VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 32362

Last change on this file since 32362 was 32362, checked in by vboxsync, 14 years ago

Some cleanup

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 200.2 KB
Line 
1/* $Id: PGMAllBth.h 32362 2010-09-09 15:55:20Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
122 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
123 return VINF_EM_RAW_GUEST_TRAP;
124}
125# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
126
127
128/**
129 * Deal with a guest page fault.
130 *
131 * The caller has taken the PGM lock.
132 *
133 * @returns Strict VBox status code.
134 *
135 * @param pVCpu The current CPU.
136 * @param uErr The error code.
137 * @param pRegFrame The register frame.
138 * @param pvFault The fault address.
139 * @param pPage The guest page at @a pvFault.
140 * @param pGstWalk The guest page table walk result.
141 * @param pfLockTaken PGM lock taken here or not (out). This is true
142 * when we're called.
143 */
144static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
145 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
146# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 , PGSTPTWALK pGstWalk
148# endif
149 )
150{
151# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
153#endif
154 PVM pVM = pVCpu->CTX_SUFF(pVM);
155 int rc;
156
157 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
158 {
159 /*
160 * Physical page access handler.
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
164# else
165 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
166# endif
167 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
168 if (pCur)
169 {
170# ifdef PGM_SYNC_N_PAGES
171 /*
172 * If the region is write protected and we got a page not present fault, then sync
173 * the pages. If the fault was caused by a read, then restart the instruction.
174 * In case of write access continue to the GC write handler.
175 *
176 * ASSUMES that there is only one handler per page or that they have similar write properties.
177 */
178 if ( !(uErr & X86_TRAP_PF_P)
179 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
180 {
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
183# else
184 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
185# endif
186 if ( RT_FAILURE(rc)
187 || !(uErr & X86_TRAP_PF_RW)
188 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
189 {
190 AssertRC(rc);
191 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
192 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
193 return rc;
194 }
195 }
196# endif
197# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
198 /*
199 * If the access was not thru a #PF(RSVD|...) resync the page.
200 */
201 if ( !(uErr & X86_TRAP_PF_RSVD)
202 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
203# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
204 && pGstWalk->Core.fEffectiveRW
205 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
206# endif
207 )
208 {
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
211# else
212 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
213# endif
214 if ( RT_FAILURE(rc)
215 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
216 {
217 AssertRC(rc);
218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
219 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
220 return rc;
221 }
222 }
223# endif
224
225 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
226 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
227 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
228 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
229 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
231 else
232 {
233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
234 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
235 }
236
237 if (pCur->CTX_SUFF(pfnHandler))
238 {
239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
240 void *pvUser = pCur->CTX_SUFF(pvUser);
241# ifdef IN_RING0
242 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
243# else
244 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
245# endif
246
247 STAM_PROFILE_START(&pCur->Stat, h);
248 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
249 {
250 pgmUnlock(pVM);
251 *pfLockTaken = false;
252 }
253
254 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
255
256# ifdef VBOX_WITH_STATISTICS
257 pgmLock(pVM);
258 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
259 if (pCur)
260 STAM_PROFILE_STOP(&pCur->Stat, h);
261 pgmUnlock(pVM);
262# endif
263 }
264 else
265 rc = VINF_EM_RAW_EMULATE_INSTR;
266
267 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
268 return rc;
269 }
270 }
271# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
272 else
273 {
274# ifdef PGM_SYNC_N_PAGES
275 /*
276 * If the region is write protected and we got a page not present fault, then sync
277 * the pages. If the fault was caused by a read, then restart the instruction.
278 * In case of write access continue to the GC write handler.
279 */
280 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
281 && !(uErr & X86_TRAP_PF_P))
282 {
283 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
284 if ( RT_FAILURE(rc)
285 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
286 || !(uErr & X86_TRAP_PF_RW))
287 {
288 AssertRC(rc);
289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
291 return rc;
292 }
293 }
294# endif
295 /*
296 * Ok, it's an virtual page access handler.
297 *
298 * Since it's faster to search by address, we'll do that first
299 * and then retry by GCPhys if that fails.
300 */
301 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
302 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
303 * out of sync, because the page was changed without us noticing it (not-present -> present
304 * without invlpg or mov cr3, xxx).
305 */
306 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
307 if (pCur)
308 {
309 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
310 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
311 || !(uErr & X86_TRAP_PF_P)
312 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
313 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
314 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
315
316 if ( pvFault - pCur->Core.Key < pCur->cb
317 && ( uErr & X86_TRAP_PF_RW
318 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
319 {
320# ifdef IN_RC
321 STAM_PROFILE_START(&pCur->Stat, h);
322 RTGCPTR GCPtrStart = pCur->Core.Key;
323 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
324 pgmUnlock(pVM);
325 *pfLockTaken = false;
326
327 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
328
329# ifdef VBOX_WITH_STATISTICS
330 pgmLock(pVM);
331 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
332 if (pCur)
333 STAM_PROFILE_STOP(&pCur->Stat, h);
334 pgmUnlock(pVM);
335# endif
336# else
337 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
338# endif
339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
340 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
341 return rc;
342 }
343 /* Unhandled part of a monitored page */
344 }
345 else
346 {
347 /* Check by physical address. */
348 unsigned iPage;
349 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
350 Assert(RT_SUCCESS(rc) || !pCur);
351 if ( pCur
352 && ( uErr & X86_TRAP_PF_RW
353 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
354 {
355 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
356# ifdef IN_RC
357 STAM_PROFILE_START(&pCur->Stat, h);
358 RTGCPTR GCPtrStart = pCur->Core.Key;
359 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
360 pgmUnlock(pVM);
361 *pfLockTaken = false;
362
363 RTGCPTR off = (iPage << PAGE_SHIFT)
364 + (pvFault & PAGE_OFFSET_MASK)
365 - (GCPtrStart & PAGE_OFFSET_MASK);
366 Assert(off < pCur->cb);
367 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
368
369# ifdef VBOX_WITH_STATISTICS
370 pgmLock(pVM);
371 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
372 if (pCur)
373 STAM_PROFILE_STOP(&pCur->Stat, h);
374 pgmUnlock(pVM);
375# endif
376# else
377 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
378# endif
379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
380 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
381 return rc;
382 }
383 }
384 }
385# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
386
387 /*
388 * There is a handled area of the page, but this fault doesn't belong to it.
389 * We must emulate the instruction.
390 *
391 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
392 * we first check if this was a page-not-present fault for a page with only
393 * write access handlers. Restart the instruction if it wasn't a write access.
394 */
395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
396
397 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
398 && !(uErr & X86_TRAP_PF_P))
399 {
400# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
401 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
402# else
403 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
404# endif
405 if ( RT_FAILURE(rc)
406 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
407 || !(uErr & X86_TRAP_PF_RW))
408 {
409 AssertRC(rc);
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
411 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
412 return rc;
413 }
414 }
415
416 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
417 * It's writing to an unhandled part of the LDT page several million times.
418 */
419 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
420 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
421 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
422 return rc;
423} /* if any kind of handler */
424
425
426/**
427 * #PF Handler for raw-mode guest execution.
428 *
429 * @returns VBox status code (appropriate for trap handling and GC return).
430 *
431 * @param pVCpu VMCPU Handle.
432 * @param uErr The trap error code.
433 * @param pRegFrame Trap register frame.
434 * @param pvFault The fault address.
435 * @param pfLockTaken PGM lock taken here or not (out)
436 */
437PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
438{
439 PVM pVM = pVCpu->CTX_SUFF(pVM);
440
441 *pfLockTaken = false;
442
443# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
444 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
445 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
446 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
447 int rc;
448
449# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
450 /*
451 * Walk the guest page translation tables and check if it's a guest fault.
452 */
453 GSTPTWALK GstWalk;
454 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
455 if (RT_FAILURE_NP(rc))
456 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
457
458 /* assert some GstWalk sanity. */
459# if PGM_GST_TYPE == PGM_TYPE_AMD64
460 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
461# endif
462# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
463 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
464# endif
465 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
466 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
467 Assert(GstWalk.Core.fSucceeded);
468
469 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
470 {
471 if ( ( (uErr & X86_TRAP_PF_RW)
472 && !GstWalk.Core.fEffectiveRW
473 && ( (uErr & X86_TRAP_PF_US)
474 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
475 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
476 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
477 )
478 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
479 }
480
481 /*
482 * Set the accessed and dirty flags.
483 */
484# if PGM_GST_TYPE == PGM_TYPE_AMD64
485 GstWalk.Pml4e.u |= X86_PML4E_A;
486 GstWalk.pPml4e->u |= X86_PML4E_A;
487 GstWalk.Pdpe.u |= X86_PDPE_A;
488 GstWalk.pPdpe->u |= X86_PDPE_A;
489# endif
490 if (GstWalk.Core.fBigPage)
491 {
492 Assert(GstWalk.Pde.b.u1Size);
493 if (uErr & X86_TRAP_PF_RW)
494 {
495 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
496 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
497 }
498 else
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A;
501 GstWalk.pPde->u |= X86_PDE4M_A;
502 }
503 }
504 else
505 {
506 Assert(!GstWalk.Pde.b.u1Size);
507 GstWalk.Pde.u |= X86_PDE_A;
508 GstWalk.pPde->u |= X86_PDE_A;
509 if (uErr & X86_TRAP_PF_RW)
510 {
511# ifdef VBOX_WITH_STATISTICS
512 if (!GstWalk.Pte.n.u1Dirty)
513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
514 else
515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
516# endif
517 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
518 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
519 }
520 else
521 {
522 GstWalk.Pte.u |= X86_PTE_A;
523 GstWalk.pPte->u |= X86_PTE_A;
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
528 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
529# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
530 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
531# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
532
533 /* Take the big lock now. */
534 *pfLockTaken = true;
535 pgmLock(pVM);
536
537# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
538 /*
539 * If it is a reserved bit fault we know that it is an MMIO (access
540 * handler) related fault and can skip some 200 lines of code.
541 */
542 if (uErr & X86_TRAP_PF_RSVD)
543 {
544 Assert(uErr & X86_TRAP_PF_P);
545 PPGMPAGE pPage;
546# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
547 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
548 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
549 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
550 pfLockTaken, &GstWalk));
551 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
552# else
553 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
554 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
555 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
556 pfLockTaken));
557 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
558# endif
559 AssertRC(rc);
560 PGM_INVL_PG(pVCpu, pvFault);
561 return rc; /* Restart with the corrected entry. */
562 }
563# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
564
565 /*
566 * Fetch the guest PDE, PDPE and PML4E.
567 */
568# if PGM_SHW_TYPE == PGM_TYPE_32BIT
569 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
570 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
571
572# elif PGM_SHW_TYPE == PGM_TYPE_PAE
573 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
574 PX86PDPAE pPDDst;
575# if PGM_GST_TYPE == PGM_TYPE_PAE
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
577# else
578 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
579# endif
580 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
581
582# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
583 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
584 PX86PDPAE pPDDst;
585# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
586 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
587 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
588# else
589 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
590# endif
591 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
592
593# elif PGM_SHW_TYPE == PGM_TYPE_EPT
594 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
595 PEPTPD pPDDst;
596 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
597 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
598# endif
599 Assert(pPDDst);
600
601# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
602 /*
603 * Dirty page handling.
604 *
605 * If we successfully correct the write protection fault due to dirty bit
606 * tracking, then return immediately.
607 */
608 if (uErr & X86_TRAP_PF_RW) /* write fault? */
609 {
610 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
611 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
612 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
613 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
614 {
615 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
616 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
617 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
618 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
619 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
620 return VINF_SUCCESS;
621 }
622 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
623 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
624 }
625
626# if 0 /* rarely useful; leave for debugging. */
627 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
628# endif
629# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
630
631 /*
632 * A common case is the not-present error caused by lazy page table syncing.
633 *
634 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
635 * here so we can safely assume that the shadow PT is present when calling
636 * SyncPage later.
637 *
638 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
639 * of mapping conflict and defer to SyncCR3 in R3.
640 * (Again, we do NOT support access handlers for non-present guest pages.)
641 *
642 */
643# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
644 Assert(GstWalk.Pde.n.u1Present);
645# endif
646 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
647 && !pPDDst->a[iPDDst].n.u1Present)
648 {
649 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
650# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
651 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
652 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
653# else
654 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
655 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
656# endif
657 if (RT_SUCCESS(rc))
658 return rc;
659 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
660 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
661 return VINF_PGM_SYNC_CR3;
662 }
663
664# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
665 /*
666 * Check if this address is within any of our mappings.
667 *
668 * This is *very* fast and it's gonna save us a bit of effort below and prevent
669 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
670 * (BTW, it's impossible to have physical access handlers in a mapping.)
671 */
672 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
673 {
674 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
675 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
676 {
677 if (pvFault < pMapping->GCPtr)
678 break;
679 if (pvFault - pMapping->GCPtr < pMapping->cb)
680 {
681 /*
682 * The first thing we check is if we've got an undetected conflict.
683 */
684 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
685 {
686 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
687 while (iPT-- > 0)
688 if (GstWalk.pPde[iPT].n.u1Present)
689 {
690 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
691 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
692 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
693 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
694 return VINF_PGM_SYNC_CR3;
695 }
696 }
697
698 /*
699 * Check if the fault address is in a virtual page access handler range.
700 */
701 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
702 if ( pCur
703 && pvFault - pCur->Core.Key < pCur->cb
704 && uErr & X86_TRAP_PF_RW)
705 {
706# ifdef IN_RC
707 STAM_PROFILE_START(&pCur->Stat, h);
708 pgmUnlock(pVM);
709 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
710 pgmLock(pVM);
711 STAM_PROFILE_STOP(&pCur->Stat, h);
712# else
713 AssertFailed();
714 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
715# endif
716 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
717 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
718 return rc;
719 }
720
721 /*
722 * Pretend we're not here and let the guest handle the trap.
723 */
724 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
725 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
726 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
727 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
728 return VINF_EM_RAW_GUEST_TRAP;
729 }
730 }
731 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
732# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
733
734 /*
735 * Check if this fault address is flagged for special treatment,
736 * which means we'll have to figure out the physical address and
737 * check flags associated with it.
738 *
739 * ASSUME that we can limit any special access handling to pages
740 * in page tables which the guest believes to be present.
741 */
742# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
743 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
744# else
745 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
746# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
747 PPGMPAGE pPage;
748 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
749 if (RT_FAILURE(rc))
750 {
751 /*
752 * When the guest accesses invalid physical memory (e.g. probing
753 * of RAM or accessing a remapped MMIO range), then we'll fall
754 * back to the recompiler to emulate the instruction.
755 */
756 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
757 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
758 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
759 return VINF_EM_RAW_EMULATE_INSTR;
760 }
761
762 /*
763 * Any handlers for this page?
764 */
765 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
766# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
767 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
768 &GstWalk));
769# else
770 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
771# endif
772
773 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
774
775# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
776 if (uErr & X86_TRAP_PF_P)
777 {
778 /*
779 * The page isn't marked, but it might still be monitored by a virtual page access handler.
780 * (ASSUMES no temporary disabling of virtual handlers.)
781 */
782 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
783 * we should correct both the shadow page table and physical memory flags, and not only check for
784 * accesses within the handler region but for access to pages with virtual handlers. */
785 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
786 if (pCur)
787 {
788 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
789 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
790 || !(uErr & X86_TRAP_PF_P)
791 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
792 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
793
794 if ( pvFault - pCur->Core.Key < pCur->cb
795 && ( uErr & X86_TRAP_PF_RW
796 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
797 {
798# ifdef IN_RC
799 STAM_PROFILE_START(&pCur->Stat, h);
800 pgmUnlock(pVM);
801 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
802 pgmLock(pVM);
803 STAM_PROFILE_STOP(&pCur->Stat, h);
804# else
805 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
806# endif
807 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
808 return rc;
809 }
810 }
811 }
812# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
813
814 /*
815 * We are here only if page is present in Guest page tables and
816 * trap is not handled by our handlers.
817 *
818 * Check it for page out-of-sync situation.
819 */
820 if (!(uErr & X86_TRAP_PF_P))
821 {
822 /*
823 * Page is not present in our page tables. Try to sync it!
824 */
825 if (uErr & X86_TRAP_PF_US)
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
827 else /* supervisor */
828 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
829
830 if (PGM_PAGE_IS_BALLOONED(pPage))
831 {
832 /* Emulate reads from ballooned pages as they are not present in
833 our shadow page tables. (Required for e.g. Solaris guests; soft
834 ecc, random nr generator.) */
835 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
836 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
837 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
838 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
839 return rc;
840 }
841
842# if defined(LOG_ENABLED) && !defined(IN_RING0)
843 RTGCPHYS GCPhys2;
844 uint64_t fPageGst2;
845 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
846# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
847 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
848 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
849# else
850 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
851 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
852# endif
853# endif /* LOG_ENABLED */
854
855# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
856 if ( !GstWalk.Core.fEffectiveUS
857 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
858 {
859 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
860 if ( pvFault == (RTGCPTR)pRegFrame->eip
861 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
862# ifdef CSAM_DETECT_NEW_CODE_PAGES
863 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
864 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
865# endif /* CSAM_DETECT_NEW_CODE_PAGES */
866 )
867 {
868 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
869 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
870 if (rc != VINF_SUCCESS)
871 {
872 /*
873 * CSAM needs to perform a job in ring 3.
874 *
875 * Sync the page before going to the host context; otherwise we'll end up in a loop if
876 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
877 */
878 LogFlow(("CSAM ring 3 job\n"));
879 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
880 AssertRC(rc2);
881
882 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
883 return rc;
884 }
885 }
886# ifdef CSAM_DETECT_NEW_CODE_PAGES
887 else if ( uErr == X86_TRAP_PF_RW
888 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
889 && pRegFrame->ecx < 0x10000)
890 {
891 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
892 * to detect loading of new code pages.
893 */
894
895 /*
896 * Decode the instruction.
897 */
898 RTGCPTR PC;
899 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
900 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
901 if (rc == VINF_SUCCESS)
902 {
903 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
904 uint32_t cbOp;
905 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
906
907 /* For now we'll restrict this to rep movsw/d instructions */
908 if ( rc == VINF_SUCCESS
909 && pDis->pCurInstr->opcode == OP_MOVSWD
910 && (pDis->prefix & PREFIX_REP))
911 {
912 CSAMMarkPossibleCodePage(pVM, pvFault);
913 }
914 }
915 }
916# endif /* CSAM_DETECT_NEW_CODE_PAGES */
917
918 /*
919 * Mark this page as safe.
920 */
921 /** @todo not correct for pages that contain both code and data!! */
922 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
923 CSAMMarkPage(pVM, pvFault, true);
924 }
925# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
926# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
927 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
928# else
929 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
930# endif
931 if (RT_SUCCESS(rc))
932 {
933 /* The page was successfully synced, return to the guest. */
934 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
935 return VINF_SUCCESS;
936 }
937 }
938 else /* uErr & X86_TRAP_PF_P: */
939 {
940 /*
941 * Write protected pages are made writable when the guest makes the
942 * first write to it. This happens for pages that are shared, write
943 * monitored or not yet allocated.
944 *
945 * We may also end up here when CR0.WP=0 in the guest.
946 *
947 * Also, a side effect of not flushing global PDEs are out of sync
948 * pages due to physical monitored regions, that are no longer valid.
949 * Assume for now it only applies to the read/write flag.
950 */
951 if (uErr & X86_TRAP_PF_RW)
952 {
953 /*
954 * Check if it is a read-only page.
955 */
956 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
957 {
958 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
959 Assert(!PGM_PAGE_IS_ZERO(pPage));
960 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
961 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
962
963 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
964 if (rc != VINF_SUCCESS)
965 {
966 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
967 return rc;
968 }
969 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
970 return VINF_EM_NO_MEMORY;
971 }
972
973# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
974 /*
975 * Check to see if we need to emulate the instruction if CR0.WP=0.
976 */
977 if ( !GstWalk.Core.fEffectiveRW
978 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
979 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
980 {
981 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
982 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
983 if (RT_SUCCESS(rc))
984 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
985 else
986 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
987 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
988 return rc;
989 }
990# endif
991 /// @todo count the above case; else
992 if (uErr & X86_TRAP_PF_US)
993 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
994 else /* supervisor */
995 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
996
997 /*
998 * Sync the page.
999 *
1000 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1001 * page is not present, which is not true in this case.
1002 */
1003# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1004 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1005# else
1006 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1007# endif
1008 if (RT_SUCCESS(rc))
1009 {
1010 /*
1011 * Page was successfully synced, return to guest but invalidate
1012 * the TLB first as the page is very likely to be in it.
1013 */
1014# if PGM_SHW_TYPE == PGM_TYPE_EPT
1015 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1016# else
1017 PGM_INVL_PG(pVCpu, pvFault);
1018# endif
1019# ifdef VBOX_STRICT
1020 RTGCPHYS GCPhys2;
1021 uint64_t fPageGst;
1022 if (!pVM->pgm.s.fNestedPaging)
1023 {
1024 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1025 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1026 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1027 }
1028 uint64_t fPageShw;
1029 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1030 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1031 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1032# endif /* VBOX_STRICT */
1033 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1034 return VINF_SUCCESS;
1035 }
1036 }
1037 /** @todo else: why are we here? */
1038
1039# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1040 /*
1041 * Check for VMM page flags vs. Guest page flags consistency.
1042 * Currently only for debug purposes.
1043 */
1044 if (RT_SUCCESS(rc))
1045 {
1046 /* Get guest page flags. */
1047 uint64_t fPageGst;
1048 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1049 if (RT_SUCCESS(rc))
1050 {
1051 uint64_t fPageShw;
1052 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1053
1054 /*
1055 * Compare page flags.
1056 * Note: we have AVL, A, D bits desynched.
1057 */
1058 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1059 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1060 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1061 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1062 }
1063 else
1064 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1065 }
1066 else
1067 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1068# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1069 }
1070
1071
1072 /*
1073 * If we get here it is because something failed above, i.e. most like guru
1074 * meditiation time.
1075 */
1076 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1077 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1078 return rc;
1079
1080# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1081 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1082 return VERR_INTERNAL_ERROR;
1083# endif
1084}
1085#endif /* !IN_RING3 */
1086
1087
1088/**
1089 * Emulation of the invlpg instruction.
1090 *
1091 *
1092 * @returns VBox status code.
1093 *
1094 * @param pVCpu The VMCPU handle.
1095 * @param GCPtrPage Page to invalidate.
1096 *
1097 * @remark ASSUMES that the guest is updating before invalidating. This order
1098 * isn't required by the CPU, so this is speculative and could cause
1099 * trouble.
1100 * @remark No TLB shootdown is done on any other VCPU as we assume that
1101 * invlpg emulation is the *only* reason for calling this function.
1102 * (The guest has to shoot down TLB entries on other CPUs itself)
1103 * Currently true, but keep in mind!
1104 *
1105 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1106 * Should only required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1107 */
1108PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1109{
1110#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1111 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1112 && PGM_SHW_TYPE != PGM_TYPE_EPT
1113 int rc;
1114 PVM pVM = pVCpu->CTX_SUFF(pVM);
1115 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1116
1117 Assert(PGMIsLockOwner(pVM));
1118
1119 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1120
1121# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1122 /** @todo this shouldn't be necessary. */
1123 if (pPool->cDirtyPages)
1124 pgmPoolResetDirtyPages(pVM);
1125# endif
1126
1127 /*
1128 * Get the shadow PD entry and skip out if this PD isn't present.
1129 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1130 */
1131# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1132 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1133 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1134
1135 /* Fetch the pgm pool shadow descriptor. */
1136 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1137 Assert(pShwPde);
1138
1139# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1140 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1141 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1142
1143 /* If the shadow PDPE isn't present, then skip the invalidate. */
1144 if (!pPdptDst->a[iPdpt].n.u1Present)
1145 {
1146 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1147 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1148 return VINF_SUCCESS;
1149 }
1150
1151 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1152 PPGMPOOLPAGE pShwPde = NULL;
1153 PX86PDPAE pPDDst;
1154
1155 /* Fetch the pgm pool shadow descriptor. */
1156 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1157 AssertRCSuccessReturn(rc, rc);
1158 Assert(pShwPde);
1159
1160 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1161 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1162
1163# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1164 /* PML4 */
1165 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1166 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1167 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1168 PX86PDPAE pPDDst;
1169 PX86PDPT pPdptDst;
1170 PX86PML4E pPml4eDst;
1171 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1172 if (rc != VINF_SUCCESS)
1173 {
1174 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1175 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1176 return VINF_SUCCESS;
1177 }
1178 Assert(pPDDst);
1179
1180 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1181 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1182
1183 if (!pPdpeDst->n.u1Present)
1184 {
1185 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1186 return VINF_SUCCESS;
1187 }
1188
1189 /* Fetch the pgm pool shadow descriptor. */
1190 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1191 Assert(pShwPde);
1192
1193# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1194
1195 const SHWPDE PdeDst = *pPdeDst;
1196 if (!PdeDst.n.u1Present)
1197 {
1198 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1199 return VINF_SUCCESS;
1200 }
1201
1202 /*
1203 * Get the guest PD entry and calc big page.
1204 */
1205# if PGM_GST_TYPE == PGM_TYPE_32BIT
1206 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1207 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1208 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1209# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1210 unsigned iPDSrc = 0;
1211# if PGM_GST_TYPE == PGM_TYPE_PAE
1212 X86PDPE PdpeSrcIgn;
1213 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1214# else /* AMD64 */
1215 PX86PML4E pPml4eSrcIgn;
1216 X86PDPE PdpeSrcIgn;
1217 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1218# endif
1219 GSTPDE PdeSrc;
1220
1221 if (pPDSrc)
1222 PdeSrc = pPDSrc->a[iPDSrc];
1223 else
1224 PdeSrc.u = 0;
1225# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1226 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1227
1228# ifdef IN_RING3
1229 /*
1230 * If a CR3 Sync is pending we may ignore the invalidate page operation
1231 * depending on the kind of sync and if it's a global page or not.
1232 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1233 */
1234# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1235 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1236 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1237 && fIsBigPage
1238 && PdeSrc.b.u1Global
1239 )
1240 )
1241# else
1242 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1243# endif
1244 {
1245 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1246 return VINF_SUCCESS;
1247 }
1248# endif /* IN_RING3 */
1249
1250 /*
1251 * Deal with the Guest PDE.
1252 */
1253 rc = VINF_SUCCESS;
1254 if (PdeSrc.n.u1Present)
1255 {
1256 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1257 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1258# ifndef PGM_WITHOUT_MAPPING
1259 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1260 {
1261 /*
1262 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1263 */
1264 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1265 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1266 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1267 }
1268 else
1269# endif /* !PGM_WITHOUT_MAPPING */
1270 if (!fIsBigPage)
1271 {
1272 /*
1273 * 4KB - page.
1274 */
1275 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1276 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1277
1278# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1279 /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */
1280 if (pShwPage->cModifications)
1281 pShwPage->cModifications = 1;
1282# endif
1283
1284# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1285 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1286 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1287# endif
1288 if (pShwPage->GCPhys == GCPhys)
1289 {
1290# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1291 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1292 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1293 if (pPT->a[iPTEDst].n.u1Present)
1294 {
1295 /* This is very unlikely with caching/monitoring enabled. */
1296 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1297 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1298 }
1299# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1300 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1301 if (RT_SUCCESS(rc))
1302 rc = VINF_SUCCESS;
1303# endif
1304 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1305 PGM_INVL_PG(pVCpu, GCPtrPage);
1306 }
1307 else
1308 {
1309 /*
1310 * The page table address changed.
1311 */
1312 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1313 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1314 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1315 ASMAtomicWriteSize(pPdeDst, 0);
1316 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1317 PGM_INVL_VCPU_TLBS(pVCpu);
1318 }
1319 }
1320 else
1321 {
1322 /*
1323 * 2/4MB - page.
1324 */
1325 /* Before freeing the page, check if anything really changed. */
1326 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1327 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1328# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1329 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1330 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1331# endif
1332 if ( pShwPage->GCPhys == GCPhys
1333 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1334 {
1335 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1336 /** @todo This test is wrong as it cannot check the G bit!
1337 * FIXME */
1338 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1339 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1340 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1341 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1342 {
1343 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1344 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1345 return VINF_SUCCESS;
1346 }
1347 }
1348
1349 /*
1350 * Ok, the page table is present and it's been changed in the guest.
1351 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1352 * We could do this for some flushes in GC too, but we need an algorithm for
1353 * deciding which 4MB pages containing code likely to be executed very soon.
1354 */
1355 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1356 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1357 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1358 ASMAtomicWriteSize(pPdeDst, 0);
1359 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1360 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1361 }
1362 }
1363 else
1364 {
1365 /*
1366 * Page directory is not present, mark shadow PDE not present.
1367 */
1368 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1369 {
1370 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1371 ASMAtomicWriteSize(pPdeDst, 0);
1372 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1373 PGM_INVL_PG(pVCpu, GCPtrPage);
1374 }
1375 else
1376 {
1377 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1379 }
1380 }
1381 return rc;
1382
1383#else /* guest real and protected mode */
1384 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1385 return VINF_SUCCESS;
1386#endif
1387}
1388
1389
1390/**
1391 * Update the tracking of shadowed pages.
1392 *
1393 * @param pVCpu The VMCPU handle.
1394 * @param pShwPage The shadow page.
1395 * @param HCPhys The physical page we is being dereferenced.
1396 * @param iPte Shadow PTE index
1397 */
1398DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte)
1399{
1400 PVM pVM = pVCpu->CTX_SUFF(pVM);
1401
1402 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1403 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1404
1405 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1406 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1407 * 2. write protect all shadowed pages. I.e. implement caching.
1408 */
1409 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1410
1411 /*
1412 * Find the guest address.
1413 */
1414 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1415 pRam;
1416 pRam = pRam->CTX_SUFF(pNext))
1417 {
1418 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1419 while (iPage-- > 0)
1420 {
1421 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1422 {
1423 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1424
1425 Assert(pShwPage->cPresent);
1426 Assert(pPool->cPresent);
1427 pShwPage->cPresent--;
1428 pPool->cPresent--;
1429
1430 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1431 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1432 return;
1433 }
1434 }
1435 }
1436
1437 for (;;)
1438 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1439}
1440
1441
1442/**
1443 * Update the tracking of shadowed pages.
1444 *
1445 * @param pVCpu The VMCPU handle.
1446 * @param pShwPage The shadow page.
1447 * @param u16 The top 16-bit of the pPage->HCPhys.
1448 * @param pPage Pointer to the guest page. this will be modified.
1449 * @param iPTDst The index into the shadow table.
1450 */
1451DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1452{
1453 PVM pVM = pVCpu->CTX_SUFF(pVM);
1454
1455 /*
1456 * Just deal with the simple first time here.
1457 */
1458 if (!u16)
1459 {
1460 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1461 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1462 /* Save the page table index. */
1463 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1464 }
1465 else
1466 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1467
1468 /* write back */
1469 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1470 PGM_PAGE_SET_TRACKING(pPage, u16);
1471
1472 /* update statistics. */
1473 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1474 pShwPage->cPresent++;
1475 if (pShwPage->iFirstPresent > iPTDst)
1476 pShwPage->iFirstPresent = iPTDst;
1477}
1478
1479
1480/**
1481 * Modifies a shadow PTE to account for access handlers.
1482 *
1483 * @param pVM The VM handle.
1484 * @param pPage The page in question.
1485 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1486 * A (accessed) bit so it can be emulated correctly.
1487 * @param pPteDst The shadow PTE (output). This is temporary storage and
1488 * does not need to be set atomically.
1489 */
1490DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1491{
1492 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1493 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1494 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1495 {
1496 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1497#if PGM_SHW_TYPE == PGM_TYPE_EPT
1498 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1499 pPteDst->n.u1Present = 1;
1500 pPteDst->n.u1Execute = 1;
1501 pPteDst->n.u1IgnorePAT = 1;
1502 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1503 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1504#else
1505 if (fPteSrc & X86_PTE_A)
1506 {
1507 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1508 SHW_PTE_SET_RO(*pPteDst);
1509 }
1510 else
1511 SHW_PTE_SET(*pPteDst, 0);
1512#endif
1513 }
1514#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1515# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1516 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1517 && ( BTH_IS_NP_ACTIVE(pVM)
1518 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1519# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1520 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1521# endif
1522 )
1523 {
1524 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1525# if PGM_SHW_TYPE == PGM_TYPE_EPT
1526 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1527 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1528 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1529 pPteDst->n.u1Present = 0;
1530 pPteDst->n.u1Write = 1;
1531 pPteDst->n.u1Execute = 0;
1532 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1533 pPteDst->n.u3EMT = 7;
1534# else
1535 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1536 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1537# endif
1538 }
1539# endif
1540#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1541 else
1542 {
1543 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1544 SHW_PTE_SET(*pPteDst, 0);
1545 }
1546 /** @todo count these kinds of entries. */
1547}
1548
1549
1550/**
1551 * Creates a 4K shadow page for a guest page.
1552 *
1553 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1554 * physical address. The PdeSrc argument only the flags are used. No page
1555 * structured will be mapped in this function.
1556 *
1557 * @param pVCpu The VMCPU handle.
1558 * @param pPteDst Destination page table entry.
1559 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1560 * Can safely assume that only the flags are being used.
1561 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1562 * @param pShwPage Pointer to the shadow page.
1563 * @param iPTDst The index into the shadow table.
1564 *
1565 * @remark Not used for 2/4MB pages!
1566 */
1567DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1568 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1569{
1570 PVM pVM = pVCpu->CTX_SUFF(pVM);
1571
1572# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1573 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1574 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64)
1575 if (pShwPage->fDirty)
1576 {
1577 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1578 PX86PTPAE pGstPT;
1579
1580 pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty].aPage[0];
1581 pGstPT->a[iPTDst].u = PteSrc.u;
1582 }
1583# endif
1584
1585 if ( PteSrc.n.u1Present
1586 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1587 {
1588 /*
1589 * Find the ram range.
1590 */
1591 PPGMPAGE pPage;
1592 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc), &pPage);
1593 if (RT_SUCCESS(rc))
1594 {
1595 /* Ignore ballooned pages.
1596 Don't return errors or use a fatal assert here as part of a
1597 shadow sync range might included ballooned pages. */
1598 if (PGM_PAGE_IS_BALLOONED(pPage))
1599 {
1600 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1601 return;
1602 }
1603
1604#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1605 /* Make the page writable if necessary. */
1606 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1607 && ( PGM_PAGE_IS_ZERO(pPage)
1608 || ( PteSrc.n.u1Write
1609 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1610# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1611 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1612# endif
1613# ifdef VBOX_WITH_PAGE_SHARING
1614 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1615# endif
1616 )
1617 )
1618 )
1619 {
1620 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
1621 AssertRC(rc);
1622 }
1623#endif
1624
1625 /*
1626 * Make page table entry.
1627 */
1628 SHWPTE PteDst;
1629 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1630 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc), &PteDst);
1631 else
1632 {
1633#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1634 /*
1635 * If the page or page directory entry is not marked accessed,
1636 * we mark the page not present.
1637 */
1638 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1639 {
1640 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1641 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1642 SHW_PTE_SET(PteDst, 0);
1643 }
1644 /*
1645 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1646 * when the page is modified.
1647 */
1648 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1649 {
1650 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1651 SHW_PTE_SET(PteDst,
1652 GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc)
1653 | PGM_PAGE_GET_HCPHYS(pPage)
1654 | PGM_PTFLAGS_TRACK_DIRTY);
1655 SHW_PTE_SET_RO(PteDst);
1656 }
1657 else
1658#endif
1659 {
1660 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1661#if PGM_SHW_TYPE == PGM_TYPE_EPT
1662 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1663 PteDst.n.u1Present = 1;
1664 PteDst.n.u1Write = 1;
1665 PteDst.n.u1Execute = 1;
1666 PteDst.n.u1IgnorePAT = 1;
1667 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1668 /* PteDst.n.u1Size = 0 */
1669#else
1670 SHW_PTE_SET(PteDst, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1671#endif
1672 }
1673
1674 /*
1675 * Make sure only allocated pages are mapped writable.
1676 */
1677 if ( SHW_PTE_IS_P_RW(PteDst)
1678 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1679 {
1680 /* Still applies to shared pages. */
1681 Assert(!PGM_PAGE_IS_ZERO(pPage));
1682 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1683 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)GST_GET_PTE_GCPHYS(PteSrc), pPage, iPTDst));
1684 }
1685 }
1686
1687 /*
1688 * Keep user track up to date.
1689 */
1690 if (SHW_PTE_IS_P(PteDst))
1691 {
1692 if (!SHW_PTE_IS_P(*pPteDst))
1693 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1694 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1695 {
1696 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1697 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1698 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1699 }
1700 }
1701 else if (SHW_PTE_IS_P(*pPteDst))
1702 {
1703 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1704 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1705 }
1706
1707 /*
1708 * Update statistics and commit the entry.
1709 */
1710#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1711 if (!PteSrc.n.u1Global)
1712 pShwPage->fSeenNonGlobal = true;
1713#endif
1714 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1715 return;
1716 }
1717
1718/** @todo count these three different kinds. */
1719 Log2(("SyncPageWorker: invalid address in Pte\n"));
1720 }
1721 else if (!PteSrc.n.u1Present)
1722 Log2(("SyncPageWorker: page not present in Pte\n"));
1723 else
1724 Log2(("SyncPageWorker: invalid Pte\n"));
1725
1726 /*
1727 * The page is not present or the PTE is bad. Replace the shadow PTE by
1728 * an empty entry, making sure to keep the user tracking up to date.
1729 */
1730 if (SHW_PTE_IS_P(*pPteDst))
1731 {
1732 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1733 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst);
1734 }
1735 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1736}
1737
1738
1739/**
1740 * Syncs a guest OS page.
1741 *
1742 * There are no conflicts at this point, neither is there any need for
1743 * page table allocations.
1744 *
1745 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1746 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1747 *
1748 * @returns VBox status code.
1749 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1750 * @param pVCpu The VMCPU handle.
1751 * @param PdeSrc Page directory entry of the guest.
1752 * @param GCPtrPage Guest context page address.
1753 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1754 * @param uErr Fault error (X86_TRAP_PF_*).
1755 */
1756static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1757{
1758 PVM pVM = pVCpu->CTX_SUFF(pVM);
1759 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1760 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1761
1762 Assert(PGMIsLockOwner(pVM));
1763
1764#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1765 || PGM_GST_TYPE == PGM_TYPE_PAE \
1766 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1767 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1768 && PGM_SHW_TYPE != PGM_TYPE_EPT
1769
1770 /*
1771 * Assert preconditions.
1772 */
1773 Assert(PdeSrc.n.u1Present);
1774 Assert(cPages);
1775# if 0 /* rarely useful; leave for debugging. */
1776 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1777# endif
1778
1779 /*
1780 * Get the shadow PDE, find the shadow page table in the pool.
1781 */
1782# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1783 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1784 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1785
1786 /* Fetch the pgm pool shadow descriptor. */
1787 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1788 Assert(pShwPde);
1789
1790# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1791 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1792 PPGMPOOLPAGE pShwPde = NULL;
1793 PX86PDPAE pPDDst;
1794
1795 /* Fetch the pgm pool shadow descriptor. */
1796 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1797 AssertRCSuccessReturn(rc2, rc2);
1798 Assert(pShwPde);
1799
1800 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1801 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1802
1803# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1804 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1805 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1806 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1807 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1808
1809 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1810 AssertRCSuccessReturn(rc2, rc2);
1811 Assert(pPDDst && pPdptDst);
1812 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1813# endif
1814 SHWPDE PdeDst = *pPdeDst;
1815
1816 /*
1817 * - In the guest SMP case we could have blocked while another VCPU reused
1818 * this page table.
1819 * - With W7-64 we may also take this path when the the A bit is cleared on
1820 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1821 * relevant TLB entries. If we're write monitoring any page mapped by
1822 * the modified entry, we may end up here with a "stale" TLB entry.
1823 */
1824 if (!PdeDst.n.u1Present)
1825 {
1826 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1827 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1828 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1829 if (uErr & X86_TRAP_PF_P)
1830 PGM_INVL_PG(pVCpu, GCPtrPage);
1831 return VINF_SUCCESS; /* force the instruction to be executed again. */
1832 }
1833
1834 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1835 Assert(pShwPage);
1836
1837# if PGM_GST_TYPE == PGM_TYPE_AMD64
1838 /* Fetch the pgm pool shadow descriptor. */
1839 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1840 Assert(pShwPde);
1841# endif
1842
1843 /*
1844 * Check that the page is present and that the shadow PDE isn't out of sync.
1845 */
1846 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1847 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1848 RTGCPHYS GCPhys;
1849 if (!fBigPage)
1850 {
1851 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1852# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1853 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1854 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1855# endif
1856 }
1857 else
1858 {
1859 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1860# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1861 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1862 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1863# endif
1864 }
1865 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1866 if ( fPdeValid
1867 && pShwPage->GCPhys == GCPhys
1868 && PdeSrc.n.u1Present
1869 && PdeSrc.n.u1User == PdeDst.n.u1User
1870 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1871# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1872 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1873# endif
1874 )
1875 {
1876 /*
1877 * Check that the PDE is marked accessed already.
1878 * Since we set the accessed bit *before* getting here on a #PF, this
1879 * check is only meant for dealing with non-#PF'ing paths.
1880 */
1881 if (PdeSrc.n.u1Accessed)
1882 {
1883 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1884 if (!fBigPage)
1885 {
1886 /*
1887 * 4KB Page - Map the guest page table.
1888 */
1889 PGSTPT pPTSrc;
1890 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1891 if (RT_SUCCESS(rc))
1892 {
1893# ifdef PGM_SYNC_N_PAGES
1894 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1895 if ( cPages > 1
1896 && !(uErr & X86_TRAP_PF_P)
1897 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1898 {
1899 /*
1900 * This code path is currently only taken when the caller is PGMTrap0eHandler
1901 * for non-present pages!
1902 *
1903 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1904 * deal with locality.
1905 */
1906 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1907 const unsigned iPTDstPage = iPTDst;
1908# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1909 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1910 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1911# else
1912 const unsigned offPTSrc = 0;
1913# endif
1914 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1915 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1916 iPTDst = 0;
1917 else
1918 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1919 for (; iPTDst < iPTDstEnd; iPTDst++)
1920 {
1921 if ( !SHW_PTE_IS_P(pPTDst->a[iPTDst])
1922 || iPTDst == iPTDstPage) /* always sync GCPtrPage */
1923 {
1924 GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst];
1925 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1926 NOREF(GCPtrCurPage);
1927#ifndef IN_RING0
1928 /*
1929 * Assuming kernel code will be marked as supervisor - and not as user level
1930 * and executed using a conforming code selector - And marked as readonly.
1931 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1932 */
1933 PPGMPAGE pPage;
1934 if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US))
1935 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1936 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1937 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK))
1938 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1939 )
1940#endif /* else: CSAM not active */
1941 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1942 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1943 GCPtrCurPage, PteSrc.n.u1Present,
1944 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1945 PteSrc.n.u1User & PdeSrc.n.u1User,
1946 (uint64_t)PteSrc.u,
1947 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1948 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1949 }
1950 }
1951 }
1952 else
1953# endif /* PGM_SYNC_N_PAGES */
1954 {
1955 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1956 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1957 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1958 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1959 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1960 GCPtrPage, PteSrc.n.u1Present,
1961 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1962 PteSrc.n.u1User & PdeSrc.n.u1User,
1963 (uint64_t)PteSrc.u,
1964 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1965 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1966 }
1967 }
1968 else /* MMIO or invalid page: emulated in #PF handler. */
1969 {
1970 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1971 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1972 }
1973 }
1974 else
1975 {
1976 /*
1977 * 4/2MB page - lazy syncing shadow 4K pages.
1978 * (There are many causes of getting here, it's no longer only CSAM.)
1979 */
1980 /* Calculate the GC physical address of this 4KB shadow page. */
1981 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
1982 /* Find ram range. */
1983 PPGMPAGE pPage;
1984 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
1985 if (RT_SUCCESS(rc))
1986 {
1987 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
1988
1989# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1990 /* Try to make the page writable if necessary. */
1991 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1992 && ( PGM_PAGE_IS_ZERO(pPage)
1993 || ( PdeSrc.n.u1Write
1994 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1995# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1996 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1997# endif
1998# ifdef VBOX_WITH_PAGE_SHARING
1999 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2000# endif
2001 )
2002 )
2003 )
2004 {
2005 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2006 AssertRC(rc);
2007 }
2008# endif
2009
2010 /*
2011 * Make shadow PTE entry.
2012 */
2013 SHWPTE PteDst;
2014 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2015 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2016 else
2017 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2018
2019 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2020 if ( SHW_PTE_IS_P(PteDst)
2021 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2022 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2023
2024 /* Make sure only allocated pages are mapped writable. */
2025 if ( SHW_PTE_IS_P_RW(PteDst)
2026 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2027 {
2028 /* Still applies to shared pages. */
2029 Assert(!PGM_PAGE_IS_ZERO(pPage));
2030 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2031 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2032 }
2033
2034 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2035
2036 /*
2037 * If the page is not flagged as dirty and is writable, then make it read-only
2038 * at PD level, so we can set the dirty bit when the page is modified.
2039 *
2040 * ASSUMES that page access handlers are implemented on page table entry level.
2041 * Thus we will first catch the dirty access and set PDE.D and restart. If
2042 * there is an access handler, we'll trap again and let it work on the problem.
2043 */
2044 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2045 * As for invlpg, it simply frees the whole shadow PT.
2046 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2047 if ( !PdeSrc.b.u1Dirty
2048 && PdeSrc.b.u1Write)
2049 {
2050 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2051 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2052 PdeDst.n.u1Write = 0;
2053 }
2054 else
2055 {
2056 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2057 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2058 }
2059 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2060 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2061 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2062 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2063 }
2064 else
2065 {
2066 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2067 /** @todo must wipe the shadow page table entry in this
2068 * case. */
2069 }
2070 }
2071 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2072 return VINF_SUCCESS;
2073 }
2074
2075 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2076 }
2077 else if (fPdeValid)
2078 {
2079 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2080 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2081 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2082 }
2083 else
2084 {
2085/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2086 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2087 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2088 }
2089
2090 /*
2091 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2092 * Yea, I'm lazy.
2093 */
2094 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2095 ASMAtomicWriteSize(pPdeDst, 0);
2096
2097 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2098 PGM_INVL_VCPU_TLBS(pVCpu);
2099 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2100
2101
2102#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2103 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2104 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2105 && !defined(IN_RC)
2106
2107# ifdef PGM_SYNC_N_PAGES
2108 /*
2109 * Get the shadow PDE, find the shadow page table in the pool.
2110 */
2111# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2112 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2113
2114# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2115 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2116
2117# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2118 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2119 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2120 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2121 X86PDEPAE PdeDst;
2122 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2123
2124 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2125 AssertRCSuccessReturn(rc, rc);
2126 Assert(pPDDst && pPdptDst);
2127 PdeDst = pPDDst->a[iPDDst];
2128# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2129 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2130 PEPTPD pPDDst;
2131 EPTPDE PdeDst;
2132
2133 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2134 if (rc != VINF_SUCCESS)
2135 {
2136 AssertRC(rc);
2137 return rc;
2138 }
2139 Assert(pPDDst);
2140 PdeDst = pPDDst->a[iPDDst];
2141# endif
2142 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2143 if (!PdeDst.n.u1Present)
2144 {
2145 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2146 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2147 return VINF_SUCCESS; /* force the instruction to be executed again. */
2148 }
2149
2150 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2151 if (PdeDst.n.u1Size)
2152 {
2153 Assert(pVM->pgm.s.fNestedPaging);
2154 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2155 return VINF_SUCCESS;
2156 }
2157
2158 /* Mask away the page offset. */
2159 GCPtrPage &= ~((RTGCPTR)0xfff);
2160
2161 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2162 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2163
2164 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2165 if ( cPages > 1
2166 && !(uErr & X86_TRAP_PF_P)
2167 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2168 {
2169 /*
2170 * This code path is currently only taken when the caller is PGMTrap0eHandler
2171 * for non-present pages!
2172 *
2173 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2174 * deal with locality.
2175 */
2176 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2177 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2178 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2179 iPTDst = 0;
2180 else
2181 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2182 for (; iPTDst < iPTDstEnd; iPTDst++)
2183 {
2184 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2185 {
2186 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2187 GSTPTE PteSrc;
2188
2189 /* Fake the page table entry */
2190 PteSrc.u = GCPtrCurPage;
2191 PteSrc.n.u1Present = 1;
2192 PteSrc.n.u1Dirty = 1;
2193 PteSrc.n.u1Accessed = 1;
2194 PteSrc.n.u1Write = 1;
2195 PteSrc.n.u1User = 1;
2196
2197 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2198 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2199 GCPtrCurPage, PteSrc.n.u1Present,
2200 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2201 PteSrc.n.u1User & PdeSrc.n.u1User,
2202 (uint64_t)PteSrc.u,
2203 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2204 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2205
2206 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2207 break;
2208 }
2209 else
2210 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2211 }
2212 }
2213 else
2214# endif /* PGM_SYNC_N_PAGES */
2215 {
2216 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2217 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2218 GSTPTE PteSrc;
2219
2220 /* Fake the page table entry */
2221 PteSrc.u = GCPtrCurPage;
2222 PteSrc.n.u1Present = 1;
2223 PteSrc.n.u1Dirty = 1;
2224 PteSrc.n.u1Accessed = 1;
2225 PteSrc.n.u1Write = 1;
2226 PteSrc.n.u1User = 1;
2227 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2228
2229 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2230 GCPtrPage, PteSrc.n.u1Present,
2231 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2232 PteSrc.n.u1User & PdeSrc.n.u1User,
2233 (uint64_t)PteSrc.u,
2234 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2235 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2236 }
2237 return VINF_SUCCESS;
2238
2239#else
2240 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2241 return VERR_INTERNAL_ERROR;
2242#endif
2243}
2244
2245
2246#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2247
2248/**
2249 * CheckPageFault helper for returning a page fault indicating a non-present
2250 * (NP) entry in the page translation structures.
2251 *
2252 * @returns VINF_EM_RAW_GUEST_TRAP.
2253 * @param pVCpu The virtual CPU to operate on.
2254 * @param uErr The error code of the shadow fault. Corrections to
2255 * TRPM's copy will be made if necessary.
2256 * @param GCPtrPage For logging.
2257 * @param uPageFaultLevel For logging.
2258 */
2259DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2260{
2261 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2262 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2263 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2264 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2265 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2266
2267 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2268 return VINF_EM_RAW_GUEST_TRAP;
2269}
2270
2271
2272/**
2273 * CheckPageFault helper for returning a page fault indicating a reserved bit
2274 * (RSVD) error in the page translation structures.
2275 *
2276 * @returns VINF_EM_RAW_GUEST_TRAP.
2277 * @param pVCpu The virtual CPU to operate on.
2278 * @param uErr The error code of the shadow fault. Corrections to
2279 * TRPM's copy will be made if necessary.
2280 * @param GCPtrPage For logging.
2281 * @param uPageFaultLevel For logging.
2282 */
2283DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2284{
2285 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2286 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2287 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2288
2289 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2290 return VINF_EM_RAW_GUEST_TRAP;
2291}
2292
2293
2294/**
2295 * CheckPageFault helper for returning a page protection fault (P).
2296 *
2297 * @returns VINF_EM_RAW_GUEST_TRAP.
2298 * @param pVCpu The virtual CPU to operate on.
2299 * @param uErr The error code of the shadow fault. Corrections to
2300 * TRPM's copy will be made if necessary.
2301 * @param GCPtrPage For logging.
2302 * @param uPageFaultLevel For logging.
2303 */
2304DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2305{
2306 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2307 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2308 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2309 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2310
2311 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2312 return VINF_EM_RAW_GUEST_TRAP;
2313}
2314
2315
2316/**
2317 * Handle dirty bit tracking faults.
2318 *
2319 * @returns VBox status code.
2320 * @param pVCpu The VMCPU handle.
2321 * @param uErr Page fault error code.
2322 * @param pPdeSrc Guest page directory entry.
2323 * @param pPdeDst Shadow page directory entry.
2324 * @param GCPtrPage Guest context page address.
2325 */
2326static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2327{
2328 PVM pVM = pVCpu->CTX_SUFF(pVM);
2329 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2330
2331 Assert(PGMIsLockOwner(pVM));
2332
2333 /*
2334 * Handle big page.
2335 */
2336 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2337 {
2338 if ( pPdeDst->n.u1Present
2339 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2340 {
2341 SHWPDE PdeDst = *pPdeDst;
2342
2343 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2344 Assert(pPdeSrc->b.u1Write);
2345
2346 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2347 * fault again and take this path to only invalidate the entry (see below).
2348 */
2349 PdeDst.n.u1Write = 1;
2350 PdeDst.n.u1Accessed = 1;
2351 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2352 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2353 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2354 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2355 }
2356
2357# ifdef IN_RING0
2358 /* Check for stale TLB entry; only applies to the SMP guest case. */
2359 if ( pVM->cCpus > 1
2360 && pPdeDst->n.u1Write
2361 && pPdeDst->n.u1Accessed)
2362 {
2363 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2364 if (pShwPage)
2365 {
2366 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2367 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2368 if (SHW_PTE_IS_P_RW(*pPteDst))
2369 {
2370 /* Stale TLB entry. */
2371 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2372 PGM_INVL_PG(pVCpu, GCPtrPage);
2373 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2374 }
2375 }
2376 }
2377# endif /* IN_RING0 */
2378 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2379 }
2380
2381 /*
2382 * Map the guest page table.
2383 */
2384 PGSTPT pPTSrc;
2385 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2386 if (RT_FAILURE(rc))
2387 {
2388 AssertRC(rc);
2389 return rc;
2390 }
2391
2392 if (pPdeDst->n.u1Present)
2393 {
2394 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2395 const GSTPTE PteSrc = *pPteSrc;
2396
2397#ifndef IN_RING0
2398 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2399 * Our individual shadow handlers will provide more information and force a fatal exit.
2400 */
2401 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2402 {
2403 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2404 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2405 }
2406#endif
2407 /*
2408 * Map shadow page table.
2409 */
2410 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2411 if (pShwPage)
2412 {
2413 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2414 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2415 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2416 {
2417 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2418 {
2419 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(*pPteSrc));
2420 SHWPTE PteDst = *pPteDst;
2421
2422 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2423 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2424
2425 Assert(pPteSrc->n.u1Write);
2426
2427 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2428 * entry will not harm; write access will simply fault again and
2429 * take this path to only invalidate the entry.
2430 */
2431 if (RT_LIKELY(pPage))
2432 {
2433 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2434 {
2435 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2436 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2437 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2438 SHW_PTE_SET_RO(PteDst);
2439 }
2440 else
2441 {
2442 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2443 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2444 {
2445 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(*pPteSrc));
2446 AssertRC(rc);
2447 }
2448 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2449 SHW_PTE_SET_RW(PteDst);
2450 else
2451 {
2452 /* Still applies to shared pages. */
2453 Assert(!PGM_PAGE_IS_ZERO(pPage));
2454 SHW_PTE_SET_RO(PteDst);
2455 }
2456 }
2457 }
2458 else
2459 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2460
2461 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2462 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2463 PGM_INVL_PG(pVCpu, GCPtrPage);
2464 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2465 }
2466
2467# ifdef IN_RING0
2468 /* Check for stale TLB entry; only applies to the SMP guest case. */
2469 if ( pVM->cCpus > 1
2470 && SHW_PTE_IS_RW(*pPteDst)
2471 && SHW_PTE_IS_A(*pPteDst))
2472 {
2473 /* Stale TLB entry. */
2474 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2475 PGM_INVL_PG(pVCpu, GCPtrPage);
2476 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2477 }
2478# endif
2479 }
2480 }
2481 else
2482 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2483 }
2484
2485 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2486}
2487
2488#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2489
2490
2491/**
2492 * Sync a shadow page table.
2493 *
2494 * The shadow page table is not present in the shadow PDE.
2495 *
2496 * Handles mapping conflicts.
2497 *
2498 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2499 * conflict), and Trap0eHandler.
2500 *
2501 * A precodition for this method is that the shadow PDE is not present. The
2502 * caller must take the PGM lock before checking this and continue to hold it
2503 * when calling this method.
2504 *
2505 * @returns VBox status code.
2506 * @param pVCpu The VMCPU handle.
2507 * @param iPD Page directory index.
2508 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2509 * Assume this is a temporary mapping.
2510 * @param GCPtrPage GC Pointer of the page that caused the fault
2511 */
2512static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2513{
2514 PVM pVM = pVCpu->CTX_SUFF(pVM);
2515 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2516
2517 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2518#if 0 /* rarely useful; leave for debugging. */
2519 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2520#endif
2521 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2522
2523 Assert(PGMIsLocked(pVM));
2524
2525#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2526 || PGM_GST_TYPE == PGM_TYPE_PAE \
2527 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2528 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2529 && PGM_SHW_TYPE != PGM_TYPE_EPT
2530
2531 int rc = VINF_SUCCESS;
2532
2533 /*
2534 * Some input validation first.
2535 */
2536 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2537
2538 /*
2539 * Get the relevant shadow PDE entry.
2540 */
2541# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2542 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2543 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2544
2545 /* Fetch the pgm pool shadow descriptor. */
2546 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2547 Assert(pShwPde);
2548
2549# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2550 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2551 PPGMPOOLPAGE pShwPde = NULL;
2552 PX86PDPAE pPDDst;
2553 PSHWPDE pPdeDst;
2554
2555 /* Fetch the pgm pool shadow descriptor. */
2556 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2557 AssertRCSuccessReturn(rc, rc);
2558 Assert(pShwPde);
2559
2560 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2561 pPdeDst = &pPDDst->a[iPDDst];
2562
2563# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2564 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2565 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2566 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2567 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2568 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2569 AssertRCSuccessReturn(rc, rc);
2570 Assert(pPDDst);
2571 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2572# endif
2573 SHWPDE PdeDst = *pPdeDst;
2574
2575# if PGM_GST_TYPE == PGM_TYPE_AMD64
2576 /* Fetch the pgm pool shadow descriptor. */
2577 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2578 Assert(pShwPde);
2579# endif
2580
2581# ifndef PGM_WITHOUT_MAPPINGS
2582 /*
2583 * Check for conflicts.
2584 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2585 * R3: Simply resolve the conflict.
2586 */
2587 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2588 {
2589 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2590# ifndef IN_RING3
2591 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2592 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2593 return VERR_ADDRESS_CONFLICT;
2594
2595# else /* IN_RING3 */
2596 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2597 Assert(pMapping);
2598# if PGM_GST_TYPE == PGM_TYPE_32BIT
2599 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2600# elif PGM_GST_TYPE == PGM_TYPE_PAE
2601 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2602# else
2603 AssertFailed(); /* can't happen for amd64 */
2604# endif
2605 if (RT_FAILURE(rc))
2606 {
2607 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2608 return rc;
2609 }
2610 PdeDst = *pPdeDst;
2611# endif /* IN_RING3 */
2612 }
2613# endif /* !PGM_WITHOUT_MAPPINGS */
2614 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2615
2616 /*
2617 * Sync the page directory entry.
2618 */
2619 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2620 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2621 if ( PdeSrc.n.u1Present
2622 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2623 {
2624 /*
2625 * Allocate & map the page table.
2626 */
2627 PSHWPT pPTDst;
2628 PPGMPOOLPAGE pShwPage;
2629 RTGCPHYS GCPhys;
2630 if (fPageTable)
2631 {
2632 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2633# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2634 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2635 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2636# endif
2637 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2638 }
2639 else
2640 {
2641 PGMPOOLACCESS enmAccess;
2642# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2643 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2644# else
2645 const bool fNoExecute = false;
2646# endif
2647
2648 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2649# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2650 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2651 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2652# endif
2653 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2654 if (PdeSrc.n.u1User)
2655 {
2656 if (PdeSrc.n.u1Write)
2657 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2658 else
2659 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2660 }
2661 else
2662 {
2663 if (PdeSrc.n.u1Write)
2664 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2665 else
2666 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2667 }
2668 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, false /*fLockPage*/,
2669 &pShwPage);
2670 }
2671 if (rc == VINF_SUCCESS)
2672 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2673 else if (rc == VINF_PGM_CACHED_PAGE)
2674 {
2675 /*
2676 * The PT was cached, just hook it up.
2677 */
2678 if (fPageTable)
2679 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2680 else
2681 {
2682 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2683 /* (see explanation and assumptions further down.) */
2684 if ( !PdeSrc.b.u1Dirty
2685 && PdeSrc.b.u1Write)
2686 {
2687 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2688 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2689 PdeDst.b.u1Write = 0;
2690 }
2691 }
2692 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2693 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2694 return VINF_SUCCESS;
2695 }
2696 else if (rc == VERR_PGM_POOL_FLUSHED)
2697 {
2698 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2699 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2700 return VINF_PGM_SYNC_CR3;
2701 }
2702 else
2703 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2704 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2705 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2706 * irrelevant at this point. */
2707 PdeDst.u &= X86_PDE_AVL_MASK;
2708 PdeDst.u |= pShwPage->Core.Key;
2709
2710 /*
2711 * Page directory has been accessed (this is a fault situation, remember).
2712 */
2713 /** @todo
2714 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2715 * fault situation. What's more, the Trap0eHandler has already set the
2716 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2717 * might need setting the accessed flag.
2718 *
2719 * The best idea is to leave this change to the caller and add an
2720 * assertion that it's set already. */
2721 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2722 if (fPageTable)
2723 {
2724 /*
2725 * Page table - 4KB.
2726 *
2727 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2728 */
2729 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2730 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2731 PGSTPT pPTSrc;
2732 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2733 if (RT_SUCCESS(rc))
2734 {
2735 /*
2736 * Start by syncing the page directory entry so CSAM's TLB trick works.
2737 */
2738 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2739 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2740 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2741 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2742
2743 /*
2744 * Directory/page user or supervisor privilege: (same goes for read/write)
2745 *
2746 * Directory Page Combined
2747 * U/S U/S U/S
2748 * 0 0 0
2749 * 0 1 0
2750 * 1 0 0
2751 * 1 1 1
2752 *
2753 * Simple AND operation. Table listed for completeness.
2754 *
2755 */
2756 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2757# ifdef PGM_SYNC_N_PAGES
2758 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2759 unsigned iPTDst = iPTBase;
2760 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2761 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2762 iPTDst = 0;
2763 else
2764 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2765# else /* !PGM_SYNC_N_PAGES */
2766 unsigned iPTDst = 0;
2767 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2768# endif /* !PGM_SYNC_N_PAGES */
2769 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2770 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2771# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2772 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2773 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2774# else
2775 const unsigned offPTSrc = 0;
2776# endif
2777 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2778 {
2779 const unsigned iPTSrc = iPTDst + offPTSrc;
2780 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2781
2782 if (PteSrc.n.u1Present)
2783 {
2784# ifndef IN_RING0
2785 /*
2786 * Assuming kernel code will be marked as supervisor - and not as user level
2787 * and executed using a conforming code selector - And marked as readonly.
2788 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2789 */
2790 PPGMPAGE pPage;
2791 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2792 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2793 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc)))
2794 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2795 )
2796# endif
2797 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2798 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2799 GCPtrCur,
2800 PteSrc.n.u1Present,
2801 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2802 PteSrc.n.u1User & PdeSrc.n.u1User,
2803 (uint64_t)PteSrc.u,
2804 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2805 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2806 }
2807 /* else: the page table was cleared by the pool */
2808 } /* for PTEs */
2809 }
2810 }
2811 else
2812 {
2813 /*
2814 * Big page - 2/4MB.
2815 *
2816 * We'll walk the ram range list in parallel and optimize lookups.
2817 * We will only sync on shadow page table at a time.
2818 */
2819 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2820
2821 /**
2822 * @todo It might be more efficient to sync only a part of the 4MB
2823 * page (similar to what we do for 4KB PDs).
2824 */
2825
2826 /*
2827 * Start by syncing the page directory entry.
2828 */
2829 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2830 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2831
2832 /*
2833 * If the page is not flagged as dirty and is writable, then make it read-only
2834 * at PD level, so we can set the dirty bit when the page is modified.
2835 *
2836 * ASSUMES that page access handlers are implemented on page table entry level.
2837 * Thus we will first catch the dirty access and set PDE.D and restart. If
2838 * there is an access handler, we'll trap again and let it work on the problem.
2839 */
2840 /** @todo move the above stuff to a section in the PGM documentation. */
2841 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2842 if ( !PdeSrc.b.u1Dirty
2843 && PdeSrc.b.u1Write)
2844 {
2845 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2846 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2847 PdeDst.b.u1Write = 0;
2848 }
2849 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2850 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2851
2852 /*
2853 * Fill the shadow page table.
2854 */
2855 /* Get address and flags from the source PDE. */
2856 SHWPTE PteDstBase;
2857 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2858
2859 /* Loop thru the entries in the shadow PT. */
2860 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2861 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2862 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2863 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2864 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2865 unsigned iPTDst = 0;
2866 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2867 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2868 {
2869 /* Advance ram range list. */
2870 while (pRam && GCPhys > pRam->GCPhysLast)
2871 pRam = pRam->CTX_SUFF(pNext);
2872 if (pRam && GCPhys >= pRam->GCPhys)
2873 {
2874 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2875 do
2876 {
2877 /* Make shadow PTE. */
2878 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2879 SHWPTE PteDst;
2880
2881# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2882 /* Try to make the page writable if necessary. */
2883 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2884 && ( PGM_PAGE_IS_ZERO(pPage)
2885 || ( SHW_PTE_IS_RW(PteDstBase)
2886 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2887# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2888 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2889# endif
2890# ifdef VBOX_WITH_PAGE_SHARING
2891 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2892# endif
2893 && !PGM_PAGE_IS_BALLOONED(pPage))
2894 )
2895 )
2896 {
2897 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2898 AssertRCReturn(rc, rc);
2899 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2900 break;
2901 }
2902# endif
2903
2904 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2905 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2906 else if (PGM_PAGE_IS_BALLOONED(pPage))
2907 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2908# ifndef IN_RING0
2909 /*
2910 * Assuming kernel code will be marked as supervisor and not as user level and executed
2911 * using a conforming code selector. Don't check for readonly, as that implies the whole
2912 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2913 */
2914 else if ( !PdeSrc.n.u1User
2915 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2916 SHW_PTE_SET(PteDst, 0);
2917# endif
2918 else
2919 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2920
2921 /* Only map writable pages writable. */
2922 if ( SHW_PTE_IS_P_RW(PteDst)
2923 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2924 {
2925 /* Still applies to shared pages. */
2926 Assert(!PGM_PAGE_IS_ZERO(pPage));
2927 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2928 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2929 }
2930
2931 if (SHW_PTE_IS_P(PteDst))
2932 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2933
2934 /* commit it (not atomic, new table) */
2935 pPTDst->a[iPTDst] = PteDst;
2936 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2937 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2938 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2939
2940 /* advance */
2941 GCPhys += PAGE_SIZE;
2942 iHCPage++;
2943 iPTDst++;
2944 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2945 && GCPhys <= pRam->GCPhysLast);
2946 }
2947 else if (pRam)
2948 {
2949 Log(("Invalid pages at %RGp\n", GCPhys));
2950 do
2951 {
2952 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2953 GCPhys += PAGE_SIZE;
2954 iPTDst++;
2955 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2956 && GCPhys < pRam->GCPhys);
2957 }
2958 else
2959 {
2960 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2961 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2962 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2963 }
2964 } /* while more PTEs */
2965 } /* 4KB / 4MB */
2966 }
2967 else
2968 AssertRelease(!PdeDst.n.u1Present);
2969
2970 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2971 if (RT_FAILURE(rc))
2972 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2973 return rc;
2974
2975#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2976 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2977 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2978 && !defined(IN_RC)
2979
2980 /*
2981 * Validate input a little bit.
2982 */
2983 int rc = VINF_SUCCESS;
2984# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2985 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2986 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2987
2988 /* Fetch the pgm pool shadow descriptor. */
2989 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2990 Assert(pShwPde);
2991
2992# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2993 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2994 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
2995 PX86PDPAE pPDDst;
2996 PSHWPDE pPdeDst;
2997
2998 /* Fetch the pgm pool shadow descriptor. */
2999 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3000 AssertRCSuccessReturn(rc, rc);
3001 Assert(pShwPde);
3002
3003 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3004 pPdeDst = &pPDDst->a[iPDDst];
3005
3006# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3007 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3008 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3009 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3010 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3011 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3012 AssertRCSuccessReturn(rc, rc);
3013 Assert(pPDDst);
3014 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3015
3016 /* Fetch the pgm pool shadow descriptor. */
3017 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3018 Assert(pShwPde);
3019
3020# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3021 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3022 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3023 PEPTPD pPDDst;
3024 PEPTPDPT pPdptDst;
3025
3026 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3027 if (rc != VINF_SUCCESS)
3028 {
3029 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3030 AssertRC(rc);
3031 return rc;
3032 }
3033 Assert(pPDDst);
3034 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3035
3036 /* Fetch the pgm pool shadow descriptor. */
3037 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3038 Assert(pShwPde);
3039# endif
3040 SHWPDE PdeDst = *pPdeDst;
3041
3042 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3043 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3044
3045# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3046 if (BTH_IS_NP_ACTIVE(pVM))
3047 {
3048 PPGMPAGE pPage;
3049
3050 /* Check if we allocated a big page before for this 2 MB range. */
3051 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3052 if (RT_SUCCESS(rc))
3053 {
3054 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3055
3056 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3057 {
3058 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3059 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3060 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3061 }
3062 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3063 {
3064 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3065 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3066 if (RT_SUCCESS(rc))
3067 {
3068 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3069 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3070 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3071 }
3072 }
3073 else if (PGMIsUsingLargePages(pVM))
3074 {
3075 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3076 if (RT_SUCCESS(rc))
3077 {
3078 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3079 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3080 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3081 }
3082 else
3083 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3084 }
3085
3086 if (HCPhys != NIL_RTHCPHYS)
3087 {
3088 PdeDst.u &= X86_PDE_AVL_MASK;
3089 PdeDst.u |= HCPhys;
3090 PdeDst.n.u1Present = 1;
3091 PdeDst.n.u1Write = 1;
3092 PdeDst.b.u1Size = 1;
3093# if PGM_SHW_TYPE == PGM_TYPE_EPT
3094 PdeDst.n.u1Execute = 1;
3095 PdeDst.b.u1IgnorePAT = 1;
3096 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3097# else
3098 PdeDst.n.u1User = 1;
3099# endif
3100 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3101
3102 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3103 /* Add a reference to the first page only. */
3104 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3105
3106 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3107 return VINF_SUCCESS;
3108 }
3109 }
3110 }
3111# endif /* HC_ARCH_BITS == 64 */
3112
3113 GSTPDE PdeSrc;
3114 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3115 PdeSrc.n.u1Present = 1;
3116 PdeSrc.n.u1Write = 1;
3117 PdeSrc.n.u1Accessed = 1;
3118 PdeSrc.n.u1User = 1;
3119
3120 /*
3121 * Allocate & map the page table.
3122 */
3123 PSHWPT pPTDst;
3124 PPGMPOOLPAGE pShwPage;
3125 RTGCPHYS GCPhys;
3126
3127 /* Virtual address = physical address */
3128 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3129 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3130
3131 if ( rc == VINF_SUCCESS
3132 || rc == VINF_PGM_CACHED_PAGE)
3133 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3134 else
3135 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3136
3137 PdeDst.u &= X86_PDE_AVL_MASK;
3138 PdeDst.u |= pShwPage->Core.Key;
3139 PdeDst.n.u1Present = 1;
3140 PdeDst.n.u1Write = 1;
3141# if PGM_SHW_TYPE == PGM_TYPE_EPT
3142 PdeDst.n.u1Execute = 1;
3143# else
3144 PdeDst.n.u1User = 1;
3145 PdeDst.n.u1Accessed = 1;
3146# endif
3147 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3148
3149 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3150 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3151 return rc;
3152
3153#else
3154 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3155 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3156 return VERR_INTERNAL_ERROR;
3157#endif
3158}
3159
3160
3161
3162/**
3163 * Prefetch a page/set of pages.
3164 *
3165 * Typically used to sync commonly used pages before entering raw mode
3166 * after a CR3 reload.
3167 *
3168 * @returns VBox status code.
3169 * @param pVCpu The VMCPU handle.
3170 * @param GCPtrPage Page to invalidate.
3171 */
3172PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3173{
3174#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3175 || PGM_GST_TYPE == PGM_TYPE_REAL \
3176 || PGM_GST_TYPE == PGM_TYPE_PROT \
3177 || PGM_GST_TYPE == PGM_TYPE_PAE \
3178 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3179 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3180 && PGM_SHW_TYPE != PGM_TYPE_EPT
3181
3182 /*
3183 * Check that all Guest levels thru the PDE are present, getting the
3184 * PD and PDE in the processes.
3185 */
3186 int rc = VINF_SUCCESS;
3187# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3188# if PGM_GST_TYPE == PGM_TYPE_32BIT
3189 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3190 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3191# elif PGM_GST_TYPE == PGM_TYPE_PAE
3192 unsigned iPDSrc;
3193 X86PDPE PdpeSrc;
3194 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3195 if (!pPDSrc)
3196 return VINF_SUCCESS; /* not present */
3197# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3198 unsigned iPDSrc;
3199 PX86PML4E pPml4eSrc;
3200 X86PDPE PdpeSrc;
3201 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3202 if (!pPDSrc)
3203 return VINF_SUCCESS; /* not present */
3204# endif
3205 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3206# else
3207 PGSTPD pPDSrc = NULL;
3208 const unsigned iPDSrc = 0;
3209 GSTPDE PdeSrc;
3210
3211 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3212 PdeSrc.n.u1Present = 1;
3213 PdeSrc.n.u1Write = 1;
3214 PdeSrc.n.u1Accessed = 1;
3215 PdeSrc.n.u1User = 1;
3216# endif
3217
3218 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3219 {
3220 PVM pVM = pVCpu->CTX_SUFF(pVM);
3221 pgmLock(pVM);
3222
3223# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3224 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3225# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3226 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3227 PX86PDPAE pPDDst;
3228 X86PDEPAE PdeDst;
3229# if PGM_GST_TYPE != PGM_TYPE_PAE
3230 X86PDPE PdpeSrc;
3231
3232 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3233 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3234# endif
3235 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3236 if (rc != VINF_SUCCESS)
3237 {
3238 pgmUnlock(pVM);
3239 AssertRC(rc);
3240 return rc;
3241 }
3242 Assert(pPDDst);
3243 PdeDst = pPDDst->a[iPDDst];
3244
3245# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3246 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3247 PX86PDPAE pPDDst;
3248 X86PDEPAE PdeDst;
3249
3250# if PGM_GST_TYPE == PGM_TYPE_PROT
3251 /* AMD-V nested paging */
3252 X86PML4E Pml4eSrc;
3253 X86PDPE PdpeSrc;
3254 PX86PML4E pPml4eSrc = &Pml4eSrc;
3255
3256 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3257 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3258 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3259# endif
3260
3261 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3262 if (rc != VINF_SUCCESS)
3263 {
3264 pgmUnlock(pVM);
3265 AssertRC(rc);
3266 return rc;
3267 }
3268 Assert(pPDDst);
3269 PdeDst = pPDDst->a[iPDDst];
3270# endif
3271 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3272 {
3273 if (!PdeDst.n.u1Present)
3274 {
3275 /** @todo r=bird: This guy will set the A bit on the PDE,
3276 * probably harmless. */
3277 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3278 }
3279 else
3280 {
3281 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3282 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3283 * makes no sense to prefetch more than one page.
3284 */
3285 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3286 if (RT_SUCCESS(rc))
3287 rc = VINF_SUCCESS;
3288 }
3289 }
3290 pgmUnlock(pVM);
3291 }
3292 return rc;
3293
3294#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3295 return VINF_SUCCESS; /* ignore */
3296#else
3297 AssertCompile(0);
3298#endif
3299}
3300
3301
3302
3303
3304/**
3305 * Syncs a page during a PGMVerifyAccess() call.
3306 *
3307 * @returns VBox status code (informational included).
3308 * @param pVCpu The VMCPU handle.
3309 * @param GCPtrPage The address of the page to sync.
3310 * @param fPage The effective guest page flags.
3311 * @param uErr The trap error code.
3312 * @remarks This will normally never be called on invalid guest page
3313 * translation entries.
3314 */
3315PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3316{
3317 PVM pVM = pVCpu->CTX_SUFF(pVM);
3318
3319 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3320
3321 Assert(!pVM->pgm.s.fNestedPaging);
3322#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3323 || PGM_GST_TYPE == PGM_TYPE_REAL \
3324 || PGM_GST_TYPE == PGM_TYPE_PROT \
3325 || PGM_GST_TYPE == PGM_TYPE_PAE \
3326 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3327 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3328 && PGM_SHW_TYPE != PGM_TYPE_EPT
3329
3330# ifndef IN_RING0
3331 if (!(fPage & X86_PTE_US))
3332 {
3333 /*
3334 * Mark this page as safe.
3335 */
3336 /** @todo not correct for pages that contain both code and data!! */
3337 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3338 CSAMMarkPage(pVM, GCPtrPage, true);
3339 }
3340# endif
3341
3342 /*
3343 * Get guest PD and index.
3344 */
3345 /** @todo Performance: We've done all this a jiffy ago in the
3346 * PGMGstGetPage call. */
3347# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3348# if PGM_GST_TYPE == PGM_TYPE_32BIT
3349 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3350 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3351
3352# elif PGM_GST_TYPE == PGM_TYPE_PAE
3353 unsigned iPDSrc = 0;
3354 X86PDPE PdpeSrc;
3355 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3356 if (RT_UNLIKELY(!pPDSrc))
3357 {
3358 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3359 return VINF_EM_RAW_GUEST_TRAP;
3360 }
3361
3362# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3363 unsigned iPDSrc = 0; /* shut up gcc */
3364 PX86PML4E pPml4eSrc = NULL; /* ditto */
3365 X86PDPE PdpeSrc;
3366 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3367 if (RT_UNLIKELY(!pPDSrc))
3368 {
3369 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3370 return VINF_EM_RAW_GUEST_TRAP;
3371 }
3372# endif
3373
3374# else /* !PGM_WITH_PAGING */
3375 PGSTPD pPDSrc = NULL;
3376 const unsigned iPDSrc = 0;
3377# endif /* !PGM_WITH_PAGING */
3378 int rc = VINF_SUCCESS;
3379
3380 pgmLock(pVM);
3381
3382 /*
3383 * First check if the shadow pd is present.
3384 */
3385# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3386 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3387
3388# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3389 PX86PDEPAE pPdeDst;
3390 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3391 PX86PDPAE pPDDst;
3392# if PGM_GST_TYPE != PGM_TYPE_PAE
3393 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3394 X86PDPE PdpeSrc;
3395 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3396# endif
3397 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3398 if (rc != VINF_SUCCESS)
3399 {
3400 pgmUnlock(pVM);
3401 AssertRC(rc);
3402 return rc;
3403 }
3404 Assert(pPDDst);
3405 pPdeDst = &pPDDst->a[iPDDst];
3406
3407# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3408 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3409 PX86PDPAE pPDDst;
3410 PX86PDEPAE pPdeDst;
3411
3412# if PGM_GST_TYPE == PGM_TYPE_PROT
3413 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3414 X86PML4E Pml4eSrc;
3415 X86PDPE PdpeSrc;
3416 PX86PML4E pPml4eSrc = &Pml4eSrc;
3417 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3418 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3419# endif
3420
3421 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3422 if (rc != VINF_SUCCESS)
3423 {
3424 pgmUnlock(pVM);
3425 AssertRC(rc);
3426 return rc;
3427 }
3428 Assert(pPDDst);
3429 pPdeDst = &pPDDst->a[iPDDst];
3430# endif
3431
3432 if (!pPdeDst->n.u1Present)
3433 {
3434 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3435 if (rc != VINF_SUCCESS)
3436 {
3437 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3438 pgmUnlock(pVM);
3439 AssertRC(rc);
3440 return rc;
3441 }
3442 }
3443
3444# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3445 /* Check for dirty bit fault */
3446 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3447 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3448 Log(("PGMVerifyAccess: success (dirty)\n"));
3449 else
3450# endif
3451 {
3452# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3453 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3454# else
3455 GSTPDE PdeSrc;
3456 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3457 PdeSrc.n.u1Present = 1;
3458 PdeSrc.n.u1Write = 1;
3459 PdeSrc.n.u1Accessed = 1;
3460 PdeSrc.n.u1User = 1;
3461# endif
3462
3463 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3464 if (uErr & X86_TRAP_PF_US)
3465 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3466 else /* supervisor */
3467 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3468
3469 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3470 if (RT_SUCCESS(rc))
3471 {
3472 /* Page was successfully synced */
3473 Log2(("PGMVerifyAccess: success (sync)\n"));
3474 rc = VINF_SUCCESS;
3475 }
3476 else
3477 {
3478 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3479 rc = VINF_EM_RAW_GUEST_TRAP;
3480 }
3481 }
3482 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3483 pgmUnlock(pVM);
3484 return rc;
3485
3486#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3487
3488 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3489 return VERR_INTERNAL_ERROR;
3490#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3491}
3492
3493
3494/**
3495 * Syncs the paging hierarchy starting at CR3.
3496 *
3497 * @returns VBox status code, no specials.
3498 * @param pVCpu The VMCPU handle.
3499 * @param cr0 Guest context CR0 register
3500 * @param cr3 Guest context CR3 register
3501 * @param cr4 Guest context CR4 register
3502 * @param fGlobal Including global page directories or not
3503 */
3504PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3505{
3506 PVM pVM = pVCpu->CTX_SUFF(pVM);
3507
3508 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3509
3510#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3511
3512 pgmLock(pVM);
3513
3514# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3515 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3516 if (pPool->cDirtyPages)
3517 pgmPoolResetDirtyPages(pVM);
3518# endif
3519
3520 /*
3521 * Update page access handlers.
3522 * The virtual are always flushed, while the physical are only on demand.
3523 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3524 * have to look into that later because it will have a bad influence on the performance.
3525 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3526 * bird: Yes, but that won't work for aliases.
3527 */
3528 /** @todo this MUST go away. See #1557. */
3529 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3530 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3531 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3532 pgmUnlock(pVM);
3533#endif /* !NESTED && !EPT */
3534
3535#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3536 /*
3537 * Nested / EPT - almost no work.
3538 */
3539 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3540 return VINF_SUCCESS;
3541
3542#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3543 /*
3544 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3545 * out the shadow parts when the guest modifies its tables.
3546 */
3547 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3548 return VINF_SUCCESS;
3549
3550#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3551
3552# ifndef PGM_WITHOUT_MAPPINGS
3553 /*
3554 * Check for and resolve conflicts with our guest mappings if they
3555 * are enabled and not fixed.
3556 */
3557 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3558 {
3559 int rc = pgmMapResolveConflicts(pVM);
3560 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3561 if (rc == VINF_PGM_SYNC_CR3)
3562 {
3563 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3564 return VINF_PGM_SYNC_CR3;
3565 }
3566 }
3567# else
3568 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3569# endif
3570 return VINF_SUCCESS;
3571#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3572}
3573
3574
3575
3576
3577#ifdef VBOX_STRICT
3578# ifdef IN_RC
3579# undef AssertMsgFailed
3580# define AssertMsgFailed Log
3581# endif
3582
3583/**
3584 * Checks that the shadow page table is in sync with the guest one.
3585 *
3586 * @returns The number of errors.
3587 * @param pVM The virtual machine.
3588 * @param pVCpu The VMCPU handle.
3589 * @param cr3 Guest context CR3 register
3590 * @param cr4 Guest context CR4 register
3591 * @param GCPtr Where to start. Defaults to 0.
3592 * @param cb How much to check. Defaults to everything.
3593 */
3594PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3595{
3596#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3597 return 0;
3598#else
3599 unsigned cErrors = 0;
3600 PVM pVM = pVCpu->CTX_SUFF(pVM);
3601 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3602
3603#if PGM_GST_TYPE == PGM_TYPE_PAE
3604 /** @todo currently broken; crashes below somewhere */
3605 AssertFailed();
3606#endif
3607
3608#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3609 || PGM_GST_TYPE == PGM_TYPE_PAE \
3610 || PGM_GST_TYPE == PGM_TYPE_AMD64
3611
3612 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3613 PPGMCPU pPGM = &pVCpu->pgm.s;
3614 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3615 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3616# ifndef IN_RING0
3617 RTHCPHYS HCPhys; /* general usage. */
3618# endif
3619 int rc;
3620
3621 /*
3622 * Check that the Guest CR3 and all its mappings are correct.
3623 */
3624 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3625 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3626 false);
3627# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3628# if PGM_GST_TYPE == PGM_TYPE_32BIT
3629 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3630# else
3631 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3632# endif
3633 AssertRCReturn(rc, 1);
3634 HCPhys = NIL_RTHCPHYS;
3635 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3636 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3637# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3638 pgmGstGet32bitPDPtr(pVCpu);
3639 RTGCPHYS GCPhys;
3640 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3641 AssertRCReturn(rc, 1);
3642 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3643# endif
3644# endif /* !IN_RING0 */
3645
3646 /*
3647 * Get and check the Shadow CR3.
3648 */
3649# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3650 unsigned cPDEs = X86_PG_ENTRIES;
3651 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3652# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3653# if PGM_GST_TYPE == PGM_TYPE_32BIT
3654 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3655# else
3656 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3657# endif
3658 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3659# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3660 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3661 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3662# endif
3663 if (cb != ~(RTGCPTR)0)
3664 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3665
3666/** @todo call the other two PGMAssert*() functions. */
3667
3668# if PGM_GST_TYPE == PGM_TYPE_AMD64
3669 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3670
3671 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3672 {
3673 PPGMPOOLPAGE pShwPdpt = NULL;
3674 PX86PML4E pPml4eSrc;
3675 PX86PML4E pPml4eDst;
3676 RTGCPHYS GCPhysPdptSrc;
3677
3678 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3679 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3680
3681 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3682 if (!pPml4eDst->n.u1Present)
3683 {
3684 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3685 continue;
3686 }
3687
3688 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3689 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK;
3690
3691 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3692 {
3693 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3694 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3695 cErrors++;
3696 continue;
3697 }
3698
3699 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3700 {
3701 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3702 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3703 cErrors++;
3704 continue;
3705 }
3706
3707 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3708 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3709 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3710 {
3711 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3712 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3713 cErrors++;
3714 continue;
3715 }
3716# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3717 {
3718# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3719
3720# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3721 /*
3722 * Check the PDPTEs too.
3723 */
3724 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3725
3726 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3727 {
3728 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3729 PPGMPOOLPAGE pShwPde = NULL;
3730 PX86PDPE pPdpeDst;
3731 RTGCPHYS GCPhysPdeSrc;
3732# if PGM_GST_TYPE == PGM_TYPE_PAE
3733 X86PDPE PdpeSrc;
3734 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3735 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3736# else
3737 PX86PML4E pPml4eSrcIgn;
3738 X86PDPE PdpeSrc;
3739 PX86PDPT pPdptDst;
3740 PX86PDPAE pPDDst;
3741 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3742
3743 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3744 if (rc != VINF_SUCCESS)
3745 {
3746 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3747 GCPtr += 512 * _2M;
3748 continue; /* next PDPTE */
3749 }
3750 Assert(pPDDst);
3751# endif
3752 Assert(iPDSrc == 0);
3753
3754 pPdpeDst = &pPdptDst->a[iPdpt];
3755
3756 if (!pPdpeDst->n.u1Present)
3757 {
3758 GCPtr += 512 * _2M;
3759 continue; /* next PDPTE */
3760 }
3761
3762 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3763 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3764
3765 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3766 {
3767 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3768 GCPtr += 512 * _2M;
3769 cErrors++;
3770 continue;
3771 }
3772
3773 if (GCPhysPdeSrc != pShwPde->GCPhys)
3774 {
3775# if PGM_GST_TYPE == PGM_TYPE_AMD64
3776 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3777# else
3778 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3779# endif
3780 GCPtr += 512 * _2M;
3781 cErrors++;
3782 continue;
3783 }
3784
3785# if PGM_GST_TYPE == PGM_TYPE_AMD64
3786 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3787 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3788 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3789 {
3790 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3791 GCPtr += 512 * _2M;
3792 cErrors++;
3793 continue;
3794 }
3795# endif
3796
3797# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3798 {
3799# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3800# if PGM_GST_TYPE == PGM_TYPE_32BIT
3801 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3802# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3803 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3804# endif
3805# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3806 /*
3807 * Iterate the shadow page directory.
3808 */
3809 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3810 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3811
3812 for (;
3813 iPDDst < cPDEs;
3814 iPDDst++, GCPtr += cIncrement)
3815 {
3816# if PGM_SHW_TYPE == PGM_TYPE_PAE
3817 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3818# else
3819 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3820# endif
3821 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3822 {
3823 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3824 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3825 {
3826 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3827 cErrors++;
3828 continue;
3829 }
3830 }
3831 else if ( (PdeDst.u & X86_PDE_P)
3832 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3833 )
3834 {
3835 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3836 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3837 if (!pPoolPage)
3838 {
3839 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3840 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3841 cErrors++;
3842 continue;
3843 }
3844 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3845
3846 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3847 {
3848 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3849 GCPtr, (uint64_t)PdeDst.u));
3850 cErrors++;
3851 }
3852
3853 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3854 {
3855 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3856 GCPtr, (uint64_t)PdeDst.u));
3857 cErrors++;
3858 }
3859
3860 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3861 if (!PdeSrc.n.u1Present)
3862 {
3863 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3864 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3865 cErrors++;
3866 continue;
3867 }
3868
3869 if ( !PdeSrc.b.u1Size
3870 || !fBigPagesSupported)
3871 {
3872 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3873# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3874 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3875# endif
3876 }
3877 else
3878 {
3879# if PGM_GST_TYPE == PGM_TYPE_32BIT
3880 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3881 {
3882 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3883 GCPtr, (uint64_t)PdeSrc.u));
3884 cErrors++;
3885 continue;
3886 }
3887# endif
3888 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3889# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3890 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3891# endif
3892 }
3893
3894 if ( pPoolPage->enmKind
3895 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3896 {
3897 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3898 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3899 cErrors++;
3900 }
3901
3902 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3903 if (!pPhysPage)
3904 {
3905 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3906 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3907 cErrors++;
3908 continue;
3909 }
3910
3911 if (GCPhysGst != pPoolPage->GCPhys)
3912 {
3913 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3914 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3915 cErrors++;
3916 continue;
3917 }
3918
3919 if ( !PdeSrc.b.u1Size
3920 || !fBigPagesSupported)
3921 {
3922 /*
3923 * Page Table.
3924 */
3925 const GSTPT *pPTSrc;
3926 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3927 if (RT_FAILURE(rc))
3928 {
3929 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3930 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3931 cErrors++;
3932 continue;
3933 }
3934 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3935 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3936 {
3937 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3938 // (This problem will go away when/if we shadow multiple CR3s.)
3939 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3940 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3941 cErrors++;
3942 continue;
3943 }
3944 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3945 {
3946 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3947 GCPtr, (uint64_t)PdeDst.u));
3948 cErrors++;
3949 continue;
3950 }
3951
3952 /* iterate the page table. */
3953# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3954 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3955 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3956# else
3957 const unsigned offPTSrc = 0;
3958# endif
3959 for (unsigned iPT = 0, off = 0;
3960 iPT < RT_ELEMENTS(pPTDst->a);
3961 iPT++, off += PAGE_SIZE)
3962 {
3963 const SHWPTE PteDst = pPTDst->a[iPT];
3964
3965 /* skip not-present and dirty tracked entries. */
3966 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3967 continue;
3968 Assert(SHW_PTE_IS_P(PteDst));
3969
3970 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3971 if (!PteSrc.n.u1Present)
3972 {
3973# ifdef IN_RING3
3974 PGMAssertHandlerAndFlagsInSync(pVM);
3975 DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3976 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3977 0, 0, UINT64_MAX, 99, NULL);
3978# endif
3979 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
3980 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
3981 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
3982 cErrors++;
3983 continue;
3984 }
3985
3986 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
3987# if 1 /** @todo sync accessed bit properly... */
3988 fIgnoreFlags |= X86_PTE_A;
3989# endif
3990
3991 /* match the physical addresses */
3992 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
3993 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
3994
3995# ifdef IN_RING3
3996 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
3997 if (RT_FAILURE(rc))
3998 {
3999 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4000 {
4001 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4002 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4003 cErrors++;
4004 continue;
4005 }
4006 }
4007 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4008 {
4009 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4010 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4011 cErrors++;
4012 continue;
4013 }
4014# endif
4015
4016 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4017 if (!pPhysPage)
4018 {
4019# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4020 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4021 {
4022 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4023 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4024 cErrors++;
4025 continue;
4026 }
4027# endif
4028 if (SHW_PTE_IS_RW(PteDst))
4029 {
4030 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4031 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4032 cErrors++;
4033 }
4034 fIgnoreFlags |= X86_PTE_RW;
4035 }
4036 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4037 {
4038 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4039 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4040 cErrors++;
4041 continue;
4042 }
4043
4044 /* flags */
4045 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4046 {
4047 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4048 {
4049 if (SHW_PTE_IS_RW(PteDst))
4050 {
4051 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4052 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4053 cErrors++;
4054 continue;
4055 }
4056 fIgnoreFlags |= X86_PTE_RW;
4057 }
4058 else
4059 {
4060 if ( SHW_PTE_IS_P(PteDst)
4061# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4062 && !PGM_PAGE_IS_MMIO(pPhysPage)
4063# endif
4064 )
4065 {
4066 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4067 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4068 cErrors++;
4069 continue;
4070 }
4071 fIgnoreFlags |= X86_PTE_P;
4072 }
4073 }
4074 else
4075 {
4076 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4077 {
4078 if (SHW_PTE_IS_RW(PteDst))
4079 {
4080 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4081 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4082 cErrors++;
4083 continue;
4084 }
4085 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4086 {
4087 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4088 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4089 cErrors++;
4090 continue;
4091 }
4092 if (SHW_PTE_IS_D(PteDst))
4093 {
4094 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4095 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4096 cErrors++;
4097 }
4098# if 0 /** @todo sync access bit properly... */
4099 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4100 {
4101 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4102 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4103 cErrors++;
4104 }
4105 fIgnoreFlags |= X86_PTE_RW;
4106# else
4107 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4108# endif
4109 }
4110 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4111 {
4112 /* access bit emulation (not implemented). */
4113 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4114 {
4115 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4116 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4117 cErrors++;
4118 continue;
4119 }
4120 if (!SHW_PTE_IS_A(PteDst))
4121 {
4122 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4123 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4124 cErrors++;
4125 }
4126 fIgnoreFlags |= X86_PTE_P;
4127 }
4128# ifdef DEBUG_sandervl
4129 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4130# endif
4131 }
4132
4133 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4134 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4135 )
4136 {
4137 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4138 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4139 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4140 cErrors++;
4141 continue;
4142 }
4143 } /* foreach PTE */
4144 }
4145 else
4146 {
4147 /*
4148 * Big Page.
4149 */
4150 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4151 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4152 {
4153 if (PdeDst.n.u1Write)
4154 {
4155 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4156 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4157 cErrors++;
4158 continue;
4159 }
4160 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4161 {
4162 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4163 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4164 cErrors++;
4165 continue;
4166 }
4167# if 0 /** @todo sync access bit properly... */
4168 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4169 {
4170 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4171 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4172 cErrors++;
4173 }
4174 fIgnoreFlags |= X86_PTE_RW;
4175# else
4176 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4177# endif
4178 }
4179 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4180 {
4181 /* access bit emulation (not implemented). */
4182 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4183 {
4184 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4185 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4186 cErrors++;
4187 continue;
4188 }
4189 if (!PdeDst.n.u1Accessed)
4190 {
4191 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4192 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4193 cErrors++;
4194 }
4195 fIgnoreFlags |= X86_PTE_P;
4196 }
4197
4198 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4199 {
4200 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4201 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4202 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4203 cErrors++;
4204 }
4205
4206 /* iterate the page table. */
4207 for (unsigned iPT = 0, off = 0;
4208 iPT < RT_ELEMENTS(pPTDst->a);
4209 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4210 {
4211 const SHWPTE PteDst = pPTDst->a[iPT];
4212
4213 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4214 {
4215 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4216 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4217 cErrors++;
4218 }
4219
4220 /* skip not-present entries. */
4221 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4222 continue;
4223
4224 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4225
4226 /* match the physical addresses */
4227 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4228
4229# ifdef IN_RING3
4230 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4231 if (RT_FAILURE(rc))
4232 {
4233 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4234 {
4235 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4236 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4237 cErrors++;
4238 }
4239 }
4240 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4241 {
4242 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4243 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4244 cErrors++;
4245 continue;
4246 }
4247# endif
4248 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4249 if (!pPhysPage)
4250 {
4251# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4252 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4253 {
4254 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4255 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4256 cErrors++;
4257 continue;
4258 }
4259# endif
4260 if (SHW_PTE_IS_RW(PteDst))
4261 {
4262 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4263 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4264 cErrors++;
4265 }
4266 fIgnoreFlags |= X86_PTE_RW;
4267 }
4268 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4269 {
4270 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4271 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4272 cErrors++;
4273 continue;
4274 }
4275
4276 /* flags */
4277 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4278 {
4279 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4280 {
4281 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4282 {
4283 if (SHW_PTE_IS_RW(PteDst))
4284 {
4285 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4286 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4287 cErrors++;
4288 continue;
4289 }
4290 fIgnoreFlags |= X86_PTE_RW;
4291 }
4292 }
4293 else
4294 {
4295 if ( SHW_PTE_IS_P(PteDst)
4296# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4297 && !PGM_PAGE_IS_MMIO(pPhysPage)
4298# endif
4299 )
4300 {
4301 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4302 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4303 cErrors++;
4304 continue;
4305 }
4306 fIgnoreFlags |= X86_PTE_P;
4307 }
4308 }
4309
4310 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4311 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4312 )
4313 {
4314 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4315 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4316 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4317 cErrors++;
4318 continue;
4319 }
4320 } /* for each PTE */
4321 }
4322 }
4323 /* not present */
4324
4325 } /* for each PDE */
4326
4327 } /* for each PDPTE */
4328
4329 } /* for each PML4E */
4330
4331# ifdef DEBUG
4332 if (cErrors)
4333 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4334# endif
4335
4336#endif /* GST == 32BIT, PAE or AMD64 */
4337 return cErrors;
4338
4339#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4340}
4341#endif /* VBOX_STRICT */
4342
4343
4344/**
4345 * Sets up the CR3 for shadow paging
4346 *
4347 * @returns Strict VBox status code.
4348 * @retval VINF_SUCCESS.
4349 *
4350 * @param pVCpu The VMCPU handle.
4351 * @param GCPhysCR3 The physical address in the CR3 register.
4352 */
4353PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4354{
4355 PVM pVM = pVCpu->CTX_SUFF(pVM);
4356
4357 /* Update guest paging info. */
4358#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4359 || PGM_GST_TYPE == PGM_TYPE_PAE \
4360 || PGM_GST_TYPE == PGM_TYPE_AMD64
4361
4362 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4363
4364 /*
4365 * Map the page CR3 points at.
4366 */
4367 RTHCPTR HCPtrGuestCR3;
4368 RTHCPHYS HCPhysGuestCR3;
4369 pgmLock(pVM);
4370 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4371 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4372 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4373 /** @todo this needs some reworking wrt. locking? */
4374# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4375 HCPtrGuestCR3 = NIL_RTHCPTR;
4376 int rc = VINF_SUCCESS;
4377# else
4378 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4379# endif
4380 pgmUnlock(pVM);
4381 if (RT_SUCCESS(rc))
4382 {
4383 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4384 if (RT_SUCCESS(rc))
4385 {
4386# ifdef IN_RC
4387 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4388# endif
4389# if PGM_GST_TYPE == PGM_TYPE_32BIT
4390 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4391# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4392 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4393# endif
4394 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4395
4396# elif PGM_GST_TYPE == PGM_TYPE_PAE
4397 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4398 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4399# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4400 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4401# endif
4402 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4403 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4404
4405 /*
4406 * Map the 4 PDs too.
4407 */
4408 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4409 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4410 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4411 {
4412 if (pGuestPDPT->a[i].n.u1Present)
4413 {
4414 RTHCPTR HCPtr;
4415 RTHCPHYS HCPhys;
4416 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4417 pgmLock(pVM);
4418 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4419 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4420 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4421# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4422 HCPtr = NIL_RTHCPTR;
4423 int rc2 = VINF_SUCCESS;
4424# else
4425 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4426# endif
4427 pgmUnlock(pVM);
4428 if (RT_SUCCESS(rc2))
4429 {
4430 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4431 AssertRCReturn(rc, rc);
4432
4433 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4434# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4435 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4436# endif
4437 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4438 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4439# ifdef IN_RC
4440 PGM_INVL_PG(pVCpu, GCPtr);
4441# endif
4442 continue;
4443 }
4444 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4445 }
4446
4447 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4448# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4449 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4450# endif
4451 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4452 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4453# ifdef IN_RC
4454 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4455# endif
4456 }
4457
4458# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4459 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4460# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4461 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4462# endif
4463# endif
4464 }
4465 else
4466 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4467 }
4468 else
4469 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4470
4471#else /* prot/real stub */
4472 int rc = VINF_SUCCESS;
4473#endif
4474
4475 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4476# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4477 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4478 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4479 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4480 && PGM_GST_TYPE != PGM_TYPE_PROT))
4481
4482 Assert(!pVM->pgm.s.fNestedPaging);
4483
4484 /*
4485 * Update the shadow root page as well since that's not fixed.
4486 */
4487 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4488 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4489 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4490 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4491 PPGMPOOLPAGE pNewShwPageCR3;
4492
4493 pgmLock(pVM);
4494
4495# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4496 if (pPool->cDirtyPages)
4497 pgmPoolResetDirtyPages(pVM);
4498# endif
4499
4500 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4501 rc = pgmPoolAllocEx(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, SHW_POOL_ROOT_IDX,
4502 GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/, &pNewShwPageCR3);
4503 AssertFatalRC(rc);
4504 rc = VINF_SUCCESS;
4505
4506# ifdef IN_RC
4507 /*
4508 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4509 * state will be inconsistent! Flush important things now while
4510 * we still can and then make sure there are no ring-3 calls.
4511 */
4512 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4513 VMMRZCallRing3Disable(pVCpu);
4514# endif
4515
4516 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4517 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4518 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4519# ifdef IN_RING0
4520 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4521 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4522# elif defined(IN_RC)
4523 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4524 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4525# else
4526 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4527 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4528# endif
4529
4530# ifndef PGM_WITHOUT_MAPPINGS
4531 /*
4532 * Apply all hypervisor mappings to the new CR3.
4533 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4534 * make sure we check for conflicts in the new CR3 root.
4535 */
4536# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4537 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4538# endif
4539 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4540 AssertRCReturn(rc, rc);
4541# endif
4542
4543 /* Set the current hypervisor CR3. */
4544 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4545 SELMShadowCR3Changed(pVM, pVCpu);
4546
4547# ifdef IN_RC
4548 /* NOTE: The state is consistent again. */
4549 VMMRZCallRing3Enable(pVCpu);
4550# endif
4551
4552 /* Clean up the old CR3 root. */
4553 if ( pOldShwPageCR3
4554 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4555 {
4556 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4557# ifndef PGM_WITHOUT_MAPPINGS
4558 /* Remove the hypervisor mappings from the shadow page table. */
4559 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4560# endif
4561 /* Mark the page as unlocked; allow flushing again. */
4562 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4563
4564 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4565 }
4566 pgmUnlock(pVM);
4567# endif
4568
4569 return rc;
4570}
4571
4572/**
4573 * Unmaps the shadow CR3.
4574 *
4575 * @returns VBox status, no specials.
4576 * @param pVCpu The VMCPU handle.
4577 */
4578PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4579{
4580 LogFlow(("UnmapCR3\n"));
4581
4582 int rc = VINF_SUCCESS;
4583 PVM pVM = pVCpu->CTX_SUFF(pVM);
4584
4585 /*
4586 * Update guest paging info.
4587 */
4588#if PGM_GST_TYPE == PGM_TYPE_32BIT
4589 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4590# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4591 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4592# endif
4593 pVCpu->pgm.s.pGst32BitPdRC = 0;
4594
4595#elif PGM_GST_TYPE == PGM_TYPE_PAE
4596 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4597# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4598 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4599# endif
4600 pVCpu->pgm.s.pGstPaePdptRC = 0;
4601 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4602 {
4603 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4604# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4605 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4606# endif
4607 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4608 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4609 }
4610
4611#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4612 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4613# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4614 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4615# endif
4616
4617#else /* prot/real mode stub */
4618 /* nothing to do */
4619#endif
4620
4621#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4622 /*
4623 * Update shadow paging info.
4624 */
4625# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4626 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4627 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4628
4629# if PGM_GST_TYPE != PGM_TYPE_REAL
4630 Assert(!pVM->pgm.s.fNestedPaging);
4631# endif
4632
4633 pgmLock(pVM);
4634
4635# ifndef PGM_WITHOUT_MAPPINGS
4636 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4637 /* Remove the hypervisor mappings from the shadow page table. */
4638 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4639# endif
4640
4641 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4642 {
4643 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4644
4645 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4646
4647# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4648 if (pPool->cDirtyPages)
4649 pgmPoolResetDirtyPages(pVM);
4650# endif
4651
4652 /* Mark the page as unlocked; allow flushing again. */
4653 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4654
4655 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4656 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4657 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4658 pVCpu->pgm.s.pShwPageCR3RC = 0;
4659 pVCpu->pgm.s.iShwUser = 0;
4660 pVCpu->pgm.s.iShwUserTable = 0;
4661 }
4662 pgmUnlock(pVM);
4663# endif
4664#endif /* !IN_RC*/
4665
4666 return rc;
4667}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette