
301 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
302 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
303 * out of sync, because the page was changed without us noticing it (not-present -> present
304 * without invlpg or mov cr3, xxx).
305 */
306 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
307 if (pCur)
308 {
309 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
310 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
311 || !(uErr & X86_TRAP_PF_P)
312 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
313 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
314 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
315
316 if ( pvFault - pCur->Core.Key < pCur->cb
317 && ( uErr & X86_TRAP_PF_RW
318 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
319 {
320# ifdef IN_RC
321 STAM_PROFILE_START(&pCur->Stat, h);
322 RTGCPTR GCPtrStart = pCur->Core.Key;
323 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
324 pgmUnlock(pVM);
325 *pfLockTaken = false;
326
327 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
328
329# ifdef VBOX_WITH_STATISTICS
330 pgmLock(pVM);
331 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
332 if (pCur)
333 STAM_PROFILE_STOP(&pCur->Stat, h);
334 pgmUnlock(pVM);
335# endif
336# else
337 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
338# endif
339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
340 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
341 return rc;
342 }
343 /* Unhandled part of a monitored page */
344 }
345 else
346 {
347 /* Check by physical address. */
348 unsigned iPage;
349 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
350 Assert(RT_SUCCESS(rc) || !pCur);
351 if ( pCur
352 && ( uErr & X86_TRAP_PF_RW
353 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
354 {
355 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
356# ifdef IN_RC
357 STAM_PROFILE_START(&pCur->Stat, h);
358 RTGCPTR GCPtrStart = pCur->Core.Key;
359 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
360 pgmUnlock(pVM);
361 *pfLockTaken = false;
362
363 RTGCPTR off = (iPage << PAGE_SHIFT)
364 + (pvFault & PAGE_OFFSET_MASK)
365 - (GCPtrStart & PAGE_OFFSET_MASK);
366 Assert(off < pCur->cb);
367 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
368
369# ifdef VBOX_WITH_STATISTICS
370 pgmLock(pVM);
371 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
372 if (pCur)
373 STAM_PROFILE_STOP(&pCur->Stat, h);
374 pgmUnlock(pVM);
375# endif
376# else
377 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
378# endif
379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
380 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
381 return rc;
382 }
383 }
384 }
385# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
386
387 /*
388 * There is a handled area of the page, but this fault doesn't belong to it.
389 * We must emulate the instruction.
390 *
391 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
392 * we first check if this was a page-not-present fault for a page with only
393 * write access handlers. Restart the instruction if it wasn't a write access.
394 */
395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
396
397 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
398 && !(uErr & X86_TRAP_PF_P))
399 {
400# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
401 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
402# else
403 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
404# endif
405 if ( RT_FAILURE(rc)
406 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
407 || !(uErr & X86_TRAP_PF_RW))
408 {
409 AssertRC(rc);
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
411 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
412 return rc;
413 }
414 }
415
416 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
417 * It's writing to an unhandled part of the LDT page several million times.
418 */
419 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
420 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
421 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
422 return rc;
423} /* if any kind of handler */
424
425
426/**
427 * #PF Handler for raw-mode guest execution.
428 *
429 * @returns VBox status code (appropriate for trap handling and GC return).
430 *
431 * @param pVCpu VMCPU Handle.
432 * @param uErr The trap error code.
433 * @param pRegFrame Trap register frame.
434 * @param pvFault The fault address.
435 * @param pfLockTaken PGM lock taken here or not (out)
436 */
437PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
438{
439 PVM pVM = pVCpu->CTX_SUFF(pVM);
440
441 *pfLockTaken = false;
442
443# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
444 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
445 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
446 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
447 int rc;
448
449# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
450 /*
451 * Walk the guest page translation tables and check if it's a guest fault.
452 */
453 GSTPTWALK GstWalk;
454 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
455 if (RT_FAILURE_NP(rc))
456 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
457
458 /* assert some GstWalk sanity. */
459# if PGM_GST_TYPE == PGM_TYPE_AMD64
460 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
461# endif
462# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
463 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
464# endif
465 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
466 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
467 Assert(GstWalk.Core.fSucceeded);
468
469 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
470 {
471 if ( ( (uErr & X86_TRAP_PF_RW)
472 && !GstWalk.Core.fEffectiveRW
473 && ( (uErr & X86_TRAP_PF_US)
474 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
475 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
476 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
477 )
478 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
479 }
480
481 /*
482 * Set the accessed and dirty flags.
483 */
484# if PGM_GST_TYPE == PGM_TYPE_AMD64
485 GstWalk.Pml4e.u |= X86_PML4E_A;
486 GstWalk.pPml4e->u |= X86_PML4E_A;
487 GstWalk.Pdpe.u |= X86_PDPE_A;
488 GstWalk.pPdpe->u |= X86_PDPE_A;
489# endif
490 if (GstWalk.Core.fBigPage)
491 {
492 Assert(GstWalk.Pde.b.u1Size);
493 if (uErr & X86_TRAP_PF_RW)
494 {
495 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
496 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
497 }
498 else
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A;
501 GstWalk.pPde->u |= X86_PDE4M_A;
502 }
503 }
504 else
505 {
506 Assert(!GstWalk.Pde.b.u1Size);
507 GstWalk.Pde.u |= X86_PDE_A;
508 GstWalk.pPde->u |= X86_PDE_A;
509 if (uErr & X86_TRAP_PF_RW)
510 {
511# ifdef VBOX_WITH_STATISTICS
512 if (!GstWalk.Pte.n.u1Dirty)
513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
514 else
515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
516# endif
517 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
518 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
519 }
520 else
521 {
522 GstWalk.Pte.u |= X86_PTE_A;
523 GstWalk.pPte->u |= X86_PTE_A;
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
528 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
529# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
530 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
531# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
532
533 /* Take the big lock now. */
534 *pfLockTaken = true;
535 pgmLock(pVM);
536
537# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
538 /*
539 * If it is a reserved bit fault we know that it is an MMIO (access
540 * handler) related fault and can skip some 200 lines of code.
541 */
542 if (uErr & X86_TRAP_PF_RSVD)
543 {
544 Assert(uErr & X86_TRAP_PF_P);
545 PPGMPAGE pPage;
546# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
547 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
548 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
549 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
550 pfLockTaken, &GstWalk));
551 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
552# else
553 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
554 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
555 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
556 pfLockTaken));
557 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
558# endif
559 AssertRC(rc);
560 }
561# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
562
563 /*
564 * Fetch the guest PDE, PDPE and PML4E.
565 */
566# if PGM_SHW_TYPE == PGM_TYPE_32BIT
567 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
568 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
569
570# elif PGM_SHW_TYPE == PGM_TYPE_PAE
571 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
572 PX86PDPAE pPDDst;
573# if PGM_GST_TYPE == PGM_TYPE_PAE
574 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
575# else
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
577# endif
578 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
579
580# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
581 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
582 PX86PDPAE pPDDst;
583# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
584 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
585 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
586# else
587 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
588# endif
589 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
590
591# elif PGM_SHW_TYPE == PGM_TYPE_EPT
592 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
593 PEPTPD pPDDst;
594 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
596# endif
597 Assert(pPDDst);
598
599# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
600 /*
601 * Dirty page handling.
602 *
603 * If we successfully correct the write protection fault due to dirty bit
604 * tracking, then return immediately.
605 */
606 if (uErr & X86_TRAP_PF_RW) /* write fault? */
607 {
608 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
609 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
610 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
611 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
612 {
613 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
614 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
615 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
616 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
617 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
618 return VINF_SUCCESS;
619 }
620 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
621 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
622 }
623
624# if 0 /* rarely useful; leave for debugging. */
625 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
626# endif
627# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
628
629 /*
630 * A common case is the not-present error caused by lazy page table syncing.
631 *
632 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
633 * here so we can safely assume that the shadow PT is present when calling
634 * SyncPage later.
635 *
636 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
637 * of mapping conflict and defer to SyncCR3 in R3.
638 * (Again, we do NOT support access handlers for non-present guest pages.)
639 *
640 */
641# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
642 Assert(GstWalk.Pde.n.u1Present);
643# endif
644 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
645 && !pPDDst->a[iPDDst].n.u1Present)
646 {
647 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
648# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
649 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
650 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
651# else
652 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
653 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
654# endif
655 if (RT_SUCCESS(rc))
656 return rc;
657 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
658 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
659 return VINF_PGM_SYNC_CR3;
660 }
661
662# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
663 /*
664 * Check if this address is within any of our mappings.
665 *
666 * This is *very* fast and it's gonna save us a bit of effort below and prevent
667 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
668 * (BTW, it's impossible to have physical access handlers in a mapping.)
669 */
670 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
671 {
672 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
673 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
674 {
675 if (pvFault < pMapping->GCPtr)
676 break;
677 if (pvFault - pMapping->GCPtr < pMapping->cb)
678 {
679 /*
680 * The first thing we check is if we've got an undetected conflict.
681 */
682 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
683 {
684 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
685 while (iPT-- > 0)
686 if (GstWalk.pPde[iPT].n.u1Present)
687 {
688 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
689 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
690 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
691 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
692 return VINF_PGM_SYNC_CR3;
693 }
694 }
695
696 /*
697 * Check if the fault address is in a virtual page access handler range.
698 */
699 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
700 if ( pCur
701 && pvFault - pCur->Core.Key < pCur->cb
702 && uErr & X86_TRAP_PF_RW)
703 {
704# ifdef IN_RC
705 STAM_PROFILE_START(&pCur->Stat, h);
706 pgmUnlock(pVM);
707 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
708 pgmLock(pVM);
709 STAM_PROFILE_STOP(&pCur->Stat, h);
710# else
711 AssertFailed();
712 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
713# endif
714 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
715 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
716 return rc;
717 }
718
719 /*
720 * Pretend we're not here and let the guest handle the trap.
721 */
722 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
723 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
724 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
725 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
726 return VINF_EM_RAW_GUEST_TRAP;
727 }
728 }
729 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
730# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
731
732 /*
733 * Check if this fault address is flagged for special treatment,
734 * which means we'll have to figure out the physical address and
735 * check flags associated with it.
736 *
737 * ASSUME that we can limit any special access handling to pages
738 * in page tables which the guest believes to be present.
739 */
740# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
741 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
742# else
743 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
744# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
745 PPGMPAGE pPage;
746 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
747 if (RT_FAILURE(rc))
748 {
749 /*
750 * When the guest accesses invalid physical memory (e.g. probing
751 * of RAM or accessing a remapped MMIO range), then we'll fall
752 * back to the recompiler to emulate the instruction.
753 */
754 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
755 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
756 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
757 return VINF_EM_RAW_EMULATE_INSTR;
758 }
759
760 /*
761 * Any handlers for this page?
762 */
763 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
764# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
765 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
766 &GstWalk));
767# else
768 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
769# endif
770
771 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
772
773# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
774 if (uErr & X86_TRAP_PF_P)
775 {
776 /*
777 * The page isn't marked, but it might still be monitored by a virtual page access handler.
778 * (ASSUMES no temporary disabling of virtual handlers.)
779 */
780 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
781 * we should correct both the shadow page table and physical memory flags, and not only check for
782 * accesses within the handler region but for access to pages with virtual handlers. */
783 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
784 if (pCur)
785 {
786 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
787 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
788 || !(uErr & X86_TRAP_PF_P)
789 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
790 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
791
792 if ( pvFault - pCur->Core.Key < pCur->cb
793 && ( uErr & X86_TRAP_PF_RW
794 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
795 {
796# ifdef IN_RC
797 STAM_PROFILE_START(&pCur->Stat, h);
798 pgmUnlock(pVM);
799 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
800 pgmLock(pVM);
801 STAM_PROFILE_STOP(&pCur->Stat, h);
802# else
803 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
804# endif
805 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
806 return rc;
807 }
808 }
809 }
810# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
811
812 /*
813 * We are here only if page is present in Guest page tables and
814 * trap is not handled by our handlers.
815 *
816 * Check it for page out-of-sync situation.
817 */
818 if (!(uErr & X86_TRAP_PF_P))
819 {
820 /*
821 * Page is not present in our page tables. Try to sync it!
822 */
823 if (uErr & X86_TRAP_PF_US)
824 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
825 else /* supervisor */
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
827
828 if (PGM_PAGE_IS_BALLOONED(pPage))
829 {
830 /* Emulate reads from ballooned pages as they are not present in
831 our shadow page tables. (Required for e.g. Solaris guests; soft
832 ecc, random nr generator.) */
833 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
834 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
835 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
836 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
837 return rc;
838 }
839
840# if defined(LOG_ENABLED) && !defined(IN_RING0)
841 RTGCPHYS GCPhys2;
842 uint64_t fPageGst2;
843 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
844# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
845 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
846 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
847# else
848 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
849 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
850# endif
851# endif /* LOG_ENABLED */
852
853# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
854 if ( !GstWalk.Core.fEffectiveUS
855 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
856 {
857 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
858 if ( pvFault == (RTGCPTR)pRegFrame->eip
859 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
860# ifdef CSAM_DETECT_NEW_CODE_PAGES
861 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
862 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
863# endif /* CSAM_DETECT_NEW_CODE_PAGES */
864 )
865 {
866 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
867 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
868 if (rc != VINF_SUCCESS)
869 {
870 /*
871 * CSAM needs to perform a job in ring 3.
872 *
873 * Sync the page before going to the host context; otherwise we'll end up in a loop if
874 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
875 */
876 LogFlow(("CSAM ring 3 job\n"));
877 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
878 AssertRC(rc2);
879
880 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
881 return rc;
882 }
883 }
884# ifdef CSAM_DETECT_NEW_CODE_PAGES
885 else if ( uErr == X86_TRAP_PF_RW
886 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
887 && pRegFrame->ecx < 0x10000)
888 {
889 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
890 * to detect loading of new code pages.
891 */
892
893 /*
894 * Decode the instruction.
895 */
896 RTGCPTR PC;
897 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
898 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
899 if (rc == VINF_SUCCESS)
900 {
901 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
902 uint32_t cbOp;
903 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
904
905 /* For now we'll restrict this to rep movsw/d instructions */
906 if ( rc == VINF_SUCCESS
907 && pDis->pCurInstr->opcode == OP_MOVSWD
908 && (pDis->prefix & PREFIX_REP))
909 {
910 CSAMMarkPossibleCodePage(pVM, pvFault);
911 }
912 }
913 }
914# endif /* CSAM_DETECT_NEW_CODE_PAGES */
915
916 /*
917 * Mark this page as safe.
918 */
919 /** @todo not correct for pages that contain both code and data!! */
920 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
921 CSAMMarkPage(pVM, pvFault, true);
922 }
923# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
924# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
925 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
926# else
927 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
928# endif
929 if (RT_SUCCESS(rc))
930 {
931 /* The page was successfully synced, return to the guest. */
932 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
933 return VINF_SUCCESS;
934 }
935 }
936 else /* uErr & X86_TRAP_PF_P: */
937 {
938 /*
939 * Write protected pages are made writable when the guest makes the
940 * first write to it. This happens for pages that are shared, write
941 * monitored or not yet allocated.
942 *
943 * We may also end up here when CR0.WP=0 in the guest.
944 *
945 * Also, a side effect of not flushing global PDEs are out of sync
946 * pages due to physical monitored regions, that are no longer valid.
947 * Assume for now it only applies to the read/write flag.
948 */
949 if (uErr & X86_TRAP_PF_RW)
950 {
951 /*
952 * Check if it is a read-only page.
953 */
954 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
955 {
956 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
957 Assert(!PGM_PAGE_IS_ZERO(pPage));
958 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
959 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
960
961 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
962 if (rc != VINF_SUCCESS)
963 {
964 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
965 return rc;
966 }
967 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
968 return VINF_EM_NO_MEMORY;
969 }
970
971# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
972 /*
973 * Check to see if we need to emulate the instruction if CR0.WP=0.
974 */
975 if ( !GstWalk.Core.fEffectiveRW
976 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
977 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
978 {
979 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
980 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
981 if (RT_SUCCESS(rc))
982 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
983 else
984 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
985 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
986 return rc;
987 }
988# endif
989 /// @todo count the above case; else
990 if (uErr & X86_TRAP_PF_US)
991 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
992 else /* supervisor */
993 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
994
995 /*
996 * Sync the page.
997 *
998 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
999 * page is not present, which is not true in this case.
1000 */
1001# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1002 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1003# else
1004 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1005# endif
1006 if (RT_SUCCESS(rc))
1007 {
1008 /*
1009 * Page was successfully synced, return to guest but invalidate
1010 * the TLB first as the page is very likely to be in it.
1011 */
1012# if PGM_SHW_TYPE == PGM_TYPE_EPT
1013 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1014# else
1015 PGM_INVL_PG(pVCpu, pvFault);
1016# endif
1017# ifdef VBOX_STRICT
1018 RTGCPHYS GCPhys2;
1019 uint64_t fPageGst;
1020 if (!pVM->pgm.s.fNestedPaging)
1021 {
1022 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1023 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1024 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1025 }
1026 uint64_t fPageShw;
1027 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1028 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1029 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1030# endif /* VBOX_STRICT */
1031 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1032 return VINF_SUCCESS;
1033 }
1034 }
1035 /** @todo else: why are we here? */
1036
1037# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1038 /*
1039 * Check for VMM page flags vs. Guest page flags consistency.
1040 * Currently only for debug purposes.
1041 */
1042 if (RT_SUCCESS(rc))
1043 {
1044 /* Get guest page flags. */
1045 uint64_t fPageGst;
1046 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1047 if (RT_SUCCESS(rc))
1048 {
1049 uint64_t fPageShw;
1050 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1051
1052 /*
1053 * Compare page flags.
1054 * Note: we have AVL, A, D bits desynched.
1055 */
1056 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1057 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1058 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1059 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1060 }
1061 else
1062 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1063 }
1064 else
1065 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1066# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1067 }
1068
1069
1070 /*
1071 * If we get here it is because something failed above, i.e. most like guru
1072 * meditiation time.
1073 */
1074 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1075 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1076 return rc;
1077
1078# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1079 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1080 return VERR_INTERNAL_ERROR;
1081# endif
1082}
1083#endif /* !IN_RING3 */
1084
1085
1086/**
1087 * Emulation of the invlpg instruction.
1088 *
1089 *
1090 * @returns VBox status code.
1091 *
1092 * @param pVCpu The VMCPU handle.
1093 * @param GCPtrPage Page to invalidate.
1094 *
1095 * @remark ASSUMES that the guest is updating before invalidating. This order
1096 * isn't required by the CPU, so this is speculative and could cause
1097 * trouble.
1098 * @remark No TLB shootdown is done on any other VCPU as we assume that
1099 * invlpg emulation is the *only* reason for calling this function.
1100 * (The guest has to shoot down TLB entries on other CPUs itself)
1101 * Currently true, but keep in mind!
1102 *
1103 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1104 */
1105PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1106{
1107#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1108 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1109 && PGM_SHW_TYPE != PGM_TYPE_EPT
1110 int rc;
1111 PVM pVM = pVCpu->CTX_SUFF(pVM);
1112 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1113
1114 Assert(PGMIsLockOwner(pVM));
1115
1116 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1117
1118# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1119 if (pPool->cDirtyPages)
1120 pgmPoolResetDirtyPages(pVM);
1121# endif
1122
1123 /*
1124 * Get the shadow PD entry and skip out if this PD isn't present.
1125 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1126 */
1127# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1128 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1129 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1130
1131 /* Fetch the pgm pool shadow descriptor. */
1132 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1133 Assert(pShwPde);
1134
1135# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1136 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1137 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1138
1139 /* If the shadow PDPE isn't present, then skip the invalidate. */
1140 if (!pPdptDst->a[iPdpt].n.u1Present)
1141 {
1142 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1144 return VINF_SUCCESS;
1145 }
1146
1147 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1148 PPGMPOOLPAGE pShwPde = NULL;
1149 PX86PDPAE pPDDst;
1150
1151 /* Fetch the pgm pool shadow descriptor. */
1152 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1153 AssertRCSuccessReturn(rc, rc);
1154 Assert(pShwPde);
1155
1156 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1157 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1158
1159# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1160 /* PML4 */
1161 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1162 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1163 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1164 PX86PDPAE pPDDst;
1165 PX86PDPT pPdptDst;
1166 PX86PML4E pPml4eDst;
1167 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1168 if (rc != VINF_SUCCESS)
1169 {
1170 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1171 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1172 return VINF_SUCCESS;
1173 }
1174 Assert(pPDDst);
1175
1176 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1177 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1178
1179 if (!pPdpeDst->n.u1Present)
1180 {
1181 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1182 return VINF_SUCCESS;
1183 }
1184
1185 /* Fetch the pgm pool shadow descriptor. */
1186 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1187 Assert(pShwPde);
1188
1189# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1190
1191 const SHWPDE PdeDst = *pPdeDst;
1192 if (!PdeDst.n.u1Present)
1193 {
1194 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1195 return VINF_SUCCESS;
1196 }
1197
1198 /*
1199 * Get the guest PD entry and calc big page.
1200 */
1201# if PGM_GST_TYPE == PGM_TYPE_32BIT
1202 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1203 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1204 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1205# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1206 unsigned iPDSrc = 0;
1207# if PGM_GST_TYPE == PGM_TYPE_PAE
1208 X86PDPE PdpeSrcIgn;
1209 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1210# else /* AMD64 */
1211 PX86PML4E pPml4eSrcIgn;
1212 X86PDPE PdpeSrcIgn;
1213 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1214# endif
1215 GSTPDE PdeSrc;
1216
1217 if (pPDSrc)
1218 PdeSrc = pPDSrc->a[iPDSrc];
1219 else
1220 PdeSrc.u = 0;
1221# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1222 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1223
1224# ifdef IN_RING3
1225 /*
1226 * If a CR3 Sync is pending we may ignore the invalidate page operation
1227 * depending on the kind of sync and if it's a global page or not.
1228 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1229 */
1230# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1231 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1232 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1233 && fIsBigPage
1234 && PdeSrc.b.u1Global
1235 )
1236 )
1237# else
1238 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1239# endif
1240 {
1241 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1242 return VINF_SUCCESS;
1243 }
1244# endif /* IN_RING3 */
1245
1246 /*
1247 * Deal with the Guest PDE.
1248 */
1249 rc = VINF_SUCCESS;
1250 if (PdeSrc.n.u1Present)
1251 {
1252 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1253 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1254# ifndef PGM_WITHOUT_MAPPING
1255 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1256 {
1257 /*
1258 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1259 */
1260 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1261 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1263 }
1264 else
1265# endif /* !PGM_WITHOUT_MAPPING */
1266 if (!fIsBigPage)
1267 {
1268 /*
1269 * 4KB - page.
1270 */
1271 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1272 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1273
1274# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1275 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1276 if (pShwPage->cModifications)
1277 pShwPage->cModifications = 1;
1278# endif
1279
1280# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1281 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1282 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1283# endif
1284 if (pShwPage->GCPhys == GCPhys)
1285 {
1286# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1287 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1288 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1289 if (pPT->a[iPTEDst].n.u1Present)
1290 {
1291 /* This is very unlikely with caching/monitoring enabled. */
1292 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1293 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1294 }
1295# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1296 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1297 if (RT_SUCCESS(rc))
1298 rc = VINF_SUCCESS;
1299# endif
1300 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1301 PGM_INVL_PG(pVCpu, GCPtrPage);
1302 }
1303 else
1304 {
1305 /*
1306 * The page table address changed.
1307 */
1308 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1309 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1310 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1311 ASMAtomicWriteSize(pPdeDst, 0);
1312 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1313 PGM_INVL_VCPU_TLBS(pVCpu);
1314 }
1315 }
1316 else
1317 {
1318 /*
1319 * 2/4MB - page.
1320 */
1321 /* Before freeing the page, check if anything really changed. */
1322 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1323 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1324# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1325 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1326 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1327# endif
1328 if ( pShwPage->GCPhys == GCPhys
1329 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1330 {
1331 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1332 /** @todo This test is wrong as it cannot check the G bit!
1333 * FIXME */
1334 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1335 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1336 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1337 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1338 {
1339 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1340 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1341 return VINF_SUCCESS;
1342 }
1343 }
1344
1345 /*
1346 * Ok, the page table is present and it's been changed in the guest.
1347 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1348 * We could do this for some flushes in GC too, but we need an algorithm for
1349 * deciding which 4MB pages containing code likely to be executed very soon.
1350 */
1351 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1352 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1353 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1354 ASMAtomicWriteSize(pPdeDst, 0);
1355 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1356 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1357 }
1358 }
1359 else
1360 {
1361 /*
1362 * Page directory is not present, mark shadow PDE not present.
1363 */
1364 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1365 {
1366 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1367 ASMAtomicWriteSize(pPdeDst, 0);
1368 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1369 PGM_INVL_PG(pVCpu, GCPtrPage);
1370 }
1371 else
1372 {
1373 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1374 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1375 }
1376 }
1377 return rc;
1378
1379#else /* guest real and protected mode */
1380 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1381 return VINF_SUCCESS;
1382#endif
1383}
1384
1385
1386/**
1387 * Update the tracking of shadowed pages.
1388 *
1389 * @param pVCpu The VMCPU handle.
1390 * @param pShwPage The shadow page.
1391 * @param HCPhys The physical page we is being dereferenced.
1392 * @param iPte Shadow PTE index
1393 */
1394DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
1395{
1396 PVM pVM = pVCpu->CTX_SUFF(pVM);
1397
1398 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1399 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1400
1401 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1402 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1403 * 2. write protect all shadowed pages. I.e. implement caching.
1404 */
1405 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1406
1407 /*
1408 * Find the guest address.
1409 */
1410 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1411 pRam;
1412 pRam = pRam->CTX_SUFF(pNext))
1413 {
1414 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1415 while (iPage-- > 0)
1416 {
1417 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1418 {
1419 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1420
1421 Assert(pShwPage->cPresent);
1422 Assert(pPool->cPresent);
1423 pShwPage->cPresent--;
1424 pPool->cPresent--;
1425
1426 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1427 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1428 return;
1429 }
1430 }
1431 }
1432
1433 for (;;)
1434 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1435}
1436
1437
1438/**
1439 * Update the tracking of shadowed pages.
1440 *
1441 * @param pVCpu The VMCPU handle.
1442 * @param pShwPage The shadow page.
1443 * @param u16 The top 16-bit of the pPage->HCPhys.
1444 * @param pPage Pointer to the guest page. this will be modified.
1445 * @param iPTDst The index into the shadow table.
1446 */
1447DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1448{
1449 PVM pVM = pVCpu->CTX_SUFF(pVM);
1450
1451 /*
1452 * Just deal with the simple first time here.
1453 */
1454 if (!u16)
1455 {
1456 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1457 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1458 /* Save the page table index. */
1459 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1460 }
1461 else
1462 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1463
1464 /* write back */
1465 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1466 PGM_PAGE_SET_TRACKING(pPage, u16);
1467
1468 /* update statistics. */
1469 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1470 pShwPage->cPresent++;
1471 if (pShwPage->iFirstPresent > iPTDst)
1472 pShwPage->iFirstPresent = iPTDst;
1473}
1474
1475
1476/**
1477 * Modifies a shadow PTE to account for access handlers.
1478 *
1479 * @param pVM The VM handle.
1480 * @param pPage The page in question.
1481 * @param fPteSrc The flags of the source PTE.
1482 * @param pPteDst The shadow PTE (output). This is temporary storage and
1483 * does not need to be set atomically.
1484 */
1485DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint32_t fPteSrc, PSHWPTE pPteDst)
1486{
1487 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1488 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1489 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1490 {
1491 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1492#if PGM_SHW_TYPE == PGM_TYPE_EPT
1493 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1494 pPteDst->n.u1Present = 1;
1495 pPteDst->n.u1Execute = 1;
1496 pPteDst->n.u1IgnorePAT = 1;
1497 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1498 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1499#else
1500 SHW_PTE_SET(*pPteDst,
1501 (fPteSrc & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1502 | PGM_PAGE_GET_HCPHYS(pPage));
1503#endif
1504 }
1505#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1506# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1507 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1508 && ( BTH_IS_NP_ACTIVE(pVM)
1509 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1510# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1511 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1512# endif
1513 )
1514 {
1515 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1516# if PGM_SHW_TYPE == PGM_TYPE_EPT
1517 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1518 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1519 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1520 pPteDst->n.u1Present = 0;
1521 pPteDst->n.u1Write = 1;
1522 pPteDst->n.u1Execute = 0;
1523 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1524 pPteDst->n.u3EMT = 7;
1525# else
1526 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1527 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1528# endif
1529 }
1530# endif
1531#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1532 else
1533 {
1534 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1535 SHW_PTE_SET(*pPteDst, 0);
1536 }
1537 /** @todo count these kinds of entries. */
1538}
1539
1540
1541/**
1542 * Creates a 4K shadow page for a guest page.
1543 *
1544 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1545 * physical address. The PdeSrc argument only the flags are used. No page
1546 * structured will be mapped in this function.
1547 *
1548 * @param pVCpu The VMCPU handle.
1549 * @param pPteDst Destination page table entry.
1550 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1551 * Can safely assume that only the flags are being used.
1552 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1553 * @param pShwPage Pointer to the shadow page.
1554 * @param iPTDst The index into the shadow table.
1555 *
1556 * @remark Not used for 2/4MB pages!
1557 */
1558DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1559 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1560{
1561 if ( PteSrc.n.u1Present
1562 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1563 {
1564 PVM pVM = pVCpu->CTX_SUFF(pVM);
1565
1566# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1567 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1568 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1569 if (pShwPage->fDirty)
1570 {
1571 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1572 PX86PTPAE pGstPT;
1573
1574 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1575 pGstPT->a[iPTDst].u = PteSrc.u;
1576 }
1577# endif
1578 /*
1579 * Find the ram range.
1580 */
1581 PPGMPAGE pPage;
1582 int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage);
1583 if (RT_SUCCESS(rc))
1584 {
1585 /* Ignore ballooned pages.
1586 Don't return errors or use a fatal assert here as part of a
1587 shadow sync range might included ballooned pages. */
1588 if (PGM_PAGE_IS_BALLOONED(pPage))
1589 {
1590 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1591 return;
1592 }
1593
1594#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1595 /* Make the page writable if necessary. */
1596 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1597 && ( PGM_PAGE_IS_ZERO(pPage)
1598 || ( PteSrc.n.u1Write
1599 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1600# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1601 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1602# endif
1603# ifdef VBOX_WITH_PAGE_SHARING
1604 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1605# endif
1606 )
1607 )
1608 )
1609 {
1610 rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK);
1611 AssertRC(rc);
1612 }
1613#endif
1614
1615 /*
1616 * Make page table entry.
1617 */
1618 SHWPTE PteDst;
1619 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1620 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage,
1621 PteSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK
1622 | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT),
1623 &PteDst);
1624 else
1625 {
1626#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1627 /*
1628 * If the page or page directory entry is not marked accessed,
1629 * we mark the page not present.
1630 */
1631 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1632 {
1633 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1634 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1635 SHW_PTE_SET(PteDst, 0);
1636 }
1637 /*
1638 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1639 * when the page is modified.
1640 */
1641 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1642 {
1643 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1644 SHW_PTE_SET(PteDst,
1645 (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW))
1646 | PGM_PAGE_GET_HCPHYS(pPage)
1647 | PGM_PTFLAGS_TRACK_DIRTY);
1648 }
1649 else
1650#endif
1651 {
1652 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1653#if PGM_SHW_TYPE == PGM_TYPE_EPT
1654 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1655 PteDst.n.u1Present = 1;
1656 PteDst.n.u1Write = 1;
1657 PteDst.n.u1Execute = 1;
1658 PteDst.n.u1IgnorePAT = 1;
1659 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1660 /* PteDst.n.u1Size = 0 */
1661#else
1662 SHW_PTE_SET(PteDst,
1663 (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1664 | PGM_PAGE_GET_HCPHYS(pPage));
1665#endif
1666 }
1667
1668 /*
1669 * Make sure only allocated pages are mapped writable.
1670 */
1671 if ( SHW_PTE_IS_P_RW(PteDst)
1672 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1673 {
1674 /* Still applies to shared pages. */
1675 Assert(!PGM_PAGE_IS_ZERO(pPage));
1676 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1677 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst));
1678 }
1679 }
1680
1681 /*
1682 * Keep user track up to date.
1683 */
1684 if (SHW_PTE_IS_P(PteDst))
1685 {
1686 if (!SHW_PTE_IS_P(*pPteDst))
1687 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1688 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1689 {
1690 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1691 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1692 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1693 }
1694 }
1695 else if (SHW_PTE_IS_P(*pPteDst))
1696 {
1697 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1698 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1699 }
1700
1701 /*
1702 * Update statistics and commit the entry.
1703 */
1704#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1705 if (!PteSrc.n.u1Global)
1706 pShwPage->fSeenNonGlobal = true;
1707#endif
1708 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1709 return;
1710 }
1711
1712/** @todo count these three different kinds. */
1713 Log2(("SyncPageWorker: invalid address in Pte\n"));
1714 }
1715 else if (!PteSrc.n.u1Present)
1716 Log2(("SyncPageWorker: page not present in Pte\n"));
1717 else
1718 Log2(("SyncPageWorker: invalid Pte\n"));
1719
1720 /*
1721 * The page is not present or the PTE is bad. Replace the shadow PTE by
1722 * an empty entry, making sure to keep the user tracking up to date.
1723 */
1724 if (SHW_PTE_IS_P(*pPteDst))
1725 {
1726 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1727 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1728 }
1729 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1730}
1731
1732
1733/**
1734 * Syncs a guest OS page.
1735 *
1736 * There are no conflicts at this point, neither is there any need for
1737 * page table allocations.
1738 *
1739 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1740 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1741 *
1742 * @returns VBox status code.
1743 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1744 * @param pVCpu The VMCPU handle.
1745 * @param PdeSrc Page directory entry of the guest.
1746 * @param GCPtrPage Guest context page address.
1747 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1748 * @param uErr Fault error (X86_TRAP_PF_*).
1749 */
1750static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1751{
1752 PVM pVM = pVCpu->CTX_SUFF(pVM);
1753 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1754 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1755
1756 Assert(PGMIsLockOwner(pVM));
1757
1758#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1759 || PGM_GST_TYPE == PGM_TYPE_PAE \
1760 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1761 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1762 && PGM_SHW_TYPE != PGM_TYPE_EPT
1763
1764 /*
1765 * Assert preconditions.
1766 */
1767 Assert(PdeSrc.n.u1Present);
1768 Assert(cPages);
1769# if 0 /* rarely useful; leave for debugging. */
1770 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1771# endif
1772
1773 /*
1774 * Get the shadow PDE, find the shadow page table in the pool.
1775 */
1776# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1777 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1778 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1779
1780 /* Fetch the pgm pool shadow descriptor. */
1781 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1782 Assert(pShwPde);
1783
1784# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1785 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1786 PPGMPOOLPAGE pShwPde = NULL;
1787 PX86PDPAE pPDDst;
1788
1789 /* Fetch the pgm pool shadow descriptor. */
1790 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1791 AssertRCSuccessReturn(rc2, rc2);
1792 Assert(pShwPde);
1793
1794 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1795 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1796
1797# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1798 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1799 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1800 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1801 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1802
1803 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1804 AssertRCSuccessReturn(rc2, rc2);
1805 Assert(pPDDst && pPdptDst);
1806 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1807# endif
1808 SHWPDE PdeDst = *pPdeDst;
1809
1810 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1811 if (!PdeDst.n.u1Present)
1812 {
1813 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1814 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
1815 return VINF_SUCCESS; /* force the instruction to be executed again. */
1816 }
1817
1818 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1819 Assert(pShwPage);
1820
1821# if PGM_GST_TYPE == PGM_TYPE_AMD64
1822 /* Fetch the pgm pool shadow descriptor. */
1823 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1824 Assert(pShwPde);
1825# endif
1826
1827 /*
1828 * Check that the page is present and that the shadow PDE isn't out of sync.
1829 */
1830 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1831 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1832 RTGCPHYS GCPhys;
1833 if (!fBigPage)
1834 {
1835 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1836# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1837 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1838 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1839# endif
1840 }
1841 else
1842 {
1843 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1844# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1845 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1846 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1847# endif
1848 }
1849 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1850 if ( fPdeValid
1851 && pShwPage->GCPhys == GCPhys
1852 && PdeSrc.n.u1Present
1853 && PdeSrc.n.u1User == PdeDst.n.u1User
1854 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1855# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1856 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1857# endif
1858 )
1859 {
1860 /*
1861 * Check that the PDE is marked accessed already.
1862 * Since we set the accessed bit *before* getting here on a #PF, this
1863 * check is only meant for dealing with non-#PF'ing paths.
1864 */
1865 if (PdeSrc.n.u1Accessed)
1866 {
1867 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1868 if (!fBigPage)
1869 {
1870 /*
1871 * 4KB Page - Map the guest page table.
1872 */
1873 PGSTPT pPTSrc;
1874 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1875 if (RT_SUCCESS(rc))
1876 {
1877# ifdef PGM_SYNC_N_PAGES
1878 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1879 if ( cPages > 1
1880 && !(uErr & X86_TRAP_PF_P)
1881 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1882 {
1883 /*
1884 * This code path is currently only taken when the caller is PGMTrap0eHandler
1885 * for non-present pages!
1886 *
1887 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1888 * deal with locality.
1889 */
1890 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1891# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1892 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1893 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1894# else
1895 const unsigned offPTSrc = 0;
1896# endif
1897 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1898 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1899 iPTDst = 0;
1900 else
1901 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1902 for (; iPTDst < iPTDstEnd; iPTDst++)
1903 {
1904 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1905 {
1906 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1907 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1908 NOREF(GCPtrCurPage);
1909#ifndef IN_RING0
1910 /*
1911 * Assuming kernel code will be marked as supervisor - and not as user level
1912 * and executed using a conforming code selector - And marked as readonly.
1913 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1914 */
1915 PPGMPAGE pPage;
1916 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1917 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1918 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1919 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1920 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1921 )
1922#endif /* else: CSAM not active */
1923 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1924 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1925 GCPtrCurPage, PteSrc.n.u1Present,
1926 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1927 PteSrc.n.u1User & PdeSrc.n.u1User,
1928 (uint64_t)PteSrc.u,
1929 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1930 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1931 }
1932 }
1933 }
1934 else
1935# endif /* PGM_SYNC_N_PAGES */
1936 {
1937 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1938 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1939 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1940 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1941 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1942 GCPtrPage, PteSrc.n.u1Present,
1943 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1944 PteSrc.n.u1User & PdeSrc.n.u1User,
1945 (uint64_t)PteSrc.u,
1946 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1947 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1948 }
1949 }
1950 else /* MMIO or invalid page: emulated in #PF handler. */
1951 {
1952 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1953 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1954 }
1955 }
1956 else
1957 {
1958 /*
1959 * 4/2MB page - lazy syncing shadow 4K pages.
1960 * (There are many causes of getting here, it's no longer only CSAM.)
1961 */
1962 /* Calculate the GC physical address of this 4KB shadow page. */
1963 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1964 /* Find ram range. */
1965 PPGMPAGE pPage;
1966 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1967 if (RT_SUCCESS(rc))
1968 {
1969 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1970
1971# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1972 /* Try to make the page writable if necessary. */
1973 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1974 && ( PGM_PAGE_IS_ZERO(pPage)
1975 || ( PdeSrc.n.u1Write
1976 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1977# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1978 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1979# endif
1980# ifdef VBOX_WITH_PAGE_SHARING
1981 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1982# endif
1983 )
1984 )
1985 )
1986 {
1987 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1988 AssertRC(rc);
1989 }
1990# endif
1991
1992 /*
1993 * Make shadow PTE entry.
1994 */
1995 SHWPTE PteDst;
1996 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1997 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
1998 else
1999 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2000
2001 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2002 if ( SHW_PTE_IS_P(PteDst)
2003 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2004 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2005
2006 /* Make sure only allocated pages are mapped writable. */
2007 if ( SHW_PTE_IS_P_RW(PteDst)
2008 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2009 {
2010 /* Still applies to shared pages. */
2011 Assert(!PGM_PAGE_IS_ZERO(pPage));
2012 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2013 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2014 }
2015
2016 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2017
2018 /*
2019 * If the page is not flagged as dirty and is writable, then make it read-only
2020 * at PD level, so we can set the dirty bit when the page is modified.
2021 *
2022 * ASSUMES that page access handlers are implemented on page table entry level.
2023 * Thus we will first catch the dirty access and set PDE.D and restart. If
2024 * there is an access handler, we'll trap again and let it work on the problem.
2025 */
2026 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2027 * As for invlpg, it simply frees the whole shadow PT.
2028 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2029 if ( !PdeSrc.b.u1Dirty
2030 && PdeSrc.b.u1Write)
2031 {
2032 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2033 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2034 PdeDst.n.u1Write = 0;
2035 }
2036 else
2037 {
2038 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2039 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2040 }
2041 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2042 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2043 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2044 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2045 }
2046 else
2047 {
2048 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2049 /** @todo must wipe the shadow page table entry in this
2050 * case. */
2051 }
2052 }
2053 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2054 return VINF_SUCCESS;
2055 }
2056
2057 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2058 }
2059 else if (fPdeValid)
2060 {
2061 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2062 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2063 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2064 }
2065 else
2066 {
2067/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2068 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2069 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2070 }
2071
2072 /*
2073 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2074 * Yea, I'm lazy.
2075 */
2076 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2077 ASMAtomicWriteSize(pPdeDst, 0);
2078
2079 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2080 PGM_INVL_VCPU_TLBS(pVCpu);
2081 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2082
2083
2084#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2085 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2086 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2087 && !defined(IN_RC)
2088
2089# ifdef PGM_SYNC_N_PAGES
2090 /*
2091 * Get the shadow PDE, find the shadow page table in the pool.
2092 */
2093# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2094 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2095
2096# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2097 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2098
2099# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2100 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2101 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2102 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2103 X86PDEPAE PdeDst;
2104 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2105
2106 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2107 AssertRCSuccessReturn(rc, rc);
2108 Assert(pPDDst && pPdptDst);
2109 PdeDst = pPDDst->a[iPDDst];
2110# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2111 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2112 PEPTPD pPDDst;
2113 EPTPDE PdeDst;
2114
2115 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2116 if (rc != VINF_SUCCESS)
2117 {
2118 AssertRC(rc);
2119 return rc;
2120 }
2121 Assert(pPDDst);
2122 PdeDst = pPDDst->a[iPDDst];
2123# endif
2124 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2125 if (!PdeDst.n.u1Present)
2126 {
2127 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2128 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2129 return VINF_SUCCESS; /* force the instruction to be executed again. */
2130 }
2131
2132 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2133 if (PdeDst.n.u1Size)
2134 {
2135 Assert(pVM->pgm.s.fNestedPaging);
2136 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2137 return VINF_SUCCESS;
2138 }
2139
2140 /* Mask away the page offset. */
2141 GCPtrPage &= ~((RTGCPTR)0xfff);
2142
2143 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2144 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2145
2146 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2147 if ( cPages > 1
2148 && !(uErr & X86_TRAP_PF_P)
2149 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2150 {
2151 /*
2152 * This code path is currently only taken when the caller is PGMTrap0eHandler
2153 * for non-present pages!
2154 *
2155 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2156 * deal with locality.
2157 */
2158 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2159 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2160 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2161 iPTDst = 0;
2162 else
2163 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2164 for (; iPTDst < iPTDstEnd; iPTDst++)
2165 {
2166 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2167 {
2168 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2169 GSTPTE PteSrc;
2170
2171 /* Fake the page table entry */
2172 PteSrc.u = GCPtrCurPage;
2173 PteSrc.n.u1Present = 1;
2174 PteSrc.n.u1Dirty = 1;
2175 PteSrc.n.u1Accessed = 1;
2176 PteSrc.n.u1Write = 1;
2177 PteSrc.n.u1User = 1;
2178
2179 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2180 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2181 GCPtrCurPage, PteSrc.n.u1Present,
2182 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2183 PteSrc.n.u1User & PdeSrc.n.u1User,
2184 (uint64_t)PteSrc.u,
2185 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2186 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2187
2188 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2189 break;
2190 }
2191 else
2192 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2193 }
2194 }
2195 else
2196# endif /* PGM_SYNC_N_PAGES */
2197 {
2198 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2199 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2200 GSTPTE PteSrc;
2201
2202 /* Fake the page table entry */
2203 PteSrc.u = GCPtrCurPage;
2204 PteSrc.n.u1Present = 1;
2205 PteSrc.n.u1Dirty = 1;
2206 PteSrc.n.u1Accessed = 1;
2207 PteSrc.n.u1Write = 1;
2208 PteSrc.n.u1User = 1;
2209 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2210
2211 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2212 GCPtrPage, PteSrc.n.u1Present,
2213 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2214 PteSrc.n.u1User & PdeSrc.n.u1User,
2215 (uint64_t)PteSrc.u,
2216 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2217 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2218 }
2219 return VINF_SUCCESS;
2220
2221#else
2222 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2223 return VERR_INTERNAL_ERROR;
2224#endif
2225}
2226
2227
2228#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2229
2230/**
2231 * CheckPageFault helper for returning a page fault indicating a non-present
2232 * (NP) entry in the page translation structures.
2233 *
2234 * @returns VINF_EM_RAW_GUEST_TRAP.
2235 * @param pVCpu The virtual CPU to operate on.
2236 * @param uErr The error code of the shadow fault. Corrections to
2237 * TRPM's copy will be made if necessary.
2238 * @param GCPtrPage For logging.
2239 * @param uPageFaultLevel For logging.
2240 */
2241DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2242{
2243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2244 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2245 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2246 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2247 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2248
2249 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2250 return VINF_EM_RAW_GUEST_TRAP;
2251}
2252
2253
2254/**
2255 * CheckPageFault helper for returning a page fault indicating a reserved bit
2256 * (RSVD) error in the page translation structures.
2257 *
2258 * @returns VINF_EM_RAW_GUEST_TRAP.
2259 * @param pVCpu The virtual CPU to operate on.
2260 * @param uErr The error code of the shadow fault. Corrections to
2261 * TRPM's copy will be made if necessary.
2262 * @param GCPtrPage For logging.
2263 * @param uPageFaultLevel For logging.
2264 */
2265DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2266{
2267 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2268 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2269 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2270
2271 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2272 return VINF_EM_RAW_GUEST_TRAP;
2273}
2274
2275
2276/**
2277 * CheckPageFault helper for returning a page protection fault (P).
2278 *
2279 * @returns VINF_EM_RAW_GUEST_TRAP.
2280 * @param pVCpu The virtual CPU to operate on.
2281 * @param uErr The error code of the shadow fault. Corrections to
2282 * TRPM's copy will be made if necessary.
2283 * @param GCPtrPage For logging.
2284 * @param uPageFaultLevel For logging.
2285 */
2286DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2287{
2288 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2289 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2290 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2291 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2292
2293 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2294 return VINF_EM_RAW_GUEST_TRAP;
2295}
2296
2297
2298/**
2299 * Handle dirty bit tracking faults.
2300 *
2301 * @returns VBox status code.
2302 * @param pVCpu The VMCPU handle.
2303 * @param uErr Page fault error code.
2304 * @param pPdeSrc Guest page directory entry.
2305 * @param pPdeDst Shadow page directory entry.
2306 * @param GCPtrPage Guest context page address.
2307 */
2308static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2309{
2310 PVM pVM = pVCpu->CTX_SUFF(pVM);
2311 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2312
2313 Assert(PGMIsLockOwner(pVM));
2314
2315 /*
2316 * Handle big page.
2317 */
2318 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2319 {
2320 if ( pPdeDst->n.u1Present
2321 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2322 {
2323 SHWPDE PdeDst = *pPdeDst;
2324
2325 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2326 Assert(pPdeSrc->b.u1Write);
2327
2328 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2329 * fault again and take this path to only invalidate the entry (see below).
2330 */
2331 PdeDst.n.u1Write = 1;
2332 PdeDst.n.u1Accessed = 1;
2333 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2334 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2335 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2336 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2337 }
2338
2339# ifdef IN_RING0
2340 /* Check for stale TLB entry; only applies to the SMP guest case. */
2341 if ( pVM->cCpus > 1
2342 && pPdeDst->n.u1Write
2343 && pPdeDst->n.u1Accessed)
2344 {
2345 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2346 if (pShwPage)
2347 {
2348 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2349 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2350 if (SHW_PTE_IS_P_RW(*pPteDst))
2351 {
2352 /* Stale TLB entry. */
2353 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2354 PGM_INVL_PG(pVCpu, GCPtrPage);
2355 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2356 }
2357 }
2358 }
2359# endif /* IN_RING0 */
2360 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2361 }
2362
2363 /*
2364 * Map the guest page table.
2365 */
2366 PGSTPT pPTSrc;
2367 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2368 if (RT_FAILURE(rc))
2369 {
2370 AssertRC(rc);
2371 return rc;
2372 }
2373
2374 if (pPdeDst->n.u1Present)
2375 {
2376 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2377 const GSTPTE PteSrc = *pPteSrc;
2378
2379#ifndef IN_RING0
2380 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2381 * Our individual shadow handlers will provide more information and force a fatal exit.
2382 */
2383 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2384 {
2385 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2386 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2387 }
2388#endif
2389 /*
2390 * Map shadow page table.
2391 */
2392 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2393 if (pShwPage)
2394 {
2395 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2396 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2397 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2398 {
2399 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2400 {
2401 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK);
2402 SHWPTE PteDst = *pPteDst;
2403
2404 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2405 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2406
2407 Assert(pPteSrc->n.u1Write);
2408
2409 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2410 * entry will not harm; write access will simply fault again and
2411 * take this path to only invalidate the entry.
2412 */
2413 if (RT_LIKELY(pPage))
2414 {
2415 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2416 {
2417 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2418 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2419 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2420 SHW_PTE_SET_RO(PteDst);
2421 }
2422 else
2423 {
2424 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2425 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2426 {
2427 rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK);
2428 AssertRC(rc);
2429 }
2430 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2431 SHW_PTE_SET_RW(PteDst);
2432 else
2433 {
2434 /* Still applies to shared pages. */
2435 Assert(!PGM_PAGE_IS_ZERO(pPage));
2436 SHW_PTE_SET_RO(PteDst);
2437 }
2438 }
2439 }
2440 else
2441 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2442
2443 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2444 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2445 PGM_INVL_PG(pVCpu, GCPtrPage);
2446 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2447 }
2448
2449# ifdef IN_RING0
2450 /* Check for stale TLB entry; only applies to the SMP guest case. */
2451 if ( pVM->cCpus > 1
2452 && SHW_PTE_IS_RW(*pPteDst)
2453 && SHW_PTE_IS_A(*pPteDst))
2454 {
2455 /* Stale TLB entry. */
2456 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2457 PGM_INVL_PG(pVCpu, GCPtrPage);
2458 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2459 }
2460# endif
2461 }
2462 }
2463 else
2464 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2465 }
2466
2467 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2468}
2469
2470#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2471
2472
2473/**
2474 * Sync a shadow page table.
2475 *
2476 * The shadow page table is not present in the shadow PDE.
2477 *
2478 * Handles mapping conflicts.
2479 *
2480 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2481 * conflict), and Trap0eHandler.
2482 *
2483 * A precodition for this method is that the shadow PDE is not present. The
2484 * caller must take the PGM lock before checking this and continue to hold it
2485 * when calling this method.
2486 *
2487 * @returns VBox status code.
2488 * @param pVCpu The VMCPU handle.
2489 * @param iPD Page directory index.
2490 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2491 * Assume this is a temporary mapping.
2492 * @param GCPtrPage GC Pointer of the page that caused the fault
2493 */
2494static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2495{
2496 PVM pVM = pVCpu->CTX_SUFF(pVM);
2497 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2498
2499 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2500#if 0 /* rarely useful; leave for debugging. */
2501 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2502#endif
2503 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2504
2505 Assert(PGMIsLocked(pVM));
2506
2507#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2508 || PGM_GST_TYPE == PGM_TYPE_PAE \
2509 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2510 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2511 && PGM_SHW_TYPE != PGM_TYPE_EPT
2512
2513 int rc = VINF_SUCCESS;
2514
2515 /*
2516 * Some input validation first.
2517 */
2518 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2519
2520 /*
2521 * Get the relevant shadow PDE entry.
2522 */
2523# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2524 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2525 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2526
2527 /* Fetch the pgm pool shadow descriptor. */
2528 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2529 Assert(pShwPde);
2530
2531# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2532 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2533 PPGMPOOLPAGE pShwPde = NULL;
2534 PX86PDPAE pPDDst;
2535 PSHWPDE pPdeDst;
2536
2537 /* Fetch the pgm pool shadow descriptor. */
2538 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2539 AssertRCSuccessReturn(rc, rc);
2540 Assert(pShwPde);
2541
2542 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2543 pPdeDst = &pPDDst->a[iPDDst];
2544
2545# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2546 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2547 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2548 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2549 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2550 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2551 AssertRCSuccessReturn(rc, rc);
2552 Assert(pPDDst);
2553 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2554# endif
2555 SHWPDE PdeDst = *pPdeDst;
2556
2557# if PGM_GST_TYPE == PGM_TYPE_AMD64
2558 /* Fetch the pgm pool shadow descriptor. */
2559 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2560 Assert(pShwPde);
2561# endif
2562
2563# ifndef PGM_WITHOUT_MAPPINGS
2564 /*
2565 * Check for conflicts.
2566 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2567 * R3: Simply resolve the conflict.
2568 */
2569 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2570 {
2571 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2572# ifndef IN_RING3
2573 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2574 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2575 return VERR_ADDRESS_CONFLICT;
2576
2577# else /* IN_RING3 */
2578 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2579 Assert(pMapping);
2580# if PGM_GST_TYPE == PGM_TYPE_32BIT
2581 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2582# elif PGM_GST_TYPE == PGM_TYPE_PAE
2583 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2584# else
2585 AssertFailed(); /* can't happen for amd64 */
2586# endif
2587 if (RT_FAILURE(rc))
2588 {
2589 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2590 return rc;
2591 }
2592 PdeDst = *pPdeDst;
2593# endif /* IN_RING3 */
2594 }
2595# endif /* !PGM_WITHOUT_MAPPINGS */
2596 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2597
2598 /*
2599 * Sync the page directory entry.
2600 */
2601 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2602 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2603 if ( PdeSrc.n.u1Present
2604 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2605 {
2606 /*
2607 * Allocate & map the page table.
2608 */
2609 PSHWPT pPTDst;
2610 PPGMPOOLPAGE pShwPage;
2611 RTGCPHYS GCPhys;
2612 if (fPageTable)
2613 {
2614 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2615# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2616 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2617 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2618# endif
2619 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2620 }
2621 else
2622 {
2623 PGMPOOLACCESS enmAccess;
2624# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2625 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2626# else
2627 const bool fNoExecute = false;
2628# endif
2629
2630 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2631# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2632 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2633 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2634# endif
2635 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2636 if (PdeSrc.n.u1User)
2637 {
2638 if (PdeSrc.n.u1Write)
2639 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2640 else
2641 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2642 }
2643 else
2644 {
2645 if (PdeSrc.n.u1Write)
2646 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2647 else
2648 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2649 }
2650 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage);
2651 }
2652 if (rc == VINF_SUCCESS)
2653 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2654 else if (rc == VINF_PGM_CACHED_PAGE)
2655 {
2656 /*
2657 * The PT was cached, just hook it up.
2658 */
2659 if (fPageTable)
2660 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2661 else
2662 {
2663 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2664 /* (see explanation and assumptions further down.) */
2665 if ( !PdeSrc.b.u1Dirty
2666 && PdeSrc.b.u1Write)
2667 {
2668 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2669 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2670 PdeDst.b.u1Write = 0;
2671 }
2672 }
2673 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2674 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2675 return VINF_SUCCESS;
2676 }
2677 else if (rc == VERR_PGM_POOL_FLUSHED)
2678 {
2679 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2680 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2681 return VINF_PGM_SYNC_CR3;
2682 }
2683 else
2684 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2685 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2686 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2687 * irrelevant at this point. */
2688 PdeDst.u &= X86_PDE_AVL_MASK;
2689 PdeDst.u |= pShwPage->Core.Key;
2690
2691 /*
2692 * Page directory has been accessed (this is a fault situation, remember).
2693 */
2694 /** @todo
2695 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2696 * fault situation. What's more, the Trap0eHandler has already set the
2697 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2698 * might need setting the accessed flag.
2699 *
2700 * The best idea is to leave this change to the caller and add an
2701 * assertion that it's set already. */
2702 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2703 if (fPageTable)
2704 {
2705 /*
2706 * Page table - 4KB.
2707 *
2708 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2709 */
2710 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2711 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2712 PGSTPT pPTSrc;
2713 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2714 if (RT_SUCCESS(rc))
2715 {
2716 /*
2717 * Start by syncing the page directory entry so CSAM's TLB trick works.
2718 */
2719 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2720 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2721 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2722 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2723
2724 /*
2725 * Directory/page user or supervisor privilege: (same goes for read/write)
2726 *
2727 * Directory Page Combined
2728 * U/S U/S U/S
2729 * 0 0 0
2730 * 0 1 0
2731 * 1 0 0
2732 * 1 1 1
2733 *
2734 * Simple AND operation. Table listed for completeness.
2735 *
2736 */
2737 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2738# ifdef PGM_SYNC_N_PAGES
2739 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2740 unsigned iPTDst = iPTBase;
2741 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2742 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2743 iPTDst = 0;
2744 else
2745 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2746# else /* !PGM_SYNC_N_PAGES */
2747 unsigned iPTDst = 0;
2748 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2749# endif /* !PGM_SYNC_N_PAGES */
2750# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2751 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2752 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2753# else
2754 const unsigned offPTSrc = 0;
2755# endif
2756 for (; iPTDst < iPTDstEnd; iPTDst++)
2757 {
2758 const unsigned iPTSrc = iPTDst + offPTSrc;
2759 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2760
2761 if (PteSrc.n.u1Present)
2762 {
2763# ifndef IN_RING0
2764 /*
2765 * Assuming kernel code will be marked as supervisor - and not as user level
2766 * and executed using a conforming code selector - And marked as readonly.
2767 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2768 */
2769 PPGMPAGE pPage;
2770 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2771 || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT))
2772 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
2773 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2774 )
2775# endif
2776 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2777 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2778 (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)),
2779 PteSrc.n.u1Present,
2780 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2781 PteSrc.n.u1User & PdeSrc.n.u1User,
2782 (uint64_t)PteSrc.u,
2783 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2784 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2785 }
2786 /* else: the page table was cleared by the pool */
2787 } /* for PTEs */
2788 }
2789 }
2790 else
2791 {
2792 /*
2793 * Big page - 2/4MB.
2794 *
2795 * We'll walk the ram range list in parallel and optimize lookups.
2796 * We will only sync on shadow page table at a time.
2797 */
2798 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2799
2800 /**
2801 * @todo It might be more efficient to sync only a part of the 4MB
2802 * page (similar to what we do for 4KB PDs).
2803 */
2804
2805 /*
2806 * Start by syncing the page directory entry.
2807 */
2808 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2809 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2810
2811 /*
2812 * If the page is not flagged as dirty and is writable, then make it read-only
2813 * at PD level, so we can set the dirty bit when the page is modified.
2814 *
2815 * ASSUMES that page access handlers are implemented on page table entry level.
2816 * Thus we will first catch the dirty access and set PDE.D and restart. If
2817 * there is an access handler, we'll trap again and let it work on the problem.
2818 */
2819 /** @todo move the above stuff to a section in the PGM documentation. */
2820 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2821 if ( !PdeSrc.b.u1Dirty
2822 && PdeSrc.b.u1Write)
2823 {
2824 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2825 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2826 PdeDst.b.u1Write = 0;
2827 }
2828 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2829 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2830
2831 /*
2832 * Fill the shadow page table.
2833 */
2834 /* Get address and flags from the source PDE. */
2835 SHWPTE PteDstBase;
2836 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2837
2838 /* Loop thru the entries in the shadow PT. */
2839 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2840 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2841 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2842 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2843 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2844 unsigned iPTDst = 0;
2845 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2846 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2847 {
2848 /* Advance ram range list. */
2849 while (pRam && GCPhys > pRam->GCPhysLast)
2850 pRam = pRam->CTX_SUFF(pNext);
2851 if (pRam && GCPhys >= pRam->GCPhys)
2852 {
2853 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2854 do
2855 {
2856 /* Make shadow PTE. */
2857 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2858 SHWPTE PteDst;
2859
2860# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2861 /* Try to make the page writable if necessary. */
2862 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2863 && ( PGM_PAGE_IS_ZERO(pPage)
2864 || ( SHW_PTE_IS_RW(PteDstBase)
2865 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2866# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2867 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2868# endif
2869# ifdef VBOX_WITH_PAGE_SHARING
2870 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2871# endif
2872 && !PGM_PAGE_IS_BALLOONED(pPage))
2873 )
2874 )
2875 {
2876 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2877 AssertRCReturn(rc, rc);
2878 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2879 break;
2880 }
2881# endif
2882
2883 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2884 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2885 else if (PGM_PAGE_IS_BALLOONED(pPage))
2886 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2887# ifndef IN_RING0
2888 /*
2889 * Assuming kernel code will be marked as supervisor and not as user level and executed
2890 * using a conforming code selector. Don't check for readonly, as that implies the whole
2891 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2892 */
2893 else if ( !PdeSrc.n.u1User
2894 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2895 SHW_PTE_SET(PteDst, 0);
2896# endif
2897 else
2898 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2899
2900 /* Only map writable pages writable. */
2901 if ( SHW_PTE_IS_P_RW(PteDst)
2902 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2903 {
2904 /* Still applies to shared pages. */
2905 Assert(!PGM_PAGE_IS_ZERO(pPage));
2906 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2907 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2908 }
2909
2910 if (SHW_PTE_IS_P(PteDst))
2911 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2912
2913 /* commit it (not atomic, new table) */
2914 pPTDst->a[iPTDst] = PteDst;
2915 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2916 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2917 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2918
2919 /* advance */
2920 GCPhys += PAGE_SIZE;
2921 iHCPage++;
2922 iPTDst++;
2923 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2924 && GCPhys <= pRam->GCPhysLast);
2925 }
2926 else if (pRam)
2927 {
2928 Log(("Invalid pages at %RGp\n", GCPhys));
2929 do
2930 {
2931 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2932 GCPhys += PAGE_SIZE;
2933 iPTDst++;
2934 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2935 && GCPhys < pRam->GCPhys);
2936 }
2937 else
2938 {
2939 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2940 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2941 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2942 }
2943 } /* while more PTEs */
2944 } /* 4KB / 4MB */
2945 }
2946 else
2947 AssertRelease(!PdeDst.n.u1Present);
2948
2949 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2950 if (RT_FAILURE(rc))
2951 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2952 return rc;
2953
2954#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2955 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2956 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2957 && !defined(IN_RC)
2958
2959 /*
2960 * Validate input a little bit.
2961 */
2962 int rc = VINF_SUCCESS;
2963# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2964 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2965 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2966
2967 /* Fetch the pgm pool shadow descriptor. */
2968 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2969 Assert(pShwPde);
2970
2971# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2972 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2973 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2974 PX86PDPAE pPDDst;
2975 PSHWPDE pPdeDst;
2976
2977 /* Fetch the pgm pool shadow descriptor. */
2978 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2979 AssertRCSuccessReturn(rc, rc);
2980 Assert(pShwPde);
2981
2982 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2983 pPdeDst = &pPDDst->a[iPDDst];
2984
2985# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2986 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2987 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2988 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2989 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2990 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2991 AssertRCSuccessReturn(rc, rc);
2992 Assert(pPDDst);
2993 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2994
2995 /* Fetch the pgm pool shadow descriptor. */
2996 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2997 Assert(pShwPde);
2998
2999# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3000 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3001 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3002 PEPTPD pPDDst;
3003 PEPTPDPT pPdptDst;
3004
3005 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3006 if (rc != VINF_SUCCESS)
3007 {
3008 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3009 AssertRC(rc);
3010 return rc;
3011 }
3012 Assert(pPDDst);
3013 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3014
3015 /* Fetch the pgm pool shadow descriptor. */
3016 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3017 Assert(pShwPde);
3018# endif
3019 SHWPDE PdeDst = *pPdeDst;
3020
3021 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3022 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3023
3024# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3025 if (BTH_IS_NP_ACTIVE(pVM))
3026 {
3027 PPGMPAGE pPage;
3028
3029 /* Check if we allocated a big page before for this 2 MB range. */
3030 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3031 if (RT_SUCCESS(rc))
3032 {
3033 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3034
3035 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3036 {
3037 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3038 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3039 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3040 }
3041 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3042 {
3043 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3044 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3045 if (RT_SUCCESS(rc))
3046 {
3047 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3048 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3049 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3050 }
3051 }
3052 else if (PGMIsUsingLargePages(pVM))
3053 {
3054 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3055 if (RT_SUCCESS(rc))
3056 {
3057 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3058 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3059 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3060 }
3061 else
3062 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3063 }
3064
3065 if (HCPhys != NIL_RTHCPHYS)
3066 {
3067 PdeDst.u &= X86_PDE_AVL_MASK;
3068 PdeDst.u |= HCPhys;
3069 PdeDst.n.u1Present = 1;
3070 PdeDst.n.u1Write = 1;
3071 PdeDst.b.u1Size = 1;
3072# if PGM_SHW_TYPE == PGM_TYPE_EPT
3073 PdeDst.n.u1Execute = 1;
3074 PdeDst.b.u1IgnorePAT = 1;
3075 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3076# else
3077 PdeDst.n.u1User = 1;
3078# endif
3079 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3080
3081 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3082 /* Add a reference to the first page only. */
3083 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3084
3085 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3086 return VINF_SUCCESS;
3087 }
3088 }
3089 }
3090# endif /* HC_ARCH_BITS == 64 */
3091
3092 GSTPDE PdeSrc;
3093 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3094 PdeSrc.n.u1Present = 1;
3095 PdeSrc.n.u1Write = 1;
3096 PdeSrc.n.u1Accessed = 1;
3097 PdeSrc.n.u1User = 1;
3098
3099 /*
3100 * Allocate & map the page table.
3101 */
3102 PSHWPT pPTDst;
3103 PPGMPOOLPAGE pShwPage;
3104 RTGCPHYS GCPhys;
3105
3106 /* Virtual address = physical address */
3107 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3108 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3109
3110 if ( rc == VINF_SUCCESS
3111 || rc == VINF_PGM_CACHED_PAGE)
3112 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3113 else
3114 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3115
3116 PdeDst.u &= X86_PDE_AVL_MASK;
3117 PdeDst.u |= pShwPage->Core.Key;
3118 PdeDst.n.u1Present = 1;
3119 PdeDst.n.u1Write = 1;
3120# if PGM_SHW_TYPE == PGM_TYPE_EPT
3121 PdeDst.n.u1Execute = 1;
3122# else
3123 PdeDst.n.u1User = 1;
3124 PdeDst.n.u1Accessed = 1;
3125# endif
3126 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3127
3128 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3129 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3130 return rc;
3131
3132#else
3133 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3134 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3135 return VERR_INTERNAL_ERROR;
3136#endif
3137}
3138
3139
3140
3141/**
3142 * Prefetch a page/set of pages.
3143 *
3144 * Typically used to sync commonly used pages before entering raw mode
3145 * after a CR3 reload.
3146 *
3147 * @returns VBox status code.
3148 * @param pVCpu The VMCPU handle.
3149 * @param GCPtrPage Page to invalidate.
3150 */
3151PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3152{
3153#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3154 || PGM_GST_TYPE == PGM_TYPE_REAL \
3155 || PGM_GST_TYPE == PGM_TYPE_PROT \
3156 || PGM_GST_TYPE == PGM_TYPE_PAE \
3157 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3158 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3159 && PGM_SHW_TYPE != PGM_TYPE_EPT
3160
3161 /*
3162 * Check that all Guest levels thru the PDE are present, getting the
3163 * PD and PDE in the processes.
3164 */
3165 int rc = VINF_SUCCESS;
3166# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3167# if PGM_GST_TYPE == PGM_TYPE_32BIT
3168 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3169 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3170# elif PGM_GST_TYPE == PGM_TYPE_PAE
3171 unsigned iPDSrc;
3172 X86PDPE PdpeSrc;
3173 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3174 if (!pPDSrc)
3175 return VINF_SUCCESS; /* not present */
3176# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3177 unsigned iPDSrc;
3178 PX86PML4E pPml4eSrc;
3179 X86PDPE PdpeSrc;
3180 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3181 if (!pPDSrc)
3182 return VINF_SUCCESS; /* not present */
3183# endif
3184 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3185# else
3186 PGSTPD pPDSrc = NULL;
3187 const unsigned iPDSrc = 0;
3188 GSTPDE PdeSrc;
3189
3190 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3191 PdeSrc.n.u1Present = 1;
3192 PdeSrc.n.u1Write = 1;
3193 PdeSrc.n.u1Accessed = 1;
3194 PdeSrc.n.u1User = 1;
3195# endif
3196
3197 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3198 {
3199 PVM pVM = pVCpu->CTX_SUFF(pVM);
3200 pgmLock(pVM);
3201
3202# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3203 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3204# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3205 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3206 PX86PDPAE pPDDst;
3207 X86PDEPAE PdeDst;
3208# if PGM_GST_TYPE != PGM_TYPE_PAE
3209 X86PDPE PdpeSrc;
3210
3211 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3212 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3213# endif
3214 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3215 if (rc != VINF_SUCCESS)
3216 {
3217 pgmUnlock(pVM);
3218 AssertRC(rc);
3219 return rc;
3220 }
3221 Assert(pPDDst);
3222 PdeDst = pPDDst->a[iPDDst];
3223
3224# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3225 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3226 PX86PDPAE pPDDst;
3227 X86PDEPAE PdeDst;
3228
3229# if PGM_GST_TYPE == PGM_TYPE_PROT
3230 /* AMD-V nested paging */
3231 X86PML4E Pml4eSrc;
3232 X86PDPE PdpeSrc;
3233 PX86PML4E pPml4eSrc = &Pml4eSrc;
3234
3235 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3236 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3237 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3238# endif
3239
3240 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3241 if (rc != VINF_SUCCESS)
3242 {
3243 pgmUnlock(pVM);
3244 AssertRC(rc);
3245 return rc;
3246 }
3247 Assert(pPDDst);
3248 PdeDst = pPDDst->a[iPDDst];
3249# endif
3250 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3251 {
3252 if (!PdeDst.n.u1Present)
3253 {
3254 /** @todo r=bird: This guy will set the A bit on the PDE,
3255 * probably harmless. */
3256 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3257 }
3258 else
3259 {
3260 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3261 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3262 * makes no sense to prefetch more than one page.
3263 */
3264 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3265 if (RT_SUCCESS(rc))
3266 rc = VINF_SUCCESS;
3267 }
3268 }
3269 pgmUnlock(pVM);
3270 }
3271 return rc;
3272
3273#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3274 return VINF_SUCCESS; /* ignore */
3275#else
3276 AssertCompile(0);
3277#endif
3278}
3279
3280
3281
3282
3283/**
3284 * Syncs a page during a PGMVerifyAccess() call.
3285 *
3286 * @returns VBox status code (informational included).
3287 * @param pVCpu The VMCPU handle.
3288 * @param GCPtrPage The address of the page to sync.
3289 * @param fPage The effective guest page flags.
3290 * @param uErr The trap error code.
3291 * @remarks This will normally never be called on invalid guest page
3292 * translation entries.
3293 */
3294PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3295{
3296 PVM pVM = pVCpu->CTX_SUFF(pVM);
3297
3298 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3299
3300 Assert(!pVM->pgm.s.fNestedPaging);
3301#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3302 || PGM_GST_TYPE == PGM_TYPE_REAL \
3303 || PGM_GST_TYPE == PGM_TYPE_PROT \
3304 || PGM_GST_TYPE == PGM_TYPE_PAE \
3305 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3306 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3307 && PGM_SHW_TYPE != PGM_TYPE_EPT
3308
3309# ifndef IN_RING0
3310 if (!(fPage & X86_PTE_US))
3311 {
3312 /*
3313 * Mark this page as safe.
3314 */
3315 /** @todo not correct for pages that contain both code and data!! */
3316 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3317 CSAMMarkPage(pVM, GCPtrPage, true);
3318 }
3319# endif
3320
3321 /*
3322 * Get guest PD and index.
3323 */
3324 /** @todo Performance: We've done all this a jiffy ago in the
3325 * PGMGstGetPage call. */
3326# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3327# if PGM_GST_TYPE == PGM_TYPE_32BIT
3328 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3329 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3330
3331# elif PGM_GST_TYPE == PGM_TYPE_PAE
3332 unsigned iPDSrc = 0;
3333 X86PDPE PdpeSrc;
3334 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3335 if (RT_UNLIKELY(!pPDSrc))
3336 {
3337 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3338 return VINF_EM_RAW_GUEST_TRAP;
3339 }
3340
3341# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3342 unsigned iPDSrc = 0; /* shut up gcc */
3343 PX86PML4E pPml4eSrc = NULL; /* ditto */
3344 X86PDPE PdpeSrc;
3345 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3346 if (RT_UNLIKELY(!pPDSrc))
3347 {
3348 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3349 return VINF_EM_RAW_GUEST_TRAP;
3350 }
3351# endif
3352
3353# else /* !PGM_WITH_PAGING */
3354 PGSTPD pPDSrc = NULL;
3355 const unsigned iPDSrc = 0;
3356# endif /* !PGM_WITH_PAGING */
3357 int rc = VINF_SUCCESS;
3358
3359 pgmLock(pVM);
3360
3361 /*
3362 * First check if the shadow pd is present.
3363 */
3364# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3365 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3366
3367# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3368 PX86PDEPAE pPdeDst;
3369 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3370 PX86PDPAE pPDDst;
3371# if PGM_GST_TYPE != PGM_TYPE_PAE
3372 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3373 X86PDPE PdpeSrc;
3374 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3375# endif
3376 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3377 if (rc != VINF_SUCCESS)
3378 {
3379 pgmUnlock(pVM);
3380 AssertRC(rc);
3381 return rc;
3382 }
3383 Assert(pPDDst);
3384 pPdeDst = &pPDDst->a[iPDDst];
3385
3386# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3387 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3388 PX86PDPAE pPDDst;
3389 PX86PDEPAE pPdeDst;
3390
3391# if PGM_GST_TYPE == PGM_TYPE_PROT
3392 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3393 X86PML4E Pml4eSrc;
3394 X86PDPE PdpeSrc;
3395 PX86PML4E pPml4eSrc = &Pml4eSrc;
3396 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3397 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3398# endif
3399
3400 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3401 if (rc != VINF_SUCCESS)
3402 {
3403 pgmUnlock(pVM);
3404 AssertRC(rc);
3405 return rc;
3406 }
3407 Assert(pPDDst);
3408 pPdeDst = &pPDDst->a[iPDDst];
3409# endif
3410
3411 if (!pPdeDst->n.u1Present)
3412 {
3413 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3414 if (rc != VINF_SUCCESS)
3415 {
3416 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3417 pgmUnlock(pVM);
3418 AssertRC(rc);
3419 return rc;
3420 }
3421 }
3422
3423# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3424 /* Check for dirty bit fault */
3425 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3426 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3427 Log(("PGMVerifyAccess: success (dirty)\n"));
3428 else
3429# endif
3430 {
3431# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3432 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3433# else
3434 GSTPDE PdeSrc;
3435 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3436 PdeSrc.n.u1Present = 1;
3437 PdeSrc.n.u1Write = 1;
3438 PdeSrc.n.u1Accessed = 1;
3439 PdeSrc.n.u1User = 1;
3440# endif
3441
3442 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3443 if (uErr & X86_TRAP_PF_US)
3444 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3445 else /* supervisor */
3446 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3447
3448 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3449 if (RT_SUCCESS(rc))
3450 {
3451 /* Page was successfully synced */
3452 Log2(("PGMVerifyAccess: success (sync)\n"));
3453 rc = VINF_SUCCESS;
3454 }
3455 else
3456 {
3457 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3458 rc = VINF_EM_RAW_GUEST_TRAP;
3459 }
3460 }
3461 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3462 pgmUnlock(pVM);
3463 return rc;
3464
3465#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3466
3467 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3468 return VERR_INTERNAL_ERROR;
3469#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3470}
3471
3472
3473/**
3474 * Syncs the paging hierarchy starting at CR3.
3475 *
3476 * @returns VBox status code, no specials.
3477 * @param pVCpu The VMCPU handle.
3478 * @param cr0 Guest context CR0 register
3479 * @param cr3 Guest context CR3 register
3480 * @param cr4 Guest context CR4 register
3481 * @param fGlobal Including global page directories or not
3482 */
3483PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3484{
3485 PVM pVM = pVCpu->CTX_SUFF(pVM);
3486
3487 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3488
3489#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3490
3491 pgmLock(pVM);
3492
3493# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3494 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3495 if (pPool->cDirtyPages)
3496 pgmPoolResetDirtyPages(pVM);
3497# endif
3498
3499 /*
3500 * Update page access handlers.
3501 * The virtual are always flushed, while the physical are only on demand.
3502 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3503 * have to look into that later because it will have a bad influence on the performance.
3504 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3505 * bird: Yes, but that won't work for aliases.
3506 */
3507 /** @todo this MUST go away. See #1557. */
3508 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3509 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3510 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3511 pgmUnlock(pVM);
3512#endif /* !NESTED && !EPT */
3513
3514#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3515 /*
3516 * Nested / EPT - almost no work.
3517 */
3518 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3519 return VINF_SUCCESS;
3520
3521#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3522 /*
3523 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3524 * out the shadow parts when the guest modifies its tables.
3525 */
3526 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3527 return VINF_SUCCESS;
3528
3529#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3530
3531# ifndef PGM_WITHOUT_MAPPINGS
3532 /*
3533 * Check for and resolve conflicts with our guest mappings if they
3534 * are enabled and not fixed.
3535 */
3536 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3537 {
3538 int rc = pgmMapResolveConflicts(pVM);
3539 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3540 if (rc == VINF_PGM_SYNC_CR3)
3541 {
3542 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3543 return VINF_PGM_SYNC_CR3;
3544 }
3545 }
3546# else
3547 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3548# endif
3549 return VINF_SUCCESS;
3550#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3551}
3552
3553
3554
3555
3556#ifdef VBOX_STRICT
3557#ifdef IN_RC
3558# undef AssertMsgFailed
3559# define AssertMsgFailed Log
3560#endif
3561#ifdef IN_RING3
3562# include <VBox/dbgf.h>
3563
3564/**
3565 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3566 *
3567 * @returns VBox status code (VINF_SUCCESS).
3568 * @param cr3 The root of the hierarchy.
3569 * @param crr The cr4, only PAE and PSE is currently used.
3570 * @param fLongMode Set if long mode, false if not long mode.
3571 * @param cMaxDepth Number of levels to dump.
3572 * @param pHlp Pointer to the output functions.
3573 */
3574RT_C_DECLS_BEGIN
3575VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp);
3576RT_C_DECLS_END
3577
3578#endif
3579
3580/**
3581 * Checks that the shadow page table is in sync with the guest one.
3582 *
3583 * @returns The number of errors.
3584 * @param pVM The virtual machine.
3585 * @param pVCpu The VMCPU handle.
3586 * @param cr3 Guest context CR3 register
3587 * @param cr4 Guest context CR4 register
3588 * @param GCPtr Where to start. Defaults to 0.
3589 * @param cb How much to check. Defaults to everything.
3590 */
3591PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3592{
3593#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3594 return 0;
3595#else
3596 unsigned cErrors = 0;
3597 PVM pVM = pVCpu->CTX_SUFF(pVM);
3598 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3599
3600#if PGM_GST_TYPE == PGM_TYPE_PAE
3601 /** @todo currently broken; crashes below somewhere */
3602 AssertFailed();
3603#endif
3604
3605#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3606 || PGM_GST_TYPE == PGM_TYPE_PAE \
3607 || PGM_GST_TYPE == PGM_TYPE_AMD64
3608
3609 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3610 PPGMCPU pPGM = &pVCpu->pgm.s;
3611 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3612 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3613# ifndef IN_RING0
3614 RTHCPHYS HCPhys; /* general usage. */
3615# endif
3616 int rc;
3617
3618 /*
3619 * Check that the Guest CR3 and all its mappings are correct.
3620 */
3621 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3622 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3623 false);
3624# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3625# if PGM_GST_TYPE == PGM_TYPE_32BIT
3626 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3627# else
3628 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3629# endif
3630 AssertRCReturn(rc, 1);
3631 HCPhys = NIL_RTHCPHYS;
3632 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3633 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3634# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3635 pgmGstGet32bitPDPtr(pVCpu);
3636 RTGCPHYS GCPhys;
3637 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3638 AssertRCReturn(rc, 1);
3639 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3640# endif
3641# endif /* !IN_RING0 */
3642
3643 /*
3644 * Get and check the Shadow CR3.
3645 */
3646# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3647 unsigned cPDEs = X86_PG_ENTRIES;
3648 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3649# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3650# if PGM_GST_TYPE == PGM_TYPE_32BIT
3651 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3652# else
3653 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3654# endif
3655 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3656# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3657 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3658 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3659# endif
3660 if (cb != ~(RTGCPTR)0)
3661 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3662
3663/** @todo call the other two PGMAssert*() functions. */
3664
3665# if PGM_GST_TYPE == PGM_TYPE_AMD64
3666 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3667
3668 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3669 {
3670 PPGMPOOLPAGE pShwPdpt = NULL;
3671 PX86PML4E pPml4eSrc;
3672 PX86PML4E pPml4eDst;
3673 RTGCPHYS GCPhysPdptSrc;
3674
3675 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3676 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3677
3678 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3679 if (!pPml4eDst->n.u1Present)
3680 {
3681 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3682 continue;
3683 }
3684
3685 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3686 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL;
3687
3688 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3689 {
3690 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3691 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3692 cErrors++;
3693 continue;
3694 }
3695
3696 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3697 {
3698 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3699 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3700 cErrors++;
3701 continue;
3702 }
3703
3704 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3705 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3706 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3707 {
3708 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3709 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3710 cErrors++;
3711 continue;
3712 }
3713# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3714 {
3715# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3716
3717# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3718 /*
3719 * Check the PDPTEs too.
3720 */
3721 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3722
3723 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3724 {
3725 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3726 PPGMPOOLPAGE pShwPde = NULL;
3727 PX86PDPE pPdpeDst;
3728 RTGCPHYS GCPhysPdeSrc;
3729# if PGM_GST_TYPE == PGM_TYPE_PAE
3730 X86PDPE PdpeSrc;
3731 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3732 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3733# else
3734 PX86PML4E pPml4eSrcIgn;
3735 X86PDPE PdpeSrc;
3736 PX86PDPT pPdptDst;
3737 PX86PDPAE pPDDst;
3738 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3739
3740 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3741 if (rc != VINF_SUCCESS)
3742 {
3743 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3744 GCPtr += 512 * _2M;
3745 continue; /* next PDPTE */
3746 }
3747 Assert(pPDDst);
3748# endif
3749 Assert(iPDSrc == 0);
3750
3751 pPdpeDst = &pPdptDst->a[iPdpt];
3752
3753 if (!pPdpeDst->n.u1Present)
3754 {
3755 GCPtr += 512 * _2M;
3756 continue; /* next PDPTE */
3757 }
3758
3759 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3760 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3761
3762 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3763 {
3764 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3765 GCPtr += 512 * _2M;
3766 cErrors++;
3767 continue;
3768 }
3769
3770 if (GCPhysPdeSrc != pShwPde->GCPhys)
3771 {
3772# if PGM_GST_TYPE == PGM_TYPE_AMD64
3773 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3774# else
3775 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3776# endif
3777 GCPtr += 512 * _2M;
3778 cErrors++;
3779 continue;
3780 }
3781
3782# if PGM_GST_TYPE == PGM_TYPE_AMD64
3783 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3784 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3785 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3786 {
3787 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3788 GCPtr += 512 * _2M;
3789 cErrors++;
3790 continue;
3791 }
3792# endif
3793
3794# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3795 {
3796# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3797# if PGM_GST_TYPE == PGM_TYPE_32BIT
3798 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3799# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3800 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3801# endif
3802# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3803 /*
3804 * Iterate the shadow page directory.
3805 */
3806 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3807 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3808
3809 for (;
3810 iPDDst < cPDEs;
3811 iPDDst++, GCPtr += cIncrement)
3812 {
3813# if PGM_SHW_TYPE == PGM_TYPE_PAE
3814 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3815# else
3816 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3817# endif
3818 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3819 {
3820 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3821 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3822 {
3823 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3824 cErrors++;
3825 continue;
3826 }
3827 }
3828 else if ( (PdeDst.u & X86_PDE_P)
3829 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3830 )
3831 {
3832 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3833 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3834 if (!pPoolPage)
3835 {
3836 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3837 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3838 cErrors++;
3839 continue;
3840 }
3841 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3842
3843 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3844 {
3845 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3846 GCPtr, (uint64_t)PdeDst.u));
3847 cErrors++;
3848 }
3849
3850 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3851 {
3852 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3853 GCPtr, (uint64_t)PdeDst.u));
3854 cErrors++;
3855 }
3856
3857 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3858 if (!PdeSrc.n.u1Present)
3859 {
3860 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3861 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3862 cErrors++;
3863 continue;
3864 }
3865
3866 if ( !PdeSrc.b.u1Size
3867 || !fBigPagesSupported)
3868 {
3869 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3870# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3871 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3872# endif
3873 }
3874 else
3875 {
3876# if PGM_GST_TYPE == PGM_TYPE_32BIT
3877 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3878 {
3879 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3880 GCPtr, (uint64_t)PdeSrc.u));
3881 cErrors++;
3882 continue;
3883 }
3884# endif
3885 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3886# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3887 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3888# endif
3889 }
3890
3891 if ( pPoolPage->enmKind
3892 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3893 {
3894 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3895 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3896 cErrors++;
3897 }
3898
3899 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3900 if (!pPhysPage)
3901 {
3902 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3903 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3904 cErrors++;
3905 continue;
3906 }
3907
3908 if (GCPhysGst != pPoolPage->GCPhys)
3909 {
3910 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3911 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3912 cErrors++;
3913 continue;
3914 }
3915
3916 if ( !PdeSrc.b.u1Size
3917 || !fBigPagesSupported)
3918 {
3919 /*
3920 * Page Table.
3921 */
3922 const GSTPT *pPTSrc;
3923 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3924 if (RT_FAILURE(rc))
3925 {
3926 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3927 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3928 cErrors++;
3929 continue;
3930 }
3931 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3932 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3933 {
3934 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3935 // (This problem will go away when/if we shadow multiple CR3s.)
3936 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3937 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3938 cErrors++;
3939 continue;
3940 }
3941 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3942 {
3943 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3944 GCPtr, (uint64_t)PdeDst.u));
3945 cErrors++;
3946 continue;
3947 }
3948
3949 /* iterate the page table. */
3950# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3951 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3952 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3953# else
3954 const unsigned offPTSrc = 0;
3955# endif
3956 for (unsigned iPT = 0, off = 0;
3957 iPT < RT_ELEMENTS(pPTDst->a);
3958 iPT++, off += PAGE_SIZE)
3959 {
3960 const SHWPTE PteDst = pPTDst->a[iPT];
3961
3962 /* skip not-present and dirty tracked entries. */
3963 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3964 continue;
3965 Assert(SHW_PTE_IS_P(PteDst));
3966
3967 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3968 if (!PteSrc.n.u1Present)
3969 {
3970# ifdef IN_RING3
3971 PGMAssertHandlerAndFlagsInSync(pVM);
3972 PGMR3DumpHierarchyGC(pVM, cr3, cr4, GST_GET_PDE_GCPHYS(PdeSrc));
3973# endif
3974 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3975 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3976 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
3977 cErrors++;
3978 continue;
3979 }
3980
3981 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3982# if 1 /** @todo sync accessed bit properly... */
3983 fIgnoreFlags |= X86_PTE_A;
3984# endif
3985
3986 /* match the physical addresses */
3987 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3988 GCPhysGst = PteSrc.u & GST_PTE_PG_MASK;
3989
3990# ifdef IN_RING3
3991 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3992 if (RT_FAILURE(rc))
3993 {
3994 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3995 {
3996 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3997 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3998 cErrors++;
3999 continue;
4000 }
4001 }
4002 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4003 {
4004 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4005 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4006 cErrors++;
4007 continue;
4008 }
4009# endif
4010
4011 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4012 if (!pPhysPage)
4013 {
4014# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4015 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4016 {
4017 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4018 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4019 cErrors++;
4020 continue;
4021 }
4022# endif
4023 if (SHW_PTE_IS_RW(PteDst))
4024 {
4025 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4026 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4027 cErrors++;
4028 }
4029 fIgnoreFlags |= X86_PTE_RW;
4030 }
4031 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4032 {
4033 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4034 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4035 cErrors++;
4036 continue;
4037 }
4038
4039 /* flags */
4040 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4041 {
4042 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4043 {
4044 if (SHW_PTE_IS_RW(PteDst))
4045 {
4046 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4047 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4048 cErrors++;
4049 continue;
4050 }
4051 fIgnoreFlags |= X86_PTE_RW;
4052 }
4053 else
4054 {
4055 if ( SHW_PTE_IS_P(PteDst)
4056# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4057 && !PGM_PAGE_IS_MMIO(pPhysPage)
4058# endif
4059 )
4060 {
4061 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4062 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4063 cErrors++;
4064 continue;
4065 }
4066 fIgnoreFlags |= X86_PTE_P;
4067 }
4068 }
4069 else
4070 {
4071 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4072 {
4073 if (SHW_PTE_IS_RW(PteDst))
4074 {
4075 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4076 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4077 cErrors++;
4078 continue;
4079 }
4080 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4081 {
4082 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4083 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4084 cErrors++;
4085 continue;
4086 }
4087 if (SHW_PTE_IS_D(PteDst))
4088 {
4089 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4090 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4091 cErrors++;
4092 }
4093# if 0 /** @todo sync access bit properly... */
4094 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4095 {
4096 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4097 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4098 cErrors++;
4099 }
4100 fIgnoreFlags |= X86_PTE_RW;
4101# else
4102 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4103# endif
4104 }
4105 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4106 {
4107 /* access bit emulation (not implemented). */
4108 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4109 {
4110 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4111 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4112 cErrors++;
4113 continue;
4114 }
4115 if (!SHW_PTE_IS_A(PteDst))
4116 {
4117 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4118 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4119 cErrors++;
4120 }
4121 fIgnoreFlags |= X86_PTE_P;
4122 }
4123# ifdef DEBUG_sandervl
4124 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4125# endif
4126 }
4127
4128 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4129 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4130 )
4131 {
4132 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4133 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4134 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4135 cErrors++;
4136 continue;
4137 }
4138 } /* foreach PTE */
4139 }
4140 else
4141 {
4142 /*
4143 * Big Page.
4144 */
4145 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4146 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4147 {
4148 if (PdeDst.n.u1Write)
4149 {
4150 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4151 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4152 cErrors++;
4153 continue;
4154 }
4155 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4156 {
4157 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4158 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4159 cErrors++;
4160 continue;
4161 }
4162# if 0 /** @todo sync access bit properly... */
4163 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4164 {
4165 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4166 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4167 cErrors++;
4168 }
4169 fIgnoreFlags |= X86_PTE_RW;
4170# else
4171 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4172# endif
4173 }
4174 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4175 {
4176 /* access bit emulation (not implemented). */
4177 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4178 {
4179 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4180 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4181 cErrors++;
4182 continue;
4183 }
4184 if (!PdeDst.n.u1Accessed)
4185 {
4186 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4187 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4188 cErrors++;
4189 }
4190 fIgnoreFlags |= X86_PTE_P;
4191 }
4192
4193 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4194 {
4195 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4196 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4197 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4198 cErrors++;
4199 }
4200
4201 /* iterate the page table. */
4202 for (unsigned iPT = 0, off = 0;
4203 iPT < RT_ELEMENTS(pPTDst->a);
4204 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4205 {
4206 const SHWPTE PteDst = pPTDst->a[iPT];
4207
4208 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4209 {
4210 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4211 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4212 cErrors++;
4213 }
4214
4215 /* skip not-present entries. */
4216 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4217 continue;
4218
4219 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4220
4221 /* match the physical addresses */
4222 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4223
4224# ifdef IN_RING3
4225 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4226 if (RT_FAILURE(rc))
4227 {
4228 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4229 {
4230 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4232 cErrors++;
4233 }
4234 }
4235 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4236 {
4237 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4238 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4239 cErrors++;
4240 continue;
4241 }
4242# endif
4243 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4244 if (!pPhysPage)
4245 {
4246# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4247 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4248 {
4249 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4250 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4251 cErrors++;
4252 continue;
4253 }
4254# endif
4255 if (SHW_PTE_IS_RW(PteDst))
4256 {
4257 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4258 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4259 cErrors++;
4260 }
4261 fIgnoreFlags |= X86_PTE_RW;
4262 }
4263 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4264 {
4265 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4266 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4267 cErrors++;
4268 continue;
4269 }
4270
4271 /* flags */
4272 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4273 {
4274 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4275 {
4276 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4277 {
4278 if (SHW_PTE_IS_RW(PteDst))
4279 {
4280 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4281 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4282 cErrors++;
4283 continue;
4284 }
4285 fIgnoreFlags |= X86_PTE_RW;
4286 }
4287 }
4288 else
4289 {
4290 if ( SHW_PTE_IS_P(PteDst)
4291# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4292 && !PGM_PAGE_IS_MMIO(pPhysPage)
4293# endif
4294 )
4295 {
4296 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4297 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4298 cErrors++;
4299 continue;
4300 }
4301 fIgnoreFlags |= X86_PTE_P;
4302 }
4303 }
4304
4305 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4306 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4307 )
4308 {
4309 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4310 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4311 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4312 cErrors++;
4313 continue;
4314 }
4315 } /* for each PTE */
4316 }
4317 }
4318 /* not present */
4319
4320 } /* for each PDE */
4321
4322 } /* for each PDPTE */
4323
4324 } /* for each PML4E */
4325
4326# ifdef DEBUG
4327 if (cErrors)
4328 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4329# endif
4330
4331#endif /* GST == 32BIT, PAE or AMD64 */
4332 return cErrors;
4333
4334#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4335}
4336#endif /* VBOX_STRICT */
4337
4338
4339/**
4340 * Sets up the CR3 for shadow paging
4341 *
4342 * @returns Strict VBox status code.
4343 * @retval VINF_SUCCESS.
4344 *
4345 * @param pVCpu The VMCPU handle.
4346 * @param GCPhysCR3 The physical address in the CR3 register.
4347 */
4348PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4349{
4350 PVM pVM = pVCpu->CTX_SUFF(pVM);
4351
4352 /* Update guest paging info. */
4353#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4354 || PGM_GST_TYPE == PGM_TYPE_PAE \
4355 || PGM_GST_TYPE == PGM_TYPE_AMD64
4356
4357 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4358
4359 /*
4360 * Map the page CR3 points at.
4361 */
4362 RTHCPTR HCPtrGuestCR3;
4363 RTHCPHYS HCPhysGuestCR3;
4364 pgmLock(pVM);
4365 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4366 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4367 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4368 /** @todo this needs some reworking wrt. locking? */
4369# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4370 HCPtrGuestCR3 = NIL_RTHCPTR;
4371 int rc = VINF_SUCCESS;
4372# else
4373 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4374# endif
4375 pgmUnlock(pVM);
4376 if (RT_SUCCESS(rc))
4377 {
4378 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4379 if (RT_SUCCESS(rc))
4380 {
4381# ifdef IN_RC
4382 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4383# endif
4384# if PGM_GST_TYPE == PGM_TYPE_32BIT
4385 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4386# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4387 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4388# endif
4389 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4390
4391# elif PGM_GST_TYPE == PGM_TYPE_PAE
4392 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4393 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4394# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4395 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4396# endif
4397 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4398 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4399
4400 /*
4401 * Map the 4 PDs too.
4402 */
4403 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4404 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4405 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4406 {
4407 if (pGuestPDPT->a[i].n.u1Present)
4408 {
4409 RTHCPTR HCPtr;
4410 RTHCPHYS HCPhys;
4411 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4412 pgmLock(pVM);
4413 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4414 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4415 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4416# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4417 HCPtr = NIL_RTHCPTR;
4418 int rc2 = VINF_SUCCESS;
4419# else
4420 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4421# endif
4422 pgmUnlock(pVM);
4423 if (RT_SUCCESS(rc2))
4424 {
4425 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4426 AssertRCReturn(rc, rc);
4427
4428 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4429# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4430 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4431# endif
4432 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4433 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4434# ifdef IN_RC
4435 PGM_INVL_PG(pVCpu, GCPtr);
4436# endif
4437 continue;
4438 }
4439 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4440 }
4441
4442 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4443# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4444 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4445# endif
4446 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4447 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4448# ifdef IN_RC
4449 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4450# endif
4451 }
4452
4453# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4454 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4455# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4456 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4457# endif
4458# endif
4459 }
4460 else
4461 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4462 }
4463 else
4464 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4465
4466#else /* prot/real stub */
4467 int rc = VINF_SUCCESS;
4468#endif
4469
4470 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4471# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4472 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4473 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4474 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4475 && PGM_GST_TYPE != PGM_TYPE_PROT))
4476
4477 Assert(!pVM->pgm.s.fNestedPaging);
4478
4479 /*
4480 * Update the shadow root page as well since that's not fixed.
4481 */
4482 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4483 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4484 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4485 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4486 PPGMPOOLPAGE pNewShwPageCR3;
4487
4488 pgmLock(pVM);
4489
4490# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4491 if (pPool->cDirtyPages)
4492 pgmPoolResetDirtyPages(pVM);
4493# endif
4494
4495 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4496 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */);
4497 AssertFatalRC(rc);
4498 rc = VINF_SUCCESS;
4499
4500# ifdef IN_RC
4501 /*
4502 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4503 * state will be inconsistent! Flush important things now while
4504 * we still can and then make sure there are no ring-3 calls.
4505 */
4506 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4507 VMMRZCallRing3Disable(pVCpu);
4508# endif
4509
4510 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4511 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4512 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4513# ifdef IN_RING0
4514 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4515 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4516# elif defined(IN_RC)
4517 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4518 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4519# else
4520 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4521 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4522# endif
4523
4524# ifndef PGM_WITHOUT_MAPPINGS
4525 /*
4526 * Apply all hypervisor mappings to the new CR3.
4527 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4528 * make sure we check for conflicts in the new CR3 root.
4529 */
4530# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4531 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4532# endif
4533 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4534 AssertRCReturn(rc, rc);
4535# endif
4536
4537 /* Set the current hypervisor CR3. */
4538 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4539 SELMShadowCR3Changed(pVM, pVCpu);
4540
4541# ifdef IN_RC
4542 /* NOTE: The state is consistent again. */
4543 VMMRZCallRing3Enable(pVCpu);
4544# endif
4545
4546 /* Clean up the old CR3 root. */
4547 if ( pOldShwPageCR3
4548 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4549 {
4550 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4551# ifndef PGM_WITHOUT_MAPPINGS
4552 /* Remove the hypervisor mappings from the shadow page table. */
4553 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4554# endif
4555 /* Mark the page as unlocked; allow flushing again. */
4556 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4557
4558 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4559 }
4560 pgmUnlock(pVM);
4561# endif
4562
4563 return rc;
4564}
4565
4566/**
4567 * Unmaps the shadow CR3.
4568 *
4569 * @returns VBox status, no specials.
4570 * @param pVCpu The VMCPU handle.
4571 */
4572PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4573{
4574 LogFlow(("UnmapCR3\n"));
4575
4576 int rc = VINF_SUCCESS;
4577 PVM pVM = pVCpu->CTX_SUFF(pVM);
4578
4579 /*
4580 * Update guest paging info.
4581 */
4582#if PGM_GST_TYPE == PGM_TYPE_32BIT
4583 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4584# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4585 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4586# endif
4587 pVCpu->pgm.s.pGst32BitPdRC = 0;
4588
4589#elif PGM_GST_TYPE == PGM_TYPE_PAE
4590 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4591# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4592 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4593# endif
4594 pVCpu->pgm.s.pGstPaePdptRC = 0;
4595 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4596 {
4597 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4598# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4599 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4600# endif
4601 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4602 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4603 }
4604
4605#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4606 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4607# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4608 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4609# endif
4610
4611#else /* prot/real mode stub */
4612 /* nothing to do */
4613#endif
4614
4615#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4616 /*
4617 * Update shadow paging info.
4618 */
4619# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4620 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4621 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4622
4623# if PGM_GST_TYPE != PGM_TYPE_REAL
4624 Assert(!pVM->pgm.s.fNestedPaging);
4625# endif
4626
4627 pgmLock(pVM);
4628
4629# ifndef PGM_WITHOUT_MAPPINGS
4630 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4631 /* Remove the hypervisor mappings from the shadow page table. */
4632 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4633# endif
4634
4635 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4636 {
4637 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4638
4639 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4640
4641# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4642 if (pPool->cDirtyPages)
4643 pgmPoolResetDirtyPages(pVM);
4644# endif
4645
4646 /* Mark the page as unlocked; allow flushing again. */
4647 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4648
4649 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4650 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4651 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4652 pVCpu->pgm.s.pShwPageCR3RC = 0;
4653 pVCpu->pgm.s.iShwUser = 0;
4654 pVCpu->pgm.s.iShwUserTable = 0;
4655 }
4656 pgmUnlock(pVM);
4657# endif
4658#endif /* !IN_RC*/
4659
4660 return rc;
4661}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette