VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 45798

Last change on this file since 45798 was 45798, checked in by vboxsync, 12 years ago

Fixed up and enabled Netware WP0+RO+US hack.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 208.4 KB
Line 
1/* $Id: PGMAllBth.h 45798 2013-04-29 03:40:54Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2013 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The current CPU.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
108 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
109 {
110 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
111 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
113 return VINF_EM_RAW_EMULATE_INSTR;
114 }
115# endif
116
117 /*
118 * Calc the error code for the guest trap.
119 */
120 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
121 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
122 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
123 if (pGstWalk->Core.fBadPhysAddr)
124 {
125 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
126 Assert(!pGstWalk->Core.fNotPresent);
127 }
128 else if (!pGstWalk->Core.fNotPresent)
129 uNewErr |= X86_TRAP_PF_P;
130 TRPMSetErrorCode(pVCpu, uNewErr);
131
132 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
133 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
134 return VINF_EM_RAW_GUEST_TRAP;
135}
136# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
137
138
139/**
140 * Deal with a guest page fault.
141 *
142 * The caller has taken the PGM lock.
143 *
144 * @returns Strict VBox status code.
145 *
146 * @param pVCpu The current CPU.
147 * @param uErr The error code.
148 * @param pRegFrame The register frame.
149 * @param pvFault The fault address.
150 * @param pPage The guest page at @a pvFault.
151 * @param pGstWalk The guest page table walk result.
152 * @param pfLockTaken PGM lock taken here or not (out). This is true
153 * when we're called.
154 */
155static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
156 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
157# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
158 , PGSTPTWALK pGstWalk
159# endif
160 )
161{
162# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
164#endif
165 PVM pVM = pVCpu->CTX_SUFF(pVM);
166 int rc;
167
168 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
169 {
170 /*
171 * Physical page access handler.
172 */
173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
174 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
175# else
176 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
177# endif
178 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
179 if (pCur)
180 {
181# ifdef PGM_SYNC_N_PAGES
182 /*
183 * If the region is write protected and we got a page not present fault, then sync
184 * the pages. If the fault was caused by a read, then restart the instruction.
185 * In case of write access continue to the GC write handler.
186 *
187 * ASSUMES that there is only one handler per page or that they have similar write properties.
188 */
189 if ( !(uErr & X86_TRAP_PF_P)
190 && pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
191 {
192# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
193 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
194# else
195 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
196# endif
197 if ( RT_FAILURE(rc)
198 || !(uErr & X86_TRAP_PF_RW)
199 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
200 {
201 AssertRC(rc);
202 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
203 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
204 return rc;
205 }
206 }
207# endif
208# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
209 /*
210 * If the access was not thru a #PF(RSVD|...) resync the page.
211 */
212 if ( !(uErr & X86_TRAP_PF_RSVD)
213 && pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
214# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
215 && pGstWalk->Core.fEffectiveRW
216 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
217# endif
218 )
219 {
220# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
221 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
222# else
223 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
224# endif
225 if ( RT_FAILURE(rc)
226 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
227 {
228 AssertRC(rc);
229 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
230 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
231 return rc;
232 }
233 }
234# endif
235
236 AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE
237 || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)),
238 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
239 pvFault, GCPhysFault, pPage, uErr, pCur->enmType));
240 if (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE)
241 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
242 else
243 {
244 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
245 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
246 }
247
248 if (pCur->CTX_SUFF(pfnHandler))
249 {
250 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
251 void *pvUser = pCur->CTX_SUFF(pvUser);
252# ifdef IN_RING0
253 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
254# else
255 PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler);
256# endif
257
258 STAM_PROFILE_START(&pCur->Stat, h);
259 if (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler))
260 {
261 pgmUnlock(pVM);
262 *pfLockTaken = false;
263 }
264
265 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
266
267# ifdef VBOX_WITH_STATISTICS
268 pgmLock(pVM);
269 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
270 if (pCur)
271 STAM_PROFILE_STOP(&pCur->Stat, h);
272 pgmUnlock(pVM);
273# endif
274 }
275 else
276 rc = VINF_EM_RAW_EMULATE_INSTR;
277
278 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
279 return rc;
280 }
281 }
282# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
283 else
284 {
285# ifdef PGM_SYNC_N_PAGES
286 /*
287 * If the region is write protected and we got a page not present fault, then sync
288 * the pages. If the fault was caused by a read, then restart the instruction.
289 * In case of write access continue to the GC write handler.
290 */
291 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
292 && !(uErr & X86_TRAP_PF_P))
293 {
294 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
295 if ( RT_FAILURE(rc)
296 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
297 || !(uErr & X86_TRAP_PF_RW))
298 {
299 AssertRC(rc);
300 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
301 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
302 return rc;
303 }
304 }
305# endif
306 /*
307 * Ok, it's an virtual page access handler.
308 *
309 * Since it's faster to search by address, we'll do that first
310 * and then retry by GCPhys if that fails.
311 */
312 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
313 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
314 * out of sync, because the page was changed without us noticing it (not-present -> present
315 * without invlpg or mov cr3, xxx).
316 */
317 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
318 if (pCur)
319 {
320 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
321 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
322 || !(uErr & X86_TRAP_PF_P)
323 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
324 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n",
325 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCur->enmType));
326
327 if ( pvFault - pCur->Core.Key < pCur->cb
328 && ( uErr & X86_TRAP_PF_RW
329 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
330 {
331# ifdef IN_RC
332 STAM_PROFILE_START(&pCur->Stat, h);
333 RTGCPTR GCPtrStart = pCur->Core.Key;
334 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
335 pgmUnlock(pVM);
336 *pfLockTaken = false;
337
338 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, pvFault - GCPtrStart);
339
340# ifdef VBOX_WITH_STATISTICS
341 pgmLock(pVM);
342 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
343 if (pCur)
344 STAM_PROFILE_STOP(&pCur->Stat, h);
345 pgmUnlock(pVM);
346# endif
347# else
348 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
349# endif
350 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
351 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
352 return rc;
353 }
354 /* Unhandled part of a monitored page */
355 Log(("Unhandled part of monitored page %RGv\n", pvFault));
356 }
357 else
358 {
359 /* Check by physical address. */
360 unsigned iPage;
361 rc = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &pCur, &iPage);
362 Assert(RT_SUCCESS(rc) || !pCur);
363 if ( pCur
364 && ( uErr & X86_TRAP_PF_RW
365 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
366 {
367 Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
368# ifdef IN_RC
369 STAM_PROFILE_START(&pCur->Stat, h);
370 RTGCPTR GCPtrStart = pCur->Core.Key;
371 CTX_MID(PFNPGM,VIRTHANDLER) pfnHandler = pCur->CTX_SUFF(pfnHandler);
372 pgmUnlock(pVM);
373 *pfLockTaken = false;
374
375 RTGCPTR off = (iPage << PAGE_SHIFT)
376 + (pvFault & PAGE_OFFSET_MASK)
377 - (GCPtrStart & PAGE_OFFSET_MASK);
378 Assert(off < pCur->cb);
379 rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPtrStart, off);
380
381# ifdef VBOX_WITH_STATISTICS
382 pgmLock(pVM);
383 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
384 if (pCur)
385 STAM_PROFILE_STOP(&pCur->Stat, h);
386 pgmUnlock(pVM);
387# endif
388# else
389 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
390# endif
391 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
392 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
393 return rc;
394 }
395 }
396 }
397# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
398
399 /*
400 * There is a handled area of the page, but this fault doesn't belong to it.
401 * We must emulate the instruction.
402 *
403 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
404 * we first check if this was a page-not-present fault for a page with only
405 * write access handlers. Restart the instruction if it wasn't a write access.
406 */
407 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
408
409 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
410 && !(uErr & X86_TRAP_PF_P))
411 {
412# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
413 rc = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
414# else
415 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
416# endif
417 if ( RT_FAILURE(rc)
418 || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE
419 || !(uErr & X86_TRAP_PF_RW))
420 {
421 AssertRC(rc);
422 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
423 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
424 return rc;
425 }
426 }
427
428 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
429 * It's writing to an unhandled part of the LDT page several million times.
430 */
431 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
432 LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
433 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
434 return rc;
435} /* if any kind of handler */
436
437
438/**
439 * #PF Handler for raw-mode guest execution.
440 *
441 * @returns VBox status code (appropriate for trap handling and GC return).
442 *
443 * @param pVCpu Pointer to the VMCPU.
444 * @param uErr The trap error code.
445 * @param pRegFrame Trap register frame.
446 * @param pvFault The fault address.
447 * @param pfLockTaken PGM lock taken here or not (out)
448 */
449PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
450{
451 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
452
453 *pfLockTaken = false;
454
455# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
456 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
457 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
458 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
459 int rc;
460
461# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
462 /*
463 * Walk the guest page translation tables and check if it's a guest fault.
464 */
465 GSTPTWALK GstWalk;
466 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
467 if (RT_FAILURE_NP(rc))
468 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
469
470 /* assert some GstWalk sanity. */
471# if PGM_GST_TYPE == PGM_TYPE_AMD64
472 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
473# endif
474# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
475 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
476# endif
477 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
478 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
479 Assert(GstWalk.Core.fSucceeded);
480
481 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
482 {
483 if ( ( (uErr & X86_TRAP_PF_RW)
484 && !GstWalk.Core.fEffectiveRW
485 && ( (uErr & X86_TRAP_PF_US)
486 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
487 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
488 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
489 )
490 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
491 }
492
493 /*
494 * Set the accessed and dirty flags.
495 */
496# if PGM_GST_TYPE == PGM_TYPE_AMD64
497 GstWalk.Pml4e.u |= X86_PML4E_A;
498 GstWalk.pPml4e->u |= X86_PML4E_A;
499 GstWalk.Pdpe.u |= X86_PDPE_A;
500 GstWalk.pPdpe->u |= X86_PDPE_A;
501# endif
502 if (GstWalk.Core.fBigPage)
503 {
504 Assert(GstWalk.Pde.b.u1Size);
505 if (uErr & X86_TRAP_PF_RW)
506 {
507 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
508 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
509 }
510 else
511 {
512 GstWalk.Pde.u |= X86_PDE4M_A;
513 GstWalk.pPde->u |= X86_PDE4M_A;
514 }
515 }
516 else
517 {
518 Assert(!GstWalk.Pde.b.u1Size);
519 GstWalk.Pde.u |= X86_PDE_A;
520 GstWalk.pPde->u |= X86_PDE_A;
521 if (uErr & X86_TRAP_PF_RW)
522 {
523# ifdef VBOX_WITH_STATISTICS
524 if (!GstWalk.Pte.n.u1Dirty)
525 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
526 else
527 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
528# endif
529 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
530 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
531 }
532 else
533 {
534 GstWalk.Pte.u |= X86_PTE_A;
535 GstWalk.pPte->u |= X86_PTE_A;
536 }
537 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
538 }
539 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
540 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
541# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
542 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
543# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
544
545 /* Take the big lock now. */
546 *pfLockTaken = true;
547 pgmLock(pVM);
548
549# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
550 /*
551 * If it is a reserved bit fault we know that it is an MMIO (access
552 * handler) related fault and can skip some 200 lines of code.
553 */
554 if (uErr & X86_TRAP_PF_RSVD)
555 {
556 Assert(uErr & X86_TRAP_PF_P);
557 PPGMPAGE pPage;
558# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
559 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
560 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
561 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
562 pfLockTaken, &GstWalk));
563 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
564# else
565 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
566 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
567 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
568 pfLockTaken));
569 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
570# endif
571 AssertRC(rc);
572 PGM_INVL_PG(pVCpu, pvFault);
573 return rc; /* Restart with the corrected entry. */
574 }
575# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
576
577 /*
578 * Fetch the guest PDE, PDPE and PML4E.
579 */
580# if PGM_SHW_TYPE == PGM_TYPE_32BIT
581 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
582 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
583
584# elif PGM_SHW_TYPE == PGM_TYPE_PAE
585 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
586 PX86PDPAE pPDDst;
587# if PGM_GST_TYPE == PGM_TYPE_PAE
588 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
589# else
590 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
591# endif
592 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
593
594# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
595 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
596 PX86PDPAE pPDDst;
597# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
598 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
599 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
600# else
601 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
602# endif
603 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
604
605# elif PGM_SHW_TYPE == PGM_TYPE_EPT
606 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
607 PEPTPD pPDDst;
608 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
609 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
610# endif
611 Assert(pPDDst);
612
613# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
614 /*
615 * Dirty page handling.
616 *
617 * If we successfully correct the write protection fault due to dirty bit
618 * tracking, then return immediately.
619 */
620 if (uErr & X86_TRAP_PF_RW) /* write fault? */
621 {
622 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
623 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
624 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
625 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
626 {
627 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
628 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
629 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
630 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
631 LogBird(("Trap0eHandler: returns VINF_SUCCESS\n"));
632 return VINF_SUCCESS;
633 }
634 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
635 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
636 }
637
638# if 0 /* rarely useful; leave for debugging. */
639 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
640# endif
641# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
642
643 /*
644 * A common case is the not-present error caused by lazy page table syncing.
645 *
646 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
647 * here so we can safely assume that the shadow PT is present when calling
648 * SyncPage later.
649 *
650 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
651 * of mapping conflict and defer to SyncCR3 in R3.
652 * (Again, we do NOT support access handlers for non-present guest pages.)
653 *
654 */
655# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
656 Assert(GstWalk.Pde.n.u1Present);
657# endif
658 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
659 && !pPDDst->a[iPDDst].n.u1Present)
660 {
661 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
662# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
663 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
664 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
665# else
666 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
667 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
668# endif
669 if (RT_SUCCESS(rc))
670 return rc;
671 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
672 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
673 return VINF_PGM_SYNC_CR3;
674 }
675
676# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
677 /*
678 * Check if this address is within any of our mappings.
679 *
680 * This is *very* fast and it's gonna save us a bit of effort below and prevent
681 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
682 * (BTW, it's impossible to have physical access handlers in a mapping.)
683 */
684 if (pgmMapAreMappingsEnabled(pVM))
685 {
686 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
687 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
688 {
689 if (pvFault < pMapping->GCPtr)
690 break;
691 if (pvFault - pMapping->GCPtr < pMapping->cb)
692 {
693 /*
694 * The first thing we check is if we've got an undetected conflict.
695 */
696 if (pgmMapAreMappingsFloating(pVM))
697 {
698 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
699 while (iPT-- > 0)
700 if (GstWalk.pPde[iPT].n.u1Present)
701 {
702 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
703 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
704 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
705 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
706 return VINF_PGM_SYNC_CR3;
707 }
708 }
709
710 /*
711 * Check if the fault address is in a virtual page access handler range.
712 */
713 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault);
714 if ( pCur
715 && pvFault - pCur->Core.Key < pCur->cb
716 && uErr & X86_TRAP_PF_RW)
717 {
718# ifdef IN_RC
719 STAM_PROFILE_START(&pCur->Stat, h);
720 pgmUnlock(pVM);
721 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
722 pgmLock(pVM);
723 STAM_PROFILE_STOP(&pCur->Stat, h);
724# else
725 AssertFailed();
726 rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
727# endif
728 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
729 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
730 return rc;
731 }
732
733 /*
734 * Pretend we're not here and let the guest handle the trap.
735 */
736 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
737 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
738 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
739 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
740 return VINF_EM_RAW_GUEST_TRAP;
741 }
742 }
743 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
744# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
745
746 /*
747 * Check if this fault address is flagged for special treatment,
748 * which means we'll have to figure out the physical address and
749 * check flags associated with it.
750 *
751 * ASSUME that we can limit any special access handling to pages
752 * in page tables which the guest believes to be present.
753 */
754# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
755 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
756# else
757 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
758# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
759 PPGMPAGE pPage;
760 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
761 if (RT_FAILURE(rc))
762 {
763 /*
764 * When the guest accesses invalid physical memory (e.g. probing
765 * of RAM or accessing a remapped MMIO range), then we'll fall
766 * back to the recompiler to emulate the instruction.
767 */
768 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
769 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
770 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
771 return VINF_EM_RAW_EMULATE_INSTR;
772 }
773
774 /*
775 * Any handlers for this page?
776 */
777 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
778# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
779 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
780 &GstWalk));
781# else
782 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
783# endif
784
785 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
786
787# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
788 if (uErr & X86_TRAP_PF_P)
789 {
790 /*
791 * The page isn't marked, but it might still be monitored by a virtual page access handler.
792 * (ASSUMES no temporary disabling of virtual handlers.)
793 */
794 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
795 * we should correct both the shadow page table and physical memory flags, and not only check for
796 * accesses within the handler region but for access to pages with virtual handlers. */
797 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
798 if (pCur)
799 {
800 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
801 || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE
802 || !(uErr & X86_TRAP_PF_P)
803 || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))),
804 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType));
805
806 if ( pvFault - pCur->Core.Key < pCur->cb
807 && ( uErr & X86_TRAP_PF_RW
808 || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) )
809 {
810# ifdef IN_RC
811 STAM_PROFILE_START(&pCur->Stat, h);
812 pgmUnlock(pVM);
813 rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key);
814 pgmLock(pVM);
815 STAM_PROFILE_STOP(&pCur->Stat, h);
816# else
817 rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
818# endif
819 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
820 return rc;
821 }
822 }
823 }
824# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
825
826 /*
827 * We are here only if page is present in Guest page tables and
828 * trap is not handled by our handlers.
829 *
830 * Check it for page out-of-sync situation.
831 */
832 if (!(uErr & X86_TRAP_PF_P))
833 {
834 /*
835 * Page is not present in our page tables. Try to sync it!
836 */
837 if (uErr & X86_TRAP_PF_US)
838 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
839 else /* supervisor */
840 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
841
842 if (PGM_PAGE_IS_BALLOONED(pPage))
843 {
844 /* Emulate reads from ballooned pages as they are not present in
845 our shadow page tables. (Required for e.g. Solaris guests; soft
846 ecc, random nr generator.) */
847 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
848 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
849 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
850 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
851 return rc;
852 }
853
854# if defined(LOG_ENABLED) && !defined(IN_RING0)
855 RTGCPHYS GCPhys2;
856 uint64_t fPageGst2;
857 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
858# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
859 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
860 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
861# else
862 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
863 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
864# endif
865# endif /* LOG_ENABLED */
866
867# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
868 if ( !GstWalk.Core.fEffectiveUS
869 && CSAMIsEnabled(pVM)
870 && CPUMGetGuestCPL(pVCpu) == 0)
871 {
872 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
873 if ( pvFault == (RTGCPTR)pRegFrame->eip
874 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
875# ifdef CSAM_DETECT_NEW_CODE_PAGES
876 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
877 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
878# endif /* CSAM_DETECT_NEW_CODE_PAGES */
879 )
880 {
881 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
882 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
883 if (rc != VINF_SUCCESS)
884 {
885 /*
886 * CSAM needs to perform a job in ring 3.
887 *
888 * Sync the page before going to the host context; otherwise we'll end up in a loop if
889 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
890 */
891 LogFlow(("CSAM ring 3 job\n"));
892 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
893 AssertRC(rc2);
894
895 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
896 return rc;
897 }
898 }
899# ifdef CSAM_DETECT_NEW_CODE_PAGES
900 else if ( uErr == X86_TRAP_PF_RW
901 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
902 && pRegFrame->ecx < 0x10000)
903 {
904 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
905 * to detect loading of new code pages.
906 */
907
908 /*
909 * Decode the instruction.
910 */
911 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
912 uint32_t cbOp;
913 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
914
915 /* For now we'll restrict this to rep movsw/d instructions */
916 if ( rc == VINF_SUCCESS
917 && pDis->pCurInstr->opcode == OP_MOVSWD
918 && (pDis->prefix & DISPREFIX_REP))
919 {
920 CSAMMarkPossibleCodePage(pVM, pvFault);
921 }
922 }
923# endif /* CSAM_DETECT_NEW_CODE_PAGES */
924
925 /*
926 * Mark this page as safe.
927 */
928 /** @todo not correct for pages that contain both code and data!! */
929 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
930 CSAMMarkPage(pVM, pvFault, true);
931 }
932# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
933# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
934 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
935# else
936 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
937# endif
938 if (RT_SUCCESS(rc))
939 {
940 /* The page was successfully synced, return to the guest. */
941 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
942 return VINF_SUCCESS;
943 }
944 }
945 else /* uErr & X86_TRAP_PF_P: */
946 {
947 /*
948 * Write protected pages are made writable when the guest makes the
949 * first write to it. This happens for pages that are shared, write
950 * monitored or not yet allocated.
951 *
952 * We may also end up here when CR0.WP=0 in the guest.
953 *
954 * Also, a side effect of not flushing global PDEs are out of sync
955 * pages due to physical monitored regions, that are no longer valid.
956 * Assume for now it only applies to the read/write flag.
957 */
958 if (uErr & X86_TRAP_PF_RW)
959 {
960 /*
961 * Check if it is a read-only page.
962 */
963 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
964 {
965 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
966 Assert(!PGM_PAGE_IS_ZERO(pPage));
967 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
968 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
969
970 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
971 if (rc != VINF_SUCCESS)
972 {
973 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
974 return rc;
975 }
976 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
977 return VINF_EM_NO_MEMORY;
978 }
979
980# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
981 /*
982 * Check to see if we need to emulate the instruction if CR0.WP=0.
983 */
984 if ( !GstWalk.Core.fEffectiveRW
985 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
986 && CPUMGetGuestCPL(pVCpu) < 3)
987 {
988 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
989
990 /*
991 * The Netware WP0+RO+US hack.
992 *
993 * Netware sometimes(/always?) runs with WP0. It has been observed doing
994 * accessive write accesses to pages which are mapped with US=1 and RW=0
995 * while WP=0. This causes a lot of exits and extremely slow execution.
996 * To avoid trapping and emulating every write here, we change the shadow
997 * page table entry to map it as US=0 and RW=1 until user mode tries to
998 * access it again (see further below). We count these shadow page table
999 * changes so we can avoid having to clear the page pool every time the WP
1000 * bit changes to 1 (see PGMCr0WpEnabled()).
1001 */
1002 if ( GstWalk.Core.fEffectiveUS
1003 && !GstWalk.Core.fBigPage
1004 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1005 {
1006 /* Temorarily change the page to a RW super visor page. We'll trap
1007 and switch it back when user mode tries to read from it again.
1008 (See further down.) */
1009 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1010 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
1011 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1012 {
1013 PGM_INVL_PG(pVCpu, pvFault);
1014 pVCpu->pgm.s.cNetwareWp0Hacks++;
1015 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1016 return rc;
1017 }
1018 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1019 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1020 }
1021
1022 /* Interpret the access. */
1023 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1024 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x)\n", pvFault, uErr));
1025 if (RT_SUCCESS(rc))
1026 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1027 else
1028 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1029 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1030 return rc;
1031 }
1032# endif
1033 /// @todo count the above case; else
1034 if (uErr & X86_TRAP_PF_US)
1035 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1036 else /* supervisor */
1037 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1038
1039 /*
1040 * Sync the page.
1041 *
1042 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1043 * page is not present, which is not true in this case.
1044 */
1045# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1046 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1047# else
1048 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1049# endif
1050 if (RT_SUCCESS(rc))
1051 {
1052 /*
1053 * Page was successfully synced, return to guest but invalidate
1054 * the TLB first as the page is very likely to be in it.
1055 */
1056# if PGM_SHW_TYPE == PGM_TYPE_EPT
1057 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1058# else
1059 PGM_INVL_PG(pVCpu, pvFault);
1060# endif
1061# ifdef VBOX_STRICT
1062 RTGCPHYS GCPhys2;
1063 uint64_t fPageGst;
1064 if (!pVM->pgm.s.fNestedPaging)
1065 {
1066 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1067 AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1068 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1069 }
1070 uint64_t fPageShw;
1071 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1072 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1073 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1074# endif /* VBOX_STRICT */
1075 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1076 return VINF_SUCCESS;
1077 }
1078 }
1079# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1080 /*
1081 * Check for Netware WP0+RO+US hack from above and undo it when user
1082 * mode accesses the page again.
1083 */
1084 else if ( !GstWalk.Core.fEffectiveRW
1085 && GstWalk.Core.fEffectiveUS
1086 && GstWalk.Core.fBigPage
1087 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1088 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1089 && CPUMGetGuestCPL(pVCpu) == 3
1090 && pVM->cCpus == 1
1091 )
1092 {
1093 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1094 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1095 if (RT_SUCCESS(rc))
1096 {
1097 PGM_INVL_PG(pVCpu, pvFault);
1098 pVCpu->pgm.s.cNetwareWp0Hacks--;
1099 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1100 return VINF_SUCCESS;
1101 }
1102 }
1103# endif /* PGM_WITH_PAGING */
1104
1105 /** @todo else: why are we here? */
1106
1107# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1108 /*
1109 * Check for VMM page flags vs. Guest page flags consistency.
1110 * Currently only for debug purposes.
1111 */
1112 if (RT_SUCCESS(rc))
1113 {
1114 /* Get guest page flags. */
1115 uint64_t fPageGst;
1116 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1117 if (RT_SUCCESS(rc))
1118 {
1119 uint64_t fPageShw;
1120 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1121
1122 /*
1123 * Compare page flags.
1124 * Note: we have AVL, A, D bits desynced.
1125 */
1126 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1127 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)),
1128 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1129 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1130 }
1131 else
1132 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1133 }
1134 else
1135 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1136# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1137 }
1138
1139
1140 /*
1141 * If we get here it is because something failed above, i.e. most like guru
1142 * meditiation time.
1143 */
1144 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1145 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1146 return rc;
1147
1148# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1149 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1150 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1151 return VERR_PGM_NOT_USED_IN_MODE;
1152# endif
1153}
1154#endif /* !IN_RING3 */
1155
1156
1157/**
1158 * Emulation of the invlpg instruction.
1159 *
1160 *
1161 * @returns VBox status code.
1162 *
1163 * @param pVCpu Pointer to the VMCPU.
1164 * @param GCPtrPage Page to invalidate.
1165 *
1166 * @remark ASSUMES that the guest is updating before invalidating. This order
1167 * isn't required by the CPU, so this is speculative and could cause
1168 * trouble.
1169 * @remark No TLB shootdown is done on any other VCPU as we assume that
1170 * invlpg emulation is the *only* reason for calling this function.
1171 * (The guest has to shoot down TLB entries on other CPUs itself)
1172 * Currently true, but keep in mind!
1173 *
1174 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1175 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1176 */
1177PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1178{
1179#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1180 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1181 && PGM_SHW_TYPE != PGM_TYPE_EPT
1182 int rc;
1183 PVM pVM = pVCpu->CTX_SUFF(pVM);
1184 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1185
1186 PGM_LOCK_ASSERT_OWNER(pVM);
1187
1188 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1189
1190 /*
1191 * Get the shadow PD entry and skip out if this PD isn't present.
1192 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1193 */
1194# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1195 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1196 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1197
1198 /* Fetch the pgm pool shadow descriptor. */
1199 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1200 Assert(pShwPde);
1201
1202# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1203 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1204 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1205
1206 /* If the shadow PDPE isn't present, then skip the invalidate. */
1207 if (!pPdptDst->a[iPdpt].n.u1Present)
1208 {
1209 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1210 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1211 PGM_INVL_PG(pVCpu, GCPtrPage);
1212 return VINF_SUCCESS;
1213 }
1214
1215 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1216 PPGMPOOLPAGE pShwPde = NULL;
1217 PX86PDPAE pPDDst;
1218
1219 /* Fetch the pgm pool shadow descriptor. */
1220 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1221 AssertRCSuccessReturn(rc, rc);
1222 Assert(pShwPde);
1223
1224 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1225 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1226
1227# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1228 /* PML4 */
1229 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1230 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1231 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1232 PX86PDPAE pPDDst;
1233 PX86PDPT pPdptDst;
1234 PX86PML4E pPml4eDst;
1235 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1236 if (rc != VINF_SUCCESS)
1237 {
1238 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1239 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1240 PGM_INVL_PG(pVCpu, GCPtrPage);
1241 return VINF_SUCCESS;
1242 }
1243 Assert(pPDDst);
1244
1245 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1246 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1247
1248 if (!pPdpeDst->n.u1Present)
1249 {
1250 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1251 PGM_INVL_PG(pVCpu, GCPtrPage);
1252 return VINF_SUCCESS;
1253 }
1254
1255 /* Fetch the pgm pool shadow descriptor. */
1256 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1257 Assert(pShwPde);
1258
1259# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1260
1261 const SHWPDE PdeDst = *pPdeDst;
1262 if (!PdeDst.n.u1Present)
1263 {
1264 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1265 PGM_INVL_PG(pVCpu, GCPtrPage);
1266 return VINF_SUCCESS;
1267 }
1268
1269 /*
1270 * Get the guest PD entry and calc big page.
1271 */
1272# if PGM_GST_TYPE == PGM_TYPE_32BIT
1273 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1274 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1275 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1276# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1277 unsigned iPDSrc = 0;
1278# if PGM_GST_TYPE == PGM_TYPE_PAE
1279 X86PDPE PdpeSrcIgn;
1280 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1281# else /* AMD64 */
1282 PX86PML4E pPml4eSrcIgn;
1283 X86PDPE PdpeSrcIgn;
1284 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1285# endif
1286 GSTPDE PdeSrc;
1287
1288 if (pPDSrc)
1289 PdeSrc = pPDSrc->a[iPDSrc];
1290 else
1291 PdeSrc.u = 0;
1292# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1293 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1294
1295# ifdef IN_RING3
1296 /*
1297 * If a CR3 Sync is pending we may ignore the invalidate page operation
1298 * depending on the kind of sync and if it's a global page or not.
1299 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1300 */
1301# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1302 if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1303 || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1304 && fIsBigPage
1305 && PdeSrc.b.u1Global
1306 )
1307 )
1308# else
1309 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1310# endif
1311 {
1312 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1313 return VINF_SUCCESS;
1314 }
1315# endif /* IN_RING3 */
1316
1317 /*
1318 * Deal with the Guest PDE.
1319 */
1320 rc = VINF_SUCCESS;
1321 if (PdeSrc.n.u1Present)
1322 {
1323 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1324 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write));
1325# ifndef PGM_WITHOUT_MAPPING
1326 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1327 {
1328 /*
1329 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1330 */
1331 Assert(pgmMapAreMappingsEnabled(pVM));
1332 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1333 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1334 }
1335 else
1336# endif /* !PGM_WITHOUT_MAPPING */
1337 if (!fIsBigPage)
1338 {
1339 /*
1340 * 4KB - page.
1341 */
1342 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1343 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1344
1345# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1346 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1347 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1348# endif
1349 if (pShwPage->GCPhys == GCPhys)
1350 {
1351 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1352 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1353
1354 PGSTPT pPTSrc;
1355 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1356 if (RT_SUCCESS(rc))
1357 {
1358 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1359 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1360 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1361 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1362 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1363 GCPtrPage, PteSrc.n.u1Present,
1364 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1365 PteSrc.n.u1User & PdeSrc.n.u1User,
1366 (uint64_t)PteSrc.u,
1367 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1368 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1369 }
1370 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1371 PGM_INVL_PG(pVCpu, GCPtrPage);
1372 }
1373 else
1374 {
1375 /*
1376 * The page table address changed.
1377 */
1378 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1379 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1380 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1381 ASMAtomicWriteSize(pPdeDst, 0);
1382 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1383 PGM_INVL_VCPU_TLBS(pVCpu);
1384 }
1385 }
1386 else
1387 {
1388 /*
1389 * 2/4MB - page.
1390 */
1391 /* Before freeing the page, check if anything really changed. */
1392 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1393 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1394# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1395 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1396 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1397# endif
1398 if ( pShwPage->GCPhys == GCPhys
1399 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1400 {
1401 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1402 /** @todo This test is wrong as it cannot check the G bit!
1403 * FIXME */
1404 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1405 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1406 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1407 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1408 {
1409 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1410 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1411 return VINF_SUCCESS;
1412 }
1413 }
1414
1415 /*
1416 * Ok, the page table is present and it's been changed in the guest.
1417 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1418 * We could do this for some flushes in GC too, but we need an algorithm for
1419 * deciding which 4MB pages containing code likely to be executed very soon.
1420 */
1421 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1422 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1423 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1424 ASMAtomicWriteSize(pPdeDst, 0);
1425 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1426 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1427 }
1428 }
1429 else
1430 {
1431 /*
1432 * Page directory is not present, mark shadow PDE not present.
1433 */
1434 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1435 {
1436 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1437 ASMAtomicWriteSize(pPdeDst, 0);
1438 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1439 PGM_INVL_PG(pVCpu, GCPtrPage);
1440 }
1441 else
1442 {
1443 Assert(pgmMapAreMappingsEnabled(pVM));
1444 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1445 }
1446 }
1447 return rc;
1448
1449#else /* guest real and protected mode */
1450 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1451 NOREF(pVCpu); NOREF(GCPtrPage);
1452 return VINF_SUCCESS;
1453#endif
1454}
1455
1456
1457/**
1458 * Update the tracking of shadowed pages.
1459 *
1460 * @param pVCpu Pointer to the VMCPU.
1461 * @param pShwPage The shadow page.
1462 * @param HCPhys The physical page we is being dereferenced.
1463 * @param iPte Shadow PTE index
1464 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1465 */
1466DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1467 RTGCPHYS GCPhysPage)
1468{
1469 PVM pVM = pVCpu->CTX_SUFF(pVM);
1470
1471# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1472 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1473 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1474
1475 /* Use the hint we retrieved from the cached guest PT. */
1476 if (pShwPage->fDirty)
1477 {
1478 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1479
1480 Assert(pShwPage->cPresent);
1481 Assert(pPool->cPresent);
1482 pShwPage->cPresent--;
1483 pPool->cPresent--;
1484
1485 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1486 AssertRelease(pPhysPage);
1487 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1488 return;
1489 }
1490# else
1491 NOREF(GCPhysPage);
1492# endif
1493
1494 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1495 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1496
1497 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1498 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1499 * 2. write protect all shadowed pages. I.e. implement caching.
1500 */
1501 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1502
1503 /*
1504 * Find the guest address.
1505 */
1506 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1507 pRam;
1508 pRam = pRam->CTX_SUFF(pNext))
1509 {
1510 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1511 while (iPage-- > 0)
1512 {
1513 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1514 {
1515 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1516
1517 Assert(pShwPage->cPresent);
1518 Assert(pPool->cPresent);
1519 pShwPage->cPresent--;
1520 pPool->cPresent--;
1521
1522 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1523 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1524 return;
1525 }
1526 }
1527 }
1528
1529 for (;;)
1530 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1531}
1532
1533
1534/**
1535 * Update the tracking of shadowed pages.
1536 *
1537 * @param pVCpu Pointer to the VMCPU.
1538 * @param pShwPage The shadow page.
1539 * @param u16 The top 16-bit of the pPage->HCPhys.
1540 * @param pPage Pointer to the guest page. this will be modified.
1541 * @param iPTDst The index into the shadow table.
1542 */
1543DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1544{
1545 PVM pVM = pVCpu->CTX_SUFF(pVM);
1546
1547 /*
1548 * Just deal with the simple first time here.
1549 */
1550 if (!u16)
1551 {
1552 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1553 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1554 /* Save the page table index. */
1555 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1556 }
1557 else
1558 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1559
1560 /* write back */
1561 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1562 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1563
1564 /* update statistics. */
1565 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1566 pShwPage->cPresent++;
1567 if (pShwPage->iFirstPresent > iPTDst)
1568 pShwPage->iFirstPresent = iPTDst;
1569}
1570
1571
1572/**
1573 * Modifies a shadow PTE to account for access handlers.
1574 *
1575 * @param pVM Pointer to the VM.
1576 * @param pPage The page in question.
1577 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1578 * A (accessed) bit so it can be emulated correctly.
1579 * @param pPteDst The shadow PTE (output). This is temporary storage and
1580 * does not need to be set atomically.
1581 */
1582DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1583{
1584 NOREF(pVM);
1585 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1586 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1587 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1588 {
1589 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1590#if PGM_SHW_TYPE == PGM_TYPE_EPT
1591 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1592 pPteDst->n.u1Present = 1;
1593 pPteDst->n.u1Execute = 1;
1594 pPteDst->n.u1IgnorePAT = 1;
1595 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1596 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1597#else
1598 if (fPteSrc & X86_PTE_A)
1599 {
1600 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1601 SHW_PTE_SET_RO(*pPteDst);
1602 }
1603 else
1604 SHW_PTE_SET(*pPteDst, 0);
1605#endif
1606 }
1607#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1608# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1609 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1610 && ( BTH_IS_NP_ACTIVE(pVM)
1611 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1612# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1613 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1614# endif
1615 )
1616 {
1617 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1618# if PGM_SHW_TYPE == PGM_TYPE_EPT
1619 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1620 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1621 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1622 pPteDst->n.u1Present = 0;
1623 pPteDst->n.u1Write = 1;
1624 pPteDst->n.u1Execute = 0;
1625 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1626 pPteDst->n.u3EMT = 7;
1627# else
1628 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1629 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1630# endif
1631 }
1632# endif
1633#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1634 else
1635 {
1636 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1637 SHW_PTE_SET(*pPteDst, 0);
1638 }
1639 /** @todo count these kinds of entries. */
1640}
1641
1642
1643/**
1644 * Creates a 4K shadow page for a guest page.
1645 *
1646 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1647 * physical address. The PdeSrc argument only the flags are used. No page
1648 * structured will be mapped in this function.
1649 *
1650 * @param pVCpu Pointer to the VMCPU.
1651 * @param pPteDst Destination page table entry.
1652 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1653 * Can safely assume that only the flags are being used.
1654 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1655 * @param pShwPage Pointer to the shadow page.
1656 * @param iPTDst The index into the shadow table.
1657 *
1658 * @remark Not used for 2/4MB pages!
1659 */
1660#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1661static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1662 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1663#else
1664static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1665#endif
1666{
1667 PVM pVM = pVCpu->CTX_SUFF(pVM);
1668 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1669
1670#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1671 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1672 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1673
1674 if (pShwPage->fDirty)
1675 {
1676 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1677 PGSTPT pGstPT;
1678
1679 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1680 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1681 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1682 pGstPT->a[iPTDst].u = PteSrc.u;
1683 }
1684#else
1685 Assert(!pShwPage->fDirty);
1686#endif
1687
1688#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1689 if ( PteSrc.n.u1Present
1690 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1691#endif
1692 {
1693# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1694 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1695# endif
1696 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1697
1698 /*
1699 * Find the ram range.
1700 */
1701 PPGMPAGE pPage;
1702 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1703 if (RT_SUCCESS(rc))
1704 {
1705 /* Ignore ballooned pages.
1706 Don't return errors or use a fatal assert here as part of a
1707 shadow sync range might included ballooned pages. */
1708 if (PGM_PAGE_IS_BALLOONED(pPage))
1709 {
1710 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1711 return;
1712 }
1713
1714#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1715 /* Make the page writable if necessary. */
1716 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1717 && ( PGM_PAGE_IS_ZERO(pPage)
1718# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1719 || ( PteSrc.n.u1Write
1720# else
1721 || ( 1
1722# endif
1723 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1724# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1725 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1726# endif
1727# ifdef VBOX_WITH_PAGE_SHARING
1728 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1729# endif
1730 )
1731 )
1732 )
1733 {
1734 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1735 AssertRC(rc);
1736 }
1737#endif
1738
1739 /*
1740 * Make page table entry.
1741 */
1742 SHWPTE PteDst;
1743# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1744 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1745# else
1746 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1747# endif
1748 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1749 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1750 else
1751 {
1752#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1753 /*
1754 * If the page or page directory entry is not marked accessed,
1755 * we mark the page not present.
1756 */
1757 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1758 {
1759 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1760 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1761 SHW_PTE_SET(PteDst, 0);
1762 }
1763 /*
1764 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1765 * when the page is modified.
1766 */
1767 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1768 {
1769 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1770 SHW_PTE_SET(PteDst,
1771 fGstShwPteFlags
1772 | PGM_PAGE_GET_HCPHYS(pPage)
1773 | PGM_PTFLAGS_TRACK_DIRTY);
1774 SHW_PTE_SET_RO(PteDst);
1775 }
1776 else
1777#endif
1778 {
1779 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1780#if PGM_SHW_TYPE == PGM_TYPE_EPT
1781 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1782 PteDst.n.u1Present = 1;
1783 PteDst.n.u1Write = 1;
1784 PteDst.n.u1Execute = 1;
1785 PteDst.n.u1IgnorePAT = 1;
1786 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1787 /* PteDst.n.u1Size = 0 */
1788#else
1789 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1790#endif
1791 }
1792
1793 /*
1794 * Make sure only allocated pages are mapped writable.
1795 */
1796 if ( SHW_PTE_IS_P_RW(PteDst)
1797 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1798 {
1799 /* Still applies to shared pages. */
1800 Assert(!PGM_PAGE_IS_ZERO(pPage));
1801 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1802 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1803 }
1804 }
1805
1806 /*
1807 * Keep user track up to date.
1808 */
1809 if (SHW_PTE_IS_P(PteDst))
1810 {
1811 if (!SHW_PTE_IS_P(*pPteDst))
1812 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1813 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1814 {
1815 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1816 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1817 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1818 }
1819 }
1820 else if (SHW_PTE_IS_P(*pPteDst))
1821 {
1822 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1823 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1824 }
1825
1826 /*
1827 * Update statistics and commit the entry.
1828 */
1829#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1830 if (!PteSrc.n.u1Global)
1831 pShwPage->fSeenNonGlobal = true;
1832#endif
1833 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1834 return;
1835 }
1836
1837/** @todo count these three different kinds. */
1838 Log2(("SyncPageWorker: invalid address in Pte\n"));
1839 }
1840#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1841 else if (!PteSrc.n.u1Present)
1842 Log2(("SyncPageWorker: page not present in Pte\n"));
1843 else
1844 Log2(("SyncPageWorker: invalid Pte\n"));
1845#endif
1846
1847 /*
1848 * The page is not present or the PTE is bad. Replace the shadow PTE by
1849 * an empty entry, making sure to keep the user tracking up to date.
1850 */
1851 if (SHW_PTE_IS_P(*pPteDst))
1852 {
1853 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1854 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1855 }
1856 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1857}
1858
1859
1860/**
1861 * Syncs a guest OS page.
1862 *
1863 * There are no conflicts at this point, neither is there any need for
1864 * page table allocations.
1865 *
1866 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1867 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1868 *
1869 * @returns VBox status code.
1870 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1871 * @param pVCpu Pointer to the VMCPU.
1872 * @param PdeSrc Page directory entry of the guest.
1873 * @param GCPtrPage Guest context page address.
1874 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1875 * @param uErr Fault error (X86_TRAP_PF_*).
1876 */
1877static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1878{
1879 PVM pVM = pVCpu->CTX_SUFF(pVM);
1880 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1881 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1882
1883 PGM_LOCK_ASSERT_OWNER(pVM);
1884
1885#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1886 || PGM_GST_TYPE == PGM_TYPE_PAE \
1887 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1888 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1889 && PGM_SHW_TYPE != PGM_TYPE_EPT
1890
1891 /*
1892 * Assert preconditions.
1893 */
1894 Assert(PdeSrc.n.u1Present);
1895 Assert(cPages);
1896# if 0 /* rarely useful; leave for debugging. */
1897 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1898# endif
1899
1900 /*
1901 * Get the shadow PDE, find the shadow page table in the pool.
1902 */
1903# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1904 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1905 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1906
1907 /* Fetch the pgm pool shadow descriptor. */
1908 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1909 Assert(pShwPde);
1910
1911# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1912 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1913 PPGMPOOLPAGE pShwPde = NULL;
1914 PX86PDPAE pPDDst;
1915
1916 /* Fetch the pgm pool shadow descriptor. */
1917 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1918 AssertRCSuccessReturn(rc2, rc2);
1919 Assert(pShwPde);
1920
1921 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1922 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1923
1924# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1925 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1926 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1927 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1928 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1929
1930 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1931 AssertRCSuccessReturn(rc2, rc2);
1932 Assert(pPDDst && pPdptDst);
1933 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1934# endif
1935 SHWPDE PdeDst = *pPdeDst;
1936
1937 /*
1938 * - In the guest SMP case we could have blocked while another VCPU reused
1939 * this page table.
1940 * - With W7-64 we may also take this path when the A bit is cleared on
1941 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1942 * relevant TLB entries. If we're write monitoring any page mapped by
1943 * the modified entry, we may end up here with a "stale" TLB entry.
1944 */
1945 if (!PdeDst.n.u1Present)
1946 {
1947 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1948 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1949 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1950 if (uErr & X86_TRAP_PF_P)
1951 PGM_INVL_PG(pVCpu, GCPtrPage);
1952 return VINF_SUCCESS; /* force the instruction to be executed again. */
1953 }
1954
1955 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1956 Assert(pShwPage);
1957
1958# if PGM_GST_TYPE == PGM_TYPE_AMD64
1959 /* Fetch the pgm pool shadow descriptor. */
1960 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1961 Assert(pShwPde);
1962# endif
1963
1964 /*
1965 * Check that the page is present and that the shadow PDE isn't out of sync.
1966 */
1967 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1968 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1969 RTGCPHYS GCPhys;
1970 if (!fBigPage)
1971 {
1972 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1973# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1974 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1975 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1976# endif
1977 }
1978 else
1979 {
1980 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1981# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1982 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1983 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1984# endif
1985 }
1986 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
1987 if ( fPdeValid
1988 && pShwPage->GCPhys == GCPhys
1989 && PdeSrc.n.u1Present
1990 && PdeSrc.n.u1User == PdeDst.n.u1User
1991 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
1992# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
1993 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
1994# endif
1995 )
1996 {
1997 /*
1998 * Check that the PDE is marked accessed already.
1999 * Since we set the accessed bit *before* getting here on a #PF, this
2000 * check is only meant for dealing with non-#PF'ing paths.
2001 */
2002 if (PdeSrc.n.u1Accessed)
2003 {
2004 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2005 if (!fBigPage)
2006 {
2007 /*
2008 * 4KB Page - Map the guest page table.
2009 */
2010 PGSTPT pPTSrc;
2011 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2012 if (RT_SUCCESS(rc))
2013 {
2014# ifdef PGM_SYNC_N_PAGES
2015 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2016 if ( cPages > 1
2017 && !(uErr & X86_TRAP_PF_P)
2018 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2019 {
2020 /*
2021 * This code path is currently only taken when the caller is PGMTrap0eHandler
2022 * for non-present pages!
2023 *
2024 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2025 * deal with locality.
2026 */
2027 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2028# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2029 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2030 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2031# else
2032 const unsigned offPTSrc = 0;
2033# endif
2034 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2035 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2036 iPTDst = 0;
2037 else
2038 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2039
2040 for (; iPTDst < iPTDstEnd; iPTDst++)
2041 {
2042 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2043
2044 if ( pPteSrc->n.u1Present
2045 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2046 {
2047 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2048 NOREF(GCPtrCurPage);
2049# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2050 /*
2051 * Assuming kernel code will be marked as supervisor - and not as user level
2052 * and executed using a conforming code selector - And marked as readonly.
2053 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2054 */
2055 PPGMPAGE pPage;
2056 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2057 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2058 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2059 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2060 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2061 )
2062# endif /* else: CSAM not active */
2063 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2064 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2065 GCPtrCurPage, pPteSrc->n.u1Present,
2066 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2067 pPteSrc->n.u1User & PdeSrc.n.u1User,
2068 (uint64_t)pPteSrc->u,
2069 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2070 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2071 }
2072 }
2073 }
2074 else
2075# endif /* PGM_SYNC_N_PAGES */
2076 {
2077 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2078 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2079 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2080 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2081 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2082 GCPtrPage, PteSrc.n.u1Present,
2083 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2084 PteSrc.n.u1User & PdeSrc.n.u1User,
2085 (uint64_t)PteSrc.u,
2086 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2087 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2088 }
2089 }
2090 else /* MMIO or invalid page: emulated in #PF handler. */
2091 {
2092 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2093 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2094 }
2095 }
2096 else
2097 {
2098 /*
2099 * 4/2MB page - lazy syncing shadow 4K pages.
2100 * (There are many causes of getting here, it's no longer only CSAM.)
2101 */
2102 /* Calculate the GC physical address of this 4KB shadow page. */
2103 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2104 /* Find ram range. */
2105 PPGMPAGE pPage;
2106 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2107 if (RT_SUCCESS(rc))
2108 {
2109 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2110
2111# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2112 /* Try to make the page writable if necessary. */
2113 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2114 && ( PGM_PAGE_IS_ZERO(pPage)
2115 || ( PdeSrc.n.u1Write
2116 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2117# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2118 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2119# endif
2120# ifdef VBOX_WITH_PAGE_SHARING
2121 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2122# endif
2123 )
2124 )
2125 )
2126 {
2127 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2128 AssertRC(rc);
2129 }
2130# endif
2131
2132 /*
2133 * Make shadow PTE entry.
2134 */
2135 SHWPTE PteDst;
2136 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2137 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2138 else
2139 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2140
2141 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2142 if ( SHW_PTE_IS_P(PteDst)
2143 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2144 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2145
2146 /* Make sure only allocated pages are mapped writable. */
2147 if ( SHW_PTE_IS_P_RW(PteDst)
2148 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2149 {
2150 /* Still applies to shared pages. */
2151 Assert(!PGM_PAGE_IS_ZERO(pPage));
2152 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2153 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2154 }
2155
2156 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2157
2158 /*
2159 * If the page is not flagged as dirty and is writable, then make it read-only
2160 * at PD level, so we can set the dirty bit when the page is modified.
2161 *
2162 * ASSUMES that page access handlers are implemented on page table entry level.
2163 * Thus we will first catch the dirty access and set PDE.D and restart. If
2164 * there is an access handler, we'll trap again and let it work on the problem.
2165 */
2166 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2167 * As for invlpg, it simply frees the whole shadow PT.
2168 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2169 if ( !PdeSrc.b.u1Dirty
2170 && PdeSrc.b.u1Write)
2171 {
2172 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2173 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2174 PdeDst.n.u1Write = 0;
2175 }
2176 else
2177 {
2178 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2179 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2180 }
2181 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2182 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2183 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2184 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2185 }
2186 else
2187 {
2188 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2189 /** @todo must wipe the shadow page table entry in this
2190 * case. */
2191 }
2192 }
2193 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2194 return VINF_SUCCESS;
2195 }
2196
2197 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2198 }
2199 else if (fPdeValid)
2200 {
2201 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2202 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2203 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2204 }
2205 else
2206 {
2207/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2208 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2209 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2210 }
2211
2212 /*
2213 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2214 * Yea, I'm lazy.
2215 */
2216 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2217 ASMAtomicWriteSize(pPdeDst, 0);
2218
2219 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2220 PGM_INVL_VCPU_TLBS(pVCpu);
2221 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2222
2223
2224#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2225 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2226 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2227 && !defined(IN_RC)
2228 NOREF(PdeSrc);
2229
2230# ifdef PGM_SYNC_N_PAGES
2231 /*
2232 * Get the shadow PDE, find the shadow page table in the pool.
2233 */
2234# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2235 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2236
2237# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2238 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2239
2240# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2241 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2242 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2243 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2244 X86PDEPAE PdeDst;
2245 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2246
2247 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2248 AssertRCSuccessReturn(rc, rc);
2249 Assert(pPDDst && pPdptDst);
2250 PdeDst = pPDDst->a[iPDDst];
2251# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2252 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2253 PEPTPD pPDDst;
2254 EPTPDE PdeDst;
2255
2256 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2257 if (rc != VINF_SUCCESS)
2258 {
2259 AssertRC(rc);
2260 return rc;
2261 }
2262 Assert(pPDDst);
2263 PdeDst = pPDDst->a[iPDDst];
2264# endif
2265 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2266 if (!PdeDst.n.u1Present)
2267 {
2268 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2269 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2270 return VINF_SUCCESS; /* force the instruction to be executed again. */
2271 }
2272
2273 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2274 if (PdeDst.n.u1Size)
2275 {
2276 Assert(pVM->pgm.s.fNestedPaging);
2277 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2278 return VINF_SUCCESS;
2279 }
2280
2281 /* Mask away the page offset. */
2282 GCPtrPage &= ~((RTGCPTR)0xfff);
2283
2284 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2285 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2286
2287 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2288 if ( cPages > 1
2289 && !(uErr & X86_TRAP_PF_P)
2290 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2291 {
2292 /*
2293 * This code path is currently only taken when the caller is PGMTrap0eHandler
2294 * for non-present pages!
2295 *
2296 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2297 * deal with locality.
2298 */
2299 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2300 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2301 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2302 iPTDst = 0;
2303 else
2304 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2305 for (; iPTDst < iPTDstEnd; iPTDst++)
2306 {
2307 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2308 {
2309 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2310 | (iPTDst << PAGE_SHIFT));
2311
2312 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2313 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2314 GCPtrCurPage,
2315 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2316 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2317
2318 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2319 break;
2320 }
2321 else
2322 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2323 }
2324 }
2325 else
2326# endif /* PGM_SYNC_N_PAGES */
2327 {
2328 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2329 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2330 | (iPTDst << PAGE_SHIFT));
2331
2332 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2333
2334 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2335 GCPtrPage,
2336 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2337 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2338 }
2339 return VINF_SUCCESS;
2340
2341#else
2342 NOREF(PdeSrc);
2343 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2344 return VERR_PGM_NOT_USED_IN_MODE;
2345#endif
2346}
2347
2348
2349#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2350
2351/**
2352 * CheckPageFault helper for returning a page fault indicating a non-present
2353 * (NP) entry in the page translation structures.
2354 *
2355 * @returns VINF_EM_RAW_GUEST_TRAP.
2356 * @param pVCpu Pointer to the VMCPU.
2357 * @param uErr The error code of the shadow fault. Corrections to
2358 * TRPM's copy will be made if necessary.
2359 * @param GCPtrPage For logging.
2360 * @param uPageFaultLevel For logging.
2361 */
2362DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2363{
2364 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2365 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2366 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2367 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2368 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2369
2370 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2371 return VINF_EM_RAW_GUEST_TRAP;
2372}
2373
2374
2375/**
2376 * CheckPageFault helper for returning a page fault indicating a reserved bit
2377 * (RSVD) error in the page translation structures.
2378 *
2379 * @returns VINF_EM_RAW_GUEST_TRAP.
2380 * @param pVCpu Pointer to the VMCPU.
2381 * @param uErr The error code of the shadow fault. Corrections to
2382 * TRPM's copy will be made if necessary.
2383 * @param GCPtrPage For logging.
2384 * @param uPageFaultLevel For logging.
2385 */
2386DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2387{
2388 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2389 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2390 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2391
2392 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2393 return VINF_EM_RAW_GUEST_TRAP;
2394}
2395
2396
2397/**
2398 * CheckPageFault helper for returning a page protection fault (P).
2399 *
2400 * @returns VINF_EM_RAW_GUEST_TRAP.
2401 * @param pVCpu Pointer to the VMCPU.
2402 * @param uErr The error code of the shadow fault. Corrections to
2403 * TRPM's copy will be made if necessary.
2404 * @param GCPtrPage For logging.
2405 * @param uPageFaultLevel For logging.
2406 */
2407DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2408{
2409 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2410 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2411 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2412 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2413
2414 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2415 return VINF_EM_RAW_GUEST_TRAP;
2416}
2417
2418
2419/**
2420 * Handle dirty bit tracking faults.
2421 *
2422 * @returns VBox status code.
2423 * @param pVCpu Pointer to the VMCPU.
2424 * @param uErr Page fault error code.
2425 * @param pPdeSrc Guest page directory entry.
2426 * @param pPdeDst Shadow page directory entry.
2427 * @param GCPtrPage Guest context page address.
2428 */
2429static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2430 RTGCPTR GCPtrPage)
2431{
2432 PVM pVM = pVCpu->CTX_SUFF(pVM);
2433 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2434 NOREF(uErr);
2435
2436 PGM_LOCK_ASSERT_OWNER(pVM);
2437
2438 /*
2439 * Handle big page.
2440 */
2441 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2442 {
2443 if ( pPdeDst->n.u1Present
2444 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2445 {
2446 SHWPDE PdeDst = *pPdeDst;
2447
2448 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2449 Assert(pPdeSrc->b.u1Write);
2450
2451 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2452 * fault again and take this path to only invalidate the entry (see below).
2453 */
2454 PdeDst.n.u1Write = 1;
2455 PdeDst.n.u1Accessed = 1;
2456 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2457 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2458 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2459 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2460 }
2461
2462# ifdef IN_RING0
2463 /* Check for stale TLB entry; only applies to the SMP guest case. */
2464 if ( pVM->cCpus > 1
2465 && pPdeDst->n.u1Write
2466 && pPdeDst->n.u1Accessed)
2467 {
2468 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2469 if (pShwPage)
2470 {
2471 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2472 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2473 if (SHW_PTE_IS_P_RW(*pPteDst))
2474 {
2475 /* Stale TLB entry. */
2476 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2477 PGM_INVL_PG(pVCpu, GCPtrPage);
2478 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2479 }
2480 }
2481 }
2482# endif /* IN_RING0 */
2483 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2484 }
2485
2486 /*
2487 * Map the guest page table.
2488 */
2489 PGSTPT pPTSrc;
2490 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2491 if (RT_FAILURE(rc))
2492 {
2493 AssertRC(rc);
2494 return rc;
2495 }
2496
2497 if (pPdeDst->n.u1Present)
2498 {
2499 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2500 const GSTPTE PteSrc = *pPteSrc;
2501
2502#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2503 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2504 * Our individual shadow handlers will provide more information and force a fatal exit.
2505 */
2506 if ( !HMIsEnabled(pVM)
2507 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2508 {
2509 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2510 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2511 }
2512#endif
2513 /*
2514 * Map shadow page table.
2515 */
2516 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2517 if (pShwPage)
2518 {
2519 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2520 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2521 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2522 {
2523 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2524 {
2525 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2526 SHWPTE PteDst = *pPteDst;
2527
2528 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2529 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2530
2531 Assert(PteSrc.n.u1Write);
2532
2533 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2534 * entry will not harm; write access will simply fault again and
2535 * take this path to only invalidate the entry.
2536 */
2537 if (RT_LIKELY(pPage))
2538 {
2539 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2540 {
2541 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2542 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2543 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2544 SHW_PTE_SET_RO(PteDst);
2545 }
2546 else
2547 {
2548 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2549 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2550 {
2551 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2552 AssertRC(rc);
2553 }
2554 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2555 SHW_PTE_SET_RW(PteDst);
2556 else
2557 {
2558 /* Still applies to shared pages. */
2559 Assert(!PGM_PAGE_IS_ZERO(pPage));
2560 SHW_PTE_SET_RO(PteDst);
2561 }
2562 }
2563 }
2564 else
2565 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2566
2567 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2568 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2569 PGM_INVL_PG(pVCpu, GCPtrPage);
2570 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2571 }
2572
2573# ifdef IN_RING0
2574 /* Check for stale TLB entry; only applies to the SMP guest case. */
2575 if ( pVM->cCpus > 1
2576 && SHW_PTE_IS_RW(*pPteDst)
2577 && SHW_PTE_IS_A(*pPteDst))
2578 {
2579 /* Stale TLB entry. */
2580 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2581 PGM_INVL_PG(pVCpu, GCPtrPage);
2582 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2583 }
2584# endif
2585 }
2586 }
2587 else
2588 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2589 }
2590
2591 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2592}
2593
2594#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2595
2596
2597/**
2598 * Sync a shadow page table.
2599 *
2600 * The shadow page table is not present in the shadow PDE.
2601 *
2602 * Handles mapping conflicts.
2603 *
2604 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2605 * conflict), and Trap0eHandler.
2606 *
2607 * A precondition for this method is that the shadow PDE is not present. The
2608 * caller must take the PGM lock before checking this and continue to hold it
2609 * when calling this method.
2610 *
2611 * @returns VBox status code.
2612 * @param pVCpu Pointer to the VMCPU.
2613 * @param iPD Page directory index.
2614 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2615 * Assume this is a temporary mapping.
2616 * @param GCPtrPage GC Pointer of the page that caused the fault
2617 */
2618static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2619{
2620 PVM pVM = pVCpu->CTX_SUFF(pVM);
2621 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2622
2623#if 0 /* rarely useful; leave for debugging. */
2624 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2625#endif
2626 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2627
2628 PGM_LOCK_ASSERT_OWNER(pVM);
2629
2630#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2631 || PGM_GST_TYPE == PGM_TYPE_PAE \
2632 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2633 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2634 && PGM_SHW_TYPE != PGM_TYPE_EPT
2635
2636 int rc = VINF_SUCCESS;
2637
2638 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2639
2640 /*
2641 * Some input validation first.
2642 */
2643 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2644
2645 /*
2646 * Get the relevant shadow PDE entry.
2647 */
2648# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2649 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2650 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2651
2652 /* Fetch the pgm pool shadow descriptor. */
2653 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2654 Assert(pShwPde);
2655
2656# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2657 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2658 PPGMPOOLPAGE pShwPde = NULL;
2659 PX86PDPAE pPDDst;
2660 PSHWPDE pPdeDst;
2661
2662 /* Fetch the pgm pool shadow descriptor. */
2663 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2664 AssertRCSuccessReturn(rc, rc);
2665 Assert(pShwPde);
2666
2667 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2668 pPdeDst = &pPDDst->a[iPDDst];
2669
2670# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2671 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2672 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2673 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2674 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2675 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2676 AssertRCSuccessReturn(rc, rc);
2677 Assert(pPDDst);
2678 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2679# endif
2680 SHWPDE PdeDst = *pPdeDst;
2681
2682# if PGM_GST_TYPE == PGM_TYPE_AMD64
2683 /* Fetch the pgm pool shadow descriptor. */
2684 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2685 Assert(pShwPde);
2686# endif
2687
2688# ifndef PGM_WITHOUT_MAPPINGS
2689 /*
2690 * Check for conflicts.
2691 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2692 * R3: Simply resolve the conflict.
2693 */
2694 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2695 {
2696 Assert(pgmMapAreMappingsEnabled(pVM));
2697# ifndef IN_RING3
2698 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2699 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2700 return VERR_ADDRESS_CONFLICT;
2701
2702# else /* IN_RING3 */
2703 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2704 Assert(pMapping);
2705# if PGM_GST_TYPE == PGM_TYPE_32BIT
2706 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2707# elif PGM_GST_TYPE == PGM_TYPE_PAE
2708 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2709# else
2710 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2711# endif
2712 if (RT_FAILURE(rc))
2713 {
2714 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2715 return rc;
2716 }
2717 PdeDst = *pPdeDst;
2718# endif /* IN_RING3 */
2719 }
2720# endif /* !PGM_WITHOUT_MAPPINGS */
2721 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2722
2723 /*
2724 * Sync the page directory entry.
2725 */
2726 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2727 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2728 if ( PdeSrc.n.u1Present
2729 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2730 {
2731 /*
2732 * Allocate & map the page table.
2733 */
2734 PSHWPT pPTDst;
2735 PPGMPOOLPAGE pShwPage;
2736 RTGCPHYS GCPhys;
2737 if (fPageTable)
2738 {
2739 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2740# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2741 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2742 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2743# endif
2744 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2745 pShwPde->idx, iPDDst, false /*fLockPage*/,
2746 &pShwPage);
2747 }
2748 else
2749 {
2750 PGMPOOLACCESS enmAccess;
2751# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2752 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2753# else
2754 const bool fNoExecute = false;
2755# endif
2756
2757 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2758# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2759 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2760 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2761# endif
2762 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2763 if (PdeSrc.n.u1User)
2764 {
2765 if (PdeSrc.n.u1Write)
2766 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2767 else
2768 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2769 }
2770 else
2771 {
2772 if (PdeSrc.n.u1Write)
2773 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2774 else
2775 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2776 }
2777 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2778 pShwPde->idx, iPDDst, false /*fLockPage*/,
2779 &pShwPage);
2780 }
2781 if (rc == VINF_SUCCESS)
2782 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2783 else if (rc == VINF_PGM_CACHED_PAGE)
2784 {
2785 /*
2786 * The PT was cached, just hook it up.
2787 */
2788 if (fPageTable)
2789 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2790 else
2791 {
2792 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2793 /* (see explanation and assumptions further down.) */
2794 if ( !PdeSrc.b.u1Dirty
2795 && PdeSrc.b.u1Write)
2796 {
2797 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2798 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2799 PdeDst.b.u1Write = 0;
2800 }
2801 }
2802 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2803 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2804 return VINF_SUCCESS;
2805 }
2806 else if (rc == VERR_PGM_POOL_FLUSHED)
2807 {
2808 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2809 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2810 return VINF_PGM_SYNC_CR3;
2811 }
2812 else
2813 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2814 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2815 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2816 * irrelevant at this point. */
2817 PdeDst.u &= X86_PDE_AVL_MASK;
2818 PdeDst.u |= pShwPage->Core.Key;
2819
2820 /*
2821 * Page directory has been accessed (this is a fault situation, remember).
2822 */
2823 /** @todo
2824 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2825 * fault situation. What's more, the Trap0eHandler has already set the
2826 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2827 * might need setting the accessed flag.
2828 *
2829 * The best idea is to leave this change to the caller and add an
2830 * assertion that it's set already. */
2831 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2832 if (fPageTable)
2833 {
2834 /*
2835 * Page table - 4KB.
2836 *
2837 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2838 */
2839 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2840 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2841 PGSTPT pPTSrc;
2842 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2843 if (RT_SUCCESS(rc))
2844 {
2845 /*
2846 * Start by syncing the page directory entry so CSAM's TLB trick works.
2847 */
2848 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2849 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2850 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2851 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2852
2853 /*
2854 * Directory/page user or supervisor privilege: (same goes for read/write)
2855 *
2856 * Directory Page Combined
2857 * U/S U/S U/S
2858 * 0 0 0
2859 * 0 1 0
2860 * 1 0 0
2861 * 1 1 1
2862 *
2863 * Simple AND operation. Table listed for completeness.
2864 *
2865 */
2866 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2867# ifdef PGM_SYNC_N_PAGES
2868 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2869 unsigned iPTDst = iPTBase;
2870 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2871 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2872 iPTDst = 0;
2873 else
2874 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2875# else /* !PGM_SYNC_N_PAGES */
2876 unsigned iPTDst = 0;
2877 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2878# endif /* !PGM_SYNC_N_PAGES */
2879 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2880 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2881# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2882 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2883 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2884# else
2885 const unsigned offPTSrc = 0;
2886# endif
2887 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2888 {
2889 const unsigned iPTSrc = iPTDst + offPTSrc;
2890 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2891
2892 if (PteSrc.n.u1Present)
2893 {
2894# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2895 /*
2896 * Assuming kernel code will be marked as supervisor - and not as user level
2897 * and executed using a conforming code selector - And marked as readonly.
2898 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2899 */
2900 PPGMPAGE pPage;
2901 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2902 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2903 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2904 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2905 )
2906# endif
2907 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2908 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2909 GCPtrCur,
2910 PteSrc.n.u1Present,
2911 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2912 PteSrc.n.u1User & PdeSrc.n.u1User,
2913 (uint64_t)PteSrc.u,
2914 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2915 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2916 }
2917 /* else: the page table was cleared by the pool */
2918 } /* for PTEs */
2919 }
2920 }
2921 else
2922 {
2923 /*
2924 * Big page - 2/4MB.
2925 *
2926 * We'll walk the ram range list in parallel and optimize lookups.
2927 * We will only sync one shadow page table at a time.
2928 */
2929 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2930
2931 /**
2932 * @todo It might be more efficient to sync only a part of the 4MB
2933 * page (similar to what we do for 4KB PDs).
2934 */
2935
2936 /*
2937 * Start by syncing the page directory entry.
2938 */
2939 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2940 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2941
2942 /*
2943 * If the page is not flagged as dirty and is writable, then make it read-only
2944 * at PD level, so we can set the dirty bit when the page is modified.
2945 *
2946 * ASSUMES that page access handlers are implemented on page table entry level.
2947 * Thus we will first catch the dirty access and set PDE.D and restart. If
2948 * there is an access handler, we'll trap again and let it work on the problem.
2949 */
2950 /** @todo move the above stuff to a section in the PGM documentation. */
2951 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2952 if ( !PdeSrc.b.u1Dirty
2953 && PdeSrc.b.u1Write)
2954 {
2955 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2956 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2957 PdeDst.b.u1Write = 0;
2958 }
2959 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2960 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2961
2962 /*
2963 * Fill the shadow page table.
2964 */
2965 /* Get address and flags from the source PDE. */
2966 SHWPTE PteDstBase;
2967 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2968
2969 /* Loop thru the entries in the shadow PT. */
2970 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2971 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2972 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2973 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2974 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2975 unsigned iPTDst = 0;
2976 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2977 && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
2978 {
2979 if (pRam && GCPhys >= pRam->GCPhys)
2980 {
2981# ifndef PGM_WITH_A20
2982 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2983# endif
2984 do
2985 {
2986 /* Make shadow PTE. */
2987# ifdef PGM_WITH_A20
2988 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2989# else
2990 PPGMPAGE pPage = &pRam->aPages[iHCPage];
2991# endif
2992 SHWPTE PteDst;
2993
2994# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2995 /* Try to make the page writable if necessary. */
2996 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2997 && ( PGM_PAGE_IS_ZERO(pPage)
2998 || ( SHW_PTE_IS_RW(PteDstBase)
2999 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3000# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3001 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3002# endif
3003# ifdef VBOX_WITH_PAGE_SHARING
3004 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3005# endif
3006 && !PGM_PAGE_IS_BALLOONED(pPage))
3007 )
3008 )
3009 {
3010 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3011 AssertRCReturn(rc, rc);
3012 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))
3013 break;
3014 }
3015# endif
3016
3017 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3018 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3019 else if (PGM_PAGE_IS_BALLOONED(pPage))
3020 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3021# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3022 /*
3023 * Assuming kernel code will be marked as supervisor and not as user level and executed
3024 * using a conforming code selector. Don't check for readonly, as that implies the whole
3025 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3026 */
3027 else if ( !PdeSrc.n.u1User
3028 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3029 SHW_PTE_SET(PteDst, 0);
3030# endif
3031 else
3032 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3033
3034 /* Only map writable pages writable. */
3035 if ( SHW_PTE_IS_P_RW(PteDst)
3036 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3037 {
3038 /* Still applies to shared pages. */
3039 Assert(!PGM_PAGE_IS_ZERO(pPage));
3040 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3041 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3042 }
3043
3044 if (SHW_PTE_IS_P(PteDst))
3045 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3046
3047 /* commit it (not atomic, new table) */
3048 pPTDst->a[iPTDst] = PteDst;
3049 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3050 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3051 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3052
3053 /* advance */
3054 GCPhys += PAGE_SIZE;
3055 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3056# ifndef PGM_WITH_A20
3057 iHCPage++;
3058# endif
3059 iPTDst++;
3060 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3061 && GCPhys <= pRam->GCPhysLast);
3062
3063 /* Advance ram range list. */
3064 while (pRam && GCPhys > pRam->GCPhysLast)
3065 pRam = pRam->CTX_SUFF(pNext);
3066 }
3067 else if (pRam)
3068 {
3069 Log(("Invalid pages at %RGp\n", GCPhys));
3070 do
3071 {
3072 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3073 GCPhys += PAGE_SIZE;
3074 iPTDst++;
3075 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3076 && GCPhys < pRam->GCPhys);
3077 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3078 }
3079 else
3080 {
3081 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3082 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3083 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3084 }
3085 } /* while more PTEs */
3086 } /* 4KB / 4MB */
3087 }
3088 else
3089 AssertRelease(!PdeDst.n.u1Present);
3090
3091 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3092 if (RT_FAILURE(rc))
3093 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3094 return rc;
3095
3096#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3097 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3098 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3099 && !defined(IN_RC)
3100 NOREF(iPDSrc); NOREF(pPDSrc);
3101
3102 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3103
3104 /*
3105 * Validate input a little bit.
3106 */
3107 int rc = VINF_SUCCESS;
3108# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3109 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3110 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3111
3112 /* Fetch the pgm pool shadow descriptor. */
3113 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3114 Assert(pShwPde);
3115
3116# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3117 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3118 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3119 PX86PDPAE pPDDst;
3120 PSHWPDE pPdeDst;
3121
3122 /* Fetch the pgm pool shadow descriptor. */
3123 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3124 AssertRCSuccessReturn(rc, rc);
3125 Assert(pShwPde);
3126
3127 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3128 pPdeDst = &pPDDst->a[iPDDst];
3129
3130# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3131 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3132 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3133 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3134 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3135 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3136 AssertRCSuccessReturn(rc, rc);
3137 Assert(pPDDst);
3138 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3139
3140 /* Fetch the pgm pool shadow descriptor. */
3141 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3142 Assert(pShwPde);
3143
3144# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3145 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3146 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3147 PEPTPD pPDDst;
3148 PEPTPDPT pPdptDst;
3149
3150 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3151 if (rc != VINF_SUCCESS)
3152 {
3153 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3154 AssertRC(rc);
3155 return rc;
3156 }
3157 Assert(pPDDst);
3158 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3159
3160 /* Fetch the pgm pool shadow descriptor. */
3161 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3162 Assert(pShwPde);
3163# endif
3164 SHWPDE PdeDst = *pPdeDst;
3165
3166 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3167 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3168
3169# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3170 if (BTH_IS_NP_ACTIVE(pVM))
3171 {
3172 /* Check if we allocated a big page before for this 2 MB range. */
3173 PPGMPAGE pPage;
3174 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3175 if (RT_SUCCESS(rc))
3176 {
3177 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3178 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3179 {
3180 if (PGM_A20_IS_ENABLED(pVCpu))
3181 {
3182 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3183 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3184 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3185 }
3186 else
3187 {
3188 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3189 pVM->pgm.s.cLargePagesDisabled++;
3190 }
3191 }
3192 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3193 && PGM_A20_IS_ENABLED(pVCpu))
3194 {
3195 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3196 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3197 if (RT_SUCCESS(rc))
3198 {
3199 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3200 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3201 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3202 }
3203 }
3204 else if ( PGMIsUsingLargePages(pVM)
3205 && PGM_A20_IS_ENABLED(pVCpu))
3206 {
3207 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3208 if (RT_SUCCESS(rc))
3209 {
3210 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3211 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3212 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3213 }
3214 else
3215 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3216 }
3217
3218 if (HCPhys != NIL_RTHCPHYS)
3219 {
3220 PdeDst.u &= X86_PDE_AVL_MASK;
3221 PdeDst.u |= HCPhys;
3222 PdeDst.n.u1Present = 1;
3223 PdeDst.n.u1Write = 1;
3224 PdeDst.b.u1Size = 1;
3225# if PGM_SHW_TYPE == PGM_TYPE_EPT
3226 PdeDst.n.u1Execute = 1;
3227 PdeDst.b.u1IgnorePAT = 1;
3228 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3229# else
3230 PdeDst.n.u1User = 1;
3231# endif
3232 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3233
3234 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3235 /* Add a reference to the first page only. */
3236 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3237
3238 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3239 return VINF_SUCCESS;
3240 }
3241 }
3242 }
3243# endif /* HC_ARCH_BITS == 64 */
3244
3245 /*
3246 * Allocate & map the page table.
3247 */
3248 PSHWPT pPTDst;
3249 PPGMPOOLPAGE pShwPage;
3250 RTGCPHYS GCPhys;
3251
3252 /* Virtual address = physical address */
3253 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3254 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3255 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3256 &pShwPage);
3257 if ( rc == VINF_SUCCESS
3258 || rc == VINF_PGM_CACHED_PAGE)
3259 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3260 else
3261 {
3262 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3263 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3264 }
3265
3266 if (rc == VINF_SUCCESS)
3267 {
3268 /* New page table; fully set it up. */
3269 Assert(pPTDst);
3270
3271 /* Mask away the page offset. */
3272 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3273
3274 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3275 {
3276 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3277 | (iPTDst << PAGE_SHIFT));
3278
3279 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3280 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3281 GCPtrCurPage,
3282 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3283 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3284
3285 if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3286 break;
3287 }
3288 }
3289 else
3290 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3291
3292 /* Save the new PDE. */
3293 PdeDst.u &= X86_PDE_AVL_MASK;
3294 PdeDst.u |= pShwPage->Core.Key;
3295 PdeDst.n.u1Present = 1;
3296 PdeDst.n.u1Write = 1;
3297# if PGM_SHW_TYPE == PGM_TYPE_EPT
3298 PdeDst.n.u1Execute = 1;
3299# else
3300 PdeDst.n.u1User = 1;
3301 PdeDst.n.u1Accessed = 1;
3302# endif
3303 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3304
3305 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3306 if (RT_FAILURE(rc))
3307 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3308 return rc;
3309
3310#else
3311 NOREF(iPDSrc); NOREF(pPDSrc);
3312 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3313 return VERR_PGM_NOT_USED_IN_MODE;
3314#endif
3315}
3316
3317
3318
3319/**
3320 * Prefetch a page/set of pages.
3321 *
3322 * Typically used to sync commonly used pages before entering raw mode
3323 * after a CR3 reload.
3324 *
3325 * @returns VBox status code.
3326 * @param pVCpu Pointer to the VMCPU.
3327 * @param GCPtrPage Page to invalidate.
3328 */
3329PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3330{
3331#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3332 || PGM_GST_TYPE == PGM_TYPE_REAL \
3333 || PGM_GST_TYPE == PGM_TYPE_PROT \
3334 || PGM_GST_TYPE == PGM_TYPE_PAE \
3335 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3336 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3337 && PGM_SHW_TYPE != PGM_TYPE_EPT
3338
3339 /*
3340 * Check that all Guest levels thru the PDE are present, getting the
3341 * PD and PDE in the processes.
3342 */
3343 int rc = VINF_SUCCESS;
3344# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3345# if PGM_GST_TYPE == PGM_TYPE_32BIT
3346 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3347 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3348# elif PGM_GST_TYPE == PGM_TYPE_PAE
3349 unsigned iPDSrc;
3350 X86PDPE PdpeSrc;
3351 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3352 if (!pPDSrc)
3353 return VINF_SUCCESS; /* not present */
3354# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3355 unsigned iPDSrc;
3356 PX86PML4E pPml4eSrc;
3357 X86PDPE PdpeSrc;
3358 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3359 if (!pPDSrc)
3360 return VINF_SUCCESS; /* not present */
3361# endif
3362 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3363# else
3364 PGSTPD pPDSrc = NULL;
3365 const unsigned iPDSrc = 0;
3366 GSTPDE PdeSrc;
3367
3368 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3369 PdeSrc.n.u1Present = 1;
3370 PdeSrc.n.u1Write = 1;
3371 PdeSrc.n.u1Accessed = 1;
3372 PdeSrc.n.u1User = 1;
3373# endif
3374
3375 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3376 {
3377 PVM pVM = pVCpu->CTX_SUFF(pVM);
3378 pgmLock(pVM);
3379
3380# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3381 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3382# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3383 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3384 PX86PDPAE pPDDst;
3385 X86PDEPAE PdeDst;
3386# if PGM_GST_TYPE != PGM_TYPE_PAE
3387 X86PDPE PdpeSrc;
3388
3389 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3390 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3391# endif
3392 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3393 if (rc != VINF_SUCCESS)
3394 {
3395 pgmUnlock(pVM);
3396 AssertRC(rc);
3397 return rc;
3398 }
3399 Assert(pPDDst);
3400 PdeDst = pPDDst->a[iPDDst];
3401
3402# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3403 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3404 PX86PDPAE pPDDst;
3405 X86PDEPAE PdeDst;
3406
3407# if PGM_GST_TYPE == PGM_TYPE_PROT
3408 /* AMD-V nested paging */
3409 X86PML4E Pml4eSrc;
3410 X86PDPE PdpeSrc;
3411 PX86PML4E pPml4eSrc = &Pml4eSrc;
3412
3413 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3414 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3415 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3416# endif
3417
3418 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3419 if (rc != VINF_SUCCESS)
3420 {
3421 pgmUnlock(pVM);
3422 AssertRC(rc);
3423 return rc;
3424 }
3425 Assert(pPDDst);
3426 PdeDst = pPDDst->a[iPDDst];
3427# endif
3428 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3429 {
3430 if (!PdeDst.n.u1Present)
3431 {
3432 /** @todo r=bird: This guy will set the A bit on the PDE,
3433 * probably harmless. */
3434 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3435 }
3436 else
3437 {
3438 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3439 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3440 * makes no sense to prefetch more than one page.
3441 */
3442 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3443 if (RT_SUCCESS(rc))
3444 rc = VINF_SUCCESS;
3445 }
3446 }
3447 pgmUnlock(pVM);
3448 }
3449 return rc;
3450
3451#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3452 NOREF(pVCpu); NOREF(GCPtrPage);
3453 return VINF_SUCCESS; /* ignore */
3454#else
3455 AssertCompile(0);
3456#endif
3457}
3458
3459
3460
3461
3462/**
3463 * Syncs a page during a PGMVerifyAccess() call.
3464 *
3465 * @returns VBox status code (informational included).
3466 * @param pVCpu Pointer to the VMCPU.
3467 * @param GCPtrPage The address of the page to sync.
3468 * @param fPage The effective guest page flags.
3469 * @param uErr The trap error code.
3470 * @remarks This will normally never be called on invalid guest page
3471 * translation entries.
3472 */
3473PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3474{
3475 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3476
3477 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3478
3479 Assert(!pVM->pgm.s.fNestedPaging);
3480#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3481 || PGM_GST_TYPE == PGM_TYPE_REAL \
3482 || PGM_GST_TYPE == PGM_TYPE_PROT \
3483 || PGM_GST_TYPE == PGM_TYPE_PAE \
3484 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3485 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3486 && PGM_SHW_TYPE != PGM_TYPE_EPT
3487
3488# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3489 if (!(fPage & X86_PTE_US))
3490 {
3491 /*
3492 * Mark this page as safe.
3493 */
3494 /** @todo not correct for pages that contain both code and data!! */
3495 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3496 CSAMMarkPage(pVM, GCPtrPage, true);
3497 }
3498# endif
3499
3500 /*
3501 * Get guest PD and index.
3502 */
3503 /** @todo Performance: We've done all this a jiffy ago in the
3504 * PGMGstGetPage call. */
3505# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3506# if PGM_GST_TYPE == PGM_TYPE_32BIT
3507 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3508 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3509
3510# elif PGM_GST_TYPE == PGM_TYPE_PAE
3511 unsigned iPDSrc = 0;
3512 X86PDPE PdpeSrc;
3513 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3514 if (RT_UNLIKELY(!pPDSrc))
3515 {
3516 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3517 return VINF_EM_RAW_GUEST_TRAP;
3518 }
3519
3520# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3521 unsigned iPDSrc = 0; /* shut up gcc */
3522 PX86PML4E pPml4eSrc = NULL; /* ditto */
3523 X86PDPE PdpeSrc;
3524 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3525 if (RT_UNLIKELY(!pPDSrc))
3526 {
3527 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3528 return VINF_EM_RAW_GUEST_TRAP;
3529 }
3530# endif
3531
3532# else /* !PGM_WITH_PAGING */
3533 PGSTPD pPDSrc = NULL;
3534 const unsigned iPDSrc = 0;
3535# endif /* !PGM_WITH_PAGING */
3536 int rc = VINF_SUCCESS;
3537
3538 pgmLock(pVM);
3539
3540 /*
3541 * First check if the shadow pd is present.
3542 */
3543# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3544 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3545
3546# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3547 PX86PDEPAE pPdeDst;
3548 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3549 PX86PDPAE pPDDst;
3550# if PGM_GST_TYPE != PGM_TYPE_PAE
3551 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3552 X86PDPE PdpeSrc;
3553 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3554# endif
3555 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3556 if (rc != VINF_SUCCESS)
3557 {
3558 pgmUnlock(pVM);
3559 AssertRC(rc);
3560 return rc;
3561 }
3562 Assert(pPDDst);
3563 pPdeDst = &pPDDst->a[iPDDst];
3564
3565# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3566 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3567 PX86PDPAE pPDDst;
3568 PX86PDEPAE pPdeDst;
3569
3570# if PGM_GST_TYPE == PGM_TYPE_PROT
3571 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3572 X86PML4E Pml4eSrc;
3573 X86PDPE PdpeSrc;
3574 PX86PML4E pPml4eSrc = &Pml4eSrc;
3575 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3576 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3577# endif
3578
3579 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3580 if (rc != VINF_SUCCESS)
3581 {
3582 pgmUnlock(pVM);
3583 AssertRC(rc);
3584 return rc;
3585 }
3586 Assert(pPDDst);
3587 pPdeDst = &pPDDst->a[iPDDst];
3588# endif
3589
3590 if (!pPdeDst->n.u1Present)
3591 {
3592 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3593 if (rc != VINF_SUCCESS)
3594 {
3595 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3596 pgmUnlock(pVM);
3597 AssertRC(rc);
3598 return rc;
3599 }
3600 }
3601
3602# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3603 /* Check for dirty bit fault */
3604 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3605 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3606 Log(("PGMVerifyAccess: success (dirty)\n"));
3607 else
3608# endif
3609 {
3610# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3611 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3612# else
3613 GSTPDE PdeSrc;
3614 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3615 PdeSrc.n.u1Present = 1;
3616 PdeSrc.n.u1Write = 1;
3617 PdeSrc.n.u1Accessed = 1;
3618 PdeSrc.n.u1User = 1;
3619# endif
3620
3621 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3622 if (uErr & X86_TRAP_PF_US)
3623 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3624 else /* supervisor */
3625 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3626
3627 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3628 if (RT_SUCCESS(rc))
3629 {
3630 /* Page was successfully synced */
3631 Log2(("PGMVerifyAccess: success (sync)\n"));
3632 rc = VINF_SUCCESS;
3633 }
3634 else
3635 {
3636 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3637 rc = VINF_EM_RAW_GUEST_TRAP;
3638 }
3639 }
3640 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3641 pgmUnlock(pVM);
3642 return rc;
3643
3644#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3645
3646 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3647 return VERR_PGM_NOT_USED_IN_MODE;
3648#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3649}
3650
3651
3652/**
3653 * Syncs the paging hierarchy starting at CR3.
3654 *
3655 * @returns VBox status code, no specials.
3656 * @param pVCpu Pointer to the VMCPU.
3657 * @param cr0 Guest context CR0 register.
3658 * @param cr3 Guest context CR3 register. Not subjected to the A20
3659 * mask.
3660 * @param cr4 Guest context CR4 register.
3661 * @param fGlobal Including global page directories or not
3662 */
3663PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3664{
3665 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3666 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3667
3668 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3669
3670#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3671
3672 pgmLock(pVM);
3673
3674# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3675 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3676 if (pPool->cDirtyPages)
3677 pgmPoolResetDirtyPages(pVM);
3678# endif
3679
3680 /*
3681 * Update page access handlers.
3682 * The virtual are always flushed, while the physical are only on demand.
3683 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3684 * have to look into that later because it will have a bad influence on the performance.
3685 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3686 * bird: Yes, but that won't work for aliases.
3687 */
3688 /** @todo this MUST go away. See @bugref{1557}. */
3689 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3690 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3691 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3692 pgmUnlock(pVM);
3693#endif /* !NESTED && !EPT */
3694
3695#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3696 /*
3697 * Nested / EPT - almost no work.
3698 */
3699 Assert(!pgmMapAreMappingsEnabled(pVM));
3700 return VINF_SUCCESS;
3701
3702#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3703 /*
3704 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3705 * out the shadow parts when the guest modifies its tables.
3706 */
3707 Assert(!pgmMapAreMappingsEnabled(pVM));
3708 return VINF_SUCCESS;
3709
3710#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3711
3712# ifndef PGM_WITHOUT_MAPPINGS
3713 /*
3714 * Check for and resolve conflicts with our guest mappings if they
3715 * are enabled and not fixed.
3716 */
3717 if (pgmMapAreMappingsFloating(pVM))
3718 {
3719 int rc = pgmMapResolveConflicts(pVM);
3720 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3721 if (rc == VINF_PGM_SYNC_CR3)
3722 {
3723 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3724 return VINF_PGM_SYNC_CR3;
3725 }
3726 }
3727# else
3728 Assert(!pgmMapAreMappingsEnabled(pVM));
3729# endif
3730 return VINF_SUCCESS;
3731#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3732}
3733
3734
3735
3736
3737#ifdef VBOX_STRICT
3738# ifdef IN_RC
3739# undef AssertMsgFailed
3740# define AssertMsgFailed Log
3741# endif
3742
3743/**
3744 * Checks that the shadow page table is in sync with the guest one.
3745 *
3746 * @returns The number of errors.
3747 * @param pVM The virtual machine.
3748 * @param pVCpu Pointer to the VMCPU.
3749 * @param cr3 Guest context CR3 register.
3750 * @param cr4 Guest context CR4 register.
3751 * @param GCPtr Where to start. Defaults to 0.
3752 * @param cb How much to check. Defaults to everything.
3753 */
3754PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3755{
3756 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3757#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3758 return 0;
3759#else
3760 unsigned cErrors = 0;
3761 PVM pVM = pVCpu->CTX_SUFF(pVM);
3762 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3763
3764# if PGM_GST_TYPE == PGM_TYPE_PAE
3765 /** @todo currently broken; crashes below somewhere */
3766 AssertFailed();
3767# endif
3768
3769# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3770 || PGM_GST_TYPE == PGM_TYPE_PAE \
3771 || PGM_GST_TYPE == PGM_TYPE_AMD64
3772
3773 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3774 PPGMCPU pPGM = &pVCpu->pgm.s;
3775 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3776 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3777# ifndef IN_RING0
3778 RTHCPHYS HCPhys; /* general usage. */
3779# endif
3780 int rc;
3781
3782 /*
3783 * Check that the Guest CR3 and all its mappings are correct.
3784 */
3785 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3786 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3787 false);
3788# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3789# if PGM_GST_TYPE == PGM_TYPE_32BIT
3790 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3791# else
3792 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3793# endif
3794 AssertRCReturn(rc, 1);
3795 HCPhys = NIL_RTHCPHYS;
3796 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3797 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3798# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3799 pgmGstGet32bitPDPtr(pVCpu);
3800 RTGCPHYS GCPhys;
3801 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3802 AssertRCReturn(rc, 1);
3803 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3804# endif
3805# endif /* !IN_RING0 */
3806
3807 /*
3808 * Get and check the Shadow CR3.
3809 */
3810# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3811 unsigned cPDEs = X86_PG_ENTRIES;
3812 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3813# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3814# if PGM_GST_TYPE == PGM_TYPE_32BIT
3815 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3816# else
3817 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3818# endif
3819 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3820# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3821 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3822 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3823# endif
3824 if (cb != ~(RTGCPTR)0)
3825 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3826
3827/** @todo call the other two PGMAssert*() functions. */
3828
3829# if PGM_GST_TYPE == PGM_TYPE_AMD64
3830 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3831
3832 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3833 {
3834 PPGMPOOLPAGE pShwPdpt = NULL;
3835 PX86PML4E pPml4eSrc;
3836 PX86PML4E pPml4eDst;
3837 RTGCPHYS GCPhysPdptSrc;
3838
3839 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3840 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3841
3842 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3843 if (!pPml4eDst->n.u1Present)
3844 {
3845 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3846 continue;
3847 }
3848
3849 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3850 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3851
3852 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3853 {
3854 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3855 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3856 cErrors++;
3857 continue;
3858 }
3859
3860 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3861 {
3862 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3863 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3864 cErrors++;
3865 continue;
3866 }
3867
3868 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3869 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3870 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3871 {
3872 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3873 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3874 cErrors++;
3875 continue;
3876 }
3877# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3878 {
3879# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3880
3881# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3882 /*
3883 * Check the PDPTEs too.
3884 */
3885 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3886
3887 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3888 {
3889 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3890 PPGMPOOLPAGE pShwPde = NULL;
3891 PX86PDPE pPdpeDst;
3892 RTGCPHYS GCPhysPdeSrc;
3893 X86PDPE PdpeSrc;
3894 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3895# if PGM_GST_TYPE == PGM_TYPE_PAE
3896 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3897 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3898# else
3899 PX86PML4E pPml4eSrcIgn;
3900 PX86PDPT pPdptDst;
3901 PX86PDPAE pPDDst;
3902 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3903
3904 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3905 if (rc != VINF_SUCCESS)
3906 {
3907 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3908 GCPtr += 512 * _2M;
3909 continue; /* next PDPTE */
3910 }
3911 Assert(pPDDst);
3912# endif
3913 Assert(iPDSrc == 0);
3914
3915 pPdpeDst = &pPdptDst->a[iPdpt];
3916
3917 if (!pPdpeDst->n.u1Present)
3918 {
3919 GCPtr += 512 * _2M;
3920 continue; /* next PDPTE */
3921 }
3922
3923 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3924 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3925
3926 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3927 {
3928 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3929 GCPtr += 512 * _2M;
3930 cErrors++;
3931 continue;
3932 }
3933
3934 if (GCPhysPdeSrc != pShwPde->GCPhys)
3935 {
3936# if PGM_GST_TYPE == PGM_TYPE_AMD64
3937 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3938# else
3939 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3940# endif
3941 GCPtr += 512 * _2M;
3942 cErrors++;
3943 continue;
3944 }
3945
3946# if PGM_GST_TYPE == PGM_TYPE_AMD64
3947 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3948 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3949 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3950 {
3951 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3952 GCPtr += 512 * _2M;
3953 cErrors++;
3954 continue;
3955 }
3956# endif
3957
3958# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3959 {
3960# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3961# if PGM_GST_TYPE == PGM_TYPE_32BIT
3962 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3963# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3964 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3965# endif
3966# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3967 /*
3968 * Iterate the shadow page directory.
3969 */
3970 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3971 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3972
3973 for (;
3974 iPDDst < cPDEs;
3975 iPDDst++, GCPtr += cIncrement)
3976 {
3977# if PGM_SHW_TYPE == PGM_TYPE_PAE
3978 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3979# else
3980 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3981# endif
3982 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
3983 {
3984 Assert(pgmMapAreMappingsEnabled(pVM));
3985 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
3986 {
3987 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
3988 cErrors++;
3989 continue;
3990 }
3991 }
3992 else if ( (PdeDst.u & X86_PDE_P)
3993 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
3994 )
3995 {
3996 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
3997 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
3998 if (!pPoolPage)
3999 {
4000 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4001 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4002 cErrors++;
4003 continue;
4004 }
4005 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4006
4007 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4008 {
4009 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4010 GCPtr, (uint64_t)PdeDst.u));
4011 cErrors++;
4012 }
4013
4014 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4015 {
4016 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4017 GCPtr, (uint64_t)PdeDst.u));
4018 cErrors++;
4019 }
4020
4021 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4022 if (!PdeSrc.n.u1Present)
4023 {
4024 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4025 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4026 cErrors++;
4027 continue;
4028 }
4029
4030 if ( !PdeSrc.b.u1Size
4031 || !fBigPagesSupported)
4032 {
4033 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4034# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4035 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4036# endif
4037 }
4038 else
4039 {
4040# if PGM_GST_TYPE == PGM_TYPE_32BIT
4041 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4042 {
4043 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4044 GCPtr, (uint64_t)PdeSrc.u));
4045 cErrors++;
4046 continue;
4047 }
4048# endif
4049 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4050# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4051 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4052# endif
4053 }
4054
4055 if ( pPoolPage->enmKind
4056 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4057 {
4058 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4059 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4060 cErrors++;
4061 }
4062
4063 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4064 if (!pPhysPage)
4065 {
4066 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4067 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4068 cErrors++;
4069 continue;
4070 }
4071
4072 if (GCPhysGst != pPoolPage->GCPhys)
4073 {
4074 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4075 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4076 cErrors++;
4077 continue;
4078 }
4079
4080 if ( !PdeSrc.b.u1Size
4081 || !fBigPagesSupported)
4082 {
4083 /*
4084 * Page Table.
4085 */
4086 const GSTPT *pPTSrc;
4087 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4088 &pPTSrc);
4089 if (RT_FAILURE(rc))
4090 {
4091 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4092 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4093 cErrors++;
4094 continue;
4095 }
4096 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4097 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4098 {
4099 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4100 // (This problem will go away when/if we shadow multiple CR3s.)
4101 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4102 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4103 cErrors++;
4104 continue;
4105 }
4106 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4107 {
4108 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4109 GCPtr, (uint64_t)PdeDst.u));
4110 cErrors++;
4111 continue;
4112 }
4113
4114 /* iterate the page table. */
4115# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4116 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4117 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4118# else
4119 const unsigned offPTSrc = 0;
4120# endif
4121 for (unsigned iPT = 0, off = 0;
4122 iPT < RT_ELEMENTS(pPTDst->a);
4123 iPT++, off += PAGE_SIZE)
4124 {
4125 const SHWPTE PteDst = pPTDst->a[iPT];
4126
4127 /* skip not-present and dirty tracked entries. */
4128 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4129 continue;
4130 Assert(SHW_PTE_IS_P(PteDst));
4131
4132 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4133 if (!PteSrc.n.u1Present)
4134 {
4135# ifdef IN_RING3
4136 PGMAssertHandlerAndFlagsInSync(pVM);
4137 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4138 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4139 0, 0, UINT64_MAX, 99, NULL);
4140# endif
4141 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4142 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4143 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4144 cErrors++;
4145 continue;
4146 }
4147
4148 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4149# if 1 /** @todo sync accessed bit properly... */
4150 fIgnoreFlags |= X86_PTE_A;
4151# endif
4152
4153 /* match the physical addresses */
4154 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4155 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4156
4157# ifdef IN_RING3
4158 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4159 if (RT_FAILURE(rc))
4160 {
4161 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4162 {
4163 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4164 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4165 cErrors++;
4166 continue;
4167 }
4168 }
4169 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4170 {
4171 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4172 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4173 cErrors++;
4174 continue;
4175 }
4176# endif
4177
4178 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4179 if (!pPhysPage)
4180 {
4181# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4182 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4183 {
4184 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4185 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4186 cErrors++;
4187 continue;
4188 }
4189# endif
4190 if (SHW_PTE_IS_RW(PteDst))
4191 {
4192 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4193 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4194 cErrors++;
4195 }
4196 fIgnoreFlags |= X86_PTE_RW;
4197 }
4198 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4199 {
4200 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4201 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4202 cErrors++;
4203 continue;
4204 }
4205
4206 /* flags */
4207 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4208 {
4209 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4210 {
4211 if (SHW_PTE_IS_RW(PteDst))
4212 {
4213 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4214 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4215 cErrors++;
4216 continue;
4217 }
4218 fIgnoreFlags |= X86_PTE_RW;
4219 }
4220 else
4221 {
4222 if ( SHW_PTE_IS_P(PteDst)
4223# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4224 && !PGM_PAGE_IS_MMIO(pPhysPage)
4225# endif
4226 )
4227 {
4228 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4229 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4230 cErrors++;
4231 continue;
4232 }
4233 fIgnoreFlags |= X86_PTE_P;
4234 }
4235 }
4236 else
4237 {
4238 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4239 {
4240 if (SHW_PTE_IS_RW(PteDst))
4241 {
4242 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4243 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4244 cErrors++;
4245 continue;
4246 }
4247 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4248 {
4249 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4250 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4251 cErrors++;
4252 continue;
4253 }
4254 if (SHW_PTE_IS_D(PteDst))
4255 {
4256 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4257 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4258 cErrors++;
4259 }
4260# if 0 /** @todo sync access bit properly... */
4261 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4262 {
4263 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4264 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4265 cErrors++;
4266 }
4267 fIgnoreFlags |= X86_PTE_RW;
4268# else
4269 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4270# endif
4271 }
4272 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4273 {
4274 /* access bit emulation (not implemented). */
4275 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4276 {
4277 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4278 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4279 cErrors++;
4280 continue;
4281 }
4282 if (!SHW_PTE_IS_A(PteDst))
4283 {
4284 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4285 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4286 cErrors++;
4287 }
4288 fIgnoreFlags |= X86_PTE_P;
4289 }
4290# ifdef DEBUG_sandervl
4291 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4292# endif
4293 }
4294
4295 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4296 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4297 )
4298 {
4299 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4300 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4301 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4302 cErrors++;
4303 continue;
4304 }
4305 } /* foreach PTE */
4306 }
4307 else
4308 {
4309 /*
4310 * Big Page.
4311 */
4312 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4313 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4314 {
4315 if (PdeDst.n.u1Write)
4316 {
4317 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4318 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4319 cErrors++;
4320 continue;
4321 }
4322 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4323 {
4324 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4325 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4326 cErrors++;
4327 continue;
4328 }
4329# if 0 /** @todo sync access bit properly... */
4330 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4331 {
4332 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4333 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4334 cErrors++;
4335 }
4336 fIgnoreFlags |= X86_PTE_RW;
4337# else
4338 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4339# endif
4340 }
4341 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4342 {
4343 /* access bit emulation (not implemented). */
4344 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4345 {
4346 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4347 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4348 cErrors++;
4349 continue;
4350 }
4351 if (!PdeDst.n.u1Accessed)
4352 {
4353 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4354 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4355 cErrors++;
4356 }
4357 fIgnoreFlags |= X86_PTE_P;
4358 }
4359
4360 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4361 {
4362 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4363 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4364 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4365 cErrors++;
4366 }
4367
4368 /* iterate the page table. */
4369 for (unsigned iPT = 0, off = 0;
4370 iPT < RT_ELEMENTS(pPTDst->a);
4371 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4372 {
4373 const SHWPTE PteDst = pPTDst->a[iPT];
4374
4375 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4376 {
4377 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4378 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4379 cErrors++;
4380 }
4381
4382 /* skip not-present entries. */
4383 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4384 continue;
4385
4386 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4387
4388 /* match the physical addresses */
4389 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4390
4391# ifdef IN_RING3
4392 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4393 if (RT_FAILURE(rc))
4394 {
4395 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4396 {
4397 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4398 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4399 cErrors++;
4400 }
4401 }
4402 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4403 {
4404 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4405 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4406 cErrors++;
4407 continue;
4408 }
4409# endif
4410 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4411 if (!pPhysPage)
4412 {
4413# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4414 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4415 {
4416 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4417 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4418 cErrors++;
4419 continue;
4420 }
4421# endif
4422 if (SHW_PTE_IS_RW(PteDst))
4423 {
4424 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4425 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4426 cErrors++;
4427 }
4428 fIgnoreFlags |= X86_PTE_RW;
4429 }
4430 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4431 {
4432 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4433 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4434 cErrors++;
4435 continue;
4436 }
4437
4438 /* flags */
4439 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4440 {
4441 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4442 {
4443 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4444 {
4445 if (SHW_PTE_IS_RW(PteDst))
4446 {
4447 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4448 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4449 cErrors++;
4450 continue;
4451 }
4452 fIgnoreFlags |= X86_PTE_RW;
4453 }
4454 }
4455 else
4456 {
4457 if ( SHW_PTE_IS_P(PteDst)
4458# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4459 && !PGM_PAGE_IS_MMIO(pPhysPage)
4460# endif
4461 )
4462 {
4463 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4464 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4465 cErrors++;
4466 continue;
4467 }
4468 fIgnoreFlags |= X86_PTE_P;
4469 }
4470 }
4471
4472 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4473 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4474 )
4475 {
4476 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4477 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4478 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4479 cErrors++;
4480 continue;
4481 }
4482 } /* for each PTE */
4483 }
4484 }
4485 /* not present */
4486
4487 } /* for each PDE */
4488
4489 } /* for each PDPTE */
4490
4491 } /* for each PML4E */
4492
4493# ifdef DEBUG
4494 if (cErrors)
4495 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4496# endif
4497# endif /* GST is in {32BIT, PAE, AMD64} */
4498 return cErrors;
4499#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4500}
4501#endif /* VBOX_STRICT */
4502
4503
4504/**
4505 * Sets up the CR3 for shadow paging
4506 *
4507 * @returns Strict VBox status code.
4508 * @retval VINF_SUCCESS.
4509 *
4510 * @param pVCpu Pointer to the VMCPU.
4511 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4512 * mask already applied.)
4513 */
4514PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4515{
4516 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4517
4518 /* Update guest paging info. */
4519#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4520 || PGM_GST_TYPE == PGM_TYPE_PAE \
4521 || PGM_GST_TYPE == PGM_TYPE_AMD64
4522
4523 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4524 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4525
4526 /*
4527 * Map the page CR3 points at.
4528 */
4529 RTHCPTR HCPtrGuestCR3;
4530 RTHCPHYS HCPhysGuestCR3;
4531 pgmLock(pVM);
4532 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4533 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4534 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4535 /** @todo this needs some reworking wrt. locking? */
4536# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4537 HCPtrGuestCR3 = NIL_RTHCPTR;
4538 int rc = VINF_SUCCESS;
4539# else
4540 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4541# endif
4542 pgmUnlock(pVM);
4543 if (RT_SUCCESS(rc))
4544 {
4545 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4546 if (RT_SUCCESS(rc))
4547 {
4548# ifdef IN_RC
4549 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4550# endif
4551# if PGM_GST_TYPE == PGM_TYPE_32BIT
4552 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4553# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4554 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4555# endif
4556 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4557
4558# elif PGM_GST_TYPE == PGM_TYPE_PAE
4559 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4560 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4561# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4562 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4563# endif
4564 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4565 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4566
4567 /*
4568 * Map the 4 PDs too.
4569 */
4570 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4571 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4572 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4573 {
4574 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4575 if (pGuestPDPT->a[i].n.u1Present)
4576 {
4577 RTHCPTR HCPtr;
4578 RTHCPHYS HCPhys;
4579 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4580 pgmLock(pVM);
4581 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4582 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4583 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4584# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4585 HCPtr = NIL_RTHCPTR;
4586 int rc2 = VINF_SUCCESS;
4587# else
4588 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4589# endif
4590 pgmUnlock(pVM);
4591 if (RT_SUCCESS(rc2))
4592 {
4593 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4594 AssertRCReturn(rc, rc);
4595
4596 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4597# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4598 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4599# endif
4600 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4601 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4602# ifdef IN_RC
4603 PGM_INVL_PG(pVCpu, GCPtr);
4604# endif
4605 continue;
4606 }
4607 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4608 }
4609
4610 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4611# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4612 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4613# endif
4614 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4615 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4616# ifdef IN_RC
4617 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4618# endif
4619 }
4620
4621# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4622 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4623# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4624 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4625# endif
4626# endif
4627 }
4628 else
4629 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4630 }
4631 else
4632 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4633
4634#else /* prot/real stub */
4635 int rc = VINF_SUCCESS;
4636#endif
4637
4638 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4639# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4640 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4641 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4642 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4643 && PGM_GST_TYPE != PGM_TYPE_PROT))
4644
4645 Assert(!pVM->pgm.s.fNestedPaging);
4646 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4647
4648 /*
4649 * Update the shadow root page as well since that's not fixed.
4650 */
4651 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4652 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4653 PPGMPOOLPAGE pNewShwPageCR3;
4654
4655 pgmLock(pVM);
4656
4657# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4658 if (pPool->cDirtyPages)
4659 pgmPoolResetDirtyPages(pVM);
4660# endif
4661
4662 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4663 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4664 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4665 &pNewShwPageCR3);
4666 AssertFatalRC(rc);
4667 rc = VINF_SUCCESS;
4668
4669# ifdef IN_RC
4670 /*
4671 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4672 * state will be inconsistent! Flush important things now while
4673 * we still can and then make sure there are no ring-3 calls.
4674 */
4675# ifdef VBOX_WITH_REM
4676 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4677# endif
4678 VMMRZCallRing3Disable(pVCpu);
4679# endif
4680
4681 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4682# ifdef IN_RING0
4683 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4684 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4685# elif defined(IN_RC)
4686 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4687 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4688# else
4689 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4690 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4691# endif
4692
4693# ifndef PGM_WITHOUT_MAPPINGS
4694 /*
4695 * Apply all hypervisor mappings to the new CR3.
4696 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4697 * make sure we check for conflicts in the new CR3 root.
4698 */
4699# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4700 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4701# endif
4702 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4703 AssertRCReturn(rc, rc);
4704# endif
4705
4706 /* Set the current hypervisor CR3. */
4707 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4708 SELMShadowCR3Changed(pVM, pVCpu);
4709
4710# ifdef IN_RC
4711 /* NOTE: The state is consistent again. */
4712 VMMRZCallRing3Enable(pVCpu);
4713# endif
4714
4715 /* Clean up the old CR3 root. */
4716 if ( pOldShwPageCR3
4717 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4718 {
4719 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4720# ifndef PGM_WITHOUT_MAPPINGS
4721 /* Remove the hypervisor mappings from the shadow page table. */
4722 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4723# endif
4724 /* Mark the page as unlocked; allow flushing again. */
4725 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4726
4727 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4728 }
4729 pgmUnlock(pVM);
4730# else
4731 NOREF(GCPhysCR3);
4732# endif
4733
4734 return rc;
4735}
4736
4737/**
4738 * Unmaps the shadow CR3.
4739 *
4740 * @returns VBox status, no specials.
4741 * @param pVCpu Pointer to the VMCPU.
4742 */
4743PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4744{
4745 LogFlow(("UnmapCR3\n"));
4746
4747 int rc = VINF_SUCCESS;
4748 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4749
4750 /*
4751 * Update guest paging info.
4752 */
4753#if PGM_GST_TYPE == PGM_TYPE_32BIT
4754 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4755# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4756 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4757# endif
4758 pVCpu->pgm.s.pGst32BitPdRC = 0;
4759
4760#elif PGM_GST_TYPE == PGM_TYPE_PAE
4761 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4762# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4763 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4764# endif
4765 pVCpu->pgm.s.pGstPaePdptRC = 0;
4766 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4767 {
4768 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4769# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4770 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4771# endif
4772 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4773 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4774 }
4775
4776#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4777 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4778# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4779 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4780# endif
4781
4782#else /* prot/real mode stub */
4783 /* nothing to do */
4784#endif
4785
4786#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4787 /*
4788 * Update shadow paging info.
4789 */
4790# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4791 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4792 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4793
4794# if PGM_GST_TYPE != PGM_TYPE_REAL
4795 Assert(!pVM->pgm.s.fNestedPaging);
4796# endif
4797
4798 pgmLock(pVM);
4799
4800# ifndef PGM_WITHOUT_MAPPINGS
4801 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4802 /* Remove the hypervisor mappings from the shadow page table. */
4803 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4804# endif
4805
4806 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4807 {
4808 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4809
4810# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4811 if (pPool->cDirtyPages)
4812 pgmPoolResetDirtyPages(pVM);
4813# endif
4814
4815 /* Mark the page as unlocked; allow flushing again. */
4816 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4817
4818 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4819 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4820 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4821 pVCpu->pgm.s.pShwPageCR3RC = 0;
4822 }
4823 pgmUnlock(pVM);
4824# endif
4825#endif /* !IN_RC*/
4826
4827 return rc;
4828}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette