VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 33105

Last change on this file since 33105 was 32788, checked in by vboxsync, 15 years ago

Moved stats around

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 202.1 KB
Line 
1/* $Id: PGMAllBth.h 32788 2010-09-28 10:08:26Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2010 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29
30/*******************************************************************************
31* Internal Functions *
32*******************************************************************************/
33RT_C_DECLS_BEGIN
34PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
35PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
36static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
37static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
38static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
39#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
40static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
41#else
42static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
43#endif
44PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
45PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
46PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
47#ifdef VBOX_STRICT
48PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
49#endif
50PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
51PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
52RT_C_DECLS_END
53
54
55/*
56 * Filter out some illegal combinations of guest and shadow paging, so we can
57 * remove redundant checks inside functions.
58 */
59#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
60# error "Invalid combination; PAE guest implies PAE shadow"
61#endif
62
63#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
64 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
65# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
74 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
75# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
76#endif
77
78#ifndef IN_RING3
79
80# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
81/**
82 * Deal with a guest page fault.
83 *
84 * @returns Strict VBox status code.
85 * @retval VINF_EM_RAW_GUEST_TRAP
86 * @retval VINF_EM_RAW_EMULATE_INSTR
87 *
88 * @param pVCpu The current CPU.
89 * @param pGstWalk The guest page table walk result.
90 * @param uErr The error code.
91 */
92PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
93{
94# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
95 /*
96 * Check for write conflicts with our hypervisor mapping.
97 *
98 * If the guest happens to access a non-present page, where our hypervisor
99 * is currently mapped, then we'll create a #PF storm in the guest.
100 */
101 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
102 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
103 {
104 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
105 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
106 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
107 return VINF_EM_RAW_EMULATE_INSTR;
108 }
109# endif
110
111 /*
112 * Calc the error code for the guest trap.
113 */
114 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
115 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
116 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
117 if (pGstWalk->Core.fBadPhysAddr)
118 {
119 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
120 Assert(!pGstWalk->Core.fNotPresent);
121 }
122 else if (!pGstWalk->Core.fNotPresent)
123 uNewErr |= X86_TRAP_PF_P;
124 TRPMSetErrorCode(pVCpu, uNewErr);
125
126 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
127 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
128 return VINF_EM_RAW_GUEST_TRAP;
129}
130# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
131
132
133/**
134 * Deal with a guest page fault.
135 *
136 * The caller has taken the PGM lock.
137 *
138 * @returns Strict VBox status code.
139 *
140 * @param pVCpu The current CPU.
141 * @param uErr The error code.
142 * @param pRegFrame The register frame.
143 * @param pvFault The fault address.
144 * @param pPage The guest page at @a pvFault.
145 * @param pGstWalk The guest page table walk result.
146 * @param pfLockTaken PGM lock taken here or not (out). This is true
147 * when we're called.
148 */
149static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
150 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
151# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
152 , PGSTPTWALK pGstWalk
153# endif
154 )
155{
156# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
157 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
158#endif
159 PVM pVM = pVCpu->CTX_SUFF(pVM);
160 int rc;
161
162 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
163 {
164 /*
165 * Physical page access handler.
166 */
167# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
168 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
169# else
170 const RTGCPHYS GCPhysFault = (RTGCPHYS)pvFault;
171# endif
172 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
173 if (pCur)
174 {
175# ifdef PGM_SYNC_N_PAGES
176 /*
177 * If the region is write protected and we got a page not present fault, then sync
178 * the pages. If the fault was caused by a read, then restart the instruction.
179 * In case of write access continue to the GC write handler.
180 *
181 * ASSUMES that there is only one handler per page or that they have similar write properties.
182 */
183 if ( !(uErr & X86_TRAP_PF_P)
184 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
185 {
186# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
187 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
188# else
189 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
190# endif
191 if ( RT_FAILURE(rc)
192 || !(uErr & X86_TRAP_PF_RW)
193 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
194 {
195 AssertRC(rc);
196 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
197 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
198 return rc;
199 }
200 }
201# endif
202# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
203 /*
204 * If the access was not thru a #PF(RSVD|...) resync the page.
205 */
206 if ( !(uErr & X86_TRAP_PF_RSVD)
207 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
208# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
209 && pGstWalk->Core.fEffectiveRW
210 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
211# endif
212 )
213 {
214# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
215 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
216# else
217 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
218# endif
219 if ( RT_FAILURE(rc)
220 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
221 {
222 AssertRC(rc);
223 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
224 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
225 return rc;
226 }
227 }
228# endif
229
230 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
231 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
232 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
233 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
234 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
235 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
236 else
237 {
238 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
239 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
240 }
241
242 if (pCur->CTX_SUFF(pfnHandler))
243 {
244 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
245 void *pvUser = pCur->CTX_SUFF(pvUser);
246# ifdef IN_RING0
247 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
248# else
249 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
250# endif
251
252 STAM_PROFILE_START(&pCur->Stat, h);
253 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
254 {
255 pgmUnlock(pVM);
256 *pfLockTaken = false;
257 }
258
259 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
260
261# ifdef VBOX_WITH_STATISTICS
262 pgmLock(pVM);
263 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
264 if (pCur)
265 STAM_PROFILE_STOP(&pCur->Stat, h);
266 pgmUnlock(pVM);
267# endif
268 }
269 else
270 rc = VINF_EM_RAW_EMULATE_INSTR;
271
272 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
273 return rc;
274 }
275 }
276# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
277 else
278 {
279# ifdef PGM_SYNC_N_PAGES
280 /*
281 * If the region is write protected and we got a page not present fault, then sync
282 * the pages. If the fault was caused by a read, then restart the instruction.
283 * In case of write access continue to the GC write handler.
284 */
285 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
286 && !(uErr & X86_TRAP_PF_P))
287 {
288 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
289 if ( RT_FAILURE(rc)
290 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
291 || !(uErr & X86_TRAP_PF_RW))
292 {
293 AssertRC(rc);
294 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
295 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
296 return rc;
297 }
298 }
299# endif
300 /*
301 * Ok, it's an virtual page access handler.
302 *
303 * Since it's faster to search by address, we'll do that first
304 * and then retry by GCPhys if that fails.
305 */
306 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
307 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
308 * out of sync, because the page was changed without us noticing it (not-present -> present
309 * without invlpg or mov cr3, xxx).
310 */
311 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
312 if (pCur)
313 {
314 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
315 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
316 || !(uErr & X86_TRAP_PF_P)
317 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
318 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
319 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
320
321 if ( pvFault - pCur->Core.Key < pCur->cb
322 && ( uErr & X86_TRAP_PF_RW
323 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
324 {
325# ifdef IN_RC
326 STAM_PROFILE_START(&pCur->Stat, h);
327 RTGCPTR GCPtrStart = pCur->Core.Key;
328 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
329 pgmUnlock(pVM);
330 *pfLockTaken = false;
331
332 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
333
334# ifdef VBOX_WITH_STATISTICS
335 pgmLock(pVM);
336 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
337 if (pCur)
338 STAM_PROFILE_STOP(&pCur->Stat, h);
339 pgmUnlock(pVM);
340# endif
341# else
342 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
343# endif
344 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
345 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
346 return rc;
347 }
348 /* Unhandled part of a monitored page */
349 }
350 else
351 {
352 /* Check by physical address. */
353 unsigned iPage;
354 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
355 Assert(RT_SUCCESS(rc) || !pCur);
356 if ( pCur
357 && ( uErr & X86_TRAP_PF_RW
358 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
359 {
360 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
361# ifdef IN_RC
362 STAM_PROFILE_START(&pCur->Stat, h);
363 RTGCPTR GCPtrStart = pCur->Core.Key;
364 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
365 pgmUnlock(pVM);
366 *pfLockTaken = false;
367
368 RTGCPTR off = (iPage << PAGE_SHIFT)
369 + (pvFault & PAGE_OFFSET_MASK)
370 - (GCPtrStart & PAGE_OFFSET_MASK);
371 Assert(off < pCur->cb);
372 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
373
374# ifdef VBOX_WITH_STATISTICS
375 pgmLock(pVM);
376 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
377 if (pCur)
378 STAM_PROFILE_STOP(&pCur->Stat, h);
379 pgmUnlock(pVM);
380# endif
381# else
382 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
383# endif
384 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
385 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
386 return rc;
387 }
388 }
389 }
390# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
391
392 /*
393 * There is a handled area of the page, but this fault doesn't belong to it.
394 * We must emulate the instruction.
395 *
396 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
397 * we first check if this was a page-not-present fault for a page with only
398 * write access handlers. Restart the instruction if it wasn't a write access.
399 */
400 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
401
402 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
403 && !(uErr & X86_TRAP_PF_P))
404 {
405# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
406 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
407# else
408 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
409# endif
410 if ( RT_FAILURE(rc)
411 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
412 || !(uErr & X86_TRAP_PF_RW))
413 {
414 AssertRC(rc);
415 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
416 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
417 return rc;
418 }
419 }
420
421 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
422 * It's writing to an unhandled part of the LDT page several million times.
423 */
424 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
425 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
426 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
427 return rc;
428} /* if any kind of handler */
429
430
431/**
432 * #PF Handler for raw-mode guest execution.
433 *
434 * @returns VBox status code (appropriate for trap handling and GC return).
435 *
436 * @param pVCpu VMCPU Handle.
437 * @param uErr The trap error code.
438 * @param pRegFrame Trap register frame.
439 * @param pvFault The fault address.
440 * @param pfLockTaken PGM lock taken here or not (out)
441 */
442PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
443{
444 PVM pVM = pVCpu->CTX_SUFF(pVM);
445
446 *pfLockTaken = false;
447
448# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
449 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
450 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
451 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
452 int rc;
453
454# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
455 /*
456 * Walk the guest page translation tables and check if it's a guest fault.
457 */
458 GSTPTWALK GstWalk;
459 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
460 if (RT_FAILURE_NP(rc))
461 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
462
463 /* assert some GstWalk sanity. */
464# if PGM_GST_TYPE == PGM_TYPE_AMD64
465 AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u));
466# endif
467# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
468 AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u));
469# endif
470 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
471 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
472 Assert(GstWalk.Core.fSucceeded);
473
474 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
475 {
476 if ( ( (uErr & X86_TRAP_PF_RW)
477 && !GstWalk.Core.fEffectiveRW
478 && ( (uErr & X86_TRAP_PF_US)
479 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
480 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
481 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
482 )
483 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
484 }
485
486 /*
487 * Set the accessed and dirty flags.
488 */
489# if PGM_GST_TYPE == PGM_TYPE_AMD64
490 GstWalk.Pml4e.u |= X86_PML4E_A;
491 GstWalk.pPml4e->u |= X86_PML4E_A;
492 GstWalk.Pdpe.u |= X86_PDPE_A;
493 GstWalk.pPdpe->u |= X86_PDPE_A;
494# endif
495 if (GstWalk.Core.fBigPage)
496 {
497 Assert(GstWalk.Pde.b.u1Size);
498 if (uErr & X86_TRAP_PF_RW)
499 {
500 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
501 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
502 }
503 else
504 {
505 GstWalk.Pde.u |= X86_PDE4M_A;
506 GstWalk.pPde->u |= X86_PDE4M_A;
507 }
508 }
509 else
510 {
511 Assert(!GstWalk.Pde.b.u1Size);
512 GstWalk.Pde.u |= X86_PDE_A;
513 GstWalk.pPde->u |= X86_PDE_A;
514 if (uErr & X86_TRAP_PF_RW)
515 {
516# ifdef VBOX_WITH_STATISTICS
517 if (!GstWalk.Pte.n.u1Dirty)
518 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
519 else
520 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
521# endif
522 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
523 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
524 }
525 else
526 {
527 GstWalk.Pte.u |= X86_PTE_A;
528 GstWalk.pPte->u |= X86_PTE_A;
529 }
530 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
531 }
532 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
533 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
534# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
535 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
536# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
537
538 /* Take the big lock now. */
539 *pfLockTaken = true;
540 pgmLock(pVM);
541
542# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
543 /*
544 * If it is a reserved bit fault we know that it is an MMIO (access
545 * handler) related fault and can skip some 200 lines of code.
546 */
547 if (uErr & X86_TRAP_PF_RSVD)
548 {
549 Assert(uErr & X86_TRAP_PF_P);
550 PPGMPAGE pPage;
551# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
552 rc = pgmPhysGetPageEx(&pVM->pgm.s, GstWalk.Core.GCPhys, &pPage);
553 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
554 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
555 pfLockTaken, &GstWalk));
556 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
557# else
558 rc = pgmPhysGetPageEx(&pVM->pgm.s, (RTGCPHYS)pvFault, &pPage);
559 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
560 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
561 pfLockTaken));
562 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
563# endif
564 AssertRC(rc);
565 PGM_INVL_PG(pVCpu, pvFault);
566 return rc; /* Restart with the corrected entry. */
567 }
568# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
569
570 /*
571 * Fetch the guest PDE, PDPE and PML4E.
572 */
573# if PGM_SHW_TYPE == PGM_TYPE_32BIT
574 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
575 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
576
577# elif PGM_SHW_TYPE == PGM_TYPE_PAE
578 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
579 PX86PDPAE pPDDst;
580# if PGM_GST_TYPE == PGM_TYPE_PAE
581 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
582# else
583 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
584# endif
585 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
586
587# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
588 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
589 PX86PDPAE pPDDst;
590# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
591 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
592 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
593# else
594 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
595# endif
596 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
597
598# elif PGM_SHW_TYPE == PGM_TYPE_EPT
599 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
600 PEPTPD pPDDst;
601 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
602 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_INTERNAL_ERROR_4);
603# endif
604 Assert(pPDDst);
605
606# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
607 /*
608 * Dirty page handling.
609 *
610 * If we successfully correct the write protection fault due to dirty bit
611 * tracking, then return immediately.
612 */
613 if (uErr & X86_TRAP_PF_RW) /* write fault? */
614 {
615 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
616 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
617 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
618 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
619 {
620 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
621 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
622 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
623 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
624 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
625 return VINF_SUCCESS;
626 }
627 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u));
628 AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u));
629 }
630
631# if 0 /* rarely useful; leave for debugging. */
632 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
633# endif
634# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
635
636 /*
637 * A common case is the not-present error caused by lazy page table syncing.
638 *
639 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
640 * here so we can safely assume that the shadow PT is present when calling
641 * SyncPage later.
642 *
643 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
644 * of mapping conflict and defer to SyncCR3 in R3.
645 * (Again, we do NOT support access handlers for non-present guest pages.)
646 *
647 */
648# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
649 Assert(GstWalk.Pde.n.u1Present);
650# endif
651 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
652 && !pPDDst->a[iPDDst].n.u1Present)
653 {
654 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
655# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
656 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
657 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
658# else
659 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
660 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
661# endif
662 if (RT_SUCCESS(rc))
663 return rc;
664 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
665 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
666 return VINF_PGM_SYNC_CR3;
667 }
668
669# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
670 /*
671 * Check if this address is within any of our mappings.
672 *
673 * This is *very* fast and it's gonna save us a bit of effort below and prevent
674 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
675 * (BTW, it's impossible to have physical access handlers in a mapping.)
676 */
677 if (pgmMapAreMappingsEnabled(&pVM->pgm.s))
678 {
679 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
680 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
681 {
682 if (pvFault < pMapping->GCPtr)
683 break;
684 if (pvFault - pMapping->GCPtr < pMapping->cb)
685 {
686 /*
687 * The first thing we check is if we've got an undetected conflict.
688 */
689 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
690 {
691 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
692 while (iPT-- > 0)
693 if (GstWalk.pPde[iPT].n.u1Present)
694 {
695 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
696 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
697 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
698 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
699 return VINF_PGM_SYNC_CR3;
700 }
701 }
702
703 /*
704 * Check if the fault address is in a virtual page access handler range.
705 */
706 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
707 if ( pCur
708 && pvFault - pCur->Core.Key < pCur->cb
709 && uErr & X86_TRAP_PF_RW)
710 {
711# ifdef IN_RC
712 STAM_PROFILE_START(&pCur->Stat, h);
713 pgmUnlock(pVM);
714 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
715 pgmLock(pVM);
716 STAM_PROFILE_STOP(&pCur->Stat, h);
717# else
718 AssertFailed();
719 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
720# endif
721 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
722 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
723 return rc;
724 }
725
726 /*
727 * Pretend we're not here and let the guest handle the trap.
728 */
729 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
730 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
731 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
732 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
733 return VINF_EM_RAW_GUEST_TRAP;
734 }
735 }
736 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
737# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
738
739 /*
740 * Check if this fault address is flagged for special treatment,
741 * which means we'll have to figure out the physical address and
742 * check flags associated with it.
743 *
744 * ASSUME that we can limit any special access handling to pages
745 * in page tables which the guest believes to be present.
746 */
747# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
748 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
749# else
750 RTGCPHYS GCPhys = (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK;
751# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
752 PPGMPAGE pPage;
753 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
754 if (RT_FAILURE(rc))
755 {
756 /*
757 * When the guest accesses invalid physical memory (e.g. probing
758 * of RAM or accessing a remapped MMIO range), then we'll fall
759 * back to the recompiler to emulate the instruction.
760 */
761 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
762 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
763 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
764 return VINF_EM_RAW_EMULATE_INSTR;
765 }
766
767 /*
768 * Any handlers for this page?
769 */
770 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
771# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
772 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
773 &GstWalk));
774# else
775 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
776# endif
777
778 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
779
780# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
781 if (uErr & X86_TRAP_PF_P)
782 {
783 /*
784 * The page isn't marked, but it might still be monitored by a virtual page access handler.
785 * (ASSUMES no temporary disabling of virtual handlers.)
786 */
787 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
788 * we should correct both the shadow page table and physical memory flags, and not only check for
789 * accesses within the handler region but for access to pages with virtual handlers. */
790 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
791 if (pCur)
792 {
793 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
794 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
795 || !(uErr & X86_TRAP_PF_P)
796 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
797 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
798
799 if ( pvFault - pCur->Core.Key < pCur->cb
800 && ( uErr & X86_TRAP_PF_RW
801 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
802 {
803# ifdef IN_RC
804 STAM_PROFILE_START(&pCur->Stat, h);
805 pgmUnlock(pVM);
806 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
807 pgmLock(pVM);
808 STAM_PROFILE_STOP(&pCur->Stat, h);
809# else
810 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
811# endif
812 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
813 return rc;
814 }
815 }
816 }
817# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
818
819 /*
820 * We are here only if page is present in Guest page tables and
821 * trap is not handled by our handlers.
822 *
823 * Check it for page out-of-sync situation.
824 */
825 if (!(uErr & X86_TRAP_PF_P))
826 {
827 /*
828 * Page is not present in our page tables. Try to sync it!
829 */
830 if (uErr & X86_TRAP_PF_US)
831 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
832 else /* supervisor */
833 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
834
835 if (PGM_PAGE_IS_BALLOONED(pPage))
836 {
837 /* Emulate reads from ballooned pages as they are not present in
838 our shadow page tables. (Required for e.g. Solaris guests; soft
839 ecc, random nr generator.) */
840 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
841 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
842 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
843 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
844 return rc;
845 }
846
847# if defined(LOG_ENABLED) && !defined(IN_RING0)
848 RTGCPHYS GCPhys2;
849 uint64_t fPageGst2;
850 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
851# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
852 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
853 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
854# else
855 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
856 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
857# endif
858# endif /* LOG_ENABLED */
859
860# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
861 if ( !GstWalk.Core.fEffectiveUS
862 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
863 {
864 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
865 if ( pvFault == (RTGCPTR)pRegFrame->eip
866 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
867# ifdef CSAM_DETECT_NEW_CODE_PAGES
868 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
869 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
870# endif /* CSAM_DETECT_NEW_CODE_PAGES */
871 )
872 {
873 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
874 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
875 if (rc != VINF_SUCCESS)
876 {
877 /*
878 * CSAM needs to perform a job in ring 3.
879 *
880 * Sync the page before going to the host context; otherwise we'll end up in a loop if
881 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
882 */
883 LogFlow(("CSAM ring 3 job\n"));
884 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
885 AssertRC(rc2);
886
887 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
888 return rc;
889 }
890 }
891# ifdef CSAM_DETECT_NEW_CODE_PAGES
892 else if ( uErr == X86_TRAP_PF_RW
893 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
894 && pRegFrame->ecx < 0x10000)
895 {
896 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
897 * to detect loading of new code pages.
898 */
899
900 /*
901 * Decode the instruction.
902 */
903 RTGCPTR PC;
904 rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs,
905 &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC);
906 if (rc == VINF_SUCCESS)
907 {
908 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
909 uint32_t cbOp;
910 rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp);
911
912 /* For now we'll restrict this to rep movsw/d instructions */
913 if ( rc == VINF_SUCCESS
914 && pDis->pCurInstr->opcode == OP_MOVSWD
915 && (pDis->prefix & PREFIX_REP))
916 {
917 CSAMMarkPossibleCodePage(pVM, pvFault);
918 }
919 }
920 }
921# endif /* CSAM_DETECT_NEW_CODE_PAGES */
922
923 /*
924 * Mark this page as safe.
925 */
926 /** @todo not correct for pages that contain both code and data!! */
927 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
928 CSAMMarkPage(pVM, pvFault, true);
929 }
930# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
931# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
932 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
933# else
934 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
935# endif
936 if (RT_SUCCESS(rc))
937 {
938 /* The page was successfully synced, return to the guest. */
939 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
940 return VINF_SUCCESS;
941 }
942 }
943 else /* uErr & X86_TRAP_PF_P: */
944 {
945 /*
946 * Write protected pages are made writable when the guest makes the
947 * first write to it. This happens for pages that are shared, write
948 * monitored or not yet allocated.
949 *
950 * We may also end up here when CR0.WP=0 in the guest.
951 *
952 * Also, a side effect of not flushing global PDEs are out of sync
953 * pages due to physical monitored regions, that are no longer valid.
954 * Assume for now it only applies to the read/write flag.
955 */
956 if (uErr & X86_TRAP_PF_RW)
957 {
958 /*
959 * Check if it is a read-only page.
960 */
961 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
962 {
963 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
964 Assert(!PGM_PAGE_IS_ZERO(pPage));
965 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
966 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
967
968 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
969 if (rc != VINF_SUCCESS)
970 {
971 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
972 return rc;
973 }
974 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
975 return VINF_EM_NO_MEMORY;
976 }
977
978# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
979 /*
980 * Check to see if we need to emulate the instruction if CR0.WP=0.
981 */
982 if ( !GstWalk.Core.fEffectiveRW
983 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
984 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0)
985 {
986 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
987 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
988 if (RT_SUCCESS(rc))
989 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
990 else
991 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
992 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
993 return rc;
994 }
995# endif
996 /// @todo count the above case; else
997 if (uErr & X86_TRAP_PF_US)
998 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
999 else /* supervisor */
1000 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1001
1002 /*
1003 * Sync the page.
1004 *
1005 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1006 * page is not present, which is not true in this case.
1007 */
1008# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1009 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1010# else
1011 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1012# endif
1013 if (RT_SUCCESS(rc))
1014 {
1015 /*
1016 * Page was successfully synced, return to guest but invalidate
1017 * the TLB first as the page is very likely to be in it.
1018 */
1019# if PGM_SHW_TYPE == PGM_TYPE_EPT
1020 HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1021# else
1022 PGM_INVL_PG(pVCpu, pvFault);
1023# endif
1024# ifdef VBOX_STRICT
1025 RTGCPHYS GCPhys2;
1026 uint64_t fPageGst;
1027 if (!pVM->pgm.s.fNestedPaging)
1028 {
1029 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1030 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1031 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1032 }
1033 uint64_t fPageShw;
1034 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1035 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1036 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1037# endif /* VBOX_STRICT */
1038 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1039 return VINF_SUCCESS;
1040 }
1041 }
1042 /** @todo else: why are we here? */
1043
1044# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1045 /*
1046 * Check for VMM page flags vs. Guest page flags consistency.
1047 * Currently only for debug purposes.
1048 */
1049 if (RT_SUCCESS(rc))
1050 {
1051 /* Get guest page flags. */
1052 uint64_t fPageGst;
1053 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1054 if (RT_SUCCESS(rc))
1055 {
1056 uint64_t fPageShw;
1057 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1058
1059 /*
1060 * Compare page flags.
1061 * Note: we have AVL, A, D bits desynched.
1062 */
1063 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1064 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1065 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1066 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1067 }
1068 else
1069 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1070 }
1071 else
1072 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1073# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1074 }
1075
1076
1077 /*
1078 * If we get here it is because something failed above, i.e. most like guru
1079 * meditiation time.
1080 */
1081 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1082 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs, pRegFrame->rip));
1083 return rc;
1084
1085# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1086 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1087 return VERR_INTERNAL_ERROR;
1088# endif
1089}
1090#endif /* !IN_RING3 */
1091
1092
1093/**
1094 * Emulation of the invlpg instruction.
1095 *
1096 *
1097 * @returns VBox status code.
1098 *
1099 * @param pVCpu The VMCPU handle.
1100 * @param GCPtrPage Page to invalidate.
1101 *
1102 * @remark ASSUMES that the guest is updating before invalidating. This order
1103 * isn't required by the CPU, so this is speculative and could cause
1104 * trouble.
1105 * @remark No TLB shootdown is done on any other VCPU as we assume that
1106 * invlpg emulation is the *only* reason for calling this function.
1107 * (The guest has to shoot down TLB entries on other CPUs itself)
1108 * Currently true, but keep in mind!
1109 *
1110 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1111 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1112 */
1113PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1114{
1115#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1116 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1117 && PGM_SHW_TYPE != PGM_TYPE_EPT
1118 int rc;
1119 PVM pVM = pVCpu->CTX_SUFF(pVM);
1120 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1121
1122 Assert(PGMIsLockOwner(pVM));
1123
1124 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1125
1126 /*
1127 * Get the shadow PD entry and skip out if this PD isn't present.
1128 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1129 */
1130# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1131 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1132 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1133
1134 /* Fetch the pgm pool shadow descriptor. */
1135 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1136 Assert(pShwPde);
1137
1138# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1139 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1140 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1141
1142 /* If the shadow PDPE isn't present, then skip the invalidate. */
1143 if (!pPdptDst->a[iPdpt].n.u1Present)
1144 {
1145 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1146 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1147 return VINF_SUCCESS;
1148 }
1149
1150 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1151 PPGMPOOLPAGE pShwPde = NULL;
1152 PX86PDPAE pPDDst;
1153
1154 /* Fetch the pgm pool shadow descriptor. */
1155 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1156 AssertRCSuccessReturn(rc, rc);
1157 Assert(pShwPde);
1158
1159 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1160 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1161
1162# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1163 /* PML4 */
1164 const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;
1165 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1166 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1167 PX86PDPAE pPDDst;
1168 PX86PDPT pPdptDst;
1169 PX86PML4E pPml4eDst;
1170 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1171 if (rc != VINF_SUCCESS)
1172 {
1173 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1174 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1175 return VINF_SUCCESS;
1176 }
1177 Assert(pPDDst);
1178
1179 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1180 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1181
1182 if (!pPdpeDst->n.u1Present)
1183 {
1184 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1185 return VINF_SUCCESS;
1186 }
1187
1188 /* Fetch the pgm pool shadow descriptor. */
1189 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1190 Assert(pShwPde);
1191
1192# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1193
1194 const SHWPDE PdeDst = *pPdeDst;
1195 if (!PdeDst.n.u1Present)
1196 {
1197 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1198 return VINF_SUCCESS;
1199 }
1200
1201 /*
1202 * Get the guest PD entry and calc big page.
1203 */
1204# if PGM_GST_TYPE == PGM_TYPE_32BIT
1205 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1206 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1207 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1208# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1209 unsigned iPDSrc = 0;
1210# if PGM_GST_TYPE == PGM_TYPE_PAE
1211 X86PDPE PdpeSrcIgn;
1212 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1213# else /* AMD64 */
1214 PX86PML4E pPml4eSrcIgn;
1215 X86PDPE PdpeSrcIgn;
1216 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1217# endif
1218 GSTPDE PdeSrc;
1219
1220 if (pPDSrc)
1221 PdeSrc = pPDSrc->a[iPDSrc];
1222 else
1223 PdeSrc.u = 0;
1224# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1225 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1226
1227# ifdef IN_RING3
1228 /*
1229 * If a CR3 Sync is pending we may ignore the invalidate page operation
1230 * depending on the kind of sync and if it's a global page or not.
1231 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1232 */
1233# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1234 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1235 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1236 && fIsBigPage
1237 && PdeSrc.b.u1Global
1238 )
1239 )
1240# else
1241 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1242# endif
1243 {
1244 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1245 return VINF_SUCCESS;
1246 }
1247# endif /* IN_RING3 */
1248
1249 /*
1250 * Deal with the Guest PDE.
1251 */
1252 rc = VINF_SUCCESS;
1253 if (PdeSrc.n.u1Present)
1254 {
1255 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1256 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1257# ifndef PGM_WITHOUT_MAPPING
1258 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1259 {
1260 /*
1261 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1262 */
1263 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1264 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1265 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1266 }
1267 else
1268# endif /* !PGM_WITHOUT_MAPPING */
1269 if (!fIsBigPage)
1270 {
1271 /*
1272 * 4KB - page.
1273 */
1274 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1275 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1276
1277# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1278 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1279 GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2);
1280# endif
1281 if (pShwPage->GCPhys == GCPhys)
1282 {
1283 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1284 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1285
1286 PGSTPT pPTSrc;
1287 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1288 if (RT_SUCCESS(rc))
1289 {
1290 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1291 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1292 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1293 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1294 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1295 GCPtrPage, PteSrc.n.u1Present,
1296 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1297 PteSrc.n.u1User & PdeSrc.n.u1User,
1298 (uint64_t)PteSrc.u,
1299 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1300 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1301 }
1302 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1303 PGM_INVL_PG(pVCpu, GCPtrPage);
1304 }
1305 else
1306 {
1307 /*
1308 * The page table address changed.
1309 */
1310 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1311 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1312 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1313 ASMAtomicWriteSize(pPdeDst, 0);
1314 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1315 PGM_INVL_VCPU_TLBS(pVCpu);
1316 }
1317 }
1318 else
1319 {
1320 /*
1321 * 2/4MB - page.
1322 */
1323 /* Before freeing the page, check if anything really changed. */
1324 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1325 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1326# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1327 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1328 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1329# endif
1330 if ( pShwPage->GCPhys == GCPhys
1331 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1332 {
1333 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1334 /** @todo This test is wrong as it cannot check the G bit!
1335 * FIXME */
1336 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1337 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1338 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1339 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1340 {
1341 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1342 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1343 return VINF_SUCCESS;
1344 }
1345 }
1346
1347 /*
1348 * Ok, the page table is present and it's been changed in the guest.
1349 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1350 * We could do this for some flushes in GC too, but we need an algorithm for
1351 * deciding which 4MB pages containing code likely to be executed very soon.
1352 */
1353 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1354 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1355 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1356 ASMAtomicWriteSize(pPdeDst, 0);
1357 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1358 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1359 }
1360 }
1361 else
1362 {
1363 /*
1364 * Page directory is not present, mark shadow PDE not present.
1365 */
1366 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1367 {
1368 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1369 ASMAtomicWriteSize(pPdeDst, 0);
1370 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1371 PGM_INVL_PG(pVCpu, GCPtrPage);
1372 }
1373 else
1374 {
1375 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
1376 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1377 }
1378 }
1379 return rc;
1380
1381#else /* guest real and protected mode */
1382 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1383 return VINF_SUCCESS;
1384#endif
1385}
1386
1387
1388/**
1389 * Update the tracking of shadowed pages.
1390 *
1391 * @param pVCpu The VMCPU handle.
1392 * @param pShwPage The shadow page.
1393 * @param HCPhys The physical page we is being dereferenced.
1394 * @param iPte Shadow PTE index
1395 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1396 */
1397DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, RTGCPHYS GCPhysPage)
1398{
1399 PVM pVM = pVCpu->CTX_SUFF(pVM);
1400
1401# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1402 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1403 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1404
1405 /* Use the hint we retrieved from the cached guest PT. */
1406 if (pShwPage->fDirty)
1407 {
1408 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1409
1410 Assert(pShwPage->cPresent);
1411 Assert(pPool->cPresent);
1412 pShwPage->cPresent--;
1413 pPool->cPresent--;
1414
1415 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysPage);
1416 AssertRelease(pPhysPage);
1417 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1418 return;
1419 }
1420# endif
1421
1422 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1423 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1424
1425 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1426 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1427 * 2. write protect all shadowed pages. I.e. implement caching.
1428 */
1429 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1430
1431 /*
1432 * Find the guest address.
1433 */
1434 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1435 pRam;
1436 pRam = pRam->CTX_SUFF(pNext))
1437 {
1438 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1439 while (iPage-- > 0)
1440 {
1441 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1442 {
1443 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1444
1445 Assert(pShwPage->cPresent);
1446 Assert(pPool->cPresent);
1447 pShwPage->cPresent--;
1448 pPool->cPresent--;
1449
1450 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1451 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1452 return;
1453 }
1454 }
1455 }
1456
1457 for (;;)
1458 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1459}
1460
1461
1462/**
1463 * Update the tracking of shadowed pages.
1464 *
1465 * @param pVCpu The VMCPU handle.
1466 * @param pShwPage The shadow page.
1467 * @param u16 The top 16-bit of the pPage->HCPhys.
1468 * @param pPage Pointer to the guest page. this will be modified.
1469 * @param iPTDst The index into the shadow table.
1470 */
1471DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1472{
1473 PVM pVM = pVCpu->CTX_SUFF(pVM);
1474
1475 /*
1476 * Just deal with the simple first time here.
1477 */
1478 if (!u16)
1479 {
1480 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1481 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1482 /* Save the page table index. */
1483 PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst);
1484 }
1485 else
1486 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1487
1488 /* write back */
1489 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1490 PGM_PAGE_SET_TRACKING(pPage, u16);
1491
1492 /* update statistics. */
1493 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1494 pShwPage->cPresent++;
1495 if (pShwPage->iFirstPresent > iPTDst)
1496 pShwPage->iFirstPresent = iPTDst;
1497}
1498
1499
1500/**
1501 * Modifies a shadow PTE to account for access handlers.
1502 *
1503 * @param pVM The VM handle.
1504 * @param pPage The page in question.
1505 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1506 * A (accessed) bit so it can be emulated correctly.
1507 * @param pPteDst The shadow PTE (output). This is temporary storage and
1508 * does not need to be set atomically.
1509 */
1510DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1511{
1512 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1513 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1514 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1515 {
1516 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1517#if PGM_SHW_TYPE == PGM_TYPE_EPT
1518 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1519 pPteDst->n.u1Present = 1;
1520 pPteDst->n.u1Execute = 1;
1521 pPteDst->n.u1IgnorePAT = 1;
1522 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1523 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1524#else
1525 if (fPteSrc & X86_PTE_A)
1526 {
1527 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1528 SHW_PTE_SET_RO(*pPteDst);
1529 }
1530 else
1531 SHW_PTE_SET(*pPteDst, 0);
1532#endif
1533 }
1534#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1535# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1536 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1537 && ( BTH_IS_NP_ACTIVE(pVM)
1538 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1539# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1540 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1541# endif
1542 )
1543 {
1544 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1545# if PGM_SHW_TYPE == PGM_TYPE_EPT
1546 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1547 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1548 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1549 pPteDst->n.u1Present = 0;
1550 pPteDst->n.u1Write = 1;
1551 pPteDst->n.u1Execute = 0;
1552 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1553 pPteDst->n.u3EMT = 7;
1554# else
1555 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1556 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1557# endif
1558 }
1559# endif
1560#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1561 else
1562 {
1563 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1564 SHW_PTE_SET(*pPteDst, 0);
1565 }
1566 /** @todo count these kinds of entries. */
1567}
1568
1569
1570/**
1571 * Creates a 4K shadow page for a guest page.
1572 *
1573 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1574 * physical address. The PdeSrc argument only the flags are used. No page
1575 * structured will be mapped in this function.
1576 *
1577 * @param pVCpu The VMCPU handle.
1578 * @param pPteDst Destination page table entry.
1579 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1580 * Can safely assume that only the flags are being used.
1581 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1582 * @param pShwPage Pointer to the shadow page.
1583 * @param iPTDst The index into the shadow table.
1584 *
1585 * @remark Not used for 2/4MB pages!
1586 */
1587#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1588static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1589 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1590#else
1591static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1592#endif
1593{
1594 PVM pVM = pVCpu->CTX_SUFF(pVM);
1595 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1596
1597#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1598 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1599 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1600
1601 if (pShwPage->fDirty)
1602 {
1603 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1604 PGSTPT pGstPT;
1605
1606 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirty].aPage[0];
1607 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1608 pGstPT->a[iPTDst].u = PteSrc.u;
1609 }
1610#else
1611 Assert(!pShwPage->fDirty);
1612#endif
1613
1614#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1615 if ( PteSrc.n.u1Present
1616 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1617#endif
1618 {
1619# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1620 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1621# endif
1622 /*
1623 * Find the ram range.
1624 */
1625 PPGMPAGE pPage;
1626 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhysPage, &pPage);
1627 if (RT_SUCCESS(rc))
1628 {
1629 /* Ignore ballooned pages.
1630 Don't return errors or use a fatal assert here as part of a
1631 shadow sync range might included ballooned pages. */
1632 if (PGM_PAGE_IS_BALLOONED(pPage))
1633 {
1634 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1635 return;
1636 }
1637
1638#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1639 /* Make the page writable if necessary. */
1640 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1641 && ( PGM_PAGE_IS_ZERO(pPage)
1642# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1643 || ( PteSrc.n.u1Write
1644# else
1645 || ( 1
1646# endif
1647 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1648# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1649 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1650# endif
1651# ifdef VBOX_WITH_PAGE_SHARING
1652 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1653# endif
1654 )
1655 )
1656 )
1657 {
1658 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1659 AssertRC(rc);
1660 }
1661#endif
1662
1663 /*
1664 * Make page table entry.
1665 */
1666 SHWPTE PteDst;
1667# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1668 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1669# else
1670 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1671# endif
1672 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1673 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1674 else
1675 {
1676#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1677 /*
1678 * If the page or page directory entry is not marked accessed,
1679 * we mark the page not present.
1680 */
1681 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1682 {
1683 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1684 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1685 SHW_PTE_SET(PteDst, 0);
1686 }
1687 /*
1688 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1689 * when the page is modified.
1690 */
1691 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1692 {
1693 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1694 SHW_PTE_SET(PteDst,
1695 fGstShwPteFlags
1696 | PGM_PAGE_GET_HCPHYS(pPage)
1697 | PGM_PTFLAGS_TRACK_DIRTY);
1698 SHW_PTE_SET_RO(PteDst);
1699 }
1700 else
1701#endif
1702 {
1703 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1704#if PGM_SHW_TYPE == PGM_TYPE_EPT
1705 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1706 PteDst.n.u1Present = 1;
1707 PteDst.n.u1Write = 1;
1708 PteDst.n.u1Execute = 1;
1709 PteDst.n.u1IgnorePAT = 1;
1710 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1711 /* PteDst.n.u1Size = 0 */
1712#else
1713 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1714#endif
1715 }
1716
1717 /*
1718 * Make sure only allocated pages are mapped writable.
1719 */
1720 if ( SHW_PTE_IS_P_RW(PteDst)
1721 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1722 {
1723 /* Still applies to shared pages. */
1724 Assert(!PGM_PAGE_IS_ZERO(pPage));
1725 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1726 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1727 }
1728 }
1729
1730 /*
1731 * Keep user track up to date.
1732 */
1733 if (SHW_PTE_IS_P(PteDst))
1734 {
1735 if (!SHW_PTE_IS_P(*pPteDst))
1736 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1737 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1738 {
1739 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1740 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1741 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1742 }
1743 }
1744 else if (SHW_PTE_IS_P(*pPteDst))
1745 {
1746 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1747 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1748 }
1749
1750 /*
1751 * Update statistics and commit the entry.
1752 */
1753#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1754 if (!PteSrc.n.u1Global)
1755 pShwPage->fSeenNonGlobal = true;
1756#endif
1757 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1758 return;
1759 }
1760
1761/** @todo count these three different kinds. */
1762 Log2(("SyncPageWorker: invalid address in Pte\n"));
1763 }
1764#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1765 else if (!PteSrc.n.u1Present)
1766 Log2(("SyncPageWorker: page not present in Pte\n"));
1767 else
1768 Log2(("SyncPageWorker: invalid Pte\n"));
1769#endif
1770
1771 /*
1772 * The page is not present or the PTE is bad. Replace the shadow PTE by
1773 * an empty entry, making sure to keep the user tracking up to date.
1774 */
1775 if (SHW_PTE_IS_P(*pPteDst))
1776 {
1777 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1778 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1779 }
1780 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1781}
1782
1783
1784/**
1785 * Syncs a guest OS page.
1786 *
1787 * There are no conflicts at this point, neither is there any need for
1788 * page table allocations.
1789 *
1790 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1791 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1792 *
1793 * @returns VBox status code.
1794 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1795 * @param pVCpu The VMCPU handle.
1796 * @param PdeSrc Page directory entry of the guest.
1797 * @param GCPtrPage Guest context page address.
1798 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1799 * @param uErr Fault error (X86_TRAP_PF_*).
1800 */
1801static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1802{
1803 PVM pVM = pVCpu->CTX_SUFF(pVM);
1804 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1805 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1806
1807 Assert(PGMIsLockOwner(pVM));
1808
1809#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1810 || PGM_GST_TYPE == PGM_TYPE_PAE \
1811 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1812 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1813 && PGM_SHW_TYPE != PGM_TYPE_EPT
1814
1815 /*
1816 * Assert preconditions.
1817 */
1818 Assert(PdeSrc.n.u1Present);
1819 Assert(cPages);
1820# if 0 /* rarely useful; leave for debugging. */
1821 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1822# endif
1823
1824 /*
1825 * Get the shadow PDE, find the shadow page table in the pool.
1826 */
1827# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1828 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1829 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1830
1831 /* Fetch the pgm pool shadow descriptor. */
1832 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1833 Assert(pShwPde);
1834
1835# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1836 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1837 PPGMPOOLPAGE pShwPde = NULL;
1838 PX86PDPAE pPDDst;
1839
1840 /* Fetch the pgm pool shadow descriptor. */
1841 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1842 AssertRCSuccessReturn(rc2, rc2);
1843 Assert(pShwPde);
1844
1845 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1846 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1847
1848# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1849 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1850 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1851 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1852 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1853
1854 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1855 AssertRCSuccessReturn(rc2, rc2);
1856 Assert(pPDDst && pPdptDst);
1857 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1858# endif
1859 SHWPDE PdeDst = *pPdeDst;
1860
1861 /*
1862 * - In the guest SMP case we could have blocked while another VCPU reused
1863 * this page table.
1864 * - With W7-64 we may also take this path when the the A bit is cleared on
1865 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1866 * relevant TLB entries. If we're write monitoring any page mapped by
1867 * the modified entry, we may end up here with a "stale" TLB entry.
1868 */
1869 if (!PdeDst.n.u1Present)
1870 {
1871 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1872 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1873 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1874 if (uErr & X86_TRAP_PF_P)
1875 PGM_INVL_PG(pVCpu, GCPtrPage);
1876 return VINF_SUCCESS; /* force the instruction to be executed again. */
1877 }
1878
1879 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1880 Assert(pShwPage);
1881
1882# if PGM_GST_TYPE == PGM_TYPE_AMD64
1883 /* Fetch the pgm pool shadow descriptor. */
1884 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1885 Assert(pShwPde);
1886# endif
1887
1888 /*
1889 * Check that the page is present and that the shadow PDE isn't out of sync.
1890 */
1891 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1892 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1893 RTGCPHYS GCPhys;
1894 if (!fBigPage)
1895 {
1896 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1897# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1898 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1899 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
1900# endif
1901 }
1902 else
1903 {
1904 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1905# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1906 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1907 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
1908# endif
1909 }
1910 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1911 if ( fPdeValid
1912 && pShwPage->GCPhys == GCPhys
1913 && PdeSrc.n.u1Present
1914 && PdeSrc.n.u1User == PdeDst.n.u1User
1915 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1916# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1917 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1918# endif
1919 )
1920 {
1921 /*
1922 * Check that the PDE is marked accessed already.
1923 * Since we set the accessed bit *before* getting here on a #PF, this
1924 * check is only meant for dealing with non-#PF'ing paths.
1925 */
1926 if (PdeSrc.n.u1Accessed)
1927 {
1928 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1929 if (!fBigPage)
1930 {
1931 /*
1932 * 4KB Page - Map the guest page table.
1933 */
1934 PGSTPT pPTSrc;
1935 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1936 if (RT_SUCCESS(rc))
1937 {
1938# ifdef PGM_SYNC_N_PAGES
1939 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
1940 if ( cPages > 1
1941 && !(uErr & X86_TRAP_PF_P)
1942 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
1943 {
1944 /*
1945 * This code path is currently only taken when the caller is PGMTrap0eHandler
1946 * for non-present pages!
1947 *
1948 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
1949 * deal with locality.
1950 */
1951 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1952 const unsigned iPTDstPage = iPTDst;
1953# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1954 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1955 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
1956# else
1957 const unsigned offPTSrc = 0;
1958# endif
1959 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
1960 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
1961 iPTDst = 0;
1962 else
1963 iPTDst -= PGM_SYNC_NR_PAGES / 2;
1964
1965 for (; iPTDst < iPTDstEnd; iPTDst++)
1966 {
1967 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
1968
1969 if ( pPteSrc->n.u1Present
1970 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
1971 {
1972 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
1973 NOREF(GCPtrCurPage);
1974#ifndef IN_RING0
1975 /*
1976 * Assuming kernel code will be marked as supervisor - and not as user level
1977 * and executed using a conforming code selector - And marked as readonly.
1978 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
1979 */
1980 PPGMPAGE pPage;
1981 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
1982 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
1983 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
1984 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK))
1985 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1986 )
1987#endif /* else: CSAM not active */
1988 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
1989 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
1990 GCPtrCurPage, pPteSrc->n.u1Present,
1991 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
1992 pPteSrc->n.u1User & PdeSrc.n.u1User,
1993 (uint64_t)pPteSrc->u,
1994 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1995 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1996 }
1997 }
1998 }
1999 else
2000# endif /* PGM_SYNC_N_PAGES */
2001 {
2002 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2003 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2004 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2005 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2006 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2007 GCPtrPage, PteSrc.n.u1Present,
2008 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2009 PteSrc.n.u1User & PdeSrc.n.u1User,
2010 (uint64_t)PteSrc.u,
2011 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2012 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2013 }
2014 }
2015 else /* MMIO or invalid page: emulated in #PF handler. */
2016 {
2017 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2018 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2019 }
2020 }
2021 else
2022 {
2023 /*
2024 * 4/2MB page - lazy syncing shadow 4K pages.
2025 * (There are many causes of getting here, it's no longer only CSAM.)
2026 */
2027 /* Calculate the GC physical address of this 4KB shadow page. */
2028 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK);
2029 /* Find ram range. */
2030 PPGMPAGE pPage;
2031 int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
2032 if (RT_SUCCESS(rc))
2033 {
2034 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2035
2036# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2037 /* Try to make the page writable if necessary. */
2038 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2039 && ( PGM_PAGE_IS_ZERO(pPage)
2040 || ( PdeSrc.n.u1Write
2041 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2042# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2043 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2044# endif
2045# ifdef VBOX_WITH_PAGE_SHARING
2046 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2047# endif
2048 )
2049 )
2050 )
2051 {
2052 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2053 AssertRC(rc);
2054 }
2055# endif
2056
2057 /*
2058 * Make shadow PTE entry.
2059 */
2060 SHWPTE PteDst;
2061 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2062 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2063 else
2064 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2065
2066 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2067 if ( SHW_PTE_IS_P(PteDst)
2068 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2069 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2070
2071 /* Make sure only allocated pages are mapped writable. */
2072 if ( SHW_PTE_IS_P_RW(PteDst)
2073 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2074 {
2075 /* Still applies to shared pages. */
2076 Assert(!PGM_PAGE_IS_ZERO(pPage));
2077 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2078 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2079 }
2080
2081 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2082
2083 /*
2084 * If the page is not flagged as dirty and is writable, then make it read-only
2085 * at PD level, so we can set the dirty bit when the page is modified.
2086 *
2087 * ASSUMES that page access handlers are implemented on page table entry level.
2088 * Thus we will first catch the dirty access and set PDE.D and restart. If
2089 * there is an access handler, we'll trap again and let it work on the problem.
2090 */
2091 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2092 * As for invlpg, it simply frees the whole shadow PT.
2093 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2094 if ( !PdeSrc.b.u1Dirty
2095 && PdeSrc.b.u1Write)
2096 {
2097 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2098 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2099 PdeDst.n.u1Write = 0;
2100 }
2101 else
2102 {
2103 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2104 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2105 }
2106 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2107 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2108 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2109 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2110 }
2111 else
2112 {
2113 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2114 /** @todo must wipe the shadow page table entry in this
2115 * case. */
2116 }
2117 }
2118 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2119 return VINF_SUCCESS;
2120 }
2121
2122 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2123 }
2124 else if (fPdeValid)
2125 {
2126 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2127 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2128 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2129 }
2130 else
2131 {
2132/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2133 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2134 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2135 }
2136
2137 /*
2138 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2139 * Yea, I'm lazy.
2140 */
2141 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2142 ASMAtomicWriteSize(pPdeDst, 0);
2143
2144 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2145 PGM_INVL_VCPU_TLBS(pVCpu);
2146 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2147
2148
2149#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2150 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2151 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2152 && !defined(IN_RC)
2153
2154# ifdef PGM_SYNC_N_PAGES
2155 /*
2156 * Get the shadow PDE, find the shadow page table in the pool.
2157 */
2158# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2159 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2160
2161# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2162 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2163
2164# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2165 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2166 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2167 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2168 X86PDEPAE PdeDst;
2169 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2170
2171 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2172 AssertRCSuccessReturn(rc, rc);
2173 Assert(pPDDst && pPdptDst);
2174 PdeDst = pPDDst->a[iPDDst];
2175# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2176 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2177 PEPTPD pPDDst;
2178 EPTPDE PdeDst;
2179
2180 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2181 if (rc != VINF_SUCCESS)
2182 {
2183 AssertRC(rc);
2184 return rc;
2185 }
2186 Assert(pPDDst);
2187 PdeDst = pPDDst->a[iPDDst];
2188# endif
2189 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2190 if (!PdeDst.n.u1Present)
2191 {
2192 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2193 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2194 return VINF_SUCCESS; /* force the instruction to be executed again. */
2195 }
2196
2197 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2198 if (PdeDst.n.u1Size)
2199 {
2200 Assert(pVM->pgm.s.fNestedPaging);
2201 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2202 return VINF_SUCCESS;
2203 }
2204
2205 /* Mask away the page offset. */
2206 GCPtrPage &= ~((RTGCPTR)0xfff);
2207
2208 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2209 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2210
2211 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2212 if ( cPages > 1
2213 && !(uErr & X86_TRAP_PF_P)
2214 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2215 {
2216 /*
2217 * This code path is currently only taken when the caller is PGMTrap0eHandler
2218 * for non-present pages!
2219 *
2220 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2221 * deal with locality.
2222 */
2223 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2224 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2225 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2226 iPTDst = 0;
2227 else
2228 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2229 for (; iPTDst < iPTDstEnd; iPTDst++)
2230 {
2231 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2232 {
2233 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2234
2235 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2236 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2237 GCPtrCurPage,
2238 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2239 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2240
2241 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2242 break;
2243 }
2244 else
2245 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2246 }
2247 }
2248 else
2249# endif /* PGM_SYNC_N_PAGES */
2250 {
2251 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2252 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
2253
2254 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2255
2256 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2257 GCPtrPage,
2258 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2259 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2260 }
2261 return VINF_SUCCESS;
2262
2263#else
2264 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2265 return VERR_INTERNAL_ERROR;
2266#endif
2267}
2268
2269
2270#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2271
2272/**
2273 * CheckPageFault helper for returning a page fault indicating a non-present
2274 * (NP) entry in the page translation structures.
2275 *
2276 * @returns VINF_EM_RAW_GUEST_TRAP.
2277 * @param pVCpu The virtual CPU to operate on.
2278 * @param uErr The error code of the shadow fault. Corrections to
2279 * TRPM's copy will be made if necessary.
2280 * @param GCPtrPage For logging.
2281 * @param uPageFaultLevel For logging.
2282 */
2283DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2284{
2285 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2286 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2287 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2288 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2289 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2290
2291 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2292 return VINF_EM_RAW_GUEST_TRAP;
2293}
2294
2295
2296/**
2297 * CheckPageFault helper for returning a page fault indicating a reserved bit
2298 * (RSVD) error in the page translation structures.
2299 *
2300 * @returns VINF_EM_RAW_GUEST_TRAP.
2301 * @param pVCpu The virtual CPU to operate on.
2302 * @param uErr The error code of the shadow fault. Corrections to
2303 * TRPM's copy will be made if necessary.
2304 * @param GCPtrPage For logging.
2305 * @param uPageFaultLevel For logging.
2306 */
2307DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2308{
2309 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2310 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2311 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2312
2313 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2314 return VINF_EM_RAW_GUEST_TRAP;
2315}
2316
2317
2318/**
2319 * CheckPageFault helper for returning a page protection fault (P).
2320 *
2321 * @returns VINF_EM_RAW_GUEST_TRAP.
2322 * @param pVCpu The virtual CPU to operate on.
2323 * @param uErr The error code of the shadow fault. Corrections to
2324 * TRPM's copy will be made if necessary.
2325 * @param GCPtrPage For logging.
2326 * @param uPageFaultLevel For logging.
2327 */
2328DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2329{
2330 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2331 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2332 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2333 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2334
2335 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2336 return VINF_EM_RAW_GUEST_TRAP;
2337}
2338
2339
2340/**
2341 * Handle dirty bit tracking faults.
2342 *
2343 * @returns VBox status code.
2344 * @param pVCpu The VMCPU handle.
2345 * @param uErr Page fault error code.
2346 * @param pPdeSrc Guest page directory entry.
2347 * @param pPdeDst Shadow page directory entry.
2348 * @param GCPtrPage Guest context page address.
2349 */
2350static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage)
2351{
2352 PVM pVM = pVCpu->CTX_SUFF(pVM);
2353 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2354
2355 Assert(PGMIsLockOwner(pVM));
2356
2357 /*
2358 * Handle big page.
2359 */
2360 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2361 {
2362 if ( pPdeDst->n.u1Present
2363 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2364 {
2365 SHWPDE PdeDst = *pPdeDst;
2366
2367 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2368 Assert(pPdeSrc->b.u1Write);
2369
2370 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2371 * fault again and take this path to only invalidate the entry (see below).
2372 */
2373 PdeDst.n.u1Write = 1;
2374 PdeDst.n.u1Accessed = 1;
2375 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2376 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2377 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2378 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2379 }
2380
2381# ifdef IN_RING0
2382 /* Check for stale TLB entry; only applies to the SMP guest case. */
2383 if ( pVM->cCpus > 1
2384 && pPdeDst->n.u1Write
2385 && pPdeDst->n.u1Accessed)
2386 {
2387 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2388 if (pShwPage)
2389 {
2390 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2391 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2392 if (SHW_PTE_IS_P_RW(*pPteDst))
2393 {
2394 /* Stale TLB entry. */
2395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2396 PGM_INVL_PG(pVCpu, GCPtrPage);
2397 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2398 }
2399 }
2400 }
2401# endif /* IN_RING0 */
2402 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2403 }
2404
2405 /*
2406 * Map the guest page table.
2407 */
2408 PGSTPT pPTSrc;
2409 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2410 if (RT_FAILURE(rc))
2411 {
2412 AssertRC(rc);
2413 return rc;
2414 }
2415
2416 if (pPdeDst->n.u1Present)
2417 {
2418 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2419 const GSTPTE PteSrc = *pPteSrc;
2420
2421#ifndef IN_RING0
2422 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2423 * Our individual shadow handlers will provide more information and force a fatal exit.
2424 */
2425 if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2426 {
2427 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2428 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2429 }
2430#endif
2431 /*
2432 * Map shadow page table.
2433 */
2434 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2435 if (pShwPage)
2436 {
2437 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2438 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2439 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2440 {
2441 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2442 {
2443 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(*pPteSrc));
2444 SHWPTE PteDst = *pPteDst;
2445
2446 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2447 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2448
2449 Assert(pPteSrc->n.u1Write);
2450
2451 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2452 * entry will not harm; write access will simply fault again and
2453 * take this path to only invalidate the entry.
2454 */
2455 if (RT_LIKELY(pPage))
2456 {
2457 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2458 {
2459 AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2460 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2461 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2462 SHW_PTE_SET_RO(PteDst);
2463 }
2464 else
2465 {
2466 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2467 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2468 {
2469 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(*pPteSrc));
2470 AssertRC(rc);
2471 }
2472 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2473 SHW_PTE_SET_RW(PteDst);
2474 else
2475 {
2476 /* Still applies to shared pages. */
2477 Assert(!PGM_PAGE_IS_ZERO(pPage));
2478 SHW_PTE_SET_RO(PteDst);
2479 }
2480 }
2481 }
2482 else
2483 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2484
2485 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2486 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2487 PGM_INVL_PG(pVCpu, GCPtrPage);
2488 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2489 }
2490
2491# ifdef IN_RING0
2492 /* Check for stale TLB entry; only applies to the SMP guest case. */
2493 if ( pVM->cCpus > 1
2494 && SHW_PTE_IS_RW(*pPteDst)
2495 && SHW_PTE_IS_A(*pPteDst))
2496 {
2497 /* Stale TLB entry. */
2498 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2499 PGM_INVL_PG(pVCpu, GCPtrPage);
2500 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2501 }
2502# endif
2503 }
2504 }
2505 else
2506 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2507 }
2508
2509 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2510}
2511
2512#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2513
2514
2515/**
2516 * Sync a shadow page table.
2517 *
2518 * The shadow page table is not present in the shadow PDE.
2519 *
2520 * Handles mapping conflicts.
2521 *
2522 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2523 * conflict), and Trap0eHandler.
2524 *
2525 * A precodition for this method is that the shadow PDE is not present. The
2526 * caller must take the PGM lock before checking this and continue to hold it
2527 * when calling this method.
2528 *
2529 * @returns VBox status code.
2530 * @param pVCpu The VMCPU handle.
2531 * @param iPD Page directory index.
2532 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2533 * Assume this is a temporary mapping.
2534 * @param GCPtrPage GC Pointer of the page that caused the fault
2535 */
2536static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2537{
2538 PVM pVM = pVCpu->CTX_SUFF(pVM);
2539 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2540
2541#if 0 /* rarely useful; leave for debugging. */
2542 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2543#endif
2544 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2545
2546 Assert(PGMIsLocked(pVM));
2547
2548#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2549 || PGM_GST_TYPE == PGM_TYPE_PAE \
2550 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2551 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2552 && PGM_SHW_TYPE != PGM_TYPE_EPT
2553
2554 int rc = VINF_SUCCESS;
2555
2556 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2557
2558 /*
2559 * Some input validation first.
2560 */
2561 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2562
2563 /*
2564 * Get the relevant shadow PDE entry.
2565 */
2566# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2567 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2568 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2569
2570 /* Fetch the pgm pool shadow descriptor. */
2571 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2572 Assert(pShwPde);
2573
2574# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2575 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2576 PPGMPOOLPAGE pShwPde = NULL;
2577 PX86PDPAE pPDDst;
2578 PSHWPDE pPdeDst;
2579
2580 /* Fetch the pgm pool shadow descriptor. */
2581 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2582 AssertRCSuccessReturn(rc, rc);
2583 Assert(pShwPde);
2584
2585 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2586 pPdeDst = &pPDDst->a[iPDDst];
2587
2588# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2589 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2590 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2591 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2592 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2593 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2594 AssertRCSuccessReturn(rc, rc);
2595 Assert(pPDDst);
2596 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2597# endif
2598 SHWPDE PdeDst = *pPdeDst;
2599
2600# if PGM_GST_TYPE == PGM_TYPE_AMD64
2601 /* Fetch the pgm pool shadow descriptor. */
2602 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2603 Assert(pShwPde);
2604# endif
2605
2606# ifndef PGM_WITHOUT_MAPPINGS
2607 /*
2608 * Check for conflicts.
2609 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2610 * R3: Simply resolve the conflict.
2611 */
2612 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2613 {
2614 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
2615# ifndef IN_RING3
2616 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2617 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2618 return VERR_ADDRESS_CONFLICT;
2619
2620# else /* IN_RING3 */
2621 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2622 Assert(pMapping);
2623# if PGM_GST_TYPE == PGM_TYPE_32BIT
2624 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2625# elif PGM_GST_TYPE == PGM_TYPE_PAE
2626 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2627# else
2628 AssertFailed(); /* can't happen for amd64 */
2629# endif
2630 if (RT_FAILURE(rc))
2631 {
2632 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2633 return rc;
2634 }
2635 PdeDst = *pPdeDst;
2636# endif /* IN_RING3 */
2637 }
2638# endif /* !PGM_WITHOUT_MAPPINGS */
2639 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2640
2641 /*
2642 * Sync the page directory entry.
2643 */
2644 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2645 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2646 if ( PdeSrc.n.u1Present
2647 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2648 {
2649 /*
2650 * Allocate & map the page table.
2651 */
2652 PSHWPT pPTDst;
2653 PPGMPOOLPAGE pShwPage;
2654 RTGCPHYS GCPhys;
2655 if (fPageTable)
2656 {
2657 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2658# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2659 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2660 GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2);
2661# endif
2662 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
2663 }
2664 else
2665 {
2666 PGMPOOLACCESS enmAccess;
2667# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2668 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2669# else
2670 const bool fNoExecute = false;
2671# endif
2672
2673 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2674# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2675 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2676 GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT);
2677# endif
2678 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2679 if (PdeSrc.n.u1User)
2680 {
2681 if (PdeSrc.n.u1Write)
2682 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2683 else
2684 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2685 }
2686 else
2687 {
2688 if (PdeSrc.n.u1Write)
2689 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2690 else
2691 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2692 }
2693 rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, false /*fLockPage*/,
2694 &pShwPage);
2695 }
2696 if (rc == VINF_SUCCESS)
2697 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2698 else if (rc == VINF_PGM_CACHED_PAGE)
2699 {
2700 /*
2701 * The PT was cached, just hook it up.
2702 */
2703 if (fPageTable)
2704 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2705 else
2706 {
2707 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2708 /* (see explanation and assumptions further down.) */
2709 if ( !PdeSrc.b.u1Dirty
2710 && PdeSrc.b.u1Write)
2711 {
2712 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2713 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2714 PdeDst.b.u1Write = 0;
2715 }
2716 }
2717 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2718 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2719 return VINF_SUCCESS;
2720 }
2721 else if (rc == VERR_PGM_POOL_FLUSHED)
2722 {
2723 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2724 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2725 return VINF_PGM_SYNC_CR3;
2726 }
2727 else
2728 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
2729 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2730 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2731 * irrelevant at this point. */
2732 PdeDst.u &= X86_PDE_AVL_MASK;
2733 PdeDst.u |= pShwPage->Core.Key;
2734
2735 /*
2736 * Page directory has been accessed (this is a fault situation, remember).
2737 */
2738 /** @todo
2739 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2740 * fault situation. What's more, the Trap0eHandler has already set the
2741 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2742 * might need setting the accessed flag.
2743 *
2744 * The best idea is to leave this change to the caller and add an
2745 * assertion that it's set already. */
2746 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2747 if (fPageTable)
2748 {
2749 /*
2750 * Page table - 4KB.
2751 *
2752 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2753 */
2754 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2755 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2756 PGSTPT pPTSrc;
2757 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2758 if (RT_SUCCESS(rc))
2759 {
2760 /*
2761 * Start by syncing the page directory entry so CSAM's TLB trick works.
2762 */
2763 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2764 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2765 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2766 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2767
2768 /*
2769 * Directory/page user or supervisor privilege: (same goes for read/write)
2770 *
2771 * Directory Page Combined
2772 * U/S U/S U/S
2773 * 0 0 0
2774 * 0 1 0
2775 * 1 0 0
2776 * 1 1 1
2777 *
2778 * Simple AND operation. Table listed for completeness.
2779 *
2780 */
2781 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2782# ifdef PGM_SYNC_N_PAGES
2783 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2784 unsigned iPTDst = iPTBase;
2785 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2786 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2787 iPTDst = 0;
2788 else
2789 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2790# else /* !PGM_SYNC_N_PAGES */
2791 unsigned iPTDst = 0;
2792 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2793# endif /* !PGM_SYNC_N_PAGES */
2794 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2795 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2796# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2797 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2798 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2799# else
2800 const unsigned offPTSrc = 0;
2801# endif
2802 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2803 {
2804 const unsigned iPTSrc = iPTDst + offPTSrc;
2805 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2806
2807 if (PteSrc.n.u1Present)
2808 {
2809# ifndef IN_RING0
2810 /*
2811 * Assuming kernel code will be marked as supervisor - and not as user level
2812 * and executed using a conforming code selector - And marked as readonly.
2813 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2814 */
2815 PPGMPAGE pPage;
2816 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2817 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2818 || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, GST_GET_PTE_GCPHYS(PteSrc)))
2819 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2820 )
2821# endif
2822 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2823 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2824 GCPtrCur,
2825 PteSrc.n.u1Present,
2826 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2827 PteSrc.n.u1User & PdeSrc.n.u1User,
2828 (uint64_t)PteSrc.u,
2829 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2830 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2831 }
2832 /* else: the page table was cleared by the pool */
2833 } /* for PTEs */
2834 }
2835 }
2836 else
2837 {
2838 /*
2839 * Big page - 2/4MB.
2840 *
2841 * We'll walk the ram range list in parallel and optimize lookups.
2842 * We will only sync on shadow page table at a time.
2843 */
2844 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2845
2846 /**
2847 * @todo It might be more efficient to sync only a part of the 4MB
2848 * page (similar to what we do for 4KB PDs).
2849 */
2850
2851 /*
2852 * Start by syncing the page directory entry.
2853 */
2854 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2855 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2856
2857 /*
2858 * If the page is not flagged as dirty and is writable, then make it read-only
2859 * at PD level, so we can set the dirty bit when the page is modified.
2860 *
2861 * ASSUMES that page access handlers are implemented on page table entry level.
2862 * Thus we will first catch the dirty access and set PDE.D and restart. If
2863 * there is an access handler, we'll trap again and let it work on the problem.
2864 */
2865 /** @todo move the above stuff to a section in the PGM documentation. */
2866 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2867 if ( !PdeSrc.b.u1Dirty
2868 && PdeSrc.b.u1Write)
2869 {
2870 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2871 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2872 PdeDst.b.u1Write = 0;
2873 }
2874 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2875 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2876
2877 /*
2878 * Fill the shadow page table.
2879 */
2880 /* Get address and flags from the source PDE. */
2881 SHWPTE PteDstBase;
2882 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2883
2884 /* Loop thru the entries in the shadow PT. */
2885 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2886 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2887 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2888 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2889 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2890 unsigned iPTDst = 0;
2891 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2892 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2893 {
2894 /* Advance ram range list. */
2895 while (pRam && GCPhys > pRam->GCPhysLast)
2896 pRam = pRam->CTX_SUFF(pNext);
2897 if (pRam && GCPhys >= pRam->GCPhys)
2898 {
2899 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2900 do
2901 {
2902 /* Make shadow PTE. */
2903 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2904 SHWPTE PteDst;
2905
2906# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2907 /* Try to make the page writable if necessary. */
2908 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2909 && ( PGM_PAGE_IS_ZERO(pPage)
2910 || ( SHW_PTE_IS_RW(PteDstBase)
2911 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2912# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2913 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2914# endif
2915# ifdef VBOX_WITH_PAGE_SHARING
2916 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2917# endif
2918 && !PGM_PAGE_IS_BALLOONED(pPage))
2919 )
2920 )
2921 {
2922 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2923 AssertRCReturn(rc, rc);
2924 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2925 break;
2926 }
2927# endif
2928
2929 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2930 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
2931 else if (PGM_PAGE_IS_BALLOONED(pPage))
2932 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
2933# ifndef IN_RING0
2934 /*
2935 * Assuming kernel code will be marked as supervisor and not as user level and executed
2936 * using a conforming code selector. Don't check for readonly, as that implies the whole
2937 * 4MB can be code or readonly data. Linux enables write access for its large pages.
2938 */
2939 else if ( !PdeSrc.n.u1User
2940 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
2941 SHW_PTE_SET(PteDst, 0);
2942# endif
2943 else
2944 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
2945
2946 /* Only map writable pages writable. */
2947 if ( SHW_PTE_IS_P_RW(PteDst)
2948 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2949 {
2950 /* Still applies to shared pages. */
2951 Assert(!PGM_PAGE_IS_ZERO(pPage));
2952 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2953 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
2954 }
2955
2956 if (SHW_PTE_IS_P(PteDst))
2957 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2958
2959 /* commit it (not atomic, new table) */
2960 pPTDst->a[iPTDst] = PteDst;
2961 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
2962 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
2963 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
2964
2965 /* advance */
2966 GCPhys += PAGE_SIZE;
2967 iHCPage++;
2968 iPTDst++;
2969 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2970 && GCPhys <= pRam->GCPhysLast);
2971 }
2972 else if (pRam)
2973 {
2974 Log(("Invalid pages at %RGp\n", GCPhys));
2975 do
2976 {
2977 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2978 GCPhys += PAGE_SIZE;
2979 iPTDst++;
2980 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2981 && GCPhys < pRam->GCPhys);
2982 }
2983 else
2984 {
2985 Log(("Invalid pages at %RGp (2)\n", GCPhys));
2986 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
2987 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
2988 }
2989 } /* while more PTEs */
2990 } /* 4KB / 4MB */
2991 }
2992 else
2993 AssertRelease(!PdeDst.n.u1Present);
2994
2995 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2996 if (RT_FAILURE(rc))
2997 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
2998 return rc;
2999
3000#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3001 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3002 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3003 && !defined(IN_RC)
3004
3005 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3006
3007 /*
3008 * Validate input a little bit.
3009 */
3010 int rc = VINF_SUCCESS;
3011# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3012 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3013 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3014
3015 /* Fetch the pgm pool shadow descriptor. */
3016 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3017 Assert(pShwPde);
3018
3019# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3020 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3021 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3022 PX86PDPAE pPDDst;
3023 PSHWPDE pPdeDst;
3024
3025 /* Fetch the pgm pool shadow descriptor. */
3026 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3027 AssertRCSuccessReturn(rc, rc);
3028 Assert(pShwPde);
3029
3030 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3031 pPdeDst = &pPDDst->a[iPDDst];
3032
3033# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3034 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3035 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3036 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3037 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3038 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3039 AssertRCSuccessReturn(rc, rc);
3040 Assert(pPDDst);
3041 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3042
3043 /* Fetch the pgm pool shadow descriptor. */
3044 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3045 Assert(pShwPde);
3046
3047# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3048 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3049 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3050 PEPTPD pPDDst;
3051 PEPTPDPT pPdptDst;
3052
3053 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3054 if (rc != VINF_SUCCESS)
3055 {
3056 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3057 AssertRC(rc);
3058 return rc;
3059 }
3060 Assert(pPDDst);
3061 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3062
3063 /* Fetch the pgm pool shadow descriptor. */
3064 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3065 Assert(pShwPde);
3066# endif
3067 SHWPDE PdeDst = *pPdeDst;
3068
3069 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3070 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3071
3072# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3073 if (BTH_IS_NP_ACTIVE(pVM))
3074 {
3075 PPGMPAGE pPage;
3076
3077 /* Check if we allocated a big page before for this 2 MB range. */
3078 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage);
3079 if (RT_SUCCESS(rc))
3080 {
3081 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3082
3083 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3084 {
3085 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3086 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3087 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3088 }
3089 else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
3090 {
3091 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3092 rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage);
3093 if (RT_SUCCESS(rc))
3094 {
3095 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3096 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3097 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3098 }
3099 }
3100 else if (PGMIsUsingLargePages(pVM))
3101 {
3102 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3103 if (RT_SUCCESS(rc))
3104 {
3105 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3106 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3107 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3108 }
3109 else
3110 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3111 }
3112
3113 if (HCPhys != NIL_RTHCPHYS)
3114 {
3115 PdeDst.u &= X86_PDE_AVL_MASK;
3116 PdeDst.u |= HCPhys;
3117 PdeDst.n.u1Present = 1;
3118 PdeDst.n.u1Write = 1;
3119 PdeDst.b.u1Size = 1;
3120# if PGM_SHW_TYPE == PGM_TYPE_EPT
3121 PdeDst.n.u1Execute = 1;
3122 PdeDst.b.u1IgnorePAT = 1;
3123 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3124# else
3125 PdeDst.n.u1User = 1;
3126# endif
3127 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3128
3129 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3130 /* Add a reference to the first page only. */
3131 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3132
3133 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3134 return VINF_SUCCESS;
3135 }
3136 }
3137 }
3138# endif /* HC_ARCH_BITS == 64 */
3139
3140 /*
3141 * Allocate & map the page table.
3142 */
3143 PSHWPT pPTDst;
3144 PPGMPOOLPAGE pShwPage;
3145 RTGCPHYS GCPhys;
3146
3147 /* Virtual address = physical address */
3148 GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK;
3149 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage);
3150
3151 if ( rc == VINF_SUCCESS
3152 || rc == VINF_PGM_CACHED_PAGE)
3153 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3154 else
3155 {
3156 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3157 AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR);
3158 }
3159
3160 if (rc == VINF_SUCCESS)
3161 {
3162 /* New page table; fully set it up. */
3163 Assert(pPTDst);
3164
3165 /* Mask away the page offset. */
3166 GCPtrPage &= ~((RTGCPTR)0xfff);
3167
3168 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3169 {
3170 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT);
3171
3172 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3173 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3174 GCPtrCurPage,
3175 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3176 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3177
3178 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3179 break;
3180 }
3181 }
3182 /* else cached entry; assume it's still fully valid. */
3183
3184 /* Save the new PDE. */
3185 PdeDst.u &= X86_PDE_AVL_MASK;
3186 PdeDst.u |= pShwPage->Core.Key;
3187 PdeDst.n.u1Present = 1;
3188 PdeDst.n.u1Write = 1;
3189# if PGM_SHW_TYPE == PGM_TYPE_EPT
3190 PdeDst.n.u1Execute = 1;
3191# else
3192 PdeDst.n.u1User = 1;
3193 PdeDst.n.u1Accessed = 1;
3194# endif
3195 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3196
3197 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3198 if (RT_FAILURE(rc))
3199 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3200 return rc;
3201
3202#else
3203 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3204 return VERR_INTERNAL_ERROR;
3205#endif
3206}
3207
3208
3209
3210/**
3211 * Prefetch a page/set of pages.
3212 *
3213 * Typically used to sync commonly used pages before entering raw mode
3214 * after a CR3 reload.
3215 *
3216 * @returns VBox status code.
3217 * @param pVCpu The VMCPU handle.
3218 * @param GCPtrPage Page to invalidate.
3219 */
3220PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3221{
3222#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3223 || PGM_GST_TYPE == PGM_TYPE_REAL \
3224 || PGM_GST_TYPE == PGM_TYPE_PROT \
3225 || PGM_GST_TYPE == PGM_TYPE_PAE \
3226 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3227 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3228 && PGM_SHW_TYPE != PGM_TYPE_EPT
3229
3230 /*
3231 * Check that all Guest levels thru the PDE are present, getting the
3232 * PD and PDE in the processes.
3233 */
3234 int rc = VINF_SUCCESS;
3235# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3236# if PGM_GST_TYPE == PGM_TYPE_32BIT
3237 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3238 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3239# elif PGM_GST_TYPE == PGM_TYPE_PAE
3240 unsigned iPDSrc;
3241 X86PDPE PdpeSrc;
3242 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3243 if (!pPDSrc)
3244 return VINF_SUCCESS; /* not present */
3245# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3246 unsigned iPDSrc;
3247 PX86PML4E pPml4eSrc;
3248 X86PDPE PdpeSrc;
3249 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3250 if (!pPDSrc)
3251 return VINF_SUCCESS; /* not present */
3252# endif
3253 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3254# else
3255 PGSTPD pPDSrc = NULL;
3256 const unsigned iPDSrc = 0;
3257 GSTPDE PdeSrc;
3258
3259 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3260 PdeSrc.n.u1Present = 1;
3261 PdeSrc.n.u1Write = 1;
3262 PdeSrc.n.u1Accessed = 1;
3263 PdeSrc.n.u1User = 1;
3264# endif
3265
3266 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3267 {
3268 PVM pVM = pVCpu->CTX_SUFF(pVM);
3269 pgmLock(pVM);
3270
3271# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3272 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3273# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3274 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3275 PX86PDPAE pPDDst;
3276 X86PDEPAE PdeDst;
3277# if PGM_GST_TYPE != PGM_TYPE_PAE
3278 X86PDPE PdpeSrc;
3279
3280 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3281 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3282# endif
3283 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3284 if (rc != VINF_SUCCESS)
3285 {
3286 pgmUnlock(pVM);
3287 AssertRC(rc);
3288 return rc;
3289 }
3290 Assert(pPDDst);
3291 PdeDst = pPDDst->a[iPDDst];
3292
3293# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3294 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3295 PX86PDPAE pPDDst;
3296 X86PDEPAE PdeDst;
3297
3298# if PGM_GST_TYPE == PGM_TYPE_PROT
3299 /* AMD-V nested paging */
3300 X86PML4E Pml4eSrc;
3301 X86PDPE PdpeSrc;
3302 PX86PML4E pPml4eSrc = &Pml4eSrc;
3303
3304 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3305 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3306 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3307# endif
3308
3309 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3310 if (rc != VINF_SUCCESS)
3311 {
3312 pgmUnlock(pVM);
3313 AssertRC(rc);
3314 return rc;
3315 }
3316 Assert(pPDDst);
3317 PdeDst = pPDDst->a[iPDDst];
3318# endif
3319 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3320 {
3321 if (!PdeDst.n.u1Present)
3322 {
3323 /** @todo r=bird: This guy will set the A bit on the PDE,
3324 * probably harmless. */
3325 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3326 }
3327 else
3328 {
3329 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3330 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3331 * makes no sense to prefetch more than one page.
3332 */
3333 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3334 if (RT_SUCCESS(rc))
3335 rc = VINF_SUCCESS;
3336 }
3337 }
3338 pgmUnlock(pVM);
3339 }
3340 return rc;
3341
3342#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3343 return VINF_SUCCESS; /* ignore */
3344#else
3345 AssertCompile(0);
3346#endif
3347}
3348
3349
3350
3351
3352/**
3353 * Syncs a page during a PGMVerifyAccess() call.
3354 *
3355 * @returns VBox status code (informational included).
3356 * @param pVCpu The VMCPU handle.
3357 * @param GCPtrPage The address of the page to sync.
3358 * @param fPage The effective guest page flags.
3359 * @param uErr The trap error code.
3360 * @remarks This will normally never be called on invalid guest page
3361 * translation entries.
3362 */
3363PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3364{
3365 PVM pVM = pVCpu->CTX_SUFF(pVM);
3366
3367 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3368
3369 Assert(!pVM->pgm.s.fNestedPaging);
3370#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3371 || PGM_GST_TYPE == PGM_TYPE_REAL \
3372 || PGM_GST_TYPE == PGM_TYPE_PROT \
3373 || PGM_GST_TYPE == PGM_TYPE_PAE \
3374 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3375 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3376 && PGM_SHW_TYPE != PGM_TYPE_EPT
3377
3378# ifndef IN_RING0
3379 if (!(fPage & X86_PTE_US))
3380 {
3381 /*
3382 * Mark this page as safe.
3383 */
3384 /** @todo not correct for pages that contain both code and data!! */
3385 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3386 CSAMMarkPage(pVM, GCPtrPage, true);
3387 }
3388# endif
3389
3390 /*
3391 * Get guest PD and index.
3392 */
3393 /** @todo Performance: We've done all this a jiffy ago in the
3394 * PGMGstGetPage call. */
3395# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3396# if PGM_GST_TYPE == PGM_TYPE_32BIT
3397 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3398 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3399
3400# elif PGM_GST_TYPE == PGM_TYPE_PAE
3401 unsigned iPDSrc = 0;
3402 X86PDPE PdpeSrc;
3403 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3404 if (RT_UNLIKELY(!pPDSrc))
3405 {
3406 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3407 return VINF_EM_RAW_GUEST_TRAP;
3408 }
3409
3410# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3411 unsigned iPDSrc = 0; /* shut up gcc */
3412 PX86PML4E pPml4eSrc = NULL; /* ditto */
3413 X86PDPE PdpeSrc;
3414 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3415 if (RT_UNLIKELY(!pPDSrc))
3416 {
3417 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3418 return VINF_EM_RAW_GUEST_TRAP;
3419 }
3420# endif
3421
3422# else /* !PGM_WITH_PAGING */
3423 PGSTPD pPDSrc = NULL;
3424 const unsigned iPDSrc = 0;
3425# endif /* !PGM_WITH_PAGING */
3426 int rc = VINF_SUCCESS;
3427
3428 pgmLock(pVM);
3429
3430 /*
3431 * First check if the shadow pd is present.
3432 */
3433# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3434 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3435
3436# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3437 PX86PDEPAE pPdeDst;
3438 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3439 PX86PDPAE pPDDst;
3440# if PGM_GST_TYPE != PGM_TYPE_PAE
3441 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3442 X86PDPE PdpeSrc;
3443 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3444# endif
3445 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3446 if (rc != VINF_SUCCESS)
3447 {
3448 pgmUnlock(pVM);
3449 AssertRC(rc);
3450 return rc;
3451 }
3452 Assert(pPDDst);
3453 pPdeDst = &pPDDst->a[iPDDst];
3454
3455# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3456 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3457 PX86PDPAE pPDDst;
3458 PX86PDEPAE pPdeDst;
3459
3460# if PGM_GST_TYPE == PGM_TYPE_PROT
3461 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3462 X86PML4E Pml4eSrc;
3463 X86PDPE PdpeSrc;
3464 PX86PML4E pPml4eSrc = &Pml4eSrc;
3465 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3466 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3467# endif
3468
3469 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3470 if (rc != VINF_SUCCESS)
3471 {
3472 pgmUnlock(pVM);
3473 AssertRC(rc);
3474 return rc;
3475 }
3476 Assert(pPDDst);
3477 pPdeDst = &pPDDst->a[iPDDst];
3478# endif
3479
3480 if (!pPdeDst->n.u1Present)
3481 {
3482 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3483 if (rc != VINF_SUCCESS)
3484 {
3485 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3486 pgmUnlock(pVM);
3487 AssertRC(rc);
3488 return rc;
3489 }
3490 }
3491
3492# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3493 /* Check for dirty bit fault */
3494 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3495 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3496 Log(("PGMVerifyAccess: success (dirty)\n"));
3497 else
3498# endif
3499 {
3500# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3501 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3502# else
3503 GSTPDE PdeSrc;
3504 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3505 PdeSrc.n.u1Present = 1;
3506 PdeSrc.n.u1Write = 1;
3507 PdeSrc.n.u1Accessed = 1;
3508 PdeSrc.n.u1User = 1;
3509# endif
3510
3511 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3512 if (uErr & X86_TRAP_PF_US)
3513 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3514 else /* supervisor */
3515 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3516
3517 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3518 if (RT_SUCCESS(rc))
3519 {
3520 /* Page was successfully synced */
3521 Log2(("PGMVerifyAccess: success (sync)\n"));
3522 rc = VINF_SUCCESS;
3523 }
3524 else
3525 {
3526 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3527 rc = VINF_EM_RAW_GUEST_TRAP;
3528 }
3529 }
3530 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3531 pgmUnlock(pVM);
3532 return rc;
3533
3534#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3535
3536 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3537 return VERR_INTERNAL_ERROR;
3538#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3539}
3540
3541
3542/**
3543 * Syncs the paging hierarchy starting at CR3.
3544 *
3545 * @returns VBox status code, no specials.
3546 * @param pVCpu The VMCPU handle.
3547 * @param cr0 Guest context CR0 register
3548 * @param cr3 Guest context CR3 register
3549 * @param cr4 Guest context CR4 register
3550 * @param fGlobal Including global page directories or not
3551 */
3552PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3553{
3554 PVM pVM = pVCpu->CTX_SUFF(pVM);
3555
3556 LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
3557
3558#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3559
3560 pgmLock(pVM);
3561
3562# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3563 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3564 if (pPool->cDirtyPages)
3565 pgmPoolResetDirtyPages(pVM);
3566# endif
3567
3568 /*
3569 * Update page access handlers.
3570 * The virtual are always flushed, while the physical are only on demand.
3571 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3572 * have to look into that later because it will have a bad influence on the performance.
3573 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3574 * bird: Yes, but that won't work for aliases.
3575 */
3576 /** @todo this MUST go away. See #1557. */
3577 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3578 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3579 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3580 pgmUnlock(pVM);
3581#endif /* !NESTED && !EPT */
3582
3583#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3584 /*
3585 * Nested / EPT - almost no work.
3586 */
3587 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3588 return VINF_SUCCESS;
3589
3590#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3591 /*
3592 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3593 * out the shadow parts when the guest modifies its tables.
3594 */
3595 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3596 return VINF_SUCCESS;
3597
3598#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3599
3600# ifndef PGM_WITHOUT_MAPPINGS
3601 /*
3602 * Check for and resolve conflicts with our guest mappings if they
3603 * are enabled and not fixed.
3604 */
3605 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3606 {
3607 int rc = pgmMapResolveConflicts(pVM);
3608 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3609 if (rc == VINF_PGM_SYNC_CR3)
3610 {
3611 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3612 return VINF_PGM_SYNC_CR3;
3613 }
3614 }
3615# else
3616 Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s));
3617# endif
3618 return VINF_SUCCESS;
3619#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3620}
3621
3622
3623
3624
3625#ifdef VBOX_STRICT
3626# ifdef IN_RC
3627# undef AssertMsgFailed
3628# define AssertMsgFailed Log
3629# endif
3630
3631/**
3632 * Checks that the shadow page table is in sync with the guest one.
3633 *
3634 * @returns The number of errors.
3635 * @param pVM The virtual machine.
3636 * @param pVCpu The VMCPU handle.
3637 * @param cr3 Guest context CR3 register
3638 * @param cr4 Guest context CR4 register
3639 * @param GCPtr Where to start. Defaults to 0.
3640 * @param cb How much to check. Defaults to everything.
3641 */
3642PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3643{
3644#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3645 return 0;
3646#else
3647 unsigned cErrors = 0;
3648 PVM pVM = pVCpu->CTX_SUFF(pVM);
3649 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3650
3651#if PGM_GST_TYPE == PGM_TYPE_PAE
3652 /** @todo currently broken; crashes below somewhere */
3653 AssertFailed();
3654#endif
3655
3656#if PGM_GST_TYPE == PGM_TYPE_32BIT \
3657 || PGM_GST_TYPE == PGM_TYPE_PAE \
3658 || PGM_GST_TYPE == PGM_TYPE_AMD64
3659
3660 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3661 PPGMCPU pPGM = &pVCpu->pgm.s;
3662 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3663 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3664# ifndef IN_RING0
3665 RTHCPHYS HCPhys; /* general usage. */
3666# endif
3667 int rc;
3668
3669 /*
3670 * Check that the Guest CR3 and all its mappings are correct.
3671 */
3672 AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK),
3673 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3674 false);
3675# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3676# if PGM_GST_TYPE == PGM_TYPE_32BIT
3677 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3678# else
3679 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3680# endif
3681 AssertRCReturn(rc, 1);
3682 HCPhys = NIL_RTHCPHYS;
3683 rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys);
3684 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3685# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3686 pgmGstGet32bitPDPtr(pVCpu);
3687 RTGCPHYS GCPhys;
3688 rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys);
3689 AssertRCReturn(rc, 1);
3690 AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3691# endif
3692# endif /* !IN_RING0 */
3693
3694 /*
3695 * Get and check the Shadow CR3.
3696 */
3697# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3698 unsigned cPDEs = X86_PG_ENTRIES;
3699 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3700# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3701# if PGM_GST_TYPE == PGM_TYPE_32BIT
3702 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3703# else
3704 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3705# endif
3706 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3707# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3708 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3709 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3710# endif
3711 if (cb != ~(RTGCPTR)0)
3712 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3713
3714/** @todo call the other two PGMAssert*() functions. */
3715
3716# if PGM_GST_TYPE == PGM_TYPE_AMD64
3717 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3718
3719 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3720 {
3721 PPGMPOOLPAGE pShwPdpt = NULL;
3722 PX86PML4E pPml4eSrc;
3723 PX86PML4E pPml4eDst;
3724 RTGCPHYS GCPhysPdptSrc;
3725
3726 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3727 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3728
3729 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3730 if (!pPml4eDst->n.u1Present)
3731 {
3732 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3733 continue;
3734 }
3735
3736 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3737 GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK;
3738
3739 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3740 {
3741 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3742 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3743 cErrors++;
3744 continue;
3745 }
3746
3747 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3748 {
3749 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3750 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3751 cErrors++;
3752 continue;
3753 }
3754
3755 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3756 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3757 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3758 {
3759 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3760 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3761 cErrors++;
3762 continue;
3763 }
3764# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3765 {
3766# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3767
3768# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3769 /*
3770 * Check the PDPTEs too.
3771 */
3772 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3773
3774 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3775 {
3776 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3777 PPGMPOOLPAGE pShwPde = NULL;
3778 PX86PDPE pPdpeDst;
3779 RTGCPHYS GCPhysPdeSrc;
3780# if PGM_GST_TYPE == PGM_TYPE_PAE
3781 X86PDPE PdpeSrc;
3782 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3783 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3784# else
3785 PX86PML4E pPml4eSrcIgn;
3786 X86PDPE PdpeSrc;
3787 PX86PDPT pPdptDst;
3788 PX86PDPAE pPDDst;
3789 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3790
3791 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3792 if (rc != VINF_SUCCESS)
3793 {
3794 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3795 GCPtr += 512 * _2M;
3796 continue; /* next PDPTE */
3797 }
3798 Assert(pPDDst);
3799# endif
3800 Assert(iPDSrc == 0);
3801
3802 pPdpeDst = &pPdptDst->a[iPdpt];
3803
3804 if (!pPdpeDst->n.u1Present)
3805 {
3806 GCPtr += 512 * _2M;
3807 continue; /* next PDPTE */
3808 }
3809
3810 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3811 GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK;
3812
3813 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3814 {
3815 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3816 GCPtr += 512 * _2M;
3817 cErrors++;
3818 continue;
3819 }
3820
3821 if (GCPhysPdeSrc != pShwPde->GCPhys)
3822 {
3823# if PGM_GST_TYPE == PGM_TYPE_AMD64
3824 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3825# else
3826 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3827# endif
3828 GCPtr += 512 * _2M;
3829 cErrors++;
3830 continue;
3831 }
3832
3833# if PGM_GST_TYPE == PGM_TYPE_AMD64
3834 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3835 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3836 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3837 {
3838 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3839 GCPtr += 512 * _2M;
3840 cErrors++;
3841 continue;
3842 }
3843# endif
3844
3845# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3846 {
3847# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3848# if PGM_GST_TYPE == PGM_TYPE_32BIT
3849 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3850# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3851 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3852# endif
3853# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3854 /*
3855 * Iterate the shadow page directory.
3856 */
3857 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3858 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3859
3860 for (;
3861 iPDDst < cPDEs;
3862 iPDDst++, GCPtr += cIncrement)
3863 {
3864# if PGM_SHW_TYPE == PGM_TYPE_PAE
3865 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3866# else
3867 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3868# endif
3869 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3870 {
3871 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
3872 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3873 {
3874 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3875 cErrors++;
3876 continue;
3877 }
3878 }
3879 else if ( (PdeDst.u & X86_PDE_P)
3880 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3881 )
3882 {
3883 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3884 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3885 if (!pPoolPage)
3886 {
3887 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
3888 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
3889 cErrors++;
3890 continue;
3891 }
3892 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
3893
3894 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
3895 {
3896 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
3897 GCPtr, (uint64_t)PdeDst.u));
3898 cErrors++;
3899 }
3900
3901 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
3902 {
3903 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
3904 GCPtr, (uint64_t)PdeDst.u));
3905 cErrors++;
3906 }
3907
3908 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
3909 if (!PdeSrc.n.u1Present)
3910 {
3911 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
3912 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
3913 cErrors++;
3914 continue;
3915 }
3916
3917 if ( !PdeSrc.b.u1Size
3918 || !fBigPagesSupported)
3919 {
3920 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
3921# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3922 GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2);
3923# endif
3924 }
3925 else
3926 {
3927# if PGM_GST_TYPE == PGM_TYPE_32BIT
3928 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
3929 {
3930 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
3931 GCPtr, (uint64_t)PdeSrc.u));
3932 cErrors++;
3933 continue;
3934 }
3935# endif
3936 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
3937# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
3938 GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT);
3939# endif
3940 }
3941
3942 if ( pPoolPage->enmKind
3943 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
3944 {
3945 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
3946 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
3947 cErrors++;
3948 }
3949
3950 PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
3951 if (!pPhysPage)
3952 {
3953 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3954 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3955 cErrors++;
3956 continue;
3957 }
3958
3959 if (GCPhysGst != pPoolPage->GCPhys)
3960 {
3961 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
3962 GCPhysGst, pPoolPage->GCPhys, GCPtr));
3963 cErrors++;
3964 continue;
3965 }
3966
3967 if ( !PdeSrc.b.u1Size
3968 || !fBigPagesSupported)
3969 {
3970 /*
3971 * Page Table.
3972 */
3973 const GSTPT *pPTSrc;
3974 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc);
3975 if (RT_FAILURE(rc))
3976 {
3977 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
3978 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
3979 cErrors++;
3980 continue;
3981 }
3982 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
3983 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
3984 {
3985 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
3986 // (This problem will go away when/if we shadow multiple CR3s.)
3987 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
3988 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
3989 cErrors++;
3990 continue;
3991 }
3992 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
3993 {
3994 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
3995 GCPtr, (uint64_t)PdeDst.u));
3996 cErrors++;
3997 continue;
3998 }
3999
4000 /* iterate the page table. */
4001# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4002 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4003 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4004# else
4005 const unsigned offPTSrc = 0;
4006# endif
4007 for (unsigned iPT = 0, off = 0;
4008 iPT < RT_ELEMENTS(pPTDst->a);
4009 iPT++, off += PAGE_SIZE)
4010 {
4011 const SHWPTE PteDst = pPTDst->a[iPT];
4012
4013 /* skip not-present and dirty tracked entries. */
4014 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4015 continue;
4016 Assert(SHW_PTE_IS_P(PteDst));
4017
4018 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4019 if (!PteSrc.n.u1Present)
4020 {
4021# ifdef IN_RING3
4022 PGMAssertHandlerAndFlagsInSync(pVM);
4023 DBGFR3PagingDumpEx(pVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4024 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4025 0, 0, UINT64_MAX, 99, NULL);
4026# endif
4027 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4028 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4029 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc)*sizeof(PteSrc)));
4030 cErrors++;
4031 continue;
4032 }
4033
4034 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4035# if 1 /** @todo sync accessed bit properly... */
4036 fIgnoreFlags |= X86_PTE_A;
4037# endif
4038
4039 /* match the physical addresses */
4040 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4041 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4042
4043# ifdef IN_RING3
4044 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4045 if (RT_FAILURE(rc))
4046 {
4047 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4048 {
4049 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4050 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4051 cErrors++;
4052 continue;
4053 }
4054 }
4055 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4056 {
4057 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4058 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4059 cErrors++;
4060 continue;
4061 }
4062# endif
4063
4064 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4065 if (!pPhysPage)
4066 {
4067# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4068 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4069 {
4070 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4071 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4072 cErrors++;
4073 continue;
4074 }
4075# endif
4076 if (SHW_PTE_IS_RW(PteDst))
4077 {
4078 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4079 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4080 cErrors++;
4081 }
4082 fIgnoreFlags |= X86_PTE_RW;
4083 }
4084 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4085 {
4086 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4087 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4088 cErrors++;
4089 continue;
4090 }
4091
4092 /* flags */
4093 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4094 {
4095 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4096 {
4097 if (SHW_PTE_IS_RW(PteDst))
4098 {
4099 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4100 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4101 cErrors++;
4102 continue;
4103 }
4104 fIgnoreFlags |= X86_PTE_RW;
4105 }
4106 else
4107 {
4108 if ( SHW_PTE_IS_P(PteDst)
4109# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4110 && !PGM_PAGE_IS_MMIO(pPhysPage)
4111# endif
4112 )
4113 {
4114 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4115 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4116 cErrors++;
4117 continue;
4118 }
4119 fIgnoreFlags |= X86_PTE_P;
4120 }
4121 }
4122 else
4123 {
4124 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4125 {
4126 if (SHW_PTE_IS_RW(PteDst))
4127 {
4128 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4129 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4130 cErrors++;
4131 continue;
4132 }
4133 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4134 {
4135 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4136 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4137 cErrors++;
4138 continue;
4139 }
4140 if (SHW_PTE_IS_D(PteDst))
4141 {
4142 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4143 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4144 cErrors++;
4145 }
4146# if 0 /** @todo sync access bit properly... */
4147 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4148 {
4149 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4150 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4151 cErrors++;
4152 }
4153 fIgnoreFlags |= X86_PTE_RW;
4154# else
4155 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4156# endif
4157 }
4158 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4159 {
4160 /* access bit emulation (not implemented). */
4161 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4162 {
4163 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4164 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4165 cErrors++;
4166 continue;
4167 }
4168 if (!SHW_PTE_IS_A(PteDst))
4169 {
4170 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4171 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4172 cErrors++;
4173 }
4174 fIgnoreFlags |= X86_PTE_P;
4175 }
4176# ifdef DEBUG_sandervl
4177 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4178# endif
4179 }
4180
4181 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4182 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4183 )
4184 {
4185 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4186 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4187 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4188 cErrors++;
4189 continue;
4190 }
4191 } /* foreach PTE */
4192 }
4193 else
4194 {
4195 /*
4196 * Big Page.
4197 */
4198 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4199 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4200 {
4201 if (PdeDst.n.u1Write)
4202 {
4203 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4204 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4205 cErrors++;
4206 continue;
4207 }
4208 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4209 {
4210 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4211 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4212 cErrors++;
4213 continue;
4214 }
4215# if 0 /** @todo sync access bit properly... */
4216 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4217 {
4218 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4219 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4220 cErrors++;
4221 }
4222 fIgnoreFlags |= X86_PTE_RW;
4223# else
4224 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4225# endif
4226 }
4227 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4228 {
4229 /* access bit emulation (not implemented). */
4230 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4231 {
4232 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4233 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4234 cErrors++;
4235 continue;
4236 }
4237 if (!PdeDst.n.u1Accessed)
4238 {
4239 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4240 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4241 cErrors++;
4242 }
4243 fIgnoreFlags |= X86_PTE_P;
4244 }
4245
4246 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4247 {
4248 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4249 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4250 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4251 cErrors++;
4252 }
4253
4254 /* iterate the page table. */
4255 for (unsigned iPT = 0, off = 0;
4256 iPT < RT_ELEMENTS(pPTDst->a);
4257 iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE)
4258 {
4259 const SHWPTE PteDst = pPTDst->a[iPT];
4260
4261 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4262 {
4263 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4264 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4265 cErrors++;
4266 }
4267
4268 /* skip not-present entries. */
4269 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4270 continue;
4271
4272 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4273
4274 /* match the physical addresses */
4275 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4276
4277# ifdef IN_RING3
4278 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4279 if (RT_FAILURE(rc))
4280 {
4281 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4282 {
4283 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4284 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4285 cErrors++;
4286 }
4287 }
4288 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4289 {
4290 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4291 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4292 cErrors++;
4293 continue;
4294 }
4295# endif
4296 pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst);
4297 if (!pPhysPage)
4298 {
4299# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4300 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4301 {
4302 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4303 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4304 cErrors++;
4305 continue;
4306 }
4307# endif
4308 if (SHW_PTE_IS_RW(PteDst))
4309 {
4310 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4311 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4312 cErrors++;
4313 }
4314 fIgnoreFlags |= X86_PTE_RW;
4315 }
4316 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4317 {
4318 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4319 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4320 cErrors++;
4321 continue;
4322 }
4323
4324 /* flags */
4325 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4326 {
4327 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4328 {
4329 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4330 {
4331 if (SHW_PTE_IS_RW(PteDst))
4332 {
4333 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4334 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4335 cErrors++;
4336 continue;
4337 }
4338 fIgnoreFlags |= X86_PTE_RW;
4339 }
4340 }
4341 else
4342 {
4343 if ( SHW_PTE_IS_P(PteDst)
4344# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4345 && !PGM_PAGE_IS_MMIO(pPhysPage)
4346# endif
4347 )
4348 {
4349 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4350 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4351 cErrors++;
4352 continue;
4353 }
4354 fIgnoreFlags |= X86_PTE_P;
4355 }
4356 }
4357
4358 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4359 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4360 )
4361 {
4362 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4363 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4364 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4365 cErrors++;
4366 continue;
4367 }
4368 } /* for each PTE */
4369 }
4370 }
4371 /* not present */
4372
4373 } /* for each PDE */
4374
4375 } /* for each PDPTE */
4376
4377 } /* for each PML4E */
4378
4379# ifdef DEBUG
4380 if (cErrors)
4381 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4382# endif
4383
4384#endif /* GST == 32BIT, PAE or AMD64 */
4385 return cErrors;
4386
4387#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4388}
4389#endif /* VBOX_STRICT */
4390
4391
4392/**
4393 * Sets up the CR3 for shadow paging
4394 *
4395 * @returns Strict VBox status code.
4396 * @retval VINF_SUCCESS.
4397 *
4398 * @param pVCpu The VMCPU handle.
4399 * @param GCPhysCR3 The physical address in the CR3 register.
4400 */
4401PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4402{
4403 PVM pVM = pVCpu->CTX_SUFF(pVM);
4404
4405 /* Update guest paging info. */
4406#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4407 || PGM_GST_TYPE == PGM_TYPE_PAE \
4408 || PGM_GST_TYPE == PGM_TYPE_AMD64
4409
4410 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4411
4412 /*
4413 * Map the page CR3 points at.
4414 */
4415 RTHCPTR HCPtrGuestCR3;
4416 RTHCPHYS HCPhysGuestCR3;
4417 pgmLock(pVM);
4418 PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3);
4419 AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2);
4420 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4421 /** @todo this needs some reworking wrt. locking? */
4422# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4423 HCPtrGuestCR3 = NIL_RTHCPTR;
4424 int rc = VINF_SUCCESS;
4425# else
4426 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4427# endif
4428 pgmUnlock(pVM);
4429 if (RT_SUCCESS(rc))
4430 {
4431 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4432 if (RT_SUCCESS(rc))
4433 {
4434# ifdef IN_RC
4435 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4436# endif
4437# if PGM_GST_TYPE == PGM_TYPE_32BIT
4438 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4439# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4440 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4441# endif
4442 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4443
4444# elif PGM_GST_TYPE == PGM_TYPE_PAE
4445 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4446 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4447# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4448 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4449# endif
4450 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4451 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4452
4453 /*
4454 * Map the 4 PDs too.
4455 */
4456 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4457 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4458 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4459 {
4460 if (pGuestPDPT->a[i].n.u1Present)
4461 {
4462 RTHCPTR HCPtr;
4463 RTHCPHYS HCPhys;
4464 RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK;
4465 pgmLock(pVM);
4466 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
4467 AssertReturn(pPage, VERR_INTERNAL_ERROR_2);
4468 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4469# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4470 HCPtr = NIL_RTHCPTR;
4471 int rc2 = VINF_SUCCESS;
4472# else
4473 int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr);
4474# endif
4475 pgmUnlock(pVM);
4476 if (RT_SUCCESS(rc2))
4477 {
4478 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4479 AssertRCReturn(rc, rc);
4480
4481 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4482# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4483 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4484# endif
4485 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4486 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4487# ifdef IN_RC
4488 PGM_INVL_PG(pVCpu, GCPtr);
4489# endif
4490 continue;
4491 }
4492 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4493 }
4494
4495 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4496# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4497 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4498# endif
4499 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4500 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4501# ifdef IN_RC
4502 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4503# endif
4504 }
4505
4506# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4507 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4508# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4509 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4510# endif
4511# endif
4512 }
4513 else
4514 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4515 }
4516 else
4517 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4518
4519#else /* prot/real stub */
4520 int rc = VINF_SUCCESS;
4521#endif
4522
4523 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4524# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4525 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4526 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4527 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4528 && PGM_GST_TYPE != PGM_TYPE_PROT))
4529
4530 Assert(!pVM->pgm.s.fNestedPaging);
4531
4532 /*
4533 * Update the shadow root page as well since that's not fixed.
4534 */
4535 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4536 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4537 uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable;
4538 uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser;
4539 PPGMPOOLPAGE pNewShwPageCR3;
4540
4541 pgmLock(pVM);
4542
4543# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4544 if (pPool->cDirtyPages)
4545 pgmPoolResetDirtyPages(pVM);
4546# endif
4547
4548 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4549 rc = pgmPoolAllocEx(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, SHW_POOL_ROOT_IDX,
4550 GCPhysCR3 >> PAGE_SHIFT, true /*fLockPage*/, &pNewShwPageCR3);
4551 AssertFatalRC(rc);
4552 rc = VINF_SUCCESS;
4553
4554# ifdef IN_RC
4555 /*
4556 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4557 * state will be inconsistent! Flush important things now while
4558 * we still can and then make sure there are no ring-3 calls.
4559 */
4560 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4561 VMMRZCallRing3Disable(pVCpu);
4562# endif
4563
4564 pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX;
4565 pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT;
4566 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4567# ifdef IN_RING0
4568 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4569 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4570# elif defined(IN_RC)
4571 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4572 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4573# else
4574 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4575 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4576# endif
4577
4578# ifndef PGM_WITHOUT_MAPPINGS
4579 /*
4580 * Apply all hypervisor mappings to the new CR3.
4581 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4582 * make sure we check for conflicts in the new CR3 root.
4583 */
4584# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4585 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4586# endif
4587 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4588 AssertRCReturn(rc, rc);
4589# endif
4590
4591 /* Set the current hypervisor CR3. */
4592 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4593 SELMShadowCR3Changed(pVM, pVCpu);
4594
4595# ifdef IN_RC
4596 /* NOTE: The state is consistent again. */
4597 VMMRZCallRing3Enable(pVCpu);
4598# endif
4599
4600 /* Clean up the old CR3 root. */
4601 if ( pOldShwPageCR3
4602 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4603 {
4604 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4605# ifndef PGM_WITHOUT_MAPPINGS
4606 /* Remove the hypervisor mappings from the shadow page table. */
4607 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4608# endif
4609 /* Mark the page as unlocked; allow flushing again. */
4610 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4611
4612 pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable);
4613 }
4614 pgmUnlock(pVM);
4615# endif
4616
4617 return rc;
4618}
4619
4620/**
4621 * Unmaps the shadow CR3.
4622 *
4623 * @returns VBox status, no specials.
4624 * @param pVCpu The VMCPU handle.
4625 */
4626PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4627{
4628 LogFlow(("UnmapCR3\n"));
4629
4630 int rc = VINF_SUCCESS;
4631 PVM pVM = pVCpu->CTX_SUFF(pVM);
4632
4633 /*
4634 * Update guest paging info.
4635 */
4636#if PGM_GST_TYPE == PGM_TYPE_32BIT
4637 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4638# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4639 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4640# endif
4641 pVCpu->pgm.s.pGst32BitPdRC = 0;
4642
4643#elif PGM_GST_TYPE == PGM_TYPE_PAE
4644 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4645# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4646 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4647# endif
4648 pVCpu->pgm.s.pGstPaePdptRC = 0;
4649 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4650 {
4651 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4652# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4653 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4654# endif
4655 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4656 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4657 }
4658
4659#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4660 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4661# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4662 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4663# endif
4664
4665#else /* prot/real mode stub */
4666 /* nothing to do */
4667#endif
4668
4669#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4670 /*
4671 * Update shadow paging info.
4672 */
4673# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4674 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4675 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4676
4677# if PGM_GST_TYPE != PGM_TYPE_REAL
4678 Assert(!pVM->pgm.s.fNestedPaging);
4679# endif
4680
4681 pgmLock(pVM);
4682
4683# ifndef PGM_WITHOUT_MAPPINGS
4684 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4685 /* Remove the hypervisor mappings from the shadow page table. */
4686 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4687# endif
4688
4689 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4690 {
4691 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4692
4693 Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT);
4694
4695# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4696 if (pPool->cDirtyPages)
4697 pgmPoolResetDirtyPages(pVM);
4698# endif
4699
4700 /* Mark the page as unlocked; allow flushing again. */
4701 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4702
4703 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable);
4704 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4705 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4706 pVCpu->pgm.s.pShwPageCR3RC = 0;
4707 pVCpu->pgm.s.iShwUser = 0;
4708 pVCpu->pgm.s.iShwUserTable = 0;
4709 }
4710 pgmUnlock(pVM);
4711# endif
4712#endif /* !IN_RC*/
4713
4714 return rc;
4715}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette