VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 32521

Last change on this file since 32521 was 32521, checked in by vboxsync, 14 years ago

Optimization

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 201.0 KB
Line 
1/* $Id: PGMAllBth.h 32521 2010-09-15 13:46:22Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
40PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
42#ifdef VBOX_STRICT
43PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
44#endif
45PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
46PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
47RT_C_DECLS_END
48
49
50/*
51 * Filter out some illegal combinations of guest and shadow paging, so we can
52 * remove redundant checks inside functions.
53 */
54#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
55# error "Invalid combination; PAE guest implies PAE shadow"
56#endif
57
58#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
59 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
60# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
69 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
70# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
71#endif
72
73#ifndef IN_RING3
74
75# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
76/**
77 * Deal with a guest page fault.
78 *
79 * @returns Strict VBox status code.
80 * @retval VINF_EM_RAW_GUEST_TRAP
81 * @retval VINF_EM_RAW_EMULATE_INSTR
82 *
83 * @param pVCpu The current CPU.
84 * @param pGstWalk The guest page table walk result.
85 * @param uErr The error code.
86 */
87PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
88{
89# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
90 /*
91 * Check for write conflicts with our hypervisor mapping.
92 *
93 * If the guest happens to access a non-present page, where our hypervisor
94 * is currently mapped, then we'll create a #PF storm in the guest.
95 */
96 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
97 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
98 {
99 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
100 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
101 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
102 return VINF_EM_RAW_EMULATE_INSTR;
103 }
104# endif
105
106 /*
107 * Calc the error code for the guest trap.
108 */
109 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
110 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
111 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
112 if (pGstWalk->Core.fBadPhysAddr)
113 {
114 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
115 Assert(!pGstWalk->Core.fNotPresent);
116 }
117 else if (!pGstWalk->Core.fNotPresent)
118 uNewErr |= X86_TRAP_PF_P;
119 TRPMSetErrorCode(pVCpu, uNewErr);
120
121 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
122 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
123 return VINF_EM_RAW_GUEST_TRAP;
124}
125# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
126
127
128/**
129 * Deal with a guest page fault.
130 *
131 * The caller has taken the PGM lock.
132 *
133 * @returns Strict VBox status code.
134 *
135 * @param pVCpu The current CPU.
136 * @param uErr The error code.
137 * @param pRegFrame The register frame.
138 * @param pvFault The fault address.
139 * @param pPage The guest page at @a pvFault.
140 * @param pGstWalk The guest page table walk result.
141 * @param pfLockTaken PGM lock taken here or not (out). This is true
142 * when we're called.
143 */
144static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
145 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
146# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
147 , PGSTPTWALK pGstWalk
148# endif
149 )
150{
151# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
153#endif
154 PVM pVM = pVCpu->CTX_SUFF(pVM);
155 int rc;
156
157 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
158 {
159 /*
160 * Physical page access handler.
161 */
162# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
164# else
165 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
166# endif
167 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
168 if (pCur)
169 {
170# ifdef PGM_SYNC_N_PAGES
171 /*
172 * If the region is write protected and we got a page not present fault, then sync
173 * the pages. If the fault was caused by a read, then restart the instruction.
174 * In case of write access continue to the GC write handler.
175 *
176 * ASSUMES that there is only one handler per page or that they have similar write properties.
177 */
178 if ( !(uErr & X86_TRAP_PF_P)
179 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
180 {
181# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
182 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
183# else
184 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
185# endif
186 if ( RT_FAILURE(rc)
187 || !(uErr & X86_TRAP_PF_RW)
188 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
189 {
190 AssertRC(rc);
191 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
192 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
193 return rc;
194 }
195 }
196# endif
197# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
198 /*
199 * If the access was not thru a #PF(RSVD|...) resync the page.
200 */
201 if ( !(uErr & X86_TRAP_PF_RSVD)
202 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
203# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
204 && pGstWalk->Core.fEffectiveRW
205 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
206# endif
207 )
208 {
209# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
210 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
211# else
212 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
213# endif
214 if ( RT_FAILURE(rc)
215 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
216 {
217 AssertRC(rc);
218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
219 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
220 return rc;
221 }
222 }
223# endif
224
225 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
226 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
227 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
228 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
229 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
230 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
231 else
232 {
233 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
234 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
235 }
236
237 if (pCur->CTX_SUFF(pfnHandler))
238 {
239 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
240 void *pvUser = pCur->CTX_SUFF(pvUser);
241# ifdef IN_RING0
242 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
243# else
244 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
245# endif
246
247 STAM_PROFILE_START(&pCur->Stat, h);
248 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
249 {
250 pgmUnlock(pVM);
251 *pfLockTaken = false;
252 }
253
254 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
255
256# ifdef VBOX_WITH_STATISTICS
257 pgmLock(pVM);
258 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
259 if (pCur)
260 STAM_PROFILE_STOP(&pCur->Stat, h);
261 pgmUnlock(pVM);
262# endif
263 }
264 else
265 rc = VINF_EM_RAW_EMULATE_INSTR;
266
267 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
268 return rc;
269 }
270 }
271# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
272 else
273 {
274# ifdef PGM_SYNC_N_PAGES
275 /*
276 * If the region is write protected and we got a page not present fault, then sync
277 * the pages. If the fault was caused by a read, then restart the instruction.
278 * In case of write access continue to the GC write handler.
279 */
280 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
281 && !(uErr & X86_TRAP_PF_P))
282 {
283 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
284 if ( RT_FAILURE(rc)
285 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
286 || !(uErr & X86_TRAP_PF_RW))
287 {
288 AssertRC(rc);
289 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
290 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
291 return rc;
292 }
293 }
294# endif
295 /*
296 * Ok, it's an virtual page access handler.
297 *
298 * Since it's faster to search by address, we'll do that first
299 * and then retry by GCPhys if that fails.
300 */
301 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
302 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
303 * out of sync, because the page was changed without us noticing it (not-present -> present
304 * without invlpg or mov cr3, xxx).
305 */
306 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
307 if (pCur)
308 {
309 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
310 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
311 || !(uErr & X86_TRAP_PF_P)
312 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
313 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
314 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
315
316 if ( pvFault - pCur->Core.Key < pCur->cb
317 && ( uErr & X86_TRAP_PF_RW
318 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
319 {
320# ifdef IN_RC
321 STAM_PROFILE_START(&pCur->Stat, h);
322 RTGCPTR GCPtrStart = pCur->Core.Key;
323 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
324 pgmUnlock(pVM);
325 *pfLockTaken = false;
326
327 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
328
329# ifdef VBOX_WITH_STATISTICS
330 pgmLock(pVM);
331 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
332 if (pCur)
333 STAM_PROFILE_STOP(&pCur->Stat, h);
334 pgmUnlock(pVM);
335# endif
336# else
337 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
338# endif
339 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
340 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
341 return rc;
342 }
343 /* Unhandled part of a monitored page */
344 }
345 else
346 {
347 /* Check by physical address. */
348 unsigned iPage;
349 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
350 Assert(RT_SUCCESS(rc) || !pCur);
351 if ( pCur
352 && ( uErr & X86_TRAP_PF_RW
353 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
354 {
355 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
356# ifdef IN_RC
357 STAM_PROFILE_START(&pCur->Stat, h);
358 RTGCPTR GCPtrStart = pCur->Core.Key;
359 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
360 pgmUnlock(pVM);
361 *pfLockTaken = false;
362
363 RTGCPTR off = (iPage << PAGE_SHIFT)
364 + (pvFault & PAGE_OFFSET_MASK)
365 - (GCPtrStart & PAGE_OFFSET_MASK);
366 Assert(off < pCur->cb);
367 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
368
369# ifdef VBOX_WITH_STATISTICS
370 pgmLock(pVM);
371 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
372 if (pCur)
373 STAM_PROFILE_STOP(&pCur->Stat, h);
374 pgmUnlock(pVM);
375# endif
376# else
377 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
378# endif
379 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
380 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
381 return rc;
382 }
383 }
384 }
385# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
386
387 /*
388 * There is a handled area of the page, but this fault doesn't belong to it.
389 * We must emulate the instruction.
390 *
391 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
392 * we first check if this was a page-not-present fault for a page with only
393 * write access handlers. Restart the instruction if it wasn't a write access.
394 */
395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
396
397 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
398 && !(uErr & X86_TRAP_PF_P))
399 {
400# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
401 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
402# else
403 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
404# endif
405 if ( RT_FAILURE(rc)
406 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
407 || !(uErr & X86_TRAP_PF_RW))
408 {
409 AssertRC(rc);
410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
411 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
412 return rc;
413 }
414 }
415
416 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
417 * It's writing to an unhandled part of the LDT page several million times.
418 */
419 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
420 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
421 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
422 return rc;
423} /* if any kind of handler */
424
425
426/**
427 * #PF Handler for raw-mode guest execution.
428 *
429 * @returns VBox status code (appropriate for trap handling and GC return).
430 *
431 * @param pVCpu VMCPU Handle.
432 * @param uErr The trap error code.
433 * @param pRegFrame Trap register frame.
434 * @param pvFault The fault address.
435 * @param pfLockTaken PGM lock taken here or not (out)
436 */
437PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
438{
439 PVM pVM = pVCpu->CTX_SUFF(pVM);
440
441 *pfLockTaken = false;
442
443# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
444 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
445 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
446 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
447 int rc;
448
449# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
450 /*
451 * Walk the guest page translation tables and check if it's a guest fault.
452 */
453 GSTPTWALK GstWalk;
454 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
455 if (RT_FAILURE_NP(rc))
456 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
457
458 /* assert some GstWalk sanity. */
459# if PGM_GST_TYPE == PGM_TYPE_AMD64
460 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
461# endif
462# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
463 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
464# endif
465 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
466 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
467 Assert(GstWalk.Core.fSucceeded);
468
469 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
470 {
471 if ( ( (uErr & X86_TRAP_PF_RW)
472 && !GstWalk.Core.fEffectiveRW
473 && ( (uErr & X86_TRAP_PF_US)
474 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
475 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
476 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
477 )
478 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
479 }
480
481 /*
482 * Set the accessed and dirty flags.
483 */
484# if PGM_GST_TYPE == PGM_TYPE_AMD64
485 GstWalk.Pml4e.u |= X86_PML4E_A;
486 GstWalk.pPml4e->u |= X86_PML4E_A;
487 GstWalk.Pdpe.u |= X86_PDPE_A;
488 GstWalk.pPdpe->u |= X86_PDPE_A;
489# endif
490 if (GstWalk.Core.fBigPage)
491 {
492 Assert(GstWalk.Pde.b.u1Size);
493 if (uErr & X86_TRAP_PF_RW)
494 {
495 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
496 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
497 }
498 else
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A;
501 GstWalk.pPde->u |= X86_PDE4M_A;
502 }
503 }
504 else
505 {
506 Assert(!GstWalk.Pde.b.u1Size);
507 GstWalk.Pde.u |= X86_PDE_A;
508 GstWalk.pPde->u |= X86_PDE_A;
509 if (uErr & X86_TRAP_PF_RW)
510 {
511# ifdef VBOX_WITH_STATISTICS
512 if (!GstWalk.Pte.n.u1Dirty)
513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
514 else
515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
516# endif
517 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
518 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
519 }
520 else
521 {
522 GstWalk.Pte.u |= X86_PTE_A;
523 GstWalk.pPte->u |= X86_PTE_A;
524 }
525 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
526 }
527 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
528 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
529# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
530 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
531# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
532
533 /* Take the big lock now. */
534 *pfLockTaken = true;
535 pgmLock(pVM);
536
537# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
538 /*
539 * If it is a reserved bit fault we know that it is an MMIO (access
540 * handler) related fault and can skip some 200 lines of code.
541 */
542 if (uErr & X86_TRAP_PF_RSVD)
543 {
544 Assert(uErr & X86_TRAP_PF_P);
545 PPGMPAGE pPage;
546# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
547 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
548 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
549 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
550 pfLockTaken, &GstWalk));
551 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
552# else
553 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
554 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
555 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
556 pfLockTaken));
557 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
558# endif
559 AssertRC(rc);
560 PGM_INVL_PG(pVCpu, pvFault);
561 return rc; /* Restart with the corrected entry. */
562 }
563# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
564
565 /*
566 * Fetch the guest PDE, PDPE and PML4E.
567 */
568# if PGM_SHW_TYPE == PGM_TYPE_32BIT
569 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
570 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
571
572# elif PGM_SHW_TYPE == PGM_TYPE_PAE
573 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
574 PX86PDPAE pPDDst;
575# if PGM_GST_TYPE == PGM_TYPE_PAE
576 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
577# else
578 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
579# endif
580 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
581
582# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
583 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
584 PX86PDPAE pPDDst;
585# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
586 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
587 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
588# else
589 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
590# endif
591 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
592
593# elif PGM_SHW_TYPE == PGM_TYPE_EPT
594 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
595 PEPTPD pPDDst;
596 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
597 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
598# endif
599 Assert(pPDDst);
600
601# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
602 /*
603 * Dirty page handling.
604 *
605 * If we successfully correct the write protection fault due to dirty bit
606 * tracking, then return immediately.
607 */
608 if (uErr & X86_TRAP_PF_RW) /* write fault? */
609 {
610 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
611 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
612 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
613 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
614 {
615 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
616 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
617 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
618 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
619 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
620 return VINF_SUCCESS;
621 }
622 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
623 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
624 }
625
626# if 0 /* rarely useful; leave for debugging. */
627 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
628# endif
629# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
630
631 /*
632 * A common case is the not-present error caused by lazy page table syncing.
633 *
634 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
635 * here so we can safely assume that the shadow PT is present when calling
636 * SyncPage later.
637 *
638 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
639 * of mapping conflict and defer to SyncCR3 in R3.
640 * (Again, we do NOT support access handlers for non-present guest pages.)
641 *
642 */
643# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
644 Assert(GstWalk.Pde.n.u1Present);
645# endif
646 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
647 && !pPDDst->a[iPDDst].n.u1Present)
648 {
649 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
650# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
651 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
652 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
653# else
654 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
655 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
656# endif
657 if (RT_SUCCESS(rc))
658 return rc;
659 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
660 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
661 return VINF_PGM_SYNC_CR3;
662 }
663
664# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
665 /*
666 * Check if this address is within any of our mappings.
667 *
668 * This is *very* fast and it's gonna save us a bit of effort below and prevent
669 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
670 * (BTW, it's impossible to have physical access handlers in a mapping.)
671 */
672 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
673 {
674 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
675 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
676 {
677 if (pvFault < pMapping->GCPtr)
678 break;
679 if (pvFault - pMapping->GCPtr < pMapping->cb)
680 {
681 /*
682 * The first thing we check is if we've got an undetected conflict.
683 */
684 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
685 {
686 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
687 while (iPT-- > 0)
688 if (GstWalk.pPde[iPT].n.u1Present)
689 {
690 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
691 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
692 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
693 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
694 return VINF_PGM_SYNC_CR3;
695 }
696 }
697
698 /*
699 * Check if the fault address is in a virtual page access handler range.
700 */
701 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
702 if ( pCur
703 && pvFault - pCur->Core.Key < pCur->cb
704 && uErr & X86_TRAP_PF_RW)
705 {
706# ifdef IN_RC
707 STAM_PROFILE_START(&pCur->Stat, h);
708 pgmUnlock(pVM);
709 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
710 pgmLock(pVM);
711 STAM_PROFILE_STOP(&pCur->Stat, h);
712# else
713 AssertFailed();
714 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
715# endif
716 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
717 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
718 return rc;
719 }
720
721 /*
722 * Pretend we're not here and let the guest handle the trap.
723 */
724 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
725 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
726 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
727 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
728 return VINF_EM_RAW_GUEST_TRAP;
729 }
730 }
731 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
732# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
733
734 /*
735 * Check if this fault address is flagged for special treatment,
736 * which means we'll have to figure out the physical address and
737 * check flags associated with it.
738 *
739 * ASSUME that we can limit any special access handling to pages
740 * in page tables which the guest believes to be present.
741 */
742# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
743 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
744# else
745 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
746# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
747 PPGMPAGE pPage;
748 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
749 if (RT_FAILURE(rc))
750 {
751 /*
752 * When the guest accesses invalid physical memory (e.g. probing
753 * of RAM or accessing a remapped MMIO range), then we'll fall
754 * back to the recompiler to emulate the instruction.
755 */
756 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
757 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
758 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
759 return VINF_EM_RAW_EMULATE_INSTR;
760 }
761
762 /*
763 * Any handlers for this page?
764 */
765 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
766# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
767 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
768 &GstWalk));
769# else
770 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
771# endif
772
773 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
774
775# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
776 if (uErr & X86_TRAP_PF_P)
777 {
778 /*
779 * The page isn't marked, but it might still be monitored by a virtual page access handler.
780 * (ASSUMES no temporary disabling of virtual handlers.)
781 */
782 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
783 * we should correct both the shadow page table and physical memory flags, and not only check for
784 * accesses within the handler region but for access to pages with virtual handlers. */
785 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
786 if (pCur)
787 {
788 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
789 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
790 || !(uErr & X86_TRAP_PF_P)
791 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
792 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
793
794 if ( pvFault - pCur->Core.Key < pCur->cb
795 && ( uErr & X86_TRAP_PF_RW
796 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
797 {
798# ifdef IN_RC
799 STAM_PROFILE_START(&pCur->Stat, h);
800 pgmUnlock(pVM);
801 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
802 pgmLock(pVM);
803 STAM_PROFILE_STOP(&pCur->Stat, h);
804# else
805 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
806# endif
807 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
808 return rc;
809 }
810 }
811 }
812# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
813
814 /*
815 * We are here only if page is present in Guest page tables and
816 * trap is not handled by our handlers.
817 *
818 * Check it for page out-of-sync situation.
819 */
820 if (!(uErr & X86_TRAP_PF_P))
821 {
822 /*
823 * Page is not present in our page tables. Try to sync it!
824 */
825 if (uErr & X86_TRAP_PF_US)
826 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
827 else /* supervisor */
828 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
829
830 if (PGM_PAGE_IS_BALLOONED(pPage))
831 {
832 /* Emulate reads from ballooned pages as they are not present in
833 our shadow page tables. (Required for e.g. Solaris guests; soft
834 ecc, random nr generator.) */
835 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
836 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
837 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
838 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
839 return rc;
840 }
841
842# if defined(LOG_ENABLED) && !defined(IN_RING0)
843 RTGCPHYS GCPhys2;
844 uint64_t fPageGst2;
845 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
846# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
847 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
848 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
849# else
850 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
851 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
852# endif
853# endif /* LOG_ENABLED */
854
855# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
856 if ( !GstWalk.Core.fEffectiveUS
857 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
858 {
859 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
860 if ( pvFault == (RTGCPTR)pRegFrame->eip
861 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
862# ifdef CSAM_DETECT_NEW_CODE_PAGES
863 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
864 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
865# endif /* CSAM_DETECT_NEW_CODE_PAGES */
866 )
867 {
868 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
869 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
870 if (rc != VINF_SUCCESS)
871 {
872 /*
873 * CSAM needs to perform a job in ring 3.
874 *
875 * Sync the page before going to the host context; otherwise we'll end up in a loop if
876 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
877 */
878 LogFlow(("CSAM ring 3 job\n"));
879 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
880 AssertRC(rc2);
881
882 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
883 return rc;
884 }
885 }
886# ifdef CSAM_DETECT_NEW_CODE_PAGES
887 else if ( uErr == X86_TRAP_PF_RW
888 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
889 && pRegFrame->ecx < 0x10000)
890 {
891 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
892 * to detect loading of new code pages.
893 */
894
895 /*
896 * Decode the instruction.
897 */
898 RTGCPTR PC;
899 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
900 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
901 if (rc == VINF_SUCCESS)
902 {
903 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
904 uint32_t cbOp;
905 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
906
907 /* For now we'll restrict this to rep movsw/d instructions */
908 if ( rc == VINF_SUCCESS
909 && pDis->pCurInstr->opcode == OP_MOVSWD
910 && (pDis->prefix & PREFIX_REP))
911 {
912 CSAMMarkPossibleCodePage(pVM, pvFault);
913 }
914 }
915 }
916# endif /* CSAM_DETECT_NEW_CODE_PAGES */
917
918 /*
919 * Mark this page as safe.
920 */
921 /** @todo not correct for pages that contain both code and data!! */
922 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
923 CSAMMarkPage(pVM, pvFault, true);
924 }
925# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
926# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
927 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
928# else
929 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
930# endif
931 if (RT_SUCCESS(rc))
932 {
933 /* The page was successfully synced, return to the guest. */
934 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
935 return VINF_SUCCESS;
936 }
937 }
938 else /* uErr & X86_TRAP_PF_P: */
939 {
940 /*
941 * Write protected pages are made writable when the guest makes the
942 * first write to it. This happens for pages that are shared, write
943 * monitored or not yet allocated.
944 *
945 * We may also end up here when CR0.WP=0 in the guest.
946 *
947 * Also, a side effect of not flushing global PDEs are out of sync
948 * pages due to physical monitored regions, that are no longer valid.
949 * Assume for now it only applies to the read/write flag.
950 */
951 if (uErr & X86_TRAP_PF_RW)
952 {
953 /*
954 * Check if it is a read-only page.
955 */
956 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
957 {
958 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
959 Assert(!PGM_PAGE_IS_ZERO(pPage));
960 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
961 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
962
963 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
964 if (rc != VINF_SUCCESS)
965 {
966 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
967 return rc;
968 }
969 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
970 return VINF_EM_NO_MEMORY;
971 }
972
973# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
974 /*
975 * Check to see if we need to emulate the instruction if CR0.WP=0.
976 */
977 if ( !GstWalk.Core.fEffectiveRW
978 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
979 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
980 {
981 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
982 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
983 if (RT_SUCCESS(rc))
984 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
985 else
986 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
987 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
988 return rc;
989 }
990# endif
991 /// @todo count the above case; else
992 if (uErr & X86_TRAP_PF_US)
993 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
994 else /* supervisor */
995 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
996
997 /*
998 * Sync the page.
999 *
1000 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1001 * page is not present, which is not true in this case.
1002 */
1003# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1004 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1005# else
1006 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1007# endif
1008 if (RT_SUCCESS(rc))
1009 {
1010 /*
1011 * Page was successfully synced, return to guest but invalidate
1012 * the TLB first as the page is very likely to be in it.
1013 */
1014# if PGM_SHW_TYPE == PGM_TYPE_EPT
1015 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1016# else
1017 PGM_INVL_PG(pVCpu, pvFault);
1018# endif
1019# ifdef VBOX_STRICT
1020 RTGCPHYS GCPhys2;
1021 uint64_t fPageGst;
1022 if (!pVM->pgm.s.fNestedPaging)
1023 {
1024 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1025 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1026 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1027 }
1028 uint64_t fPageShw;
1029 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1030 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1031 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1032# endif /* VBOX_STRICT */
1033 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1034 return VINF_SUCCESS;
1035 }
1036 }
1037 /** @todo else: why are we here? */
1038
1039# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1040 /*
1041 * Check for VMM page flags vs. Guest page flags consistency.
1042 * Currently only for debug purposes.
1043 */
1044 if (RT_SUCCESS(rc))
1045 {
1046 /* Get guest page flags. */
1047 uint64_t fPageGst;
1048 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1049 if (RT_SUCCESS(rc))
1050 {
1051 uint64_t fPageShw;
1052 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1053
1054 /*
1055 * Compare page flags.
1056 * Note: we have AVL, A, D bits desynched.
1057 */
1058 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1059 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1060 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1061 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1062 }
1063 else
1064 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1065 }
1066 else
1067 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1068# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1069 }
1070
1071
1072 /*
1073 * If we get here it is because something failed above, i.e. most like guru
1074 * meditiation time.
1075 */
1076 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1077 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1078 return rc;
1079
1080# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1081 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1082 return VERR_INTERNAL_ERROR;
1083# endif
1084}
1085#endif /* !IN_RING3 */
1086
1087
1088/**
1089 * Emulation of the invlpg instruction.
1090 *
1091 *
1092 * @returns VBox status code.
1093 *
1094 * @param pVCpu The VMCPU handle.
1095 * @param GCPtrPage Page to invalidate.
1096 *
1097 * @remark ASSUMES that the guest is updating before invalidating. This order
1098 * isn't required by the CPU, so this is speculative and could cause
1099 * trouble.
1100 * @remark No TLB shootdown is done on any other VCPU as we assume that
1101 * invlpg emulation is the *only* reason for calling this function.
1102 * (The guest has to shoot down TLB entries on other CPUs itself)
1103 * Currently true, but keep in mind!
1104 *
1105 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1106 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1107 */
1108PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1109{
1110#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1111 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1112 && PGM_SHW_TYPE != PGM_TYPE_EPT
1113 int rc;
1114 PVM pVM = pVCpu->CTX_SUFF(pVM);
1115 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1116
1117 Assert(PGMIsLockOwner(pVM));
1118
1119 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1120
1121 /*
1122 * Get the shadow PD entry and skip out if this PD isn't present.
1123 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1124 */
1125# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1126 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1127 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1128
1129 /* Fetch the pgm pool shadow descriptor. */
1130 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1131 Assert(pShwPde);
1132
1133# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1134 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1135 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1136
1137 /* If the shadow PDPE isn't present, then skip the invalidate. */
1138 if (!pPdptDst->a[iPdpt].n.u1Present)
1139 {
1140 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1141 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1142 return VINF_SUCCESS;
1143 }
1144
1145 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1146 PPGMPOOLPAGE pShwPde = NULL;
1147 PX86PDPAE pPDDst;
1148
1149 /* Fetch the pgm pool shadow descriptor. */
1150 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1151 AssertRCSuccessReturn(rc, rc);
1152 Assert(pShwPde);
1153
1154 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1155 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1156
1157# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1158 /* PML4 */
1159 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1160 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1161 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1162 PX86PDPAE pPDDst;
1163 PX86PDPT pPdptDst;
1164 PX86PML4E pPml4eDst;
1165 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1166 if (rc != VINF_SUCCESS)
1167 {
1168 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1169 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1170 return VINF_SUCCESS;
1171 }
1172 Assert(pPDDst);
1173
1174 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1175 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1176
1177 if (!pPdpeDst->n.u1Present)
1178 {
1179 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1180 return VINF_SUCCESS;
1181 }
1182
1183 /* Fetch the pgm pool shadow descriptor. */
1184 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1185 Assert(pShwPde);
1186
1187# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1188
1189 const SHWPDE PdeDst = *pPdeDst;
1190 if (!PdeDst.n.u1Present)
1191 {
1192 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1193 return VINF_SUCCESS;
1194 }
1195
1196 /*
1197 * Get the guest PD entry and calc big page.
1198 */
1199# if PGM_GST_TYPE == PGM_TYPE_32BIT
1200 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1201 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1202 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1203# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1204 unsigned iPDSrc = 0;
1205# if PGM_GST_TYPE == PGM_TYPE_PAE
1206 X86PDPE PdpeSrcIgn;
1207 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1208# else /* AMD64 */
1209 PX86PML4E pPml4eSrcIgn;
1210 X86PDPE PdpeSrcIgn;
1211 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1212# endif
1213 GSTPDE PdeSrc;
1214
1215 if (pPDSrc)
1216 PdeSrc = pPDSrc->a[iPDSrc];
1217 else
1218 PdeSrc.u = 0;
1219# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1220 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1221
1222# ifdef IN_RING3
1223 /*
1224 * If a CR3 Sync is pending we may ignore the invalidate page operation
1225 * depending on the kind of sync and if it's a global page or not.
1226 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1227 */
1228# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1229 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1230 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1231 && fIsBigPage
1232 && PdeSrc.b.u1Global
1233 )
1234 )
1235# else
1236 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1237# endif
1238 {
1239 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1240 return VINF_SUCCESS;
1241 }
1242# endif /* IN_RING3 */
1243
1244 /*
1245 * Deal with the Guest PDE.
1246 */
1247 rc = VINF_SUCCESS;
1248 if (PdeSrc.n.u1Present)
1249 {
1250 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1251 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1252# ifndef PGM_WITHOUT_MAPPING
1253 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1254 {
1255 /*
1256 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1257 */
1258 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1259 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1260 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1261 }
1262 else
1263# endif /* !PGM_WITHOUT_MAPPING */
1264 if (!fIsBigPage)
1265 {
1266 /*
1267 * 4KB - page.
1268 */
1269 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1270 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1271
1272# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1273 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1274 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1275# endif
1276 if (pShwPage->GCPhys == GCPhys)
1277 {
1278# if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */
1279 const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1280 PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1281 if (pPT->a[iPTEDst].n.u1Present)
1282 {
1283 /* This is very unlikely with caching/monitoring enabled. */
1284 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst);
1285 ASMAtomicWriteSize(&pPT->a[iPTEDst], 0);
1286 }
1287# else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1288 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
1289 if (RT_SUCCESS(rc))
1290 rc = VINF_SUCCESS;
1291# endif
1292 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1293 PGM_INVL_PG(pVCpu, GCPtrPage);
1294 }
1295 else
1296 {
1297 /*
1298 * The page table address changed.
1299 */
1300 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1301 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1302 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1303 ASMAtomicWriteSize(pPdeDst, 0);
1304 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1305 PGM_INVL_VCPU_TLBS(pVCpu);
1306 }
1307 }
1308 else
1309 {
1310 /*
1311 * 2/4MB - page.
1312 */
1313 /* Before freeing the page, check if anything really changed. */
1314 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1315 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1316# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1317 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1318 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1319# endif
1320 if ( pShwPage->GCPhys == GCPhys
1321 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1322 {
1323 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1324 /** @todo This test is wrong as it cannot check the G bit!
1325 * FIXME */
1326 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1327 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1328 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1329 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1330 {
1331 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1332 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1333 return VINF_SUCCESS;
1334 }
1335 }
1336
1337 /*
1338 * Ok, the page table is present and it's been changed in the guest.
1339 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1340 * We could do this for some flushes in GC too, but we need an algorithm for
1341 * deciding which 4MB pages containing code likely to be executed very soon.
1342 */
1343 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1344 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1345 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1346 ASMAtomicWriteSize(pPdeDst, 0);
1347 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1348 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1349 }
1350 }
1351 else
1352 {
1353 /*
1354 * Page directory is not present, mark shadow PDE not present.
1355 */
1356 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1357 {
1358 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1359 ASMAtomicWriteSize(pPdeDst, 0);
1360 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1361 PGM_INVL_PG(pVCpu, GCPtrPage);
1362 }
1363 else
1364 {
1365 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1366 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1367 }
1368 }
1369 return rc;
1370
1371#else /* guest real and protected mode */
1372 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1373 return VINF_SUCCESS;
1374#endif
1375}
1376
1377
1378/**
1379 * Update the tracking of shadowed pages.
1380 *
1381 * @param pVCpu The VMCPU handle.
1382 * @param pShwPage The shadow page.
1383 * @param HCPhys The physical page we is being dereferenced.
1384 * @param iPte Shadow PTE index
1385 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1386 */
1387DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, RTGCPHYS GCPhysPage)
1388{
1389 PVM pVM = pVCpu->CTX_SUFF(pVM);
1390
1391# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1392 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1393 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1394
1395 /* Use the hint we retrieved from the cached guest PT. */
1396 if (pShwPage->fDirty)
1397 {
1398 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1399
1400 Assert(pShwPage->cPresent);
1401 Assert(pPool->cPresent);
1402 pShwPage->cPresent--;
1403 pPool->cPresent--;
1404
1405 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysPage);
1406 AssertRelease(pPhysPage);
1407 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1408 return;
1409 }
1410# endif
1411
1412 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1413 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1414
1415 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1416 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1417 * 2. write protect all shadowed pages. I.e. implement caching.
1418 */
1419 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1420
1421 /*
1422 * Find the guest address.
1423 */
1424 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1425 pRam;
1426 pRam = pRam->CTX_SUFF(pNext))
1427 {
1428 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1429 while (iPage-- > 0)
1430 {
1431 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1432 {
1433 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1434
1435 Assert(pShwPage->cPresent);
1436 Assert(pPool->cPresent);
1437 pShwPage->cPresent--;
1438 pPool->cPresent--;
1439
1440 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1441 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1442 return;
1443 }
1444 }
1445 }
1446
1447 for (;;)
1448 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1449}
1450
1451
1452/**
1453 * Update the tracking of shadowed pages.
1454 *
1455 * @param pVCpu The VMCPU handle.
1456 * @param pShwPage The shadow page.
1457 * @param u16 The top 16-bit of the pPage->HCPhys.
1458 * @param pPage Pointer to the guest page. this will be modified.
1459 * @param iPTDst The index into the shadow table.
1460 */
1461DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1462{
1463 PVM pVM = pVCpu->CTX_SUFF(pVM);
1464
1465 /*
1466 * Just deal with the simple first time here.
1467 */
1468 if (!u16)
1469 {
1470 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1471 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1472 /* Save the page table index. */
1473 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1474 }
1475 else
1476 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1477
1478 /* write back */
1479 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1480 PGM_PAGE_SET_TRACKING(pPage, u16);
1481
1482 /* update statistics. */
1483 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1484 pShwPage->cPresent++;
1485 if (pShwPage->iFirstPresent > iPTDst)
1486 pShwPage->iFirstPresent = iPTDst;
1487}
1488
1489
1490/**
1491 * Modifies a shadow PTE to account for access handlers.
1492 *
1493 * @param pVM The VM handle.
1494 * @param pPage The page in question.
1495 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1496 * A (accessed) bit so it can be emulated correctly.
1497 * @param pPteDst The shadow PTE (output). This is temporary storage and
1498 * does not need to be set atomically.
1499 */
1500DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1501{
1502 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1503 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1504 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1505 {
1506 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1507#if PGM_SHW_TYPE == PGM_TYPE_EPT
1508 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1509 pPteDst->n.u1Present = 1;
1510 pPteDst->n.u1Execute = 1;
1511 pPteDst->n.u1IgnorePAT = 1;
1512 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1513 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1514#else
1515 if (fPteSrc & X86_PTE_A)
1516 {
1517 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1518 SHW_PTE_SET_RO(*pPteDst);
1519 }
1520 else
1521 SHW_PTE_SET(*pPteDst, 0);
1522#endif
1523 }
1524#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1525# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1526 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1527 && ( BTH_IS_NP_ACTIVE(pVM)
1528 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1529# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1530 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1531# endif
1532 )
1533 {
1534 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1535# if PGM_SHW_TYPE == PGM_TYPE_EPT
1536 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1537 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1538 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1539 pPteDst->n.u1Present = 0;
1540 pPteDst->n.u1Write = 1;
1541 pPteDst->n.u1Execute = 0;
1542 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1543 pPteDst->n.u3EMT = 7;
1544# else
1545 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1546 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1547# endif
1548 }
1549# endif
1550#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1551 else
1552 {
1553 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1554 SHW_PTE_SET(*pPteDst, 0);
1555 }
1556 /** @todo count these kinds of entries. */
1557}
1558
1559
1560/**
1561 * Creates a 4K shadow page for a guest page.
1562 *
1563 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1564 * physical address. The PdeSrc argument only the flags are used. No page
1565 * structured will be mapped in this function.
1566 *
1567 * @param pVCpu The VMCPU handle.
1568 * @param pPteDst Destination page table entry.
1569 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1570 * Can safely assume that only the flags are being used.
1571 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1572 * @param pShwPage Pointer to the shadow page.
1573 * @param iPTDst The index into the shadow table.
1574 *
1575 * @remark Not used for 2/4MB pages!
1576 */
1577DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1578 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1579{
1580 PVM pVM = pVCpu->CTX_SUFF(pVM);
1581 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1582
1583#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1584 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1585 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1586
1587 if (pShwPage->fDirty)
1588 {
1589 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1590 PGSTPT pGstPT;
1591
1592 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirty].aPage[0];
1593 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1594 pGstPT->a[iPTDst].u = PteSrc.u;
1595 }
1596#else
1597 Assert(!pShwPage->fDirty);
1598#endif
1599
1600 if ( PteSrc.n.u1Present
1601 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1602 {
1603 /*
1604 * Find the ram range.
1605 */
1606 PPGMPAGE pPage;
1607 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc), &pPage);
1608 if (RT_SUCCESS(rc))
1609 {
1610 /* Ignore ballooned pages.
1611 Don't return errors or use a fatal assert here as part of a
1612 shadow sync range might included ballooned pages. */
1613 if (PGM_PAGE_IS_BALLOONED(pPage))
1614 {
1615 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1616 return;
1617 }
1618
1619#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1620 /* Make the page writable if necessary. */
1621 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1622 && ( PGM_PAGE_IS_ZERO(pPage)
1623 || ( PteSrc.n.u1Write
1624 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1625# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1626 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1627# endif
1628# ifdef VBOX_WITH_PAGE_SHARING
1629 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1630# endif
1631 )
1632 )
1633 )
1634 {
1635 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
1636 AssertRC(rc);
1637 }
1638#endif
1639
1640 /*
1641 * Make page table entry.
1642 */
1643 SHWPTE PteDst;
1644 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1645 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc), &PteDst);
1646 else
1647 {
1648#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1649 /*
1650 * If the page or page directory entry is not marked accessed,
1651 * we mark the page not present.
1652 */
1653 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1654 {
1655 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1656 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1657 SHW_PTE_SET(PteDst, 0);
1658 }
1659 /*
1660 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1661 * when the page is modified.
1662 */
1663 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1664 {
1665 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1666 SHW_PTE_SET(PteDst,
1667 GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc)
1668 | PGM_PAGE_GET_HCPHYS(pPage)
1669 | PGM_PTFLAGS_TRACK_DIRTY);
1670 SHW_PTE_SET_RO(PteDst);
1671 }
1672 else
1673#endif
1674 {
1675 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1676#if PGM_SHW_TYPE == PGM_TYPE_EPT
1677 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1678 PteDst.n.u1Present = 1;
1679 PteDst.n.u1Write = 1;
1680 PteDst.n.u1Execute = 1;
1681 PteDst.n.u1IgnorePAT = 1;
1682 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1683 /* PteDst.n.u1Size = 0 */
1684#else
1685 SHW_PTE_SET(PteDst, GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc) | PGM_PAGE_GET_HCPHYS(pPage));
1686#endif
1687 }
1688
1689 /*
1690 * Make sure only allocated pages are mapped writable.
1691 */
1692 if ( SHW_PTE_IS_P_RW(PteDst)
1693 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1694 {
1695 /* Still applies to shared pages. */
1696 Assert(!PGM_PAGE_IS_ZERO(pPage));
1697 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1698 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)GST_GET_PTE_GCPHYS(PteSrc), pPage, iPTDst));
1699 }
1700 }
1701
1702 /*
1703 * Keep user track up to date.
1704 */
1705 if (SHW_PTE_IS_P(PteDst))
1706 {
1707 if (!SHW_PTE_IS_P(*pPteDst))
1708 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1709 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1710 {
1711 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1712 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1713 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1714 }
1715 }
1716 else if (SHW_PTE_IS_P(*pPteDst))
1717 {
1718 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1719 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1720 }
1721
1722 /*
1723 * Update statistics and commit the entry.
1724 */
1725#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1726 if (!PteSrc.n.u1Global)
1727 pShwPage->fSeenNonGlobal = true;
1728#endif
1729 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1730 return;
1731 }
1732
1733/** @todo count these three different kinds. */
1734 Log2(("SyncPageWorker: invalid address in Pte\n"));
1735 }
1736 else if (!PteSrc.n.u1Present)
1737 Log2(("SyncPageWorker: page not present in Pte\n"));
1738 else
1739 Log2(("SyncPageWorker: invalid Pte\n"));
1740
1741 /*
1742 * The page is not present or the PTE is bad. Replace the shadow PTE by
1743 * an empty entry, making sure to keep the user tracking up to date.
1744 */
1745 if (SHW_PTE_IS_P(*pPteDst))
1746 {
1747 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1748 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1749 }
1750 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1751}
1752
1753
1754/**
1755 * Syncs a guest OS page.
1756 *
1757 * There are no conflicts at this point, neither is there any need for
1758 * page table allocations.
1759 *
1760 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1761 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1762 *
1763 * @returns VBox status code.
1764 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1765 * @param pVCpu The VMCPU handle.
1766 * @param PdeSrc Page directory entry of the guest.
1767 * @param GCPtrPage Guest context page address.
1768 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1769 * @param uErr Fault error (X86_TRAP_PF_*).
1770 */
1771static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1772{
1773 PVM pVM = pVCpu->CTX_SUFF(pVM);
1774 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1775 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1776
1777 Assert(PGMIsLockOwner(pVM));
1778
1779#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1780 || PGM_GST_TYPE == PGM_TYPE_PAE \
1781 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1782 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1783 && PGM_SHW_TYPE != PGM_TYPE_EPT
1784
1785 /*
1786 * Assert preconditions.
1787 */
1788 Assert(PdeSrc.n.u1Present);
1789 Assert(cPages);
1790# if 0 /* rarely useful; leave for debugging. */
1791 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1792# endif
1793
1794 /*
1795 * Get the shadow PDE, find the shadow page table in the pool.
1796 */
1797# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1798 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1799 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1800
1801 /* Fetch the pgm pool shadow descriptor. */
1802 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1803 Assert(pShwPde);
1804
1805# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1806 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1807 PPGMPOOLPAGE pShwPde = NULL;
1808 PX86PDPAE pPDDst;
1809
1810 /* Fetch the pgm pool shadow descriptor. */
1811 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1812 AssertRCSuccessReturn(rc2, rc2);
1813 Assert(pShwPde);
1814
1815 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1816 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1817
1818# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1819 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1820 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1821 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1822 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1823
1824 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1825 AssertRCSuccessReturn(rc2, rc2);
1826 Assert(pPDDst && pPdptDst);
1827 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1828# endif
1829 SHWPDE PdeDst = *pPdeDst;
1830
1831 /*
1832 * - In the guest SMP case we could have blocked while another VCPU reused
1833 * this page table.
1834 * - With W7-64 we may also take this path when the the A bit is cleared on
1835 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1836 * relevant TLB entries. If we're write monitoring any page mapped by
1837 * the modified entry, we may end up here with a "stale" TLB entry.
1838 */
1839 if (!PdeDst.n.u1Present)
1840 {
1841 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1842 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1843 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1844 if (uErr & X86_TRAP_PF_P)
1845 PGM_INVL_PG(pVCpu, GCPtrPage);
1846 return VINF_SUCCESS; /* force the instruction to be executed again. */
1847 }
1848
1849 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1850 Assert(pShwPage);
1851
1852# if PGM_GST_TYPE == PGM_TYPE_AMD64
1853 /* Fetch the pgm pool shadow descriptor. */
1854 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1855 Assert(pShwPde);
1856# endif
1857
1858 /*
1859 * Check that the page is present and that the shadow PDE isn't out of sync.
1860 */
1861 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1862 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1863 RTGCPHYS GCPhys;
1864 if (!fBigPage)
1865 {
1866 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1867# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1868 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1869 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1870# endif
1871 }
1872 else
1873 {
1874 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1875# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1876 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1877 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1878# endif
1879 }
1880 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1881 if ( fPdeValid
1882 && pShwPage->GCPhys == GCPhys
1883 && PdeSrc.n.u1Present
1884 && PdeSrc.n.u1User == PdeDst.n.u1User
1885 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1886# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1887 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1888# endif
1889 )
1890 {
1891 /*
1892 * Check that the PDE is marked accessed already.
1893 * Since we set the accessed bit *before* getting here on a #PF, this
1894 * check is only meant for dealing with non-#PF'ing paths.
1895 */
1896 if (PdeSrc.n.u1Accessed)
1897 {
1898 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1899 if (!fBigPage)
1900 {
1901 /*
1902 * 4KB Page - Map the guest page table.
1903 */
1904 PGSTPT pPTSrc;
1905 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1906 if (RT_SUCCESS(rc))
1907 {
1908# ifdef PGM_SYNC_N_PAGES
1909 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1910 if ( cPages > 1
1911 && !(uErr & X86_TRAP_PF_P)
1912 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1913 {
1914 /*
1915 * This code path is currently only taken when the caller is PGMTrap0eHandler
1916 * for non-present pages!
1917 *
1918 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1919 * deal with locality.
1920 */
1921 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1922 const unsigned iPTDstPage = iPTDst;
1923# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1924 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1925 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1926# else
1927 const unsigned offPTSrc = 0;
1928# endif
1929 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1930 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1931 iPTDst = 0;
1932 else
1933 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1934
1935 /* Paranoia: the faulting page can't be present. We assume that below. */
1936 Assert(!SHW_PTE_IS_P(pPTDst->a[iPTDstPage]));
1937
1938 for (; iPTDst < iPTDstEnd; iPTDst++)
1939 {
1940 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1941
1942 if ( pPteSrc->n.u1Present
1943 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1944 {
1945 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1946 NOREF(GCPtrCurPage);
1947#ifndef IN_RING0
1948 /*
1949 * Assuming kernel code will be marked as supervisor - and not as user level
1950 * and executed using a conforming code selector - And marked as readonly.
1951 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1952 */
1953 PPGMPAGE pPage;
1954 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
1955 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1956 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1957 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK))
1958 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1959 )
1960#endif /* else: CSAM not active */
1961 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1962 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1963 GCPtrCurPage, pPteSrc->n.u1Present,
1964 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
1965 pPteSrc->n.u1User & PdeSrc.n.u1User,
1966 (uint64_t)pPteSrc->u,
1967 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1968 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1969 }
1970 }
1971 }
1972 else
1973# endif /* PGM_SYNC_N_PAGES */
1974 {
1975 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1976 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1977 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1978 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1979 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1980 GCPtrPage, PteSrc.n.u1Present,
1981 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1982 PteSrc.n.u1User & PdeSrc.n.u1User,
1983 (uint64_t)PteSrc.u,
1984 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1985 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1986 }
1987 }
1988 else /* MMIO or invalid page: emulated in #PF handler. */
1989 {
1990 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
1991 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
1992 }
1993 }
1994 else
1995 {
1996 /*
1997 * 4/2MB page - lazy syncing shadow 4K pages.
1998 * (There are many causes of getting here, it's no longer only CSAM.)
1999 */
2000 /* Calculate the GC physical address of this 4KB shadow page. */
2001 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
2002 /* Find ram range. */
2003 PPGMPAGE pPage;
2004 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
2005 if (RT_SUCCESS(rc))
2006 {
2007 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2008
2009# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2010 /* Try to make the page writable if necessary. */
2011 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2012 && ( PGM_PAGE_IS_ZERO(pPage)
2013 || ( PdeSrc.n.u1Write
2014 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2015# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2016 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2017# endif
2018# ifdef VBOX_WITH_PAGE_SHARING
2019 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2020# endif
2021 )
2022 )
2023 )
2024 {
2025 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2026 AssertRC(rc);
2027 }
2028# endif
2029
2030 /*
2031 * Make shadow PTE entry.
2032 */
2033 SHWPTE PteDst;
2034 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2035 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2036 else
2037 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2038
2039 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2040 if ( SHW_PTE_IS_P(PteDst)
2041 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2042 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2043
2044 /* Make sure only allocated pages are mapped writable. */
2045 if ( SHW_PTE_IS_P_RW(PteDst)
2046 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2047 {
2048 /* Still applies to shared pages. */
2049 Assert(!PGM_PAGE_IS_ZERO(pPage));
2050 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2051 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2052 }
2053
2054 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2055
2056 /*
2057 * If the page is not flagged as dirty and is writable, then make it read-only
2058 * at PD level, so we can set the dirty bit when the page is modified.
2059 *
2060 * ASSUMES that page access handlers are implemented on page table entry level.
2061 * Thus we will first catch the dirty access and set PDE.D and restart. If
2062 * there is an access handler, we'll trap again and let it work on the problem.
2063 */
2064 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2065 * As for invlpg, it simply frees the whole shadow PT.
2066 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2067 if ( !PdeSrc.b.u1Dirty
2068 && PdeSrc.b.u1Write)
2069 {
2070 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2071 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2072 PdeDst.n.u1Write = 0;
2073 }
2074 else
2075 {
2076 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2077 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2078 }
2079 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2080 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2081 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2082 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2083 }
2084 else
2085 {
2086 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2087 /** @todo must wipe the shadow page table entry in this
2088 * case. */
2089 }
2090 }
2091 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2092 return VINF_SUCCESS;
2093 }
2094
2095 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2096 }
2097 else if (fPdeValid)
2098 {
2099 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2100 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2101 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2102 }
2103 else
2104 {
2105/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2106 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2107 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2108 }
2109
2110 /*
2111 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2112 * Yea, I'm lazy.
2113 */
2114 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2115 ASMAtomicWriteSize(pPdeDst, 0);
2116
2117 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2118 PGM_INVL_VCPU_TLBS(pVCpu);
2119 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2120
2121
2122#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2123 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2124 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2125 && !defined(IN_RC)
2126
2127# ifdef PGM_SYNC_N_PAGES
2128 /*
2129 * Get the shadow PDE, find the shadow page table in the pool.
2130 */
2131# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2132 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2133
2134# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2135 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2136
2137# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2138 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2139 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2140 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2141 X86PDEPAE PdeDst;
2142 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2143
2144 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2145 AssertRCSuccessReturn(rc, rc);
2146 Assert(pPDDst && pPdptDst);
2147 PdeDst = pPDDst->a[iPDDst];
2148# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2149 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2150 PEPTPD pPDDst;
2151 EPTPDE PdeDst;
2152
2153 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2154 if (rc != VINF_SUCCESS)
2155 {
2156 AssertRC(rc);
2157 return rc;
2158 }
2159 Assert(pPDDst);
2160 PdeDst = pPDDst->a[iPDDst];
2161# endif
2162 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2163 if (!PdeDst.n.u1Present)
2164 {
2165 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2166 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2167 return VINF_SUCCESS; /* force the instruction to be executed again. */
2168 }
2169
2170 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2171 if (PdeDst.n.u1Size)
2172 {
2173 Assert(pVM->pgm.s.fNestedPaging);
2174 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2175 return VINF_SUCCESS;
2176 }
2177
2178 /* Mask away the page offset. */
2179 GCPtrPage &= ~((RTGCPTR)0xfff);
2180
2181 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2182 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2183
2184 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2185 if ( cPages > 1
2186 && !(uErr & X86_TRAP_PF_P)
2187 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2188 {
2189 /*
2190 * This code path is currently only taken when the caller is PGMTrap0eHandler
2191 * for non-present pages!
2192 *
2193 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2194 * deal with locality.
2195 */
2196 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2197 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2198 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2199 iPTDst = 0;
2200 else
2201 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2202 for (; iPTDst < iPTDstEnd; iPTDst++)
2203 {
2204 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2205 {
2206 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2207 GSTPTE PteSrc;
2208
2209 /* Fake the page table entry */
2210 PteSrc.u = GCPtrCurPage;
2211 PteSrc.n.u1Present = 1;
2212 PteSrc.n.u1Dirty = 1;
2213 PteSrc.n.u1Accessed = 1;
2214 PteSrc.n.u1Write = 1;
2215 PteSrc.n.u1User = 1;
2216
2217 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2218 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2219 GCPtrCurPage, PteSrc.n.u1Present,
2220 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2221 PteSrc.n.u1User & PdeSrc.n.u1User,
2222 (uint64_t)PteSrc.u,
2223 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2224 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2225
2226 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2227 break;
2228 }
2229 else
2230 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2231 }
2232 }
2233 else
2234# endif /* PGM_SYNC_N_PAGES */
2235 {
2236 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2237 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2238 GSTPTE PteSrc;
2239
2240 /* Fake the page table entry */
2241 PteSrc.u = GCPtrCurPage;
2242 PteSrc.n.u1Present = 1;
2243 PteSrc.n.u1Dirty = 1;
2244 PteSrc.n.u1Accessed = 1;
2245 PteSrc.n.u1Write = 1;
2246 PteSrc.n.u1User = 1;
2247 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2248
2249 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n",
2250 GCPtrPage, PteSrc.n.u1Present,
2251 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2252 PteSrc.n.u1User & PdeSrc.n.u1User,
2253 (uint64_t)PteSrc.u,
2254 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2255 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2256 }
2257 return VINF_SUCCESS;
2258
2259#else
2260 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2261 return VERR_INTERNAL_ERROR;
2262#endif
2263}
2264
2265
2266#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2267
2268/**
2269 * CheckPageFault helper for returning a page fault indicating a non-present
2270 * (NP) entry in the page translation structures.
2271 *
2272 * @returns VINF_EM_RAW_GUEST_TRAP.
2273 * @param pVCpu The virtual CPU to operate on.
2274 * @param uErr The error code of the shadow fault. Corrections to
2275 * TRPM's copy will be made if necessary.
2276 * @param GCPtrPage For logging.
2277 * @param uPageFaultLevel For logging.
2278 */
2279DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2280{
2281 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2282 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2283 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2284 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2285 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2286
2287 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2288 return VINF_EM_RAW_GUEST_TRAP;
2289}
2290
2291
2292/**
2293 * CheckPageFault helper for returning a page fault indicating a reserved bit
2294 * (RSVD) error in the page translation structures.
2295 *
2296 * @returns VINF_EM_RAW_GUEST_TRAP.
2297 * @param pVCpu The virtual CPU to operate on.
2298 * @param uErr The error code of the shadow fault. Corrections to
2299 * TRPM's copy will be made if necessary.
2300 * @param GCPtrPage For logging.
2301 * @param uPageFaultLevel For logging.
2302 */
2303DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2304{
2305 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2306 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2307 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2308
2309 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2310 return VINF_EM_RAW_GUEST_TRAP;
2311}
2312
2313
2314/**
2315 * CheckPageFault helper for returning a page protection fault (P).
2316 *
2317 * @returns VINF_EM_RAW_GUEST_TRAP.
2318 * @param pVCpu The virtual CPU to operate on.
2319 * @param uErr The error code of the shadow fault. Corrections to
2320 * TRPM's copy will be made if necessary.
2321 * @param GCPtrPage For logging.
2322 * @param uPageFaultLevel For logging.
2323 */
2324DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2325{
2326 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2327 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2328 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2329 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2330
2331 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2332 return VINF_EM_RAW_GUEST_TRAP;
2333}
2334
2335
2336/**
2337 * Handle dirty bit tracking faults.
2338 *
2339 * @returns VBox status code.
2340 * @param pVCpu The VMCPU handle.
2341 * @param uErr Page fault error code.
2342 * @param pPdeSrc Guest page directory entry.
2343 * @param pPdeDst Shadow page directory entry.
2344 * @param GCPtrPage Guest context page address.
2345 */
2346static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2347{
2348 PVM pVM = pVCpu->CTX_SUFF(pVM);
2349 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2350
2351 Assert(PGMIsLockOwner(pVM));
2352
2353 /*
2354 * Handle big page.
2355 */
2356 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2357 {
2358 if ( pPdeDst->n.u1Present
2359 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2360 {
2361 SHWPDE PdeDst = *pPdeDst;
2362
2363 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2364 Assert(pPdeSrc->b.u1Write);
2365
2366 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2367 * fault again and take this path to only invalidate the entry (see below).
2368 */
2369 PdeDst.n.u1Write = 1;
2370 PdeDst.n.u1Accessed = 1;
2371 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2372 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2373 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2374 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2375 }
2376
2377# ifdef IN_RING0
2378 /* Check for stale TLB entry; only applies to the SMP guest case. */
2379 if ( pVM->cCpus > 1
2380 && pPdeDst->n.u1Write
2381 && pPdeDst->n.u1Accessed)
2382 {
2383 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2384 if (pShwPage)
2385 {
2386 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2387 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2388 if (SHW_PTE_IS_P_RW(*pPteDst))
2389 {
2390 /* Stale TLB entry. */
2391 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2392 PGM_INVL_PG(pVCpu, GCPtrPage);
2393 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2394 }
2395 }
2396 }
2397# endif /* IN_RING0 */
2398 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2399 }
2400
2401 /*
2402 * Map the guest page table.
2403 */
2404 PGSTPT pPTSrc;
2405 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2406 if (RT_FAILURE(rc))
2407 {
2408 AssertRC(rc);
2409 return rc;
2410 }
2411
2412 if (pPdeDst->n.u1Present)
2413 {
2414 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2415 const GSTPTE PteSrc = *pPteSrc;
2416
2417#ifndef IN_RING0
2418 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2419 * Our individual shadow handlers will provide more information and force a fatal exit.
2420 */
2421 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2422 {
2423 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2424 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2425 }
2426#endif
2427 /*
2428 * Map shadow page table.
2429 */
2430 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2431 if (pShwPage)
2432 {
2433 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2434 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2435 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2436 {
2437 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2438 {
2439 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(*pPteSrc));
2440 SHWPTE PteDst = *pPteDst;
2441
2442 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2443 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2444
2445 Assert(pPteSrc->n.u1Write);
2446
2447 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2448 * entry will not harm; write access will simply fault again and
2449 * take this path to only invalidate the entry.
2450 */
2451 if (RT_LIKELY(pPage))
2452 {
2453 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2454 {
2455 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2456 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2457 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2458 SHW_PTE_SET_RO(PteDst);
2459 }
2460 else
2461 {
2462 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2463 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2464 {
2465 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(*pPteSrc));
2466 AssertRC(rc);
2467 }
2468 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2469 SHW_PTE_SET_RW(PteDst);
2470 else
2471 {
2472 /* Still applies to shared pages. */
2473 Assert(!PGM_PAGE_IS_ZERO(pPage));
2474 SHW_PTE_SET_RO(PteDst);
2475 }
2476 }
2477 }
2478 else
2479 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2480
2481 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2482 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2483 PGM_INVL_PG(pVCpu, GCPtrPage);
2484 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2485 }
2486
2487# ifdef IN_RING0
2488 /* Check for stale TLB entry; only applies to the SMP guest case. */
2489 if ( pVM->cCpus > 1
2490 && SHW_PTE_IS_RW(*pPteDst)
2491 && SHW_PTE_IS_A(*pPteDst))
2492 {
2493 /* Stale TLB entry. */
2494 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2495 PGM_INVL_PG(pVCpu, GCPtrPage);
2496 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2497 }
2498# endif
2499 }
2500 }
2501 else
2502 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2503 }
2504
2505 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2506}
2507
2508#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2509
2510
2511/**
2512 * Sync a shadow page table.
2513 *
2514 * The shadow page table is not present in the shadow PDE.
2515 *
2516 * Handles mapping conflicts.
2517 *
2518 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2519 * conflict), and Trap0eHandler.
2520 *
2521 * A precodition for this method is that the shadow PDE is not present. The
2522 * caller must take the PGM lock before checking this and continue to hold it
2523 * when calling this method.
2524 *
2525 * @returns VBox status code.
2526 * @param pVCpu The VMCPU handle.
2527 * @param iPD Page directory index.
2528 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2529 * Assume this is a temporary mapping.
2530 * @param GCPtrPage GC Pointer of the page that caused the fault
2531 */
2532static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2533{
2534 PVM pVM = pVCpu->CTX_SUFF(pVM);
2535 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2536
2537 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2538#if 0 /* rarely useful; leave for debugging. */
2539 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2540#endif
2541 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2542
2543 Assert(PGMIsLocked(pVM));
2544
2545#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2546 || PGM_GST_TYPE == PGM_TYPE_PAE \
2547 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2548 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2549 && PGM_SHW_TYPE != PGM_TYPE_EPT
2550
2551 int rc = VINF_SUCCESS;
2552
2553 /*
2554 * Some input validation first.
2555 */
2556 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2557
2558 /*
2559 * Get the relevant shadow PDE entry.
2560 */
2561# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2562 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2563 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2564
2565 /* Fetch the pgm pool shadow descriptor. */
2566 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2567 Assert(pShwPde);
2568
2569# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2570 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2571 PPGMPOOLPAGE pShwPde = NULL;
2572 PX86PDPAE pPDDst;
2573 PSHWPDE pPdeDst;
2574
2575 /* Fetch the pgm pool shadow descriptor. */
2576 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2577 AssertRCSuccessReturn(rc, rc);
2578 Assert(pShwPde);
2579
2580 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2581 pPdeDst = &pPDDst->a[iPDDst];
2582
2583# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2584 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2585 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2586 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2587 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2588 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2589 AssertRCSuccessReturn(rc, rc);
2590 Assert(pPDDst);
2591 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2592# endif
2593 SHWPDE PdeDst = *pPdeDst;
2594
2595# if PGM_GST_TYPE == PGM_TYPE_AMD64
2596 /* Fetch the pgm pool shadow descriptor. */
2597 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2598 Assert(pShwPde);
2599# endif
2600
2601# ifndef PGM_WITHOUT_MAPPINGS
2602 /*
2603 * Check for conflicts.
2604 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2605 * R3: Simply resolve the conflict.
2606 */
2607 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2608 {
2609 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2610# ifndef IN_RING3
2611 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2612 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2613 return VERR_ADDRESS_CONFLICT;
2614
2615# else /* IN_RING3 */
2616 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2617 Assert(pMapping);
2618# if PGM_GST_TYPE == PGM_TYPE_32BIT
2619 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2620# elif PGM_GST_TYPE == PGM_TYPE_PAE
2621 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2622# else
2623 AssertFailed(); /* can't happen for amd64 */
2624# endif
2625 if (RT_FAILURE(rc))
2626 {
2627 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2628 return rc;
2629 }
2630 PdeDst = *pPdeDst;
2631# endif /* IN_RING3 */
2632 }
2633# endif /* !PGM_WITHOUT_MAPPINGS */
2634 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2635
2636 /*
2637 * Sync the page directory entry.
2638 */
2639 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2640 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2641 if ( PdeSrc.n.u1Present
2642 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2643 {
2644 /*
2645 * Allocate & map the page table.
2646 */
2647 PSHWPT pPTDst;
2648 PPGMPOOLPAGE pShwPage;
2649 RTGCPHYS GCPhys;
2650 if (fPageTable)
2651 {
2652 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2653# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2654 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2655 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2656# endif
2657 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2658 }
2659 else
2660 {
2661 PGMPOOLACCESS enmAccess;
2662# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2663 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2664# else
2665 const bool fNoExecute = false;
2666# endif
2667
2668 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2669# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2670 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2671 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2672# endif
2673 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2674 if (PdeSrc.n.u1User)
2675 {
2676 if (PdeSrc.n.u1Write)
2677 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2678 else
2679 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2680 }
2681 else
2682 {
2683 if (PdeSrc.n.u1Write)
2684 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2685 else
2686 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2687 }
2688 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, false /*fLockPage*/,
2689 &pShwPage);
2690 }
2691 if (rc == VINF_SUCCESS)
2692 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2693 else if (rc == VINF_PGM_CACHED_PAGE)
2694 {
2695 /*
2696 * The PT was cached, just hook it up.
2697 */
2698 if (fPageTable)
2699 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2700 else
2701 {
2702 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2703 /* (see explanation and assumptions further down.) */
2704 if ( !PdeSrc.b.u1Dirty
2705 && PdeSrc.b.u1Write)
2706 {
2707 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2708 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2709 PdeDst.b.u1Write = 0;
2710 }
2711 }
2712 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2713 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2714 return VINF_SUCCESS;
2715 }
2716 else if (rc == VERR_PGM_POOL_FLUSHED)
2717 {
2718 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2719 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2720 return VINF_PGM_SYNC_CR3;
2721 }
2722 else
2723 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2724 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2725 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2726 * irrelevant at this point. */
2727 PdeDst.u &= X86_PDE_AVL_MASK;
2728 PdeDst.u |= pShwPage->Core.Key;
2729
2730 /*
2731 * Page directory has been accessed (this is a fault situation, remember).
2732 */
2733 /** @todo
2734 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2735 * fault situation. What's more, the Trap0eHandler has already set the
2736 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2737 * might need setting the accessed flag.
2738 *
2739 * The best idea is to leave this change to the caller and add an
2740 * assertion that it's set already. */
2741 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2742 if (fPageTable)
2743 {
2744 /*
2745 * Page table - 4KB.
2746 *
2747 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2748 */
2749 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2750 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2751 PGSTPT pPTSrc;
2752 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2753 if (RT_SUCCESS(rc))
2754 {
2755 /*
2756 * Start by syncing the page directory entry so CSAM's TLB trick works.
2757 */
2758 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2759 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2760 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2761 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2762
2763 /*
2764 * Directory/page user or supervisor privilege: (same goes for read/write)
2765 *
2766 * Directory Page Combined
2767 * U/S U/S U/S
2768 * 0 0 0
2769 * 0 1 0
2770 * 1 0 0
2771 * 1 1 1
2772 *
2773 * Simple AND operation. Table listed for completeness.
2774 *
2775 */
2776 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2777# ifdef PGM_SYNC_N_PAGES
2778 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2779 unsigned iPTDst = iPTBase;
2780 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2781 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2782 iPTDst = 0;
2783 else
2784 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2785# else /* !PGM_SYNC_N_PAGES */
2786 unsigned iPTDst = 0;
2787 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2788# endif /* !PGM_SYNC_N_PAGES */
2789 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2790 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2791# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2792 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2793 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2794# else
2795 const unsigned offPTSrc = 0;
2796# endif
2797 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2798 {
2799 const unsigned iPTSrc = iPTDst + offPTSrc;
2800 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2801
2802 if (PteSrc.n.u1Present)
2803 {
2804# ifndef IN_RING0
2805 /*
2806 * Assuming kernel code will be marked as supervisor - and not as user level
2807 * and executed using a conforming code selector - And marked as readonly.
2808 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2809 */
2810 PPGMPAGE pPage;
2811 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2812 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2813 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc)))
2814 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2815 )
2816# endif
2817 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2818 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2819 GCPtrCur,
2820 PteSrc.n.u1Present,
2821 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2822 PteSrc.n.u1User & PdeSrc.n.u1User,
2823 (uint64_t)PteSrc.u,
2824 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2825 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2826 }
2827 /* else: the page table was cleared by the pool */
2828 } /* for PTEs */
2829 }
2830 }
2831 else
2832 {
2833 /*
2834 * Big page - 2/4MB.
2835 *
2836 * We'll walk the ram range list in parallel and optimize lookups.
2837 * We will only sync on shadow page table at a time.
2838 */
2839 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2840
2841 /**
2842 * @todo It might be more efficient to sync only a part of the 4MB
2843 * page (similar to what we do for 4KB PDs).
2844 */
2845
2846 /*
2847 * Start by syncing the page directory entry.
2848 */
2849 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2850 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2851
2852 /*
2853 * If the page is not flagged as dirty and is writable, then make it read-only
2854 * at PD level, so we can set the dirty bit when the page is modified.
2855 *
2856 * ASSUMES that page access handlers are implemented on page table entry level.
2857 * Thus we will first catch the dirty access and set PDE.D and restart. If
2858 * there is an access handler, we'll trap again and let it work on the problem.
2859 */
2860 /** @todo move the above stuff to a section in the PGM documentation. */
2861 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2862 if ( !PdeSrc.b.u1Dirty
2863 && PdeSrc.b.u1Write)
2864 {
2865 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2866 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2867 PdeDst.b.u1Write = 0;
2868 }
2869 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2870 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2871
2872 /*
2873 * Fill the shadow page table.
2874 */
2875 /* Get address and flags from the source PDE. */
2876 SHWPTE PteDstBase;
2877 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2878
2879 /* Loop thru the entries in the shadow PT. */
2880 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2881 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2882 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2883 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2884 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2885 unsigned iPTDst = 0;
2886 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2887 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2888 {
2889 /* Advance ram range list. */
2890 while (pRam && GCPhys > pRam->GCPhysLast)
2891 pRam = pRam->CTX_SUFF(pNext);
2892 if (pRam && GCPhys >= pRam->GCPhys)
2893 {
2894 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2895 do
2896 {
2897 /* Make shadow PTE. */
2898 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2899 SHWPTE PteDst;
2900
2901# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2902 /* Try to make the page writable if necessary. */
2903 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2904 && ( PGM_PAGE_IS_ZERO(pPage)
2905 || ( SHW_PTE_IS_RW(PteDstBase)
2906 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2907# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2908 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2909# endif
2910# ifdef VBOX_WITH_PAGE_SHARING
2911 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2912# endif
2913 && !PGM_PAGE_IS_BALLOONED(pPage))
2914 )
2915 )
2916 {
2917 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2918 AssertRCReturn(rc, rc);
2919 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2920 break;
2921 }
2922# endif
2923
2924 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2925 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2926 else if (PGM_PAGE_IS_BALLOONED(pPage))
2927 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2928# ifndef IN_RING0
2929 /*
2930 * Assuming kernel code will be marked as supervisor and not as user level and executed
2931 * using a conforming code selector. Don't check for readonly, as that implies the whole
2932 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2933 */
2934 else if ( !PdeSrc.n.u1User
2935 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2936 SHW_PTE_SET(PteDst, 0);
2937# endif
2938 else
2939 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2940
2941 /* Only map writable pages writable. */
2942 if ( SHW_PTE_IS_P_RW(PteDst)
2943 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2944 {
2945 /* Still applies to shared pages. */
2946 Assert(!PGM_PAGE_IS_ZERO(pPage));
2947 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2948 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2949 }
2950
2951 if (SHW_PTE_IS_P(PteDst))
2952 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2953
2954 /* commit it (not atomic, new table) */
2955 pPTDst->a[iPTDst] = PteDst;
2956 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2957 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2958 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2959
2960 /* advance */
2961 GCPhys += PAGE_SIZE;
2962 iHCPage++;
2963 iPTDst++;
2964 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2965 && GCPhys <= pRam->GCPhysLast);
2966 }
2967 else if (pRam)
2968 {
2969 Log(("Invalid pages at %RGp\n", GCPhys));
2970 do
2971 {
2972 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2973 GCPhys += PAGE_SIZE;
2974 iPTDst++;
2975 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2976 && GCPhys < pRam->GCPhys);
2977 }
2978 else
2979 {
2980 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2981 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2982 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2983 }
2984 } /* while more PTEs */
2985 } /* 4KB / 4MB */
2986 }
2987 else
2988 AssertRelease(!PdeDst.n.u1Present);
2989
2990 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2991 if (RT_FAILURE(rc))
2992 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2993 return rc;
2994
2995#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2996 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2997 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2998 && !defined(IN_RC)
2999
3000 /*
3001 * Validate input a little bit.
3002 */
3003 int rc = VINF_SUCCESS;
3004# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3005 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3006 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3007
3008 /* Fetch the pgm pool shadow descriptor. */
3009 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3010 Assert(pShwPde);
3011
3012# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3013 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3014 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3015 PX86PDPAE pPDDst;
3016 PSHWPDE pPdeDst;
3017
3018 /* Fetch the pgm pool shadow descriptor. */
3019 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3020 AssertRCSuccessReturn(rc, rc);
3021 Assert(pShwPde);
3022
3023 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3024 pPdeDst = &pPDDst->a[iPDDst];
3025
3026# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3027 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3028 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3029 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3030 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3031 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3032 AssertRCSuccessReturn(rc, rc);
3033 Assert(pPDDst);
3034 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3035
3036 /* Fetch the pgm pool shadow descriptor. */
3037 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3038 Assert(pShwPde);
3039
3040# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3041 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3042 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3043 PEPTPD pPDDst;
3044 PEPTPDPT pPdptDst;
3045
3046 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3047 if (rc != VINF_SUCCESS)
3048 {
3049 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3050 AssertRC(rc);
3051 return rc;
3052 }
3053 Assert(pPDDst);
3054 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3055
3056 /* Fetch the pgm pool shadow descriptor. */
3057 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3058 Assert(pShwPde);
3059# endif
3060 SHWPDE PdeDst = *pPdeDst;
3061
3062 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3063 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3064
3065# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3066 if (BTH_IS_NP_ACTIVE(pVM))
3067 {
3068 PPGMPAGE pPage;
3069
3070 /* Check if we allocated a big page before for this 2 MB range. */
3071 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3072 if (RT_SUCCESS(rc))
3073 {
3074 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3075
3076 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3077 {
3078 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3079 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3080 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3081 }
3082 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3083 {
3084 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3085 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3086 if (RT_SUCCESS(rc))
3087 {
3088 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3089 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3090 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3091 }
3092 }
3093 else if (PGMIsUsingLargePages(pVM))
3094 {
3095 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3096 if (RT_SUCCESS(rc))
3097 {
3098 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3099 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3100 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3101 }
3102 else
3103 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3104 }
3105
3106 if (HCPhys != NIL_RTHCPHYS)
3107 {
3108 PdeDst.u &= X86_PDE_AVL_MASK;
3109 PdeDst.u |= HCPhys;
3110 PdeDst.n.u1Present = 1;
3111 PdeDst.n.u1Write = 1;
3112 PdeDst.b.u1Size = 1;
3113# if PGM_SHW_TYPE == PGM_TYPE_EPT
3114 PdeDst.n.u1Execute = 1;
3115 PdeDst.b.u1IgnorePAT = 1;
3116 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3117# else
3118 PdeDst.n.u1User = 1;
3119# endif
3120 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3121
3122 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3123 /* Add a reference to the first page only. */
3124 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3125
3126 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3127 return VINF_SUCCESS;
3128 }
3129 }
3130 }
3131# endif /* HC_ARCH_BITS == 64 */
3132
3133 GSTPDE PdeSrc;
3134 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3135 PdeSrc.n.u1Present = 1;
3136 PdeSrc.n.u1Write = 1;
3137 PdeSrc.n.u1Accessed = 1;
3138 PdeSrc.n.u1User = 1;
3139
3140 /*
3141 * Allocate & map the page table.
3142 */
3143 PSHWPT pPTDst;
3144 PPGMPOOLPAGE pShwPage;
3145 RTGCPHYS GCPhys;
3146
3147 /* Virtual address = physical address */
3148 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3149 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3150
3151 if ( rc == VINF_SUCCESS
3152 || rc == VINF_PGM_CACHED_PAGE)
3153 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3154 else
3155 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3156
3157 PdeDst.u &= X86_PDE_AVL_MASK;
3158 PdeDst.u |= pShwPage->Core.Key;
3159 PdeDst.n.u1Present = 1;
3160 PdeDst.n.u1Write = 1;
3161# if PGM_SHW_TYPE == PGM_TYPE_EPT
3162 PdeDst.n.u1Execute = 1;
3163# else
3164 PdeDst.n.u1User = 1;
3165 PdeDst.n.u1Accessed = 1;
3166# endif
3167 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3168
3169 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */);
3170 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3171 return rc;
3172
3173#else
3174 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3175 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3176 return VERR_INTERNAL_ERROR;
3177#endif
3178}
3179
3180
3181
3182/**
3183 * Prefetch a page/set of pages.
3184 *
3185 * Typically used to sync commonly used pages before entering raw mode
3186 * after a CR3 reload.
3187 *
3188 * @returns VBox status code.
3189 * @param pVCpu The VMCPU handle.
3190 * @param GCPtrPage Page to invalidate.
3191 */
3192PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3193{
3194#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3195 || PGM_GST_TYPE == PGM_TYPE_REAL \
3196 || PGM_GST_TYPE == PGM_TYPE_PROT \
3197 || PGM_GST_TYPE == PGM_TYPE_PAE \
3198 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3199 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3200 && PGM_SHW_TYPE != PGM_TYPE_EPT
3201
3202 /*
3203 * Check that all Guest levels thru the PDE are present, getting the
3204 * PD and PDE in the processes.
3205 */
3206 int rc = VINF_SUCCESS;
3207# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3208# if PGM_GST_TYPE == PGM_TYPE_32BIT
3209 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3210 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3211# elif PGM_GST_TYPE == PGM_TYPE_PAE
3212 unsigned iPDSrc;
3213 X86PDPE PdpeSrc;
3214 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3215 if (!pPDSrc)
3216 return VINF_SUCCESS; /* not present */
3217# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3218 unsigned iPDSrc;
3219 PX86PML4E pPml4eSrc;
3220 X86PDPE PdpeSrc;
3221 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3222 if (!pPDSrc)
3223 return VINF_SUCCESS; /* not present */
3224# endif
3225 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3226# else
3227 PGSTPD pPDSrc = NULL;
3228 const unsigned iPDSrc = 0;
3229 GSTPDE PdeSrc;
3230
3231 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3232 PdeSrc.n.u1Present = 1;
3233 PdeSrc.n.u1Write = 1;
3234 PdeSrc.n.u1Accessed = 1;
3235 PdeSrc.n.u1User = 1;
3236# endif
3237
3238 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3239 {
3240 PVM pVM = pVCpu->CTX_SUFF(pVM);
3241 pgmLock(pVM);
3242
3243# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3244 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3245# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3246 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3247 PX86PDPAE pPDDst;
3248 X86PDEPAE PdeDst;
3249# if PGM_GST_TYPE != PGM_TYPE_PAE
3250 X86PDPE PdpeSrc;
3251
3252 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3253 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3254# endif
3255 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3256 if (rc != VINF_SUCCESS)
3257 {
3258 pgmUnlock(pVM);
3259 AssertRC(rc);
3260 return rc;
3261 }
3262 Assert(pPDDst);
3263 PdeDst = pPDDst->a[iPDDst];
3264
3265# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3266 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3267 PX86PDPAE pPDDst;
3268 X86PDEPAE PdeDst;
3269
3270# if PGM_GST_TYPE == PGM_TYPE_PROT
3271 /* AMD-V nested paging */
3272 X86PML4E Pml4eSrc;
3273 X86PDPE PdpeSrc;
3274 PX86PML4E pPml4eSrc = &Pml4eSrc;
3275
3276 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3277 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3278 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3279# endif
3280
3281 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3282 if (rc != VINF_SUCCESS)
3283 {
3284 pgmUnlock(pVM);
3285 AssertRC(rc);
3286 return rc;
3287 }
3288 Assert(pPDDst);
3289 PdeDst = pPDDst->a[iPDDst];
3290# endif
3291 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3292 {
3293 if (!PdeDst.n.u1Present)
3294 {
3295 /** @todo r=bird: This guy will set the A bit on the PDE,
3296 * probably harmless. */
3297 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3298 }
3299 else
3300 {
3301 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3302 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3303 * makes no sense to prefetch more than one page.
3304 */
3305 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3306 if (RT_SUCCESS(rc))
3307 rc = VINF_SUCCESS;
3308 }
3309 }
3310 pgmUnlock(pVM);
3311 }
3312 return rc;
3313
3314#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3315 return VINF_SUCCESS; /* ignore */
3316#else
3317 AssertCompile(0);
3318#endif
3319}
3320
3321
3322
3323
3324/**
3325 * Syncs a page during a PGMVerifyAccess() call.
3326 *
3327 * @returns VBox status code (informational included).
3328 * @param pVCpu The VMCPU handle.
3329 * @param GCPtrPage The address of the page to sync.
3330 * @param fPage The effective guest page flags.
3331 * @param uErr The trap error code.
3332 * @remarks This will normally never be called on invalid guest page
3333 * translation entries.
3334 */
3335PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3336{
3337 PVM pVM = pVCpu->CTX_SUFF(pVM);
3338
3339 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3340
3341 Assert(!pVM->pgm.s.fNestedPaging);
3342#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3343 || PGM_GST_TYPE == PGM_TYPE_REAL \
3344 || PGM_GST_TYPE == PGM_TYPE_PROT \
3345 || PGM_GST_TYPE == PGM_TYPE_PAE \
3346 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3347 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3348 && PGM_SHW_TYPE != PGM_TYPE_EPT
3349
3350# ifndef IN_RING0
3351 if (!(fPage & X86_PTE_US))
3352 {
3353 /*
3354 * Mark this page as safe.
3355 */
3356 /** @todo not correct for pages that contain both code and data!! */
3357 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3358 CSAMMarkPage(pVM, GCPtrPage, true);
3359 }
3360# endif
3361
3362 /*
3363 * Get guest PD and index.
3364 */
3365 /** @todo Performance: We've done all this a jiffy ago in the
3366 * PGMGstGetPage call. */
3367# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3368# if PGM_GST_TYPE == PGM_TYPE_32BIT
3369 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3370 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3371
3372# elif PGM_GST_TYPE == PGM_TYPE_PAE
3373 unsigned iPDSrc = 0;
3374 X86PDPE PdpeSrc;
3375 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3376 if (RT_UNLIKELY(!pPDSrc))
3377 {
3378 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3379 return VINF_EM_RAW_GUEST_TRAP;
3380 }
3381
3382# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3383 unsigned iPDSrc = 0; /* shut up gcc */
3384 PX86PML4E pPml4eSrc = NULL; /* ditto */
3385 X86PDPE PdpeSrc;
3386 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3387 if (RT_UNLIKELY(!pPDSrc))
3388 {
3389 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3390 return VINF_EM_RAW_GUEST_TRAP;
3391 }
3392# endif
3393
3394# else /* !PGM_WITH_PAGING */
3395 PGSTPD pPDSrc = NULL;
3396 const unsigned iPDSrc = 0;
3397# endif /* !PGM_WITH_PAGING */
3398 int rc = VINF_SUCCESS;
3399
3400 pgmLock(pVM);
3401
3402 /*
3403 * First check if the shadow pd is present.
3404 */
3405# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3406 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3407
3408# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3409 PX86PDEPAE pPdeDst;
3410 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3411 PX86PDPAE pPDDst;
3412# if PGM_GST_TYPE != PGM_TYPE_PAE
3413 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3414 X86PDPE PdpeSrc;
3415 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3416# endif
3417 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3418 if (rc != VINF_SUCCESS)
3419 {
3420 pgmUnlock(pVM);
3421 AssertRC(rc);
3422 return rc;
3423 }
3424 Assert(pPDDst);
3425 pPdeDst = &pPDDst->a[iPDDst];
3426
3427# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3428 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3429 PX86PDPAE pPDDst;
3430 PX86PDEPAE pPdeDst;
3431
3432# if PGM_GST_TYPE == PGM_TYPE_PROT
3433 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3434 X86PML4E Pml4eSrc;
3435 X86PDPE PdpeSrc;
3436 PX86PML4E pPml4eSrc = &Pml4eSrc;
3437 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3438 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3439# endif
3440
3441 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3442 if (rc != VINF_SUCCESS)
3443 {
3444 pgmUnlock(pVM);
3445 AssertRC(rc);
3446 return rc;
3447 }
3448 Assert(pPDDst);
3449 pPdeDst = &pPDDst->a[iPDDst];
3450# endif
3451
3452 if (!pPdeDst->n.u1Present)
3453 {
3454 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3455 if (rc != VINF_SUCCESS)
3456 {
3457 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3458 pgmUnlock(pVM);
3459 AssertRC(rc);
3460 return rc;
3461 }
3462 }
3463
3464# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3465 /* Check for dirty bit fault */
3466 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3467 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3468 Log(("PGMVerifyAccess: success (dirty)\n"));
3469 else
3470# endif
3471 {
3472# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3473 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3474# else
3475 GSTPDE PdeSrc;
3476 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3477 PdeSrc.n.u1Present = 1;
3478 PdeSrc.n.u1Write = 1;
3479 PdeSrc.n.u1Accessed = 1;
3480 PdeSrc.n.u1User = 1;
3481# endif
3482
3483 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3484 if (uErr & X86_TRAP_PF_US)
3485 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3486 else /* supervisor */
3487 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3488
3489 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3490 if (RT_SUCCESS(rc))
3491 {
3492 /* Page was successfully synced */
3493 Log2(("PGMVerifyAccess: success (sync)\n"));
3494 rc = VINF_SUCCESS;
3495 }
3496 else
3497 {
3498 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3499 rc = VINF_EM_RAW_GUEST_TRAP;
3500 }
3501 }
3502 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3503 pgmUnlock(pVM);
3504 return rc;
3505
3506#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3507
3508 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3509 return VERR_INTERNAL_ERROR;
3510#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3511}
3512
3513
3514/**
3515 * Syncs the paging hierarchy starting at CR3.
3516 *
3517 * @returns VBox status code, no specials.
3518 * @param pVCpu The VMCPU handle.
3519 * @param cr0 Guest context CR0 register
3520 * @param cr3 Guest context CR3 register
3521 * @param cr4 Guest context CR4 register
3522 * @param fGlobal Including global page directories or not
3523 */
3524PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3525{
3526 PVM pVM = pVCpu->CTX_SUFF(pVM);
3527
3528 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3529
3530#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3531
3532 pgmLock(pVM);
3533
3534# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3535 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3536 if (pPool->cDirtyPages)
3537 pgmPoolResetDirtyPages(pVM);
3538# endif
3539
3540 /*
3541 * Update page access handlers.
3542 * The virtual are always flushed, while the physical are only on demand.
3543 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3544 * have to look into that later because it will have a bad influence on the performance.
3545 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3546 * bird: Yes, but that won't work for aliases.
3547 */
3548 /** @todo this MUST go away. See #1557. */
3549 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3550 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3551 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3552 pgmUnlock(pVM);
3553#endif /* !NESTED && !EPT */
3554
3555#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3556 /*
3557 * Nested / EPT - almost no work.
3558 */
3559 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3560 return VINF_SUCCESS;
3561
3562#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3563 /*
3564 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3565 * out the shadow parts when the guest modifies its tables.
3566 */
3567 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3568 return VINF_SUCCESS;
3569
3570#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3571
3572# ifndef PGM_WITHOUT_MAPPINGS
3573 /*
3574 * Check for and resolve conflicts with our guest mappings if they
3575 * are enabled and not fixed.
3576 */
3577 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3578 {
3579 int rc = pgmMapResolveConflicts(pVM);
3580 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3581 if (rc == VINF_PGM_SYNC_CR3)
3582 {
3583 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3584 return VINF_PGM_SYNC_CR3;
3585 }
3586 }
3587# else
3588 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3589# endif
3590 return VINF_SUCCESS;
3591#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3592}
3593
3594
3595
3596
3597#ifdef VBOX_STRICT
3598# ifdef IN_RC
3599# undef AssertMsgFailed
3600# define AssertMsgFailed Log
3601# endif
3602
3603/**
3604 * Checks that the shadow page table is in sync with the guest one.
3605 *
3606 * @returns The number of errors.
3607 * @param pVM The virtual machine.
3608 * @param pVCpu The VMCPU handle.
3609 * @param cr3 Guest context CR3 register
3610 * @param cr4 Guest context CR4 register
3611 * @param GCPtr Where to start. Defaults to 0.
3612 * @param cb How much to check. Defaults to everything.
3613 */
3614PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3615{
3616#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3617 return 0;
3618#else
3619 unsigned cErrors = 0;
3620 PVM pVM = pVCpu->CTX_SUFF(pVM);
3621 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3622
3623#if PGM_GST_TYPE == PGM_TYPE_PAE
3624 /** @todo currently broken; crashes below somewhere */
3625 AssertFailed();
3626#endif
3627
3628#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3629 || PGM_GST_TYPE == PGM_TYPE_PAE \
3630 || PGM_GST_TYPE == PGM_TYPE_AMD64
3631
3632 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3633 PPGMCPU pPGM = &pVCpu->pgm.s;
3634 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3635 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3636# ifndef IN_RING0
3637 RTHCPHYS HCPhys; /* general usage. */
3638# endif
3639 int rc;
3640
3641 /*
3642 * Check that the Guest CR3 and all its mappings are correct.
3643 */
3644 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3645 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3646 false);
3647# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3648# if PGM_GST_TYPE == PGM_TYPE_32BIT
3649 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3650# else
3651 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3652# endif
3653 AssertRCReturn(rc, 1);
3654 HCPhys = NIL_RTHCPHYS;
3655 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3656 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3657# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3658 pgmGstGet32bitPDPtr(pVCpu);
3659 RTGCPHYS GCPhys;
3660 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3661 AssertRCReturn(rc, 1);
3662 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3663# endif
3664# endif /* !IN_RING0 */
3665
3666 /*
3667 * Get and check the Shadow CR3.
3668 */
3669# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3670 unsigned cPDEs = X86_PG_ENTRIES;
3671 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3672# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3673# if PGM_GST_TYPE == PGM_TYPE_32BIT
3674 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3675# else
3676 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3677# endif
3678 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3679# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3680 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3681 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3682# endif
3683 if (cb != ~(RTGCPTR)0)
3684 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3685
3686/** @todo call the other two PGMAssert*() functions. */
3687
3688# if PGM_GST_TYPE == PGM_TYPE_AMD64
3689 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3690
3691 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3692 {
3693 PPGMPOOLPAGE pShwPdpt = NULL;
3694 PX86PML4E pPml4eSrc;
3695 PX86PML4E pPml4eDst;
3696 RTGCPHYS GCPhysPdptSrc;
3697
3698 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3699 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3700
3701 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3702 if (!pPml4eDst->n.u1Present)
3703 {
3704 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3705 continue;
3706 }
3707
3708 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3709 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK;
3710
3711 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3712 {
3713 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3714 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3715 cErrors++;
3716 continue;
3717 }
3718
3719 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3720 {
3721 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3722 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3723 cErrors++;
3724 continue;
3725 }
3726
3727 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3728 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3729 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3730 {
3731 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3732 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3733 cErrors++;
3734 continue;
3735 }
3736# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3737 {
3738# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3739
3740# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3741 /*
3742 * Check the PDPTEs too.
3743 */
3744 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3745
3746 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3747 {
3748 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3749 PPGMPOOLPAGE pShwPde = NULL;
3750 PX86PDPE pPdpeDst;
3751 RTGCPHYS GCPhysPdeSrc;
3752# if PGM_GST_TYPE == PGM_TYPE_PAE
3753 X86PDPE PdpeSrc;
3754 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3755 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3756# else
3757 PX86PML4E pPml4eSrcIgn;
3758 X86PDPE PdpeSrc;
3759 PX86PDPT pPdptDst;
3760 PX86PDPAE pPDDst;
3761 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3762
3763 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3764 if (rc != VINF_SUCCESS)
3765 {
3766 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3767 GCPtr += 512 * _2M;
3768 continue; /* next PDPTE */
3769 }
3770 Assert(pPDDst);
3771# endif
3772 Assert(iPDSrc == 0);
3773
3774 pPdpeDst = &pPdptDst->a[iPdpt];
3775
3776 if (!pPdpeDst->n.u1Present)
3777 {
3778 GCPtr += 512 * _2M;
3779 continue; /* next PDPTE */
3780 }
3781
3782 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3783 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3784
3785 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3786 {
3787 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3788 GCPtr += 512 * _2M;
3789 cErrors++;
3790 continue;
3791 }
3792
3793 if (GCPhysPdeSrc != pShwPde->GCPhys)
3794 {
3795# if PGM_GST_TYPE == PGM_TYPE_AMD64
3796 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3797# else
3798 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3799# endif
3800 GCPtr += 512 * _2M;
3801 cErrors++;
3802 continue;
3803 }
3804
3805# if PGM_GST_TYPE == PGM_TYPE_AMD64
3806 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3807 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3808 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3809 {
3810 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3811 GCPtr += 512 * _2M;
3812 cErrors++;
3813 continue;
3814 }
3815# endif
3816
3817# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3818 {
3819# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3820# if PGM_GST_TYPE == PGM_TYPE_32BIT
3821 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3822# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3823 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3824# endif
3825# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3826 /*
3827 * Iterate the shadow page directory.
3828 */
3829 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3830 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3831
3832 for (;
3833 iPDDst < cPDEs;
3834 iPDDst++, GCPtr += cIncrement)
3835 {
3836# if PGM_SHW_TYPE == PGM_TYPE_PAE
3837 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3838# else
3839 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3840# endif
3841 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3842 {
3843 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3844 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3845 {
3846 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3847 cErrors++;
3848 continue;
3849 }
3850 }
3851 else if ( (PdeDst.u & X86_PDE_P)
3852 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3853 )
3854 {
3855 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3856 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3857 if (!pPoolPage)
3858 {
3859 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3860 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3861 cErrors++;
3862 continue;
3863 }
3864 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3865
3866 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3867 {
3868 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3869 GCPtr, (uint64_t)PdeDst.u));
3870 cErrors++;
3871 }
3872
3873 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3874 {
3875 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3876 GCPtr, (uint64_t)PdeDst.u));
3877 cErrors++;
3878 }
3879
3880 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3881 if (!PdeSrc.n.u1Present)
3882 {
3883 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3884 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3885 cErrors++;
3886 continue;
3887 }
3888
3889 if ( !PdeSrc.b.u1Size
3890 || !fBigPagesSupported)
3891 {
3892 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3893# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3894 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3895# endif
3896 }
3897 else
3898 {
3899# if PGM_GST_TYPE == PGM_TYPE_32BIT
3900 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3901 {
3902 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3903 GCPtr, (uint64_t)PdeSrc.u));
3904 cErrors++;
3905 continue;
3906 }
3907# endif
3908 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3909# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3910 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3911# endif
3912 }
3913
3914 if ( pPoolPage->enmKind
3915 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3916 {
3917 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3918 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3919 cErrors++;
3920 }
3921
3922 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3923 if (!pPhysPage)
3924 {
3925 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3926 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3927 cErrors++;
3928 continue;
3929 }
3930
3931 if (GCPhysGst != pPoolPage->GCPhys)
3932 {
3933 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3934 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3935 cErrors++;
3936 continue;
3937 }
3938
3939 if ( !PdeSrc.b.u1Size
3940 || !fBigPagesSupported)
3941 {
3942 /*
3943 * Page Table.
3944 */
3945 const GSTPT *pPTSrc;
3946 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3947 if (RT_FAILURE(rc))
3948 {
3949 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3950 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3951 cErrors++;
3952 continue;
3953 }
3954 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3955 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3956 {
3957 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3958 // (This problem will go away when/if we shadow multiple CR3s.)
3959 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3960 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3961 cErrors++;
3962 continue;
3963 }
3964 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3965 {
3966 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3967 GCPtr, (uint64_t)PdeDst.u));
3968 cErrors++;
3969 continue;
3970 }
3971
3972 /* iterate the page table. */
3973# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3974 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
3975 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
3976# else
3977 const unsigned offPTSrc = 0;
3978# endif
3979 for (unsigned iPT = 0, off = 0;
3980 iPT < RT_ELEMENTS(pPTDst->a);
3981 iPT++, off += PAGE_SIZE)
3982 {
3983 const SHWPTE PteDst = pPTDst->a[iPT];
3984
3985 /* skip not-present and dirty tracked entries. */
3986 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
3987 continue;
3988 Assert(SHW_PTE_IS_P(PteDst));
3989
3990 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
3991 if (!PteSrc.n.u1Present)
3992 {
3993# ifdef IN_RING3
3994 PGMAssertHandlerAndFlagsInSync(pVM);
3995 DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
3996 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
3997 0, 0, UINT64_MAX, 99, NULL);
3998# endif
3999 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4000 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4001 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
4002 cErrors++;
4003 continue;
4004 }
4005
4006 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4007# if 1 /** @todo sync accessed bit properly... */
4008 fIgnoreFlags |= X86_PTE_A;
4009# endif
4010
4011 /* match the physical addresses */
4012 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4013 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4014
4015# ifdef IN_RING3
4016 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4017 if (RT_FAILURE(rc))
4018 {
4019 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4020 {
4021 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4022 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4023 cErrors++;
4024 continue;
4025 }
4026 }
4027 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4028 {
4029 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4030 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4031 cErrors++;
4032 continue;
4033 }
4034# endif
4035
4036 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4037 if (!pPhysPage)
4038 {
4039# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4040 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4041 {
4042 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4043 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4044 cErrors++;
4045 continue;
4046 }
4047# endif
4048 if (SHW_PTE_IS_RW(PteDst))
4049 {
4050 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4051 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4052 cErrors++;
4053 }
4054 fIgnoreFlags |= X86_PTE_RW;
4055 }
4056 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4057 {
4058 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4059 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4060 cErrors++;
4061 continue;
4062 }
4063
4064 /* flags */
4065 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4066 {
4067 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4068 {
4069 if (SHW_PTE_IS_RW(PteDst))
4070 {
4071 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4072 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4073 cErrors++;
4074 continue;
4075 }
4076 fIgnoreFlags |= X86_PTE_RW;
4077 }
4078 else
4079 {
4080 if ( SHW_PTE_IS_P(PteDst)
4081# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4082 && !PGM_PAGE_IS_MMIO(pPhysPage)
4083# endif
4084 )
4085 {
4086 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4087 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4088 cErrors++;
4089 continue;
4090 }
4091 fIgnoreFlags |= X86_PTE_P;
4092 }
4093 }
4094 else
4095 {
4096 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4097 {
4098 if (SHW_PTE_IS_RW(PteDst))
4099 {
4100 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4101 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4102 cErrors++;
4103 continue;
4104 }
4105 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4106 {
4107 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4108 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4109 cErrors++;
4110 continue;
4111 }
4112 if (SHW_PTE_IS_D(PteDst))
4113 {
4114 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4115 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4116 cErrors++;
4117 }
4118# if 0 /** @todo sync access bit properly... */
4119 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4120 {
4121 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4122 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4123 cErrors++;
4124 }
4125 fIgnoreFlags |= X86_PTE_RW;
4126# else
4127 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4128# endif
4129 }
4130 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4131 {
4132 /* access bit emulation (not implemented). */
4133 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4134 {
4135 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4136 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4137 cErrors++;
4138 continue;
4139 }
4140 if (!SHW_PTE_IS_A(PteDst))
4141 {
4142 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4143 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4144 cErrors++;
4145 }
4146 fIgnoreFlags |= X86_PTE_P;
4147 }
4148# ifdef DEBUG_sandervl
4149 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4150# endif
4151 }
4152
4153 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4154 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4155 )
4156 {
4157 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4158 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4159 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4160 cErrors++;
4161 continue;
4162 }
4163 } /* foreach PTE */
4164 }
4165 else
4166 {
4167 /*
4168 * Big Page.
4169 */
4170 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4171 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4172 {
4173 if (PdeDst.n.u1Write)
4174 {
4175 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4176 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4177 cErrors++;
4178 continue;
4179 }
4180 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4181 {
4182 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4183 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4184 cErrors++;
4185 continue;
4186 }
4187# if 0 /** @todo sync access bit properly... */
4188 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4189 {
4190 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4191 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4192 cErrors++;
4193 }
4194 fIgnoreFlags |= X86_PTE_RW;
4195# else
4196 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4197# endif
4198 }
4199 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4200 {
4201 /* access bit emulation (not implemented). */
4202 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4203 {
4204 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4205 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4206 cErrors++;
4207 continue;
4208 }
4209 if (!PdeDst.n.u1Accessed)
4210 {
4211 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4212 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4213 cErrors++;
4214 }
4215 fIgnoreFlags |= X86_PTE_P;
4216 }
4217
4218 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4219 {
4220 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4221 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4222 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4223 cErrors++;
4224 }
4225
4226 /* iterate the page table. */
4227 for (unsigned iPT = 0, off = 0;
4228 iPT < RT_ELEMENTS(pPTDst->a);
4229 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4230 {
4231 const SHWPTE PteDst = pPTDst->a[iPT];
4232
4233 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4234 {
4235 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4236 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4237 cErrors++;
4238 }
4239
4240 /* skip not-present entries. */
4241 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4242 continue;
4243
4244 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4245
4246 /* match the physical addresses */
4247 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4248
4249# ifdef IN_RING3
4250 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4251 if (RT_FAILURE(rc))
4252 {
4253 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4254 {
4255 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4256 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4257 cErrors++;
4258 }
4259 }
4260 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4261 {
4262 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4263 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4264 cErrors++;
4265 continue;
4266 }
4267# endif
4268 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4269 if (!pPhysPage)
4270 {
4271# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4272 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4273 {
4274 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4275 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4276 cErrors++;
4277 continue;
4278 }
4279# endif
4280 if (SHW_PTE_IS_RW(PteDst))
4281 {
4282 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4283 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4284 cErrors++;
4285 }
4286 fIgnoreFlags |= X86_PTE_RW;
4287 }
4288 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4289 {
4290 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4291 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4292 cErrors++;
4293 continue;
4294 }
4295
4296 /* flags */
4297 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4298 {
4299 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4300 {
4301 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4302 {
4303 if (SHW_PTE_IS_RW(PteDst))
4304 {
4305 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4306 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4307 cErrors++;
4308 continue;
4309 }
4310 fIgnoreFlags |= X86_PTE_RW;
4311 }
4312 }
4313 else
4314 {
4315 if ( SHW_PTE_IS_P(PteDst)
4316# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4317 && !PGM_PAGE_IS_MMIO(pPhysPage)
4318# endif
4319 )
4320 {
4321 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4322 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4323 cErrors++;
4324 continue;
4325 }
4326 fIgnoreFlags |= X86_PTE_P;
4327 }
4328 }
4329
4330 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4331 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4332 )
4333 {
4334 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4335 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4336 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4337 cErrors++;
4338 continue;
4339 }
4340 } /* for each PTE */
4341 }
4342 }
4343 /* not present */
4344
4345 } /* for each PDE */
4346
4347 } /* for each PDPTE */
4348
4349 } /* for each PML4E */
4350
4351# ifdef DEBUG
4352 if (cErrors)
4353 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4354# endif
4355
4356#endif /* GST == 32BIT, PAE or AMD64 */
4357 return cErrors;
4358
4359#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4360}
4361#endif /* VBOX_STRICT */
4362
4363
4364/**
4365 * Sets up the CR3 for shadow paging
4366 *
4367 * @returns Strict VBox status code.
4368 * @retval VINF_SUCCESS.
4369 *
4370 * @param pVCpu The VMCPU handle.
4371 * @param GCPhysCR3 The physical address in the CR3 register.
4372 */
4373PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4374{
4375 PVM pVM = pVCpu->CTX_SUFF(pVM);
4376
4377 /* Update guest paging info. */
4378#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4379 || PGM_GST_TYPE == PGM_TYPE_PAE \
4380 || PGM_GST_TYPE == PGM_TYPE_AMD64
4381
4382 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4383
4384 /*
4385 * Map the page CR3 points at.
4386 */
4387 RTHCPTR HCPtrGuestCR3;
4388 RTHCPHYS HCPhysGuestCR3;
4389 pgmLock(pVM);
4390 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4391 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4392 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4393 /** @todo this needs some reworking wrt. locking? */
4394# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4395 HCPtrGuestCR3 = NIL_RTHCPTR;
4396 int rc = VINF_SUCCESS;
4397# else
4398 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4399# endif
4400 pgmUnlock(pVM);
4401 if (RT_SUCCESS(rc))
4402 {
4403 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4404 if (RT_SUCCESS(rc))
4405 {
4406# ifdef IN_RC
4407 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4408# endif
4409# if PGM_GST_TYPE == PGM_TYPE_32BIT
4410 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4411# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4412 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4413# endif
4414 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4415
4416# elif PGM_GST_TYPE == PGM_TYPE_PAE
4417 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4418 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4419# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4420 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4421# endif
4422 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4423 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4424
4425 /*
4426 * Map the 4 PDs too.
4427 */
4428 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4429 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4430 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4431 {
4432 if (pGuestPDPT->a[i].n.u1Present)
4433 {
4434 RTHCPTR HCPtr;
4435 RTHCPHYS HCPhys;
4436 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4437 pgmLock(pVM);
4438 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4439 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4440 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4441# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4442 HCPtr = NIL_RTHCPTR;
4443 int rc2 = VINF_SUCCESS;
4444# else
4445 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4446# endif
4447 pgmUnlock(pVM);
4448 if (RT_SUCCESS(rc2))
4449 {
4450 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4451 AssertRCReturn(rc, rc);
4452
4453 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4454# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4455 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4456# endif
4457 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4458 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4459# ifdef IN_RC
4460 PGM_INVL_PG(pVCpu, GCPtr);
4461# endif
4462 continue;
4463 }
4464 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4465 }
4466
4467 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4468# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4469 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4470# endif
4471 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4472 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4473# ifdef IN_RC
4474 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4475# endif
4476 }
4477
4478# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4479 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4480# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4481 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4482# endif
4483# endif
4484 }
4485 else
4486 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4487 }
4488 else
4489 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4490
4491#else /* prot/real stub */
4492 int rc = VINF_SUCCESS;
4493#endif
4494
4495 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4496# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4497 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4498 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4499 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4500 && PGM_GST_TYPE != PGM_TYPE_PROT))
4501
4502 Assert(!pVM->pgm.s.fNestedPaging);
4503
4504 /*
4505 * Update the shadow root page as well since that's not fixed.
4506 */
4507 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4508 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4509 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4510 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4511 PPGMPOOLPAGE pNewShwPageCR3;
4512
4513 pgmLock(pVM);
4514
4515# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4516 if (pPool->cDirtyPages)
4517 pgmPoolResetDirtyPages(pVM);
4518# endif
4519
4520 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4521 rc = pgmPoolAllocEx(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, SHW_POOL_ROOT_IDX,
4522 GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/, &pNewShwPageCR3);
4523 AssertFatalRC(rc);
4524 rc = VINF_SUCCESS;
4525
4526# ifdef IN_RC
4527 /*
4528 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4529 * state will be inconsistent! Flush important things now while
4530 * we still can and then make sure there are no ring-3 calls.
4531 */
4532 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4533 VMMRZCallRing3Disable(pVCpu);
4534# endif
4535
4536 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4537 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4538 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4539# ifdef IN_RING0
4540 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4541 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4542# elif defined(IN_RC)
4543 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4544 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4545# else
4546 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4547 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4548# endif
4549
4550# ifndef PGM_WITHOUT_MAPPINGS
4551 /*
4552 * Apply all hypervisor mappings to the new CR3.
4553 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4554 * make sure we check for conflicts in the new CR3 root.
4555 */
4556# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4557 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4558# endif
4559 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4560 AssertRCReturn(rc, rc);
4561# endif
4562
4563 /* Set the current hypervisor CR3. */
4564 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4565 SELMShadowCR3Changed(pVM, pVCpu);
4566
4567# ifdef IN_RC
4568 /* NOTE: The state is consistent again. */
4569 VMMRZCallRing3Enable(pVCpu);
4570# endif
4571
4572 /* Clean up the old CR3 root. */
4573 if ( pOldShwPageCR3
4574 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4575 {
4576 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4577# ifndef PGM_WITHOUT_MAPPINGS
4578 /* Remove the hypervisor mappings from the shadow page table. */
4579 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4580# endif
4581 /* Mark the page as unlocked; allow flushing again. */
4582 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4583
4584 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4585 }
4586 pgmUnlock(pVM);
4587# endif
4588
4589 return rc;
4590}
4591
4592/**
4593 * Unmaps the shadow CR3.
4594 *
4595 * @returns VBox status, no specials.
4596 * @param pVCpu The VMCPU handle.
4597 */
4598PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4599{
4600 LogFlow(("UnmapCR3\n"));
4601
4602 int rc = VINF_SUCCESS;
4603 PVM pVM = pVCpu->CTX_SUFF(pVM);
4604
4605 /*
4606 * Update guest paging info.
4607 */
4608#if PGM_GST_TYPE == PGM_TYPE_32BIT
4609 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4610# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4611 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4612# endif
4613 pVCpu->pgm.s.pGst32BitPdRC = 0;
4614
4615#elif PGM_GST_TYPE == PGM_TYPE_PAE
4616 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4617# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4618 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4619# endif
4620 pVCpu->pgm.s.pGstPaePdptRC = 0;
4621 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4622 {
4623 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4624# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4625 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4626# endif
4627 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4628 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4629 }
4630
4631#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4632 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4633# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4634 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4635# endif
4636
4637#else /* prot/real mode stub */
4638 /* nothing to do */
4639#endif
4640
4641#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4642 /*
4643 * Update shadow paging info.
4644 */
4645# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4646 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4647 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4648
4649# if PGM_GST_TYPE != PGM_TYPE_REAL
4650 Assert(!pVM->pgm.s.fNestedPaging);
4651# endif
4652
4653 pgmLock(pVM);
4654
4655# ifndef PGM_WITHOUT_MAPPINGS
4656 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4657 /* Remove the hypervisor mappings from the shadow page table. */
4658 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4659# endif
4660
4661 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4662 {
4663 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4664
4665 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4666
4667# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4668 if (pPool->cDirtyPages)
4669 pgmPoolResetDirtyPages(pVM);
4670# endif
4671
4672 /* Mark the page as unlocked; allow flushing again. */
4673 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4674
4675 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4676 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4677 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4678 pVCpu->pgm.s.pShwPageCR3RC = 0;
4679 pVCpu->pgm.s.iShwUser = 0;
4680 pVCpu->pgm.s.iShwUserTable = 0;
4681 }
4682 pgmUnlock(pVM);
4683# endif
4684#endif /* !IN_RC*/
4685
4686 return rc;
4687}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette