VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllBth.h@ 56034

Last change on this file since 56034 was 56013, checked in by vboxsync, 10 years ago

PGM: Made the virtual handler callbacks return VBOXSTRICTRC and prepared for RC execution.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 210.3 KB
Line 
1/* $Id: PGMAllBth.h 56013 2015-05-21 17:04:14Z vboxsync $ */
2/** @file
3 * VBox - Page Manager, Shadow+Guest Paging Template - All context code.
4 *
5 * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in
6 * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE
7 * set to PGM_TYPE_PROT. Half of the code in this file is not
8 * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED.
9 *
10 * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to
11 * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT).
12 *
13 * @remarks This file is one big \#ifdef-orgy!
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2015 Oracle Corporation
19 *
20 * This file is part of VirtualBox Open Source Edition (OSE), as
21 * available from http://www.virtualbox.org. This file is free software;
22 * you can redistribute it and/or modify it under the terms of the GNU
23 * General Public License (GPL) as published by the Free Software
24 * Foundation, in version 2 as it comes in the "COPYING" file of the
25 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
26 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
27 */
28
29#ifdef _MSC_VER
30/** @todo we're generating unnecessary code in nested/ept shadow mode and for
31 * real/prot-guest+RC mode. */
32# pragma warning(disable: 4505)
33#endif
34
35/*******************************************************************************
36* Internal Functions *
37*******************************************************************************/
38RT_C_DECLS_BEGIN
39PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken);
40PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
41static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr);
42static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage);
43static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage);
44# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
45static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
46# else
47static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst);
48#endif
49PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr);
50PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage);
51PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal);
52#ifdef VBOX_STRICT
53PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0);
54#endif
55PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3);
56PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu);
57RT_C_DECLS_END
58
59
60/*
61 * Filter out some illegal combinations of guest and shadow paging, so we can
62 * remove redundant checks inside functions.
63 */
64#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
65# error "Invalid combination; PAE guest implies PAE shadow"
66#endif
67
68#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
69 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
70# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging."
71#endif
72
73#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \
74 && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT)
75# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging."
76#endif
77
78#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \
79 || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT)
80# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa"
81#endif
82
83#ifndef IN_RING3
84
85# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
86/**
87 * Deal with a guest page fault.
88 *
89 * @returns Strict VBox status code.
90 * @retval VINF_EM_RAW_GUEST_TRAP
91 * @retval VINF_EM_RAW_EMULATE_INSTR
92 *
93 * @param pVCpu The current CPU.
94 * @param pGstWalk The guest page table walk result.
95 * @param uErr The error code.
96 */
97PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr)
98{
99# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE)
100 /*
101 * Check for write conflicts with our hypervisor mapping.
102 *
103 * If the guest happens to access a non-present page, where our hypervisor
104 * is currently mapped, then we'll create a #PF storm in the guest.
105 */
106 if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW)
107 && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM))
108 && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr))
109 {
110 /* Force a CR3 sync to check for conflicts and emulate the instruction. */
111 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
112 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
113 return VINF_EM_RAW_EMULATE_INSTR;
114 }
115# endif
116
117 /*
118 * Calc the error code for the guest trap.
119 */
120 uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu)
121 ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)
122 : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
123 if (pGstWalk->Core.fBadPhysAddr)
124 {
125 uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P;
126 Assert(!pGstWalk->Core.fNotPresent);
127 }
128 else if (!pGstWalk->Core.fNotPresent)
129 uNewErr |= X86_TRAP_PF_P;
130 TRPMSetErrorCode(pVCpu, uNewErr);
131
132 LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel));
133 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
134 return VINF_EM_RAW_GUEST_TRAP;
135}
136# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
137
138
139/**
140 * Deal with a guest page fault.
141 *
142 * The caller has taken the PGM lock.
143 *
144 * @returns Strict VBox status code.
145 *
146 * @param pVCpu The current CPU.
147 * @param uErr The error code.
148 * @param pRegFrame The register frame.
149 * @param pvFault The fault address.
150 * @param pPage The guest page at @a pvFault.
151 * @param pGstWalk The guest page table walk result.
152 * @param pfLockTaken PGM lock taken here or not (out). This is true
153 * when we're called.
154 */
155static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame,
156 RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken
157# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
158 , PGSTPTWALK pGstWalk
159# endif
160 )
161{
162# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
163 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A };
164#endif
165 PVM pVM = pVCpu->CTX_SUFF(pVM);
166 VBOXSTRICTRC rcStrict;
167
168 if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage))
169 {
170 /*
171 * Physical page access handler.
172 */
173# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
174 const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys;
175# else
176 const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault);
177# endif
178 PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
179 if (pCur)
180 {
181 PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur);
182
183# ifdef PGM_SYNC_N_PAGES
184 /*
185 * If the region is write protected and we got a page not present fault, then sync
186 * the pages. If the fault was caused by a read, then restart the instruction.
187 * In case of write access continue to the GC write handler.
188 *
189 * ASSUMES that there is only one handler per page or that they have similar write properties.
190 */
191 if ( !(uErr & X86_TRAP_PF_P)
192 && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
193 {
194# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
195 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
196# else
197 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
198# endif
199 if ( RT_FAILURE(rcStrict)
200 || !(uErr & X86_TRAP_PF_RW)
201 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
202 {
203 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
204 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
205 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
206 return rcStrict;
207 }
208 }
209# endif
210# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
211 /*
212 * If the access was not thru a #PF(RSVD|...) resync the page.
213 */
214 if ( !(uErr & X86_TRAP_PF_RSVD)
215 && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
216# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
217 && pGstWalk->Core.fEffectiveRW
218 && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */
219# endif
220 )
221 {
222# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
223 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
224# else
225 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
226# endif
227 if ( RT_FAILURE(rcStrict)
228 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
229 {
230 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
231 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
232 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
233 return rcStrict;
234 }
235 }
236# endif
237
238 AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE
239 || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)),
240 ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n",
241 pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind));
242 if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE)
243 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite);
244 else
245 {
246 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll);
247 if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt);
248 }
249
250 if (pCurType->CTX_SUFF(pfnPfHandler))
251 {
252 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
253 void *pvUser = pCur->CTX_SUFF(pvUser);
254
255 STAM_PROFILE_START(&pCur->Stat, h);
256 if (pCur->hType != pPool->hAccessHandlerType)
257 {
258 pgmUnlock(pVM);
259 *pfLockTaken = false;
260 }
261
262 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser);
263
264# ifdef VBOX_WITH_STATISTICS
265 pgmLock(pVM);
266 pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault);
267 if (pCur)
268 STAM_PROFILE_STOP(&pCur->Stat, h);
269 pgmUnlock(pVM);
270# endif
271 }
272 else
273 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
274
275 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; });
276 return rcStrict;
277 }
278 }
279# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
280 else
281 {
282# ifdef PGM_SYNC_N_PAGES
283 /*
284 * If the region is write protected and we got a page not present fault, then sync
285 * the pages. If the fault was caused by a read, then restart the instruction.
286 * In case of write access continue to the GC write handler.
287 */
288 if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL
289 && !(uErr & X86_TRAP_PF_P))
290 {
291 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
292 if ( RT_FAILURE(rcStrict)
293 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
294 || !(uErr & X86_TRAP_PF_RW))
295 {
296 AssertRC(rcStrict);
297 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
298 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; });
299 return rcStrict;
300 }
301 }
302# endif
303 /*
304 * Ok, it's an virtual page access handler.
305 *
306 * Since it's faster to search by address, we'll do that first
307 * and then retry by GCPhys if that fails.
308 */
309 /** @todo r=bird: perhaps we should consider looking up by physical address directly now?
310 * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be
311 * out of sync, because the page was changed without us noticing it (not-present -> present
312 * without invlpg or mov cr3, xxx).
313 */
314 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
315 if (pCur)
316 {
317 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
318 AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb)
319 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
320 || !(uErr & X86_TRAP_PF_P)
321 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
322 ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n",
323 pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind));
324
325 if ( pvFault - pCur->Core.Key < pCur->cb
326 && ( uErr & X86_TRAP_PF_RW
327 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
328 {
329# ifdef IN_RC
330 STAM_PROFILE_START(&pCur->Stat, h);
331 RTGCPTR GCPtrStart = pCur->Core.Key;
332 void *pvUser = pCur->CTX_SUFF(pvUser);
333 pgmUnlock(pVM);
334 *pfLockTaken = false;
335
336 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart,
337 pvFault - GCPtrStart, pvUser);
338
339# ifdef VBOX_WITH_STATISTICS
340 pgmLock(pVM);
341 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
342 if (pCur)
343 STAM_PROFILE_STOP(&pCur->Stat, h);
344 pgmUnlock(pVM);
345# endif
346# else
347 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
348# endif
349 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual);
350 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
351 return rcStrict;
352 }
353 /* Unhandled part of a monitored page */
354 Log(("Unhandled part of monitored page %RGv\n", pvFault));
355 }
356 else
357 {
358 /* Check by physical address. */
359 unsigned iPage;
360 pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage);
361 if (pCur)
362 {
363 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
364 if ( uErr & X86_TRAP_PF_RW
365 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE )
366 {
367 Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK)
368 == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK));
369# ifdef IN_RC
370 STAM_PROFILE_START(&pCur->Stat, h);
371 RTGCPTR GCPtrStart = pCur->Core.Key;
372 void *pvUser = pCur->CTX_SUFF(pvUser);
373 pgmUnlock(pVM);
374 *pfLockTaken = false;
375
376 RTGCPTR off = (iPage << PAGE_SHIFT)
377 + (pvFault & PAGE_OFFSET_MASK)
378 - (GCPtrStart & PAGE_OFFSET_MASK);
379 Assert(off < pCur->cb);
380 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser);
381
382# ifdef VBOX_WITH_STATISTICS
383 pgmLock(pVM);
384 pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart);
385 if (pCur)
386 STAM_PROFILE_STOP(&pCur->Stat, h);
387 pgmUnlock(pVM);
388# endif
389# else
390 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
391# endif
392 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys);
393 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
394 return rcStrict;
395 }
396 }
397 }
398 }
399# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
400
401 /*
402 * There is a handled area of the page, but this fault doesn't belong to it.
403 * We must emulate the instruction.
404 *
405 * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler
406 * we first check if this was a page-not-present fault for a page with only
407 * write access handlers. Restart the instruction if it wasn't a write access.
408 */
409 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled);
410
411 if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
412 && !(uErr & X86_TRAP_PF_P))
413 {
414# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
415 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
416# else
417 rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
418# endif
419 if ( RT_FAILURE(rcStrict)
420 || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE
421 || !(uErr & X86_TRAP_PF_RW))
422 {
423 AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
424 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync);
425 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; });
426 return rcStrict;
427 }
428 }
429
430 /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06
431 * It's writing to an unhandled part of the LDT page several million times.
432 */
433 rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault);
434 LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage));
435 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; });
436 return rcStrict;
437} /* if any kind of handler */
438
439
440/**
441 * #PF Handler for raw-mode guest execution.
442 *
443 * @returns VBox status code (appropriate for trap handling and GC return).
444 *
445 * @param pVCpu Pointer to the VMCPU.
446 * @param uErr The trap error code.
447 * @param pRegFrame Trap register frame.
448 * @param pvFault The fault address.
449 * @param pfLockTaken PGM lock taken here or not (out)
450 */
451PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)
452{
453 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
454
455 *pfLockTaken = false;
456
457# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \
458 || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \
459 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
460 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT)
461 int rc;
462
463# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
464 /*
465 * Walk the guest page translation tables and check if it's a guest fault.
466 */
467 GSTPTWALK GstWalk;
468 rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk);
469 if (RT_FAILURE_NP(rc))
470 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
471
472 /* assert some GstWalk sanity. */
473# if PGM_GST_TYPE == PGM_TYPE_AMD64
474 /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */
475# endif
476# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
477 /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */
478# endif
479 /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */
480 /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */
481 Assert(GstWalk.Core.fSucceeded);
482
483 if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID))
484 {
485 if ( ( (uErr & X86_TRAP_PF_RW)
486 && !GstWalk.Core.fEffectiveRW
487 && ( (uErr & X86_TRAP_PF_US)
488 || CPUMIsGuestR0WriteProtEnabled(pVCpu)) )
489 || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS)
490 || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX)
491 )
492 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr));
493 }
494
495 /*
496 * Set the accessed and dirty flags.
497 */
498# if PGM_GST_TYPE == PGM_TYPE_AMD64
499 GstWalk.Pml4e.u |= X86_PML4E_A;
500 GstWalk.pPml4e->u |= X86_PML4E_A;
501 GstWalk.Pdpe.u |= X86_PDPE_A;
502 GstWalk.pPdpe->u |= X86_PDPE_A;
503# endif
504 if (GstWalk.Core.fBigPage)
505 {
506 Assert(GstWalk.Pde.b.u1Size);
507 if (uErr & X86_TRAP_PF_RW)
508 {
509 GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D;
510 GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D;
511 }
512 else
513 {
514 GstWalk.Pde.u |= X86_PDE4M_A;
515 GstWalk.pPde->u |= X86_PDE4M_A;
516 }
517 }
518 else
519 {
520 Assert(!GstWalk.Pde.b.u1Size);
521 GstWalk.Pde.u |= X86_PDE_A;
522 GstWalk.pPde->u |= X86_PDE_A;
523 if (uErr & X86_TRAP_PF_RW)
524 {
525# ifdef VBOX_WITH_STATISTICS
526 if (!GstWalk.Pte.n.u1Dirty)
527 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage));
528 else
529 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty));
530# endif
531 GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D;
532 GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D;
533 }
534 else
535 {
536 GstWalk.Pte.u |= X86_PTE_A;
537 GstWalk.pPte->u |= X86_PTE_A;
538 }
539 Assert(GstWalk.Pte.u == GstWalk.pPte->u);
540 }
541 AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u,
542 ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u));
543# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
544 GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */
545# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
546
547 /* Take the big lock now. */
548 *pfLockTaken = true;
549 pgmLock(pVM);
550
551# ifdef PGM_WITH_MMIO_OPTIMIZATIONS
552 /*
553 * If it is a reserved bit fault we know that it is an MMIO (access
554 * handler) related fault and can skip some 200 lines of code.
555 */
556 if (uErr & X86_TRAP_PF_RSVD)
557 {
558 Assert(uErr & X86_TRAP_PF_P);
559 PPGMPAGE pPage;
560# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
561 rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage);
562 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
563 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
564 pfLockTaken, &GstWalk));
565 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
566# else
567 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage);
568 if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
569 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage,
570 pfLockTaken));
571 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
572# endif
573 AssertRC(rc);
574 PGM_INVL_PG(pVCpu, pvFault);
575 return rc; /* Restart with the corrected entry. */
576 }
577# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
578
579 /*
580 * Fetch the guest PDE, PDPE and PML4E.
581 */
582# if PGM_SHW_TYPE == PGM_TYPE_32BIT
583 const unsigned iPDDst = pvFault >> SHW_PD_SHIFT;
584 PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
585
586# elif PGM_SHW_TYPE == PGM_TYPE_PAE
587 const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */
588 PX86PDPAE pPDDst;
589# if PGM_GST_TYPE == PGM_TYPE_PAE
590 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst);
591# else
592 rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */
593# endif
594 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
595
596# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
597 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
598 PX86PDPAE pPDDst;
599# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */
600 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A,
601 X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst);
602# else
603 rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst);
604# endif
605 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
606
607# elif PGM_SHW_TYPE == PGM_TYPE_EPT
608 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK);
609 PEPTPD pPDDst;
610 rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst);
611 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
612# endif
613 Assert(pPDDst);
614
615# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
616 /*
617 * Dirty page handling.
618 *
619 * If we successfully correct the write protection fault due to dirty bit
620 * tracking, then return immediately.
621 */
622 if (uErr & X86_TRAP_PF_RW) /* write fault? */
623 {
624 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
625 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault);
626 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a);
627 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
628 {
629 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution)
630 = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT
631 ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed
632 : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; });
633 Log8(("Trap0eHandler: returns VINF_SUCCESS\n"));
634 return VINF_SUCCESS;
635 }
636 //AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - triggers with smp w7 guests.
637 //AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto.
638 }
639
640# if 0 /* rarely useful; leave for debugging. */
641 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]);
642# endif
643# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
644
645 /*
646 * A common case is the not-present error caused by lazy page table syncing.
647 *
648 * It is IMPORTANT that we weed out any access to non-present shadow PDEs
649 * here so we can safely assume that the shadow PT is present when calling
650 * SyncPage later.
651 *
652 * On failure, we ASSUME that SyncPT is out of memory or detected some kind
653 * of mapping conflict and defer to SyncCR3 in R3.
654 * (Again, we do NOT support access handlers for non-present guest pages.)
655 *
656 */
657# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
658 Assert(GstWalk.Pde.n.u1Present);
659# endif
660 if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */
661 && !pPDDst->a[iPDDst].n.u1Present)
662 {
663 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; });
664# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
665 LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u));
666 rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault);
667# else
668 LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault));
669 rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault);
670# endif
671 if (RT_SUCCESS(rc))
672 return rc;
673 Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc));
674 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
675 return VINF_PGM_SYNC_CR3;
676 }
677
678# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS)
679 /*
680 * Check if this address is within any of our mappings.
681 *
682 * This is *very* fast and it's gonna save us a bit of effort below and prevent
683 * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam).
684 * (BTW, it's impossible to have physical access handlers in a mapping.)
685 */
686 if (pgmMapAreMappingsEnabled(pVM))
687 {
688 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
689 for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext))
690 {
691 if (pvFault < pMapping->GCPtr)
692 break;
693 if (pvFault - pMapping->GCPtr < pMapping->cb)
694 {
695 /*
696 * The first thing we check is if we've got an undetected conflict.
697 */
698 if (pgmMapAreMappingsFloating(pVM))
699 {
700 unsigned iPT = pMapping->cb >> GST_PD_SHIFT;
701 while (iPT-- > 0)
702 if (GstWalk.pPde[iPT].n.u1Present)
703 {
704 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts);
705 Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast));
706 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */
707 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
708 return VINF_PGM_SYNC_CR3;
709 }
710 }
711
712 /*
713 * Check if the fault address is in a virtual page access handler range.
714 */
715 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers,
716 pvFault);
717 if ( pCur
718 && pvFault - pCur->Core.Key < pCur->cb
719 && uErr & X86_TRAP_PF_RW)
720 {
721 VBOXSTRICTRC rcStrict;
722# ifdef IN_RC
723 STAM_PROFILE_START(&pCur->Stat, h);
724 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
725 void *pvUser = pCur->CTX_SUFF(pvUser);
726 pgmUnlock(pVM);
727 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
728 pvFault - pCur->Core.Key, pvUser);
729 pgmLock(pVM);
730 STAM_PROFILE_STOP(&pCur->Stat, h);
731# else
732 AssertFailed();
733 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */
734# endif
735 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping);
736 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
737 return VBOXSTRICTRC_TODO(rcStrict);
738 }
739
740 /*
741 * Pretend we're not here and let the guest handle the trap.
742 */
743 TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P);
744 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping);
745 LogFlow(("PGM: Mapping access -> route trap to recompiler!\n"));
746 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; });
747 return VINF_EM_RAW_GUEST_TRAP;
748 }
749 }
750 } /* pgmAreMappingsEnabled(&pVM->pgm.s) */
751# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
752
753 /*
754 * Check if this fault address is flagged for special treatment,
755 * which means we'll have to figure out the physical address and
756 * check flags associated with it.
757 *
758 * ASSUME that we can limit any special access handling to pages
759 * in page tables which the guest believes to be present.
760 */
761# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
762 RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
763# else
764 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK);
765# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
766 PPGMPAGE pPage;
767 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
768 if (RT_FAILURE(rc))
769 {
770 /*
771 * When the guest accesses invalid physical memory (e.g. probing
772 * of RAM or accessing a remapped MMIO range), then we'll fall
773 * back to the recompiler to emulate the instruction.
774 */
775 LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc));
776 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid);
777 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; });
778 return VINF_EM_RAW_EMULATE_INSTR;
779 }
780
781 /*
782 * Any handlers for this page?
783 */
784 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
785# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
786 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken,
787 &GstWalk));
788# else
789 return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken));
790# endif
791
792 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTimeOutOfSync, c);
793
794# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
795 if (uErr & X86_TRAP_PF_P)
796 {
797 /*
798 * The page isn't marked, but it might still be monitored by a virtual page access handler.
799 * (ASSUMES no temporary disabling of virtual handlers.)
800 */
801 /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here,
802 * we should correct both the shadow page table and physical memory flags, and not only check for
803 * accesses within the handler region but for access to pages with virtual handlers. */
804 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault);
805 if (pCur)
806 {
807 PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur);
808 AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb)
809 || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE
810 || !(uErr & X86_TRAP_PF_P)
811 || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))),
812 ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n",
813 pvFault, GCPhys, pPage, uErr, pCurType->enmKind));
814
815 if ( pvFault - pCur->Core.Key < pCur->cb
816 && ( uErr & X86_TRAP_PF_RW
817 || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) )
818 {
819 VBOXSTRICTRC rcStrict;
820# ifdef IN_RC
821 STAM_PROFILE_START(&pCur->Stat, h);
822 void *pvUser = pCur->CTX_SUFF(pvUser);
823 pgmUnlock(pVM);
824 rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key,
825 pvFault - pCur->Core.Key, pvUser);
826 pgmLock(pVM);
827 STAM_PROFILE_STOP(&pCur->Stat, h);
828# else
829 rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */
830# endif
831 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; });
832 return VBOXSTRICTRC_TODO(rcStrict);
833 }
834 }
835 }
836# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
837
838 /*
839 * We are here only if page is present in Guest page tables and
840 * trap is not handled by our handlers.
841 *
842 * Check it for page out-of-sync situation.
843 */
844 if (!(uErr & X86_TRAP_PF_P))
845 {
846 /*
847 * Page is not present in our page tables. Try to sync it!
848 */
849 if (uErr & X86_TRAP_PF_US)
850 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
851 else /* supervisor */
852 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
853
854 if (PGM_PAGE_IS_BALLOONED(pPage))
855 {
856 /* Emulate reads from ballooned pages as they are not present in
857 our shadow page tables. (Required for e.g. Solaris guests; soft
858 ecc, random nr generator.) */
859 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
860 LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage));
861 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon));
862 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; });
863 return rc;
864 }
865
866# if defined(LOG_ENABLED) && !defined(IN_RING0)
867 RTGCPHYS GCPhys2;
868 uint64_t fPageGst2;
869 PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2);
870# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
871 Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
872 pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
873# else
874 Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n",
875 pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)));
876# endif
877# endif /* LOG_ENABLED */
878
879# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0)
880 if ( !GstWalk.Core.fEffectiveUS
881 && CSAMIsEnabled(pVM)
882 && CPUMGetGuestCPL(pVCpu) == 0)
883 {
884 /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */
885 if ( pvFault == (RTGCPTR)pRegFrame->eip
886 || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */
887# ifdef CSAM_DETECT_NEW_CODE_PAGES
888 || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip)
889 && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */
890# endif /* CSAM_DETECT_NEW_CODE_PAGES */
891 )
892 {
893 LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip));
894 rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip);
895 if (rc != VINF_SUCCESS)
896 {
897 /*
898 * CSAM needs to perform a job in ring 3.
899 *
900 * Sync the page before going to the host context; otherwise we'll end up in a loop if
901 * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present)
902 */
903 LogFlow(("CSAM ring 3 job\n"));
904 int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
905 AssertRC(rc2);
906
907 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; });
908 return rc;
909 }
910 }
911# ifdef CSAM_DETECT_NEW_CODE_PAGES
912 else if ( uErr == X86_TRAP_PF_RW
913 && pRegFrame->ecx >= 0x100 /* early check for movswd count */
914 && pRegFrame->ecx < 0x10000)
915 {
916 /* In case of a write to a non-present supervisor shadow page, we'll take special precautions
917 * to detect loading of new code pages.
918 */
919
920 /*
921 * Decode the instruction.
922 */
923 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
924 uint32_t cbOp;
925 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
926
927 /* For now we'll restrict this to rep movsw/d instructions */
928 if ( rc == VINF_SUCCESS
929 && pDis->pCurInstr->opcode == OP_MOVSWD
930 && (pDis->prefix & DISPREFIX_REP))
931 {
932 CSAMMarkPossibleCodePage(pVM, pvFault);
933 }
934 }
935# endif /* CSAM_DETECT_NEW_CODE_PAGES */
936
937 /*
938 * Mark this page as safe.
939 */
940 /** @todo not correct for pages that contain both code and data!! */
941 Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true));
942 CSAMMarkPage(pVM, pvFault, true);
943 }
944# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */
945# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
946 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr);
947# else
948 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr);
949# endif
950 if (RT_SUCCESS(rc))
951 {
952 /* The page was successfully synced, return to the guest. */
953 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; });
954 return VINF_SUCCESS;
955 }
956 }
957 else /* uErr & X86_TRAP_PF_P: */
958 {
959 /*
960 * Write protected pages are made writable when the guest makes the
961 * first write to it. This happens for pages that are shared, write
962 * monitored or not yet allocated.
963 *
964 * We may also end up here when CR0.WP=0 in the guest.
965 *
966 * Also, a side effect of not flushing global PDEs are out of sync
967 * pages due to physical monitored regions, that are no longer valid.
968 * Assume for now it only applies to the read/write flag.
969 */
970 if (uErr & X86_TRAP_PF_RW)
971 {
972 /*
973 * Check if it is a read-only page.
974 */
975 if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
976 {
977 Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr));
978 Assert(!PGM_PAGE_IS_ZERO(pPage));
979 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
980 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; });
981
982 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
983 if (rc != VINF_SUCCESS)
984 {
985 AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc));
986 return rc;
987 }
988 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
989 return VINF_EM_NO_MEMORY;
990 }
991
992# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
993 /*
994 * Check to see if we need to emulate the instruction if CR0.WP=0.
995 */
996 if ( !GstWalk.Core.fEffectiveRW
997 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
998 && CPUMGetGuestCPL(pVCpu) < 3)
999 {
1000 Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P));
1001
1002 /*
1003 * The Netware WP0+RO+US hack.
1004 *
1005 * Netware sometimes(/always?) runs with WP0. It has been observed doing
1006 * excessive write accesses to pages which are mapped with US=1 and RW=0
1007 * while WP=0. This causes a lot of exits and extremely slow execution.
1008 * To avoid trapping and emulating every write here, we change the shadow
1009 * page table entry to map it as US=0 and RW=1 until user mode tries to
1010 * access it again (see further below). We count these shadow page table
1011 * changes so we can avoid having to clear the page pool every time the WP
1012 * bit changes to 1 (see PGMCr0WpEnabled()).
1013 */
1014# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1
1015 if ( GstWalk.Core.fEffectiveUS
1016 && !GstWalk.Core.fEffectiveRW
1017 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1018 && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */)
1019 {
1020 Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage));
1021 rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT);
1022 if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3)
1023 {
1024 PGM_INVL_PG(pVCpu, pvFault);
1025 pVCpu->pgm.s.cNetwareWp0Hacks++;
1026 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; });
1027 return rc;
1028 }
1029 AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc));
1030 Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc));
1031 }
1032# endif
1033
1034 /* Interpret the access. */
1035 rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault));
1036 Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS));
1037 if (RT_SUCCESS(rc))
1038 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ);
1039 else
1040 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3);
1041 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; });
1042 return rc;
1043 }
1044# endif
1045 /// @todo count the above case; else
1046 if (uErr & X86_TRAP_PF_US)
1047 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite));
1048 else /* supervisor */
1049 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite));
1050
1051 /*
1052 * Sync the page.
1053 *
1054 * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the
1055 * page is not present, which is not true in this case.
1056 */
1057# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1058 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1059# else
1060 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr);
1061# endif
1062 if (RT_SUCCESS(rc))
1063 {
1064 /*
1065 * Page was successfully synced, return to guest but invalidate
1066 * the TLB first as the page is very likely to be in it.
1067 */
1068# if PGM_SHW_TYPE == PGM_TYPE_EPT
1069 HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault);
1070# else
1071 PGM_INVL_PG(pVCpu, pvFault);
1072# endif
1073# ifdef VBOX_STRICT
1074 RTGCPHYS GCPhys2;
1075 uint64_t fPageGst;
1076 if (!pVM->pgm.s.fNestedPaging)
1077 {
1078 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2);
1079 AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst));
1080 LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst));
1081 }
1082 uint64_t fPageShw;
1083 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1084 AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */,
1085 ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw));
1086# endif /* VBOX_STRICT */
1087 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; });
1088 return VINF_SUCCESS;
1089 }
1090 }
1091# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1092 /*
1093 * Check for Netware WP0+RO+US hack from above and undo it when user
1094 * mode accesses the page again.
1095 */
1096 else if ( GstWalk.Core.fEffectiveUS
1097 && !GstWalk.Core.fEffectiveRW
1098 && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write)
1099 && pVCpu->pgm.s.cNetwareWp0Hacks > 0
1100 && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG
1101 && CPUMGetGuestCPL(pVCpu) == 3
1102 && pVM->cCpus == 1
1103 )
1104 {
1105 Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr));
1106 rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr);
1107 if (RT_SUCCESS(rc))
1108 {
1109 PGM_INVL_PG(pVCpu, pvFault);
1110 pVCpu->pgm.s.cNetwareWp0Hacks--;
1111 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; });
1112 return VINF_SUCCESS;
1113 }
1114 }
1115# endif /* PGM_WITH_PAGING */
1116
1117 /** @todo else: why are we here? */
1118
1119# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT)
1120 /*
1121 * Check for VMM page flags vs. Guest page flags consistency.
1122 * Currently only for debug purposes.
1123 */
1124 if (RT_SUCCESS(rc))
1125 {
1126 /* Get guest page flags. */
1127 uint64_t fPageGst;
1128 rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL);
1129 if (RT_SUCCESS(rc))
1130 {
1131 uint64_t fPageShw;
1132 rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL);
1133
1134 /*
1135 * Compare page flags.
1136 * Note: we have AVL, A, D bits desynced.
1137 */
1138 AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1139 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK))
1140 || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0
1141 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1142 == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US))
1143 && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW
1144 && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US),
1145 ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n",
1146 pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst));
1147 }
1148 else
1149 AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc));
1150 }
1151 else
1152 AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc));
1153# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */
1154 }
1155
1156
1157 /*
1158 * If we get here it is because something failed above, i.e. most like guru
1159 * meditiation time.
1160 */
1161 LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n",
1162 __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip));
1163 return rc;
1164
1165# else /* Nested paging, EPT except PGM_GST_TYPE = PROT */
1166 NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault);
1167 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
1168 return VERR_PGM_NOT_USED_IN_MODE;
1169# endif
1170}
1171#endif /* !IN_RING3 */
1172
1173
1174/**
1175 * Emulation of the invlpg instruction.
1176 *
1177 *
1178 * @returns VBox status code.
1179 *
1180 * @param pVCpu Pointer to the VMCPU.
1181 * @param GCPtrPage Page to invalidate.
1182 *
1183 * @remark ASSUMES that the guest is updating before invalidating. This order
1184 * isn't required by the CPU, so this is speculative and could cause
1185 * trouble.
1186 * @remark No TLB shootdown is done on any other VCPU as we assume that
1187 * invlpg emulation is the *only* reason for calling this function.
1188 * (The guest has to shoot down TLB entries on other CPUs itself)
1189 * Currently true, but keep in mind!
1190 *
1191 * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses.
1192 * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now))
1193 */
1194PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
1195{
1196#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1197 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1198 && PGM_SHW_TYPE != PGM_TYPE_EPT
1199 int rc;
1200 PVM pVM = pVCpu->CTX_SUFF(pVM);
1201 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1202
1203 PGM_LOCK_ASSERT_OWNER(pVM);
1204
1205 LogFlow(("InvalidatePage %RGv\n", GCPtrPage));
1206
1207 /*
1208 * Get the shadow PD entry and skip out if this PD isn't present.
1209 * (Guessing that it is frequent for a shadow PDE to not be present, do this first.)
1210 */
1211# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1212 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1213 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1214
1215 /* Fetch the pgm pool shadow descriptor. */
1216 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1217 Assert(pShwPde);
1218
1219# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1220 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT);
1221 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
1222
1223 /* If the shadow PDPE isn't present, then skip the invalidate. */
1224 if (!pPdptDst->a[iPdpt].n.u1Present)
1225 {
1226 Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING));
1227 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1228 PGM_INVL_PG(pVCpu, GCPtrPage);
1229 return VINF_SUCCESS;
1230 }
1231
1232 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1233 PPGMPOOLPAGE pShwPde = NULL;
1234 PX86PDPAE pPDDst;
1235
1236 /* Fetch the pgm pool shadow descriptor. */
1237 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1238 AssertRCSuccessReturn(rc, rc);
1239 Assert(pShwPde);
1240
1241 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1242 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1243
1244# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1245 /* PML4 */
1246 /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/
1247 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1248 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1249 PX86PDPAE pPDDst;
1250 PX86PDPT pPdptDst;
1251 PX86PML4E pPml4eDst;
1252 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst);
1253 if (rc != VINF_SUCCESS)
1254 {
1255 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
1256 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1257 PGM_INVL_PG(pVCpu, GCPtrPage);
1258 return VINF_SUCCESS;
1259 }
1260 Assert(pPDDst);
1261
1262 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1263 PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt];
1264
1265 if (!pPdpeDst->n.u1Present)
1266 {
1267 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1268 PGM_INVL_PG(pVCpu, GCPtrPage);
1269 return VINF_SUCCESS;
1270 }
1271
1272 /* Fetch the pgm pool shadow descriptor. */
1273 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK);
1274 Assert(pShwPde);
1275
1276# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */
1277
1278 const SHWPDE PdeDst = *pPdeDst;
1279 if (!PdeDst.n.u1Present)
1280 {
1281 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1282 PGM_INVL_PG(pVCpu, GCPtrPage);
1283 return VINF_SUCCESS;
1284 }
1285
1286 /*
1287 * Get the guest PD entry and calc big page.
1288 */
1289# if PGM_GST_TYPE == PGM_TYPE_32BIT
1290 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
1291 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
1292 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
1293# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1294 unsigned iPDSrc = 0;
1295# if PGM_GST_TYPE == PGM_TYPE_PAE
1296 X86PDPE PdpeSrcIgn;
1297 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn);
1298# else /* AMD64 */
1299 PX86PML4E pPml4eSrcIgn;
1300 X86PDPE PdpeSrcIgn;
1301 PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc);
1302# endif
1303 GSTPDE PdeSrc;
1304
1305 if (pPDSrc)
1306 PdeSrc = pPDSrc->a[iPDSrc];
1307 else
1308 PdeSrc.u = 0;
1309# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */
1310 const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1311
1312# ifdef IN_RING3
1313 /*
1314 * If a CR3 Sync is pending we may ignore the invalidate page operation
1315 * depending on the kind of sync and if it's a global page or not.
1316 * This doesn't make sense in GC/R0 so we'll skip it entirely there.
1317 */
1318# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
1319 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)
1320 || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)
1321 && fIsBigPage
1322 && PdeSrc.b.u1Global
1323 )
1324 )
1325# else
1326 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) )
1327# endif
1328 {
1329 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped));
1330 return VINF_SUCCESS;
1331 }
1332# endif /* IN_RING3 */
1333
1334 /*
1335 * Deal with the Guest PDE.
1336 */
1337 rc = VINF_SUCCESS;
1338 if (PdeSrc.n.u1Present)
1339 {
1340 Assert( PdeSrc.n.u1User == PdeDst.n.u1User
1341 && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0));
1342# ifndef PGM_WITHOUT_MAPPING
1343 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
1344 {
1345 /*
1346 * Conflict - Let SyncPT deal with it to avoid duplicate code.
1347 */
1348 Assert(pgmMapAreMappingsEnabled(pVM));
1349 Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE);
1350 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
1351 }
1352 else
1353# endif /* !PGM_WITHOUT_MAPPING */
1354 if (!fIsBigPage)
1355 {
1356 /*
1357 * 4KB - page.
1358 */
1359 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1360 RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1361
1362# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1363 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1364 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1365# endif
1366 if (pShwPage->GCPhys == GCPhys)
1367 {
1368 /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */
1369 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
1370
1371 PGSTPT pPTSrc;
1372 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
1373 if (RT_SUCCESS(rc))
1374 {
1375 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
1376 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
1377 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
1378 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
1379 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
1380 GCPtrPage, PteSrc.n.u1Present,
1381 PteSrc.n.u1Write & PdeSrc.n.u1Write,
1382 PteSrc.n.u1User & PdeSrc.n.u1User,
1383 (uint64_t)PteSrc.u,
1384 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
1385 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
1386 }
1387 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages));
1388 PGM_INVL_PG(pVCpu, GCPtrPage);
1389 }
1390 else
1391 {
1392 /*
1393 * The page table address changed.
1394 */
1395 LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n",
1396 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst));
1397 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1398 ASMAtomicWriteSize(pPdeDst, 0);
1399 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync));
1400 PGM_INVL_VCPU_TLBS(pVCpu);
1401 }
1402 }
1403 else
1404 {
1405 /*
1406 * 2/4MB - page.
1407 */
1408 /* Before freeing the page, check if anything really changed. */
1409 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1410 RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1411# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1412 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
1413 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
1414# endif
1415 if ( pShwPage->GCPhys == GCPhys
1416 && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG)
1417 {
1418 /* ASSUMES a the given bits are identical for 4M and normal PDEs */
1419 /** @todo This test is wrong as it cannot check the G bit!
1420 * FIXME */
1421 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1422 == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US))
1423 && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */
1424 || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)))
1425 {
1426 LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u));
1427 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip));
1428 return VINF_SUCCESS;
1429 }
1430 }
1431
1432 /*
1433 * Ok, the page table is present and it's been changed in the guest.
1434 * If we're in host context, we'll just mark it as not present taking the lazy approach.
1435 * We could do this for some flushes in GC too, but we need an algorithm for
1436 * deciding which 4MB pages containing code likely to be executed very soon.
1437 */
1438 LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n",
1439 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
1440 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1441 ASMAtomicWriteSize(pPdeDst, 0);
1442 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages));
1443 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
1444 }
1445 }
1446 else
1447 {
1448 /*
1449 * Page directory is not present, mark shadow PDE not present.
1450 */
1451 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
1452 {
1453 pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst);
1454 ASMAtomicWriteSize(pPdeDst, 0);
1455 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs));
1456 PGM_INVL_PG(pVCpu, GCPtrPage);
1457 }
1458 else
1459 {
1460 Assert(pgmMapAreMappingsEnabled(pVM));
1461 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings));
1462 }
1463 }
1464 return rc;
1465
1466#else /* guest real and protected mode */
1467 /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */
1468 NOREF(pVCpu); NOREF(GCPtrPage);
1469 return VINF_SUCCESS;
1470#endif
1471}
1472
1473
1474/**
1475 * Update the tracking of shadowed pages.
1476 *
1477 * @param pVCpu Pointer to the VMCPU.
1478 * @param pShwPage The shadow page.
1479 * @param HCPhys The physical page we is being dereferenced.
1480 * @param iPte Shadow PTE index
1481 * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set)
1482 */
1483DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte,
1484 RTGCPHYS GCPhysPage)
1485{
1486 PVM pVM = pVCpu->CTX_SUFF(pVM);
1487
1488# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1489 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1490 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1491
1492 /* Use the hint we retrieved from the cached guest PT. */
1493 if (pShwPage->fDirty)
1494 {
1495 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1496
1497 Assert(pShwPage->cPresent);
1498 Assert(pPool->cPresent);
1499 pShwPage->cPresent--;
1500 pPool->cPresent--;
1501
1502 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage);
1503 AssertRelease(pPhysPage);
1504 pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte);
1505 return;
1506 }
1507# else
1508 NOREF(GCPhysPage);
1509# endif
1510
1511 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1512 LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx));
1513
1514 /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done:
1515 * 1. have a medium sized HCPhys -> GCPhys TLB (hash?)
1516 * 2. write protect all shadowed pages. I.e. implement caching.
1517 */
1518 /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */
1519
1520 /*
1521 * Find the guest address.
1522 */
1523 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1524 pRam;
1525 pRam = pRam->CTX_SUFF(pNext))
1526 {
1527 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1528 while (iPage-- > 0)
1529 {
1530 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
1531 {
1532 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1533
1534 Assert(pShwPage->cPresent);
1535 Assert(pPool->cPresent);
1536 pShwPage->cPresent--;
1537 pPool->cPresent--;
1538
1539 pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte);
1540 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a);
1541 return;
1542 }
1543 }
1544 }
1545
1546 for (;;)
1547 AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys));
1548}
1549
1550
1551/**
1552 * Update the tracking of shadowed pages.
1553 *
1554 * @param pVCpu Pointer to the VMCPU.
1555 * @param pShwPage The shadow page.
1556 * @param u16 The top 16-bit of the pPage->HCPhys.
1557 * @param pPage Pointer to the guest page. this will be modified.
1558 * @param iPTDst The index into the shadow table.
1559 */
1560DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst)
1561{
1562 PVM pVM = pVCpu->CTX_SUFF(pVM);
1563
1564 /*
1565 * Just deal with the simple first time here.
1566 */
1567 if (!u16)
1568 {
1569 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin);
1570 u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx);
1571 /* Save the page table index. */
1572 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst);
1573 }
1574 else
1575 u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst);
1576
1577 /* write back */
1578 Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst));
1579 PGM_PAGE_SET_TRACKING(pVM, pPage, u16);
1580
1581 /* update statistics. */
1582 pVM->pgm.s.CTX_SUFF(pPool)->cPresent++;
1583 pShwPage->cPresent++;
1584 if (pShwPage->iFirstPresent > iPTDst)
1585 pShwPage->iFirstPresent = iPTDst;
1586}
1587
1588
1589/**
1590 * Modifies a shadow PTE to account for access handlers.
1591 *
1592 * @param pVM Pointer to the VM.
1593 * @param pPage The page in question.
1594 * @param fPteSrc The shadowed flags of the source PTE. Must include the
1595 * A (accessed) bit so it can be emulated correctly.
1596 * @param pPteDst The shadow PTE (output). This is temporary storage and
1597 * does not need to be set atomically.
1598 */
1599DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst)
1600{
1601 NOREF(pVM);
1602 /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No.
1603 * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */
1604 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
1605 {
1606 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage));
1607#if PGM_SHW_TYPE == PGM_TYPE_EPT
1608 pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage);
1609 pPteDst->n.u1Present = 1;
1610 pPteDst->n.u1Execute = 1;
1611 pPteDst->n.u1IgnorePAT = 1;
1612 pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB;
1613 /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */
1614#else
1615 if (fPteSrc & X86_PTE_A)
1616 {
1617 SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage));
1618 SHW_PTE_SET_RO(*pPteDst);
1619 }
1620 else
1621 SHW_PTE_SET(*pPteDst, 0);
1622#endif
1623 }
1624#ifdef PGM_WITH_MMIO_OPTIMIZATIONS
1625# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
1626 else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
1627 && ( BTH_IS_NP_ACTIVE(pVM)
1628 || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */
1629# if PGM_SHW_TYPE == PGM_TYPE_AMD64
1630 && pVM->pgm.s.fLessThan52PhysicalAddressBits
1631# endif
1632 )
1633 {
1634 LogFlow(("SyncHandlerPte: MMIO page -> invalid \n"));
1635# if PGM_SHW_TYPE == PGM_TYPE_EPT
1636 /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */
1637 pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg;
1638 /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */
1639 pPteDst->n.u1Present = 0;
1640 pPteDst->n.u1Write = 1;
1641 pPteDst->n.u1Execute = 0;
1642 /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */
1643 pPteDst->n.u3EMT = 7;
1644# else
1645 /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */
1646 SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P);
1647# endif
1648 }
1649# endif
1650#endif /* PGM_WITH_MMIO_OPTIMIZATIONS */
1651 else
1652 {
1653 LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage));
1654 SHW_PTE_SET(*pPteDst, 0);
1655 }
1656 /** @todo count these kinds of entries. */
1657}
1658
1659
1660/**
1661 * Creates a 4K shadow page for a guest page.
1662 *
1663 * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the
1664 * physical address. The PdeSrc argument only the flags are used. No page
1665 * structured will be mapped in this function.
1666 *
1667 * @param pVCpu Pointer to the VMCPU.
1668 * @param pPteDst Destination page table entry.
1669 * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry).
1670 * Can safely assume that only the flags are being used.
1671 * @param PteSrc Source page table entry (i.e. Guest OS page table entry).
1672 * @param pShwPage Pointer to the shadow page.
1673 * @param iPTDst The index into the shadow table.
1674 *
1675 * @remark Not used for 2/4MB pages!
1676 */
1677#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1678static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc,
1679 PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1680#else
1681static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst)
1682#endif
1683{
1684 PVM pVM = pVCpu->CTX_SUFF(pVM);
1685 RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS;
1686
1687#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \
1688 && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \
1689 && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */)
1690
1691 if (pShwPage->fDirty)
1692 {
1693 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1694 PGSTPT pGstPT;
1695
1696 /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */
1697 pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0];
1698 GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]);
1699 pGstPT->a[iPTDst].u = PteSrc.u;
1700 }
1701#else
1702 Assert(!pShwPage->fDirty);
1703#endif
1704
1705#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1706 if ( PteSrc.n.u1Present
1707 && GST_IS_PTE_VALID(pVCpu, PteSrc))
1708#endif
1709 {
1710# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1711 RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc);
1712# endif
1713 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage);
1714
1715 /*
1716 * Find the ram range.
1717 */
1718 PPGMPAGE pPage;
1719 int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage);
1720 if (RT_SUCCESS(rc))
1721 {
1722 /* Ignore ballooned pages.
1723 Don't return errors or use a fatal assert here as part of a
1724 shadow sync range might included ballooned pages. */
1725 if (PGM_PAGE_IS_BALLOONED(pPage))
1726 {
1727 Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */
1728 return;
1729 }
1730
1731#ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
1732 /* Make the page writable if necessary. */
1733 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1734 && ( PGM_PAGE_IS_ZERO(pPage)
1735# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1736 || ( PteSrc.n.u1Write
1737# else
1738 || ( 1
1739# endif
1740 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
1741# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
1742 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
1743# endif
1744# ifdef VBOX_WITH_PAGE_SHARING
1745 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
1746# endif
1747 )
1748 )
1749 )
1750 {
1751 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage);
1752 AssertRC(rc);
1753 }
1754#endif
1755
1756 /*
1757 * Make page table entry.
1758 */
1759 SHWPTE PteDst;
1760# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1761 uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc);
1762# else
1763 uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D;
1764# endif
1765 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
1766 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst);
1767 else
1768 {
1769#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1770 /*
1771 * If the page or page directory entry is not marked accessed,
1772 * we mark the page not present.
1773 */
1774 if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed)
1775 {
1776 LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n"));
1777 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage));
1778 SHW_PTE_SET(PteDst, 0);
1779 }
1780 /*
1781 * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit
1782 * when the page is modified.
1783 */
1784 else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write))
1785 {
1786 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage));
1787 SHW_PTE_SET(PteDst,
1788 fGstShwPteFlags
1789 | PGM_PAGE_GET_HCPHYS(pPage)
1790 | PGM_PTFLAGS_TRACK_DIRTY);
1791 SHW_PTE_SET_RO(PteDst);
1792 }
1793 else
1794#endif
1795 {
1796 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped));
1797#if PGM_SHW_TYPE == PGM_TYPE_EPT
1798 PteDst.u = PGM_PAGE_GET_HCPHYS(pPage);
1799 PteDst.n.u1Present = 1;
1800 PteDst.n.u1Write = 1;
1801 PteDst.n.u1Execute = 1;
1802 PteDst.n.u1IgnorePAT = 1;
1803 PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB;
1804 /* PteDst.n.u1Size = 0 */
1805#else
1806 SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage));
1807#endif
1808 }
1809
1810 /*
1811 * Make sure only allocated pages are mapped writable.
1812 */
1813 if ( SHW_PTE_IS_P_RW(PteDst)
1814 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
1815 {
1816 /* Still applies to shared pages. */
1817 Assert(!PGM_PAGE_IS_ZERO(pPage));
1818 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */
1819 Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst));
1820 }
1821 }
1822
1823 /*
1824 * Keep user track up to date.
1825 */
1826 if (SHW_PTE_IS_P(PteDst))
1827 {
1828 if (!SHW_PTE_IS_P(*pPteDst))
1829 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1830 else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst))
1831 {
1832 Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst)));
1833 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1834 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
1835 }
1836 }
1837 else if (SHW_PTE_IS_P(*pPteDst))
1838 {
1839 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1840 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1841 }
1842
1843 /*
1844 * Update statistics and commit the entry.
1845 */
1846#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1847 if (!PteSrc.n.u1Global)
1848 pShwPage->fSeenNonGlobal = true;
1849#endif
1850 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
1851 return;
1852 }
1853
1854/** @todo count these three different kinds. */
1855 Log2(("SyncPageWorker: invalid address in Pte\n"));
1856 }
1857#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
1858 else if (!PteSrc.n.u1Present)
1859 Log2(("SyncPageWorker: page not present in Pte\n"));
1860 else
1861 Log2(("SyncPageWorker: invalid Pte\n"));
1862#endif
1863
1864 /*
1865 * The page is not present or the PTE is bad. Replace the shadow PTE by
1866 * an empty entry, making sure to keep the user tracking up to date.
1867 */
1868 if (SHW_PTE_IS_P(*pPteDst))
1869 {
1870 Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst)));
1871 PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage);
1872 }
1873 SHW_PTE_ATOMIC_SET(*pPteDst, 0);
1874}
1875
1876
1877/**
1878 * Syncs a guest OS page.
1879 *
1880 * There are no conflicts at this point, neither is there any need for
1881 * page table allocations.
1882 *
1883 * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid.
1884 * When called in AMD64 guest mode, the guest PML4E shall be valid.
1885 *
1886 * @returns VBox status code.
1887 * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way.
1888 * @param pVCpu Pointer to the VMCPU.
1889 * @param PdeSrc Page directory entry of the guest.
1890 * @param GCPtrPage Guest context page address.
1891 * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1).
1892 * @param uErr Fault error (X86_TRAP_PF_*).
1893 */
1894static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr)
1895{
1896 PVM pVM = pVCpu->CTX_SUFF(pVM);
1897 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
1898 LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr));
1899
1900 PGM_LOCK_ASSERT_OWNER(pVM);
1901
1902#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
1903 || PGM_GST_TYPE == PGM_TYPE_PAE \
1904 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
1905 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
1906 && PGM_SHW_TYPE != PGM_TYPE_EPT
1907
1908 /*
1909 * Assert preconditions.
1910 */
1911 Assert(PdeSrc.n.u1Present);
1912 Assert(cPages);
1913# if 0 /* rarely useful; leave for debugging. */
1914 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]);
1915# endif
1916
1917 /*
1918 * Get the shadow PDE, find the shadow page table in the pool.
1919 */
1920# if PGM_SHW_TYPE == PGM_TYPE_32BIT
1921 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1922 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
1923
1924 /* Fetch the pgm pool shadow descriptor. */
1925 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1926 Assert(pShwPde);
1927
1928# elif PGM_SHW_TYPE == PGM_TYPE_PAE
1929 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1930 PPGMPOOLPAGE pShwPde = NULL;
1931 PX86PDPAE pPDDst;
1932
1933 /* Fetch the pgm pool shadow descriptor. */
1934 int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
1935 AssertRCSuccessReturn(rc2, rc2);
1936 Assert(pShwPde);
1937
1938 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
1939 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1940
1941# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
1942 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
1943 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1944 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
1945 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
1946
1947 int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
1948 AssertRCSuccessReturn(rc2, rc2);
1949 Assert(pPDDst && pPdptDst);
1950 PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst];
1951# endif
1952 SHWPDE PdeDst = *pPdeDst;
1953
1954 /*
1955 * - In the guest SMP case we could have blocked while another VCPU reused
1956 * this page table.
1957 * - With W7-64 we may also take this path when the A bit is cleared on
1958 * higher level tables (PDPE/PML4E). The guest does not invalidate the
1959 * relevant TLB entries. If we're write monitoring any page mapped by
1960 * the modified entry, we may end up here with a "stale" TLB entry.
1961 */
1962 if (!PdeDst.n.u1Present)
1963 {
1964 Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1965 AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW),
1966 ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr));
1967 if (uErr & X86_TRAP_PF_P)
1968 PGM_INVL_PG(pVCpu, GCPtrPage);
1969 return VINF_SUCCESS; /* force the instruction to be executed again. */
1970 }
1971
1972 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
1973 Assert(pShwPage);
1974
1975# if PGM_GST_TYPE == PGM_TYPE_AMD64
1976 /* Fetch the pgm pool shadow descriptor. */
1977 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
1978 Assert(pShwPde);
1979# endif
1980
1981 /*
1982 * Check that the page is present and that the shadow PDE isn't out of sync.
1983 */
1984 const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu);
1985 const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc);
1986 RTGCPHYS GCPhys;
1987 if (!fBigPage)
1988 {
1989 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
1990# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1991 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
1992 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
1993# endif
1994 }
1995 else
1996 {
1997 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
1998# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
1999 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2000 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2001# endif
2002 }
2003 /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */
2004 if ( fPdeValid
2005 && pShwPage->GCPhys == GCPhys
2006 && PdeSrc.n.u1Present
2007 && PdeSrc.n.u1User == PdeDst.n.u1User
2008 && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write)
2009# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2010 && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu))
2011# endif
2012 )
2013 {
2014 /*
2015 * Check that the PDE is marked accessed already.
2016 * Since we set the accessed bit *before* getting here on a #PF, this
2017 * check is only meant for dealing with non-#PF'ing paths.
2018 */
2019 if (PdeSrc.n.u1Accessed)
2020 {
2021 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2022 if (!fBigPage)
2023 {
2024 /*
2025 * 4KB Page - Map the guest page table.
2026 */
2027 PGSTPT pPTSrc;
2028 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2029 if (RT_SUCCESS(rc))
2030 {
2031# ifdef PGM_SYNC_N_PAGES
2032 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2033 if ( cPages > 1
2034 && !(uErr & X86_TRAP_PF_P)
2035 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2036 {
2037 /*
2038 * This code path is currently only taken when the caller is PGMTrap0eHandler
2039 * for non-present pages!
2040 *
2041 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2042 * deal with locality.
2043 */
2044 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2045# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2046 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2047 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2048# else
2049 const unsigned offPTSrc = 0;
2050# endif
2051 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2052 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2053 iPTDst = 0;
2054 else
2055 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2056
2057 for (; iPTDst < iPTDstEnd; iPTDst++)
2058 {
2059 const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst];
2060
2061 if ( pPteSrc->n.u1Present
2062 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2063 {
2064 RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT);
2065 NOREF(GCPtrCurPage);
2066# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2067 /*
2068 * Assuming kernel code will be marked as supervisor - and not as user level
2069 * and executed using a conforming code selector - And marked as readonly.
2070 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2071 */
2072 PPGMPAGE pPage;
2073 if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US))
2074 || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */
2075 || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage)
2076 || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK))
2077 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2078 )
2079# endif /* else: CSAM not active */
2080 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst);
2081 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n",
2082 GCPtrCurPage, pPteSrc->n.u1Present,
2083 pPteSrc->n.u1Write & PdeSrc.n.u1Write,
2084 pPteSrc->n.u1User & PdeSrc.n.u1User,
2085 (uint64_t)pPteSrc->u,
2086 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2087 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2088 }
2089 }
2090 }
2091 else
2092# endif /* PGM_SYNC_N_PAGES */
2093 {
2094 const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK;
2095 GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2096 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2097 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2098 Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n",
2099 GCPtrPage, PteSrc.n.u1Present,
2100 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2101 PteSrc.n.u1User & PdeSrc.n.u1User,
2102 (uint64_t)PteSrc.u,
2103 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2104 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2105 }
2106 }
2107 else /* MMIO or invalid page: emulated in #PF handler. */
2108 {
2109 LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc));
2110 Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]));
2111 }
2112 }
2113 else
2114 {
2115 /*
2116 * 4/2MB page - lazy syncing shadow 4K pages.
2117 * (There are many causes of getting here, it's no longer only CSAM.)
2118 */
2119 /* Calculate the GC physical address of this 4KB shadow page. */
2120 GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK));
2121 /* Find ram range. */
2122 PPGMPAGE pPage;
2123 int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
2124 if (RT_SUCCESS(rc))
2125 {
2126 AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys));
2127
2128# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2129 /* Try to make the page writable if necessary. */
2130 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2131 && ( PGM_PAGE_IS_ZERO(pPage)
2132 || ( PdeSrc.n.u1Write
2133 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
2134# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
2135 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
2136# endif
2137# ifdef VBOX_WITH_PAGE_SHARING
2138 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
2139# endif
2140 )
2141 )
2142 )
2143 {
2144 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
2145 AssertRC(rc);
2146 }
2147# endif
2148
2149 /*
2150 * Make shadow PTE entry.
2151 */
2152 SHWPTE PteDst;
2153 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2154 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst);
2155 else
2156 SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage));
2157
2158 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2159 if ( SHW_PTE_IS_P(PteDst)
2160 && !SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2161 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
2162
2163 /* Make sure only allocated pages are mapped writable. */
2164 if ( SHW_PTE_IS_P_RW(PteDst)
2165 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
2166 {
2167 /* Still applies to shared pages. */
2168 Assert(!PGM_PAGE_IS_ZERO(pPage));
2169 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
2170 Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage));
2171 }
2172
2173 SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst);
2174
2175 /*
2176 * If the page is not flagged as dirty and is writable, then make it read-only
2177 * at PD level, so we can set the dirty bit when the page is modified.
2178 *
2179 * ASSUMES that page access handlers are implemented on page table entry level.
2180 * Thus we will first catch the dirty access and set PDE.D and restart. If
2181 * there is an access handler, we'll trap again and let it work on the problem.
2182 */
2183 /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already.
2184 * As for invlpg, it simply frees the whole shadow PT.
2185 * ...It's possibly because the guest clears it and the guest doesn't really tell us... */
2186 if ( !PdeSrc.b.u1Dirty
2187 && PdeSrc.b.u1Write)
2188 {
2189 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2190 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2191 PdeDst.n.u1Write = 0;
2192 }
2193 else
2194 {
2195 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2196 PdeDst.n.u1Write = PdeSrc.n.u1Write;
2197 }
2198 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2199 Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n",
2200 GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys,
2201 PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2202 }
2203 else
2204 {
2205 LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc));
2206 /** @todo must wipe the shadow page table entry in this
2207 * case. */
2208 }
2209 }
2210 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2211 return VINF_SUCCESS;
2212 }
2213
2214 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs));
2215 }
2216 else if (fPdeValid)
2217 {
2218 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync));
2219 Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2220 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2221 }
2222 else
2223 {
2224/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid));
2225 Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n",
2226 GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys));
2227 }
2228
2229 /*
2230 * Mark the PDE not present. Restart the instruction and let #PF call SyncPT.
2231 * Yea, I'm lazy.
2232 */
2233 pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst);
2234 ASMAtomicWriteSize(pPdeDst, 0);
2235
2236 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2237 PGM_INVL_VCPU_TLBS(pVCpu);
2238 return VINF_PGM_SYNCPAGE_MODIFIED_PDE;
2239
2240
2241#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
2242 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2243 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
2244 && !defined(IN_RC)
2245 NOREF(PdeSrc);
2246
2247# ifdef PGM_SYNC_N_PAGES
2248 /*
2249 * Get the shadow PDE, find the shadow page table in the pool.
2250 */
2251# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2252 X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
2253
2254# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2255 X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage);
2256
2257# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2258 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2259 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt);
2260 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2261 X86PDEPAE PdeDst;
2262 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2263
2264 int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2265 AssertRCSuccessReturn(rc, rc);
2266 Assert(pPDDst && pPdptDst);
2267 PdeDst = pPDDst->a[iPDDst];
2268# elif PGM_SHW_TYPE == PGM_TYPE_EPT
2269 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
2270 PEPTPD pPDDst;
2271 EPTPDE PdeDst;
2272
2273 int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst);
2274 if (rc != VINF_SUCCESS)
2275 {
2276 AssertRC(rc);
2277 return rc;
2278 }
2279 Assert(pPDDst);
2280 PdeDst = pPDDst->a[iPDDst];
2281# endif
2282 /* In the guest SMP case we could have blocked while another VCPU reused this page table. */
2283 if (!PdeDst.n.u1Present)
2284 {
2285 AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u));
2286 Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage));
2287 return VINF_SUCCESS; /* force the instruction to be executed again. */
2288 }
2289
2290 /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */
2291 if (PdeDst.n.u1Size)
2292 {
2293 Assert(pVM->pgm.s.fNestedPaging);
2294 Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage));
2295 return VINF_SUCCESS;
2296 }
2297
2298 /* Mask away the page offset. */
2299 GCPtrPage &= ~((RTGCPTR)0xfff);
2300
2301 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK);
2302 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2303
2304 Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P));
2305 if ( cPages > 1
2306 && !(uErr & X86_TRAP_PF_P)
2307 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2308 {
2309 /*
2310 * This code path is currently only taken when the caller is PGMTrap0eHandler
2311 * for non-present pages!
2312 *
2313 * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and
2314 * deal with locality.
2315 */
2316 unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2317 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2318 if (iPTDst < PGM_SYNC_NR_PAGES / 2)
2319 iPTDst = 0;
2320 else
2321 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2322 for (; iPTDst < iPTDstEnd; iPTDst++)
2323 {
2324 if (!SHW_PTE_IS_P(pPTDst->a[iPTDst]))
2325 {
2326 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2327 | (iPTDst << PAGE_SHIFT));
2328
2329 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2330 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
2331 GCPtrCurPage,
2332 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2333 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2334
2335 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
2336 break;
2337 }
2338 else
2339 Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) ));
2340 }
2341 }
2342 else
2343# endif /* PGM_SYNC_N_PAGES */
2344 {
2345 const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2346 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
2347 | (iPTDst << PAGE_SHIFT));
2348
2349 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
2350
2351 Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n",
2352 GCPtrPage,
2353 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
2354 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
2355 }
2356 return VINF_SUCCESS;
2357
2358#else
2359 NOREF(PdeSrc);
2360 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
2361 return VERR_PGM_NOT_USED_IN_MODE;
2362#endif
2363}
2364
2365
2366#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
2367
2368/**
2369 * CheckPageFault helper for returning a page fault indicating a non-present
2370 * (NP) entry in the page translation structures.
2371 *
2372 * @returns VINF_EM_RAW_GUEST_TRAP.
2373 * @param pVCpu Pointer to the VMCPU.
2374 * @param uErr The error code of the shadow fault. Corrections to
2375 * TRPM's copy will be made if necessary.
2376 * @param GCPtrPage For logging.
2377 * @param uPageFaultLevel For logging.
2378 */
2379DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2380{
2381 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2382 AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr));
2383 AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr));
2384 if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2385 TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P));
2386
2387 Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2388 return VINF_EM_RAW_GUEST_TRAP;
2389}
2390
2391
2392/**
2393 * CheckPageFault helper for returning a page fault indicating a reserved bit
2394 * (RSVD) error in the page translation structures.
2395 *
2396 * @returns VINF_EM_RAW_GUEST_TRAP.
2397 * @param pVCpu Pointer to the VMCPU.
2398 * @param uErr The error code of the shadow fault. Corrections to
2399 * TRPM's copy will be made if necessary.
2400 * @param GCPtrPage For logging.
2401 * @param uPageFaultLevel For logging.
2402 */
2403DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2404{
2405 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2406 if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
2407 TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P);
2408
2409 Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2410 return VINF_EM_RAW_GUEST_TRAP;
2411}
2412
2413
2414/**
2415 * CheckPageFault helper for returning a page protection fault (P).
2416 *
2417 * @returns VINF_EM_RAW_GUEST_TRAP.
2418 * @param pVCpu Pointer to the VMCPU.
2419 * @param uErr The error code of the shadow fault. Corrections to
2420 * TRPM's copy will be made if necessary.
2421 * @param GCPtrPage For logging.
2422 * @param uPageFaultLevel For logging.
2423 */
2424DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel)
2425{
2426 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF));
2427 AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr));
2428 if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P)
2429 TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P);
2430
2431 Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel));
2432 return VINF_EM_RAW_GUEST_TRAP;
2433}
2434
2435
2436/**
2437 * Handle dirty bit tracking faults.
2438 *
2439 * @returns VBox status code.
2440 * @param pVCpu Pointer to the VMCPU.
2441 * @param uErr Page fault error code.
2442 * @param pPdeSrc Guest page directory entry.
2443 * @param pPdeDst Shadow page directory entry.
2444 * @param GCPtrPage Guest context page address.
2445 */
2446static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc,
2447 RTGCPTR GCPtrPage)
2448{
2449 PVM pVM = pVCpu->CTX_SUFF(pVM);
2450 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2451 NOREF(uErr);
2452
2453 PGM_LOCK_ASSERT_OWNER(pVM);
2454
2455 /*
2456 * Handle big page.
2457 */
2458 if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu))
2459 {
2460 if ( pPdeDst->n.u1Present
2461 && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY))
2462 {
2463 SHWPDE PdeDst = *pPdeDst;
2464
2465 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2466 Assert(pPdeSrc->b.u1Write);
2467
2468 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply
2469 * fault again and take this path to only invalidate the entry (see below).
2470 */
2471 PdeDst.n.u1Write = 1;
2472 PdeDst.n.u1Accessed = 1;
2473 PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY;
2474 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2475 PGM_INVL_BIG_PG(pVCpu, GCPtrPage);
2476 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2477 }
2478
2479# ifdef IN_RING0
2480 /* Check for stale TLB entry; only applies to the SMP guest case. */
2481 if ( pVM->cCpus > 1
2482 && pPdeDst->n.u1Write
2483 && pPdeDst->n.u1Accessed)
2484 {
2485 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2486 if (pShwPage)
2487 {
2488 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2489 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2490 if (SHW_PTE_IS_P_RW(*pPteDst))
2491 {
2492 /* Stale TLB entry. */
2493 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2494 PGM_INVL_PG(pVCpu, GCPtrPage);
2495 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2496 }
2497 }
2498 }
2499# endif /* IN_RING0 */
2500 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2501 }
2502
2503 /*
2504 * Map the guest page table.
2505 */
2506 PGSTPT pPTSrc;
2507 int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc);
2508 if (RT_FAILURE(rc))
2509 {
2510 AssertRC(rc);
2511 return rc;
2512 }
2513
2514 if (pPdeDst->n.u1Present)
2515 {
2516 GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK];
2517 const GSTPTE PteSrc = *pPteSrc;
2518
2519#ifdef VBOX_WITH_RAW_MODE_NOT_R0
2520 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below.
2521 * Our individual shadow handlers will provide more information and force a fatal exit.
2522 */
2523 if ( !HMIsEnabled(pVM)
2524 && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage))
2525 {
2526 LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage));
2527 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2528 }
2529#endif
2530 /*
2531 * Map shadow page table.
2532 */
2533 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK);
2534 if (pShwPage)
2535 {
2536 PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2537 PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK];
2538 if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */
2539 {
2540 if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst))
2541 {
2542 PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc));
2543 SHWPTE PteDst = *pPteDst;
2544
2545 LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage));
2546 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap));
2547
2548 Assert(PteSrc.n.u1Write);
2549
2550 /* Note: No need to invalidate this entry on other VCPUs as a stale TLB
2551 * entry will not harm; write access will simply fault again and
2552 * take this path to only invalidate the entry.
2553 */
2554 if (RT_LIKELY(pPage))
2555 {
2556 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2557 {
2558 //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage));
2559 Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage));
2560 /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */
2561 SHW_PTE_SET_RO(PteDst);
2562 }
2563 else
2564 {
2565 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
2566 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2567 {
2568 rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc));
2569 AssertRC(rc);
2570 }
2571 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
2572 SHW_PTE_SET_RW(PteDst);
2573 else
2574 {
2575 /* Still applies to shared pages. */
2576 Assert(!PGM_PAGE_IS_ZERO(pPage));
2577 SHW_PTE_SET_RO(PteDst);
2578 }
2579 }
2580 }
2581 else
2582 SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */
2583
2584 SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY);
2585 SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst);
2586 PGM_INVL_PG(pVCpu, GCPtrPage);
2587 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2588 }
2589
2590# ifdef IN_RING0
2591 /* Check for stale TLB entry; only applies to the SMP guest case. */
2592 if ( pVM->cCpus > 1
2593 && SHW_PTE_IS_RW(*pPteDst)
2594 && SHW_PTE_IS_A(*pPteDst))
2595 {
2596 /* Stale TLB entry. */
2597 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale));
2598 PGM_INVL_PG(pVCpu, GCPtrPage);
2599 return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */
2600 }
2601# endif
2602 }
2603 }
2604 else
2605 AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK));
2606 }
2607
2608 return VINF_PGM_NO_DIRTY_BIT_TRACKING;
2609}
2610
2611#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */
2612
2613
2614/**
2615 * Sync a shadow page table.
2616 *
2617 * The shadow page table is not present in the shadow PDE.
2618 *
2619 * Handles mapping conflicts.
2620 *
2621 * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on
2622 * conflict), and Trap0eHandler.
2623 *
2624 * A precondition for this method is that the shadow PDE is not present. The
2625 * caller must take the PGM lock before checking this and continue to hold it
2626 * when calling this method.
2627 *
2628 * @returns VBox status code.
2629 * @param pVCpu Pointer to the VMCPU.
2630 * @param iPD Page directory index.
2631 * @param pPDSrc Source page directory (i.e. Guest OS page directory).
2632 * Assume this is a temporary mapping.
2633 * @param GCPtrPage GC Pointer of the page that caused the fault
2634 */
2635static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage)
2636{
2637 PVM pVM = pVCpu->CTX_SUFF(pVM);
2638 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2639
2640#if 0 /* rarely useful; leave for debugging. */
2641 STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]);
2642#endif
2643 LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage));
2644
2645 PGM_LOCK_ASSERT_OWNER(pVM);
2646
2647#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
2648 || PGM_GST_TYPE == PGM_TYPE_PAE \
2649 || PGM_GST_TYPE == PGM_TYPE_AMD64) \
2650 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
2651 && PGM_SHW_TYPE != PGM_TYPE_EPT
2652
2653 int rc = VINF_SUCCESS;
2654
2655 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2656
2657 /*
2658 * Some input validation first.
2659 */
2660 AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage));
2661
2662 /*
2663 * Get the relevant shadow PDE entry.
2664 */
2665# if PGM_SHW_TYPE == PGM_TYPE_32BIT
2666 const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT;
2667 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
2668
2669 /* Fetch the pgm pool shadow descriptor. */
2670 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
2671 Assert(pShwPde);
2672
2673# elif PGM_SHW_TYPE == PGM_TYPE_PAE
2674 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2675 PPGMPOOLPAGE pShwPde = NULL;
2676 PX86PDPAE pPDDst;
2677 PSHWPDE pPdeDst;
2678
2679 /* Fetch the pgm pool shadow descriptor. */
2680 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
2681 AssertRCSuccessReturn(rc, rc);
2682 Assert(pShwPde);
2683
2684 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
2685 pPdeDst = &pPDDst->a[iPDDst];
2686
2687# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
2688 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
2689 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
2690 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
2691 PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */
2692 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
2693 AssertRCSuccessReturn(rc, rc);
2694 Assert(pPDDst);
2695 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
2696# endif
2697 SHWPDE PdeDst = *pPdeDst;
2698
2699# if PGM_GST_TYPE == PGM_TYPE_AMD64
2700 /* Fetch the pgm pool shadow descriptor. */
2701 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
2702 Assert(pShwPde);
2703# endif
2704
2705# ifndef PGM_WITHOUT_MAPPINGS
2706 /*
2707 * Check for conflicts.
2708 * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3.
2709 * R3: Simply resolve the conflict.
2710 */
2711 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
2712 {
2713 Assert(pgmMapAreMappingsEnabled(pVM));
2714# ifndef IN_RING3
2715 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage));
2716 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2717 return VERR_ADDRESS_CONFLICT;
2718
2719# else /* IN_RING3 */
2720 PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage);
2721 Assert(pMapping);
2722# if PGM_GST_TYPE == PGM_TYPE_32BIT
2723 rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2724# elif PGM_GST_TYPE == PGM_TYPE_PAE
2725 rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT));
2726# else
2727 AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */
2728# endif
2729 if (RT_FAILURE(rc))
2730 {
2731 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
2732 return rc;
2733 }
2734 PdeDst = *pPdeDst;
2735# endif /* IN_RING3 */
2736 }
2737# endif /* !PGM_WITHOUT_MAPPINGS */
2738 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
2739
2740 /*
2741 * Sync the page directory entry.
2742 */
2743 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
2744 const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu);
2745 if ( PdeSrc.n.u1Present
2746 && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) )
2747 {
2748 /*
2749 * Allocate & map the page table.
2750 */
2751 PSHWPT pPTDst;
2752 PPGMPOOLPAGE pShwPage;
2753 RTGCPHYS GCPhys;
2754 if (fPageTable)
2755 {
2756 GCPhys = GST_GET_PDE_GCPHYS(PdeSrc);
2757# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2758 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2759 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2)));
2760# endif
2761 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
2762 pShwPde->idx, iPDDst, false /*fLockPage*/,
2763 &pShwPage);
2764 }
2765 else
2766 {
2767 PGMPOOLACCESS enmAccess;
2768# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE)
2769 const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu);
2770# else
2771 const bool fNoExecute = false;
2772# endif
2773
2774 GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
2775# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2776 /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/
2777 GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT)));
2778# endif
2779 /* Determine the right kind of large page to avoid incorrect cached entry reuse. */
2780 if (PdeSrc.n.u1User)
2781 {
2782 if (PdeSrc.n.u1Write)
2783 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW;
2784 else
2785 enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R;
2786 }
2787 else
2788 {
2789 if (PdeSrc.n.u1Write)
2790 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW;
2791 else
2792 enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R;
2793 }
2794 rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu),
2795 pShwPde->idx, iPDDst, false /*fLockPage*/,
2796 &pShwPage);
2797 }
2798 if (rc == VINF_SUCCESS)
2799 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
2800 else if (rc == VINF_PGM_CACHED_PAGE)
2801 {
2802 /*
2803 * The PT was cached, just hook it up.
2804 */
2805 if (fPageTable)
2806 PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2807 else
2808 {
2809 PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2810 /* (see explanation and assumptions further down.) */
2811 if ( !PdeSrc.b.u1Dirty
2812 && PdeSrc.b.u1Write)
2813 {
2814 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2815 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2816 PdeDst.b.u1Write = 0;
2817 }
2818 }
2819 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2820 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2821 return VINF_SUCCESS;
2822 }
2823 else if (rc == VERR_PGM_POOL_FLUSHED)
2824 {
2825 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2826 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2827 return VINF_PGM_SYNC_CR3;
2828 }
2829 else
2830 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2831 /** @todo Why do we bother preserving X86_PDE_AVL_MASK here?
2832 * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be
2833 * irrelevant at this point. */
2834 PdeDst.u &= X86_PDE_AVL_MASK;
2835 PdeDst.u |= pShwPage->Core.Key;
2836
2837 /*
2838 * Page directory has been accessed (this is a fault situation, remember).
2839 */
2840 /** @todo
2841 * Well, when the caller is PrefetchPage or InvalidatePage is isn't a
2842 * fault situation. What's more, the Trap0eHandler has already set the
2843 * accessed bit. So, it's actually just VerifyAccessSyncPage which
2844 * might need setting the accessed flag.
2845 *
2846 * The best idea is to leave this change to the caller and add an
2847 * assertion that it's set already. */
2848 pPDSrc->a[iPDSrc].n.u1Accessed = 1;
2849 if (fPageTable)
2850 {
2851 /*
2852 * Page table - 4KB.
2853 *
2854 * Sync all or just a few entries depending on PGM_SYNC_N_PAGES.
2855 */
2856 Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n",
2857 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u));
2858 PGSTPT pPTSrc;
2859 rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc);
2860 if (RT_SUCCESS(rc))
2861 {
2862 /*
2863 * Start by syncing the page directory entry so CSAM's TLB trick works.
2864 */
2865 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK))
2866 | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2867 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2868 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2869
2870 /*
2871 * Directory/page user or supervisor privilege: (same goes for read/write)
2872 *
2873 * Directory Page Combined
2874 * U/S U/S U/S
2875 * 0 0 0
2876 * 0 1 0
2877 * 1 0 0
2878 * 1 1 1
2879 *
2880 * Simple AND operation. Table listed for completeness.
2881 *
2882 */
2883 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K));
2884# ifdef PGM_SYNC_N_PAGES
2885 unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK;
2886 unsigned iPTDst = iPTBase;
2887 const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a));
2888 if (iPTDst <= PGM_SYNC_NR_PAGES / 2)
2889 iPTDst = 0;
2890 else
2891 iPTDst -= PGM_SYNC_NR_PAGES / 2;
2892# else /* !PGM_SYNC_N_PAGES */
2893 unsigned iPTDst = 0;
2894 const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a);
2895# endif /* !PGM_SYNC_N_PAGES */
2896 RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1))
2897 | ((RTGCPTR)iPTDst << PAGE_SHIFT);
2898# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
2899 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
2900 const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512;
2901# else
2902 const unsigned offPTSrc = 0;
2903# endif
2904 for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE)
2905 {
2906 const unsigned iPTSrc = iPTDst + offPTSrc;
2907 const GSTPTE PteSrc = pPTSrc->a[iPTSrc];
2908
2909 if (PteSrc.n.u1Present)
2910 {
2911# ifdef VBOX_WITH_RAW_MODE_NOT_R0
2912 /*
2913 * Assuming kernel code will be marked as supervisor - and not as user level
2914 * and executed using a conforming code selector - And marked as readonly.
2915 * Also assume that if we're monitoring a page, it's of no interest to CSAM.
2916 */
2917 PPGMPAGE pPage;
2918 if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US))
2919 || !CSAMDoesPageNeedScanning(pVM, GCPtrCur)
2920 || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)))
2921 && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
2922 )
2923# endif
2924 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst);
2925 Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n",
2926 GCPtrCur,
2927 PteSrc.n.u1Present,
2928 PteSrc.n.u1Write & PdeSrc.n.u1Write,
2929 PteSrc.n.u1User & PdeSrc.n.u1User,
2930 (uint64_t)PteSrc.u,
2931 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0],
2932 (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) ));
2933 }
2934 /* else: the page table was cleared by the pool */
2935 } /* for PTEs */
2936 }
2937 }
2938 else
2939 {
2940 /*
2941 * Big page - 2/4MB.
2942 *
2943 * We'll walk the ram range list in parallel and optimize lookups.
2944 * We will only sync one shadow page table at a time.
2945 */
2946 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M));
2947
2948 /**
2949 * @todo It might be more efficient to sync only a part of the 4MB
2950 * page (similar to what we do for 4KB PDs).
2951 */
2952
2953 /*
2954 * Start by syncing the page directory entry.
2955 */
2956 PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY)))
2957 | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc);
2958
2959 /*
2960 * If the page is not flagged as dirty and is writable, then make it read-only
2961 * at PD level, so we can set the dirty bit when the page is modified.
2962 *
2963 * ASSUMES that page access handlers are implemented on page table entry level.
2964 * Thus we will first catch the dirty access and set PDE.D and restart. If
2965 * there is an access handler, we'll trap again and let it work on the problem.
2966 */
2967 /** @todo move the above stuff to a section in the PGM documentation. */
2968 Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY));
2969 if ( !PdeSrc.b.u1Dirty
2970 && PdeSrc.b.u1Write)
2971 {
2972 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig));
2973 PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY;
2974 PdeDst.b.u1Write = 0;
2975 }
2976 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
2977 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
2978
2979 /*
2980 * Fill the shadow page table.
2981 */
2982 /* Get address and flags from the source PDE. */
2983 SHWPTE PteDstBase;
2984 SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc));
2985
2986 /* Loop thru the entries in the shadow PT. */
2987 const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr);
2988 Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n",
2989 GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr,
2990 GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : ""));
2991 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
2992 unsigned iPTDst = 0;
2993 while ( iPTDst < RT_ELEMENTS(pPTDst->a)
2994 && !VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
2995 {
2996 if (pRam && GCPhys >= pRam->GCPhys)
2997 {
2998# ifndef PGM_WITH_A20
2999 unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
3000# endif
3001 do
3002 {
3003 /* Make shadow PTE. */
3004# ifdef PGM_WITH_A20
3005 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3006# else
3007 PPGMPAGE pPage = &pRam->aPages[iHCPage];
3008# endif
3009 SHWPTE PteDst;
3010
3011# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3012 /* Try to make the page writable if necessary. */
3013 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
3014 && ( PGM_PAGE_IS_ZERO(pPage)
3015 || ( SHW_PTE_IS_RW(PteDstBase)
3016 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
3017# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES
3018 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED
3019# endif
3020# ifdef VBOX_WITH_PAGE_SHARING
3021 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED
3022# endif
3023 && !PGM_PAGE_IS_BALLOONED(pPage))
3024 )
3025 )
3026 {
3027 rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys);
3028 AssertRCReturn(rc, rc);
3029 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY))
3030 break;
3031 }
3032# endif
3033
3034 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3035 PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst);
3036 else if (PGM_PAGE_IS_BALLOONED(pPage))
3037 SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */
3038# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3039 /*
3040 * Assuming kernel code will be marked as supervisor and not as user level and executed
3041 * using a conforming code selector. Don't check for readonly, as that implies the whole
3042 * 4MB can be code or readonly data. Linux enables write access for its large pages.
3043 */
3044 else if ( !PdeSrc.n.u1User
3045 && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT)))
3046 SHW_PTE_SET(PteDst, 0);
3047# endif
3048 else
3049 SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase));
3050
3051 /* Only map writable pages writable. */
3052 if ( SHW_PTE_IS_P_RW(PteDst)
3053 && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
3054 {
3055 /* Still applies to shared pages. */
3056 Assert(!PGM_PAGE_IS_ZERO(pPage));
3057 SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */
3058 Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT))));
3059 }
3060
3061 if (SHW_PTE_IS_P(PteDst))
3062 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst);
3063
3064 /* commit it (not atomic, new table) */
3065 pPTDst->a[iPTDst] = PteDst;
3066 Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n",
3067 (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst),
3068 SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : ""));
3069
3070 /* advance */
3071 GCPhys += PAGE_SIZE;
3072 PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys);
3073# ifndef PGM_WITH_A20
3074 iHCPage++;
3075# endif
3076 iPTDst++;
3077 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3078 && GCPhys <= pRam->GCPhysLast);
3079
3080 /* Advance ram range list. */
3081 while (pRam && GCPhys > pRam->GCPhysLast)
3082 pRam = pRam->CTX_SUFF(pNext);
3083 }
3084 else if (pRam)
3085 {
3086 Log(("Invalid pages at %RGp\n", GCPhys));
3087 do
3088 {
3089 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3090 GCPhys += PAGE_SIZE;
3091 iPTDst++;
3092 } while ( iPTDst < RT_ELEMENTS(pPTDst->a)
3093 && GCPhys < pRam->GCPhys);
3094 PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys);
3095 }
3096 else
3097 {
3098 Log(("Invalid pages at %RGp (2)\n", GCPhys));
3099 for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3100 SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */
3101 }
3102 } /* while more PTEs */
3103 } /* 4KB / 4MB */
3104 }
3105 else
3106 AssertRelease(!PdeDst.n.u1Present);
3107
3108 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3109 if (RT_FAILURE(rc))
3110 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3111 return rc;
3112
3113#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \
3114 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3115 && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \
3116 && !defined(IN_RC)
3117 NOREF(iPDSrc); NOREF(pPDSrc);
3118
3119 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3120
3121 /*
3122 * Validate input a little bit.
3123 */
3124 int rc = VINF_SUCCESS;
3125# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3126 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3127 PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3128
3129 /* Fetch the pgm pool shadow descriptor. */
3130 PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
3131 Assert(pShwPde);
3132
3133# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3134 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3135 PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */
3136 PX86PDPAE pPDDst;
3137 PSHWPDE pPdeDst;
3138
3139 /* Fetch the pgm pool shadow descriptor. */
3140 rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde);
3141 AssertRCSuccessReturn(rc, rc);
3142 Assert(pShwPde);
3143
3144 pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde);
3145 pPdeDst = &pPDDst->a[iPDDst];
3146
3147# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3148 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3149 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK;
3150 PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */
3151 PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */
3152 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst);
3153 AssertRCSuccessReturn(rc, rc);
3154 Assert(pPDDst);
3155 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3156
3157 /* Fetch the pgm pool shadow descriptor. */
3158 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK);
3159 Assert(pShwPde);
3160
3161# elif PGM_SHW_TYPE == PGM_TYPE_EPT
3162 const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
3163 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3164 PEPTPD pPDDst;
3165 PEPTPDPT pPdptDst;
3166
3167 rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst);
3168 if (rc != VINF_SUCCESS)
3169 {
3170 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3171 AssertRC(rc);
3172 return rc;
3173 }
3174 Assert(pPDDst);
3175 PSHWPDE pPdeDst = &pPDDst->a[iPDDst];
3176
3177 /* Fetch the pgm pool shadow descriptor. */
3178 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK);
3179 Assert(pShwPde);
3180# endif
3181 SHWPDE PdeDst = *pPdeDst;
3182
3183 Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING));
3184 Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/
3185
3186# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE
3187 if (BTH_IS_NP_ACTIVE(pVM))
3188 {
3189 /* Check if we allocated a big page before for this 2 MB range. */
3190 PPGMPAGE pPage;
3191 rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage);
3192 if (RT_SUCCESS(rc))
3193 {
3194 RTHCPHYS HCPhys = NIL_RTHCPHYS;
3195 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
3196 {
3197 if (PGM_A20_IS_ENABLED(pVCpu))
3198 {
3199 STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused);
3200 AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3201 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3202 }
3203 else
3204 {
3205 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3206 pVM->pgm.s.cLargePagesDisabled++;
3207 }
3208 }
3209 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED
3210 && PGM_A20_IS_ENABLED(pVCpu))
3211 {
3212 /* Recheck the entire 2 MB range to see if we can use it again as a large page. */
3213 rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage);
3214 if (RT_SUCCESS(rc))
3215 {
3216 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3217 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3218 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3219 }
3220 }
3221 else if ( PGMIsUsingLargePages(pVM)
3222 && PGM_A20_IS_ENABLED(pVCpu))
3223 {
3224 rc = pgmPhysAllocLargePage(pVM, GCPtrPage);
3225 if (RT_SUCCESS(rc))
3226 {
3227 Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED);
3228 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE);
3229 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3230 }
3231 else
3232 LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc));
3233 }
3234
3235 if (HCPhys != NIL_RTHCPHYS)
3236 {
3237 PdeDst.u &= X86_PDE_AVL_MASK;
3238 PdeDst.u |= HCPhys;
3239 PdeDst.n.u1Present = 1;
3240 PdeDst.n.u1Write = 1;
3241 PdeDst.b.u1Size = 1;
3242# if PGM_SHW_TYPE == PGM_TYPE_EPT
3243 PdeDst.n.u1Execute = 1;
3244 PdeDst.b.u1IgnorePAT = 1;
3245 PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB;
3246# else
3247 PdeDst.n.u1User = 1;
3248# endif
3249 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3250
3251 Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u));
3252 /* Add a reference to the first page only. */
3253 PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst);
3254
3255 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3256 return VINF_SUCCESS;
3257 }
3258 }
3259 }
3260# endif /* HC_ARCH_BITS == 64 */
3261
3262 /*
3263 * Allocate & map the page table.
3264 */
3265 PSHWPT pPTDst;
3266 PPGMPOOLPAGE pShwPage;
3267 RTGCPHYS GCPhys;
3268
3269 /* Virtual address = physical address */
3270 GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK);
3271 rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE,
3272 PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/,
3273 &pShwPage);
3274 if ( rc == VINF_SUCCESS
3275 || rc == VINF_PGM_CACHED_PAGE)
3276 pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage);
3277 else
3278 {
3279 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3280 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
3281 }
3282
3283 if (rc == VINF_SUCCESS)
3284 {
3285 /* New page table; fully set it up. */
3286 Assert(pPTDst);
3287
3288 /* Mask away the page offset. */
3289 GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK;
3290
3291 for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++)
3292 {
3293 RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT))
3294 | (iPTDst << PAGE_SHIFT));
3295
3296 PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst);
3297 Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n",
3298 GCPtrCurPage,
3299 SHW_PTE_LOG64(pPTDst->a[iPTDst]),
3300 SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : ""));
3301
3302 if (RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)))
3303 break;
3304 }
3305 }
3306 else
3307 rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */
3308
3309 /* Save the new PDE. */
3310 PdeDst.u &= X86_PDE_AVL_MASK;
3311 PdeDst.u |= pShwPage->Core.Key;
3312 PdeDst.n.u1Present = 1;
3313 PdeDst.n.u1Write = 1;
3314# if PGM_SHW_TYPE == PGM_TYPE_EPT
3315 PdeDst.n.u1Execute = 1;
3316# else
3317 PdeDst.n.u1User = 1;
3318 PdeDst.n.u1Accessed = 1;
3319# endif
3320 ASMAtomicWriteSize(pPdeDst, PdeDst.u);
3321
3322 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a);
3323 if (RT_FAILURE(rc))
3324 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed));
3325 return rc;
3326
3327#else
3328 NOREF(iPDSrc); NOREF(pPDSrc);
3329 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE));
3330 return VERR_PGM_NOT_USED_IN_MODE;
3331#endif
3332}
3333
3334
3335
3336/**
3337 * Prefetch a page/set of pages.
3338 *
3339 * Typically used to sync commonly used pages before entering raw mode
3340 * after a CR3 reload.
3341 *
3342 * @returns VBox status code.
3343 * @param pVCpu Pointer to the VMCPU.
3344 * @param GCPtrPage Page to invalidate.
3345 */
3346PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage)
3347{
3348#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3349 || PGM_GST_TYPE == PGM_TYPE_REAL \
3350 || PGM_GST_TYPE == PGM_TYPE_PROT \
3351 || PGM_GST_TYPE == PGM_TYPE_PAE \
3352 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3353 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3354 && PGM_SHW_TYPE != PGM_TYPE_EPT
3355
3356 /*
3357 * Check that all Guest levels thru the PDE are present, getting the
3358 * PD and PDE in the processes.
3359 */
3360 int rc = VINF_SUCCESS;
3361# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3362# if PGM_GST_TYPE == PGM_TYPE_32BIT
3363 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3364 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3365# elif PGM_GST_TYPE == PGM_TYPE_PAE
3366 unsigned iPDSrc;
3367 X86PDPE PdpeSrc;
3368 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3369 if (!pPDSrc)
3370 return VINF_SUCCESS; /* not present */
3371# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3372 unsigned iPDSrc;
3373 PX86PML4E pPml4eSrc;
3374 X86PDPE PdpeSrc;
3375 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3376 if (!pPDSrc)
3377 return VINF_SUCCESS; /* not present */
3378# endif
3379 const GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3380# else
3381 PGSTPD pPDSrc = NULL;
3382 const unsigned iPDSrc = 0;
3383 GSTPDE PdeSrc;
3384
3385 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3386 PdeSrc.n.u1Present = 1;
3387 PdeSrc.n.u1Write = 1;
3388 PdeSrc.n.u1Accessed = 1;
3389 PdeSrc.n.u1User = 1;
3390# endif
3391
3392 if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed)
3393 {
3394 PVM pVM = pVCpu->CTX_SUFF(pVM);
3395 pgmLock(pVM);
3396
3397# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3398 const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage);
3399# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3400 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3401 PX86PDPAE pPDDst;
3402 X86PDEPAE PdeDst;
3403# if PGM_GST_TYPE != PGM_TYPE_PAE
3404 X86PDPE PdpeSrc;
3405
3406 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3407 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3408# endif
3409 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3410 if (rc != VINF_SUCCESS)
3411 {
3412 pgmUnlock(pVM);
3413 AssertRC(rc);
3414 return rc;
3415 }
3416 Assert(pPDDst);
3417 PdeDst = pPDDst->a[iPDDst];
3418
3419# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3420 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3421 PX86PDPAE pPDDst;
3422 X86PDEPAE PdeDst;
3423
3424# if PGM_GST_TYPE == PGM_TYPE_PROT
3425 /* AMD-V nested paging */
3426 X86PML4E Pml4eSrc;
3427 X86PDPE PdpeSrc;
3428 PX86PML4E pPml4eSrc = &Pml4eSrc;
3429
3430 /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3431 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3432 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3433# endif
3434
3435 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3436 if (rc != VINF_SUCCESS)
3437 {
3438 pgmUnlock(pVM);
3439 AssertRC(rc);
3440 return rc;
3441 }
3442 Assert(pPDDst);
3443 PdeDst = pPDDst->a[iPDDst];
3444# endif
3445 if (!(PdeDst.u & PGM_PDFLAGS_MAPPING))
3446 {
3447 if (!PdeDst.n.u1Present)
3448 {
3449 /** @todo r=bird: This guy will set the A bit on the PDE,
3450 * probably harmless. */
3451 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3452 }
3453 else
3454 {
3455 /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because
3456 * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it
3457 * makes no sense to prefetch more than one page.
3458 */
3459 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3460 if (RT_SUCCESS(rc))
3461 rc = VINF_SUCCESS;
3462 }
3463 }
3464 pgmUnlock(pVM);
3465 }
3466 return rc;
3467
3468#elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3469 NOREF(pVCpu); NOREF(GCPtrPage);
3470 return VINF_SUCCESS; /* ignore */
3471#else
3472 AssertCompile(0);
3473#endif
3474}
3475
3476
3477
3478
3479/**
3480 * Syncs a page during a PGMVerifyAccess() call.
3481 *
3482 * @returns VBox status code (informational included).
3483 * @param pVCpu Pointer to the VMCPU.
3484 * @param GCPtrPage The address of the page to sync.
3485 * @param fPage The effective guest page flags.
3486 * @param uErr The trap error code.
3487 * @remarks This will normally never be called on invalid guest page
3488 * translation entries.
3489 */
3490PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr)
3491{
3492 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3493
3494 LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr));
3495
3496 Assert(!pVM->pgm.s.fNestedPaging);
3497#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \
3498 || PGM_GST_TYPE == PGM_TYPE_REAL \
3499 || PGM_GST_TYPE == PGM_TYPE_PROT \
3500 || PGM_GST_TYPE == PGM_TYPE_PAE \
3501 || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \
3502 && PGM_SHW_TYPE != PGM_TYPE_NESTED \
3503 && PGM_SHW_TYPE != PGM_TYPE_EPT
3504
3505# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3506 if (!(fPage & X86_PTE_US))
3507 {
3508 /*
3509 * Mark this page as safe.
3510 */
3511 /** @todo not correct for pages that contain both code and data!! */
3512 Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true));
3513 CSAMMarkPage(pVM, GCPtrPage, true);
3514 }
3515# endif
3516
3517 /*
3518 * Get guest PD and index.
3519 */
3520 /** @todo Performance: We've done all this a jiffy ago in the
3521 * PGMGstGetPage call. */
3522# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3523# if PGM_GST_TYPE == PGM_TYPE_32BIT
3524 const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT;
3525 PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3526
3527# elif PGM_GST_TYPE == PGM_TYPE_PAE
3528 unsigned iPDSrc = 0;
3529 X86PDPE PdpeSrc;
3530 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc);
3531 if (RT_UNLIKELY(!pPDSrc))
3532 {
3533 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3534 return VINF_EM_RAW_GUEST_TRAP;
3535 }
3536
3537# elif PGM_GST_TYPE == PGM_TYPE_AMD64
3538 unsigned iPDSrc = 0; /* shut up gcc */
3539 PX86PML4E pPml4eSrc = NULL; /* ditto */
3540 X86PDPE PdpeSrc;
3541 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc);
3542 if (RT_UNLIKELY(!pPDSrc))
3543 {
3544 Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage));
3545 return VINF_EM_RAW_GUEST_TRAP;
3546 }
3547# endif
3548
3549# else /* !PGM_WITH_PAGING */
3550 PGSTPD pPDSrc = NULL;
3551 const unsigned iPDSrc = 0;
3552# endif /* !PGM_WITH_PAGING */
3553 int rc = VINF_SUCCESS;
3554
3555 pgmLock(pVM);
3556
3557 /*
3558 * First check if the shadow pd is present.
3559 */
3560# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3561 PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage);
3562
3563# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3564 PX86PDEPAE pPdeDst;
3565 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3566 PX86PDPAE pPDDst;
3567# if PGM_GST_TYPE != PGM_TYPE_PAE
3568 /* Fake PDPT entry; access control handled on the page table level, so allow everything. */
3569 X86PDPE PdpeSrc;
3570 PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */
3571# endif
3572 rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst);
3573 if (rc != VINF_SUCCESS)
3574 {
3575 pgmUnlock(pVM);
3576 AssertRC(rc);
3577 return rc;
3578 }
3579 Assert(pPDDst);
3580 pPdeDst = &pPDDst->a[iPDDst];
3581
3582# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3583 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK);
3584 PX86PDPAE pPDDst;
3585 PX86PDEPAE pPdeDst;
3586
3587# if PGM_GST_TYPE == PGM_TYPE_PROT
3588 /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */
3589 X86PML4E Pml4eSrc;
3590 X86PDPE PdpeSrc;
3591 PX86PML4E pPml4eSrc = &Pml4eSrc;
3592 Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
3593 PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
3594# endif
3595
3596 rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst);
3597 if (rc != VINF_SUCCESS)
3598 {
3599 pgmUnlock(pVM);
3600 AssertRC(rc);
3601 return rc;
3602 }
3603 Assert(pPDDst);
3604 pPdeDst = &pPDDst->a[iPDDst];
3605# endif
3606
3607 if (!pPdeDst->n.u1Present)
3608 {
3609 rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage);
3610 if (rc != VINF_SUCCESS)
3611 {
3612 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3613 pgmUnlock(pVM);
3614 AssertRC(rc);
3615 return rc;
3616 }
3617 }
3618
3619# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3620 /* Check for dirty bit fault */
3621 rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage);
3622 if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT)
3623 Log(("PGMVerifyAccess: success (dirty)\n"));
3624 else
3625# endif
3626 {
3627# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
3628 GSTPDE PdeSrc = pPDSrc->a[iPDSrc];
3629# else
3630 GSTPDE PdeSrc;
3631 PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */
3632 PdeSrc.n.u1Present = 1;
3633 PdeSrc.n.u1Write = 1;
3634 PdeSrc.n.u1Accessed = 1;
3635 PdeSrc.n.u1User = 1;
3636# endif
3637
3638 Assert(rc != VINF_EM_RAW_GUEST_TRAP);
3639 if (uErr & X86_TRAP_PF_US)
3640 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser));
3641 else /* supervisor */
3642 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor));
3643
3644 rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0);
3645 if (RT_SUCCESS(rc))
3646 {
3647 /* Page was successfully synced */
3648 Log2(("PGMVerifyAccess: success (sync)\n"));
3649 rc = VINF_SUCCESS;
3650 }
3651 else
3652 {
3653 Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc));
3654 rc = VINF_EM_RAW_GUEST_TRAP;
3655 }
3656 }
3657 PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst);
3658 pgmUnlock(pVM);
3659 return rc;
3660
3661#else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3662
3663 AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE));
3664 return VERR_PGM_NOT_USED_IN_MODE;
3665#endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */
3666}
3667
3668
3669/**
3670 * Syncs the paging hierarchy starting at CR3.
3671 *
3672 * @returns VBox status code, no specials.
3673 * @param pVCpu Pointer to the VMCPU.
3674 * @param cr0 Guest context CR0 register.
3675 * @param cr3 Guest context CR3 register. Not subjected to the A20
3676 * mask.
3677 * @param cr4 Guest context CR4 register.
3678 * @param fGlobal Including global page directories or not
3679 */
3680PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
3681{
3682 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
3683 NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal);
3684
3685 LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal));
3686
3687#if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT
3688
3689 pgmLock(pVM);
3690
3691# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
3692 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3693 if (pPool->cDirtyPages)
3694 pgmPoolResetDirtyPages(pVM);
3695# endif
3696
3697 /*
3698 * Update page access handlers.
3699 * The virtual are always flushed, while the physical are only on demand.
3700 * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll
3701 * have to look into that later because it will have a bad influence on the performance.
3702 * @note SvL: There's no need for that. Just invalidate the virtual range(s).
3703 * bird: Yes, but that won't work for aliases.
3704 */
3705 /** @todo this MUST go away. See @bugref{1557}. */
3706 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3707 PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4);
3708 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h);
3709 pgmUnlock(pVM);
3710#endif /* !NESTED && !EPT */
3711
3712#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3713 /*
3714 * Nested / EPT - almost no work.
3715 */
3716 Assert(!pgmMapAreMappingsEnabled(pVM));
3717 return VINF_SUCCESS;
3718
3719#elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3720 /*
3721 * AMD64 (Shw & Gst) - No need to check all paging levels; we zero
3722 * out the shadow parts when the guest modifies its tables.
3723 */
3724 Assert(!pgmMapAreMappingsEnabled(pVM));
3725 return VINF_SUCCESS;
3726
3727#else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3728
3729# ifndef PGM_WITHOUT_MAPPINGS
3730 /*
3731 * Check for and resolve conflicts with our guest mappings if they
3732 * are enabled and not fixed.
3733 */
3734 if (pgmMapAreMappingsFloating(pVM))
3735 {
3736 int rc = pgmMapResolveConflicts(pVM);
3737 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
3738 if (rc == VINF_PGM_SYNC_CR3)
3739 {
3740 LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n"));
3741 return VINF_PGM_SYNC_CR3;
3742 }
3743 }
3744# else
3745 Assert(!pgmMapAreMappingsEnabled(pVM));
3746# endif
3747 return VINF_SUCCESS;
3748#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */
3749}
3750
3751
3752
3753
3754#ifdef VBOX_STRICT
3755# ifdef IN_RC
3756# undef AssertMsgFailed
3757# define AssertMsgFailed Log
3758# endif
3759
3760/**
3761 * Checks that the shadow page table is in sync with the guest one.
3762 *
3763 * @returns The number of errors.
3764 * @param pVM The virtual machine.
3765 * @param pVCpu Pointer to the VMCPU.
3766 * @param cr3 Guest context CR3 register.
3767 * @param cr4 Guest context CR4 register.
3768 * @param GCPtr Where to start. Defaults to 0.
3769 * @param cb How much to check. Defaults to everything.
3770 */
3771PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)
3772{
3773 NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb);
3774#if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT
3775 return 0;
3776#else
3777 unsigned cErrors = 0;
3778 PVM pVM = pVCpu->CTX_SUFF(pVM);
3779 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3780
3781# if PGM_GST_TYPE == PGM_TYPE_PAE
3782 /** @todo currently broken; crashes below somewhere */
3783 AssertFailed();
3784# endif
3785
3786# if PGM_GST_TYPE == PGM_TYPE_32BIT \
3787 || PGM_GST_TYPE == PGM_TYPE_PAE \
3788 || PGM_GST_TYPE == PGM_TYPE_AMD64
3789
3790 bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu);
3791 PPGMCPU pPGM = &pVCpu->pgm.s;
3792 RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */
3793 RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */
3794# ifndef IN_RING0
3795 RTHCPHYS HCPhys; /* general usage. */
3796# endif
3797 int rc;
3798
3799 /*
3800 * Check that the Guest CR3 and all its mappings are correct.
3801 */
3802 AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK),
3803 ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3),
3804 false);
3805# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64
3806# if PGM_GST_TYPE == PGM_TYPE_32BIT
3807 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw);
3808# else
3809 rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw);
3810# endif
3811 AssertRCReturn(rc, 1);
3812 HCPhys = NIL_RTHCPHYS;
3813 rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys);
3814 AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false);
3815# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3)
3816 pgmGstGet32bitPDPtr(pVCpu);
3817 RTGCPHYS GCPhys;
3818 rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys);
3819 AssertRCReturn(rc, 1);
3820 AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false);
3821# endif
3822# endif /* !IN_RING0 */
3823
3824 /*
3825 * Get and check the Shadow CR3.
3826 */
3827# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3828 unsigned cPDEs = X86_PG_ENTRIES;
3829 unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE;
3830# elif PGM_SHW_TYPE == PGM_TYPE_PAE
3831# if PGM_GST_TYPE == PGM_TYPE_32BIT
3832 unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */
3833# else
3834 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3835# endif
3836 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3837# elif PGM_SHW_TYPE == PGM_TYPE_AMD64
3838 unsigned cPDEs = X86_PG_PAE_ENTRIES;
3839 unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE;
3840# endif
3841 if (cb != ~(RTGCPTR)0)
3842 cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1);
3843
3844/** @todo call the other two PGMAssert*() functions. */
3845
3846# if PGM_GST_TYPE == PGM_TYPE_AMD64
3847 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3848
3849 for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++)
3850 {
3851 PPGMPOOLPAGE pShwPdpt = NULL;
3852 PX86PML4E pPml4eSrc;
3853 PX86PML4E pPml4eDst;
3854 RTGCPHYS GCPhysPdptSrc;
3855
3856 pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4);
3857 pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4);
3858
3859 /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */
3860 if (!pPml4eDst->n.u1Present)
3861 {
3862 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3863 continue;
3864 }
3865
3866 pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK);
3867 GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK);
3868
3869 if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present)
3870 {
3871 AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3872 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3873 cErrors++;
3874 continue;
3875 }
3876
3877 if (GCPhysPdptSrc != pShwPdpt->GCPhys)
3878 {
3879 AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc));
3880 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3881 cErrors++;
3882 continue;
3883 }
3884
3885 if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User
3886 || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write
3887 || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute)
3888 {
3889 AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u));
3890 GCPtr += _2M * UINT64_C(512) * UINT64_C(512);
3891 cErrors++;
3892 continue;
3893 }
3894# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3895 {
3896# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */
3897
3898# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE
3899 /*
3900 * Check the PDPTEs too.
3901 */
3902 unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
3903
3904 for (;iPdpt <= SHW_PDPT_MASK; iPdpt++)
3905 {
3906 unsigned iPDSrc = 0; /* initialized to shut up gcc */
3907 PPGMPOOLPAGE pShwPde = NULL;
3908 PX86PDPE pPdpeDst;
3909 RTGCPHYS GCPhysPdeSrc;
3910 X86PDPE PdpeSrc;
3911 PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */
3912# if PGM_GST_TYPE == PGM_TYPE_PAE
3913 PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc);
3914 PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu);
3915# else
3916 PX86PML4E pPml4eSrcIgn;
3917 PX86PDPT pPdptDst;
3918 PX86PDPAE pPDDst;
3919 PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc);
3920
3921 rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst);
3922 if (rc != VINF_SUCCESS)
3923 {
3924 AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc));
3925 GCPtr += 512 * _2M;
3926 continue; /* next PDPTE */
3927 }
3928 Assert(pPDDst);
3929# endif
3930 Assert(iPDSrc == 0);
3931
3932 pPdpeDst = &pPdptDst->a[iPdpt];
3933
3934 if (!pPdpeDst->n.u1Present)
3935 {
3936 GCPtr += 512 * _2M;
3937 continue; /* next PDPTE */
3938 }
3939
3940 pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK);
3941 GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK);
3942
3943 if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present)
3944 {
3945 AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3946 GCPtr += 512 * _2M;
3947 cErrors++;
3948 continue;
3949 }
3950
3951 if (GCPhysPdeSrc != pShwPde->GCPhys)
3952 {
3953# if PGM_GST_TYPE == PGM_TYPE_AMD64
3954 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3955# else
3956 AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc));
3957# endif
3958 GCPtr += 512 * _2M;
3959 cErrors++;
3960 continue;
3961 }
3962
3963# if PGM_GST_TYPE == PGM_TYPE_AMD64
3964 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User
3965 || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write
3966 || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute)
3967 {
3968 AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u));
3969 GCPtr += 512 * _2M;
3970 cErrors++;
3971 continue;
3972 }
3973# endif
3974
3975# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3976 {
3977# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */
3978# if PGM_GST_TYPE == PGM_TYPE_32BIT
3979 GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3980# if PGM_SHW_TYPE == PGM_TYPE_32BIT
3981 PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu);
3982# endif
3983# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */
3984 /*
3985 * Iterate the shadow page directory.
3986 */
3987 GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT;
3988 unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
3989
3990 for (;
3991 iPDDst < cPDEs;
3992 iPDDst++, GCPtr += cIncrement)
3993 {
3994# if PGM_SHW_TYPE == PGM_TYPE_PAE
3995 const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr);
3996# else
3997 const SHWPDE PdeDst = pPDDst->a[iPDDst];
3998# endif
3999 if (PdeDst.u & PGM_PDFLAGS_MAPPING)
4000 {
4001 Assert(pgmMapAreMappingsEnabled(pVM));
4002 if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING)
4003 {
4004 AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u));
4005 cErrors++;
4006 continue;
4007 }
4008 }
4009 else if ( (PdeDst.u & X86_PDE_P)
4010 || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY))
4011 )
4012 {
4013 HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK;
4014 PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw);
4015 if (!pPoolPage)
4016 {
4017 AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n",
4018 HCPhysShw, GCPtr, (uint64_t)PdeDst.u));
4019 cErrors++;
4020 continue;
4021 }
4022 const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage);
4023
4024 if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD))
4025 {
4026 AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n",
4027 GCPtr, (uint64_t)PdeDst.u));
4028 cErrors++;
4029 }
4030
4031 if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D))
4032 {
4033 AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n",
4034 GCPtr, (uint64_t)PdeDst.u));
4035 cErrors++;
4036 }
4037
4038 const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK];
4039 if (!PdeSrc.n.u1Present)
4040 {
4041 AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n",
4042 GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u));
4043 cErrors++;
4044 continue;
4045 }
4046
4047 if ( !PdeSrc.b.u1Size
4048 || !fBigPagesSupported)
4049 {
4050 GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc);
4051# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4052 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2)));
4053# endif
4054 }
4055 else
4056 {
4057# if PGM_GST_TYPE == PGM_TYPE_32BIT
4058 if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK)
4059 {
4060 AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n",
4061 GCPtr, (uint64_t)PdeSrc.u));
4062 cErrors++;
4063 continue;
4064 }
4065# endif
4066 GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc);
4067# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4068 GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT)));
4069# endif
4070 }
4071
4072 if ( pPoolPage->enmKind
4073 != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG))
4074 {
4075 AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n",
4076 pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u));
4077 cErrors++;
4078 }
4079
4080 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4081 if (!pPhysPage)
4082 {
4083 AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4084 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4085 cErrors++;
4086 continue;
4087 }
4088
4089 if (GCPhysGst != pPoolPage->GCPhys)
4090 {
4091 AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n",
4092 GCPhysGst, pPoolPage->GCPhys, GCPtr));
4093 cErrors++;
4094 continue;
4095 }
4096
4097 if ( !PdeSrc.b.u1Size
4098 || !fBigPagesSupported)
4099 {
4100 /*
4101 * Page Table.
4102 */
4103 const GSTPT *pPTSrc;
4104 rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)),
4105 &pPTSrc);
4106 if (RT_FAILURE(rc))
4107 {
4108 AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n",
4109 GCPhysGst, GCPtr, (uint64_t)PdeSrc.u));
4110 cErrors++;
4111 continue;
4112 }
4113 if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))
4114 != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)))
4115 {
4116 /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here!
4117 // (This problem will go away when/if we shadow multiple CR3s.)
4118 AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4119 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4120 cErrors++;
4121 continue;
4122 }
4123 if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4124 {
4125 AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n",
4126 GCPtr, (uint64_t)PdeDst.u));
4127 cErrors++;
4128 continue;
4129 }
4130
4131 /* iterate the page table. */
4132# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT
4133 /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */
4134 const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512;
4135# else
4136 const unsigned offPTSrc = 0;
4137# endif
4138 for (unsigned iPT = 0, off = 0;
4139 iPT < RT_ELEMENTS(pPTDst->a);
4140 iPT++, off += PAGE_SIZE)
4141 {
4142 const SHWPTE PteDst = pPTDst->a[iPT];
4143
4144 /* skip not-present and dirty tracked entries. */
4145 if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */
4146 continue;
4147 Assert(SHW_PTE_IS_P(PteDst));
4148
4149 const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc];
4150 if (!PteSrc.n.u1Present)
4151 {
4152# ifdef IN_RING3
4153 PGMAssertHandlerAndFlagsInSync(pVM);
4154 DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE
4155 | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3,
4156 0, 0, UINT64_MAX, 99, NULL);
4157# endif
4158 AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n",
4159 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0],
4160 (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc)));
4161 cErrors++;
4162 continue;
4163 }
4164
4165 uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT;
4166# if 1 /** @todo sync accessed bit properly... */
4167 fIgnoreFlags |= X86_PTE_A;
4168# endif
4169
4170 /* match the physical addresses */
4171 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4172 GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc);
4173
4174# ifdef IN_RING3
4175 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4176 if (RT_FAILURE(rc))
4177 {
4178 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4179 {
4180 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4181 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4182 cErrors++;
4183 continue;
4184 }
4185 }
4186 else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK))
4187 {
4188 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4189 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4190 cErrors++;
4191 continue;
4192 }
4193# endif
4194
4195 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4196 if (!pPhysPage)
4197 {
4198# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4199 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4200 {
4201 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n",
4202 GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4203 cErrors++;
4204 continue;
4205 }
4206# endif
4207 if (SHW_PTE_IS_RW(PteDst))
4208 {
4209 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4210 GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4211 cErrors++;
4212 }
4213 fIgnoreFlags |= X86_PTE_RW;
4214 }
4215 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4216 {
4217 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n",
4218 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4219 cErrors++;
4220 continue;
4221 }
4222
4223 /* flags */
4224 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4225 {
4226 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4227 {
4228 if (SHW_PTE_IS_RW(PteDst))
4229 {
4230 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4231 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4232 cErrors++;
4233 continue;
4234 }
4235 fIgnoreFlags |= X86_PTE_RW;
4236 }
4237 else
4238 {
4239 if ( SHW_PTE_IS_P(PteDst)
4240# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4241 && !PGM_PAGE_IS_MMIO(pPhysPage)
4242# endif
4243 )
4244 {
4245 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n",
4246 GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4247 cErrors++;
4248 continue;
4249 }
4250 fIgnoreFlags |= X86_PTE_P;
4251 }
4252 }
4253 else
4254 {
4255 if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write)
4256 {
4257 if (SHW_PTE_IS_RW(PteDst))
4258 {
4259 AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n",
4260 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4261 cErrors++;
4262 continue;
4263 }
4264 if (!SHW_PTE_IS_TRACK_DIRTY(PteDst))
4265 {
4266 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4267 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4268 cErrors++;
4269 continue;
4270 }
4271 if (SHW_PTE_IS_D(PteDst))
4272 {
4273 AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4274 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4275 cErrors++;
4276 }
4277# if 0 /** @todo sync access bit properly... */
4278 if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed)
4279 {
4280 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4281 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4282 cErrors++;
4283 }
4284 fIgnoreFlags |= X86_PTE_RW;
4285# else
4286 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4287# endif
4288 }
4289 else if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4290 {
4291 /* access bit emulation (not implemented). */
4292 if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst))
4293 {
4294 AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n",
4295 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4296 cErrors++;
4297 continue;
4298 }
4299 if (!SHW_PTE_IS_A(PteDst))
4300 {
4301 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n",
4302 GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4303 cErrors++;
4304 }
4305 fIgnoreFlags |= X86_PTE_P;
4306 }
4307# ifdef DEBUG_sandervl
4308 fIgnoreFlags |= X86_PTE_D | X86_PTE_A;
4309# endif
4310 }
4311
4312 if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4313 && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4314 )
4315 {
4316 AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n",
4317 GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4318 fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst)));
4319 cErrors++;
4320 continue;
4321 }
4322 } /* foreach PTE */
4323 }
4324 else
4325 {
4326 /*
4327 * Big Page.
4328 */
4329 uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD;
4330 if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write)
4331 {
4332 if (PdeDst.n.u1Write)
4333 {
4334 AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4335 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4336 cErrors++;
4337 continue;
4338 }
4339 if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))
4340 {
4341 AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n",
4342 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4343 cErrors++;
4344 continue;
4345 }
4346# if 0 /** @todo sync access bit properly... */
4347 if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed)
4348 {
4349 AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n",
4350 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4351 cErrors++;
4352 }
4353 fIgnoreFlags |= X86_PTE_RW;
4354# else
4355 fIgnoreFlags |= X86_PTE_RW | X86_PTE_A;
4356# endif
4357 }
4358 else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)
4359 {
4360 /* access bit emulation (not implemented). */
4361 if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present)
4362 {
4363 AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4364 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4365 cErrors++;
4366 continue;
4367 }
4368 if (!PdeDst.n.u1Accessed)
4369 {
4370 AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n",
4371 GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4372 cErrors++;
4373 }
4374 fIgnoreFlags |= X86_PTE_P;
4375 }
4376
4377 if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags))
4378 {
4379 AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n",
4380 GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags,
4381 fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u));
4382 cErrors++;
4383 }
4384
4385 /* iterate the page table. */
4386 for (unsigned iPT = 0, off = 0;
4387 iPT < RT_ELEMENTS(pPTDst->a);
4388 iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE))
4389 {
4390 const SHWPTE PteDst = pPTDst->a[iPT];
4391
4392 if (SHW_PTE_IS_TRACK_DIRTY(PteDst))
4393 {
4394 AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n",
4395 GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4396 cErrors++;
4397 }
4398
4399 /* skip not-present entries. */
4400 if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */
4401 continue;
4402
4403 fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX;
4404
4405 /* match the physical addresses */
4406 HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst);
4407
4408# ifdef IN_RING3
4409 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys);
4410 if (RT_FAILURE(rc))
4411 {
4412 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4413 {
4414 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4415 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4416 cErrors++;
4417 }
4418 }
4419 else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK))
4420 {
4421 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4422 GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4423 cErrors++;
4424 continue;
4425 }
4426# endif
4427 pPhysPage = pgmPhysGetPage(pVM, GCPhysGst);
4428 if (!pPhysPage)
4429 {
4430# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */
4431 if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */
4432 {
4433 AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n",
4434 GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4435 cErrors++;
4436 continue;
4437 }
4438# endif
4439 if (SHW_PTE_IS_RW(PteDst))
4440 {
4441 AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4442 GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4443 cErrors++;
4444 }
4445 fIgnoreFlags |= X86_PTE_RW;
4446 }
4447 else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage))
4448 {
4449 AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n",
4450 GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4451 cErrors++;
4452 continue;
4453 }
4454
4455 /* flags */
4456 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage))
4457 {
4458 if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage))
4459 {
4460 if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED)
4461 {
4462 if (SHW_PTE_IS_RW(PteDst))
4463 {
4464 AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4465 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4466 cErrors++;
4467 continue;
4468 }
4469 fIgnoreFlags |= X86_PTE_RW;
4470 }
4471 }
4472 else
4473 {
4474 if ( SHW_PTE_IS_P(PteDst)
4475# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64
4476 && !PGM_PAGE_IS_MMIO(pPhysPage)
4477# endif
4478 )
4479 {
4480 AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n",
4481 GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4482 cErrors++;
4483 continue;
4484 }
4485 fIgnoreFlags |= X86_PTE_P;
4486 }
4487 }
4488
4489 if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags)
4490 && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */
4491 )
4492 {
4493 AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n",
4494 GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags,
4495 fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst)));
4496 cErrors++;
4497 continue;
4498 }
4499 } /* for each PTE */
4500 }
4501 }
4502 /* not present */
4503
4504 } /* for each PDE */
4505
4506 } /* for each PDPTE */
4507
4508 } /* for each PML4E */
4509
4510# ifdef DEBUG
4511 if (cErrors)
4512 LogFlow(("AssertCR3: cErrors=%d\n", cErrors));
4513# endif
4514# endif /* GST is in {32BIT, PAE, AMD64} */
4515 return cErrors;
4516#endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */
4517}
4518#endif /* VBOX_STRICT */
4519
4520
4521/**
4522 * Sets up the CR3 for shadow paging
4523 *
4524 * @returns Strict VBox status code.
4525 * @retval VINF_SUCCESS.
4526 *
4527 * @param pVCpu Pointer to the VMCPU.
4528 * @param GCPhysCR3 The physical address in the CR3 register. (A20
4529 * mask already applied.)
4530 */
4531PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)
4532{
4533 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4534
4535 /* Update guest paging info. */
4536#if PGM_GST_TYPE == PGM_TYPE_32BIT \
4537 || PGM_GST_TYPE == PGM_TYPE_PAE \
4538 || PGM_GST_TYPE == PGM_TYPE_AMD64
4539
4540 LogFlow(("MapCR3: %RGp\n", GCPhysCR3));
4541 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4542
4543 /*
4544 * Map the page CR3 points at.
4545 */
4546 RTHCPTR HCPtrGuestCR3;
4547 RTHCPHYS HCPhysGuestCR3;
4548 pgmLock(pVM);
4549 PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3);
4550 AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR);
4551 HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3);
4552 /** @todo this needs some reworking wrt. locking? */
4553# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4554 HCPtrGuestCR3 = NIL_RTHCPTR;
4555 int rc = VINF_SUCCESS;
4556# else
4557 int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
4558# endif
4559 pgmUnlock(pVM);
4560 if (RT_SUCCESS(rc))
4561 {
4562 rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0);
4563 if (RT_SUCCESS(rc))
4564 {
4565# ifdef IN_RC
4566 PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping);
4567# endif
4568# if PGM_GST_TYPE == PGM_TYPE_32BIT
4569 pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
4570# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4571 pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
4572# endif
4573 pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping;
4574
4575# elif PGM_GST_TYPE == PGM_TYPE_PAE
4576 unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK;
4577 pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4578# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4579 pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
4580# endif
4581 pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off);
4582 LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC));
4583
4584 /*
4585 * Map the 4 PDs too.
4586 */
4587 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu);
4588 RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE;
4589 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE)
4590 {
4591 pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u;
4592 if (pGuestPDPT->a[i].n.u1Present)
4593 {
4594 RTHCPTR HCPtr;
4595 RTHCPHYS HCPhys;
4596 RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK);
4597 pgmLock(pVM);
4598 PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys);
4599 AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR);
4600 HCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4601# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4602 HCPtr = NIL_RTHCPTR;
4603 int rc2 = VINF_SUCCESS;
4604# else
4605 int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr);
4606# endif
4607 pgmUnlock(pVM);
4608 if (RT_SUCCESS(rc2))
4609 {
4610 rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0);
4611 AssertRCReturn(rc, rc);
4612
4613 pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr;
4614# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4615 pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr;
4616# endif
4617 pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr;
4618 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys;
4619# ifdef IN_RC
4620 PGM_INVL_PG(pVCpu, GCPtr);
4621# endif
4622 continue;
4623 }
4624 AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i));
4625 }
4626
4627 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4628# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4629 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4630# endif
4631 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4632 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4633# ifdef IN_RC
4634 PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */
4635# endif
4636 }
4637
4638# elif PGM_GST_TYPE == PGM_TYPE_AMD64
4639 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
4640# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4641 pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
4642# endif
4643# endif
4644 }
4645 else
4646 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4647 }
4648 else
4649 AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3));
4650
4651#else /* prot/real stub */
4652 int rc = VINF_SUCCESS;
4653#endif
4654
4655 /* Update shadow paging info for guest modes with paging (32, pae, 64). */
4656# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4657 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4658 || PGM_SHW_TYPE == PGM_TYPE_AMD64) \
4659 && ( PGM_GST_TYPE != PGM_TYPE_REAL \
4660 && PGM_GST_TYPE != PGM_TYPE_PROT))
4661
4662 Assert(!pVM->pgm.s.fNestedPaging);
4663 PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3);
4664
4665 /*
4666 * Update the shadow root page as well since that's not fixed.
4667 */
4668 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4669 PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
4670 PPGMPOOLPAGE pNewShwPageCR3;
4671
4672 pgmLock(pVM);
4673
4674# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4675 if (pPool->cDirtyPages)
4676 pgmPoolResetDirtyPages(pVM);
4677# endif
4678
4679 Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32)));
4680 rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
4681 NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
4682 &pNewShwPageCR3);
4683 AssertFatalRC(rc);
4684 rc = VINF_SUCCESS;
4685
4686# ifdef IN_RC
4687 /*
4688 * WARNING! We can't deal with jumps to ring 3 in the code below as the
4689 * state will be inconsistent! Flush important things now while
4690 * we still can and then make sure there are no ring-3 calls.
4691 */
4692# ifdef VBOX_WITH_REM
4693 REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu);
4694# endif
4695 VMMRZCallRing3Disable(pVCpu);
4696# endif
4697
4698 pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3;
4699# ifdef IN_RING0
4700 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4701 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4702# elif defined(IN_RC)
4703 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4704 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4705# else
4706 pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4707 pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4708# endif
4709
4710# ifndef PGM_WITHOUT_MAPPINGS
4711 /*
4712 * Apply all hypervisor mappings to the new CR3.
4713 * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will
4714 * make sure we check for conflicts in the new CR3 root.
4715 */
4716# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE)
4717 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4718# endif
4719 rc = pgmMapActivateCR3(pVM, pNewShwPageCR3);
4720 AssertRCReturn(rc, rc);
4721# endif
4722
4723 /* Set the current hypervisor CR3. */
4724 CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu));
4725 SELMShadowCR3Changed(pVM, pVCpu);
4726
4727# ifdef IN_RC
4728 /* NOTE: The state is consistent again. */
4729 VMMRZCallRing3Enable(pVCpu);
4730# endif
4731
4732 /* Clean up the old CR3 root. */
4733 if ( pOldShwPageCR3
4734 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */)
4735 {
4736 Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE);
4737# ifndef PGM_WITHOUT_MAPPINGS
4738 /* Remove the hypervisor mappings from the shadow page table. */
4739 pgmMapDeactivateCR3(pVM, pOldShwPageCR3);
4740# endif
4741 /* Mark the page as unlocked; allow flushing again. */
4742 pgmPoolUnlockPage(pPool, pOldShwPageCR3);
4743
4744 pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX);
4745 }
4746 pgmUnlock(pVM);
4747# else
4748 NOREF(GCPhysCR3);
4749# endif
4750
4751 return rc;
4752}
4753
4754/**
4755 * Unmaps the shadow CR3.
4756 *
4757 * @returns VBox status, no specials.
4758 * @param pVCpu Pointer to the VMCPU.
4759 */
4760PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu)
4761{
4762 LogFlow(("UnmapCR3\n"));
4763
4764 int rc = VINF_SUCCESS;
4765 PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM);
4766
4767 /*
4768 * Update guest paging info.
4769 */
4770#if PGM_GST_TYPE == PGM_TYPE_32BIT
4771 pVCpu->pgm.s.pGst32BitPdR3 = 0;
4772# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4773 pVCpu->pgm.s.pGst32BitPdR0 = 0;
4774# endif
4775 pVCpu->pgm.s.pGst32BitPdRC = 0;
4776
4777#elif PGM_GST_TYPE == PGM_TYPE_PAE
4778 pVCpu->pgm.s.pGstPaePdptR3 = 0;
4779# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4780 pVCpu->pgm.s.pGstPaePdptR0 = 0;
4781# endif
4782 pVCpu->pgm.s.pGstPaePdptRC = 0;
4783 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4784 {
4785 pVCpu->pgm.s.apGstPaePDsR3[i] = 0;
4786# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4787 pVCpu->pgm.s.apGstPaePDsR0[i] = 0;
4788# endif
4789 pVCpu->pgm.s.apGstPaePDsRC[i] = 0;
4790 pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
4791 }
4792
4793#elif PGM_GST_TYPE == PGM_TYPE_AMD64
4794 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0;
4795# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4796 pVCpu->pgm.s.pGstAmd64Pml4R0 = 0;
4797# endif
4798
4799#else /* prot/real mode stub */
4800 /* nothing to do */
4801#endif
4802
4803#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */
4804 /*
4805 * Update shadow paging info.
4806 */
4807# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \
4808 || PGM_SHW_TYPE == PGM_TYPE_PAE \
4809 || PGM_SHW_TYPE == PGM_TYPE_AMD64))
4810
4811# if PGM_GST_TYPE != PGM_TYPE_REAL
4812 Assert(!pVM->pgm.s.fNestedPaging);
4813# endif
4814
4815 pgmLock(pVM);
4816
4817# ifndef PGM_WITHOUT_MAPPINGS
4818 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4819 /* Remove the hypervisor mappings from the shadow page table. */
4820 pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4821# endif
4822
4823 if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
4824 {
4825 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4826
4827# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4828 if (pPool->cDirtyPages)
4829 pgmPoolResetDirtyPages(pVM);
4830# endif
4831
4832 /* Mark the page as unlocked; allow flushing again. */
4833 pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
4834
4835 pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
4836 pVCpu->pgm.s.pShwPageCR3R3 = 0;
4837 pVCpu->pgm.s.pShwPageCR3R0 = 0;
4838 pVCpu->pgm.s.pShwPageCR3RC = 0;
4839 }
4840 pgmUnlock(pVM);
4841# endif
4842#endif /* !IN_RC*/
4843
4844 return rc;
4845}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette