VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 32009

Last change on this file since 32009 was 32009, checked in by vboxsync, 14 years ago

Removed GST_PDPE_PG_MASK and renamed GST_PDPE_PG_MASK_FULL to GST_PDPE_PG_MASK.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 199.2 KB
Line 
1/* $Id: PGMAllBth.h 32009 2010-08-26 16:41:19Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
122 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
123 return VINF_EM_RAW_GUEST_TRAP;
124}
125# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
126
127
128/**
129 * Deal with a guest page fault.
130 *
131 * The caller has taken the PGM lock.
132 *
133 * @returns Strict VBox status code.
134 *
135 * @param pVCpu The current CPU.
136 * @param uErr The error code.
137 * @param pRegFrame The register frame.
138 * @param pvFault The fault address.
139 * @param pPage The guest page at @a pvFault.
140 * @param pGstWalk The guest page table walk result.
141 * @param pfLockTaken PGM lock taken here or not (out). This is true
142 * when we're called.
143 */
144static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
145 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
146# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 , PGSTPTWALK pGstWalk
148# endif
149 )
150{
151# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
153#endif
154 PVM pVM = pVCpu->CTX_SUFF(pVM);
155 int rc;
156
157 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
158 {
159 /*
160 * Physical page access handler.
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
164# else
165 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
166# endif
167 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
168 if (pCur)
169 {
170# ifdef PGM_SYNC_N_PAGES
171 /*
172 * If the region is write protected and we got a page not present fault, then sync
173 * the pages. If the fault was caused by a read, then restart the instruction.
174 * In case of write access continue to the GC write handler.
175 *
176 * ASSUMES that there is only one handler per page or that they have similar write properties.
177 */
178 if ( !(uErr & X86_TRAP_PF_P)
179 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
180 {
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
183# else
184 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
185# endif
186 if ( RT_FAILURE(rc)
187 || !(uErr & X86_TRAP_PF_RW)
188 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
189 {
190 AssertRC(rc);
191 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
192 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
193 return rc;
194 }
195 }
196# endif
197# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
198 /*
199 * If the access was not thru a #PF(RSVD|...) resync the page.
200 */
201 if ( !(uErr & X86_TRAP_PF_RSVD)
202 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
203# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
204 && pGstWalk->Core.fEffectiveRW
205 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
206# endif
207 )
208 {
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
211# else
212 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
213# endif
214 if ( RT_FAILURE(rc)
215 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
216 {
217 AssertRC(rc);
218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
219 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
220 return rc;
221 }
222 }
223# endif
224
225 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
226 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
227 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
228 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
229 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
231 else
232 {
233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
234 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
235 }
236
237 if (pCur->CTX_SUFF(pfnHandler))
238 {
239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
240 void *pvUser = pCur->CTX_SUFF(pvUser);
241# ifdef IN_RING0
242 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
243# else
244 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
245# endif
246
247 STAM_PROFILE_START(&pCur->Stat, h);
248 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
249 {
250 pgmUnlock(pVM);
251 *pfLockTaken = false;
252 }
253
254 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
255
256# ifdef VBOX_WITH_STATISTICS
257 pgmLock(pVM);
258 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
259 if (pCur)
260 STAM_PROFILE_STOP(&pCur->Stat, h);
261 pgmUnlock(pVM);
262# endif
263 }
264 else
265 rc = VINF_EM_RAW_EMULATE_INSTR;
266
267 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
268 return rc;
269 }
270 }
271# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
272 else
273 {
274# ifdef PGM_SYNC_N_PAGES
275 /*
276 * If the region is write protected and we got a page not present fault, then sync
277 * the pages. If the fault was caused by a read, then restart the instruction.
278 * In case of write access continue to the GC write handler.
279 */
280 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
281 && !(uErr & X86_TRAP_PF_P))
282 {
283 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
284 if ( RT_FAILURE(rc)
285 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
286 || !(uErr & X86_TRAP_PF_RW))
287 {
288 AssertRC(rc);
289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
291 return rc;
292 }
293 }
294# endif
295 /*
296 * Ok, it's an virtual page access handler.
297 *
298 * Since it's faster to search by address, we'll do that first
299 * and then retry by GCPhys if that fails.
300 */
301 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
302 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
303 * out of sync, because the page was changed without us noticing it (not-present -> present
304 * without invlpg or mov cr3, xxx).
305 */
306 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
307 if (pCur)
308 {
309 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
310 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
311 || !(uErr & X86_TRAP_PF_P)
312 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
313 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
314 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
315
316 if ( pvFault - pCur->Core.Key < pCur->cb
317 && ( uErr & X86_TRAP_PF_RW
318 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
319 {
320# ifdef IN_RC
321 STAM_PROFILE_START(&pCur->Stat, h);
322 RTGCPTR GCPtrStart = pCur->Core.Key;
323 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
324 pgmUnlock(pVM);
325 *pfLockTaken = false;
326
327 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
328
329# ifdef VBOX_WITH_STATISTICS
330 pgmLock(pVM);
331 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
332 if (pCur)
333 STAM_PROFILE_STOP(&pCur->Stat, h);
334 pgmUnlock(pVM);
335# endif
336# else
337 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
338# endif
339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
340 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
341 return rc;
342 }
343 /* Unhandled part of a monitored page */
344 }
345 else
346 {
347 /* Check by physical address. */
348 unsigned iPage;
349 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
350 Assert(RT_SUCCESS(rc) || !pCur);
351 if ( pCur
352 && ( uErr & X86_TRAP_PF_RW
353 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
354 {
355 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK_FULL) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK_FULL));
356# ifdef IN_RC
357 STAM_PROFILE_START(&pCur->Stat, h);
358 RTGCPTR GCPtrStart = pCur->Core.Key;
359 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
360 pgmUnlock(pVM);
361 *pfLockTaken = false;
362
363 RTGCPTR off = (iPage << PAGE_SHIFT)
364 + (pvFault & PAGE_OFFSET_MASK)
365 - (GCPtrStart & PAGE_OFFSET_MASK);
366 Assert(off < pCur->cb);
367 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
368
369# ifdef VBOX_WITH_STATISTICS
370 pgmLock(pVM);
371 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
372 if (pCur)
373 STAM_PROFILE_STOP(&pCur->Stat, h);
374 pgmUnlock(pVM);
375# endif
376# else
377 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
378# endif
379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
380 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
381 return rc;
382 }
383 }
384 }
385# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
386
387 /*
388 * There is a handled area of the page, but this fault doesn't belong to it.
389 * We must emulate the instruction.
390 *
391 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
392 * we first check if this was a page-not-present fault for a page with only
393 * write access handlers. Restart the instruction if it wasn't a write access.
394 */
395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
396
397 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
398 && !(uErr & X86_TRAP_PF_P))
399 {
400# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
401 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
402# else
403 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
404# endif
405 if ( RT_FAILURE(rc)
406 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
407 || !(uErr & X86_TRAP_PF_RW))
408 {
409 AssertRC(rc);
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
411 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
412 return rc;
413 }
414 }
415
416 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
417 * It's writing to an unhandled part of the LDT page several million times.
418 */
419 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
420 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
421 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
422 return rc;
423} /* if any kind of handler */
424
425
426/**
427 * #PF Handler for raw-mode guest execution.
428 *
429 * @returns VBox status code (appropriate for trap handling and GC return).
430 *
431 * @param pVCpu VMCPU Handle.
432 * @param uErr The trap error code.
433 * @param pRegFrame Trap register frame.
434 * @param pvFault The fault address.
435 * @param pfLockTaken PGM lock taken here or not (out)
436 */
437PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
438{
439 PVM pVM = pVCpu->CTX_SUFF(pVM);
440
441 *pfLockTaken = false;
442
443# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
444 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
445 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
446 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
447 int rc;
448
449# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
450 /*
451 * Walk the guest page translation tables and check if it's a guest fault.
452 */
453 GSTPTWALK GstWalk;
454 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
455 if (RT_FAILURE_NP(rc))
456 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
457
458 /* assert some GstWalk sanity. */
459# if PGM_GST_TYPE == PGM_TYPE_AMD64
460 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
461# endif
462# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
463 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
464# endif
465 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
466 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
467 Assert(GstWalk.Core.fSucceeded);
468
469 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
470 {
471 if ( ( (uErr & X86_TRAP_PF_RW)
472 && !GstWalk.Core.fEffectiveRW
473 && ( (uErr & X86_TRAP_PF_US)
474 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
475 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
476 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
477 )
478 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
479 }
480
481 /*
482 * Set the accessed and dirty flags.
483 */
484# if PGM_GST_TYPE == PGM_TYPE_AMD64
485 GstWalk.Pml4e.u |= X86_PML4E_A;
486 GstWalk.pPml4e->u |= X86_PML4E_A;
487 GstWalk.Pdpe.u |= X86_PDPE_A;
488 GstWalk.pPdpe->u |= X86_PDPE_A;
489# endif
490 if (GstWalk.Core.fBigPage)
491 {
492 Assert(GstWalk.Pde.b.u1Size);
493 if (uErr & X86_TRAP_PF_RW)
494 {
495 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
496 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
497 }
498 else
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A;
501 GstWalk.pPde->u |= X86_PDE4M_A;
502 }
503 }
504 else
505 {
506 Assert(!GstWalk.Pde.b.u1Size);
507 GstWalk.Pde.u |= X86_PDE_A;
508 GstWalk.pPde->u |= X86_PDE_A;
509 if (uErr & X86_TRAP_PF_RW)
510 {
511# ifdef VBOX_WITH_STATISTICS
512 if (!GstWalk.Pte.n.u1Dirty)
513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
514 else
515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
516# endif
517 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
518 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
519 }
520 else
521 {
522 GstWalk.Pte.u |= X86_PTE_A;
523 GstWalk.pPte->u |= X86_PTE_A;
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
528 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
529# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
530 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
531# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
532
533 /* Take the big lock now. */
534 *pfLockTaken = true;
535 pgmLock(pVM);
536
537# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
538 /*
539 * If it is a reserved bit fault we know that it is an MMIO (access
540 * handler) related fault and can skip some 200 lines of code.
541 */
542 if (uErr & X86_TRAP_PF_RSVD)
543 {
544 Assert(uErr & X86_TRAP_PF_P);
545 PPGMPAGE pPage;
546# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
547 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
548 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
549 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
550 pfLockTaken, &GstWalk));
551 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
552# else
553 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
554 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
555 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
556 pfLockTaken));
557 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
558# endif
559 AssertRC(rc);
560 }
561# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
562
563 /*
564 * Fetch the guest PDE, PDPE and PML4E.
565 */
566# if PGM_SHW_TYPE == PGM_TYPE_32BIT
567 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
568 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
569
570# elif PGM_SHW_TYPE == PGM_TYPE_PAE
571 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
572 PX86PDPAE pPDDst;
573# if PGM_GST_TYPE == PGM_TYPE_PAE
574 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
575# else
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
577# endif
578 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
579
580# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
581 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
582 PX86PDPAE pPDDst;
583# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
584 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
585 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
586# else
587 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
588# endif
589 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
590
591# elif PGM_SHW_TYPE == PGM_TYPE_EPT
592 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
593 PEPTPD pPDDst;
594 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
595 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
596# endif
597 Assert(pPDDst);
598
599# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
600 /*
601 * Dirty page handling.
602 *
603 * If we successfully correct the write protection fault due to dirty bit
604 * tracking, then return immediately.
605 */
606 if (uErr & X86_TRAP_PF_RW) /* write fault? */
607 {
608 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
609 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
610 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
611 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
612 {
613 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
614 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
615 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
616 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
617 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
618 return VINF_SUCCESS;
619 }
620 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
621 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
622 }
623
624# if 0 /* rarely useful; leave for debugging. */
625 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
626# endif
627# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
628
629 /*
630 * A common case is the not-present error caused by lazy page table syncing.
631 *
632 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
633 * here so we can safely assume that the shadow PT is present when calling
634 * SyncPage later.
635 *
636 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
637 * of mapping conflict and defer to SyncCR3 in R3.
638 * (Again, we do NOT support access handlers for non-present guest pages.)
639 *
640 */
641# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
642 Assert(GstWalk.Pde.n.u1Present);
643# endif
644 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
645 && !pPDDst->a[iPDDst].n.u1Present)
646 {
647 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
648# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
649 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
650 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
651# else
652 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
653 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
654# endif
655 if (RT_SUCCESS(rc))
656 return rc;
657 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
658 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
659 return VINF_PGM_SYNC_CR3;
660 }
661
662# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
663 /*
664 * Check if this address is within any of our mappings.
665 *
666 * This is *very* fast and it's gonna save us a bit of effort below and prevent
667 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
668 * (BTW, it's impossible to have physical access handlers in a mapping.)
669 */
670 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
671 {
672 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
673 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
674 {
675 if (pvFault < pMapping->GCPtr)
676 break;
677 if (pvFault - pMapping->GCPtr < pMapping->cb)
678 {
679 /*
680 * The first thing we check is if we've got an undetected conflict.
681 */
682 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
683 {
684 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
685 while (iPT-- > 0)
686 if (GstWalk.pPde[iPT].n.u1Present)
687 {
688 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
689 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
690 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
691 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
692 return VINF_PGM_SYNC_CR3;
693 }
694 }
695
696 /*
697 * Check if the fault address is in a virtual page access handler range.
698 */
699 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
700 if ( pCur
701 && pvFault - pCur->Core.Key < pCur->cb
702 && uErr & X86_TRAP_PF_RW)
703 {
704# ifdef IN_RC
705 STAM_PROFILE_START(&pCur->Stat, h);
706 pgmUnlock(pVM);
707 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
708 pgmLock(pVM);
709 STAM_PROFILE_STOP(&pCur->Stat, h);
710# else
711 AssertFailed();
712 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
713# endif
714 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
715 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
716 return rc;
717 }
718
719 /*
720 * Pretend we're not here and let the guest handle the trap.
721 */
722 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
723 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
724 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
725 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
726 return VINF_EM_RAW_GUEST_TRAP;
727 }
728 }
729 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
730# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
731
732 /*
733 * Check if this fault address is flagged for special treatment,
734 * which means we'll have to figure out the physical address and
735 * check flags associated with it.
736 *
737 * ASSUME that we can limit any special access handling to pages
738 * in page tables which the guest believes to be present.
739 */
740# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
741 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
742# else
743 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
744# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
745 PPGMPAGE pPage;
746 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
747 if (RT_FAILURE(rc))
748 {
749 /*
750 * When the guest accesses invalid physical memory (e.g. probing
751 * of RAM or accessing a remapped MMIO range), then we'll fall
752 * back to the recompiler to emulate the instruction.
753 */
754 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
755 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
756 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
757 return VINF_EM_RAW_EMULATE_INSTR;
758 }
759
760 /*
761 * Any handlers for this page?
762 */
763 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
764# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
765 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
766 &GstWalk));
767# else
768 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
769# endif
770
771 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
772
773# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
774 if (uErr & X86_TRAP_PF_P)
775 {
776 /*
777 * The page isn't marked, but it might still be monitored by a virtual page access handler.
778 * (ASSUMES no temporary disabling of virtual handlers.)
779 */
780 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
781 * we should correct both the shadow page table and physical memory flags, and not only check for
782 * accesses within the handler region but for access to pages with virtual handlers. */
783 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
784 if (pCur)
785 {
786 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
787 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
788 || !(uErr & X86_TRAP_PF_P)
789 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
790 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
791
792 if ( pvFault - pCur->Core.Key < pCur->cb
793 && ( uErr & X86_TRAP_PF_RW
794 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
795 {
796# ifdef IN_RC
797 STAM_PROFILE_START(&pCur->Stat, h);
798 pgmUnlock(pVM);
799 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
800 pgmLock(pVM);
801 STAM_PROFILE_STOP(&pCur->Stat, h);
802# else
803 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
804# endif
805 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
806 return rc;
807 }
808 }
809 }
810# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
811
812 /*
813 * We are here only if page is present in Guest page tables and
814 * trap is not handled by our handlers.
815 *
816 * Check it for page out-of-sync situation.
817 */
818 if (!(uErr & X86_TRAP_PF_P))
819 {
820 /*
821 * Page is not present in our page tables. Try to sync it!
822 */
823 if (uErr & X86_TRAP_PF_US)
824 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
825 else /* supervisor */
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
827
828 if (PGM_PAGE_IS_BALLOONED(pPage))
829 {
830 /* Emulate reads from ballooned pages as they are not present in
831 our shadow page tables. (Required for e.g. Solaris guests; soft
832 ecc, random nr generator.) */
833 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
834 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
835 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
836 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
837 return rc;
838 }
839
840# if defined(LOG_ENABLED) && !defined(IN_RING0)
841 RTGCPHYS GCPhys2;
842 uint64_t fPageGst2;
843 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
844# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
845 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
846 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
847# else
848 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
849 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
850# endif
851# endif /* LOG_ENABLED */
852
853# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
854 if ( !GstWalk.Core.fEffectiveUS
855 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
856 {
857 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
858 if ( pvFault == (RTGCPTR)pRegFrame->eip
859 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
860# ifdef CSAM_DETECT_NEW_CODE_PAGES
861 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
862 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
863# endif /* CSAM_DETECT_NEW_CODE_PAGES */
864 )
865 {
866 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
867 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
868 if (rc != VINF_SUCCESS)
869 {
870 /*
871 * CSAM needs to perform a job in ring 3.
872 *
873 * Sync the page before going to the host context; otherwise we'll end up in a loop if
874 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
875 */
876 LogFlow(("CSAM ring 3 job\n"));
877 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
878 AssertRC(rc2);
879
880 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
881 return rc;
882 }
883 }
884# ifdef CSAM_DETECT_NEW_CODE_PAGES
885 else if ( uErr == X86_TRAP_PF_RW
886 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
887 && pRegFrame->ecx < 0x10000)
888 {
889 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
890 * to detect loading of new code pages.
891 */
892
893 /*
894 * Decode the instruction.
895 */
896 RTGCPTR PC;
897 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
898 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
899 if (rc == VINF_SUCCESS)
900 {
901 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
902 uint32_t cbOp;
903 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
904
905 /* For now we'll restrict this to rep movsw/d instructions */
906 if ( rc == VINF_SUCCESS
907 && pDis->pCurInstr->opcode == OP_MOVSWD
908 && (pDis->prefix & PREFIX_REP))
909 {
910 CSAMMarkPossibleCodePage(pVM, pvFault);
911 }
912 }
913 }
914# endif /* CSAM_DETECT_NEW_CODE_PAGES */
915
916 /*
917 * Mark this page as safe.
918 */
919 /** @todo not correct for pages that contain both code and data!! */
920 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
921 CSAMMarkPage(pVM, pvFault, true);
922 }
923# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
924# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
925 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
926# else
927 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
928# endif
929 if (RT_SUCCESS(rc))
930 {
931 /* The page was successfully synced, return to the guest. */
932 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
933 return VINF_SUCCESS;
934 }
935 }
936 else /* uErr & X86_TRAP_PF_P: */
937 {
938 /*
939 * Write protected pages are made writable when the guest makes the
940 * first write to it. This happens for pages that are shared, write
941 * monitored or not yet allocated.
942 *
943 * We may also end up here when CR0.WP=0 in the guest.
944 *
945 * Also, a side effect of not flushing global PDEs are out of sync
946 * pages due to physical monitored regions, that are no longer valid.
947 * Assume for now it only applies to the read/write flag.
948 */
949 if (uErr & X86_TRAP_PF_RW)
950 {
951 /*
952 * Check if it is a read-only page.
953 */
954 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
955 {
956 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
957 Assert(!PGM_PAGE_IS_ZERO(pPage));
958 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
959 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
960
961 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
962 if (rc != VINF_SUCCESS)
963 {
964 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
965 return rc;
966 }
967 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
968 return VINF_EM_NO_MEMORY;
969 }
970
971# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
972 /*
973 * Check to see if we need to emulate the instruction if CR0.WP=0.
974 */
975 if ( !GstWalk.Core.fEffectiveRW
976 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
977 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
978 {
979 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
980 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
981 if (RT_SUCCESS(rc))
982 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
983 else
984 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
985 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
986 return rc;
987 }
988# endif
989 /// @todo count the above case; else
990 if (uErr & X86_TRAP_PF_US)
991 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
992 else /* supervisor */
993 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
994
995 /*
996 * Sync the page.
997 *
998 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
999 * page is not present, which is not true in this case.
1000 */
1001# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1002 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1003# else
1004 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1005# endif
1006 if (RT_SUCCESS(rc))
1007 {
1008 /*
1009 * Page was successfully synced, return to guest but invalidate
1010 * the TLB first as the page is very likely to be in it.
1011 */
1012# if PGM_SHW_TYPE == PGM_TYPE_EPT
1013 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1014# else
1015 PGM_INVL_PG(pVCpu, pvFault);
1016# endif
1017# ifdef VBOX_STRICT
1018 RTGCPHYS GCPhys2;
1019 uint64_t fPageGst;
1020 if (!pVM->pgm.s.fNestedPaging)
1021 {
1022 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1023 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1024 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1025 }
1026 uint64_t fPageShw;
1027 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1028 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1029 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1030# endif /* VBOX_STRICT */
1031 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1032 return VINF_SUCCESS;
1033 }
1034 }
1035 /** @todo else: why are we here? */
1036
1037# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1038 /*
1039 * Check for VMM page flags vs. Guest page flags consistency.
1040 * Currently only for debug purposes.
1041 */
1042 if (RT_SUCCESS(rc))
1043 {
1044 /* Get guest page flags. */
1045 uint64_t fPageGst;
1046 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1047 if (RT_SUCCESS(rc))
1048 {
1049 uint64_t fPageShw;
1050 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1051
1052 /*
1053 * Compare page flags.
1054 * Note: we have AVL, A, D bits desynched.
1055 */
1056 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1057 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1058 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1059 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1060 }
1061 else
1062 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1063 }
1064 else
1065 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1066# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1067 }
1068
1069
1070 /*
1071 * If we get here it is because something failed above, i.e. most like guru
1072 * meditiation time.
1073 */
1074 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1075 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1076 return rc;
1077
1078# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1079 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1080 return VERR_INTERNAL_ERROR;
1081# endif
1082}
1083#endif /* !IN_RING3 */
1084
1085
1086/**
1087 * Emulation of the invlpg instruction.
1088 *
1089 *
1090 * @returns VBox status code.
1091 *
1092 * @param pVCpu The VMCPU handle.
1093 * @param GCPtrPage Page to invalidate.
1094 *
1095 * @remark ASSUMES that the guest is updating before invalidating. This order
1096 * isn't required by the CPU, so this is speculative and could cause
1097 * trouble.
1098 * @remark No TLB shootdown is done on any other VCPU as we assume that
1099 * invlpg emulation is the *only* reason for calling this function.
1100 * (The guest has to shoot down TLB entries on other CPUs itself)
1101 * Currently true, but keep in mind!
1102 *
1103 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1104 */
1105PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1106{
1107#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1108 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1109 && PGM_SHW_TYPE != PGM_TYPE_EPT
1110 int rc;
1111 PVM pVM = pVCpu->CTX_SUFF(pVM);
1112 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1113
1114 Assert(PGMIsLockOwner(pVM));
1115
1116 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1117
1118# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1119 if (pPool->cDirtyPages)
1120 pgmPoolResetDirtyPages(pVM);
1121# endif
1122
1123 /*
1124 * Get the shadow PD entry and skip out if this PD isn't present.
1125 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1126 */
1127# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1128 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1129 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1130
1131 /* Fetch the pgm pool shadow descriptor. */
1132 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1133 Assert(pShwPde);
1134
1135# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1136 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1137 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1138
1139 /* If the shadow PDPE isn't present, then skip the invalidate. */
1140 if (!pPdptDst->a[iPdpt].n.u1Present)
1141 {
1142 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1144 return VINF_SUCCESS;
1145 }
1146
1147 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1148 PPGMPOOLPAGE pShwPde = NULL;
1149 PX86PDPAE pPDDst;
1150
1151 /* Fetch the pgm pool shadow descriptor. */
1152 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1153 AssertRCSuccessReturn(rc, rc);
1154 Assert(pShwPde);
1155
1156 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1157 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1158
1159# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1160 /* PML4 */
1161 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1162 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1163 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1164 PX86PDPAE pPDDst;
1165 PX86PDPT pPdptDst;
1166 PX86PML4E pPml4eDst;
1167 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1168 if (rc != VINF_SUCCESS)
1169 {
1170 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1171 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1172 return VINF_SUCCESS;
1173 }
1174 Assert(pPDDst);
1175
1176 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1177 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1178
1179 if (!pPdpeDst->n.u1Present)
1180 {
1181 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1182 return VINF_SUCCESS;
1183 }
1184
1185 /* Fetch the pgm pool shadow descriptor. */
1186 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1187 Assert(pShwPde);
1188
1189# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1190
1191 const SHWPDE PdeDst = *pPdeDst;
1192 if (!PdeDst.n.u1Present)
1193 {
1194 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1195 return VINF_SUCCESS;
1196 }
1197
1198 /*
1199 * Get the guest PD entry and calc big page.
1200 */
1201# if PGM_GST_TYPE == PGM_TYPE_32BIT
1202 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1203 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1204 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1205# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1206 unsigned iPDSrc = 0;
1207# if PGM_GST_TYPE == PGM_TYPE_PAE
1208 X86PDPE PdpeSrcIgn;
1209 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1210# else /* AMD64 */
1211 PX86PML4E pPml4eSrcIgn;
1212 X86PDPE PdpeSrcIgn;
1213 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1214# endif
1215 GSTPDE PdeSrc;
1216
1217 if (pPDSrc)
1218 PdeSrc = pPDSrc->a[iPDSrc];
1219 else
1220 PdeSrc.u = 0;
1221# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1222 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1223
1224# ifdef IN_RING3
1225 /*
1226 * If a CR3 Sync is pending we may ignore the invalidate page operation
1227 * depending on the kind of sync and if it's a global page or not.
1228 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1229 */
1230# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1231 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1232 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1233 && fIsBigPage
1234 && PdeSrc.b.u1Global
1235 )
1236 )
1237# else
1238 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1239# endif
1240 {
1241 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1242 return VINF_SUCCESS;
1243 }
1244# endif /* IN_RING3 */
1245
1246 /*
1247 * Deal with the Guest PDE.
1248 */
1249 rc = VINF_SUCCESS;
1250 if (PdeSrc.n.u1Present)
1251 {
1252 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1253 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1254# ifndef PGM_WITHOUT_MAPPING
1255 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1256 {
1257 /*
1258 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1259 */
1260 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1261 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1262 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1263 }
1264 else
1265# endif /* !PGM_WITHOUT_MAPPING */
1266 if (!fIsBigPage)
1267 {
1268 /*
1269 * 4KB - page.
1270 */
1271 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1272 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1273
1274# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1275 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1276 if (pShwPage->cModifications)
1277 pShwPage->cModifications = 1;
1278# endif
1279
1280# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1281 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1282 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1283# endif
1284 if (pShwPage->GCPhys == GCPhys)
1285 {
1286# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1287 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1288 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1289 if (pPT->a[iPTEDst].n.u1Present)
1290 {
1291 /* This is very unlikely with caching/monitoring enabled. */
1292 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1293 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1294 }
1295# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1296 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1297 if (RT_SUCCESS(rc))
1298 rc = VINF_SUCCESS;
1299# endif
1300 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1301 PGM_INVL_PG(pVCpu, GCPtrPage);
1302 }
1303 else
1304 {
1305 /*
1306 * The page table address changed.
1307 */
1308 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1309 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1310 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1311 ASMAtomicWriteSize(pPdeDst, 0);
1312 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1313 PGM_INVL_VCPU_TLBS(pVCpu);
1314 }
1315 }
1316 else
1317 {
1318 /*
1319 * 2/4MB - page.
1320 */
1321 /* Before freeing the page, check if anything really changed. */
1322 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1323 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1324# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1325 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1326 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1327# endif
1328 if ( pShwPage->GCPhys == GCPhys
1329 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1330 {
1331 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1332 /** @todo This test is wrong as it cannot check the G bit!
1333 * FIXME */
1334 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1335 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1336 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1337 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1338 {
1339 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1340 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1341 return VINF_SUCCESS;
1342 }
1343 }
1344
1345 /*
1346 * Ok, the page table is present and it's been changed in the guest.
1347 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1348 * We could do this for some flushes in GC too, but we need an algorithm for
1349 * deciding which 4MB pages containing code likely to be executed very soon.
1350 */
1351 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1352 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1353 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1354 ASMAtomicWriteSize(pPdeDst, 0);
1355 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1356 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1357 }
1358 }
1359 else
1360 {
1361 /*
1362 * Page directory is not present, mark shadow PDE not present.
1363 */
1364 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1365 {
1366 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1367 ASMAtomicWriteSize(pPdeDst, 0);
1368 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1369 PGM_INVL_PG(pVCpu, GCPtrPage);
1370 }
1371 else
1372 {
1373 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1374 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1375 }
1376 }
1377 return rc;
1378
1379#else /* guest real and protected mode */
1380 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1381 return VINF_SUCCESS;
1382#endif
1383}
1384
1385
1386/**
1387 * Update the tracking of shadowed pages.
1388 *
1389 * @param pVCpu The VMCPU handle.
1390 * @param pShwPage The shadow page.
1391 * @param HCPhys The physical page we is being dereferenced.
1392 * @param iPte Shadow PTE index
1393 */
1394DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
1395{
1396 PVM pVM = pVCpu->CTX_SUFF(pVM);
1397
1398 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1399 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1400
1401 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1402 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1403 * 2. write protect all shadowed pages. I.e. implement caching.
1404 */
1405 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1406
1407 /*
1408 * Find the guest address.
1409 */
1410 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1411 pRam;
1412 pRam = pRam->CTX_SUFF(pNext))
1413 {
1414 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1415 while (iPage-- > 0)
1416 {
1417 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1418 {
1419 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1420
1421 Assert(pShwPage->cPresent);
1422 Assert(pPool->cPresent);
1423 pShwPage->cPresent--;
1424 pPool->cPresent--;
1425
1426 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1427 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1428 return;
1429 }
1430 }
1431 }
1432
1433 for (;;)
1434 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1435}
1436
1437
1438/**
1439 * Update the tracking of shadowed pages.
1440 *
1441 * @param pVCpu The VMCPU handle.
1442 * @param pShwPage The shadow page.
1443 * @param u16 The top 16-bit of the pPage->HCPhys.
1444 * @param pPage Pointer to the guest page. this will be modified.
1445 * @param iPTDst The index into the shadow table.
1446 */
1447DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1448{
1449 PVM pVM = pVCpu->CTX_SUFF(pVM);
1450
1451 /*
1452 * Just deal with the simple first time here.
1453 */
1454 if (!u16)
1455 {
1456 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1457 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1458 /* Save the page table index. */
1459 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1460 }
1461 else
1462 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1463
1464 /* write back */
1465 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1466 PGM_PAGE_SET_TRACKING(pPage, u16);
1467
1468 /* update statistics. */
1469 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1470 pShwPage->cPresent++;
1471 if (pShwPage->iFirstPresent > iPTDst)
1472 pShwPage->iFirstPresent = iPTDst;
1473}
1474
1475
1476/**
1477 * Modifies a shadow PTE to account for access handlers.
1478 *
1479 * @param pVM The VM handle.
1480 * @param pPage The page in question.
1481 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1482 * A (accessed) bit so it can be emulated correctly.
1483 * @param pPteDst The shadow PTE (output). This is temporary storage and
1484 * does not need to be set atomically.
1485 */
1486DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1487{
1488 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1489 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1490 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1491 {
1492 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1493#if PGM_SHW_TYPE == PGM_TYPE_EPT
1494 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1495 pPteDst->n.u1Present = 1;
1496 pPteDst->n.u1Execute = 1;
1497 pPteDst->n.u1IgnorePAT = 1;
1498 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1499 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1500#else
1501 if (fPteSrc & X86_PTE_A)
1502 {
1503 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1504 SHW_PTE_SET_RO(*pPteDst);
1505 }
1506 else
1507 SHW_PTE_SET(*pPteDst, 0);
1508#endif
1509 }
1510#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1511# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1512 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1513 && ( BTH_IS_NP_ACTIVE(pVM)
1514 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1515# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1516 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1517# endif
1518 )
1519 {
1520 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1521# if PGM_SHW_TYPE == PGM_TYPE_EPT
1522 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1523 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1524 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1525 pPteDst->n.u1Present = 0;
1526 pPteDst->n.u1Write = 1;
1527 pPteDst->n.u1Execute = 0;
1528 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1529 pPteDst->n.u3EMT = 7;
1530# else
1531 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1532 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1533# endif
1534 }
1535# endif
1536#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1537 else
1538 {
1539 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1540 SHW_PTE_SET(*pPteDst, 0);
1541 }
1542 /** @todo count these kinds of entries. */
1543}
1544
1545
1546/**
1547 * Creates a 4K shadow page for a guest page.
1548 *
1549 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1550 * physical address. The PdeSrc argument only the flags are used. No page
1551 * structured will be mapped in this function.
1552 *
1553 * @param pVCpu The VMCPU handle.
1554 * @param pPteDst Destination page table entry.
1555 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1556 * Can safely assume that only the flags are being used.
1557 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1558 * @param pShwPage Pointer to the shadow page.
1559 * @param iPTDst The index into the shadow table.
1560 *
1561 * @remark Not used for 2/4MB pages!
1562 */
1563DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1564 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1565{
1566 if ( PteSrc.n.u1Present
1567 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1568 {
1569 PVM pVM = pVCpu->CTX_SUFF(pVM);
1570
1571# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1572 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1573 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1574 if (pShwPage->fDirty)
1575 {
1576 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1577 PX86PTPAE pGstPT;
1578
1579 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0];
1580 pGstPT->a[iPTDst].u = PteSrc.u;
1581 }
1582# endif
1583 /*
1584 * Find the ram range.
1585 */
1586 PPGMPAGE pPage;
1587 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc), &pPage);
1588 if (RT_SUCCESS(rc))
1589 {
1590 /* Ignore ballooned pages.
1591 Don't return errors or use a fatal assert here as part of a
1592 shadow sync range might included ballooned pages. */
1593 if (PGM_PAGE_IS_BALLOONED(pPage))
1594 {
1595 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1596 return;
1597 }
1598
1599#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1600 /* Make the page writable if necessary. */
1601 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1602 && ( PGM_PAGE_IS_ZERO(pPage)
1603 || ( PteSrc.n.u1Write
1604 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1605# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1606 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1607# endif
1608# ifdef VBOX_WITH_PAGE_SHARING
1609 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1610# endif
1611 )
1612 )
1613 )
1614 {
1615 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
1616 AssertRC(rc);
1617 }
1618#endif
1619
1620 /*
1621 * Make page table entry.
1622 */
1623 SHWPTE PteDst;
1624 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1625 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc), &PteDst);
1626 else
1627 {
1628#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1629 /*
1630 * If the page or page directory entry is not marked accessed,
1631 * we mark the page not present.
1632 */
1633 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1634 {
1635 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1636 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1637 SHW_PTE_SET(PteDst, 0);
1638 }
1639 /*
1640 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1641 * when the page is modified.
1642 */
1643 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1644 {
1645 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1646 SHW_PTE_SET(PteDst,
1647 GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc)
1648 | PGM_PAGE_GET_HCPHYS(pPage)
1649 | PGM_PTFLAGS_TRACK_DIRTY);
1650 SHW_PTE_SET_RO(PteDst);
1651 }
1652 else
1653#endif
1654 {
1655 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1656#if PGM_SHW_TYPE == PGM_TYPE_EPT
1657 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1658 PteDst.n.u1Present = 1;
1659 PteDst.n.u1Write = 1;
1660 PteDst.n.u1Execute = 1;
1661 PteDst.n.u1IgnorePAT = 1;
1662 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1663 /* PteDst.n.u1Size = 0 */
1664#else
1665 SHW_PTE_SET(PteDst, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1666#endif
1667 }
1668
1669 /*
1670 * Make sure only allocated pages are mapped writable.
1671 */
1672 if ( SHW_PTE_IS_P_RW(PteDst)
1673 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1674 {
1675 /* Still applies to shared pages. */
1676 Assert(!PGM_PAGE_IS_ZERO(pPage));
1677 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1678 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)GST_GET_PTE_GCPHYS(PteSrc), pPage, iPTDst));
1679 }
1680 }
1681
1682 /*
1683 * Keep user track up to date.
1684 */
1685 if (SHW_PTE_IS_P(PteDst))
1686 {
1687 if (!SHW_PTE_IS_P(*pPteDst))
1688 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1689 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1690 {
1691 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1692 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1693 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1694 }
1695 }
1696 else if (SHW_PTE_IS_P(*pPteDst))
1697 {
1698 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1699 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1700 }
1701
1702 /*
1703 * Update statistics and commit the entry.
1704 */
1705#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1706 if (!PteSrc.n.u1Global)
1707 pShwPage->fSeenNonGlobal = true;
1708#endif
1709 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1710 return;
1711 }
1712
1713/** @todo count these three different kinds. */
1714 Log2(("SyncPageWorker: invalid address in Pte\n"));
1715 }
1716 else if (!PteSrc.n.u1Present)
1717 Log2(("SyncPageWorker: page not present in Pte\n"));
1718 else
1719 Log2(("SyncPageWorker: invalid Pte\n"));
1720
1721 /*
1722 * The page is not present or the PTE is bad. Replace the shadow PTE by
1723 * an empty entry, making sure to keep the user tracking up to date.
1724 */
1725 if (SHW_PTE_IS_P(*pPteDst))
1726 {
1727 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1728 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1729 }
1730 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1731}
1732
1733
1734/**
1735 * Syncs a guest OS page.
1736 *
1737 * There are no conflicts at this point, neither is there any need for
1738 * page table allocations.
1739 *
1740 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1741 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1742 *
1743 * @returns VBox status code.
1744 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1745 * @param pVCpu The VMCPU handle.
1746 * @param PdeSrc Page directory entry of the guest.
1747 * @param GCPtrPage Guest context page address.
1748 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1749 * @param uErr Fault error (X86_TRAP_PF_*).
1750 */
1751static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1752{
1753 PVM pVM = pVCpu->CTX_SUFF(pVM);
1754 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1755 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1756
1757 Assert(PGMIsLockOwner(pVM));
1758
1759#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1760 || PGM_GST_TYPE == PGM_TYPE_PAE \
1761 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1762 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1763 && PGM_SHW_TYPE != PGM_TYPE_EPT
1764
1765 /*
1766 * Assert preconditions.
1767 */
1768 Assert(PdeSrc.n.u1Present);
1769 Assert(cPages);
1770# if 0 /* rarely useful; leave for debugging. */
1771 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1772# endif
1773
1774 /*
1775 * Get the shadow PDE, find the shadow page table in the pool.
1776 */
1777# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1778 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1779 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1780
1781 /* Fetch the pgm pool shadow descriptor. */
1782 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1783 Assert(pShwPde);
1784
1785# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1786 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1787 PPGMPOOLPAGE pShwPde = NULL;
1788 PX86PDPAE pPDDst;
1789
1790 /* Fetch the pgm pool shadow descriptor. */
1791 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1792 AssertRCSuccessReturn(rc2, rc2);
1793 Assert(pShwPde);
1794
1795 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1796 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1797
1798# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1799 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1800 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1801 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1802 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1803
1804 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1805 AssertRCSuccessReturn(rc2, rc2);
1806 Assert(pPDDst && pPdptDst);
1807 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1808# endif
1809 SHWPDE PdeDst = *pPdeDst;
1810
1811 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
1812 if (!PdeDst.n.u1Present)
1813 {
1814 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u));
1815 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
1816 return VINF_SUCCESS; /* force the instruction to be executed again. */
1817 }
1818
1819 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1820 Assert(pShwPage);
1821
1822# if PGM_GST_TYPE == PGM_TYPE_AMD64
1823 /* Fetch the pgm pool shadow descriptor. */
1824 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1825 Assert(pShwPde);
1826# endif
1827
1828 /*
1829 * Check that the page is present and that the shadow PDE isn't out of sync.
1830 */
1831 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1832 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1833 RTGCPHYS GCPhys;
1834 if (!fBigPage)
1835 {
1836 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1837# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1838 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1839 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1840# endif
1841 }
1842 else
1843 {
1844 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1845# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1846 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1847 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1848# endif
1849 }
1850 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1851 if ( fPdeValid
1852 && pShwPage->GCPhys == GCPhys
1853 && PdeSrc.n.u1Present
1854 && PdeSrc.n.u1User == PdeDst.n.u1User
1855 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1856# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1857 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1858# endif
1859 )
1860 {
1861 /*
1862 * Check that the PDE is marked accessed already.
1863 * Since we set the accessed bit *before* getting here on a #PF, this
1864 * check is only meant for dealing with non-#PF'ing paths.
1865 */
1866 if (PdeSrc.n.u1Accessed)
1867 {
1868 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1869 if (!fBigPage)
1870 {
1871 /*
1872 * 4KB Page - Map the guest page table.
1873 */
1874 PGSTPT pPTSrc;
1875 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1876 if (RT_SUCCESS(rc))
1877 {
1878# ifdef PGM_SYNC_N_PAGES
1879 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1880 if ( cPages > 1
1881 && !(uErr & X86_TRAP_PF_P)
1882 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1883 {
1884 /*
1885 * This code path is currently only taken when the caller is PGMTrap0eHandler
1886 * for non-present pages!
1887 *
1888 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1889 * deal with locality.
1890 */
1891 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1892# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1893 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1894 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1895# else
1896 const unsigned offPTSrc = 0;
1897# endif
1898 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1899 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1900 iPTDst = 0;
1901 else
1902 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1903 for (; iPTDst < iPTDstEnd; iPTDst++)
1904 {
1905 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1906 {
1907 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1908 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1909 NOREF(GCPtrCurPage);
1910#ifndef IN_RING0
1911 /*
1912 * Assuming kernel code will be marked as supervisor - and not as user level
1913 * and executed using a conforming code selector - And marked as readonly.
1914 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1915 */
1916 PPGMPAGE pPage;
1917 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1918 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1919 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1920 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1921 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1922 )
1923#endif /* else: CSAM not active */
1924 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1925 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1926 GCPtrCurPage, PteSrc.n.u1Present,
1927 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1928 PteSrc.n.u1User & PdeSrc.n.u1User,
1929 (uint64_t)PteSrc.u,
1930 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1931 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1932 }
1933 }
1934 }
1935 else
1936# endif /* PGM_SYNC_N_PAGES */
1937 {
1938 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1939 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1940 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1941 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1942 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1943 GCPtrPage, PteSrc.n.u1Present,
1944 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1945 PteSrc.n.u1User & PdeSrc.n.u1User,
1946 (uint64_t)PteSrc.u,
1947 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1948 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1949 }
1950 }
1951 else /* MMIO or invalid page: emulated in #PF handler. */
1952 {
1953 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1954 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1955 }
1956 }
1957 else
1958 {
1959 /*
1960 * 4/2MB page - lazy syncing shadow 4K pages.
1961 * (There are many causes of getting here, it's no longer only CSAM.)
1962 */
1963 /* Calculate the GC physical address of this 4KB shadow page. */
1964 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1965 /* Find ram range. */
1966 PPGMPAGE pPage;
1967 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1968 if (RT_SUCCESS(rc))
1969 {
1970 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1971
1972# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1973 /* Try to make the page writable if necessary. */
1974 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1975 && ( PGM_PAGE_IS_ZERO(pPage)
1976 || ( PdeSrc.n.u1Write
1977 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1978# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1979 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1980# endif
1981# ifdef VBOX_WITH_PAGE_SHARING
1982 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1983# endif
1984 )
1985 )
1986 )
1987 {
1988 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
1989 AssertRC(rc);
1990 }
1991# endif
1992
1993 /*
1994 * Make shadow PTE entry.
1995 */
1996 SHWPTE PteDst;
1997 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1998 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
1999 else
2000 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2001
2002 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2003 if ( SHW_PTE_IS_P(PteDst)
2004 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2005 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2006
2007 /* Make sure only allocated pages are mapped writable. */
2008 if ( SHW_PTE_IS_P_RW(PteDst)
2009 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2010 {
2011 /* Still applies to shared pages. */
2012 Assert(!PGM_PAGE_IS_ZERO(pPage));
2013 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2014 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2015 }
2016
2017 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2018
2019 /*
2020 * If the page is not flagged as dirty and is writable, then make it read-only
2021 * at PD level, so we can set the dirty bit when the page is modified.
2022 *
2023 * ASSUMES that page access handlers are implemented on page table entry level.
2024 * Thus we will first catch the dirty access and set PDE.D and restart. If
2025 * there is an access handler, we'll trap again and let it work on the problem.
2026 */
2027 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2028 * As for invlpg, it simply frees the whole shadow PT.
2029 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2030 if ( !PdeSrc.b.u1Dirty
2031 && PdeSrc.b.u1Write)
2032 {
2033 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2034 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2035 PdeDst.n.u1Write = 0;
2036 }
2037 else
2038 {
2039 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2040 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2041 }
2042 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2043 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2044 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2045 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2046 }
2047 else
2048 {
2049 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2050 /** @todo must wipe the shadow page table entry in this
2051 * case. */
2052 }
2053 }
2054 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2055 return VINF_SUCCESS;
2056 }
2057
2058 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2059 }
2060 else if (fPdeValid)
2061 {
2062 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2063 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2064 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2065 }
2066 else
2067 {
2068/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2069 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2070 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2071 }
2072
2073 /*
2074 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2075 * Yea, I'm lazy.
2076 */
2077 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2078 ASMAtomicWriteSize(pPdeDst, 0);
2079
2080 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2081 PGM_INVL_VCPU_TLBS(pVCpu);
2082 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2083
2084
2085#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2086 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2087 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2088 && !defined(IN_RC)
2089
2090# ifdef PGM_SYNC_N_PAGES
2091 /*
2092 * Get the shadow PDE, find the shadow page table in the pool.
2093 */
2094# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2095 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2096
2097# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2098 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2099
2100# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2101 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2102 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2103 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2104 X86PDEPAE PdeDst;
2105 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2106
2107 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2108 AssertRCSuccessReturn(rc, rc);
2109 Assert(pPDDst && pPdptDst);
2110 PdeDst = pPDDst->a[iPDDst];
2111# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2112 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2113 PEPTPD pPDDst;
2114 EPTPDE PdeDst;
2115
2116 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2117 if (rc != VINF_SUCCESS)
2118 {
2119 AssertRC(rc);
2120 return rc;
2121 }
2122 Assert(pPDDst);
2123 PdeDst = pPDDst->a[iPDDst];
2124# endif
2125 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2126 if (!PdeDst.n.u1Present)
2127 {
2128 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2129 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2130 return VINF_SUCCESS; /* force the instruction to be executed again. */
2131 }
2132
2133 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2134 if (PdeDst.n.u1Size)
2135 {
2136 Assert(pVM->pgm.s.fNestedPaging);
2137 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2138 return VINF_SUCCESS;
2139 }
2140
2141 /* Mask away the page offset. */
2142 GCPtrPage &= ~((RTGCPTR)0xfff);
2143
2144 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2145 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2146
2147 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2148 if ( cPages > 1
2149 && !(uErr & X86_TRAP_PF_P)
2150 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2151 {
2152 /*
2153 * This code path is currently only taken when the caller is PGMTrap0eHandler
2154 * for non-present pages!
2155 *
2156 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2157 * deal with locality.
2158 */
2159 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2160 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2161 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2162 iPTDst = 0;
2163 else
2164 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2165 for (; iPTDst < iPTDstEnd; iPTDst++)
2166 {
2167 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2168 {
2169 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2170 GSTPTE PteSrc;
2171
2172 /* Fake the page table entry */
2173 PteSrc.u = GCPtrCurPage;
2174 PteSrc.n.u1Present = 1;
2175 PteSrc.n.u1Dirty = 1;
2176 PteSrc.n.u1Accessed = 1;
2177 PteSrc.n.u1Write = 1;
2178 PteSrc.n.u1User = 1;
2179
2180 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2181 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2182 GCPtrCurPage, PteSrc.n.u1Present,
2183 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2184 PteSrc.n.u1User & PdeSrc.n.u1User,
2185 (uint64_t)PteSrc.u,
2186 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2187 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2188
2189 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2190 break;
2191 }
2192 else
2193 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2194 }
2195 }
2196 else
2197# endif /* PGM_SYNC_N_PAGES */
2198 {
2199 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2200 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2201 GSTPTE PteSrc;
2202
2203 /* Fake the page table entry */
2204 PteSrc.u = GCPtrCurPage;
2205 PteSrc.n.u1Present = 1;
2206 PteSrc.n.u1Dirty = 1;
2207 PteSrc.n.u1Accessed = 1;
2208 PteSrc.n.u1Write = 1;
2209 PteSrc.n.u1User = 1;
2210 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2211
2212 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2213 GCPtrPage, PteSrc.n.u1Present,
2214 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2215 PteSrc.n.u1User & PdeSrc.n.u1User,
2216 (uint64_t)PteSrc.u,
2217 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2218 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2219 }
2220 return VINF_SUCCESS;
2221
2222#else
2223 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2224 return VERR_INTERNAL_ERROR;
2225#endif
2226}
2227
2228
2229#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2230
2231/**
2232 * CheckPageFault helper for returning a page fault indicating a non-present
2233 * (NP) entry in the page translation structures.
2234 *
2235 * @returns VINF_EM_RAW_GUEST_TRAP.
2236 * @param pVCpu The virtual CPU to operate on.
2237 * @param uErr The error code of the shadow fault. Corrections to
2238 * TRPM's copy will be made if necessary.
2239 * @param GCPtrPage For logging.
2240 * @param uPageFaultLevel For logging.
2241 */
2242DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2243{
2244 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2245 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2246 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2247 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2248 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2249
2250 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2251 return VINF_EM_RAW_GUEST_TRAP;
2252}
2253
2254
2255/**
2256 * CheckPageFault helper for returning a page fault indicating a reserved bit
2257 * (RSVD) error in the page translation structures.
2258 *
2259 * @returns VINF_EM_RAW_GUEST_TRAP.
2260 * @param pVCpu The virtual CPU to operate on.
2261 * @param uErr The error code of the shadow fault. Corrections to
2262 * TRPM's copy will be made if necessary.
2263 * @param GCPtrPage For logging.
2264 * @param uPageFaultLevel For logging.
2265 */
2266DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2267{
2268 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2269 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2270 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2271
2272 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2273 return VINF_EM_RAW_GUEST_TRAP;
2274}
2275
2276
2277/**
2278 * CheckPageFault helper for returning a page protection fault (P).
2279 *
2280 * @returns VINF_EM_RAW_GUEST_TRAP.
2281 * @param pVCpu The virtual CPU to operate on.
2282 * @param uErr The error code of the shadow fault. Corrections to
2283 * TRPM's copy will be made if necessary.
2284 * @param GCPtrPage For logging.
2285 * @param uPageFaultLevel For logging.
2286 */
2287DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2288{
2289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2290 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2291 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2292 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2293
2294 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2295 return VINF_EM_RAW_GUEST_TRAP;
2296}
2297
2298
2299/**
2300 * Handle dirty bit tracking faults.
2301 *
2302 * @returns VBox status code.
2303 * @param pVCpu The VMCPU handle.
2304 * @param uErr Page fault error code.
2305 * @param pPdeSrc Guest page directory entry.
2306 * @param pPdeDst Shadow page directory entry.
2307 * @param GCPtrPage Guest context page address.
2308 */
2309static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2310{
2311 PVM pVM = pVCpu->CTX_SUFF(pVM);
2312 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2313
2314 Assert(PGMIsLockOwner(pVM));
2315
2316 /*
2317 * Handle big page.
2318 */
2319 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2320 {
2321 if ( pPdeDst->n.u1Present
2322 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2323 {
2324 SHWPDE PdeDst = *pPdeDst;
2325
2326 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2327 Assert(pPdeSrc->b.u1Write);
2328
2329 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2330 * fault again and take this path to only invalidate the entry (see below).
2331 */
2332 PdeDst.n.u1Write = 1;
2333 PdeDst.n.u1Accessed = 1;
2334 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2335 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2336 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2337 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2338 }
2339
2340# ifdef IN_RING0
2341 /* Check for stale TLB entry; only applies to the SMP guest case. */
2342 if ( pVM->cCpus > 1
2343 && pPdeDst->n.u1Write
2344 && pPdeDst->n.u1Accessed)
2345 {
2346 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2347 if (pShwPage)
2348 {
2349 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2350 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2351 if (SHW_PTE_IS_P_RW(*pPteDst))
2352 {
2353 /* Stale TLB entry. */
2354 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2355 PGM_INVL_PG(pVCpu, GCPtrPage);
2356 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2357 }
2358 }
2359 }
2360# endif /* IN_RING0 */
2361 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2362 }
2363
2364 /*
2365 * Map the guest page table.
2366 */
2367 PGSTPT pPTSrc;
2368 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2369 if (RT_FAILURE(rc))
2370 {
2371 AssertRC(rc);
2372 return rc;
2373 }
2374
2375 if (pPdeDst->n.u1Present)
2376 {
2377 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2378 const GSTPTE PteSrc = *pPteSrc;
2379
2380#ifndef IN_RING0
2381 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2382 * Our individual shadow handlers will provide more information and force a fatal exit.
2383 */
2384 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2385 {
2386 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2387 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2388 }
2389#endif
2390 /*
2391 * Map shadow page table.
2392 */
2393 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2394 if (pShwPage)
2395 {
2396 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2397 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2398 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2399 {
2400 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2401 {
2402 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(*pPteSrc));
2403 SHWPTE PteDst = *pPteDst;
2404
2405 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2406 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2407
2408 Assert(pPteSrc->n.u1Write);
2409
2410 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2411 * entry will not harm; write access will simply fault again and
2412 * take this path to only invalidate the entry.
2413 */
2414 if (RT_LIKELY(pPage))
2415 {
2416 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2417 {
2418 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2419 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2420 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2421 SHW_PTE_SET_RO(PteDst);
2422 }
2423 else
2424 {
2425 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2426 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2427 {
2428 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(*pPteSrc));
2429 AssertRC(rc);
2430 }
2431 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2432 SHW_PTE_SET_RW(PteDst);
2433 else
2434 {
2435 /* Still applies to shared pages. */
2436 Assert(!PGM_PAGE_IS_ZERO(pPage));
2437 SHW_PTE_SET_RO(PteDst);
2438 }
2439 }
2440 }
2441 else
2442 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2443
2444 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2445 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2446 PGM_INVL_PG(pVCpu, GCPtrPage);
2447 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2448 }
2449
2450# ifdef IN_RING0
2451 /* Check for stale TLB entry; only applies to the SMP guest case. */
2452 if ( pVM->cCpus > 1
2453 && SHW_PTE_IS_RW(*pPteDst)
2454 && SHW_PTE_IS_A(*pPteDst))
2455 {
2456 /* Stale TLB entry. */
2457 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2458 PGM_INVL_PG(pVCpu, GCPtrPage);
2459 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2460 }
2461# endif
2462 }
2463 }
2464 else
2465 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2466 }
2467
2468 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2469}
2470
2471#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2472
2473
2474/**
2475 * Sync a shadow page table.
2476 *
2477 * The shadow page table is not present in the shadow PDE.
2478 *
2479 * Handles mapping conflicts.
2480 *
2481 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2482 * conflict), and Trap0eHandler.
2483 *
2484 * A precodition for this method is that the shadow PDE is not present. The
2485 * caller must take the PGM lock before checking this and continue to hold it
2486 * when calling this method.
2487 *
2488 * @returns VBox status code.
2489 * @param pVCpu The VMCPU handle.
2490 * @param iPD Page directory index.
2491 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2492 * Assume this is a temporary mapping.
2493 * @param GCPtrPage GC Pointer of the page that caused the fault
2494 */
2495static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2496{
2497 PVM pVM = pVCpu->CTX_SUFF(pVM);
2498 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2499
2500 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2501#if 0 /* rarely useful; leave for debugging. */
2502 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2503#endif
2504 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2505
2506 Assert(PGMIsLocked(pVM));
2507
2508#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2509 || PGM_GST_TYPE == PGM_TYPE_PAE \
2510 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2511 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2512 && PGM_SHW_TYPE != PGM_TYPE_EPT
2513
2514 int rc = VINF_SUCCESS;
2515
2516 /*
2517 * Some input validation first.
2518 */
2519 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2520
2521 /*
2522 * Get the relevant shadow PDE entry.
2523 */
2524# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2525 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2526 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2527
2528 /* Fetch the pgm pool shadow descriptor. */
2529 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2530 Assert(pShwPde);
2531
2532# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2533 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2534 PPGMPOOLPAGE pShwPde = NULL;
2535 PX86PDPAE pPDDst;
2536 PSHWPDE pPdeDst;
2537
2538 /* Fetch the pgm pool shadow descriptor. */
2539 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2540 AssertRCSuccessReturn(rc, rc);
2541 Assert(pShwPde);
2542
2543 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2544 pPdeDst = &pPDDst->a[iPDDst];
2545
2546# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2547 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2548 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2549 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2550 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2551 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2552 AssertRCSuccessReturn(rc, rc);
2553 Assert(pPDDst);
2554 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2555# endif
2556 SHWPDE PdeDst = *pPdeDst;
2557
2558# if PGM_GST_TYPE == PGM_TYPE_AMD64
2559 /* Fetch the pgm pool shadow descriptor. */
2560 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2561 Assert(pShwPde);
2562# endif
2563
2564# ifndef PGM_WITHOUT_MAPPINGS
2565 /*
2566 * Check for conflicts.
2567 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2568 * R3: Simply resolve the conflict.
2569 */
2570 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2571 {
2572 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2573# ifndef IN_RING3
2574 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2575 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2576 return VERR_ADDRESS_CONFLICT;
2577
2578# else /* IN_RING3 */
2579 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2580 Assert(pMapping);
2581# if PGM_GST_TYPE == PGM_TYPE_32BIT
2582 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2583# elif PGM_GST_TYPE == PGM_TYPE_PAE
2584 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2585# else
2586 AssertFailed(); /* can't happen for amd64 */
2587# endif
2588 if (RT_FAILURE(rc))
2589 {
2590 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2591 return rc;
2592 }
2593 PdeDst = *pPdeDst;
2594# endif /* IN_RING3 */
2595 }
2596# endif /* !PGM_WITHOUT_MAPPINGS */
2597 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2598
2599 /*
2600 * Sync the page directory entry.
2601 */
2602 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2603 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2604 if ( PdeSrc.n.u1Present
2605 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2606 {
2607 /*
2608 * Allocate & map the page table.
2609 */
2610 PSHWPT pPTDst;
2611 PPGMPOOLPAGE pShwPage;
2612 RTGCPHYS GCPhys;
2613 if (fPageTable)
2614 {
2615 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2616# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2617 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2618 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2619# endif
2620 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2621 }
2622 else
2623 {
2624 PGMPOOLACCESS enmAccess;
2625# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2626 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2627# else
2628 const bool fNoExecute = false;
2629# endif
2630
2631 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2632# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2633 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2634 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2635# endif
2636 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2637 if (PdeSrc.n.u1User)
2638 {
2639 if (PdeSrc.n.u1Write)
2640 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2641 else
2642 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2643 }
2644 else
2645 {
2646 if (PdeSrc.n.u1Write)
2647 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2648 else
2649 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2650 }
2651 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, false /*fLockPage*/,
2652 &pShwPage);
2653 }
2654 if (rc == VINF_SUCCESS)
2655 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2656 else if (rc == VINF_PGM_CACHED_PAGE)
2657 {
2658 /*
2659 * The PT was cached, just hook it up.
2660 */
2661 if (fPageTable)
2662 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2663 else
2664 {
2665 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2666 /* (see explanation and assumptions further down.) */
2667 if ( !PdeSrc.b.u1Dirty
2668 && PdeSrc.b.u1Write)
2669 {
2670 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2671 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2672 PdeDst.b.u1Write = 0;
2673 }
2674 }
2675 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2676 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2677 return VINF_SUCCESS;
2678 }
2679 else if (rc == VERR_PGM_POOL_FLUSHED)
2680 {
2681 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2682 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2683 return VINF_PGM_SYNC_CR3;
2684 }
2685 else
2686 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2687 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2688 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2689 * irrelevant at this point. */
2690 PdeDst.u &= X86_PDE_AVL_MASK;
2691 PdeDst.u |= pShwPage->Core.Key;
2692
2693 /*
2694 * Page directory has been accessed (this is a fault situation, remember).
2695 */
2696 /** @todo
2697 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2698 * fault situation. What's more, the Trap0eHandler has already set the
2699 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2700 * might need setting the accessed flag.
2701 *
2702 * The best idea is to leave this change to the caller and add an
2703 * assertion that it's set already. */
2704 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2705 if (fPageTable)
2706 {
2707 /*
2708 * Page table - 4KB.
2709 *
2710 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2711 */
2712 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2713 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2714 PGSTPT pPTSrc;
2715 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2716 if (RT_SUCCESS(rc))
2717 {
2718 /*
2719 * Start by syncing the page directory entry so CSAM's TLB trick works.
2720 */
2721 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2722 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2723 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2724 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2725
2726 /*
2727 * Directory/page user or supervisor privilege: (same goes for read/write)
2728 *
2729 * Directory Page Combined
2730 * U/S U/S U/S
2731 * 0 0 0
2732 * 0 1 0
2733 * 1 0 0
2734 * 1 1 1
2735 *
2736 * Simple AND operation. Table listed for completeness.
2737 *
2738 */
2739 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2740# ifdef PGM_SYNC_N_PAGES
2741 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2742 unsigned iPTDst = iPTBase;
2743 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2744 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2745 iPTDst = 0;
2746 else
2747 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2748# else /* !PGM_SYNC_N_PAGES */
2749 unsigned iPTDst = 0;
2750 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2751# endif /* !PGM_SYNC_N_PAGES */
2752 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2753 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2754# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2755 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2756 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2757# else
2758 const unsigned offPTSrc = 0;
2759# endif
2760 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2761 {
2762 const unsigned iPTSrc = iPTDst + offPTSrc;
2763 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2764
2765 if (PteSrc.n.u1Present)
2766 {
2767# ifndef IN_RING0
2768 /*
2769 * Assuming kernel code will be marked as supervisor - and not as user level
2770 * and executed using a conforming code selector - And marked as readonly.
2771 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2772 */
2773 PPGMPAGE pPage;
2774 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2775 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2776 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc)))
2777 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2778 )
2779# endif
2780 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2781 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2782 GCPtrCur,
2783 PteSrc.n.u1Present,
2784 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2785 PteSrc.n.u1User & PdeSrc.n.u1User,
2786 (uint64_t)PteSrc.u,
2787 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2788 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2789 }
2790 /* else: the page table was cleared by the pool */
2791 } /* for PTEs */
2792 }
2793 }
2794 else
2795 {
2796 /*
2797 * Big page - 2/4MB.
2798 *
2799 * We'll walk the ram range list in parallel and optimize lookups.
2800 * We will only sync on shadow page table at a time.
2801 */
2802 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2803
2804 /**
2805 * @todo It might be more efficient to sync only a part of the 4MB
2806 * page (similar to what we do for 4KB PDs).
2807 */
2808
2809 /*
2810 * Start by syncing the page directory entry.
2811 */
2812 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2813 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2814
2815 /*
2816 * If the page is not flagged as dirty and is writable, then make it read-only
2817 * at PD level, so we can set the dirty bit when the page is modified.
2818 *
2819 * ASSUMES that page access handlers are implemented on page table entry level.
2820 * Thus we will first catch the dirty access and set PDE.D and restart. If
2821 * there is an access handler, we'll trap again and let it work on the problem.
2822 */
2823 /** @todo move the above stuff to a section in the PGM documentation. */
2824 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2825 if ( !PdeSrc.b.u1Dirty
2826 && PdeSrc.b.u1Write)
2827 {
2828 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2829 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2830 PdeDst.b.u1Write = 0;
2831 }
2832 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2833 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2834
2835 /*
2836 * Fill the shadow page table.
2837 */
2838 /* Get address and flags from the source PDE. */
2839 SHWPTE PteDstBase;
2840 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2841
2842 /* Loop thru the entries in the shadow PT. */
2843 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2844 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2845 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2846 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2847 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2848 unsigned iPTDst = 0;
2849 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2850 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2851 {
2852 /* Advance ram range list. */
2853 while (pRam && GCPhys > pRam->GCPhysLast)
2854 pRam = pRam->CTX_SUFF(pNext);
2855 if (pRam && GCPhys >= pRam->GCPhys)
2856 {
2857 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2858 do
2859 {
2860 /* Make shadow PTE. */
2861 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2862 SHWPTE PteDst;
2863
2864# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2865 /* Try to make the page writable if necessary. */
2866 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2867 && ( PGM_PAGE_IS_ZERO(pPage)
2868 || ( SHW_PTE_IS_RW(PteDstBase)
2869 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2870# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2871 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2872# endif
2873# ifdef VBOX_WITH_PAGE_SHARING
2874 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2875# endif
2876 && !PGM_PAGE_IS_BALLOONED(pPage))
2877 )
2878 )
2879 {
2880 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2881 AssertRCReturn(rc, rc);
2882 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2883 break;
2884 }
2885# endif
2886
2887 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2888 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2889 else if (PGM_PAGE_IS_BALLOONED(pPage))
2890 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2891# ifndef IN_RING0
2892 /*
2893 * Assuming kernel code will be marked as supervisor and not as user level and executed
2894 * using a conforming code selector. Don't check for readonly, as that implies the whole
2895 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2896 */
2897 else if ( !PdeSrc.n.u1User
2898 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2899 SHW_PTE_SET(PteDst, 0);
2900# endif
2901 else
2902 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2903
2904 /* Only map writable pages writable. */
2905 if ( SHW_PTE_IS_P_RW(PteDst)
2906 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2907 {
2908 /* Still applies to shared pages. */
2909 Assert(!PGM_PAGE_IS_ZERO(pPage));
2910 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2911 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2912 }
2913
2914 if (SHW_PTE_IS_P(PteDst))
2915 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2916
2917 /* commit it (not atomic, new table) */
2918 pPTDst->a[iPTDst] = PteDst;
2919 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2920 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2921 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2922
2923 /* advance */
2924 GCPhys += PAGE_SIZE;
2925 iHCPage++;
2926 iPTDst++;
2927 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2928 && GCPhys <= pRam->GCPhysLast);
2929 }
2930 else if (pRam)
2931 {
2932 Log(("Invalid pages at %RGp\n", GCPhys));
2933 do
2934 {
2935 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2936 GCPhys += PAGE_SIZE;
2937 iPTDst++;
2938 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2939 && GCPhys < pRam->GCPhys);
2940 }
2941 else
2942 {
2943 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2944 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2945 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2946 }
2947 } /* while more PTEs */
2948 } /* 4KB / 4MB */
2949 }
2950 else
2951 AssertRelease(!PdeDst.n.u1Present);
2952
2953 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2954 if (RT_FAILURE(rc))
2955 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2956 return rc;
2957
2958#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2959 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2960 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2961 && !defined(IN_RC)
2962
2963 /*
2964 * Validate input a little bit.
2965 */
2966 int rc = VINF_SUCCESS;
2967# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2968 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2969 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2970
2971 /* Fetch the pgm pool shadow descriptor. */
2972 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2973 Assert(pShwPde);
2974
2975# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2976 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2977 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2978 PX86PDPAE pPDDst;
2979 PSHWPDE pPdeDst;
2980
2981 /* Fetch the pgm pool shadow descriptor. */
2982 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2983 AssertRCSuccessReturn(rc, rc);
2984 Assert(pShwPde);
2985
2986 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2987 pPdeDst = &pPDDst->a[iPDDst];
2988
2989# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2990 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2991 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2992 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2993 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
2994 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2995 AssertRCSuccessReturn(rc, rc);
2996 Assert(pPDDst);
2997 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2998
2999 /* Fetch the pgm pool shadow descriptor. */
3000 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3001 Assert(pShwPde);
3002
3003# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3004 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3005 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3006 PEPTPD pPDDst;
3007 PEPTPDPT pPdptDst;
3008
3009 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3010 if (rc != VINF_SUCCESS)
3011 {
3012 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3013 AssertRC(rc);
3014 return rc;
3015 }
3016 Assert(pPDDst);
3017 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3018
3019 /* Fetch the pgm pool shadow descriptor. */
3020 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3021 Assert(pShwPde);
3022# endif
3023 SHWPDE PdeDst = *pPdeDst;
3024
3025 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3026 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3027
3028# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3029 if (BTH_IS_NP_ACTIVE(pVM))
3030 {
3031 PPGMPAGE pPage;
3032
3033 /* Check if we allocated a big page before for this 2 MB range. */
3034 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3035 if (RT_SUCCESS(rc))
3036 {
3037 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3038
3039 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3040 {
3041 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3042 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3043 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3044 }
3045 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3046 {
3047 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3048 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3049 if (RT_SUCCESS(rc))
3050 {
3051 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3052 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3053 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3054 }
3055 }
3056 else if (PGMIsUsingLargePages(pVM))
3057 {
3058 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3059 if (RT_SUCCESS(rc))
3060 {
3061 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3062 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3063 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3064 }
3065 else
3066 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3067 }
3068
3069 if (HCPhys != NIL_RTHCPHYS)
3070 {
3071 PdeDst.u &= X86_PDE_AVL_MASK;
3072 PdeDst.u |= HCPhys;
3073 PdeDst.n.u1Present = 1;
3074 PdeDst.n.u1Write = 1;
3075 PdeDst.b.u1Size = 1;
3076# if PGM_SHW_TYPE == PGM_TYPE_EPT
3077 PdeDst.n.u1Execute = 1;
3078 PdeDst.b.u1IgnorePAT = 1;
3079 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3080# else
3081 PdeDst.n.u1User = 1;
3082# endif
3083 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3084
3085 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3086 /* Add a reference to the first page only. */
3087 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3088
3089 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3090 return VINF_SUCCESS;
3091 }
3092 }
3093 }
3094# endif /* HC_ARCH_BITS == 64 */
3095
3096 GSTPDE PdeSrc;
3097 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3098 PdeSrc.n.u1Present = 1;
3099 PdeSrc.n.u1Write = 1;
3100 PdeSrc.n.u1Accessed = 1;
3101 PdeSrc.n.u1User = 1;
3102
3103 /*
3104 * Allocate & map the page table.
3105 */
3106 PSHWPT pPTDst;
3107 PPGMPOOLPAGE pShwPage;
3108 RTGCPHYS GCPhys;
3109
3110 /* Virtual address = physical address */
3111 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3112 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3113
3114 if ( rc == VINF_SUCCESS
3115 || rc == VINF_PGM_CACHED_PAGE)
3116 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3117 else
3118 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3119
3120 PdeDst.u &= X86_PDE_AVL_MASK;
3121 PdeDst.u |= pShwPage->Core.Key;
3122 PdeDst.n.u1Present = 1;
3123 PdeDst.n.u1Write = 1;
3124# if PGM_SHW_TYPE == PGM_TYPE_EPT
3125 PdeDst.n.u1Execute = 1;
3126# else
3127 PdeDst.n.u1User = 1;
3128 PdeDst.n.u1Accessed = 1;
3129# endif
3130 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3131
3132 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3133 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3134 return rc;
3135
3136#else
3137 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3138 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3139 return VERR_INTERNAL_ERROR;
3140#endif
3141}
3142
3143
3144
3145/**
3146 * Prefetch a page/set of pages.
3147 *
3148 * Typically used to sync commonly used pages before entering raw mode
3149 * after a CR3 reload.
3150 *
3151 * @returns VBox status code.
3152 * @param pVCpu The VMCPU handle.
3153 * @param GCPtrPage Page to invalidate.
3154 */
3155PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3156{
3157#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3158 || PGM_GST_TYPE == PGM_TYPE_REAL \
3159 || PGM_GST_TYPE == PGM_TYPE_PROT \
3160 || PGM_GST_TYPE == PGM_TYPE_PAE \
3161 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3162 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3163 && PGM_SHW_TYPE != PGM_TYPE_EPT
3164
3165 /*
3166 * Check that all Guest levels thru the PDE are present, getting the
3167 * PD and PDE in the processes.
3168 */
3169 int rc = VINF_SUCCESS;
3170# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3171# if PGM_GST_TYPE == PGM_TYPE_32BIT
3172 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3173 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3174# elif PGM_GST_TYPE == PGM_TYPE_PAE
3175 unsigned iPDSrc;
3176 X86PDPE PdpeSrc;
3177 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3178 if (!pPDSrc)
3179 return VINF_SUCCESS; /* not present */
3180# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3181 unsigned iPDSrc;
3182 PX86PML4E pPml4eSrc;
3183 X86PDPE PdpeSrc;
3184 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3185 if (!pPDSrc)
3186 return VINF_SUCCESS; /* not present */
3187# endif
3188 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3189# else
3190 PGSTPD pPDSrc = NULL;
3191 const unsigned iPDSrc = 0;
3192 GSTPDE PdeSrc;
3193
3194 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3195 PdeSrc.n.u1Present = 1;
3196 PdeSrc.n.u1Write = 1;
3197 PdeSrc.n.u1Accessed = 1;
3198 PdeSrc.n.u1User = 1;
3199# endif
3200
3201 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3202 {
3203 PVM pVM = pVCpu->CTX_SUFF(pVM);
3204 pgmLock(pVM);
3205
3206# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3207 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3208# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3209 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3210 PX86PDPAE pPDDst;
3211 X86PDEPAE PdeDst;
3212# if PGM_GST_TYPE != PGM_TYPE_PAE
3213 X86PDPE PdpeSrc;
3214
3215 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3216 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3217# endif
3218 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3219 if (rc != VINF_SUCCESS)
3220 {
3221 pgmUnlock(pVM);
3222 AssertRC(rc);
3223 return rc;
3224 }
3225 Assert(pPDDst);
3226 PdeDst = pPDDst->a[iPDDst];
3227
3228# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3229 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3230 PX86PDPAE pPDDst;
3231 X86PDEPAE PdeDst;
3232
3233# if PGM_GST_TYPE == PGM_TYPE_PROT
3234 /* AMD-V nested paging */
3235 X86PML4E Pml4eSrc;
3236 X86PDPE PdpeSrc;
3237 PX86PML4E pPml4eSrc = &Pml4eSrc;
3238
3239 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3240 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3241 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3242# endif
3243
3244 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3245 if (rc != VINF_SUCCESS)
3246 {
3247 pgmUnlock(pVM);
3248 AssertRC(rc);
3249 return rc;
3250 }
3251 Assert(pPDDst);
3252 PdeDst = pPDDst->a[iPDDst];
3253# endif
3254 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3255 {
3256 if (!PdeDst.n.u1Present)
3257 {
3258 /** @todo r=bird: This guy will set the A bit on the PDE,
3259 * probably harmless. */
3260 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3261 }
3262 else
3263 {
3264 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3265 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3266 * makes no sense to prefetch more than one page.
3267 */
3268 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3269 if (RT_SUCCESS(rc))
3270 rc = VINF_SUCCESS;
3271 }
3272 }
3273 pgmUnlock(pVM);
3274 }
3275 return rc;
3276
3277#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3278 return VINF_SUCCESS; /* ignore */
3279#else
3280 AssertCompile(0);
3281#endif
3282}
3283
3284
3285
3286
3287/**
3288 * Syncs a page during a PGMVerifyAccess() call.
3289 *
3290 * @returns VBox status code (informational included).
3291 * @param pVCpu The VMCPU handle.
3292 * @param GCPtrPage The address of the page to sync.
3293 * @param fPage The effective guest page flags.
3294 * @param uErr The trap error code.
3295 * @remarks This will normally never be called on invalid guest page
3296 * translation entries.
3297 */
3298PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3299{
3300 PVM pVM = pVCpu->CTX_SUFF(pVM);
3301
3302 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3303
3304 Assert(!pVM->pgm.s.fNestedPaging);
3305#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3306 || PGM_GST_TYPE == PGM_TYPE_REAL \
3307 || PGM_GST_TYPE == PGM_TYPE_PROT \
3308 || PGM_GST_TYPE == PGM_TYPE_PAE \
3309 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3310 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3311 && PGM_SHW_TYPE != PGM_TYPE_EPT
3312
3313# ifndef IN_RING0
3314 if (!(fPage & X86_PTE_US))
3315 {
3316 /*
3317 * Mark this page as safe.
3318 */
3319 /** @todo not correct for pages that contain both code and data!! */
3320 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3321 CSAMMarkPage(pVM, GCPtrPage, true);
3322 }
3323# endif
3324
3325 /*
3326 * Get guest PD and index.
3327 */
3328 /** @todo Performance: We've done all this a jiffy ago in the
3329 * PGMGstGetPage call. */
3330# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3331# if PGM_GST_TYPE == PGM_TYPE_32BIT
3332 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3333 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3334
3335# elif PGM_GST_TYPE == PGM_TYPE_PAE
3336 unsigned iPDSrc = 0;
3337 X86PDPE PdpeSrc;
3338 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3339 if (RT_UNLIKELY(!pPDSrc))
3340 {
3341 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3342 return VINF_EM_RAW_GUEST_TRAP;
3343 }
3344
3345# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3346 unsigned iPDSrc = 0; /* shut up gcc */
3347 PX86PML4E pPml4eSrc = NULL; /* ditto */
3348 X86PDPE PdpeSrc;
3349 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3350 if (RT_UNLIKELY(!pPDSrc))
3351 {
3352 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3353 return VINF_EM_RAW_GUEST_TRAP;
3354 }
3355# endif
3356
3357# else /* !PGM_WITH_PAGING */
3358 PGSTPD pPDSrc = NULL;
3359 const unsigned iPDSrc = 0;
3360# endif /* !PGM_WITH_PAGING */
3361 int rc = VINF_SUCCESS;
3362
3363 pgmLock(pVM);
3364
3365 /*
3366 * First check if the shadow pd is present.
3367 */
3368# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3369 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3370
3371# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3372 PX86PDEPAE pPdeDst;
3373 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3374 PX86PDPAE pPDDst;
3375# if PGM_GST_TYPE != PGM_TYPE_PAE
3376 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3377 X86PDPE PdpeSrc;
3378 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3379# endif
3380 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3381 if (rc != VINF_SUCCESS)
3382 {
3383 pgmUnlock(pVM);
3384 AssertRC(rc);
3385 return rc;
3386 }
3387 Assert(pPDDst);
3388 pPdeDst = &pPDDst->a[iPDDst];
3389
3390# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3391 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3392 PX86PDPAE pPDDst;
3393 PX86PDEPAE pPdeDst;
3394
3395# if PGM_GST_TYPE == PGM_TYPE_PROT
3396 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3397 X86PML4E Pml4eSrc;
3398 X86PDPE PdpeSrc;
3399 PX86PML4E pPml4eSrc = &Pml4eSrc;
3400 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3401 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3402# endif
3403
3404 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3405 if (rc != VINF_SUCCESS)
3406 {
3407 pgmUnlock(pVM);
3408 AssertRC(rc);
3409 return rc;
3410 }
3411 Assert(pPDDst);
3412 pPdeDst = &pPDDst->a[iPDDst];
3413# endif
3414
3415 if (!pPdeDst->n.u1Present)
3416 {
3417 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3418 if (rc != VINF_SUCCESS)
3419 {
3420 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3421 pgmUnlock(pVM);
3422 AssertRC(rc);
3423 return rc;
3424 }
3425 }
3426
3427# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3428 /* Check for dirty bit fault */
3429 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3430 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3431 Log(("PGMVerifyAccess: success (dirty)\n"));
3432 else
3433# endif
3434 {
3435# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3436 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3437# else
3438 GSTPDE PdeSrc;
3439 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3440 PdeSrc.n.u1Present = 1;
3441 PdeSrc.n.u1Write = 1;
3442 PdeSrc.n.u1Accessed = 1;
3443 PdeSrc.n.u1User = 1;
3444# endif
3445
3446 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3447 if (uErr & X86_TRAP_PF_US)
3448 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3449 else /* supervisor */
3450 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3451
3452 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3453 if (RT_SUCCESS(rc))
3454 {
3455 /* Page was successfully synced */
3456 Log2(("PGMVerifyAccess: success (sync)\n"));
3457 rc = VINF_SUCCESS;
3458 }
3459 else
3460 {
3461 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3462 rc = VINF_EM_RAW_GUEST_TRAP;
3463 }
3464 }
3465 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3466 pgmUnlock(pVM);
3467 return rc;
3468
3469#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3470
3471 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3472 return VERR_INTERNAL_ERROR;
3473#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3474}
3475
3476
3477/**
3478 * Syncs the paging hierarchy starting at CR3.
3479 *
3480 * @returns VBox status code, no specials.
3481 * @param pVCpu The VMCPU handle.
3482 * @param cr0 Guest context CR0 register
3483 * @param cr3 Guest context CR3 register
3484 * @param cr4 Guest context CR4 register
3485 * @param fGlobal Including global page directories or not
3486 */
3487PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3488{
3489 PVM pVM = pVCpu->CTX_SUFF(pVM);
3490
3491 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3492
3493#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3494
3495 pgmLock(pVM);
3496
3497# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3498 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3499 if (pPool->cDirtyPages)
3500 pgmPoolResetDirtyPages(pVM);
3501# endif
3502
3503 /*
3504 * Update page access handlers.
3505 * The virtual are always flushed, while the physical are only on demand.
3506 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3507 * have to look into that later because it will have a bad influence on the performance.
3508 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3509 * bird: Yes, but that won't work for aliases.
3510 */
3511 /** @todo this MUST go away. See #1557. */
3512 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3513 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3514 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3515 pgmUnlock(pVM);
3516#endif /* !NESTED && !EPT */
3517
3518#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3519 /*
3520 * Nested / EPT - almost no work.
3521 */
3522 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3523 return VINF_SUCCESS;
3524
3525#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3526 /*
3527 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3528 * out the shadow parts when the guest modifies its tables.
3529 */
3530 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3531 return VINF_SUCCESS;
3532
3533#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3534
3535# ifndef PGM_WITHOUT_MAPPINGS
3536 /*
3537 * Check for and resolve conflicts with our guest mappings if they
3538 * are enabled and not fixed.
3539 */
3540 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3541 {
3542 int rc = pgmMapResolveConflicts(pVM);
3543 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3544 if (rc == VINF_PGM_SYNC_CR3)
3545 {
3546 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3547 return VINF_PGM_SYNC_CR3;
3548 }
3549 }
3550# else
3551 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3552# endif
3553 return VINF_SUCCESS;
3554#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3555}
3556
3557
3558
3559
3560#ifdef VBOX_STRICT
3561# ifdef IN_RC
3562# undef AssertMsgFailed
3563# define AssertMsgFailed Log
3564# endif
3565
3566/**
3567 * Checks that the shadow page table is in sync with the guest one.
3568 *
3569 * @returns The number of errors.
3570 * @param pVM The virtual machine.
3571 * @param pVCpu The VMCPU handle.
3572 * @param cr3 Guest context CR3 register
3573 * @param cr4 Guest context CR4 register
3574 * @param GCPtr Where to start. Defaults to 0.
3575 * @param cb How much to check. Defaults to everything.
3576 */
3577PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3578{
3579#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3580 return 0;
3581#else
3582 unsigned cErrors = 0;
3583 PVM pVM = pVCpu->CTX_SUFF(pVM);
3584 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3585
3586#if PGM_GST_TYPE == PGM_TYPE_PAE
3587 /** @todo currently broken; crashes below somewhere */
3588 AssertFailed();
3589#endif
3590
3591#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3592 || PGM_GST_TYPE == PGM_TYPE_PAE \
3593 || PGM_GST_TYPE == PGM_TYPE_AMD64
3594
3595 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3596 PPGMCPU pPGM = &pVCpu->pgm.s;
3597 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3598 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3599# ifndef IN_RING0
3600 RTHCPHYS HCPhys; /* general usage. */
3601# endif
3602 int rc;
3603
3604 /*
3605 * Check that the Guest CR3 and all its mappings are correct.
3606 */
3607 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3608 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3609 false);
3610# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3611# if PGM_GST_TYPE == PGM_TYPE_32BIT
3612 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3613# else
3614 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3615# endif
3616 AssertRCReturn(rc, 1);
3617 HCPhys = NIL_RTHCPHYS;
3618 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3619 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3620# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3621 pgmGstGet32bitPDPtr(pVCpu);
3622 RTGCPHYS GCPhys;
3623 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3624 AssertRCReturn(rc, 1);
3625 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3626# endif
3627# endif /* !IN_RING0 */
3628
3629 /*
3630 * Get and check the Shadow CR3.
3631 */
3632# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3633 unsigned cPDEs = X86_PG_ENTRIES;
3634 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3635# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3636# if PGM_GST_TYPE == PGM_TYPE_32BIT
3637 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3638# else
3639 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3640# endif
3641 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3642# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3643 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3644 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3645# endif
3646 if (cb != ~(RTGCPTR)0)
3647 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3648
3649/** @todo call the other two PGMAssert*() functions. */
3650
3651# if PGM_GST_TYPE == PGM_TYPE_AMD64
3652 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3653
3654 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3655 {
3656 PPGMPOOLPAGE pShwPdpt = NULL;
3657 PX86PML4E pPml4eSrc;
3658 PX86PML4E pPml4eDst;
3659 RTGCPHYS GCPhysPdptSrc;
3660
3661 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3662 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3663
3664 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3665 if (!pPml4eDst->n.u1Present)
3666 {
3667 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3668 continue;
3669 }
3670
3671 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3672 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK;
3673
3674 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3675 {
3676 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3677 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3678 cErrors++;
3679 continue;
3680 }
3681
3682 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3683 {
3684 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3685 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3686 cErrors++;
3687 continue;
3688 }
3689
3690 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3691 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3692 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3693 {
3694 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3695 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3696 cErrors++;
3697 continue;
3698 }
3699# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3700 {
3701# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3702
3703# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3704 /*
3705 * Check the PDPTEs too.
3706 */
3707 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3708
3709 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3710 {
3711 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3712 PPGMPOOLPAGE pShwPde = NULL;
3713 PX86PDPE pPdpeDst;
3714 RTGCPHYS GCPhysPdeSrc;
3715# if PGM_GST_TYPE == PGM_TYPE_PAE
3716 X86PDPE PdpeSrc;
3717 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3718 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3719# else
3720 PX86PML4E pPml4eSrcIgn;
3721 X86PDPE PdpeSrc;
3722 PX86PDPT pPdptDst;
3723 PX86PDPAE pPDDst;
3724 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3725
3726 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3727 if (rc != VINF_SUCCESS)
3728 {
3729 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3730 GCPtr += 512 * _2M;
3731 continue; /* next PDPTE */
3732 }
3733 Assert(pPDDst);
3734# endif
3735 Assert(iPDSrc == 0);
3736
3737 pPdpeDst = &pPdptDst->a[iPdpt];
3738
3739 if (!pPdpeDst->n.u1Present)
3740 {
3741 GCPtr += 512 * _2M;
3742 continue; /* next PDPTE */
3743 }
3744
3745 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3746 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3747
3748 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3749 {
3750 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3751 GCPtr += 512 * _2M;
3752 cErrors++;
3753 continue;
3754 }
3755
3756 if (GCPhysPdeSrc != pShwPde->GCPhys)
3757 {
3758# if PGM_GST_TYPE == PGM_TYPE_AMD64
3759 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3760# else
3761 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3762# endif
3763 GCPtr += 512 * _2M;
3764 cErrors++;
3765 continue;
3766 }
3767
3768# if PGM_GST_TYPE == PGM_TYPE_AMD64
3769 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3770 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3771 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3772 {
3773 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3774 GCPtr += 512 * _2M;
3775 cErrors++;
3776 continue;
3777 }
3778# endif
3779
3780# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3781 {
3782# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3783# if PGM_GST_TYPE == PGM_TYPE_32BIT
3784 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3785# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3786 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3787# endif
3788# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3789 /*
3790 * Iterate the shadow page directory.
3791 */
3792 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3793 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3794
3795 for (;
3796 iPDDst < cPDEs;
3797 iPDDst++, GCPtr += cIncrement)
3798 {
3799# if PGM_SHW_TYPE == PGM_TYPE_PAE
3800 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3801# else
3802 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3803# endif
3804 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3805 {
3806 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3807 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3808 {
3809 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3810 cErrors++;
3811 continue;
3812 }
3813 }
3814 else if ( (PdeDst.u & X86_PDE_P)
3815 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3816 )
3817 {
3818 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3819 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3820 if (!pPoolPage)
3821 {
3822 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3823 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3824 cErrors++;
3825 continue;
3826 }
3827 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3828
3829 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3830 {
3831 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3832 GCPtr, (uint64_t)PdeDst.u));
3833 cErrors++;
3834 }
3835
3836 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3837 {
3838 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3839 GCPtr, (uint64_t)PdeDst.u));
3840 cErrors++;
3841 }
3842
3843 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3844 if (!PdeSrc.n.u1Present)
3845 {
3846 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3847 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3848 cErrors++;
3849 continue;
3850 }
3851
3852 if ( !PdeSrc.b.u1Size
3853 || !fBigPagesSupported)
3854 {
3855 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3856# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3857 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3858# endif
3859 }
3860 else
3861 {
3862# if PGM_GST_TYPE == PGM_TYPE_32BIT
3863 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3864 {
3865 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3866 GCPtr, (uint64_t)PdeSrc.u));
3867 cErrors++;
3868 continue;
3869 }
3870# endif
3871 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3872# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3873 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3874# endif
3875 }
3876
3877 if ( pPoolPage->enmKind
3878 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3879 {
3880 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3881 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3882 cErrors++;
3883 }
3884
3885 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3886 if (!pPhysPage)
3887 {
3888 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3889 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3890 cErrors++;
3891 continue;
3892 }
3893
3894 if (GCPhysGst != pPoolPage->GCPhys)
3895 {
3896 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3897 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3898 cErrors++;
3899 continue;
3900 }
3901
3902 if ( !PdeSrc.b.u1Size
3903 || !fBigPagesSupported)
3904 {
3905 /*
3906 * Page Table.
3907 */
3908 const GSTPT *pPTSrc;
3909 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3910 if (RT_FAILURE(rc))
3911 {
3912 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3913 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3914 cErrors++;
3915 continue;
3916 }
3917 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3918 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3919 {
3920 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3921 // (This problem will go away when/if we shadow multiple CR3s.)
3922 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3923 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3924 cErrors++;
3925 continue;
3926 }
3927 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3928 {
3929 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3930 GCPtr, (uint64_t)PdeDst.u));
3931 cErrors++;
3932 continue;
3933 }
3934
3935 /* iterate the page table. */
3936# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3937 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3938 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3939# else
3940 const unsigned offPTSrc = 0;
3941# endif
3942 for (unsigned iPT = 0, off = 0;
3943 iPT < RT_ELEMENTS(pPTDst->a);
3944 iPT++, off += PAGE_SIZE)
3945 {
3946 const SHWPTE PteDst = pPTDst->a[iPT];
3947
3948 /* skip not-present and dirty tracked entries. */
3949 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3950 continue;
3951 Assert(SHW_PTE_IS_P(PteDst));
3952
3953 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3954 if (!PteSrc.n.u1Present)
3955 {
3956# ifdef IN_RING3
3957 PGMAssertHandlerAndFlagsInSync(pVM);
3958 DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3959 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3960 0, 0, UINT64_MAX, 99, NULL);
3961# endif
3962 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3963 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3964 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
3965 cErrors++;
3966 continue;
3967 }
3968
3969 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3970# if 1 /** @todo sync accessed bit properly... */
3971 fIgnoreFlags |= X86_PTE_A;
3972# endif
3973
3974 /* match the physical addresses */
3975 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3976 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
3977
3978# ifdef IN_RING3
3979 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3980 if (RT_FAILURE(rc))
3981 {
3982 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
3983 {
3984 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
3985 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3986 cErrors++;
3987 continue;
3988 }
3989 }
3990 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
3991 {
3992 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
3993 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
3994 cErrors++;
3995 continue;
3996 }
3997# endif
3998
3999 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4000 if (!pPhysPage)
4001 {
4002# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4003 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4004 {
4005 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4006 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4007 cErrors++;
4008 continue;
4009 }
4010# endif
4011 if (SHW_PTE_IS_RW(PteDst))
4012 {
4013 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4014 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4015 cErrors++;
4016 }
4017 fIgnoreFlags |= X86_PTE_RW;
4018 }
4019 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4020 {
4021 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4022 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4023 cErrors++;
4024 continue;
4025 }
4026
4027 /* flags */
4028 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4029 {
4030 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4031 {
4032 if (SHW_PTE_IS_RW(PteDst))
4033 {
4034 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4035 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4036 cErrors++;
4037 continue;
4038 }
4039 fIgnoreFlags |= X86_PTE_RW;
4040 }
4041 else
4042 {
4043 if ( SHW_PTE_IS_P(PteDst)
4044# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4045 && !PGM_PAGE_IS_MMIO(pPhysPage)
4046# endif
4047 )
4048 {
4049 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4050 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4051 cErrors++;
4052 continue;
4053 }
4054 fIgnoreFlags |= X86_PTE_P;
4055 }
4056 }
4057 else
4058 {
4059 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4060 {
4061 if (SHW_PTE_IS_RW(PteDst))
4062 {
4063 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4064 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4065 cErrors++;
4066 continue;
4067 }
4068 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4069 {
4070 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4071 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4072 cErrors++;
4073 continue;
4074 }
4075 if (SHW_PTE_IS_D(PteDst))
4076 {
4077 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4078 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4079 cErrors++;
4080 }
4081# if 0 /** @todo sync access bit properly... */
4082 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4083 {
4084 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4085 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4086 cErrors++;
4087 }
4088 fIgnoreFlags |= X86_PTE_RW;
4089# else
4090 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4091# endif
4092 }
4093 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4094 {
4095 /* access bit emulation (not implemented). */
4096 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4097 {
4098 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4099 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4100 cErrors++;
4101 continue;
4102 }
4103 if (!SHW_PTE_IS_A(PteDst))
4104 {
4105 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4106 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4107 cErrors++;
4108 }
4109 fIgnoreFlags |= X86_PTE_P;
4110 }
4111# ifdef DEBUG_sandervl
4112 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4113# endif
4114 }
4115
4116 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4117 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4118 )
4119 {
4120 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4121 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4122 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4123 cErrors++;
4124 continue;
4125 }
4126 } /* foreach PTE */
4127 }
4128 else
4129 {
4130 /*
4131 * Big Page.
4132 */
4133 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4134 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4135 {
4136 if (PdeDst.n.u1Write)
4137 {
4138 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4139 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4140 cErrors++;
4141 continue;
4142 }
4143 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4144 {
4145 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4146 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4147 cErrors++;
4148 continue;
4149 }
4150# if 0 /** @todo sync access bit properly... */
4151 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4152 {
4153 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4154 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4155 cErrors++;
4156 }
4157 fIgnoreFlags |= X86_PTE_RW;
4158# else
4159 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4160# endif
4161 }
4162 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4163 {
4164 /* access bit emulation (not implemented). */
4165 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4166 {
4167 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4168 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4169 cErrors++;
4170 continue;
4171 }
4172 if (!PdeDst.n.u1Accessed)
4173 {
4174 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4175 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4176 cErrors++;
4177 }
4178 fIgnoreFlags |= X86_PTE_P;
4179 }
4180
4181 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4182 {
4183 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4184 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4185 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4186 cErrors++;
4187 }
4188
4189 /* iterate the page table. */
4190 for (unsigned iPT = 0, off = 0;
4191 iPT < RT_ELEMENTS(pPTDst->a);
4192 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4193 {
4194 const SHWPTE PteDst = pPTDst->a[iPT];
4195
4196 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4197 {
4198 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4199 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4200 cErrors++;
4201 }
4202
4203 /* skip not-present entries. */
4204 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4205 continue;
4206
4207 fIgnoreFlags = X86_PTE_PAE_PG_MASK_FULL | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4208
4209 /* match the physical addresses */
4210 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4211
4212# ifdef IN_RING3
4213 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4214 if (RT_FAILURE(rc))
4215 {
4216 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4217 {
4218 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4219 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4220 cErrors++;
4221 }
4222 }
4223 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4224 {
4225 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4226 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4227 cErrors++;
4228 continue;
4229 }
4230# endif
4231 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4232 if (!pPhysPage)
4233 {
4234# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4235 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4236 {
4237 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4238 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4239 cErrors++;
4240 continue;
4241 }
4242# endif
4243 if (SHW_PTE_IS_RW(PteDst))
4244 {
4245 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4246 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4247 cErrors++;
4248 }
4249 fIgnoreFlags |= X86_PTE_RW;
4250 }
4251 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4252 {
4253 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4254 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4255 cErrors++;
4256 continue;
4257 }
4258
4259 /* flags */
4260 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4261 {
4262 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4263 {
4264 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4265 {
4266 if (SHW_PTE_IS_RW(PteDst))
4267 {
4268 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4269 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4270 cErrors++;
4271 continue;
4272 }
4273 fIgnoreFlags |= X86_PTE_RW;
4274 }
4275 }
4276 else
4277 {
4278 if ( SHW_PTE_IS_P(PteDst)
4279# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4280 && !PGM_PAGE_IS_MMIO(pPhysPage)
4281# endif
4282 )
4283 {
4284 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4285 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4286 cErrors++;
4287 continue;
4288 }
4289 fIgnoreFlags |= X86_PTE_P;
4290 }
4291 }
4292
4293 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4294 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4295 )
4296 {
4297 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4298 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4299 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4300 cErrors++;
4301 continue;
4302 }
4303 } /* for each PTE */
4304 }
4305 }
4306 /* not present */
4307
4308 } /* for each PDE */
4309
4310 } /* for each PDPTE */
4311
4312 } /* for each PML4E */
4313
4314# ifdef DEBUG
4315 if (cErrors)
4316 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4317# endif
4318
4319#endif /* GST == 32BIT, PAE or AMD64 */
4320 return cErrors;
4321
4322#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4323}
4324#endif /* VBOX_STRICT */
4325
4326
4327/**
4328 * Sets up the CR3 for shadow paging
4329 *
4330 * @returns Strict VBox status code.
4331 * @retval VINF_SUCCESS.
4332 *
4333 * @param pVCpu The VMCPU handle.
4334 * @param GCPhysCR3 The physical address in the CR3 register.
4335 */
4336PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4337{
4338 PVM pVM = pVCpu->CTX_SUFF(pVM);
4339
4340 /* Update guest paging info. */
4341#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4342 || PGM_GST_TYPE == PGM_TYPE_PAE \
4343 || PGM_GST_TYPE == PGM_TYPE_AMD64
4344
4345 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4346
4347 /*
4348 * Map the page CR3 points at.
4349 */
4350 RTHCPTR HCPtrGuestCR3;
4351 RTHCPHYS HCPhysGuestCR3;
4352 pgmLock(pVM);
4353 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4354 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4355 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4356 /** @todo this needs some reworking wrt. locking? */
4357# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4358 HCPtrGuestCR3 = NIL_RTHCPTR;
4359 int rc = VINF_SUCCESS;
4360# else
4361 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4362# endif
4363 pgmUnlock(pVM);
4364 if (RT_SUCCESS(rc))
4365 {
4366 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4367 if (RT_SUCCESS(rc))
4368 {
4369# ifdef IN_RC
4370 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4371# endif
4372# if PGM_GST_TYPE == PGM_TYPE_32BIT
4373 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4374# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4375 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4376# endif
4377 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4378
4379# elif PGM_GST_TYPE == PGM_TYPE_PAE
4380 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4381 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4382# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4383 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4384# endif
4385 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4386 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4387
4388 /*
4389 * Map the 4 PDs too.
4390 */
4391 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4392 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4393 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4394 {
4395 if (pGuestPDPT->a[i].n.u1Present)
4396 {
4397 RTHCPTR HCPtr;
4398 RTHCPHYS HCPhys;
4399 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4400 pgmLock(pVM);
4401 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4402 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4403 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4404# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4405 HCPtr = NIL_RTHCPTR;
4406 int rc2 = VINF_SUCCESS;
4407# else
4408 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4409# endif
4410 pgmUnlock(pVM);
4411 if (RT_SUCCESS(rc2))
4412 {
4413 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4414 AssertRCReturn(rc, rc);
4415
4416 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4417# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4418 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4419# endif
4420 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4421 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4422# ifdef IN_RC
4423 PGM_INVL_PG(pVCpu, GCPtr);
4424# endif
4425 continue;
4426 }
4427 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4428 }
4429
4430 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4431# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4432 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4433# endif
4434 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4435 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4436# ifdef IN_RC
4437 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4438# endif
4439 }
4440
4441# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4442 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4443# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4444 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4445# endif
4446# endif
4447 }
4448 else
4449 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4450 }
4451 else
4452 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4453
4454#else /* prot/real stub */
4455 int rc = VINF_SUCCESS;
4456#endif
4457
4458 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4459# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4460 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4461 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4462 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4463 && PGM_GST_TYPE != PGM_TYPE_PROT))
4464
4465 Assert(!pVM->pgm.s.fNestedPaging);
4466
4467 /*
4468 * Update the shadow root page as well since that's not fixed.
4469 */
4470 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4471 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4472 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4473 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4474 PPGMPOOLPAGE pNewShwPageCR3;
4475
4476 pgmLock(pVM);
4477
4478# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4479 if (pPool->cDirtyPages)
4480 pgmPoolResetDirtyPages(pVM);
4481# endif
4482
4483 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4484 rc = pgmPoolAllocEx(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, SHW_POOL_ROOT_IDX,
4485 GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/, &pNewShwPageCR3);
4486 AssertFatalRC(rc);
4487 rc = VINF_SUCCESS;
4488
4489# ifdef IN_RC
4490 /*
4491 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4492 * state will be inconsistent! Flush important things now while
4493 * we still can and then make sure there are no ring-3 calls.
4494 */
4495 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4496 VMMRZCallRing3Disable(pVCpu);
4497# endif
4498
4499 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4500 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4501 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4502# ifdef IN_RING0
4503 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4504 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4505# elif defined(IN_RC)
4506 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4507 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4508# else
4509 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4510 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4511# endif
4512
4513# ifndef PGM_WITHOUT_MAPPINGS
4514 /*
4515 * Apply all hypervisor mappings to the new CR3.
4516 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4517 * make sure we check for conflicts in the new CR3 root.
4518 */
4519# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4520 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4521# endif
4522 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4523 AssertRCReturn(rc, rc);
4524# endif
4525
4526 /* Set the current hypervisor CR3. */
4527 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4528 SELMShadowCR3Changed(pVM, pVCpu);
4529
4530# ifdef IN_RC
4531 /* NOTE: The state is consistent again. */
4532 VMMRZCallRing3Enable(pVCpu);
4533# endif
4534
4535 /* Clean up the old CR3 root. */
4536 if ( pOldShwPageCR3
4537 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4538 {
4539 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4540# ifndef PGM_WITHOUT_MAPPINGS
4541 /* Remove the hypervisor mappings from the shadow page table. */
4542 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4543# endif
4544 /* Mark the page as unlocked; allow flushing again. */
4545 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4546
4547 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4548 }
4549 pgmUnlock(pVM);
4550# endif
4551
4552 return rc;
4553}
4554
4555/**
4556 * Unmaps the shadow CR3.
4557 *
4558 * @returns VBox status, no specials.
4559 * @param pVCpu The VMCPU handle.
4560 */
4561PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4562{
4563 LogFlow(("UnmapCR3\n"));
4564
4565 int rc = VINF_SUCCESS;
4566 PVM pVM = pVCpu->CTX_SUFF(pVM);
4567
4568 /*
4569 * Update guest paging info.
4570 */
4571#if PGM_GST_TYPE == PGM_TYPE_32BIT
4572 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4573# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4574 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4575# endif
4576 pVCpu->pgm.s.pGst32BitPdRC = 0;
4577
4578#elif PGM_GST_TYPE == PGM_TYPE_PAE
4579 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4580# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4581 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4582# endif
4583 pVCpu->pgm.s.pGstPaePdptRC = 0;
4584 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4585 {
4586 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4587# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4588 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4589# endif
4590 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4591 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4592 }
4593
4594#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4595 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4596# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4597 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4598# endif
4599
4600#else /* prot/real mode stub */
4601 /* nothing to do */
4602#endif
4603
4604#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4605 /*
4606 * Update shadow paging info.
4607 */
4608# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4609 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4610 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4611
4612# if PGM_GST_TYPE != PGM_TYPE_REAL
4613 Assert(!pVM->pgm.s.fNestedPaging);
4614# endif
4615
4616 pgmLock(pVM);
4617
4618# ifndef PGM_WITHOUT_MAPPINGS
4619 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4620 /* Remove the hypervisor mappings from the shadow page table. */
4621 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4622# endif
4623
4624 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4625 {
4626 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4627
4628 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4629
4630# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4631 if (pPool->cDirtyPages)
4632 pgmPoolResetDirtyPages(pVM);
4633# endif
4634
4635 /* Mark the page as unlocked; allow flushing again. */
4636 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4637
4638 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4639 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4640 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4641 pVCpu->pgm.s.pShwPageCR3RC = 0;
4642 pVCpu->pgm.s.iShwUser = 0;
4643 pVCpu->pgm.s.iShwUserTable = 0;
4644 }
4645 pgmUnlock(pVM);
4646# endif
4647#endif /* !IN_RC*/
4648
4649 return rc;
4650}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette